WorldWideScience

Sample records for cathode supported electrolytes

  1. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  2. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  3. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    Science.gov (United States)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  4. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Highlights: • A sol–gel route for the synthesis of rutile TiO2 was modified to synthesize TiOxNy-C. • N atoms were doped into TiOx nanoparticles solely by the heat-treatment under N2 gas. • The N2-treatment produced sites more active toward ORR compared with NH3-treatment. • TiOx doped with a small amount of N atoms are suggested to be responsible for ORR. -- Abstract: For use as the oxygen reduction reaction (ORR) catalyst in polymer electrolyte fuel cell cathodes, carbon-supported titanium oxynitride (TiOxNy-C) nanoparticles with a size of approximately 5 nm or less were synthesized without using NH3 gas. A sol–gel route developed for the synthesis of pure rutile TiO2 nanopowders was modified to prepare the carbon-supported titanium oxide nanoparticles (TiOx-C). For the first time, N atoms were doped into TiOx solely by heating TiOx-C under an inexpensive N2 atmosphere at 873 K for 3 h, which could be due to carbothermal reduction. The TiOx-C powder was also heated under NH3 gas at various temperatures (873–1273 K) and durations (3–30 h). This step resulted in the formation of a TiN phase irrespective of the heating conditions. Both N2- and NH3-treated TiOxNy-C did not crystallize well; however, the former showed a mass activity more than three times larger than that of the latter at 0.74 V versus the standard hydrogen electrode. Thus, titanium oxide nanoparticles doped with a small amount of N atoms are suggested to be responsible for catalyzing ORR in the case of N2-treated TiOxNy-C

  5. Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    O'Toole, Alexander W.

    In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.

  6. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells

    Science.gov (United States)

    Park, Young-Chul; Tokiwa, Haruki; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2016-05-01

    We investigate the effects of the carbon supports on the Pt distribution, ionomer coverage and cathode performance of carbon-supported Pt catalysts, by using STEM observation, N2 adsorption analysis and electrochemical characterization. According to the STEM observation, the effective Pt surface area (S(e)Pt), which is determined by the location and size of the Pt particles on the supports, increases in the following order: c-Pt/CB cell performance in the high current density region. In spite of the highest Pt utilization (UPt) value (>90%) and uniform ionomer coverage, the c-Pt/CB catalyst shows the lowest cell performance due to the lower S(e)Pt value. On the other hand, the n-Pt/AB250 catalyst, for which all of the Pt particles exist only on the exterior surface, is found to be the most attractive in order to generate the large current densities required by actual fuel cell operation.

  7. Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes

    Science.gov (United States)

    Takei, Chikara; Kakinuma, Katsuyoshi; Kawashima, Kazuhito; Tashiro, Keisuke; Watanabe, Masahiro; Uchida, Makoto

    2016-08-01

    We focus on Pt degradation occurring during fuel cell vehicle (FCV) combined drive cycles involving load and open circuit voltage (OCV) just after startup and during idling. Load cycle durability is evaluated as a function of OCV/load holding time, load rate and relative humidity (RH) with a graphitized carbon black-supported platinum catalyst (Pt/GCB) in the cathode. The degradation of Pt/GCB is suppressed for shorter OCV holding times, lower load rates and lower RH. Scanning ion microscopy (SIM) images of membrane cross-sections indicate that the amount of Pt deposited in the membrane decreases during drive cycles involving load with short OCV holding times. Investigations of the Pt distribution in the cathode catalyst layer (CL) by using scanning TEM-EDX show that the dissolution of Pt is suppressed on the membrane side in the CL. The Pt dissolution is accelerated by the high Pt oxidation due to the long OCV holding time. A load cycle with both long OCV holding time and low load inhibits the Pt2+ migration into the membrane but accelerates the Pt particle growth due to electrochemical Ostwald ripening; meanwhile, a load cycle with long OCV holding time at lower RH prevents both the Pt dissolution and particle growth.

  8. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  9. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Cobalt-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) have been successfully incorporated cobalt oxide (Co3O4) onto Vulcan XC-72 carbon powder by thermal decomposition of Co-ethylenediamine complex (ethylenediamine, NH2CH2CH2NH2, denoted en) at 850 oC. The catalysts were prepared by adsorbing the cobalt complexes [Co(en)(H2O)4]3+, [Co(en)2(H2O)2]3+ and [Co(en)3]3+ on commercial XC-72 carbon black supports, loading amount of Co with respect to carbon black was about 2%, the resulting materials have been pyrolyzed under nitrogen atmosphere to create CoOx/C catalysts, donated as E1, E2, and E3, respectively. The composite materials were characterized using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Chemical compositions of prepared catalysts were determined using inductively-coupled plasma-atomic emission spectroscopy (ICP-AES). The catalytic activities for ORR have been analyzed by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrocatalytic activity for oxygen reduction of E2 is superior to that of E1 and E3. Membrane electrode assemblies (MEAs) containing the synthesized CoOx/C cathode catalysts were fabricated and evaluated by single cell tests. The E2 cathode performed better than that of E1 and E3 cathode. This can be attributed to the enhanced activity for ORR, in agreement with the composition of the catalyst that CoO co-existed with Co3O4. The maximum power density 73 mW cm-2 was obtained at 0.3 V with a current density of 240 mA cm-2 for E2 and the normalized power density of E2 is larger than that that of commercial 20 wt.% Pt/C-ETEK. -- Highlights: → Non-noble catalysts have been attracting increasing attention due to become a low-cost alternative catalyst for oxygen reduction in PEMFC. → This method for the production of nanoparticle cobalt oxides which can be incorporated into Vulcan XC-72

  10. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  11. Intermetallics as cathode materials in the electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Stojic, D.L.; Maksic, A.D.; Kaninski, M.P.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physical Chemistry; Cekic, B.D. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physics; Miljanic, S.S. [Belgrade Univ. (Serbia and Montenegro). Faculty of Physical Chemistry

    2005-01-01

    The intermetallics of transition metals have been investigated as cathode materials for the production of hydrogen by electrolysis from water-KOH solutions, in an attempt to increase the electrolytic process efficiency. We found that the best effect among all investigated cathodes (Hf{sub 2}Fe, Zr-Pt, Nb-Pd(I), Pd-Ta, Nb-Pd(II), Ti-Pt) exhibits the Hf{sub 2}Fe phase. These materials were compared with conventional cathodes (Fe and Ni), often used in the alkaline electrolysis. A significant upgrade of the electrolytic efficiency using intermetallics, either in pure KOH electrolyte or in combination with ionic activators added in situ, was achieved. The effects of these cathode materials on the process efficiency were discussed in the context of transition metal features that issue from their electronic configuration. (Author)

  12. Modelling cathode catalyst degradation in polymer electrolyte fuel cells

    OpenAIRE

    Rinaldo, Steven Giordano

    2013-01-01

    Nano-sized Pt particles in the cathode catalyst layer of a polymer electrolyte fuel cell afford a high initial electrochemically active surface-area. However, the gain in active surface area for desired surface reactions is offset in part by enhanced rates of degradation processes that cause losses in catalyst mass, catalyst surface-area, and electrocatalytic activity. The loss of electrochemically active surface-area of the catalyst causes severe performance degradation over relevant lifetim...

  13. Cleaning of used cathode and board units of electrolytic cells by acid method

    International Nuclear Information System (INIS)

    Present article is devoted to cleaning of used cathode and board units of electrolytic cells by acid method. The studies results on setting of optimal parameters of extraction of extrinsic components remain after aqueous treatment of used cathode and board units of electrolytic cells of aluminium production were considered. It was defined that with using of 10% of hydrochloric acid solution from used cathode and board units of electrolytic cells it is possible to obtain the purified carbon-graphite material.

  14. Cathode degradation of the polymer electrolyte membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Morphological changes occurring in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFC's) were monitored using scanning microscopy (SEM) during the course of 600 hours testing of hydrogen/air polymer electrolyte fuel cells (PEFCs). The microstructural study suggests a structural change caused by loss of the recast ionomer could result in deterioration of the integrity of the electrode, a drop in both ionic and electronic conductivities, loss of platinum particle clusters (for carbon support), and increased resistance within the interfacial zone of the membrane and catalyst layer.(author)

  15. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  16. Microstructure and characterization of a novel cobalt coating prepared by cathode plasma electrolytic deposition

    Science.gov (United States)

    Quan, Cheng; He, Yedong

    2015-10-01

    A novel cobalt coating was prepared by cathode plasma electrolytic deposition (CPED). The kinetics of the electrode process in cathode plasma electrolytic deposition was studied. The composition and microstructure of the deposited coatings were investigated by SEM, EDS, XRD and TEM. The novel cobalt coatings were dense and uniform, showing a typically molten morphology, and were deposited with a rather fast rate. Different from the coatings prepared by conventional electrodeposition or chemical plating, pure cobalt coatings with face center cubic (fcc) structure were obtained by CPED. The deposited coatings were nanocrystalline structure with an average grain size of 40-50 nm, exhibited high hardness, excellent adhesion with the stainless steels, and superior wear resistance. The properties of the novel cobalt coatings prepared by CPED have been improved significantly, as compared with that prepared by conventional methods. It reveals that cathode plasma electrolytic deposition is an effective way to prepare novel cobalt coatings with high quality.

  17. On the suppression of cathodic hypochlorite reduction by electrolyte additions of molybdate and chromate ions

    Directory of Open Access Journals (Sweden)

    JOHN GUSTAVSSON

    2012-11-01

    Full Text Available The goal of this study was to gain a better understanding of the feasibility of replacing Cr(VI in the chlorate process by Mo(VI, focusing on the cathode reaction selectivity for hydrogen evolution on steel and titanium in a hypochlorite containing electrolyte. To evaluate the ability of Cr(VI and Mo(VI additions to hinder hypochlorite reduction, potential sweep experiments on rotating disc electrodes and cathodic current efficiency (CE measurements on stationary electrodes were performed. Formed electrode films were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cathodic hypochlorite reduction is hindered by the Mo-containing films formed on the cathode surface after Mo(VI addition to the electrolyte, but much less efficient compared to Cr(VI addition. Very low levels of Cr(VI, in the mM range, can efficiently suppress hypochlorite reduction on polished titanium and steel. Phosphate does not negatively influence the CE in the presence of Cr(VI or Mo(VI but the Mo-containing cathode films become thinner if the electrolyte during the film build-up also contains phosphate. For a RuO2-TiO2 anode polarized in electrolyte with 40 mM Mo(VI, the anode potential increased and increased molybdenum levels were detected on the electrode surface

  18. Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery

    Science.gov (United States)

    Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu

    2015-01-01

    Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.

  19. Cathodes for lithium-air battery cells with acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  20. Electrochemical characteristics of tubular flat-plate-SOFCs fabricated by co-firing cathode substrate and electrolyte

    Science.gov (United States)

    Orui, Himeko; Watanabe, Kimitaka; Arakawa, Masayasu

    Tubular flat-plate (TFP)-solid oxide fuel cells (SOFCs) supported by cathodes with gas flow channels were fabricated by co-firing the cathodes and electrolytes. The size of a single cell is 43 mm×4.5 mm×100 mm, and the maximum power density of 0.83 W/cm 2 was achieved at a current density of 1.6 A/cm 2 at 1000 °C. We studied the electrochemical characteristics of the anode and the cathode by the ac impedance method. The resistance corresponding to the reaction around the three-phase boundaries of the anode/electrolyte interface increases with decreasing temperature from 1000 to 800 °C in the Ni-Y 2O 3 stabilized ZrO 2 (YSZ) anode of the TFP cell. From ac impedance measurements made at various oxygen partial pressures PO 2, we found that under high PO 2 (log PO 2>-0.77) surface diffusion of adsorbed oxygen atoms was the dominant step, but under low PO 2 (log PO 2<-0.77) the diffusion of oxygen gas was the rate-determining step in the cathode reaction in this TFP cell.

  1. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    Science.gov (United States)

    Mancini, Alessandro; Felice, Valeria; Natali Sora, Isabella; Malavasi, Lorenzo; Tealdi, Cristina

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3-d and La0.8Sr0.2Fe0.8Cu0.2O3-d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system.

  2. Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Yao-Min; G Nicolau, Bruno; Esbenshade, Jennifer L; Gewirth, Andrew A

    2016-07-19

    The solid electrolyte interface (SEI) formed via electrolyte decomposition on the anode of lithium ion batteries is largely responsible for the stable cycling of conventional lithium ion batteries. Similarly, there is a lesser-known analogous layer on the cathode side of a lithium ion battery, termed the cathode electrolyte interface (CEI), whose composition and role are debated. To confirm the existence and composition of the CEI, desorption electrospray ionization mass spectrometry (DESI-MS) is applied to study common lithium ion battery cathodes. We observe CEI formation on the LiMn2O4 cathode material after cycling between 3.5 and 4.5 V vs Li/Li(+) in electrolyte solution containing 1 M LiPF6 or LiClO4 in 1:1 (v/v) ethylene carbonate (EC) and dimethyl carbonate (DMC). Intact poly(ethylene glycol) dimethyl ether is identified as the electrolyte degradation product on the cathode surface by the high mass-resolution Orbitrap mass spectrometer. When EC is paired with ethyl methyl carbonate (EMC), poly(ethylene glycol) dimethyl ether, poly(ethylene glycol) ethyl methyl ether, and poly(ethylene glycol) are found on the surface simultaneously. The presence of ethoxy and methoxy end groups indicates both methoxide and ethoxide are produced and involved in the process of oligomerization. Au surfaces cycled under different electrochemical windows as model systems for Li-ion battery anodes are also examined. Interestingly, the identical oligomeric species to those found in the CEI are found on Au surfaces after running five cycles between 2.0 and 0.1 V vs Li/Li(+) in half-cells. These results show that DESI-MS provides intact molecular information on battery electrodes, enabling deeper understanding of the SEI or CEI composition. PMID:27346184

  3. Cathode and interdigitated air distributor geometry optimization in polymer electrolyte membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    A steady-state single-phase three-dimensional electro-chemical model is combined with a nonlinear constrained optimization procedure to maximize the performance of the cathode and the interdigitated air distributor in a polymer electrolyte membrane (PEM) fuel cell. The cathode and the interdigitated air distributor design parameters considered include: the cathode thickness, the thickness of the interdigitated air distributor channels and the width of the interdigitated air distributor channels. A statistical sensitivity analysis is used to determine robustness of the optimal PEM fuel cell design. The results of the optimization analysis show that higher current densities at the membrane/cathode interface are obtained in the PEM cathode and the interdigitated air distributor geometries that promote convective oxygen transport to the membrane/cathode interface and reduce the thickness of the boundary diffusion layer at the same interface. The statistical sensitivity analysis results show that, while the predicted average current density at the membrane/cathode interface is affected by uncertainties in a number of model parameters, the optimal designs of the PEM cathode and the interdigitated air distributor are quite robust

  4. Extraction of water-soluble salts from used cathodic and board units of electrolytic cells of aluminium production

    International Nuclear Information System (INIS)

    Present article is devoted to study of the process of extraction of water-soluble salts from used cathodic and board units of electrolytic cells of aluminium production. Therefore the composition of water-soluble salts from used cathodic and board units of electrolytic cells of aluminium production was defined. The optimal parameters of extraction of water-soluble salts from used cathodic and board units of electrolytic cells of aluminium production were determined. The possibility of obtaining the soda ash and sodium fluoride from aqueous extracts of carbon graphite wastes of aluminium production was defined as well.

  5. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  6. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  7. Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hjelm, Johan; Menon, Mohan;

    2010-01-01

    10) barrier layer, the other had a barrier layer deposited by pulsed laser deposition (PLD) CGO10. Scanning electron microscopy, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD) investigations conclude that the major source of the cell performance difference is...... attributed to CGO–YSZ interdiffusion in the sprayed-cosintered barrier layer. From TEM and EBSD work, a dense CGO10 PLD layer is found to be deposited epitaxially on the 8YSZ electrolyte substrate—permitting a small amount of SrZrO3 formation and minimizing CGO–YSZ interdiffusion....

  8. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode-supported...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...... with infiltrated LSM nanoparticles is shown in Fig. 1. Figure 1. Cross section of LSM infiltrated cathode supported cell. [Formula]...

  9. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte

    Science.gov (United States)

    Hasa, Ivana; Dou, Xinwei; Buchholz, Daniel; Shao-Horn, Yang; Hassoun, Jusef; Passerini, Stefano; Scrosati, Bruno

    2016-04-01

    Room-temperature rechargeable sodium-ion batteries (SIBs), in view of the large availability and low cost of sodium raw materials, represent an important class of electrochemical systems suitable for application in large-scale energy storage. In this work, we report a novel, high power SIB formed by coupling the layered P2-Na0.7CoO2 cathode with the graphite anode in an optimized ether-based electrolyte. The study firstly addresses the electrochemical optimization of the two electrode materials and then the realization and characterization of the novel SIB based on their combination. The cell represents an original sodium rocking chair battery obtained combining the intercalation/de-intercalation processes of sodium within the cathode and anode layers. We show herein that this battery, favored by suitable electrode/electrolyte combination, offers unique performance in terms of cycle life, efficiency and, especially, power capability.

  10. Partially Perfluorinated Hydrocarbon Ionomer for Cathode Catalyst Layer of Polymer Electrolyte Membrane Fuel Cell

    International Nuclear Information System (INIS)

    Hydrocarbon ionomers have not been successfully employed in the cathode of polymer electrolyte fuel cell (PEFC)s due to their low oxygen permeabilities. In this work, we propose a partially fluorinated aromatic polyether with sulfonic acid groups (s-PFPE) as an ionomer for the cathode catalyst layer. Compared to sulfonated poly(ether ether ketone) (s-PEEK), it exhibited more than 1.5 times higher oxygen permeability at RH 40% and 1.3 times higher at RH 100%. The catalyst layer based on s-PFPE showed higher power performance than that based on s-PEEK owing to enhanced oxygen transport and fast proton conduction through the s-PFPE ionomer phase covering the catalyst layer. We demonstrate that the introduction of the perfluorinated moieties to the hydrocarbon backbone is an effective strategy for the use of hydrocarbon ionomer in the cathode of PEMFCs

  11. Modified electrochemical performance of high potential cathode using a sand-like carbonate electrolyte

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A novel sand-like electrolyte is prepared. • The anodic stability of sand-like electrolyte is superior in the presence of Li2SiO3. • Cycling stability of 5 V LiNi0.5Mn1.5O4 is enhanced. • Intensive electrolyte oxidation is supressed during cycling under high potential. • Li2SiO3 can consume the PF5 and HF in electrolyte. - Abstract: The electrochemical performance of LiNi0.5Mn1.5O4 is investigated in a sand-like carbonate electrolyte containing 4 wt.% lithium metasilicate (Li2SiO3). The capacity fading rate of the LiNi0.5Mn1.5O4 electrode working in the sand-like electrolyte (2-5 V) is reduced to 0.171 mAh g−1 per cycle, quite smaller than the value of 0.613 mAh g−1 per cycle in the electrolyte without Li2SiO3. The capacity of 159.5 mAh g−1 is delivered at 0.5 C after 118 cycles while it is only 99.4 mAh g−1 for the Li2SiO3-free counterpart. Cyclic voltammetry, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopic measurements are conducted to explore the modification mechanism. It is found that the anodic stability of the sand-like electrolyte is improved compared to the base electrolyte. The Li2SiO3 precipitates on the electrode surface make contribution to the performance enhancement of the cathode at high potential

  12. Nanocomposite Materials for Cathodes and Electrolytes in Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    F. Croce; C.R. Martin; B. Scrosati; L. Settimi; C. Sides

    2005-01-01

    @@ 1Introduction Lithium-ion batteries are today the power sources of choice far portable electronics, a multi-billion dollar market[1]. This outstanding success has spawned great international interest in applying this technology to more demanding systems, such as electric of hybrid vehicles[2]. However, to achieve full success in this area,new electrode materials, less expensive, more energetic and more compatible with the environment than the present ones, have to be identified. Accordingly, intense R&D are in progress to reach this goal and few variable alternatives to the original lithium-ion battery design, have been proposed. Particularly interesting is the olivine-structured LiFePO4 cathode developed by Goodenough and co-workers[3], which offers several appealing features, such as high, flat voltage profile and relatively high specific capacity, combined with low cost and low toxicity. However, LiFePO4 has one crucial disadvantage, i.e. its inherently low electric conductivity which reflects in the inability to deliver high capacity at high discharge rates. Such as poor rate capability has been the object of investigation by various groups who have proposed different approaches to overcome it, including carbon coating[4], nano-fibril textures[5], optimized synthesis procedures[6] and foreign metal doping[7].

  13. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley; Zhang, Wei; Kuhn, Luise Theil; Holtappels, Peter; Ramos, Tania

    2013-01-01

    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests unde...

  14. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley; Zhang, Wei; Kuhn, Luise Theil; Holtappels, Peter; Ramos, Tania

    2013-01-01

    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  15. Compatibility of lithium difluoro(sulfato)borate-based electrolyte for LiMn2O4 cathode

    Science.gov (United States)

    Li, Shiyou; Liu, Jinliang; Li, Lingxia; Li, Xiaopeng; Jing, Jie; Cui, Xiaoling

    2015-03-01

    Lithium difluoro(sulfato)borate (LiBF2SO4) is investigated as a lithium salt for non-aqueous electrolytes for LiMn2O4 cathode in lithium-ion batteries. Inductively coupled plasma-atomic emission spectrometry analysis is used to analyze the Mn dissolution. Scanning electron microscopy and AC impedance measurements analysis are used to analyze the formation of the surface film on the surface of LiMn2O4 cathode. These results demonstrate that LiBF2SO4-based electrolyte favourably facilitates the formation of an effective and conductive interface film on the cathode surface to improve the stabilization of cathode/electrolyte interface. Besides, LiMn2O4 cells using LiBF2SO4-based electrolyte exerts several advantages, such as stable cycling performance, low cell impedance, low polarization resistance, and good rate performance. It suggests that LiBF2SO4-based electrolyte has good compatibility with LiMn2O4 cathode, and LiBF2SO4 would be a very promising lithium salt for LiMn2O4 cathode in lithium-ion batteries.

  16. Preparation of Pt deposited nanotubular TiO2 as cathodes for enhanced photoelectrochemical hydrogen production using seawater electrolytes

    International Nuclear Information System (INIS)

    The purpose of this study was to develop effective cathodes to increase the production of hydrogen and use the seawater, an abundant resource in the earth as the electrolyte in photoelectrochemical systems. In order to fabricate the Pt/TiO2 cathodes, various contents of the Pt precursor (0-0.4 wt%) deposited by the electrodeposition method were used. On the basis of the hydrogen evolution rate, 0.2 wt% Pt/TiO2 was observed to exhibit the best performance among the various Pt/TiO2 cathodes with the natural seawater and two concentrated seawater electrolytes obtained from single (nanofiltration) and combined membrane (nanofiltration and reverse osmosis) processes. The surface characterizations exhibited that crystal structures and morphological properties of Pt and TiO2 found the results of XRD pattern and SEM/TEM images, respectively. - Graphical abstract: On the basis of photoelectrochemical hydrogen production, 0.2 wt% Pt/TiO2 was observed to exhibit the best performance among the various Pt/TIO2 cathodes with natural seawater. In comparison of hydrogen evolution rate with various seawater electrolytes, 0.2 wt% Pt/TiO2 was found to show the better performance as cathode with the concentrated seawater electrolytes obtained from membrane. Highlights: → Pt deposited TiO2 electrodes are used as cathode in PEC H2 production. → Natural and concentrated seawater by membranes are used as electrolytes in PEC. → Pt/TiO2 shows a good performance as cathode with seawater electrolytes. → H2 evolution rate increases with more concentrated seawater electrolyte. → Highly saline seawater is useful resource for H2 production.

  17. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Alessandro [INSTM R.U. and Department of Chemistry–Physical Chemistry Division, University of Pavia, Pavia I-27100 (Italy); Felice, Valeria; Natali Sora, Isabella [INSTM R.U. and Department of Engineering, University of Bergamo, Dalmine, Bergamo I-24044 (Italy); Malavasi, Lorenzo [INSTM R.U. and Department of Chemistry–Physical Chemistry Division, University of Pavia, Pavia I-27100 (Italy); Tealdi, Cristina, E-mail: cristina.tealdi@unipv.it [INSTM R.U. and Department of Chemistry–Physical Chemistry Division, University of Pavia, Pavia I-27100 (Italy)

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25} has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La{sub 0.8}Sr{sub 0.2}MnO{sub 3−d} and La{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−d} and K{sub 2}NiF{sub 4}-type La{sub 2}NiO{sub 4+d} were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system. - Graphical abstract: Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25} has been extensively investigated by means of X-ray powder diffraction. - Highlights: • Chemical compatibility between melilite-type gallate and cathodes for SOFCs up to 1573 K. • No reactivity observed between La{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}. • Reactivity observed between La{sub 0.80}Sr{sub 0.20}MnO{sub 3−d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}. • Significant reactivity observed between La{sub 2}NiO{sub 4+d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}.

  18. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    International Nuclear Information System (INIS)

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3−d and La0.8Sr0.2Fe0.8Cu0.2O3−d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system. - Graphical abstract: Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by means of X-ray powder diffraction. - Highlights: • Chemical compatibility between melilite-type gallate and cathodes for SOFCs up to 1573 K. • No reactivity observed between La0.8Sr0.2Fe0.8Cu0.2O3−d and La1.50Sr0.50Ga3O7.25. • Reactivity observed between La0.80Sr0.20MnO3−d and La1.50Sr0.50Ga3O7.25. • Significant reactivity observed between La2NiO4+d and La1.50Sr0.50Ga3O7.25

  19. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode

    Science.gov (United States)

    Kim, Icpyo; Park, Jin-Young; Kim, Chang Hyeon; Park, Jin-Woo; Ahn, Jae-Pyoung; Ahn, Jou-Hyeon; Kim, Ki-Won; Ahn, Hyo-Jun

    2016-01-01

    To realize a high-performance room temperature Na/S battery with an elemental sulfur cathode, it is important that sodium polysulfides stay within the cathode and that they have room enough to react freely. In this work, sodium polysulfides are confined to the cathode using a β″ alumina solid electrolyte separator and an optimal amount of tetraethylene glycol dimethyl ether (TEGDME) electrolyte. In addition, an activated carbon material, in the form of a sulfur/carbon (S/C) composite, with high surface area, porosity, and pore volume is employed in the cathode. The resulting Na/S battery shows a high first discharge capacity of 855 mAh g-1 and coulombic efficiency close to 100%, as well as stable cyclability, with a discharge capacity of 521 mAh g-1 at the 104th discharge.

  20. Performances of Anode-Supported BZCY Electrolyte and GBFN Cathode Membranes in Ammonia Synthesis at Atmospheric Pressure%阳极支撑BZCY电解质及GBFN阴极膜在常压合成氨中的性能研究

    Institute of Scientific and Technical Information of China (English)

    朱剑莉; 马桂林; 占忠亮

    2012-01-01

    BaZr0.1Ce0.7 Y0.2O3-α( BZCY) proton-conducting electrolyte and GdBaFeNiO5+δ(GBFN) cathode materials were prepared by the citric-nitrate process. A membrane reactor for ammonia synthesis was successfully fabricated through the following process; an anode-supported dense BZCY electrolyte membrane was first fabricated, and then on the membrane porous GBFN cathode membrane was fabricated by a simple spin coating process combined with heat treatment. The ammonia synthesis test was conducted by an electrolytic method using H2 and N2 as reactant gases. The results indicated that BZCY and GBFN were perovskite and double perovskite structures, respectively. The anode substrate showed good chemical compatibility between NiO and BZCY, and the maximum ammonia formation rate reached 1. 63 x 10-8 mol os~1ocm~2, which was higher than the reported values by similar methods to date. The high maximum ammonia formation rate mould be closely relevant to excellent electrical conduction performance for BZCY and excellent polarization performance for GBFN. The modification of Ag on the GBFN cathode was also beneficial for enhancing the ammonia formation rate.%采用硝酸盐-柠檬酸法制备了 BaZr0.1 Ce0.7 Y0.2 O3-α(BZCY)质子电解质及GdBaFeNiO5+δ(GBFN)阴极材料,用浆料旋涂法结合后续的热处理在NiO-BZCY阳极支撑体上制备致密的BZCY电解质薄膜,在电解质薄膜上制备多孔性GBFN阴极膜,成功地组装成合成氨膜反应器.以氢、氮气为反应气体,通过电解方法进行了常压合成氨试验.结果显示,BZCY及GBFN分别具有钙钛矿型及双钙钛矿型结构,NiO与BZ-CY具有良好的化学兼容性,合成氨产率高达1.63 ×10-8 mol·s-1·cm-2,高于迄今所报道的类似方法的合成氨产率.这与BZCY电解质膜优良的导电性能、GBFN膜优良的极化性能密切相关.Ag对GBFN的修饰也有利于氨产率的提高.

  1. Cathode for primary elements with solid electrolyte having conductance through silver ions

    Energy Technology Data Exchange (ETDEWEB)

    Koller, A.; Antonin, V.; Pavlik, I.

    1982-04-15

    The proposed cathode contains 50-100% iode complex of ferrocene with general formula Q x nI/sub 2/, where Q--Fe (C/sub 5/H/sub 5/)/sub 2/, n = 3-15. In order to increase electrical conductance and to decrease polarization, one can add to the active mass 0.1-15% of graphite, SiC, MoSi/sub 2/, metal Ti and W and/or 0.1-50% of solid electrolyte. This cathode only contains about 7% of inactive material. It is recommended in particular that a set Fe (C/sub 5/H/sub 5/)/sub 2/ x 10 I/sub 2/ be used which is obtained by interaction of hot solutions of ferrocene and iodine in CC1/sub 4/ with subsequent washing and drying of the obtained product.

  2. Compatibility of lithium difluoro(sulfato)borate-based electrolyte for LiMn2O4 cathode

    International Nuclear Information System (INIS)

    Highlights: • LiBF2SO4 was investigated as a novel salt for advanced lithium-ion batteries. • LiBF2SO4-EC/DEC shows excellent film-forming characteristic on the surface of LiMn2O4. • LiBF2SO4-based electrolyte has good compatibility with LiMn2O4 cathode. - Abstract: Lithium difluoro(sulfato)borate (LiBF2SO4) is investigated as a lithium salt for non-aqueous electrolytes for LiMn2O4 cathode in lithium-ion batteries. Inductively coupled plasma-atomic emission spectrometry analysis is used to analyze the Mn dissolution. Scanning electron microscopy and AC impedance measurements analysis are used to analyze the formation of the surface film on the surface of LiMn2O4 cathode. These results demonstrate that LiBF2SO4-based electrolyte favourably facilitates the formation of an effective and conductive interface film on the cathode surface to improve the stabilization of cathode/electrolyte interface. Besides, LiMn2O4 cells using LiBF2SO4-based electrolyte exerts several advantages, such as stable cycling performance, low cell impedance, low polarization resistance, and good rate performance. It suggests that LiBF2SO4-based electrolyte has good compatibility with LiMn2O4 cathode, and LiBF2SO4 would be a very promising lithium salt for LiMn2O4 cathode in lithium-ion batteries

  3. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  4. Theory of electroreduction of solid oxide electrolytes. Kinetics and mechanism of the galvanostatic process with blocking cathodes

    International Nuclear Information System (INIS)

    This paper discusses dc flow through cells with MO2 + MeOΓ solid electrolyte (M = Zr, Hf, Ce, or Th; Me = Ca, Sr, Sc, Y, or lanthanides), a blocking cathode, and a reversible anode which leads to departures of the electrolytes from stoichiometry in the direction of oxygen deficiency. A nonlinear differential equation of the diffusion type describes the degree of this departure and the n-type electronic conductivity which is proportional to it, as functions of the coordinate and time. The electrolyte's electronic conductivity increases with time near the cathode, and approaches a limiting value that is proportional to the current being passed. The electronic conductivity falls off exponentially with increasing distance from the cathode; this changes to a linear fall as a function of time

  5. Theory of electroreduction of solid oxide electrolytes. Kinetics and mechanism of the galvanostatic process with blocking cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chebotin, V.N.; Brainin, M.I.; Lukach, Yu. S.; Pakhnutov, I.A.; Solov' eva, L.M.

    1986-08-01

    This paper discusses dc flow through cells with MO/sub 2/ + MeOGAMMA solid electrolyte (M = Zr, Hf, Ce, or Th; Me = Ca, Sr, Sc, Y, or lanthanides), a blocking cathode, and a reversible anode which leads to departures of the electrolytes from stoichiometry in the direction of oxygen deficiency. A nonlinear differential equation of the diffusion type describes the degree of this departure and the n-type electronic conductivity which is proportional to it, as functions of the coordinate and time. The electrolyte's electronic conductivity increases with time near the cathode, and approaches a limiting value that is proportional to the current being passed. The electronic conductivity falls off exponentially with increasing distance from the cathode; this changes to a linear fall as a function of time.

  6. Electrochemical synthesis at pre-pilot scale of 1-phenylethanol by cathodic reduction of acetophenone using a solid polymer electrolyte

    OpenAIRE

    Sáez Fernández, Alfonso; García García, Vicente; Solla-Gullón, José; Aldaz Riera, Antonio; Montiel Leguey, Vicente

    2013-01-01

    The pre-pilot scale synthesis of 1-phenylethanol was carried out by the cathodic hydrogenation of acetophenone in a 100 cm2 (geometric area) Polymer Electrolyte Membrane Electrochemical Reactor. The cathode was a Pd/C electrode. Hydrogen oxidation on a gas diffusion electrode was chosen as anodic reaction in order to take advantage of the hydrogen evolved during the reduction. This hydrogen oxidation provides the protons needed for the synthesis. The synthesis performed with only a solid poly...

  7. Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available A comprehensive mathematical model of the performance of the cathode-supported solid oxide fuel cell (SOFC with syngas fuel is presented. The model couples the intricate interdependency between the ionic conduction, electronic conduction, gas transport, the electrochemical reaction processes in the functional layers and on the electrode/electrolyte interfaces, methane steam reforming (MSR and the water gas shift reaction (WGSR. The validity of the mathematical model is demonstrated by the excellent agreement between the numerical and experimental I-V curves. The effect of anode rib width and cathode rib width on gas diffusion and cell performance is examined. The results show conclusively that the cell performance is strongly influenced by the rib width. Furthermore, the anode optimal rib width is smaller than that for cathode, which is contrary to anode-supported SOFC. Finally, the formulae for the anode and cathode optimal rib width are given, which provide an easy to use guidance for the broad SOFC engineering community.

  8. Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive

    International Nuclear Information System (INIS)

    Highlights: • Cyclic stability of LiNi0.5Mn1.5O4 is improved significantly by using PES as additive. • A protective SEI is formed on LiNi0.5Mn1.5O4 due to the preferential oxidation of PES. • The SEI suppresses electrolyte decomposition and structure destruction of LiNi0.5Mn1.5O4. - Abstract: We report a new approach to improve the cyclic stability of lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode, in which the cathode/electrolyte interface is modified by using prop-1-ene-1, 3-sultone (PES) as an electrolyte additive. The interfacial properties of LiNi0.5Mn1.5O4 cathode in PES-containing electrolyte have been investigated by scanning electron spectroscopy (SEM), transmission electron microscopy (TEM), thermal gravimetry (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammometry (CV), chronoamperometry (CA), and constant current charge/discharge test. It is found that the application of PES improves significantly the cyclic stability of LiNi0.5Mn1.5O4. After 400 cycles at 1C rate (1C=147 mA g−1), the capacity retention of LiNi0.5Mn1.5O4 is 90% for the cell using 1.0 wt% PES, while only 49% for the cell without the additive. The characterizations from SEM, TEM, TG, XRD, and XPS confirm that the LiNi0.5Mn1.5O4/electrolyte interface is modified and a protective solid electrolyte interface film is formed on LiNi0.5Mn1.5O4 particles, which prevents LiNi0.5Mn1.5O4 from destruction and suppresses the electrolyte decomposition

  9. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  10. Performance evaluation of printed LiCoO2 cathodes with PVDF-HFP gel electrolyte for lithium ion microbatteries

    International Nuclear Information System (INIS)

    In order to improve the discharge capacity in lithium ion microbatteries, a thick-film cathode was fabricated by a screen printing using LiCoO2 pastes. The printed cathode showed a different discharge curves when the cell was tested using various (liquid, gel and solid-state) electrolytes. When a cell test was performed with organic liquid electrolyte, the maximum discharge capacity was 200 μAh cm-2, which corresponded to approximately 133 mAh g-1 when the loading weight of LiCoO2 was calculated. An all-solid-state microbattery could be assembled using sputtered LiPON electrolyte, an evaporated Li anode, and printed LiCoO2 cathode films without delamination or electrical problems. However, the highest discharge capacity showed a very small value (7 μAh cm-2). This problem could be improved using a poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) gel electrolyte, which enhanced the contact area and adhesion force between cathode and electrolyte. The discharge value of this cell was measured as approximately 164 μAh cm-2 (∼110 mAh g-1). As the PVDF-HFP electrolyte had a relatively soft contact property with higher ionic conductance, the cell performance was improved. In addition, the cell can be fabricated in a leakage-free process, which can resolve many safety problems. According to these results, there is a significant possibility that a film prepared using the aforementioned paste with screen printing and PVDF-HFP gel electrolyte is feasible for a microbattery

  11. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries

    Science.gov (United States)

    Shinkle, Aaron A.; Pomaville, Timothy J.; Sleightholme, Alice E. S.; Thompson, Levi T.; Monroe, Charles W.

    2014-02-01

    Properties of supporting electrolytes and solvents were examined for use with vanadium acetylacetonate - a member of the class of metal(β-diketonate) active species - in non-aqueous redox flow batteries. Twenty supporting-electrolyte/solvent combinations were screened for ionic conductivity and supporting-electrolyte solubility. Hexane, tetrahydrofuran, and dimethylcarbonate solvents did not meet minimal conductivity and solubility criteria for any of the electrolytes used, which included tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and (1-butyl, 3-methyl)imidazolium bis(trifluoromethanesulfonyl)imide. Ionic conductivities and solubilities for solutions of these electrolytes passed screening criteria in acetonitrile and dimethylformamide solvents, in which maximum supporting-electrolyte and active-species solubilities were determined. Active-species electrochemistry was found to be reversible in several solvent/support systems; for some systems the voltammetric signatures of unwanted side reactions were suppressed. Correlations between supporting-solution properties and performance metrics suggest that an optimal solvent for a vanadium acetylacetonate RFB should have a low solvent molar volume for active-species solubility, and a high Hansen polarity for conductivity.

  12. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. Statistical investigation on the role of supporting electrolytes during NTA degradation on BDD anodes.

    Science.gov (United States)

    Wu, Jingyu; Du, Xiaoming; He, Zhenzhu; Zhang, Chunyong; Fu, Degang

    2016-03-01

    This work reported a comparative study on the electrochemical incineration of nitrilotriacetic acid (NTA) in the presence of different supporting electrolytes (Na2SO4 and NaCl). Galvanostatic electrolyses were conducted in an undivided electrochemical cell containing boron-doped diamond (BDD) anode and platinum cathode. Initial solution pH, flow rate, applied current density, and supporting electrolyte concentration were selected as variables, besides the mineralization efficiency of NTA that was selected as response. Central composite rotatable design and response surface methodology were employed here to examine the statistical significance of the selected variables, as well as to determine the optimal conditions of the degradation process. Under the same operating conditions, two regression models were thus constructed to illustrate the differing impact of supporting electrolytes in BDD anode cells. The kinetics for NTA degradation followed different reaction orders for the two scenarios (in the absence and presence of NaCl), indicating the complex interaction between hydroxyl radicals and active chlorine. Despite this, the experimental results demonstrated that effective mineralization of NTA might also be achieved in the presence of chlorides (of lower concentrations). Besides, in the case of chlorides, the average mass transfer coefficient of the system was found to be strongly dependent on the initial solution pH. Lastly, a plausible reaction sequence concerning the electrolytic oxidation of NTA in chloride media was also proposed. PMID:26578372

  14. Enhanced high voltage performances of layered lithium nickel cobalt manganese oxide cathode by using trimethylboroxine as electrolyte additive

    International Nuclear Information System (INIS)

    Highlights: • Addition of 3% TMB improves the cyclic and rate performances of LNCM under high voltage. • TMB oxidizes previously to the carbonate base electrolyte and generates a protective film. • Electrolyte oxidation and LNCM dissolution under high voltage are effective suppressed. - Abstract: In this work, trimethylboroxine is used as electrolyte additive to improve the electrode/electrolyte interface stability of LiNi1/3Co1/3Mn1/3O2 (LNCM) cathode for high voltage lithium ion battery. Charge/discharge tests show that addition of 3% TMB is the optimal amount for LNCM. After 300 cycled at 1C rate under the cut-off charge voltage of 4.5 V, the LNCM with 3% TMB achieves a capacity retention of 99%, compared to the 40% of that using STD electrolyte (1 M LiPF6 in ethylene carbonate/diethyl carbonate /dimethyl carbonate). The results from LSV, EIS and physical characterizations, including SEM, TEM, XPS and ICP–MS, demonstrate that TMB oxidizes preferentially to the STD electrolyte, and catalyzes the decomposition of base electrolyte subsequently, generating a thin and low impedance film on the LNCM surface, which effectively stabilizes the electrode/electrolyte interface by suppressing the continuous oxidation of STD electrolyte and the dissolution of LNCM, and hence, improves the cyclic and rate performances of LNCM under high voltage

  15. Structure of electrolyte decomposition products on high voltage spinel cathode materials determined by in situ neutron reflectometry

    Science.gov (United States)

    Browning, Jim; Veith, Gabriel; Baggetto, Loic; Dudney, Nancy; Tenhaeff, Wyatt

    2012-02-01

    Interfacial reactions on electrical energy storage (EES) materials mediate their stability, durability, and cycleablity. Understanding these reactions in situ is difficult since they occur at the liquid-solid interface of an optically absorbing material that hinders the use of techniques such as infra-red spectroscopy. Furthermore, since the interfaces involve liquids classic vacuum-based analytical methods can only probe reaction products, which are stable under vacuum. Here, we present the results of an in situ neutron reflectometry study detailing the formation of a thick solid-electrolyte interphase (SEI) on a high voltage spinel cathode material. The cathode/electrolyte system used in this study is a LiMn1.5Ni0.5O4 thin film subjected to a 1.2 molar LiPF6 in 1:1 ethylene carbonate - dimethyl carbonate electrolyte solution.

  16. Mathematical Modeling of Electrolyte Filtration through the Porous Cathode Blocks during Aluminum Electrolysis with Regard Interblock Seams

    Directory of Open Access Journals (Sweden)

    Orlov Anton S.

    2015-01-01

    Full Text Available This article investigates electrolyte filtration in the bottom of the aluminum electrolyzer cathode device using the mathematical modeling. Penetration of molten electrolyte in the heat insulation part of the lining is one of the main reasons of electrolyzer premature shutdown, because it leads to bottom destruction and excessive heat loss. This problem is considered a two-phase filtration of incompressible immiscible liquids in an inhomogeneous non-deformable porous body. The verification of the model on the problem of water filtration pin a porous medium has confirmed its adequacy. With the help of the developed mathematical model the dynamics of the impregnation of the lining of the cathode and electrolyte device defined thermal balance baths. Research has identified the speed of penetration of the melt in the bottom of the bath during service of the electrolyzer.

  17. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.

    Science.gov (United States)

    Hauffman, Guillaume; Maguin, Quentin; Bourgeois, Jean-Pierre; Vlad, Alexandru; Gohy, Jean-François

    2014-01-01

    This contribution describes the synthesis of block copolymers containing electrochemically active blocks, their micellization, and finally their use as micellar cathodes in a lithium battery. The self-assembly of the synthesized poly(styrene)-block-poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PS-b-PTMA) diblock copolymers is realized in a typical battery electrolyte made of 1 m lithium trifluoromethanesulfonate dissolved in a mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate(1:1:1, in volume). Dynamic light scattering and atomic force micro-scopy indicate the formation of well-defined spherical micelles with a PS core and a PTMA corona. The electrochemical properties of those micelles are further investigated. Cyclic voltammograms show a reversible redox reaction at 3.6 V (vs Li(+) /Li). The charge/discharge profiles indicate a flat and reversible plateau around 3.6 V (vs Li(+) /Li). Finally, the cycling performances of the micellar cathodes are demonstrated. Such self-assembled block copolymers open new opportunities for nanostructured organic radical batteries. PMID:24127365

  18. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    International Nuclear Information System (INIS)

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line Hβ (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 1021 m−3. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO3

  19. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-06-21

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line H{sub β} (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 10{sup 21 }m{sup −3}. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO{sub 3}.

  20. Electro-thermal impedance spectroscopy applied to an open-cathode polymer electrolyte fuel cell

    Science.gov (United States)

    Engebretsen, Erik; Robinson, James B.; Obeisun, Oluwamayowa; Mason, Tom; Finegan, Donal; Hinds, Gareth; Shearing, Paul R.; Brett, Daniel J. L.

    2016-01-01

    The development of in-situ diagnostic techniques is critical to ensure safe and effective operation of polymer electrolyte fuel cell systems. Infrared thermal imaging is an established technique which has been extensively applied to fuel cells; however, the technique is limited to measuring surface temperatures and is prone to errors arising from emissivity variations and reflections. Here we demonstrate that electro-thermal impedance spectroscopy can be applied to enhance infrared thermal imaging and mitigate its limitations. An open-cathode polymer electrolyte fuel cell is used as a case study. The technique operates by imposing a periodic electrical stimulus to the fuel cell and measuring the consequent surface temperature response (phase and amplitude). In this way, the location of heat generation from within the component can be determined and the thermal conduction properties of the materials and structure between the point of heat generation and the point of measurement can be determined. By selectively 'locking-in' to a suitable modulation frequency, spatially resolved images of the relative amplitude between the current stimulus and temperature can be generated that provide complementary information to conventional temporal domain thermograms.

  1. Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells

    Science.gov (United States)

    Matsui, Toshiaki; Mikami, Yuichi; Muroyama, Hiroki; Eguchi, Koichi

    2013-11-01

    Time-dependent events during operation of SOFCs, i.e., performance enhancement and/or deterioration, can be readily observed for the cell composed of strontium-doped lanthanum manganite (LSM) cathode and yttria-stabilized zirconia (YSZ) electrolyte, concomitant with the change in interfacial structure of LSM/YSZ. The influence of LSM composition on the electrochemical properties and microstructure of LSM/YSZ interface during prolonged operation was investigated. Four different LSM cathodes were used and the change in microstructure, especially TPB-length, was evaluated quantitatively by a focused ion beam-scanning electron microscope (FIB-SEM). For LSM cathodes with A-site deficient compositions, the change in TPB-length had a minor contribution to the performance enhancement after 20 h of galvanostatic operation. On the other hand, for 100 h duration an increase in cathode overpotential was confirmed, accompanied with the formation of thin layer of LSM over YSZ electrolyte. A series of phenomena were triggered by the change in oxygen nonstoichiometry of LSM under polarized states. The mechanism for microstructural change was proposed and the long-term stability of LSM/YSZ interface was discussed.

  2. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.

    Science.gov (United States)

    Chen, Yu; Zhang, Yanxiang; Baker, Jeffrey; Majumdar, Prasun; Yang, Zhibin; Han, Minfang; Chen, Fanglin

    2014-04-01

    Application of anode-supported solid oxide fuel cell (SOFC) with ceria based electrolyte has often been limited by high cost of electrolyte film fabrication and high electrode polarization. In this study, dense Gd0.1Ce0.9O2 (GDC) thin film electrolytes have been fabricated on hierarchically oriented macroporous NiO-GDC anodes by a combination of freeze-drying tape-casting of the NiO-GDC anode, drop-coating GDC slurry on NiO-GDC anode, and co-firing the electrolyte/anode bilayers. Using 3D X-ray microscopy and subsequent analysis, it has been determined that the NiO-GDC anode substrates have a porosity of around 42% and channel size from around 10 μm at the electrolyte side to around 20 μm at the other side of the NiO-GDC (away from the electrolyte), indicating a hierarchically oriented macroporous NiO-GDC microstructure. Such NiO-GDC microstructure shows a tortuosity factor of ∼1.3 along the thickness direction, expecting to facilitate gas diffusion in the anode during fuel cell operation. SOFCs with such Ni-GDC anode, GDC film (30 μm) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm(-2) at 600 °C using H2 as fuel and ambient air as oxidant. Electrochemical Impedance Spectroscopy (EIS) analysis indicates a decrease in both activation and concentration polarizations. This study has demonstrated that freeze-drying tape-casting is a very promising approach to fabricate hierarchically oriented porous substrate for SOFC and other applications. PMID:24621230

  3. Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode

    International Nuclear Information System (INIS)

    Highlights: • The addition of Li2CO3 to the electrolyte can suppress the contents of HF in the electrolyte. • The low self-discharge rate of the LiMn2O4 cells with Li2CO3 is lower than that of no additive. • The LiMn2O4 cells with Li2CO3 exhibit better rate capability and excellent cycle stability than that without Li2CO3. • A stable film can be formed on the LiMn2O4 cathode using containing-Li2CO3 electrolyte. - Abstract: The effect of lithium carbonate (Li2CO3) as an additive on the stability of the electrolyte and cycling performance of lithium manganese oxide spinel (LiMn2O4) batteries at elevated temperature was studied. The addition of Li2CO3 to the electrolyte can suppress the capacity fading of LiMn2O4 batteries. The linear sweep voltammetry (LSV) and the cyclic voltammetry (CV) indicate that Li2CO3 has a lower oxidation potential in the mixed solvents of ethylene carbonate (EC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), participating in the formation process of the stable cathode electrolyte interface (CEI) film. In addition, the results of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that the stable CEI film of the cells with Li2CO3 can be formed, which can effectively reduce the dissolution of Mn2+ from LiMn2O4 into the electrolyte at elevated temperature. It is concluded that the addition of Li2CO3 to a solution of 1 M LiPF6–EC/EMC/DEC = 1/1/1 (weight ratio) may decrease solvent decomposition and change the structure of the passivation film on the LiMn2O4 cathode

  4. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  5. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  6. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Sajid Hossain, Mohammad; Shabani, Bahman

    2015-11-01

    Conventional channel flow fields of open cathode Polymer Electrolyte Membrane Fuel Cells (PEMFCs) introduce some challenges linked to humidity, temperature, pressure and oxygen concentration gradients along the conventional flow fields that reduce the cell performance. According to previous experimental reports, with conventional air flow fields, hotspot formation due to water accumulation in Gas Diffusion Layer (GDL) is common. Unlike continuous long flow passages in conventional channels, metal foams provide randomly interrupted flow passages. Re-circulation of fluid, due to randomly distributed tortuous ligaments, enhances temperature and humidity uniformity in the fluid. Moreover, the higher electrical conductivity of metal foams compared to non-metal current collectors and their very low mass density compared to solid metal materials are expected to increase the electrical performance of the cell while significantly reducing its weight. This article reviews the existing cooling systems and identifies the important parameters on the basis of reported literature in the air cooling systems of PEMFCs. This is followed by investigating metal foams as a possible option to be used within the structure of such PEMFCs as an option that can potentially address cooling and flow distribution challenges associated with using conventional flow channels, especially in air-cooled PEMFCs.

  7. Kinetics and mechanism of cathodic reduction of zinc- and cadmium complexes in electrolytes containing ethanolamine and ammonia

    International Nuclear Information System (INIS)

    By the methods of plotting stationary total and partial polarograms in galvanic as well as in potentiostatic regimes the processes of cathodic zinc and cadmiun precipitation in ammonia- and ethanolamine (Etm) electrolytes have been studied versus the composition and pH of the solution. It is found that the composition of zinc- or cadmium complexes in ethanolamine-ammonia electrolytes may be presented in the form (Zn(Cd)(NHsub(3))sub(x)(Etm)sub(y)(OH)sub(z))sup(2-z), x+y+z=4; the reduction of complexes, independently of their composition, is preceded by chemical stages of partial splitting-off of ligands (or their replacement). An increase in the pH value results in appearance of insoluble salt precipitates in cadmium plating electrolytes

  8. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    Science.gov (United States)

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; Han, Lili; Grillon, Nathanael; Guy-Bouyssou, Delphine; Bouyssou, Emilien; Proust, Marina; Meng, Ying Shirley

    2016-08-01

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte - electrode interfaces will be critical to improve performance. In this study, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grew in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. The stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.

  9. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries

    Science.gov (United States)

    Lee, Yongwon; Lee, Jaegi; Kim, Hyungsub; Kang, Kisuk; Choi, Nam-Soon

    2016-07-01

    Employing linear carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) as electrolyte solvents provides an opportunity to design appropriate electrolyte systems for high-performance sodium-ion batteries (SIBs). However, in practice, the use of linear carbonate-containing electrolytes is quite challenging because linear carbonates readily decompose at Na metal electrodes or sodiated anodes. One of the promising approaches is using an electrolyte additive to resolve the critical problems related to linear carbonates. Our investigation reveals that remarkable enhancement in electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes with linear carbonate-containing electrolytes is achieved by using a fluoroethylene carbonate (FEC) additive. Importantly, the initial Coulombic efficiency of the Na deposition/stripping on a stainless steel (SS) electrode is drastically improved from 16% to 90% by introducing the FEC additive into ethylene carbonate (EC)/propylene carbonate (PC)/DEC (5/3/2, v/v/v)/0.5 M NaClO4. The underlying mechanism of FEC at the electrode-electrolyte interface is clearly demonstrated by 13C nuclear magnetic resonance (NMR). In addition, the Na4Fe3(PO4)2(P2O7) cathode in EC/PC/DEC (5/3/2, v/v/v)/0.5 M sodium perchlorate (NaClO4) with FEC delivers a discharge capacity of 90.5 mAh g-1 at a current rate of C/2 and exhibits excellent capacity retention of 97.5% with high Coulombic efficiency of 99.6% after 300 cycles at 30 °C.

  10. Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renheng [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Xinhai, E-mail: 703131039@qq.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Wang, Zhixing; Guo, Huajun [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Hou, Tao [Jiangxi Youli New Materials Co., Ltd, Pingxiang 337000 (China); Yan, Guochun; Huang, Bin [School of Metallurgy and Environment, Central South University, Changsha 410083 (China)

    2015-01-05

    Highlights: • The addition of Li{sub 2}CO{sub 3} to the electrolyte can suppress the contents of HF in the electrolyte. • The low self-discharge rate of the LiMn{sub 2}O{sub 4} cells with Li{sub 2}CO{sub 3} is lower than that of no additive. • The LiMn{sub 2}O{sub 4} cells with Li{sub 2}CO{sub 3} exhibit better rate capability and excellent cycle stability than that without Li{sub 2}CO{sub 3}. • A stable film can be formed on the LiMn{sub 2}O{sub 4} cathode using containing-Li{sub 2}CO{sub 3} electrolyte. - Abstract: The effect of lithium carbonate (Li{sub 2}CO{sub 3}) as an additive on the stability of the electrolyte and cycling performance of lithium manganese oxide spinel (LiMn{sub 2}O{sub 4}) batteries at elevated temperature was studied. The addition of Li{sub 2}CO{sub 3} to the electrolyte can suppress the capacity fading of LiMn{sub 2}O{sub 4} batteries. The linear sweep voltammetry (LSV) and the cyclic voltammetry (CV) indicate that Li{sub 2}CO{sub 3} has a lower oxidation potential in the mixed solvents of ethylene carbonate (EC), diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), participating in the formation process of the stable cathode electrolyte interface (CEI) film. In addition, the results of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that the stable CEI film of the cells with Li{sub 2}CO{sub 3} can be formed, which can effectively reduce the dissolution of Mn{sup 2+} from LiMn{sub 2}O{sub 4} into the electrolyte at elevated temperature. It is concluded that the addition of Li{sub 2}CO{sub 3} to a solution of 1 M LiPF{sub 6}–EC/EMC/DEC = 1/1/1 (weight ratio) may decrease solvent decomposition and change the structure of the passivation film on the LiMn{sub 2}O{sub 4} cathode.

  11. Carbon xerogels as catalyst supports for PEM fuel cell cathode

    International Nuclear Information System (INIS)

    Carbon xerogels with various pore textures were prepared by evaporative drying and pyrolysis of resorcinol-formaldehyde gels, and used as supports for Pt catalysts in PEM fuel cell cathodes. The goal of this study was to determine whether carbon xerogels could replace the carbon aerogels which were previously used as Pt catalyst supports in the same electrochemical system, and to determine how the pore texture influences the cell performances. Pt catalysts were prepared by impregnation of carbon supports with aqueous H2PtCl6 solution followed by reduction in aqueous phase with NaBH4. Fuel cell measurements show that the metal surface actually available for the oxygen reduction reaction and the voltage losses due to diffusion phenomena strongly depend on the carbon pore texture. Finally, some carbon xerogels yield similar performance than carbon aerogels

  12. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  13. Surface Reactivity of a Carbonaceous Cathode in a Lithium Triflate/Ether Electrolyte-Based Li-O2 Cell.

    Science.gov (United States)

    Carboni, Marco; Brutti, Sergio; Marrani, Andrea G

    2015-10-01

    Li-O2 batteries are currently one of the most advanced and challenging electrochemical systems with the potential to largely overcome the performances of any existing technology for energy storage and conversion. However, these optimistic expectations are frustrated by the still inadequate understanding of the fundamentals of the electrochemical/chemical reactions occurring at the cathode side, as well as within the electrolyte and at the three-phase interface. In this work, we illustrate the evolution of the morphology and composition of a carbonaceous cathode in the first discharge/charge in a Li-O2 cell with an ether-based electrolyte by X-ray photoemission spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Experiments have been carried out ex situ on electrodes recuperated from electrochemical cells stopped at various stages of galvanostatic discharge and charge. Apparently, a reversible accumulation and decomposition of organic and inorganic precipitates occurs upon discharge and charge, respectively. These precipitations and decompositions are likely driven by electrochemical and chemical parasitic processes due to the reactivity of the cathode carbonaceous matrix. PMID:26375042

  14. Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA-citrate complexing synthesis process

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Hongxia; Ran, Ran; Zhou, Wei; Shao, Zongping [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, No. 5 Xing Mofan Road, Nanjing, JiangSu 210009 (China)

    2007-10-25

    The potential application of combined EDTA-citrate complexing process (ECCP) in intermediate-temperature solid-oxide fuel cells (IT-SOFCs) processing was investigated. ECCP-derived scandia-stabilized-zirconia (ScSZ) powder displayed low packing density, high surface area and nano-crystalline, which was ideal material for thin-film electrolyte fabrication based on dual dry pressing. A co-synthesis of NiO + ScSZ anode based on ECCP was developed, which showed reduced NiO(Ni) and ScSZ grain sizes and improved homogeneity of the particle size distribution, as compared with the mechanically mixed NiO + ScSZ anode. Anode-supported ScSZ electrolyte fuel cell with the whole cell materials synthesized from ECCP was successfully prepared. The porous anode and cathode exhibited excellent adhesion to the electrolyte layer. Fuel cell with 30 {mu}m thick ScSZ electrolyte and La{sub 0.8}Sr{sub 0.2}MnO{sub 3} cathode showed a promising maximum peak power density of 350 mW cm{sup -2} at 800 C. (author)

  15. Actinide-Lanthanide separation by an electrolytic method in molten salt media: feasibility assessment of a renewed liquid cathode

    International Nuclear Information System (INIS)

    This study is part of a research program concerning the assessment of pyrochemical methods for the nuclear waste processing. The An-Ln partitioning could be achieved by an electrolytic selective extraction in molten salt media. It has been decided to focus on liquid reactive cathode which better suits to a group actinides co-recycling. The aim of the study is to propose, define and initiate the development of an electrolytic pyro-process dedicated to the quantitative and selective recovery of the actinides. Quantitativeness is related to technology, whereas selectivity is governed by chemistry. The first step consisted in selecting the adequate operating conditions, which enables a sufficient An-Ln separation. The first step consisted, by means of thermodynamic calculi and electrochemical investigations, in selecting a promising combination between molten electrolyte and cathodic material, regarding the process constraints. To improve the recovery yield, it is necessary to develop a disruptive technology: here comes the concept of a dynamic electrodeposition carried out onto liquid metallic drops. The next step consisted in designing and manufacturing a lab-scale device which enables dropping flow studies. Since interfacial phenomena are of primary meaning in such a concept, it has been decided to focus on high temperature liquid-liquid interfacial measurements. (author)

  16. Behaviour of the 1-Ascorbic as supporting Electrolyte. Influence of the Magnesium Ion

    International Nuclear Information System (INIS)

    The behaviour of 1-ascorbic acid, as supporting electrolyte of the uranyl ion in a 01-0.7 M concentration range, and the influence of pH on the diffusion current and half wave potential of 0,1 M uranyl ion is studied. The cathodic waves from 0 to -2,5 volts, with mercury dropping electrode are studied in fresh 0,1 M aqueous solution in presence of Mg2+ and at 2,0-12 pH range. A kinetic current with a half wave potential of 0,85 v. vs. Hg. b.e. is obtained at pH> 9,5 appears a tilth wave a -0,60 v. The pH variation does not influence these potentials. (Author) 18 refs

  17. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes

    Science.gov (United States)

    MacNeil, D. D.; Lu, Zhonghua; Chen, Zhaohui; Dahn, J. R.

    Differential scanning calorimetry (DSC) was used to compare the thermal stability of charged cathodes in 1 M LiPF 6 EC/DEC electrolyte. Seven possible cathode materials for lithium-ion batteries (LiCoO 2, LiNiO 2, LiNi 0.8Co 0.2O 2, Li 1+ xMn 2- xO 4, LiNi 0.7Co 0.2Ti 0.05Mg 0.05O 2, Li[Ni 3/8Co 1/4Mn 3/8]O 2, and LiFePO 4) were tested under the same conditions. Welded stainless steel DSC sample tubes, that ensured no weight loss during analysis, were used for these measurements, making them reliable. A consideration of these DSC results and the known electrochemical properties of the cathodes may assist the selection of the most suitable lithium-ion cathode material for use in a particular application.

  18. Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Highlights: •Co-doped Pt core–shell type catalyst having 0.75 nm thick Pt shell is synthesized. •Co-doped Pt exhibited mass activity of 0.44 A mgPt−1 at 0.9 ViR-free. •Co-doped Pt cathode catalyst showed high stability under cycling conditions. •Co-doped Pt catalyst showed only 16% power density loss after 30,000 cycles. •The enhanced stability is due to the increase in onset potential for PtO2 formation. -- Abstract: Cathode catalyst based on Co-doped Pt deposited on carbon composite catalyst (CCC) support with high measured activity and stability under potential cycling conditions for polymer electrolyte membrane (PEM) fuel cells was developed in this study. The catalyst was synthesized through platinum deposition on Co-doped CCC support containing pyridinic-nitrogen active sites followed by controlled heat-treatment. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) studies confirmed uniform Pt deposition (Pt/CCC catalyst, dPt = 2 nm) and formation of Co-doped Pt/CCC catalyst (dPt = 5.4 nm) respectively. X-ray energy dispersive spectrometry (XEDS) line-scan studies showed the formation of Co-core Pt-shell type catalyst with a Pt-shell thickness of ∼0.75 nm. At 0.9 ViR-free, the Co-doped Pt/CCC catalyst showed initial mass activity of 0.44 A mgPt−1 and 0.25 A mgPt−1 after 30,000 potential cycles between 0.6 and 1.0 V corresponding to an overall measured activity loss of 42.8%. The commercial Pt-Co/C showed initial mass activity of 0.38 A mgPt−1 and ∼70% loss of activity after 30,000 cycles. The enhanced catalytic activity at high potentials and stability of mass activity for the Co-doped Pt/CCC catalyst are attributed to the formation of compressive Pt lattice catalyst due to Co doping. The Co-doped Pt/CCC showed stable open circuit potential close to 1.0 V under H2-air with an initial power density of 857 mW cm−2 and only 16% loss after 30,000 cycles. Catalyst durability studies performed between 0

  19. Carbon dioxide electrolysis with solid oxide electrolyte cells for oxygen recovery in life support systems

    Science.gov (United States)

    Isenberg, Arnold O.; Cusick, Robert J.

    1988-01-01

    The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.

  20. Direct surface modification of high-voltage LiCoO2 cathodes by UV-cured nanothickness poly(ethylene glycol diacrylate) gel polymer electrolytes

    International Nuclear Information System (INIS)

    Highlights: • Direct surface modification of high-voltage LCO cathode by UV-cured PEGDA GPE. • Conformal PEGDA nanocoating layer is formed on LCO surface. • Preformed architecture of LCO cathode is not disrupted by PEGDA coating layer. • PEGDA-LCO cathode improves high-voltage cycling performance and thermal stability. • PEGDA nanocoating layer serves as a new ion-conductive protection film. -- Abstract: In the development of high-voltage lithium-ion batteries, unwanted interfacial side reactions between delithiated cathode materials and liquid electrolytes pose a formidable challenge that needs to be urgently resolved. In this study, as a simple and effective approach to improve cell performance and thermal stability of high-voltage cells, we demonstrate direct surface modification of a cathode by UV-cured nanothickness poly(ethylene glycol diacrylate) (PEGDA) gel polymer electrolyte (GPE). Herein, the UV-crosslinking of EGDA oligomers is conducted directly on as-formed cathode (LiCoO2 (LCO) is chosen as a model system), instead of application to LCO powders. This unusual coating process allows the successful formation of the conformal PEGDA nanocoating layer on the LCO surface without disrupting the preformed physical architecture of the LCO cathode (specifically, electronic networks and porous structure to be filled with liquid electrolyte). Owing to the structural novelty, the PEGDA-coated LCO cathode improves the cycling performance of high-voltage (=4.4 V) cells and suppresses the exothermic reaction between the delithiated LCO and liquid electrolyte, as compared to the pristine LCO cathode. These results underline that the conformal PEDGDA nanocoating layer proposed herein acts as a new ion-conductive protection film that effectively mitigates the undesired interfacial side reactions

  1. Metallization pattern on solid electrolyte or porous support of sodium battery process

    Science.gov (United States)

    Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.

    2016-05-31

    A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.

  2. Effect of electrolytes on cataphoretically deposited LaB6 cathodes

    Science.gov (United States)

    Khairnar, Rajendra S.; Joag, D. S.; Kulkarni, S. K.; Nigavekar, A. S.; Kanitkar, P. L.

    1984-09-01

    Various electrolytes were used to deposit LaB6 on carburized tantalum by the cataphoretic method. The effect of four electrolytes viz., HCl, NH4NO3, La(NO3)3, and HNO3 on LaB6 coatings has been investigated. It is observed that use of HCl as an electrolyte provides LaB6 coatings with small grain size, low porosity, good adhesion, and ability to withstand a large number of thermal shocks. These properties make HCl the most suitable electrolyte for cataphoretic deposition of LaB6 for thermionic emission.

  3. In-situ Coating of Cathode by Electrolyte Additive for High-voltage Performance of Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • In-situ formation of interface films on LiCoO2 surface by electrolyte additive. • Thickness-tunable interface films is obtained by adding different concentrations of BMP additive. • High-voltage cycling performance (4.5 V) is closely associated with the thickness of the interface film. • 0.5% BMP electrolyte additive shows superior high-voltage cycleability. - Abstract: We have previously demonstrated that N,N′-4,4′-diphenylmethane-bismaleimide (BMI) as an electrolyte additive enhances the high-voltage performance of lithium-ion batteries by electrochemically forming an interface film on cathode surface. In order to obtain a comprehensive understanding of the bismaleimide-based additives, 2,2′-Bis[4-(4-maleimidophenoxy) phenyl]propane (BMP), which is more compatible with electrolyte than BMI, is studied as a new electrolyte additive. LiCoO2 is chosen as the typical cathode material. Firstly, the structure of interface films on LiCoO2 surface is studied with different concentrations of BMP additive. The morphology, thickness and chemical composition of the interface film are characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) respectively. The oxidation potential of BMP is measured by linear sweep voltammetry (LSV). Secondly, how the interface films influence the high-voltage cycling performance of LiCoO2/Li batteries is studied. AC impedance measurements (EIS), X-ray diffraction (XRD) and discharge profile analysis are used to further clarify the mechanism. For the first time, we find that thickness-tunable interface films could be generated on LiCoO2 surface by adding different concentrations of BMP additives in electrolyte. Also, the high-voltage cycling performance of the corresponding LiCoO2/Li batteries is closely associated with the thickness of the interface film. Optimized amount of BMP additive (0.5% w/v in our work) presents superior high

  4. Carbon cloth supported vanadium pentaoxide nanoflake arrays as high-performance cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Construct a carbon cloth supported V2O5 nanoflake arrays. • V2O5 nanoflake arrays show high Li-storage properties. • Nanoflake arrays structure is favorable for fast ion and electron transfer - Abstract: Carbon cloth supported vanadium pentoxide (V2O5) nanoflake arrays are synthesized by a facile solvothermal deposition method. The V2O5 nanoflakes grow quasi-vertically to the carbon cloth and show a star-fruit like hierarchical structure composed of 3 − 4 secondary flakes with a thickness of ∼20 nm. When applied as cathode material for lithium ion batteries, the V2O5 nanoflake arrays exhibit a high capacity of 292 mAh g−1 at 0.5 C, and 94% capacity (275 mAh g−1) retained after 100 cycles. In addition, the V2O5 nanoflakes present an impressive high-rate capability with 62% capacity (181 mAh g−1) retention when the rate changes from 0.5 C to 10 C. The noticeable electrochemical performances are mainly due to the carbon cloth supported thin nanoflake array structure, which provides fast ion/electron transfer, sufficient contact between active materials and electrolyte, and alleviates the structure degradation caused by volume expansion during the cycling process

  5. Effects of laminating and co-firing conditions on the performance of anode-supported Ce0.8Sm0.201.9 film electrolyte

    Directory of Open Access Journals (Sweden)

    Li X.

    2011-01-01

    Full Text Available In order to evaluate the laminating and co-firing technique on the performance of anode-supported Ce0.8Sm0.2O1.9 (SDC film electrolyte and its single cell, NiO-YSZ and NiOSDC anode-supported SDC film electrolytes were fabricated by laminating 24 sheets of anode plus one sheet of electrolyte and co-firing. La0.4Sr0.6Co0.2Fe0.8O3-δ (LSCF-SDC cathode was coated on the SDC electrolytes to form a single cell. The lamination was tried at different laminating temperatures and pressures and the co-firing was carried out at different temperatures. The results showed that the laminating temperature should above the glass transition temperature (Tg of the binder. The laminating pressure of 70 MPa resulted in warp of the samples. The best co-firing temperature of the anode-supported SDC film electrolyte was 1400°C. The SDC film electrolyte formed well adherence to the anode. The NiO-YSZ anode had larger flexural strength than the NiO-SDC anode. The NiO-YSZ anode-supported SDC film electrolyte single cell had an open circuit voltage of 0.803 V and a maximum power density of 93.03 mW/cm2 with hydrogen as fuel at 800°C.

  6. Influence of current density on the erosion of a graphite cathode and electrolytic formation of carbon nanotubes in molten NaCl and LiCl

    International Nuclear Information System (INIS)

    The electrochemical deposition of sodium and lithium from their respective molten chlorides onto a graphite cathode as the first step of carbon nanotube electrolytic production has been investigated. It has been shown that in the case of both sodium and lithium, as the cathodic current density increases, the cathode weight first increases and then decreases, i.e. the dependence of cathode weight change vs. cathodic current density passes through a maximum. The value of cathodic current density corresponding to the maximum increase in the cathode weight in the case of sodium is approximately 4 times as high as that in the case of lithium, which is explained by a higher solubility of sodium metal in molten sodium chloride compared to that of lithium metal in molten lithium chloride. The higher sodium metal solubility causes a higher electronic conductivity of the molten electrolyte, while the ratio of intercalated to dissolved sodium will be lower as compared to lithium. Curved multi-walled carbon nanotubes of an outer diameter of 20-50 nm with a wall thickness of 5-10 nm (molten NaCl) and of 20-100 nm with a wall thickness of 5-40 nm (molten LiCl) have been synthesized.

  7. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes

    International Nuclear Information System (INIS)

    All-solid-state cells, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes exhibited excellent cycling performance at room temperature. The cathode materials consisting of sulfur and CuS were synthesized by mechanical milling, using a mixture of sulfur and copper crystals with several different molar ratios. The cell performance was influenced by the composition of S/Cu for the cathode materials and the cell with the cathode material of S/Cu = 3 prepared by milling for 15 min retained large discharge capacities over 650 mA h g-1 for 20 cycles. Sulfur as well as CuS in the cathode materials proved to be utilized as active materials on charge-discharge processes in the all-solid-state batteries

  8. Effects of cathode pulse at high frequency on structure and composition of Al2TiO5 ceramic coatings on Ti alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Research highlights: → Al2TiO5 in the coating on Ti alloy by PEO treatment changes with the increase of the cathode pulse, regardless of the amount and the grain size. → The cathode pulse brings about the decrease of γ-Al2O3 and the increase of rutile TiO2 in the coating. → The appropriate cathode pulse during PEO process is beneficial to reduce residual discharging channels and improve the density of the coating. - Abstract: The aim of this work is to investigate the effects of cathode pulse under high working frequency on structure and composition of ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO2 solution. The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The coating was mainly composed of a large amount of Al2TiO5. As the cathode pulse was increased, the amount and grain size of Al2TiO5 were first increased, and then decreased. γ-Al2O3 in the coating was gradually decreased to nothing with the increase in the cathode pulse whereas rutile TiO2 began to form in the coating. As opposed to the single-polar anode pulse mode, the cathode pulse reduced the thickness of the coatings. However, as the cathode pulse intensity continued to increase, the coating then became thicker regardless of cathode current density or pulse width. In addition, the residual discharging channels were reduced and the density of the coating was increased with the appropriate increase of the cathode pulse.

  9. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  10. Performance evaluation of printed LiCoO{sub 2} cathodes with PVDF-HFP gel electrolyte for lithium ion microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon-Soo [School of Advanced Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 120-749 (Korea); Samsung Electro-Mechanics Maetan-3-dong, YeongTong-gu, Suwon City, Gyeonggi Province 442-743 (Korea); Hyun, Sang-Hoon [School of Advanced Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 120-749 (Korea); Nam, Sang-Cheol [Nuricell Inc., 4F, GS Caltex New Energy Development Center, 453-2, Seongnae-dong, Gangdong-gu, Seoul 134-030 (Korea); Cho, Sung Back [Advanced Technology Research Center, Agency for Defense Development, Daejeon 305-600 (Korea)

    2008-07-01

    In order to improve the discharge capacity in lithium ion microbatteries, a thick-film cathode was fabricated by a screen printing using LiCoO{sub 2} pastes. The printed cathode showed a different discharge curves when the cell was tested using various (liquid, gel and solid-state) electrolytes. When a cell test was performed with organic liquid electrolyte, the maximum discharge capacity was 200 {mu}Ah cm{sup -2}, which corresponded to approximately 133 mAh g{sup -1} when the loading weight of LiCoO{sub 2} was calculated. An all-solid-state microbattery could be assembled using sputtered LiPON electrolyte, an evaporated Li anode, and printed LiCoO{sub 2} cathode films without delamination or electrical problems. However, the highest discharge capacity showed a very small value (7 {mu}Ah cm{sup -2}). This problem could be improved using a poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) gel electrolyte, which enhanced the contact area and adhesion force between cathode and electrolyte. The discharge value of this cell was measured as approximately 164 {mu}Ah cm{sup -2} ({approx}110 mAh g{sup -1}). As the PVDF-HFP electrolyte had a relatively soft contact property with higher ionic conductance, the cell performance was improved. In addition, the cell can be fabricated in a leakage-free process, which can resolve many safety problems. According to these results, there is a significant possibility that a film prepared using the aforementioned paste with screen printing and PVDF-HFP gel electrolyte is feasible for a microbattery. (author)

  11. Specific features of an electric discharge operating between an electrolytic anode and a metal cathode

    Energy Technology Data Exchange (ETDEWEB)

    Gaisin, A. F.; Sarimov, L. R. [Kazan State Technical University (Russian Federation)

    2011-06-15

    Results are presented from experimental studies of a high-current electric discharge operating between an St45 steel cathode and a service water anode in a wide range of air pressures. Peculiarities of discharge ignition and specific features of cathode and anode spots were revealed. The behavior of the current density on a service water anode was investigated for the first time. Comparison of the current densities j on the steel cathode and service water anode shows that, in the parameter range under study, Hehl's law is not satisfied on the water anode. The two-dimensional distribution of the potential inside and on the surface of the service water anode was measured.

  12. Specific features of an electric discharge operating between an electrolytic anode and a metal cathode

    Science.gov (United States)

    Gaisin, A. F.; Sarimov, L. R.

    2011-06-01

    Results are presented from experimental studies of a high-current electric discharge operating between an St45 steel cathode and a service water anode in a wide range of air pressures. Peculiarities of discharge ignition and specific features of cathode and anode spots were revealed. The behavior of the current density on a service water anode was investigated for the first time. Comparison of the current densities j on the steel cathode and service water anode shows that, in the parameter range under study, Hehl's law is not satisfied on the water anode. The two-dimensional distribution of the potential inside and on the surface of the service water anode was measured.

  13. An Artificial SEI Enables the Use of A LiNi0.5Mn1.5O4 5 V Cathode with Conventional Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juchuan [ORNL; Baggetto, Loic [ORNL; Martha, Surendra K [ORNL; Veith, Gabriel M [ORNL; Nanda, Jagjit [ORNL; Liang, Chengdu [ORNL; Dudney, Nancy J [ORNL

    2013-01-01

    LiNi0.5Mn1.5O4 spinel is considered one of the most promising cathodes for advanced lithium ion batteries. However, the operation potential of LiNi0.5Mn1.5O4, ~4.75 V, is beyond the high voltage limit of the state-of-art electrolyte, ~4.3 V. Here, using thin films of LiNi0.5Mn1.5O4 as a model material, we show evidence that an artificial solid electrolyte interphase (SEI) enables the use of this 5 V cathode with conventional carbonate electrolytes. A thin coating of Lipon (lithium phosphorus oxynitride) as an artificial SEI on LiNi0.5Mn1.5O4 could remedy the decomposition of the electrolyte. The thickness of the Lipon artificial SEI is optimized by balancing the protection and additional resistance. The strategy of artificial SEI on cathodes is expected to enable the wide application of other high voltage cathodes for lithium ion batteries.

  14. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.

    Science.gov (United States)

    Matsui, Toshiaki; Morikawa, Eri; Nakada, Shintaro; Okanishi, Takeou; Muroyama, Hiroki; Hirao, Yoshifumi; Takahashi, Tsuyoshi; Eguchi, Koichi

    2016-07-20

    In this study, the heteropolyacids of H3+xPVxMO12-xO40 (x = 0, 2, and 3) were applied as redox mediators for the oxygen reduction reaction in polymer electrolyte fuel cells, of which the cathode is free from the usage of noble metals such as Pt/C. In this system, the electrochemical reduction of heteropolyacid over the carbon cathode and the subsequent reoxidation of the partially reduced heteropolyacid by exposure to the dissolved oxygen in the regenerator are important processes for continuous power generation. Thus, the redox properties of catholytes containing these heteropolyacids were investigated in detail. The substitution quantity of V in the heteropolyacid affected the onset reduction potential as well as the reduction current density, resulting in a difference in cell performance. The chemical composition of heteropolyacid also had a significant impact on the reoxidation property. Among the three compounds, H6PV3Mo9O40 was the most suitable redox mediator. Furthermore, the pH of the catholyte was found to be the crucial factor in determining the reoxidation rate of partially reduced heteropolyacid as well as cell performance. PMID:27348019

  15. H2O2 detection analysis of oxygen reduction reaction on cathode and anode catalysts for polymer electrolyte fuel cells

    Science.gov (United States)

    Kishi, Akira; Shironita, Sayoko; Umeda, Minoru

    2012-01-01

    The generation percentage of H2O2 during oxygen reduction reaction (ORR) at practical powder electrocatalysts was evaluated using a scanning electrochemical microscope (SECM). We employed a porous microelectrode that contains electrocatalysts, namely, Pt/C, Pt-Co/C, and Pt-Ru/C as the oxygen reduction electrode of the SECM, and the Pt microelectrode was used as the H2O2 detector. First, the H2O2 generation amount at Pt/Cs was measured by changing the Pt loading amount. A Pt/C with a higher Pt loading has a higher ORR activity and generates a larger amount of H2O2. However, the percentage of H2O2 generated with respect to the ORR is the same regardless of the Pt loading amount. Next, H2O2 generation is markedly suppressed at the Pt-Co/C and Pt-Ru/C in the potential ranges of practical fuel cell cathode and anode, respectively. This explains that the Pt-Co/C is effective when used as a cathode, and the anode Pt-Ru/C enables the reduction of the H2O2 generation even if O2 crossleak occurs in the practical polymer electrolyte fuel cell.

  16. Bifunctional, Carbon-Free Nickel/Cobalt-Oxide Cathodes for Lithium-Air Batteries with an Aqueous Alkaline Electrolyte

    International Nuclear Information System (INIS)

    Highlights: • High activity bi-functional catalyst combination for ORR and OER . • An optimum ratio of high active bi-functional catalysts was found. • Novel electrodes without carbon to avoid carbon corrosion during OER mode. • EIS model for OER describes influence of a growing oxide layers. • Long-term test exhibited an excellent long-term stability over 1200 cycles. - Abstract: Lithium-air batteries with an aqueous alkaline electrolyte promise a very high practical energy density and capacity. These batteries are mainly limited by high overpotentials on the bifunctional cathode during charge and discharge. To reduce overpotentials the bifunctional cathode of such batteries must be improved significantly. Nickel is relatively inexpensive and has a good catalytic activity in alkaline media. Co3O4 was found to be a promising metal oxide catalyst for oxygen evolution in alkaline media but it has a low electronic conductivity. On the other hand since nickel has a good electronic conductivity Co3O4 can be added to pure nickel electrodes to enhance performance due to a synergetic effect. Due to the poor stability of carbon materials at high anodic potentials, gas diffusion electrodes were prepared without carbon to improve especially long-term stability. Gas diffusion electrodes were electrochemically investigated in a half cell. In addition, cyclic voltammogrametry (CV) and electrochemical impedance spectroscopy (EIS) were carried out. SEM was used for the physical and morphological investigations. Investigations showed that electrodes containing 20 wt.% Co3O4 exhibited the highest performance

  17. The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells

    Science.gov (United States)

    Noh, Ho-Sung; Yoon, Kyung Joong; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2014-02-01

    Thin-film electrolytes and nanostructured electrodes are essential components for lowering the operation temperature of solid oxide fuel cells (SOFCs); however, reliably implementing thin-film electrolytes and nano-structure electrodes over a realistic SOFC platform, such as a porous anode-support, has been extremely difficult. If these components can be created reliably and reproducibly on porous substrates as anode supports, a more precise assessment of their impact on realistic SOFCs would be possible. In this work, structurally sound thin-film and nano-structured SOFC components consisting of a nano-composite NiO-yttria-stabilized zirconia (YSZ) anode interlayer, a thin YSZ and gadolinia-doped ceria (GDC) bi-layer electrolyte, and a nano-structure lanthanum strontium cobaltite (LSC)-base cathode, are sequentially fabricated on a porous NiO-YSZ anode support using thin-film technology. Using an optimized cell testing setup makes possible a more exact investigation of the potential and challenges of thin-film electrolyte and nanostructured electrode-based anode-supported SOFCs. Peak power densities obtained at 500 °C surpass 500 mW cm-2, which is an unprecedented low-temperature performance for the YSZ-based anode-supported SOFC. It is found that this critical, low-temperature performance for the anode-supported SOFC depends more on the electrode performance than the resistance of the thin-film electrolyte during lower temperature operation.

  18. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam;

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for...... oxidant and coolant supply, which reduces the overall size of the stack, power losses, and results in a lower system volume. In the present study, we present unique designs for an open-cathode system which offers uniform temperature distribution with a minimum temperature gradient and a uniform flow...... distribution through each cell. Design studies were carried out to increase power density. An experimental and simulation approach was carried out to design the novel open-cathode system. Two unique parallel serpentine flow designs were developed to yield a low pressure drop and uniform flow distribution, one...

  19. Improving high voltage stability of lithium cobalt oxide/graphite battery via forming protective films simultaneously on anode and cathode by using electrolyte additive

    International Nuclear Information System (INIS)

    Highlights: • The cyclic stability of LiCoO2/graphite battery in voltage range of 3.0-4.5 V is improved by VEC. • VEC inhibits dimension change of the battery after cycling at 4.5 V cutoff voltage. • The SEI formed by VEC on cathode is able to inhibit the cobalt dissolution. • The anodic SEI formed by VEC suppresses the cobalt deposition and the electrolyte decomposition. - Abstract: We report a new finding that high voltage stability of lithium cobalt oxide (LiCoO2)/graphite battery can be improved by using vinyl ethylene carbonate (VEC) as an electrolyte additive. Charge/discharge tests demonstrate that the battery using VEC exhibits significantly improved cyclic and dimensional stability of the 053048-type LiCoO2/graphite pouch cell up to 4.5 V. The capacity retention is 87.0% and the swell value in thickness is 3.1% for the cell with 2.0 wt.% VEC after 400 cycles between 3.0 V and 4.5 V, compared to the values of 38.4% and 38.6%, respectively, for the cell without additive. The characterizations from scanning electron spectroscopy and X-ray photoelectron spectroscopy demonstrate that VEC facilitates the formation of stable solid electrolyte interfaces simultaneously on anode and cathode of the LiCoO2/graphite battery, yielding effective protections for anode and cathode and preventions of the electrolyte decomposition on both electrodes

  20. A study of integrated cathode assembly for electrolytic reduction of uranium oxide in LiCl-Li2O molten salt

    International Nuclear Information System (INIS)

    Interest of electrolytic reduction of uranium oxide is increasing in treatment of spent metal fuels. Argonne National Laboratory (ANL) has reported the experimental results of electrochemical reduction of uranium oxide fuel in bench-scale apparatus with cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO2 reduction runs. From the cyclic voltammograms, the mechanism of electrolytic reduction of metal oxides is analyzed. The uranium oxide in LiCl-Li2O is converted to uranium metal according to the two mechanism; direct and indirect electrolytic reduction. In this study, cyclic voltammograms for LiCl-3wt% Li2O system and U3O8-LiCl-3wt% Li2O system using the 325-mesh stainless steel screen in cathode assembly have been obtained. Direct electrolytic reduction of uranium oxide in LiCl-3wt% Li2O molten salt has been conducted

  1. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan; Li, Qiuyan; Lv, Dongping; Xiao, Jie; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupled with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.

  2. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material

    Science.gov (United States)

    Zhou, Hongming; Xiao, Kaiwen; Li, Jian

    2016-01-01

    The electrochemical behaviors of lithium difluoro(oxalate)borate (LiODFB) and LiBF4 blend salts in ethylene carbonate + dimethyl carbonate + ethyl(methyl) carbonate (EC + DMC + EMC, 1:1:1, by wt.) have been investigated for LiNi0.5Mn1.5O4 cathode in lithium-ion batteries. The electric conductivity tests are utilized to examine the relationship among solution conductivity, the electrolyte composition and temperature. Through cyclic voltammetry, charge-discharge test and AC impedance measurements, we compare the capacity and cycling efficiency of LNMO cathode in different electrolyte systems at different temperatures and discharge current rates. Scanning electron microscopy (SEM) analysis and X-ray photoelectron spectroscopy (XPS) are served to analyze the surface nature of LNMO cathode after cycles at elevated temperature. These results demonstrate that LNMO cathode can exert excellent electrochemical performance with the increase of LiODFB concentration at room temperature and elevated temperature and it is found that just slight LiBF4, mixed with LiODFB as blend salts, can strikingly improve the cyclability at -20 °C, especially in high-rate cycling. Grouped together, the optimum LiODFB/LiBF4 molar ratio is around 4:1, which can present an excellent affinity to LNMO cathode in a wide electrochemical window.

  3. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  4. Microstructural studies on degradation of interface between LSM–YSZ cathode and YSZ electrolyte in SOFCs

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Hagen, Anke; Barfod, Rasmus;

    2009-01-01

    been identified as the loss of LSM coverage and the loss of three-phase-boundary (TPB) length. Firstly, the degradation is caused by the size reduction of the individual LSM/YSZ electrolyte contact points (areas) that are initially of 100–200 nm in diameter. Quantitative microstructure evaluation shows...... that in the cell tested in air this mechanism contributes to an estimated overall reduction in the LSM coverage and the TPB length by 50 and 30%, respectively. For the cell tested in oxygen the corresponding values are 10 and 4%. Secondly, in the cell tested in air the LSM coverage and the TPB length...

  5. Modular cathode assemblies and methods of using the same for electrochemical reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  6. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  7. A perspective on coatings to stabilize high-voltage cathodes: LiMn1.5Ni0.5O4 with subnanometer Lipon cycled with LiPF6 electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoongu [ORNL; Dudney, Nancy J [ORNL; Chi, Miaofang [ORNL; Martha, Surendra K [ORNL; Nanda, Jagjit [ORNL; Veith, Gabriel M [ORNL; Liang, Chengdu [ORNL

    2013-01-01

    High voltage Li-ion cathodes push the limits of stability for both cathode and electrolyte. Here subnanometer coatings of an amorphous thin film electrolyte (Lipon) improved the room temperature and 60 C cycling stability of a LiMn1.5Ni0.5O4 spinel cathode when charged to 4.9V with a standard LiPF6 carbonate electrolyte. The cathodes delivered superior C-rate performances up to a 5C discharge, when compared to the uncoated cathodes. Enhanced performance extended for at least 100 cycles. Electrochemical impedance spectroscopy indicates that Lipon slows the increase of interface resistance. Thicker 1-3nm Lipon coatings are sufficiently insulating as to block electronic transport to the cathode particles. Thick coatings also slow Mn dissolution. Results suggest that Lipon may act to scavenge impurities or block active sites that promote electrolyte decomposition. While greatly improved by the Lipon coating, this cathode is not sufficiently stable for long cycle life applications. Further work is needed to assess if and what surface coatings will ultimately stabilize the high voltage cathodes. Comments include insight from other studies of Lipon coated cathodes and directions for future research.

  8. Study on the stability of Li2MnSiO4 cathode material in different electrolyte systems for Li-ion batteries

    International Nuclear Information System (INIS)

    This study reports on the thorough investigation into the interaction between nanosized carbon-coated Li2MnSiO4 and various electrolytes, which has revealed significant changes of the active material after soaking in the electrolyte. Apart from the standard electrolyte salt lithium hexafluorophosphate (LiPF6), lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and the F-free salt lithium bis-oxalatoborate (LiBOB) were used for soaking tests and compared in terms of corrosion power with Li2MnSiO4. Carbon-coated Li2MnSiO4 samples were obtained by solid-state synthesis and stored in contact with the electrolyte. The aged samples were fully characterized by means of several analytical techniques (XRD, XPS, SEM, ATR-FTIR). The results show that Li2MnSiO4 decomposes in LiPF6-based electrolyte at high temperatures, due to the formation of HF, which causes corrosion of the material and dissolution of Mn. No degradation was observed after soaking in the LiBOB-based electrolyte. The corrosion of the active material in standard electrolyte system, together with irreversible structural changes upon Li electrochemical extraction, are considered as the main reasons for the poor capacity retention upon cycling of the Li2MnSiO4-based cathode

  9. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... improve the oxygen reduction kinetics due to increased oxygen solubility and suppressed adsorption of phosphoric acid anions. Further enhancement of the catalytic activity can be obtained by operating the polymer electrolytes at higher temperatures. Efforts have been made to develop a polymer electrolyte...

  10. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.;

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  11. In-situ neutron diffraction study of cathode/electrolyte interactions under electrical load and elevated temperature

    Science.gov (United States)

    Tonus, F.; Skinner, S. J.

    2016-05-01

    Fuel cells are proposed as a future energy conversion technology that will reduce greenhouse gas emissions at the point of operation due to their ability to produce electrical energy from non-hydrocarbon fuel sources. The Solid Oxide Fuel Cell (SOFC) is amongst the most efficient fuel cell types, however, due to the high cell operating temperature cation diffusion occurs between the different components of the cell, resulting in rapid degradation of the power output. In this paper we investigate cation migration between the promising intermediate temperature-SOFC cathode La1-xSrxCo1-yFeyO3-δ (LSCF) and a fluorite type electrolyte Ce1-xPrxO2-δ (CPO). The crystallographic structure evolution and degradation of the materials were studied by neutron diffraction in-situ under pseudo-operating conditions, i.e. at 600 °C under air and under electrical polarisation. The lattice parameter and cation occupancy evolution were analysed by Rietveld refinement as a function of time and applied potential. The materials were found to be stable, as no impurity formation, lattice parameter or site occupancy evolution was observed during the experiment. However La migration prior to the experiment from LSCF to CPO was observed as well as B-site vacancies in LSCF.

  12. Tantalum (oxy)nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Tantalum (oxy)nitrides (TaOxNy) have been investigated as new cathodes for polymer electrolyte fuel cells without platinum. TaOxNy films were prepared using a radio frequency magnetron sputtering under Ar + O2 + N2 atmosphere at substrate temperatures from 50 to 800 deg. C. The effect of the substrate temperature on the catalytic activity for the oxygen reduction reaction (ORR) and properties of the TaOxNy films were examined. The catalytic activity of the TaOxNy for the ORR increased with the increasing substrate temperature. The ORR current density at 0.4 V vs. RHE on TaOxNy prepared at 800 deg. C was approximately 20 times larger than that on TaOxNy prepared at 50 deg. C. The onset potential of the TaOxNy for the ORR was obtained at the ORR current density of -0.2 μA cm-2. The onset potential of the TaOxNy prepared at 800 deg. C was ca. 0.75 V vs. RHE. The X-ray diffraction patterns revealed that Ta3N5 structure grew as the substrate temperature increased. While, the ionization potentials of all specimens were lower than that of Ta3N5, and decreased with the increasing substrate temperature. The TaOxNy which had Ta3N5 structure and lower ionization potential might have a definite catalytic activity for the ORR

  13. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.

    Science.gov (United States)

    Yoo, Eunjoo; Zhou, Haoshen

    2016-06-01

    The use of carbon materials as air electrodes in lithium-oxygen (Li-O2 ) batteries is known to be advantageous owing to their good conductivity and because they offer sites suitable for the reversible electrode reactions. However, the exact influence of carbon materials on the electrochemical performance of Li-O2 batteries is not clear. In this study the electrochemical performance of four different types of carbon materials (multiwalled carbon nanotubes (MWCNTs), CMK-3, graphene nanosheets (GNSs), and Ketjen Black (KB)) as air electrodes is examined. We find that a Li-O2 cell based on an electrode of multiwalled carbon nanotubes (MWCNTs) demonstrates good rate performance and cycle stability, when using LiNO3 -LiTFSI/DMSO as electrolyte. Li-O2 cells based on such MWCNT electrodes, with a cut-off capacity of 1000 mAh g(-1) at 500 mA g(-1) , can undergo around 90 cycles without obvious losses of capacity. Even when the discharge depth is increased to 2000 mA h g(-1) , stable cycling is maintained for 45 cycles at a charge potential below 4.0 V. PMID:27120298

  14. Ionic concentrations and hydration numbers of "supporting electrolytes"

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Rajalakshmi

    2006-01-01

    Roč. 18, č. 4 (2006), s. 351-361. ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : strong electrolytes * degrees of dissociation * solution thermodynamics * dissociation constant Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  15. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    Science.gov (United States)

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. PMID:21922094

  16. Reversible lithium intercalation in a lithium-rich layered rocksalt Li2RuO3 cathode through a Li3PO4 solid electrolyte

    Science.gov (United States)

    Zheng, Yueming; Hirayama, Masaaki; Taminato, Sou; Lee, Soyeon; Oshima, Yoshifumi; Takayanagi, Kunio; Suzuki, Kota; Kanno, Ryoji

    2015-12-01

    Li2RuO3 (001) films with a lithium-rich layered rocksalt structure are epitaxially grown on a Al2O3(0001) substrate through pulsed laser deposition, followed by stacking of an amorphous Li3PO4 solid electrolyte. A half solid-state battery with a Li3PO4/Li2RuO3 cathode, liquid electrolyte, and lithium anode exhibits two redox peak pairs at 3.4 and 3.6 V, demonstrating lithium intercalation in the Li2RuO3 through the Li3PO4 solid electrolyte. All-solid-state batteries are fabricated by Li or In metal anode deposition on the Li3PO4/Li2RuO3. The Li/Li3PO4/Li2RuO3 cell delivers an initial discharge capacity of 101 mAh g-1, which does not fade significantly over 30 cycles. Furthermore, the Li2RuO3 rate capability is comparable to that of a liquid-type battery. Lithium-rich layered materials are available for use as cathodes in all-solid-state batteries.

  17. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    International Nuclear Information System (INIS)

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  18. A New Sealed Lithium-Peroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte

    OpenAIRE

    Shin-ichi Okuoka; Yoshiyuki Ogasawara; Yosuke Suga; Mitsuhiro Hibino; Tetsuichi Kudo; Hironobu Ono; Koji Yonehara; Yasutaka Sumida; Yuki Yamada; Atsuo Yamada; Masaharu Oshima; Eita Tochigi; Naoya Shibata; Yuichi Ikuhara; Noritaka Mizuno

    2014-01-01

    We propose a new sealed battery operating on a redox reaction between an oxide (O2−) and a peroxide (O2 2−) with its theoretical specific energy of 2570 Wh kg−1 (897 mAh g−1, 2.87 V) and demonstrate that a Co-doped Li2O cathode exhibits a reversible capacity over 190 mAh g−1, a high rate capability, and a good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The reversible capacity is largely dominated by the O2−/O2 2− redox reaction between o...

  19. Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte

    Science.gov (United States)

    Vinayan, B. P.; Zhao-Karger, Zhirong; Diemant, Thomas; Chakravadhanula, Venkata Sai Kiran; Schwarzburger, Nele I.; Cambaz, Musa Ali; Behm, R. Jürgen; Kübel, Christian; Fichtner, Maximilian

    2016-02-01

    Here we report for the first time the development of a Mg rechargeable battery using a graphene-sulfur nanocomposite as the cathode, a Mg-carbon composite as the anode and a non-nucleophilic Mg based complex in tetraglyme solvent as the electrolyte. The graphene-sulfur nanocomposites are prepared through a new pathway by the combination of thermal and chemical precipitation methods. The Mg/S cell delivers a higher reversible capacity (448 mA h g-1), a longer cyclability (236 mA h g-1 at the end of the 50th cycle) and a better rate capability than previously described cells. The dissolution of Mg polysulfides to the anode side was studied by X-ray photoelectron spectroscopy. The use of a graphene-sulfur composite cathode electrode, with the properties of a high surface area, a porous morphology, a very good electronic conductivity and the presence of oxygen functional groups, along with a non-nucleophilic Mg electrolyte gives an improved battery performance.Here we report for the first time the development of a Mg rechargeable battery using a graphene-sulfur nanocomposite as the cathode, a Mg-carbon composite as the anode and a non-nucleophilic Mg based complex in tetraglyme solvent as the electrolyte. The graphene-sulfur nanocomposites are prepared through a new pathway by the combination of thermal and chemical precipitation methods. The Mg/S cell delivers a higher reversible capacity (448 mA h g-1), a longer cyclability (236 mA h g-1 at the end of the 50th cycle) and a better rate capability than previously described cells. The dissolution of Mg polysulfides to the anode side was studied by X-ray photoelectron spectroscopy. The use of a graphene-sulfur composite cathode electrode, with the properties of a high surface area, a porous morphology, a very good electronic conductivity and the presence of oxygen functional groups, along with a non-nucleophilic Mg electrolyte gives an improved battery performance. Electronic supplementary information (ESI) available

  20. Ni-MoO2 composite cathodes for hydrogen evolution in alkaline solution: Effect of aging of the electrolyte for their electrodeposition

    Directory of Open Access Journals (Sweden)

    Jović Vladimir D.

    2013-01-01

    Full Text Available In this work the effect of aging of the electrolyte for electrodeposition of Ni-MoO2 composite coatings on their morphology (scanning electron microscopy, chemical composition (energy-dispersive X-ray spectroscopy, polarization characteristics and the “service life” test performance for the hydrogen evolution reaction (HER in 32 mass % NaOH at 90°C was investigated. Polarization characteristics and results of the “service life” test of Ni-MoO2 composite coatings obtained after different aging periods of the electrolyte for deposition (suspension of MoO2 powder particles in the solution containing 2 M NH4Cl + 0.2 M NiCl2 were compared with that recorded for De Nora’s commercial Ni+RuO2 cathode coating (DN. It was shown that aging of the electrolyte did not influence the morphology and chemical composition of Ni-MoO2 composite coatings electrodeposited under simulated conditions for their industrial production, while polarization characteristics for the HER were influenced. The best coating, obtained after 180 days of the electrolyte aging, showed completely different (layered structure of the deposit and significantly better performance than the commercial DN electrode during the “service life” test. [Projekat Ministarstva nauke Republike Srbije, br. 172054

  1. Electrochemical properties of (La, Sr)(Fe, Co)O3 cathodes with additives of copper oxide nanoparticles for fuel elements with CeO2-based solid electrolyte

    International Nuclear Information System (INIS)

    Electrical and electrochemical properties of LSFC-cathodes for fuel cells with CeO2-based electrolytes are studied. It is shown that the addition of copper oxide in the LSFC-cathode positive influences on properties of LSFC-CuO/SDC electrode system, moreover the introduction of copper oxide as nanopowder acts noticeably more, than the introduction of CuO micropowder. By this time at the content of 0.5 mas.% of CuO nanopowder conductivity of the LSFC-cathode decreases almost by order. Cathode adhesion to electrolyte increases essentially, thal allows decreasing the temperature of cathode burning by 100 Deg C. Maximum of electrochemical activity have cathodes with 2 mas.% of CuO at sintering temperatures of 1000 Deg C. Life tests of CuO nanopowder-doped LSFC-SDC-composite cathodes lasting to 2011 h demonstrate that the temporal stability of their electrochemical characteristics grows with the increase of SDC-phase in electrodes. Temporal dependencies of polarization resistance of 40-50 mas.% of SDC cathodes obeys the law of damped exponent, and on this basis the stationary value of their polarization resistance are determined. At 700 Deg C it comprises 0.1-0.2 Ω cm2, and at overvoltage lower than 100 mV electrodes provide the current density 0.5-1 A/cm2

  2. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  3. Ab-initio simulation of Li migration in Li{sub x}(Co,Ni)O{sub 2} (0cathode-electrolyte interface systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.C.; Jaegermann, W. [Technische Univ. Darmstadt (Germany); Christensen, M.; Freeman, C.; Mavromaras, A.; Saxe, P.; Wimmer, E.; Wolf, W. [Materials Design, Angel Fire, NM (United States); Materials Design s.a.r.l., Le Mans (France)

    2010-07-01

    By means of ab-initio density functional calculations possible minimum energy paths and energy barriers for the migration of Li in Li{sub x}(CoNi)O{sub 2} (0cathode materials are investigated, which will enable quantitative predictions for temperature dependent diffusion coefficients. Furthermore, Li{sub x}(CoNi)O{sub 2} - LIPO/LIPON cathode-electrolyte interface models are developed to investigate migration of Li through these interfaces. (orig.)

  4. Carbon-free bifunctional cathodes for the use in Lithium - Air Batteries with an aqueous alkaline electrolyte

    OpenAIRE

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas

    2014-01-01

    Carbon materials are widely used in gas diffusion electrodes due to their high electronic conductivity, relatively low costs and catalytic activity towards oxygen reduction reaction (ORR), the cathodic reaction during discharging. During charging a lithium-air battery the cathode is operated in oxygen evolution reaction (OER) mode. Carbon materials corrode in OER mode, this leads to degradation and a power loss of the electrode. To improve long-term stability and reduce side reactions as H2 a...

  5. Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Tak; Yoon, Hae-Kwon; Song, In-Seob [Samsung SDI Co. Ltd., 575 Shin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-391 (Korea); You, Dae Jong; Joo, Sang Hoon; Pak, Chanho; Chang, Hyuk [Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600 (Korea)

    2008-06-01

    The development of a cathode catalyst layer based on a supported Pt catalyst using an ordered mesoporous carbon (OMC) for direct methanol fuel cell is reported. An OMC with a mesopore structure between hexagonally arranged carbon nanorods is prepared using a template method. Platinum nanoparticles are supported on the OMC (Pt/OMC) with high metal loading of 60 wt.%. Compositional and morphological variations are made by varying the ionomer content and by compressing the catalyst layer to detect a parameter that determines the power performance. Increase in power density with decrease in the volume fraction of ionomer in the agglomerate comprising the Pt/OMC and the ionomer indicates that mass transport through the ionomer phase governs the kinetics of oxygen reduction. Impedance spectroscopic analysis suggests that a significant mass-transport limitation occurs at high ionomer content and in the compressed cathode. The power density of the optimum cathode layer, which employs a Pt/OMC catalyst with a Pt loading of 2 mg cm{sup -2}, is greater than that of a catalyst layer with 6 mg cm{sup -2} Pt-black catalyst at a voltage higher than 0.4 V. This would lead to a significant reduction in the cost of the membrane electrode assembly. (author)

  6. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  7. Effects of NiO on the conductivity of Ce0.85Sm0.15O1.925 and on electrochemical properties of the cathode/electrolyte interface

    Science.gov (United States)

    Wang, Haopeng; Liu, Xiaomei; Bi, Hailin; Yu, Shenglong; Han, Fei; Sun, Jialing; Zhu, Lili; Yu, Huamin; Pei, Li

    2016-07-01

    Ce0.85Sm0.15O1.925 (SDC) and Ce0.85Sm0.15O1.925-0.5 at.% NiO (SDCN) are investigated as electrolytes for solid oxide fuel cells (SOFCs). Impedance spectroscopy measurements reveal that the grain boundary resistance can be significantly reduced by adding 0.5 at.% NiO to SDC. Symmetric cells of the BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) electrode on SDC and SDCN electrolytes are fabricated and the electrochemical properties of the electrode/electrolyte interface are investigated. The polarization resistance of the BCFN electrode on the SDCN electrolyte is much lower than that of the BCFN electrode on the SDC electrolyte, mainly because of the increase in the electrolyte conductivity and the decrease in the Si content at the electrode/electrolyte interface. NiO is able to restrict the diffusion of the siliceous impurity from the electrolyte to the electrode/electrolyte interface. Single cells based on SDC and SDCN electrolytes are fabricated using Ni0.9Cu0.1Ox-SDC as the anode and BCFN as the cathode. At 800 °C, the maximum power density of the SDCN-based cell is 0.745 W cm-2, which is much higher than that of the SDC-based cell.

  8. On the electrolytic generation of hydrated electron

    International Nuclear Information System (INIS)

    Investigations on the electrolytic generation of hydrated electron in oxygenated as well as oxygen-free solutions at different pH were undertaken. Since sup(-e)aq is known to react rapidly with O2 yielding the transient O2- ion, the latter was looked for through its interaction with phosphite ions resulting in their oxidation near the cathode. It appears from the results that in electrolytic processes, the primary electron (esup(-)sub(cathode)) probably reacts directly with reactive solutes like oxygen, bypassing the hydration step. Data obtained in oxygen-free solutions, however, support the possible formation of hydrated electron at least in alkaline solutions. (author)

  9. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration. PMID:27184147

  10. Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency

    International Nuclear Information System (INIS)

    The nature of the electrolyte strongly influences the electrode kinetics of the oxygen evolution reaction (OER) and electrochemical ozone production (EOP) mainly by affecting the degree of coverage by the intermediates of both processes. The anomalous behaviour of the Tafel coefficient, b, as a function of temperature was attributed to surface adsorption of the electrolyte species, and the competition between them, as well as gas bubble adherence. Comparison of the current efficiencies of the EOP, PHIEOP, determined for different temperatures and supporting electrolyte compositions, showed the presence of fluorinated anions increases PHIEOP. The influence of the anion nature on PHIEOP, when analysed in the light of the proposed electrode mechanism, reveals introduction into the electrolyte of anions having a high electronegativity changes the double layer structure resulting in an increase of surface concentration of the active centres leading to EOP. The inhibition of the OER in the high overpotential domain during EOP provoked by fluoro-anion adsorption is supported by the activation energy data. In situ surface characterisation before and after EOP investigation revealed that even under drastic conditions (high current density, low interfacial pH) β-PbO2 can be considered an inert electrode material

  11. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water.

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Cheng, Ningyan; Asiri, Abdullah M; Sun, Xuping

    2014-09-01

    Searching for inexpensive hydrogen evolution reaction (HER) electrocatalysts with high activity has attracted considerable research interest in the past years. Reported herein is the topotactic fabrication of self-supported Cu3 P nanowire arrays on commercial porous copper foam (Cu3 P NW/CF) from its Cu(OH)2 NW/CF precursor by a low-temperature phosphidation reaction. Remarkably, as an integrated three-dimensional hydrogen-evolving cathode operating in acidic electrolytes, Cu3 P NW/CF maintains its activity for at least 25 hours and exhibits an onset overpotential of 62 mV, a Tafel slope of 67 mV dec(-1) , and a Faradaic efficiency close to 100 %. Catalytic current density can approach 10 mA cm(-2) at an overpotential of 143 mV. PMID:25044801

  12. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji

    2013-01-10

    TiN, NbN, TaN, and Ta3N5 nanoparticles synthesized using mesoporous graphitic (mpg)-C3N4 templates were investigated for the oxygen reduction reaction (ORR) as cathode catalysts for polymer electrolyte fuel cells. The temperature-programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were then examined. With decreasing particle size, the density of molecularly adsorbed O2 per unit of surface area increased, indicating that a decrease in particle size increases the number of active sites. It is hard to determine the electrochemical active surface area for nonmetal electrocatalysts (such as oxides or nitrides), because of the absence of proton adsorption/desorption peaks in the voltammograms. In this study, O2-TPD for molecularly adsorbed O2 at low temperature demonstrated that the amount and strength of adsorbed O2 were key factors determining the ORR activity. The properties of molecularly adsorbed O2 on cathode catalysts are discussed against the ORR activity. © 2012 American Chemical Society.

  13. Inhomogeneous transport in model hydrated polymer electrolyte supported ultra-thin films

    OpenAIRE

    Borges, D. Damasceno; Franco, A A; Malek, K.; Gebel, G.; Mossa, S.

    2013-01-01

    Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently ...

  14. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin; Hjelm, Johan; Bonanos, Nikolaos

    2012-01-01

    , consisting of a Nieyttria stabilized zirconia (YSZ) anode support, a Niescandia-doped yttria-stabilized zirconia (ScYSZ) anode, a ScYSZ electrolyte, and a CGO barrier layer. LSC was introduced into the CGO backbone by multiple infiltrations of an aqueous nitrate solution followed by firing. The cell was...... tested at 700 deg. C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current evoltage relationships. No measurable degradation in the cell voltage or increase in...

  15. Quenching of cathodic electrogenerated F-center luminescence of aluminium oxide by lanthanide cations at the electrode/electrolyte interface

    International Nuclear Information System (INIS)

    Energy transfer between aluminium oxide F-center and lanthanide cations at an oxide-covered aluminium electrode during the cathodic pulse-polarization of the electrode is investigated by means of Stern-Volmer luminescence quenching kinetics. TerbiumIII-specific extrinsic luminescence is observed while some other lanthanides are observed to quench the F-center luminescence. Different quenching efficiencies of the lanthanides are discussed to be dependent on the different energy acceptor characteristics of the tri- or divalent lanthanides. (orig.)

  16. Low Temperature Fabrication of Cathode-Supported Tubular Solid Oxide Fuel Cell by Co-Fire Process%低温共烧结制备阴极支撑管式固体氧化物燃料电池

    Institute of Scientific and Technical Information of China (English)

    熊保; 韩敏芳

    2011-01-01

    采用挤出成型法制备锰酸锶镧-氧化钇稳定氧化锆(LSM-YSZ)阴极支撑管,利用浸渍-提拉泥浆涂覆法在LSM-YSZ阴极支撑管上制备了LSM-YSZ阴极功能层、YSZ电解质和NiO-YSZ阳极多层薄膜,经低温一次共烧结制备阴极支撑管式单元固体氧化物燃料电池(SOFC).利用扫描电镜和电化学工作站等对单元电池的微观结构和电化学性能进行了较系统的表征,结果表明:经1220℃低温共烧结8h后,LSM-YSZ支撑体上的阴极功能层、电解质和阳极各层薄膜结合紧密,电解质薄膜致密无缺陷,厚约15 μm;以湿氢气为燃料,空气为氧化剂时,单元电池在700~800℃下的开路电压均高于1.0V,说明电解质薄膜具有足够的气密性,但阴极的低电导率和低孔隙率限制了电池的电性能.采用浸渍-提拉薄膜技术,经一次低温共烧结制备阴极支撑管式SOFC,为SOFC低成本制备奠定了基础.%Strontium doped lanthanum manganite-yttria doped zirconia ( LSM-YSZ) tubular cathode support was prepared via an extrusion method. Cathode functional layer, electrolyte and anode thin films were sequentially deposited onto the cathode support with dip-coating technique, by co-sintering of which at low temperature, a cathode-supported tubular solid oxide fuel cell (SOFC) was fabricated. The micro-structure and electrical performance of the tubular SOFC were characterized by scanning electron microscopy and electrochemical workstation, respectively. The results showed that cathode functional layer, electrolyte and anode thin films are tightly sintered to the cathode support after co-sintering at 1220℃ for 8 h, and the YSZ electrolyte film is dense enough with thickness of about 15 /nm . The open circuit voltages of the single cell tested from 700℃ to 800℃ are all above 1. 0 V with humidified H2 as fuel and air as oxi-dant, which are close to the theoretical value, indicated that the electrolyte film has enough tightness. However, the

  17. Behaviour of the 1-Ascorbic as supporting Electrolyte. Influence of the Magnesium Ion; Comportamiento del acido 1-Ascorbico como electrolito soporte influencai del ion magnesio

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Lopez, J.

    1962-07-01

    The behaviour of 1-ascorbic acid, as supporting electrolyte of the uranyl ion in a 0{sub 1}-0.7 M concentration range, and the influence of pH on the diffusion current and half wave potential of 0,1 M uranyl ion is studied. The cathodic waves from 0 to -2,5 volts, with mercury dropping electrode are studied in fresh 0,1 M aqueous solution in presence of Mg{sup 2}+ and at 2,0-12 pH range. A kinetic current with a half wave potential of 0,85 v. vs. Hg. b.e. is obtained at pH> 9,5 appears a tilth wave a -0,60 v. The pH variation does not influence these potentials. (Author) 18 refs.

  18. Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells

    OpenAIRE

    Stassi, Alessandro; Gatto, Irene; Baglio, Vincenzo; Passalacqua, Enza; Aricò, Antonino S.

    2013-01-01

    International audience A Pt-Co alloy catalyst supported on a Ta-doped Ti-oxide was investigated for the oxygen reduction reaction in a polymer electrolyte fuel cell (PEMFC) operating between 80° and 110 °C at different relative humidity (100% and 33% R.H.). A crystalline Anatase phase was obtained for the Ta-doped Ti-oxide support with BET surface area of about 150 m2/g. Pt and Pt3Co1 nanoparticles dispersed on the Ta-doped Ti-oxide showed a crystallite size of 3.9 and 2.9 nm, respectively...

  19. Electrolytic oxide reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  20. Composite polymer electrolyte membranes supported by non-woven fabrics for lithium-ion polymer batteries

    Institute of Scientific and Technical Information of China (English)

    TANG Dingguo; LIU Jianhong; QI Lu; CHEN Hui; CI Yunxiang

    2005-01-01

    Poly(vinylidene fluoride-co-hexafluoropropyle- ne) (PVDF-HFP) is one of the most popular polymers for polymer electrolyte membranes because of its excellent operating characteristics and superior electrochemical properties. The electrochemical performances of polymer electrolyte membrane can be enhanced by evenly dispersing nano-meter SiO2 particles in the polymer. In this paper, non-woven fabrics were immersed in the mixed solution of PVDF-HFP/ SiO2/butanone/butanol/plasticizer, and then dried in a vacuum oven to remove the solvents and the plasticizer and to make porous composite polymer electrolyte membranes. The prepared composite membranes supported by non-woven fabrics boast good mechanical strength and excellent electrochemical properties: the electrochemical stability window is 4.8 V vs. Li+/Li, and the ionic conductivity is 3.35×10-4 S/cm (around 60% of that of a common PE membrane) at room temperature. The lithium-ion polymer battery assembled by the composite membrane exhibits high rate capability and excellent cycling performance.

  1. A Highly Active and Alcohol-Tolerant Cathode Electrocatalyst Containing Ag Nanoparticles Supported on Graphene

    International Nuclear Information System (INIS)

    A highly active oxygen reduction reaction (ORR) catalyst was synthesized by supporting Ag nano-particles on graphene nano platelets (Ag/GNP) via ultrasound treatment. The Ag/GNP catalyzes the O2 molecule through a 4-electron reduction to water in 0.1 M KOH electrolyte. The half-wave potential for the ORR on Ag/GNP is similar to a Pt black coated electrode (i.e -0.27 V at Ag/GNP, and -0.18 V at 40% Pt/C vs.SCE). The kinetic rate for the ORR on Ag/GNP is 3.16 × 10−2 cm · s−1 at -0.4 V vs. SCE. The effect of alcohols and other impurities on the ORR catalytic activity for Ag/GNP was examined and found to be highly tolerant to methanol, ethanol and ethylene glycol. The Ag/GNP catalyst is also tolerant to tetraalkyl ammonium hydroxides; i.e. functional groups related to the chemical structure of common alkaline electrolyte membranes

  2. Methanesulfonic acid solution as supporting electrolyte for zinc-vanadium redox battery

    International Nuclear Information System (INIS)

    Highlights: ► Methanesulfonic acid as supporting electrolyte for V(V)/V(IV) was discussed. ► V(V)/V(IV) concentration as high as 3 mol L−1 was obtained. ► A Zn-V battery was assembled. ► The assembled Zn-V battery has good cycle performance and high cell voltage. - Abstract: The present work was performed in order to evaluate methanesulfonic acid (MSA) as electrolyte medium for V(IV)/V(V) redox couple as positive species applied in redox flow battery (RFB). V-MSA solutions containing more than 3.0 mol L−1 vanadium ions were obtained. Conductivity and viscosity of 3.0 mol L−1 V(IV)/V(V) electrolyte were determined to be 0.10 cm s−1 and 12.37 mPa s respectively. Cyclic voltammetry was conducted to investigate the electrochemical behavior of V(IV)/V(V) redox couple. The diffusion coefficients of V(IV) on Pt electrode in 1.0, 2.0 and 3.0 mol L−1 V(IV)/V(V) electrolytes determined were 3.606 × 10−6, 1.813 × 10−6 and 0.5244 × 10−6 cm2 s−1, respectively. A Zn-V battery was assembled with V(IV)/V(V)-MSA positive species and Zn/Zn(II)-MSA negative species. The cell voltage in charged state was 1.9–2.0 V and discharge voltage reached up to 1.7 V. The average coulombic efficiency and energy efficiency of the assembled cell were 95.85% and 63.90% respectively and it showed a good cyclic charge–discharge performance, which indicates that MSA has a promise application prospect in vanadium redox battery.

  3. Protein-Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study.

    Science.gov (United States)

    Matanovic, Ivana; Babanova, Sofia; Chavez, Madelaine Seow; Atanassov, Plamen

    2016-04-21

    An example of biocathode based on bilirubin oxidase (BOx) was used to demonstrate how density functional theory can be combined with docking simulations in order to study the interface interactions between the enzyme and specifically designed electrode surface. The electrode surface was modified through the adsorption of bilirubin, the natural substrate for BOx, and the prepared electrode was electrochemically characterized using potentiostatic measurements. The experimentally determined current densities showed that the presence of bilirubin led to significant improvement of the cathode operation. On the basis of the computationally calculated binding energies of bilirubin to the graphene support and BOx and the analysis of the positioning of bilirubin relative to the support and T1 Cu atom of the enzyme, we hypothesize that the bilirubin serves as a geometric and electronic extension of the support. The computational results further confirm that the modification of the electrode surface with bilirubin provides an optimal orientation of BOx toward the support but also show that bilirubin facilitates the interfacial electron transfer by decreasing the distance between the electrode surface and the T1 Cu atom. PMID:27015361

  4. Performance assessment of Bi0.3Sr0.7Co0.3Fe0.7O3-δ-LSCF composite as cathode for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte

    Science.gov (United States)

    Khaerudini, Deni S.; Guan, Guoqing; Zhang, Peng; Hao, Xiaogang; Wang, Zhongde; Xue, Chunfeng; Kasai, Yutaka; Abudula, Abuliti

    2015-12-01

    Perovskite-type Bi0.3Sr0.7Co0.3Fe0.7O3-δ (BiSCF3737) oxide with perfectly cubic structure based on the Pm-3m space group has been developed and investigated as cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). BiSCF3737 is incorporated into (La0.6Sr0.4)0.9Co0.2Fe0.8O3±δ (LSCF) to form a composite cathode called LSCF-BiSCF. X-ray diffraction (XRD) results demonstrate that BiSCF3737 has an extremely desirable chemical compatibility with LSCF as well as with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte. The cells with LSGM electrolyte (0.5 mm thickness) and symmetrical electrodes are fabricated for electrocatalaytic activity test. Compared with the pure constituent (LSCF or BiSCF3737), the composite with optimum composition, i.e., LSCF50-BiSCF50, exhibits better electrochemical activity for oxygen reduction. The LSGM electrolyte-supported (∼300 μm thickness) cell with LSCF50-BiSCF50 composite cathode exhibits higher power densities of 0.617 and 0.802 W cm-2 at 650 and 700 °C, respectively, with humidified H2 (∼3% H2O) as the fuel and ambient air as the oxidant. Over 78 h stability test at 600 °C indicates that a little performance decrease occurs but no interfacial damage happens, suggesting that LSCF50-BiSCF50 is a potential material for IT-SOFCs.

  5. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  6. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  7. A Critical Review of Published Data on the Gas Temperature and the Electron Density in the Electrolyte Cathode Atmospheric Glow Discharges

    Directory of Open Access Journals (Sweden)

    Tamás Cserfalvi

    2012-05-01

    Full Text Available Electrolyte Cathode Discharge (ELCAD spectrometry, a novel sensitive multielement direct analytical method for metal traces in aqueous solutions, was introduced in 1993 as a new sensing principle. Since then several works have tried to develop an operational mechanism for this exotic atmospheric glow plasma technique, however these attempts cannot be combined into a valid model description. In this review we summarize the conceptual and technical problems we found in this upcoming research field of direct sensors. The TG gas temperature and the ne electron density values published up to now for ELCAD are very confusing. These data were evaluated by three conditions. The first is the gas composition of the ELCAD plasma, since TG was determined from the emitted intensity of the N2 and OH bands. Secondly, since the ELCAD is an atmospheric glow discharge, thus, the obtained TG has to be close to the Te electron temperature. This can be used for the mutual validation of the received temperature data. Thirdly, as a consequence of the second condition, the values of TG and ne have to agree with the Engel-Brown approximation of the Saha-equation related to weakly ionized glow discharge plasmas. Application of non-adequate experimental methods and theoretical treatment leads to unreliable descriptions which cannot be used to optimize the detector performance.

  8. Preparation and characterizations of platinum electrocatalysts supported on thermally treated CeO2–C composite support for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Highlights: • CeO2–C composite support was prepared by a sol-gel approach with an average particle size of 2.5 nm. • The crystallinity of ceria was tuned by thermal treatment from 400 °C to 600 °C. • Well correlated Pt–ceria interaction was found for the Pt electrocatalysts in PEMFCs. - Abstract: A sol–gel approach was used to synthesize highly dispersed carbon-supported ceria composite support (CeO2–C) having an average particle size of 2.5 nm with sodium citrate as a ligand. The CeO2–C composite was then heated in N2 atmosphere at different temperatures to induce crystallinity variation. Pt electrocatalysts were prepared by the conventional ethylene glycol method using the thermally treated composite support (CeO2–C-T) and then characterized by X-ray diffraction and transmission electron microscopy. Electrochemical evaluations of Pt/CeO2–C-T catalytic activity were performed for methanol oxidation and oxygen reduction reactions. An optimized heating temperature was found at 550 °C for CeO2–C, and Pt/CeO2–C-550 demonstrated the highest mass activity of 0.71 A mg−1 for methanol oxidation (∼100% that of Pt/C-JM from Johnson Matthey) and 17 mV more positive shift of the half-wave potential for oxygen reduction relative to that of Pt/C–JM. The maximum power density of the membrane electrode assembly (MEA) with Pt/CeO2–C-550 cathode catalyst in a H2/air polymer electrolyte membrane fuel cell was 678 mW cm−2, which was 7% higher than that of MEA prepared with Pt/C–JM under identical operating conditions. Heating CeO2–C at 550 °C induced increased crystallinity without sacrificing particle agglomeration, which was beneficial for Pt dispersion (reduced particle size). Meanwhile catalytic activity was further enhanced because of Pt–metal oxide interactions and the known oxygen buffer capability of CeO2

  9. Evaluation of the La{sub 2}Ni{sub 1} {sub -} {sub x}Cu{sub x}O{sub 4} {sub +} {sub {delta}} system as SOFC cathode material with 8YSZ and LSGM as electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Aguadero, A.; Escudero, M.J. [Centro de Investigaciones Energeticas Mediambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid (CSIC),C/Sor Juana Ines de la Cruz 3, Campus Cantoblanco, 28049 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas Mediambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica,(CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2008-05-31

    Materials formulated as La{sub 2}Ni{sub 1} {sub -} {sub x}Cu{sub x}O{sub 4} {sub +} {sub {delta}} (0 {<=} x {<=} 1) have been synthesised to be evaluated as possible cathode materials in SOFCs. Their crystal structures have been investigated by high-resolution neutron powder diffraction at RT so as to map out the phase diagram. The thermal expansion coefficients have been determined to be in the range of 10.8-13.0 x 10{sup -} {sup 6} K{sup -} {sup 1}. Total conductivity values are as good as 87 S cm{sup -} {sup 1} at 580 C for x = 0.4. In order to assess the performance of each oxide as cathode material, ac impedance measurements were carried out on La{sub 2}Ni{sub 1} {sub -} {sub x}Cu{sub x}O{sub 4} {sub +} {sub {delta}}/electrolyte/La{sub 2}Ni{sub 1} {sub -} {sub x}Cu{sub x}O{sub 4} {sub +} {sub {delta}} symmetrical cells with either LSGM or 8YSZ as electrolyte material. For all the electrode compositions studied, the best specific resistance (ASR) values were obtained with LSGM as electrolyte. The better performance of x = 0.4 and 0.6 (ASR {proportional_to} 1 and ohm; cm{sup 2} at 850 C) compositions has been associated with the magnitude of the total conductivity and the matching of the TEC values of the cathodes with those of the electrolytes. (author)

  10. Influence of the supporting electrolyte of the kinetics of cadmium in dimethylsulfoxide

    International Nuclear Information System (INIS)

    The electroreduction of Cd(II) has been often studied in aqueous solutions, and different mechanism have been proposed in the literature for this reaction. Although the rate constants of the electroreduction are high, the values of the charge transfer coefficients are usually low (α < 0.4). The existence of a chemical reaction preceding the electron transfer has been proposed. However, in the literature much less attention has been paid to the electroreduction of cadmium in non aqueous solvents. The purpose of the present study is to determine the detailed mechanism of the electroreduction of Cd(II) on mercury in non aqueous solvents and to explain the influence of the nature and concentration of supporting electrolyte on the kinetic parameters of that reaction in terms of the double layer parameters

  11. Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method.

    Science.gov (United States)

    Nagasawa, Kensaku; Takao, Shinobu; Nagamatsu, Shin-ichi; Samjeské, Gabor; Sekizawa, Oki; Kaneko, Takuma; Higashi, Kotaro; Yamamoto, Takashi; Uruga, Tomoya; Iwasawa, Yasuhiro

    2015-10-14

    We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells. PMID:26412503

  12. Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3-δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation

    Science.gov (United States)

    Xing, Ruimin; Wang, Yarong; Liu, Shanhu; Jin, Chao

    2012-06-01

    La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM)-YSZ cathode supported solid oxide electrolysis cells (SOECs), with the LSM-YSZ|YSZ|LSCM-YSZ configuration, have been prepared and evaluated for high temperature hydrogen generation. Electrochemical impedance spectra (EIS) and voltage-current curves were recorded out to characterize the cell performance. EIS results showed that the cell resistance increased as the proportion of steam in the feed supply increased, at open circuit voltage. The hydrogen generation rate calculated from Faraday's law is 561 ml cm-2 h-1 at 850 °C with 80 vol.% absolute humidity (AH) at a 1.6 V electrolysis voltage. Although there is a 8.2% increase of the applied electrolysis voltage, the cell has endured a test lasting more than 103 h with 45 vol.% AH and 0.33 A cm-2 electrolysis current density at 850 °C. Energy-dispersive X-ray (EDX) spectroscopy analysis showed that there is no elemental diffusion between the electrode and electrolyte interface after the durability test. Scanning electron microscopy (SEM) images indicate that the slight split between the LSCM-YSZ cathode and the YSZ electrolyte is responsible for the increase of ohmic resistance of the cell; this resistance rise led to the degradation of the cell performance.

  13. Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode

    International Nuclear Information System (INIS)

    A simple, low-temperature route was developed to process bulk solid-state Li-ion batteries employing Al-doped Li7La3Zr2O12 solid electrolyte (thickness: ∼ 0.5 mm; 25 °C conductivity: ∼ 2 × 10−4 S cm−1). A composite Cu0.1V2O5–based slurry was directly painted on Li7La3Zr2O12 and dried at 120 °C to prepare the cathode film. The opposite side of the electrolyte was subsequently exposed to molten Li to form the anode. The discharge capacity of the solid state battery was 53 mAh g−1 (calculated based on the weight of active cathode material) at room temperature with 5 μA cm−2 discharging current. Severe capacity decay occurred after the initial discharging. A comparable liquid electrolyte battery was tested at room temperature for comparison and had a much slower decay rate. However, when the operating temperature of the solid state battery was increased to 50 °C, the cell performance significantly improved. At 50 °C, the battery exhibited 176 mAh g−1 initial discharging capacity at 5 μA cm−2 current density and 93 mAh g−1 initial capacity under a 10 μA cm−2 discharging current density. After 20 cycles, the capacity decayed to 68.6 mAh g−1 when cycled at a 10 μA cm−2 current density. Impedance spectroscopy was used to investigate the interface resistance of the battery at different temperatures. The results indicated that both the cathode and anode interface resistance were dramatically reduced at 50 °C. The decrease in interface resistances at elevated temperature is proposed as the main reason for the observed battery performance enhancement

  14. Optimization of Pt-Pd alloy catalyst and supporting materials for oxygen reduction in air-cathode Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Highlights: • Pt-Pd alloy catalyst was fabricated on carbon paper via electro-deposition. • MFCs with Pt-Pd cathode of 15 deposition cycles generated a maximum power density. • Graphene decoration did not improve ORR activity of the Pt-Pd electrode. • CNT as the supporting material enhanced ORR activity of the Pt-Pd electrode. • CNT-Pt-Pd cathode demonstrates the potential of replacing Pt catalyst in MFCs. - ABSTRACT: In this study, Pt-Pd alloy catalyst was fabricated on carbon papers via electro-deposition as an alternative catalyst for oxygen reduction in air-cathode Microbial Fuel Cells (MFCs). Effects of electro-deposition cycles and supporting materials (graphene and carbon nanotubes (CNTs)) on oxygen reduction reaction (ORR) activity of the Pt-Pd electrode and power generation in MFCs were investigated. The structural and electrochemical properties of the Pt-Pd catalyst were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Results showed that the Pt-Pd electrode showed a good ORR activity. A MFC with a Pt-Pd cathode of 15 deposition cycles produced a maximum power density of 1274 mWm−2, comparable to that with a conventional Pt/C cathode (0.5 mg Pt cm−2). CNT as the supporting material further increased ORR activity of the Pt-Pd electrode and power generation capacity in MFCs, while graphene as the supporting material did not produce positive effects. XRD results confirmed the presence of Pt/Pd elements on the electrode. SEM results showed that decoration using CNT reduced Pt-Pd particle size and promoted them even dispersion on the carbon paper. The Pt-Pd electrode attained a comparable performance to the Pt/C electrode when controlling an optimum deposition cycles and using CNT as the supporting materials, which demonstrates the potential of replacing Pt as an oxygen reduction catalyst in MFCs due to high oxygen reduction activity and relatively low cost

  15. Polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Abbrent, Sabina; Greenbaum, S.; Peled, E.; Golodnitsky, D.

    Singapore: World Scientific Publishing, 2015 - (Dudney, N.; West, W.; Nanda, J.), s. 523-589 ISBN 978-981-4651-89-9 Institutional support: RVO:61389013 Keywords : polymer electrolytes * applications * mesuring techniques Subject RIV: CD - Macromolecular Chemistry

  16. Sulfur supported by carbon nanotubes and coated with polyaniline: Preparation and performance as cathode of lithium-sulfur cell

    International Nuclear Information System (INIS)

    Highlights: • Composite of MWCNTs-S@PANIwas developed as cathode of Li/S battery. • MWCNTs-S was prepared by direct chemical deposition of S on MWCNTs. • PANI was coated on S via in situ polymerization under control of ascorbic acid. • The composite exhibits excellent cyclic stability and rate capability. - Abstract: We report a novel composite, sulfur supported by multi-walled carbon nanotubes and coated with polyaniline (denoted as MWCNTs-S@PANI), as cathode of lithium-sulfur battery. MWCNTs-S is prepared by loading sulfur on MWCNTs via chemical deposition and coated with polyaniline via in situ polymerization under the control of ascorbic acid. The physical and electrochemical performances of the resulting MWCNTs-S@PANI are investigated by nitrogen adsorption-desorption isotherms, X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, and charge/discharge test. It is found that MWCNTs-S@PANI exhibits good cyclic stability and rate capability compared to MWCNTs-S as cathode of lithium-sulfur battery

  17. Evaluating focused ion beam and ultramicrotome sample preparation for analytical microscopies of the cathode layer of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    de A. Melo, Lis G.; Hitchcock, Adam P.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Botton, Gianluigi A.

    2016-04-01

    Optimizing the structure of the porous electrodes of polymer electrolyte membrane fuel cells (PEM-FC) can improve device power and durability. Analytical microscopy techniques are important tools for measuring the electrode structure, thereby providing guidance for structural optimization. Transmission Electron Microscopy (TEM), with either Energy Dispersive X-Ray (EDX) or Electron Energy Loss Spectroscopy (EELS) analysis, and Scanning Transmission X-Ray Microscopy (STXM) are complementary methods which, together, provide a powerful approach for PEM-FC electrode analysis. Both TEM and STXM require thin (50-200 nm) samples, which can be prepared either by Focused Ion Beam (FIB) milling or by embedding and ultramicrotomy. Here we compare TEM and STXM spectromicroscopy analysis of FIB and ultramicrotomy sample preparations of the same PEM-FC sample, with focus on how sample preparation affects the derived chemical composition and spatial distributions of carbon support and ionomer. The FIB lamella method, while avoiding pore-filling by embedding media, had significant problems. In particular, in the FIB sample the carbon support was extensively amorphized and the ionomer component suffered mass loss and structural damage. Although each sample preparation technique has a role to play in PEM-FC optimization studies, it is important to be aware of the limitations of each method.

  18. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus;

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c...

  19. Développement de cathodes performantes pour batteries lithium/air

    OpenAIRE

    Berenger, Sophie

    2014-01-01

    In this thesis, high-performance cathodes for lithium/air batteries have been investigated. The main limitations for lithium/air batteries are oxygen diffusion into the cathode and in the electrolyte and the progressive clogging of cathode pores by lithium oxide. The development of the air cathode is strongly dependant on the organic electrolyte used, thus the nature of the electrolyte has been here considered. Electrode porosity and the kind of catalyst employed influence the cathode perform...

  20. Erratum to 'Comments on: The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H{sub 2} evolution reaction at poly-Re/aqueous electrolyte interfaces [International Journal of Hydrogen Energy (2005) 485-99]'

    Energy Technology Data Exchange (ETDEWEB)

    Lasia, Andrzej [Departement de Chimie, Universite de Sherbrooke, Que. (Canada)

    2005-12-01

    Erratum to 'The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H2 evolution reaction at poly-Re/aqueous electrolyte interfaces, International Journal of Hydrogen Energy, Volume 30, Issue 5, April 2005, Pages 485-499'. (author)

  1. Considerations of the Role of the Cathodic Region in Localized Corrosion

    International Nuclear Information System (INIS)

    The ability of wetted cathodes of limited area to support localized corrosion sites on passive materials exposed to atmospheric conditions was studied computationally. The analysis pertains to conditions where metal surfaces are covered by thin layers of moisture in contrast to conditions of full immersion. The moisture may be a continuous layer or in patches with and without particulate on the surface. These conditions are of interest for the surfaces of the waste packages at the proposed Yucca Mountain Repository where waste packages are supported in air. The cathode capacity was characterized by the total net cathodic current, Inet, which the surface surrounding a localized corrosion site (i.e., a pit or crevice) could supply. The cathode capacity increases with increasing cathode area, but it saturates at finite cathode sizes due to the resistance of the thin electrolyte layer. The magnitude of the capacity depends on the water layer thickness, the solution conductivity, and the electrochemical reaction kinetics. The presence of particulates is treated by considering both volume and surface coverage effects. The limited electrolyte volume under thin film conditions can lead to rapid pH changes which decrease the cathode capacity due to the slower electrochemical kinetics at elevated pH. These effects can make localized corrosion less likely to be sustained

  2. Polyimide gel polymer electrolyte-nanoencapsulated LiCoO{sub 2} cathode materials for high-voltage Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang-Hoon; Lee, Sang-Young [Department of Chemical Engineering, College of Engineering, Kangwon National University, Chuncheon, Kangwondo, 200-701 (Korea); Kim, Jong-Su; Shim, Eun-Gi [Techno Semichem, Yongin, Gyeonggido, 446-599 (Korea); Park, Kyung-Won [Department of Chemical and Environmental Engineering, Soongsil University, Seoul, 156-743 (Korea); Hong, Young Taik [Energy Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 305-600 (Korea); Lee, Yun-Sung [School of Applied Chemical Engineering, Chonnam National University, Gwangju, 500-757 (Korea)

    2010-08-15

    We demonstrate a novel and facile approach to surface modification of high-voltage charged LiCoO{sub 2}, which is based on encapsulating LiCoO{sub 2} by a polyimide (PI) gel polymer electrolyte layer. The PI is introduced onto the LiCoO{sub 2} by thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid. The PI nanoencapsulating layer features the high surface coverage, nanometer thickness, and facile ion transport. These unique characteristics are expected to enable the PI coating layer to effectively suppress the undesirable interfacial reaction of the LiCoO{sub 2} with liquid electrolyte, which plays a key role in noticeably improving the 4.4 V cycle performance and mitigating the vigorous exothermic reaction between the charged LiCoO{sub 2} and liquid electrolyte. (author)

  3. Influence of the nature of supporting electrolyte cation on the impedance of indium(III) hexacyanoferrate

    International Nuclear Information System (INIS)

    Electrochemical behavior of indium(III) hexacyanoferrate films was studied by the methods of cyclic voltammetry and Faraday impedance in nitrate solutions of lithium, sodium, potassium and ammonium. Influence of the background electrolyte cation nature on equivalent scheme parameters corresponding to the recorded impedance spectra was analyzed. Conclusion is made about delayed charge transfer in the electrode/film interface. The effect of cations binding in the film is discussed

  4. LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3−δ electrolyte

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Lenrick, Filip;

    2012-01-01

    showed the presence of the infiltrated LC in the full cathode depth. Transmission electron micrographs revealed LC grains (60–80 nm) covering partly the BCZY27 grains (200 nm–1 μm). Impedance spectra were recorded at 500 °C and 600 °C, varying the oxygen partial pressure and the water vapour pressure......Symmetric cells (cathode/electrolyte/cathode) were prepared using BaCe0.2Zr0.7Y0.1O3−δ (BCZY27) as proton conducting electrolyte and LaCoO3 (LC) infiltrated into a porous BCZY27 backbone as cathode. Single phased LC was formed after annealing in air at 600 °C for 2 h. Scanning electron micrographs...... independent on the water vapour pressure while the charge transfer ASR values increase with higher pH2O. The cathode ASRs of 0.39 and 0.11 Ω cm2 at 500 and 600 °C respectively, in air (pH2O = 0.01 atm) are the lowest reported to the authors’ knowledge for PCFC cathodes. Furthermore, this work shows that the...

  5. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  6. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  7. Electrochemical properties of Fe and Al hydroxides as affected by different supporting electrolytes

    OpenAIRE

    Melis, Pietro; Premoli, Alessandra Maria; Solinas, Vincenzo; Deiana, Salvatore Andrea

    1984-01-01

    Potentiometric titration curves of Fe and Al hydroxides, carried out in presence of different electrolytes (KCI, Kbr, KI, KNO3, KCIO4) were elaborated by the Stern theory through a computered program. The zero points of charge (zpc), calculated from the intersection point of the titration curves at different ionic strenght, varied from pH 7.10 to pH 7.65 for Fe hydroxides and from pH 9.10 pH 9.45 for Al hydroxi des. For Fe compounds, a good match was found between the experimen...

  8. Synthesis and evaluation of Pt-alloys supported on MWCNTS as ethylene glycol-tolerant ORR cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)]. E-mail: javier.varela@cinvestav.edu.mx

    2009-09-15

    In this work, a Pt-Co/MWCNT alloy (atomic ratio 70:30) was synthesized and evaluated as oxygen reduction reaction (ORR) cathode for Direct Ethylene Glycol Fuel Cells (DEGFC) applications. The alloy showed good performance for the ORR in acid medium, while in the presence of 0.125M EG (C{sub 2}H{sub 6}O{sub 2}) the MWCNTs-supported electrocatalyst showed a very high selectivity for the cathodic reaction and a high degree of tolerance to the organic fuel, i.e., a very small shift in the onset potential for the ORR, Eonset, and no peak current densities associated to the oxidation of EG, a detrimental effect of organic fuels normally observed in the case of Pt-alone electrocatalysts. [Spanish] En este trabajo, se sintetizo y evaluo una aleacion Pt-Co/NTCMP (razon atomica 70/30) como catodo de reaccion de reduccion de oxigeno (RRO) para aplicaciones de celdas de combustible de glicol de etileno directo (CCGED). La aleacion mostro buen desempeno para la RRO en medio acido, en tanto que la presencia de 0.125M de GE (C{sub 2}H{sub 6}O{sub 2}) del electrocatalizador soportado por NTCMP mostro una muy alta selectividad para la reaccion catodica y un alto grado de tolerancia al combustible organico, es decir, un corrimiento muy pequeno del potencial de inicio para la RRO, Einicio, y no densidades de corriente asociadas a la oxidacion del GE, efecto perjudicial de los combustibles organicos que se observa en el caso del electrocatalizadores solo de Pt.

  9. Mathematical and Physical Simulation of New Cathode Structure of Aluminum Electrolytic Cells%新型阴极结构铝电解槽的物理数学模拟

    Institute of Scientific and Technical Information of China (English)

    刘燕; 张廷安; 赵秋月; 李冲; 王洪星; 章俊; 冯乃祥

    2011-01-01

    采用相似原理指导下的水模型实验,研究新型阴极结构电解槽中阳极气体的扰动.通过高速摄影手段拍摄液面波动,得到不同操作条件下阴极结构铝电解槽水模型的液面波动图像,利用Image-Pro-Plus6.0专业图像分析软件对捕捉到的波动静态图进行处理,获得液面波动的最大高度.并用Fluent 6.2.16进一步对电解槽的阳极结构进行数学模拟.结果表明,极距的增加、电解质水平的提高、气体流量的减小,均会减小界面波动.新型阴极结构电解槽比普通阴极结构阳极气体引起的界面波动小,新型阴极结构可有效地降低极距;相同实验条件下,1/2阳极产生气体引起的界面波动振幅和普通阳极没有明显区别,而1/4阳极的减波作用较好,倒角对于界面波动的影响甚微.%Using cold water model experiments based on the principle of similitude, the level fluctuations by anode gas disturbance in an aluminum electrolysis cell were studied. By means of high-speed photography, the level fluctuation images of new cathode structure electrolytic cell of cold water model in different operate parameters were obtained. The maximum surface wave height was obtained by using the professional image analysis software Image-Pro-Plus 6.0 to deal with fluctuations in the captured static figures. Moreover, mathematical simulation on the anode structure of cell with Fluent 6.2.16 was also carried out. The results show that the fluctuation in new cathode structure water model of aluminum electrolysis is decreased significantly compared with that of normal cathode structure water model under the same experimental conditions. In the simulated water model cell with new cathode structure, interface fluctuation amplitude will be reduced significantly along with increasing of the anode cathode distance, increasing of the electrolyte level and decreasing of gas flow rate. The fluctuation amplitude caused by the gas from 1/2 anode is not

  10. Cathode materials review

    International Nuclear Information System (INIS)

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  11. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  12. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  13. Metal Oxide-Supported Platinum Overlayers as Proton-Exchange Membrane Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Abild-Pedersen, Frank; Studt, Felix;

    2012-01-01

    We investigated the activity and stability of n=(1, 2, 3) platinum layers supported on a number of rutile metal oxides (MO2; M=Ti, Sn, Ta, Nb, Hf and Zr). A suitable oxide support can alleviate the problem of carbon corrosion and platinum dissolution in Pt/C catalysts. Moreover, it can increase the...... platinum monolayers, which suggests that activity can be increased at the expense of stability and vice versa. Finally, the performance of the systems was evaluated against Pt(111) skins on Pt3X (X=Ni, Co, Fe, Ti, Sc and Y) alloys, which are the best catalysts known to date for the reaction....

  14. Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Nalini P.; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector; Popov, Branko N. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Kim, Hansung [Department of Chemical Engineering Yonsei University, Seoul (Korea, Republic of); Black, Timothy; Chen, Donna A. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2006-06-19

    Cobalt based non-precious metal catalysts were prepared by supporting cobalt-ethylene diamine complex on carbon followed by a heat treatment at elevated temperatures (800{sup o}C). Surface oxygen groups on carbon were introduced with HNO{sub 3} oxidation. Co catalysts supported on oxidized carbon showed improved activity and selectivity towards four-electron reduction of molecular oxygen. Quinone groups introduced by nitric acid treatment, in addition to increasing the dispersion of the chelate complexes, play a role in forming the active site for oxygen reduction. (author)

  15. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  16. Low platinum loading cathode modified with Cs3H2PMo10V2O40 for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Renzi, M.; D'Angelo, G.; Marassi, R.; Nobili, F.

    2016-09-01

    The catalytic activity of commercial Pt nanoparticles mixed with mesoporous polyoxometalate Cs3H2PMo10V2O40 towards oxygen reduction reaction is evaluated. The polyoxometalate co-catalyst is prepared by titration of an aqueous solution of phosphovanadomolibdic acid. SEM micrography shows reduction particle size to less than 300 nm, while XRD confirms that the resulting salt maintains the Kegging structure. The composite catalyst is prepared by mixing the POM salt with Pt/C by sonication. RRDE studies show better kinetics for ORR with low Pt loading at the electrode surface. A MEA is assembled by using a Pt/POM-based cathode, in order to assess performance in a working fuel cell. Current vs. potential curves reveals comparable or better performances at 100%, 62% and 17% relative humidity for the POM-modified MEA with respect to a commercial MEA with higher Pt loading at the cathode. Electrochemical impedance spectroscopy (EIS) confirms better kinetics at low relative humidity. Finally, an accelerated stress test (AST) with square wave (SW) between 0.4 V and 0.8 V is performed to evaluate MEA stability for at least 100 h and make predictions about lifetime, showing that after initial losses the catalytic system can retain stable performance and good morphological stability.

  17. Ni-MoO2 composite cathodes for hydrogen evolution in alkaline solution: Effect of aging of the electrolyte for their electrodeposition

    OpenAIRE

    Jović Vladimir D.; Lačnjevac Uroš Č.; Jović Borka M.; Gajić-Krstajić Ljiljana M.; Krstajić Nedeljko V.

    2013-01-01

    In this work the effect of aging of the electrolyte for electrodeposition of Ni-MoO2 composite coatings on their morphology (scanning electron microscopy), chemical composition (energy-dispersive X-ray spectroscopy), polarization characteristics and the “service life” test performance for the hydrogen evolution reaction (HER) in 32 mass % NaOH at 90°C was investigated. Polarization characteristics and results of the “service life” test of Ni-MoO2 composite coatings obtained after differ...

  18. Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3 cathode on Ce0.8Gd0.2O1.9 electrolyte for IT-SOFC

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, C.; Hauch, Anne; Ruiz de Larramendi, I.; Rojo, T.

    2014-01-01

    For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology, suitable materials and structures which enable operation at lower temperatures, while retaining high cell performance, must be developed. Recently, the perovskitetype La0.6Ca0.4Fe0.8Ni0.2O3 oxide...... oxygen electrode using a Ce0.8Gd0.2O1.9 electrolyte, determined by impedance spectroscopy studies of symmetrical cells sintered at 800 _C and 1000 _C. Scanning electron microscopy (SEM) studies of the symmetrical cells revealed the absence of any reaction layer between cathode and electrolyte, and a...

  19. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions

    Science.gov (United States)

    Meyer, Q.; Ronaszegi, K.; Robinson, J. B.; Noorkami, M.; Curnick, O.; Ashton, S.; Danelyan, A.; Reisch, T.; Adcock, P.; Kraume, R.; Shearing, P. R.; Brett, D. J. L.

    2015-11-01

    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, for the first time, a combined current density and temperature distributed measurement system is used to generate an electro-thermal performance map of an air-cooled, air-breathing polymer electrolyte fuel cell stack operating in an air/hydrogen cross-flow configuration. Analysis is performed in low- and high-current regimes and a complex relationship between localised current density, temperature and reactant supply is identified that describes the way in which the system enters limiting performance conditions. Spatiotemporal analysis was carried out to characterise transient operations in dead-ended anode/purge mode which revealed extensive current density and temperature gradients.

  20. Investigation of interfacial resistance between LiCoO{sub 2} cathode and LiPON electrolyte in the thin film battery

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug [Department of Chemical Engineering, Inha University, Inchon 402-751 (Korea, Republic of); Nam, Sang Cheol [Nuricell Inc., Jungrang-Ku, Seoul 131-220 (Korea, Republic of); Cho, Sungbaek [Agency for Defense Development, P.O. Box 35, Daejeon (Korea, Republic of)

    2006-09-13

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO{sub 2}/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al{sub 2}O{sub 3} thin film at the interface of LiCoO{sub 2}/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo{sub 1-y}Al{sub y}O{sub 2} at the interface of LiCoO{sub 2}/LiPON. (author)

  1. A novel MOCVD strategy for the fabrication of cathode in a solid oxide fuel cell: Synthesis of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} films on YSZ electrolyte pellets

    Energy Technology Data Exchange (ETDEWEB)

    Toro, Roberta G., E-mail: rgtoro@unict.it [Dipartimento di Scienze Chimiche, Universita di Catania, ISMN-CNR and INSTM, UdR V.le Andrea Doria 6, I-95125 Catania (Italy); Fiorito, Davide M.R.; Fragala, Maria E. [Dipartimento di Scienze Chimiche, Universita di Catania, ISMN-CNR and INSTM, UdR V.le Andrea Doria 6, I-95125 Catania (Italy); Barbucci, Antonio; Carpanese, Maria P. [Dipartimento di Ingegneria Chimica e di Processo, Universita di Genova, and INSTM, UdR P.le Kennedy 1, I-16129 Genova (Italy); Malandrino, Graziella, E-mail: gmalandrino@dipchi.unict.it [Dipartimento di Scienze Chimiche, Universita di Catania, ISMN-CNR and INSTM, UdR V.le Andrea Doria 6, I-95125 Catania (Italy)

    2010-12-01

    Porous La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) films have been prepared by metal organic chemical vapor deposition (MOCVD) technique for solid oxide fuel cell (SOFC) applications. LSMO samples have been deposited on yttria-stabilized zirconia (YSZ) electrolyte pellets. The adopted in situ strategy involves a molten mixture consisting of the La(hfa){sub 3}.diglyme, Sr(hfa){sub 2}.tetraglyme, and Mn(tmhd){sub 3} [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; diglyme = bis(2-methoxyethyl)ether; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione] precursors. It has been shown that porous LSMO films can be obtained through an accurate tuning of processing parameters, which affect the nucleation and growth processes. The structural and compositional characterizations of these films, carried out by X-ray diffraction (XRD) and energy dispersive X-ray analysis, point to the formation of a single polycrystalline La{sub 0.8}Sr{sub 0.2}MnO{sub 3} phase. The field emission scanning electron microscopy (FE-SEM) images confirm the formation of porous films. To evaluate the electrochemical activity of the cathodic films, an investigation by impedance spectroscopy (IS) has been performed.

  2. A novel MOCVD strategy for the fabrication of cathode in a solid oxide fuel cell: Synthesis of La0.8Sr0.2MnO3 films on YSZ electrolyte pellets

    International Nuclear Information System (INIS)

    Porous La0.8Sr0.2MnO3 (LSMO) films have been prepared by metal organic chemical vapor deposition (MOCVD) technique for solid oxide fuel cell (SOFC) applications. LSMO samples have been deposited on yttria-stabilized zirconia (YSZ) electrolyte pellets. The adopted in situ strategy involves a molten mixture consisting of the La(hfa)3.diglyme, Sr(hfa)2.tetraglyme, and Mn(tmhd)3 [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; diglyme = bis(2-methoxyethyl)ether; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione] precursors. It has been shown that porous LSMO films can be obtained through an accurate tuning of processing parameters, which affect the nucleation and growth processes. The structural and compositional characterizations of these films, carried out by X-ray diffraction (XRD) and energy dispersive X-ray analysis, point to the formation of a single polycrystalline La0.8Sr0.2MnO3 phase. The field emission scanning electron microscopy (FE-SEM) images confirm the formation of porous films. To evaluate the electrochemical activity of the cathodic films, an investigation by impedance spectroscopy (IS) has been performed.

  3. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers

    DEFF Research Database (Denmark)

    Polonský, Jakub; Petrushina, Irina; Christensen, Erik;

    2012-01-01

    study an approach to utilising a suitable electrocatalyst support was followed. Of the materials selected from a literature review, TaC has proved to be stable under the conditions of the accelerated stability test proposed in this study. The test involved dispersing each potential support material in a...... thermogravimmetric and differential thermal analysis to prove its thermal stability. A modified version of the Adams fusion method was used to deposit IrO2 on the support surface. A series of electrocatalysts was prepared with a composition of (IrO2)x(TaC)1−x, where x represents the mass fraction of IrO2 and was...... the electrocatalysts prepared. The electrocatalysts with x ≥ 0.5 showed stable specific activity. This result is consistent with the conductivity measurements....

  4. Electrolytic process for producing hydrogen peroxide

    International Nuclear Information System (INIS)

    An electrolytic process for producing hydrogen peroxide in an aqueous alkaline solution includes simultaneously passing an aqueous alkaline electrolyte and oxygen through a fluid permeable conductive cathode comprising reticulated vitreous carbon foam, separating the fluid permeable conductive cathode from an anode by a barrier and connecting the fluid permeable conductive electrode and the anode with an external power source to cause generation of hydrogen peroxide ion within the aqueous alkaline solution

  5. Pt supported on nanosized oxides for electrocatalyst used in polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Banu, N.; Serban, E. C.; Marinescu, A.;

    2011-01-01

    Even though Pt is a standard catalyst for fuel cells, new advanced materials with low activation energy and high specific surface area are required. Researches proved that conducting oxides are the emerging candidates as support for Pt catalysts targeting replacement of nanocarbons. This paper...

  6. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers

    OpenAIRE

    Polonský, Jakub; Petrushina, Irina; Christensen, Erik; Bouzek, K.; Prag, Carsten Brorson; Andersen, Jens Enevold Thaulov; Bjerrum, Niels

    2012-01-01

    Iridium oxide (IrO2) currently represents a state of the art electrocatalyst for anodic oxygen evolution. Since iridium is both expensive and scarce, the future practical application of this process makes it essential to reduce IrO2 loading on the anodes of PEM water electrolysers. In the present study an approach to utilising a suitable electrocatalyst support was followed. Of the materials selected from a literature review, TaC has proved to be stable under the conditions of the accelerated...

  7. Nd-nickelate solid oxide fuel cell cathode sensitivity to Cr and Si contamination

    Science.gov (United States)

    Andreas Schuler, J.; Lübbe, Henning; Hessler-Wyser, Aïcha; Van herle, Jan

    2012-09-01

    The stability of Nd-nickelate, considered as an alternative solid oxide fuel cell (SOFC) cathode material, was evaluated in this work on its tolerance towards contaminants. Symmetrical cells with Nd1.95NiO4+δ (NNO) electrodes sintered on gadolinia-doped ceria electrolyte supports were monitored over time-spans of 1000 h at 700 °C under polarization in an air-flux with deliberate chromium contamination. Impedance spectroscopy pointed out a polarization increase with time by the growth of the low frequency arc describing the electrode's oxygen reduction and incorporation processes. Post-test observations revealed polluted cathode regions with increasing amounts of Cr accumulations towards the electrolyte/cathode interface. Cr deposits were evidenced to surround active nickelate grain surfaces forming Nd-containing Cr oxides. In addition to exogenous Cr contamination, endogenous contamination was revealed. Silicon, present as impurity material in the raw NNO powder (introduced by milling during powder processing), reacts during sintering steps to form Nd-silicate phases, which decreases the active cathode surface. Nd-depletion of the nickelate, as a result of secondary phase formation with the contaminants Cr and Si (NdCrO4 and Nd4Si3O12), then triggers the thermally-induced decomposition of NNO into stoichiometric Nd2NiO4+δ and NiO. Summarized, the alternative Nd-nickelate cathode also suffers from degradation caused by pollutant species, like standard perovskites.

  8. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry Abernathy; Meilin Liu

    2006-12-31

    One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

  9. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

    Science.gov (United States)

    Kar, Mega; Simons, Tristan J; Forsyth, Maria; MacFarlane, Douglas R

    2014-09-21

    Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress

  10. Isotope separation by electrolytic amalgamation of lithium: preliminary studies

    International Nuclear Information System (INIS)

    Preliminary experiments on electrolytic amalgamation of lithium aqueous solutions were performed in order to obtain data for the design of an electrolytic cell with a moving mercury cathode. Among the two electrolytes analyzed Li OH gave best yield than Li Cl. Current concentration, current density and lithium amalgam concentration were determined. (author)

  11. Electrolytes for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    There is growing interest in high specific energy lithium rechargeable batteries with improved discharge/charge cycles. Some of the promising battery systems under development are Li/CoO2, Li/V2O5 and Li/MnO2. A major factor that controls the specific performance of these batteries is the electrolyte. Recent advances made in the liquid electrolyte area for lithium high energy cathode systems are reviewed. Experimental work on the processing of solid thin film polymer electrolytes using plasticizers such as polyethylene glycol dimethoxy ether (PEGDME) and the properties such as conductivity and differential scanning calorimetry of polymer film electrolytes are presented. The advantages and the disadvantages of polymer thin film electrolytes are discussed

  12. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    Science.gov (United States)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers. PMID:27008979

  13. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    Science.gov (United States)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO x -treated Ag cathodes related to the microstructure of the layers.

  14. Experimental Study on Electrolytic Dechlorination of Trichloroethene in Water at Cathode%阴极电催化还原降解水中三氯乙烯实验研究

    Institute of Scientific and Technical Information of China (English)

    权超; 鲁安怀; 李艳

    2012-01-01

    三氯乙烯是地下饮用水中的主要有机污染物之一,广泛应用于金属加工、电子和干洗等行业,由于其土壤吸附性弱、水溶性低,所以很容易在地下水中积累,严重影响人体健康.文章利用独立设计的电化学双室反应装置,进行了阴极电催化还原法降解水中三氯乙烯的实验,并选择了检测降解产物较好的DB-VRX色谱柱,探讨了不同电极电势、电子供体及用量对三氯乙烯降解效果的影响,获得了水相体系中降解三氯乙烯的最佳实验条件.当采用DB-VRX色谱柱,固定阴极电势-0.45V(vs.NHE),电子供体为甲酸0.4 g/L,三氯乙烯初始浓度约为10 mg/L时,经过44h反应,三氯乙烯的降解率达到了58.2%,并生成二氯甲烷、三氯甲烷等产物.通过GC-MSD对降解产物进行分析,提出了阴极电催化还原降解水中三氯乙烯的机理.%Trichloroethene (TCE)as one of major organic pollutants in drinking water is seriously harmful to human health due to its weak soil adsorption and limited water solubility. It is easily accumulated in underground water. Electrolytic dechlorination of TCE in water at cathode using an independent design of electrochemical experimental equipment was introduced. A better chromatographic column was chosen. Effects of electrode potential, electron donor and its dosage on TEC degradation rate were discussed. The optimum experimental conditions in water system was obtained based on series trials, with the column as DB-VRX, under the best experimental conditions of cathode potential -0.45 V(vs. NHE), formic acid as electron donor with concentration of 0.4 g/L, initial concentration of TCE 10 mg/L approximately, TCE was degraded by 58.2% after 44 h. Methylene chloride and chloroform were found during the experiment. The degradation mechanisms were discussed based on the analysis of degradation products.

  15. Salt taste inhibition by cathodal current

    OpenAIRE

    Hettinger, Thomas P.; Frank, Marion E.

    2009-01-01

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of −40 to −80 µA were applied to human subjects’ tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium su...

  16. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán-Duque, Fernando L. [Grupo de diagnóstico y control de la contaminación, Facultad de ingeniería, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Palma-Goyes, Ricardo E. [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía Udea, A.A. 1226, Medellín (Colombia); González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No 186, C.P 09340, México D.F (Mexico); Peñuela, Gustavo [Grupo de diagnóstico y control de la contaminación, Facultad de ingeniería, Universidad de Antioquia, A.A. 1226, Medellín (Colombia); Torres-Palma, Ricardo A., E-mail: rtorres@matematicas.udea.edu.co [Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía Udea, A.A. 1226, Medellín (Colombia)

    2014-08-15

    Highlights: • Pathway and efficiency are linked to the current-electrode–electrolyte interaction. • Unlike BDD, IrO{sub 2} route was independent of current but dependent on the electrolyte. • IrO{sub 2}/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} routes were via IrO{sub 3} and chlorine species, respectively. • BDD/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} systems were favored at low and high currents, respectively. - Abstract: Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO{sub 2}) used as anode materials were tested with Na{sub 2}SO{sub 4} or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode–electrolyte interaction. With BDD, the degradation pathway depends on i: If i < the limiting current density (i{sub lim}), CV is mainly degraded by ·OH radicals, whereas if i > i{sub lim}, generated oxidants play a major role in the CV elimination. When IrO{sub 2} was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na{sub 2}SO{sub 4} on IrO{sub 2} seems to occur via IrO{sub 3}; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na{sub 2}SO{sub 4} electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO{sub 2}. Thus, the IrO{sub 2}/Cl{sup −} and BDD/SO{sub 4}{sup 2−} systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO{sub 4}{sup 2−} and IrO{sub 2}/Cl{sup −} systems is favored at low and high current densities, respectively.

  17. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water

    International Nuclear Information System (INIS)

    Highlights: • Pathway and efficiency are linked to the current-electrode–electrolyte interaction. • Unlike BDD, IrO2 route was independent of current but dependent on the electrolyte. • IrO2/SO42− and IrO2/Cl− routes were via IrO3 and chlorine species, respectively. • BDD/SO42− and IrO2/Cl− systems were favored at low and high currents, respectively. - Abstract: Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode–electrolyte interaction. With BDD, the degradation pathway depends on i: If i < the limiting current density (ilim), CV is mainly degraded by ·OH radicals, whereas if i > ilim, generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl− and BDD/SO42− systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO42− and IrO2/Cl− systems is favored at low and high current densities, respectively

  18. Rational in-situ construction of three-dimensional reduced graphene oxide supported Li2S/C composite as enhanced cathode for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Wang, D. H.; Xia, X. H.; Xie, D.; Niu, X. Q.; Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P.

    2015-12-01

    The construction of advanced cathode materials is indispensable and vital for developing high-performance lithium-sulfur batteries. Herein, we develop a facile in-situ route to synthesize three-dimensional reduced graphene oxide supported Li2S/carbon composite (3D-rGO-Li2S/C). The Li2S/C nanoparticles are intimately anchored on the surface of 3D-rGO forming an integrated 3D porous composite. Due to the improved conductivity and reduced polysulfide dissolution, the 3D-rGO-Li2S/C cathode exhibits enhanced electrochemical performances with a high initial capacity of 819 mAh g-1 at 0.1C, as well as good cycling stability with a capacity retention of 415 mAh g-1 after 100 cycles at 1C. The integrated 3D conductive network is responsible for the enhancement of the electrochemical properties by providing fast ion/electron transfer and high mechanical stability.

  19. Heat-resistant and rigid-flexible coupling glass-fiber nonwoven supported polymer electrolyte for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    A heat-resistant and rigid-flexible coupling glass-microfiber nonwoven supported cyanoethyl-β-polyvinyl alcohol composite polymer electrolyte membrane (GFMPE) has been successfully fabricated explored for high-performance lithium batteries. It was demonstrated that the GFMPE possessed enhanced mechanical property, superior dimensional thermostability (>200 °C). In addition, Ethylene carbonate (EC)/Dimethyl carbonate (DMC) solvent soaked GFMPE exhibited a superior Li ion transport number of 0.86, wide electrochemical window up to 4.8 V vs Li+/Li and high ionic conductivity of 0.89 mS/cm at 25 °C. Moreover, LiCoO2/graphite cells using such polymer electrolyte with EC:DMC (1:1, v/v) showed excellent cycling stability and superior rate capability at room temperature. It is important to note that the LiFePO4/Li cell using GFMPE/propylene carbonate (PC) can also operate very well at an elevated temperature of 120 °C. These fascinating results would endow GFMPE a very promising polymer electrolyte in high-performance lithium batteries with improved safety and reliablity

  20. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  1. 片式钽电解电容器阴极石墨涂层材料的被覆条件对其电性参数的影响%Chip tantalum electrolytic capacitors Cathode Graphite coating material Coating conditions Electrical parameters Affect

    Institute of Scientific and Technical Information of China (English)

    李福成

    2012-01-01

    In this paper is Graphite material Tantalum electrolytic capacitors The manganese dioxide cathode layer Coating use as background Respectively discuss Different graphite solid content of the sample data capacity contrast Curing temperature, etc. Under the experimental conditions Graphite material Tantalum electrolytic capacitors Electrical parameters of the contrast between the impact The test results show that: Graphite solids content 5.0 ± X% 、 Curing temperature 为 165 ±y℃/45min is Graphite as the cathode material used in the top coating process conditions Sample electrical parameters improved significantly And the use of the process as a cathode material The graphite solution PH value size is very important and Affect Tremendous PH value of about 11 to 13 use the ideal parameters%本文主要以石墨材料在钽电解电容器二氧化锰阴极层上的被覆使用为背景,分别讨论了在不同石墨材料的固体含量、固化温度等实验条件下对钽电解电容器样品电性参数之间的对比影响,试验结果表明:石墨固体含量为5.0±X%、固化温度为165±y℃/45 min时为石墨作为阴极材料使用的最佳被覆工艺条件,样品电性参数明显改善.而作为阴极材料使用的过程中,发现石墨溶液的PH值大小非常重要,对样品电性的影响很大,当PH值为11 ~13左右时为理想使用参数.

  2. Fabrication of supported Ca-doped lanthanum niobate electrolyte layer and NiO containing anode functional layer by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bozza, Francesco; Bonanos, Nikolaos

    2012-01-01

    The technique of electrophoretic deposition (EPD) has been applied for the preparation of a dense calcium-doped lanthanum niobate electrolyte film. La0.995Ca0.005NbO4 (LCN) powder was suspended in a solution of acetylacetone, iodine and water. The effects of suspension composition and deposition...... conditions were analyzed in order to identify a suitable set of EPD process parameters. The powders were deposited on a composite substrate of LCN, NiO, binder and graphite. A dense 8 μm film of lanthanum niobate supported on a porous substrate was obtained after sintering at 1200 °C. The technique was found...

  3. Copper oxide supported on platinum nanosheets array: High performance carbon-free cathode for lithium-oxygen cells

    Science.gov (United States)

    Ang, Huixiang; Zhang, Wenyu; Tan, Hui Teng; Chen, Hongyu; Yan, Qingyu

    2015-10-01

    In this study, we present a new strategy on controlling the interaction between the Li2O2-catalyst interfaces through improving the affinity of catalyst surface towards Li2O2 molecules. A seed-mediated growth approach has been developed to synthesize Pt nanosheets on the stainless steel mesh using Fe as the seed. We further grow a uniform layer of metallic Cu nanoparticles on Pt nanosheets surface through electrochemical deposition. The Cu is converted to CuO by exposing it to air under ambient condition. Such strategy has effectively solved the problem of non-uniform deposition of CuO on Pt surface that arises from the poor interaction of oxides on metals. By converting the oxide-on-metal to metal-on-metal system, a relatively uniform of CuO can be successfully deposited on Pt nanosheets. The CuO on Pt provides multiple nucleation sites on the surface of the cathode, which facilitates the formation of Li2O2 thin layer in the discharge cycle. This process plays a crucial role in achieving a high round-trip efficiency of 88%, reversible specific capacity of 1648 mAh g-1 (683 mAh g-1 with respect to the total electrode mass including Li2O2) at 100 mA g-1 and maintains capacity retention of 98% during the 60th cycle at a high current density of 1 A g-1.

  4. 阴极支撑管式固体氧化物燃料电池%Cathode-supported tubular solid oxide fuel cells:a critical review

    Institute of Scientific and Technical Information of China (English)

    黄克勤

    2013-01-01

    This review provides a close look into the world leading cathodes-supported tubular solid ox-ide fuel cell (SOFC) technology. It starts from the basic facts of a SOFC,where the working principle,advantag-es,types and applications are specifically discussed. It then focuses on cathode-supported tubular SOFCs,one important branch of SOFCs,by providing detailed information on engineering innovations,materials advances, manufacturing processes and electrical performance of both traditional cylindrical and flattened ribbed tubular cells. The review ends with a high-level summary on the SOFC generator systems manufactured and demonstrat-ed by Siemens/Westinghouse over the past half-century.%  介绍了世界领先的阴极支撑管式固体氧化物燃料电池(SOFC)技术。从SOFC的基本组成开始阐述SOFC的工作原理、优点、类型及应用。作为SOFC的一个重要分支,重点讨论了阴极支撑管式SOFC,详细介绍了其工艺创新、材料、制备工艺,以及传统的圆管(cylindrical)和扁管电池的电性能。然后对过去半个世纪以来西门子/西屋公司制造并且示范验证的SOFC发电系统进行了详细的总结。

  5. Carbon monoxide poisoning of platinum-graphite catalysts for polymer electrolyte fuel cells: comparison between platinum-supported on graphite and intercalated in graphite

    Science.gov (United States)

    Tilquin, J. Y.; Côté, R.; Guay, D.; Dodelet, J. P.; Denès, G.

    Platinum intercalated in graphite and Pt supported on graphite have been synthesized as catalysts for polymer electrolyte fuel cells in order to test the effect of carbon monoxide adsorption on their electrochemical properties. These materials have been characterized by X-ray diffraction, scanning electron microscopy, neutron activation analysis and cyclic voltammetry in Nafion-based films in contact with H 2SO 4 solution at pH 0.5 Pt intercalates are indeed tridimensional Pt cluster inclusions in a perturbed graphite matrix. Hydrogen electrosorption measurements demonstrate that Pt supported on graphite has three times more active sites than Pt intercalated in graphite even if Pt loadings (16 ± 4 Pt wt.%) and the size of Pt clusters (3.4 ± 0.4 nm) are similar for both catalysts. Pt supported on graphite and intercalated in graphite are equally poisoned by carbon monoxide.

  6. Acid doped polybenzimidazoles, a new polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wainright, J.S.; Wang, J.T.; Savinell, R.F.; Litt, M.; Moaddel, H.; Rogers, C. [Case Western Reserve Univ., Cleveland, OH (United States)

    1994-12-31

    Polybenzimidazole films doped with phosphoric acid are being investigated as potential polymer electrolytes for use in hydrogen/air and direct methanol fuel cells. The advantages of this electrolyte include good mechanical properties, and low vapor permeability. Combined, these factors allow for the use of thin (< 0.005 cm) membranes in fuel cells without excessive adverse effects from fuel gas crossover to the cathode compartment and subsequent cathode depolarization. In this paper the authors discuss experimental data on the proton conductivity, thermal stability and gas permeability of this material.

  7. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • A single-phase layered-perovskite PrBa0.5Sr0.5CoCuO5+δ (PBSCCu) is prepared by the EDTA–citrate complexing method. • PBSCCu cathode has a good chemical compatible with GDC electrolyte. • Partial substitution of Cu for Co can efficiently lower the thermal expansion coefficient. • Performances of PrBa0.5Sr0.5CoCuO5+δ cathode based on Gd0.1Ce0.9O1.95 electrolyte is reported firstly. - Abstract: Layered perovskite PrBa0.5Sr0.5CoCuO5+δ (PBSCCo) oxide is synthesized by EDTA–citrate complexing method and investigated as a novel cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that PBSCCo is chemical compatible with Gd0.1Ce0.9O1.95 (GDC) electrolyte below 950 °C. The thermal expansion coefficient of PBSCCo is 17.58 × 10−6 K−1 between 30 °C and 900 °C. The maximum electrical conductivity of PBSCCo is 483 S cm−1 at 325 °C. The polarization resistance of PBSCCo cathode on GDC electrolyte is as low as 0.06 Ω cm2 at 800 °C. The maximum power density of the electrolyte-supported single cell with PBSCCo cathode achieves 521 mW cm−2 at 800 °C. Preliminary results indicate that PBSCCo is a potential cathode material for application in IT-SOFCs

  8. High-performance lanthanum-ferrite-based cathode for SOFC

    DEFF Research Database (Denmark)

    Wang, W.G.; Mogensen, Mogens Bjerg

    2005-01-01

    LSCF/CGO on YSZ, the Rs was the same as that of our best LSM samples, which indicates good adhesion between LSCF/CGO cathode and YSZ electrolyte. Aging experiment at 800 'C for the cathode of LSCF/CGO on YSZ electrolyte shows a degradation rate of 5 x 10(-4) Omega CM2/h in R-p, while the R-s has no...... degreesC were achieved. These results are roughly six times better than our typical LSM cathodes. Slightly higher R-s was observed in the samples with LSCF/CGO cathode on the YSZ electrolyte with CGO coating due to extra contribution from the thin CGO layer and the CGO/YSZ interface. For the samples with...

  9. A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells

    Science.gov (United States)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.

  10. Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer

    Science.gov (United States)

    Shintani, Haruhiko; Kakinuma, Katsuyoshi; Uchida, Hiroyuki; Watanabe, Masahiro; Uchida, Makoto

    2015-04-01

    The performance of practical-sized membrane-electrode assemblies (MEAs) using titanium nitride-supported platinum (Pt/TiN) as the cathode catalysts was evaluated with the use of a practical single cell designed for microscale combined heat and power (CHP) applications. The performance can be controlled by adding acetylene black (AB), with the behavior being dominated by the percolation law. The electrical resistance of the MEAs drastically decreased for AB contents greater than 37 vol%. The Pt utilization percentage was close to 100% for Pt/TiN with percolated AB networks. It was also found that the percolated AB networks supplied effective gas transport pathways, which were not flooded by generated water, thus enhancing the oxygen mass transport. The practical-sized MEA using Pt/TiN + 47 vol% AB showed 1.5 times greater mass activity and a comparable performance under a practical operating condition for micro-CHP applications, compared with the MEA using a commercial graphitized carbon black-supported platinum catalyst.

  11. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Highlights: • The graphitized nanodiamond (GND) showed a higher oxidation-resistance than XC-72. • The PtNi/GND electrocatalytic exhibited greater stability than PtNi/XC-72. • The PtNi/GND had a better catalytic activity for MOR and ORR than Pt/GND. -- Abstract: Surface graphitized nanodiamond (GND) with a diamond core covered by a graphitic carbon shell was prepared by annealing ND at the temperature of 1300 °C in a vacuum of 10−3 Pa. PtNi electrocatalysts were prepared by a microwave heating polyol method using the prepared GND as a support. The composition and morphology of the PtNi electrocatalysts supported on GND (PtNi/GND) were characterized by X-ray diffraction, transmission electron microscopy and energy dispersion spectra. The results showed that nano-scaled PtNi alloy particles with an atomic ratio of approximately 1:1 were uniformly deposited on the GND through co-reduction process. The electrocatalytic activities of the PtNi/GND electrocatalysts for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) were investigated by cyclic voltammetry, chronoamperometry and linear sweep voltammetry. The PtNi/GND exhibited better electrocatalytic activities than the Pt/GND either for MOR and ORR. In comparison with traditional carbon support Vulcan XC-72, GND showed higher oxidation-resistance, and consequently led to greater stability for the PtNi/GND than PtNi/XC-72

  12. Electrolytic plating apparatus for discrete microsized particles

    Science.gov (United States)

    Mayer, Anton

    1976-11-30

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

  13. Influence of carbon support microstructure on the polarization behavior of a polymer electrolyte membrane fuel cell membrane electrode assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Guha, Abhishek; Schiraldi, David A. [Department of Macromolecular Science and Engineering and Case Advanced Power Institute, Case Western Reserve University, 10900 Euclid Avenue, 2100 Adelbert Rd, Cleveland, OH 44106-7202 (United States); Zawodzinski, Thomas A. Jr. [Department of Chemical Engineering and Case Advanced Power Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2010-08-15

    The influence of carbon support morphology on the polarization behavior of a PEM fuel cell membrane electrode assembly has been investigated in this communication. Nanometer sized platinum electrocatalyst particles were deposited on lower surface area fibrous (carbon nanofibers) and particulate carbon supports (carbon blacks) by the well-documented ethylene glycol route for supported electrocatalyst synthesis. These supported catalyst systems were subsequently utilized to prepare catalyst inks and membrane electrode assemblies (MEA) in conjunction with a perflurosulfonated ionomeric membrane-Nafion {sup registered}. Level of liquid Nafion binder in the supported catalyst inks was varied and the ramifications of such a variation on polarization behavior of the MEA determined. The trend in polarization performance was found to be independent of the carbon support morphology in the various ink compositions. The two varieties of carbon supports were also mixed together in various weight ratios and platinum was deposited by the glycol method. Key parameters such as the platinum content on carbon and platinum particle size were determined to be independent of the nature of the supports on which the particles had been deposited. The results indicate that lower surface area carbon supports of vastly contrasting morphologies can be interchangeably employed as catalyst support materials in a PEM fuel cell MEA. (author)

  14. Structural and Electronic Transformations of Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C Cathode Catalysts in Polymer Electrolyte Fuel Cells during Potential-step Operating Processes Characterized by In-situ Time-resolved XAFS

    Science.gov (United States)

    Nagamatsu, Shin-ichi; Takao, Shinobu; Samjeské, Gabor; Nagasawa, Kensaku; Sekizawa, Oki; Kaneko, Takuma; Higashi, Kotaro; Uruga, Tomoya; Gayen, Sirshendu; Velaga, Srihari; Saniyal, Milan K.; Iwasawa, Yasuhiro

    2016-06-01

    The dynamic structural and electronic transformations of Pt/C, Pd@Pt(1 ML)/C, Pd@Pt(2 ML)/C cathode catalysts in polymer electrolyte fuel cells (PEFCs) during the potential-step operating processes between 0.4 and 1.4 VRHE (potential vs RHE) were characterized by in-situ (operando) time-resolved Pt LIII-edge quick-XAFS at 100 ms time-resolution. Potential-dependent surface structures and oxidation states of Pt, Pd@Pt(1 ML) and Pd@Pt(2 ML) nanoparticles on carbon at 0.4 and 1.4 VRHE were also analyzed by in-situ Pt LIII-edge and Pd K-edge quick-XAFS. The Pt, Pd@Pt(1 ML) and Pd@Pt(2 ML) nanoparticle surfaces were restructured and disordered at 1.4 VRHE, which were induced by strong Pt-O bonds as well as alloying effects. The rate constants for the changes of Pt valence, CN(Pt-Pt), CN(Pt-Pd) and CN(Pt-O) (CN: coordination number) in the potential-step operating processes were also determined and discussed in relation to the origin of oxygen reduction reaction (ORR) activities of the Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C cathode catalysts.

  15. Electrospun LiFe{sub 1-y}Mn{sub y}PO{sub 4}/C nanofiber composites as self-supporting cathodes in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Von Hagen, Robin; Mathur, Sanjay [Institute of Inorganic Chemistry, University of Cologne (Germany); Lorrmann, Henning; Moeller, Kai-Christian [Fraunhofer Institute for Silicate Research ISC, Wuerzburg (Germany)

    2012-05-15

    LiFe{sub 1-y}Mn{sub y}PO{sub 4}/C nanofiber composites are applied as cathode materials in Li-ion batteries and their electrochemical properties are explored. Nanofiber meshes are synthesized via electrospinning of commercially available precursors (LiOH.H{sub 2}O, FeSO{sub 4}.7H{sub 2}O, MnSO{sub 4}.H{sub 2}O, H{sub 3}PO{sub 4}, and polyvinylpyrrolidone). Nanofibers calcined at 850 C under Ar/H{sub 2} (95/5 vol%) atmosphere are directly used as self-supporting electrodes in Swagelok half cells without the need for any conductive additive or polymer binder. The morphology, phase, and chemical composition of as-prepared and heat-treated samples are analyzed by means of X-ray powder diffraction, thermogravimetric analysis, and electron and scanning microscopy techniques. Brunauer-Emmett-Teller gas adsorption-desorption measurements show a high specific surface area (111m{sup 2} g{sup -1}) for LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}. The influence of different Fe/Mn ratios on the morphology, electrical, and electrochemical performances are analyzed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Combination for electrolytic reduction of alumina

    Science.gov (United States)

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  17. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes. With the...... thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  18. Polymer coatings as separator layers for microbial fuel cell cathodes

    Science.gov (United States)

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production.

  19. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  20. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes

    Science.gov (United States)

    Du, Fuming; Zhao, Ning; Li, Yiqiu; Chen, Cheng; Liu, Ziwei; Guo, Xiangxin

    2015-12-01

    All solid-state lithium batteries are constructed by using highly conducting Ta-doped Li7La3Zr2O12 (LLZTO) as the solid electrolytes as well as the supports, coated with composite cathodes consisting of poly(vinylidene fluoride) (PVdF):LiTFSI, Ketjen Black, and carbon-coated LiFePO4 on one side and attached with Li anode on the other side. At 60 °C, the batteries show the first discharge capacity of 150 mAh g-1 at 0.05 C and 93% capacity retention after 100 cycles. As the current density increases from 0.05 C to 1 C, the specific capacity decreases from 150 mAh g-1 to 100 mAh g-1. Further elevated temperature up to 100 °C leads to further improved performance, i.e. 126 mAh g-1 at 1 C and 99% capacity retention after 100 cycles. This good performance can be attributed to the highly conducting ceramic electrolytes, the optimum electronic and ionic conducting networks in the composite cathodes, and closely contacted cathode/LLZTO interface. These results indicate that the present strategy is promising for development of high-performance solid-state Li-ion batteries operated at medium temperature.

  1. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  2. Optimization of Ferritic Steel Porous Supports for Protonic Fuel Cells Working at 600°C

    OpenAIRE

    Venkatachalam, Vinothini; Molin, Sebastian; Chen, Ming; Smirnov, I.; Larsson, P.-O.; Hendriksen, Peter Vang; Bonanos, Nikolaos

    2014-01-01

    Metal supported protonic fuel cells (PCFC) offer one major advantage over standard solid oxide fuel cells (SOFC) with oxygen conducting electrolytes, namely that the product, water, is produced on the cathode (air) side. This feature simplifies the engineering of the stack, boosts efficiency, and is particularly helpful for a porous metal supported cell because it limits the corrosion of the metal by exposure to water vapor in the anode gas.In this work, we show the effect of composition and ...

  3. Reduction of promethium on a mercury cathode

    International Nuclear Information System (INIS)

    The authors observed the separation of radioactive promethium on a mercury cathode with samarium, which showed that it can be reduced to a bivalent state. Using radiochemically-pure Pm147, the authors made a detailed study of the influence of a series of factors on the extent to which promethium passes into an amalgam. It was shown that radioactive promethium only passes into the mercury cathode if the current is relatively dense (above 50 mA/cm2) and when rare-earth elements such as ytterbium and samarium, which have a stable bivalent state, are present in the electrolyte. Electrolytic separation of the promethium is not observable until formation of the mixed potassium and samarium amalgam. The promethium then passes into the amalgam up to 85%. When the current is denser (100 mA/cm2), a notable difference may be observed in the transition speed of the promethium and samarium. The promethium separation is mainly affected by the nature of the alkali metal contained in the electrolyte. With lithium, the degree of promethium transition does not depend on the presence of another rare-earth element or the citrate ion concentration. This confirms the occurrence of electrolytic reduction of promethium in electrolysis with a mercury cathode at high current densities. Separation of the promethium into the mercury cathode goes through the stage of its reduction to a bivalent state with formation of the amalgam with the alkali metal. The authors also studied the behaviour of cerium and erbium. From the results of this study and all the published data, the authors conclude that promethium and other elements of the cerium group can be reduced to a bivalent state under certain conditions of electrolysis. (author)

  4. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.

    Science.gov (United States)

    Bock, David C; Tappero, Ryan V; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-03-11

    Cathode solubility in batteries can lead to decreased and unpredictable long-term battery behavior due to transition metal deposition on the negative electrode such that it no longer supports high current. Analysis of negative electrodes from cells containing vanadium oxide or phosphorus oxide based cathode systems retrieved after long-term testing was conducted. This report demonstrates the use of synchrotron based X-ray microfluorescence (XRμF) to map negative battery electrodes in conjunction with microbeam X-ray absorption spectroscopy (μXAS) to determine the oxidation states of the metal centers resident in the solid electrolyte interphase (SEI) and at the electrode surface. Based on the empirical findings, a conceptual model for the location of metal ions in the SEI and their role in impacting lithium ion mobility at the electrode surfaces is proposed. PMID:25690846

  5. Preparation and characterization of SOFC cathode films

    International Nuclear Information System (INIS)

    Solid Oxide Fuel Cells (SOFC) are being widely studied due to their possible utilization to produce electrical energy in a wide power range (from 1 kW up to few hundreds of kW).The principle of operation of this kind of fuel cells involves reduction of O2 in the cathode oxygen ions (O2-) diffusion of oxygen through the electrolyte and fuel oxidation in the anode.Commercial SOFC must work at temperature higher than to 1000 degree C to enable the O2- diffusion.Therefore, it is necessary to investigate new materials that enable to decrease the operation temperature, improving SOFC performance and cost. La1-xSrxCo1-yFeyO3-δ (LSCF) perovskites are good candidates for SOFC cathodes because these materials present high ionic and electronic conductivity. LSCF cathodes are adequate to fabricate Ce1-xGdxO2-δ electrolyte SOFC due to its low chemical reactivity with this material and its similar thermal expansion coefficient. In this work we present a study of microstructural and electrochemical characteristics of films for SOFC cathodes. La0.4Sr0.6Co0.8Fe0.2O3-δ compounds were prepared by the acetate reaction method.Then, cathodes were deposited onto a Ce0.9Gd0.1O2-δ electrolyte disk by dip coating and spray techniques.Structural characterization is made by X-ray diffraction XRD and scanning electron microscopy (SEM).Electrochemical properties are characterized by complex impedance measurements.Finally, the relation between structural characteristics and electrical properties is discussed

  6. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  7. Anion Solvation in Carbonate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  8. Effect of samarium doped ceria nanoparticles impregnation on the performance of anode supported SOFC with(Pr_(0.7)Ca_(0.3))_(0.9)MnO_(3-δ) cathode

    Institute of Scientific and Technical Information of China (English)

    熊麟; 王绍荣; 王振荣; 温珽琏

    2010-01-01

    Solid oxide fuel cell(SOFC) electrodes,after a high temperature sintering,may be impregnated to deposit nanoparticles within their pores to enhance the catalytic function.Samarium doped CeO2(SDC) nanoparticles were infiltrated into(Pr0.7Ca0.3)0.9MnO3-δ(PCM) cathode of anode supported SOFC cells.The cell with 2.6 mg/cm2 SDC impregnated in cathode showed the maximum power density of 580 mW/cm2 compared with 310 mW/cm2 of the cell without impregnation at 850 °C.The cells were also characterized with the impeda...

  9. La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}–SDC carbonate composite cathodes for low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Hamimah Abd., E-mail: hamimah@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muchtar, Andanastuti, E-mail: muchtar@eng.ukm.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muhamad, Norhamidi, E-mail: hamidi@eng.ukm.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Abdullah, Huda, E-mail: huda@eng.ukm.my [Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2013-09-16

    Composite cathodes with La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ} (LSCF6428) and samarium-doped ceria carbonate (SDCC) were developed and investigated for solid oxide fuel cell (SOFC) applications at low operating temperatures. The LSCF–SDCC (50 wt% LSCF:50 wt% SDCC) composite cathode powders were mixed by the ball-milling technique followed by calcination at 700, 750, 800, and 850 °C for 2 h. To fabricate single SOFCs using LSCF–SDCC as the cathode, SDCC as the electrolyte, and NiO–SDCC as the anode, a single-step pressing and co-firing process was employed. The electrolyte-supported button cells were tested between 475 and 550 °C. The composite cathode exhibited well-matched TEC values with the SDCC electrolyte. Calcination at lower temperatures (700 and 750 °C) produced powders with surface areas of 10 m{sup 2} g{sup −1}–11 m{sup 2} g{sup −1}. Using LSCF–SDCC powders sintered at 700 and 750 °C to fabricate button cells resulted in power densities of 117.9 and 120.4 mW cm{sup −2}, respectively, at an operation temperature of 550 °C with the latter cathode yielding the lowest R{sub p} value. - Highlights: • Cell performance is among first reported for LSCF–SDC carbonate composite system. • Correlation between calcination temperatures and cathode properties are reported. • Low calcination temperature of cathode powder offer cell with excellent power density. • This study proved LSCF–SDCC has great potential as cathode material for LTSOFCs.

  10. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    Science.gov (United States)

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential. PMID:27487940

  11. Application of mercury cathode electrolysis to fission-product separation

    International Nuclear Information System (INIS)

    A method involving controlled potential mercury cathode electrolysis has been developed to separate fission products. It allows the radiochemical determination of Ag, Cd, Pd, Rh, Ru, Sn, Te, Sb and Mo from solutions of fission products highly concentrated in mineral salts. The general procedure consists in three main steps: electrolytic amalgam generation, destruction of amalgams and ultimate purification of elements by other means. Electrolytic operations last about five hours. Chemical yields lie between 10 per cent and 70 per cent. (authors)

  12. Degradation factors in (La,Sr)(Co,Fe)O3-δ cathode/Sm2O3-CeO2 interlayer/Y2O3-ZrO2 electrolyte system during operation of solid oxide fuel cells

    Science.gov (United States)

    Matsui, Toshiaki; Komoto, Masahiro; Muroyama, Hiroki; Kishida, Kyosuke; Inui, Haruyuki; Eguchi, Koichi

    2016-04-01

    In this study, the miscrostructural change of the LSCF/SDC/YSZ system upon discharge was analyzed quantitatively by the focused ion beam-scanning electron microscopy as well as the transmission electron microscopy. It is widely recognized that the formation of highly-resistive SrZrO3 phase degrades the cell performance in this system. In fact, the ohmic loss and cathodic overpotential increased in response to the six-fold increase in the volume of SrZrO3 phase after 400 h of discharge at 1000 °C. However, the microstructural change proceeded in the whole part of this system, indicating that various degradation factors need to be considered; e.g., 1) the agglomeration of SDC and LSCF phases, 2) the reduction in triple phase boundary length, and 3) the formation of ceria-zirconia solid solution.

  13. A Study on the Effect of Electrolyte Thickness on Atmospheric Corrosion of Carbon Steel

    International Nuclear Information System (INIS)

    Effect of electrolyte layer thickness and increase in concentration of electrolyte during electrolyte thining on the atmospheric corrosion of carbon steel were investigated using EIS and cathodic polarization technique. The electrolyte layer thickness was controlled via two methods : one is mechanical method with microsyringe applying a different amount of electrolyte onto the metal surface to give different electrolyte thickness with the same electrolyte concentration. The other is drying method in which water layer thickness decreases through drying, causing increase in concentration of electrolyte during electrolyte thinning. In the region whose corrosion rate is controlled by cathodic reaction, corrosion rate for mechanical method is larger than that for drying method. However, for the electrolyte layers thinner than 20 ∼ 30 m, increase in concentration of electrolyte cause a higher corrosion rate for the case of the mechanical method compared with that of drying method. For a carbon steel covered with 0.1M Na2SO4, maximum corrosion rate is found at an electrolyte thickness of 45 ∼ 55 μm for mechanical method. However, maximum corrosion rate is found at an electrolyte thickness of 20 ∼ 35 μm for drying method. The limiting current is inversely proportional to electrolyte thickness for electrolyte thicker than 20 ∼ 30 μm. However, further decrease of the electrolyte thickness leads to an electrolyte thickness-independent limiting current reagion, where the oxygen rate is controlled by the solvation of oxygen at the electrolyte/gas interface. Diffusion limiting current for drying method is smaller compared with that for mechanica control. This can be attributed to decreasing in O2 solubility caused by increase in concentration of electrolyte during electrolyte thining

  14. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  15. On the theory of the electroreduction of solid oxide electrolytes

    International Nuclear Information System (INIS)

    The process of direct current passage through the cell with MOsub(2)+MeOsub(r) solid electrolyte (M-Zr, Hf, Ce, Th; Me-Ca, Sr, Sc, Y, lanthanides), a blockage cathode and a reversible anode is considered; it leads to electrolyte deviation from stoichiometric composition to insufficient oxygen content. The degree of this deviation and n-type electron conductivity proportional to it, depending on coordinate and time, is described by the nonlinear differential equation of the diffusion type. Electron conductivity of the electrolyte near the cathode increases in time approximating to the limiting value proportional to current conducted. As the distance to the cathode increases electron conductivity reduces by the exponential law, which transforms to a linear one in due course

  16. Development of artificial surface layers for thin film cathode materials

    OpenAIRE

    Carrillo Solano, Mercedes Alicia

    2016-01-01

    The present work was based on the investigation of different thin film components of Li ion batteries. A first part was dedicated to the deposition of cathodes in thin film form of a known material, LiCoO2, and an alternative one, Li(NiMnCo)O2 employing physical vapor deposition (PVD) and chemical vapor deposition (CVD), respectively. A second part was focused on the cathode-electrolyte interface for three case studies: 1) as deposited LiCoO2 cathode thin film, 2) ZrO2 coated LiCoO2 thin...

  17. Thermal and Isotopic Anomalies when pd Cathodes are Electrolyzed in Electrolytes Containing Th-Hg Salts Dissolved at Micromolar Concentration in C2H5OD/D2O Mixtures

    Science.gov (United States)

    Celani, F.; Spallone, A.; Righi, E.; Trenta, G.; Catena, C.; D'Agostaro, G.; Quercia, P.; Andreassi, V.; Marini, P.; di Stefano, V.; Nakamura, M.; Mancini, A.; Sona, P. G.; Fontana, F.; Gamberale, L.; Garbelli, D.; Falcioni, F.; Marchesini, M.; Novaro, E.; Mastromatteo, U.

    2005-12-01

    Discussed in this paper is the evolution of work that started by using the M. Fleischmann and S. Pons method and ended by using thin palladium wires electrolyzed in an electrolyte consisting of slightly acidic heavy alcohol-water solution containing thorium (Th) and mercury (Hg) salts at micromolar concentrations. The resulting large and dynamic loading of the Pd wires was studied. The recent use of thorium instead of strontium resulted in thermal anomalies and detection of new elements in larger amounts. The results with Sr are qualitatively in agreement with what was found by Y. Iwamura (Mitsubishi Heavy Industries) using multilayers of Pd-CaO-Pd-Sr in flowing deuterium gas. Most results seem to be in agreement with a "multi-body resonance fusion of deuterons" model recently developed by A.Takahashi (Osaka University).

  18. Determination of sulphur by electrolytic hydrogenation.

    Science.gov (United States)

    Wroński, M

    1979-10-01

    Certain sulphur compounds such as thiosulphuric acid, polythionic acids, thiocyanic acid, thioureas, thioamides and 2-mercapto-acids are readily electrolytically hydrogenated in 1N sulphuric acid to form hydrogen sulphide which is absorbed in potassium hydroxide solution and titrated with o-hydroxymercuribenzoic acid in the presence of dithizone as indicator. The electrolytic cell consists of a lead anode in 5N sulphuric acid, a porous ceramic tube as diaphragm, and a cathode made of soft iron. The first-order rate-constants of hydrogenation and the results of determination of sulphur in some sulphur compounds are presented. The limit of determination is 0.1 ppm. PMID:18962557

  19. A cobalt-free SrFe{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} cathode material for proton-conducting solid oxide fuel cells with stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.1}Yb{sub 0.1}O{sub 3-{delta}} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yihan; Zhao, Ling; Lin, Bin; Liu, Xingqin [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Zhang, Xiaozhen [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Key Laboratory of Jiangxi Universities for Inorganic Membranes, School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Wang, Songlin [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Department of Mechanical Engineering, Tongling University (TLU), Tongling, Anhui 244000 (China)

    2010-10-15

    A cobalt-free cubic perovskite oxide SrFe{sub 0.9}Sb{sub 0.1}O{sub 3-{delta}} (SFSb) is investigated as a novel cathode for proton-conducting solid oxide fuel cells (H-SOFCs). XRD results show that SFSb cathode is chemically compatible with the electrolyte BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.1}Yb{sub 0.1}O{sub 3-{delta}} (BZCYYb) for temperatures up to 1000 C. Thin proton-conducting BZCYYb electrolyte and NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.1}Yb{sub 0.1}O{sub 3-{delta}} (NiO-BZCYYb) anode functional layer are prepared over porous anode substrates composed of NiO-BZCYYb by a one-step dry-pressing/co-firing process. Laboratory-sized quad-layer cells of NiO-BZCYYb/NiO-BZCYYb/BZCYYb/SFSb are operated from 550 to 700 C with humidified hydrogen ({proportional_to}3% H{sub 2}O) as fuel and the static air as oxidant. An open-circuit potential of 0.996 V, maximum power density of 428 mW cm{sup -2}, and a low electrode polarization resistance of 0.154 {omega} cm{sup 2} are achieved at 700 C. The experimental results indicate that the cobalt-free SFSb is a promising candidate for cathode material for H-SOFCs. (author)

  20. Multifunctional Electrolytes for Abuse-Tolerant 5V Li-ion Space Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop a multifunctional electrolyte for high energy density abuse-tolerant lithium ion batteries with 5 V cathodes such as LiCoPO4....

  1. Determination Of The Aflatoxin B1 In Ground Nut By Differential Pulse Cathodic Stripping Voltammetry (Dpcsv) Technique

    OpenAIRE

    Yaacob, Mohammad Hadzri; Yusoff, Abdull Rahim Hj. Mohd.; Ahamad, Rahmalan

    2009-01-01

    An electro analytical method has been developed for the detection and determination of the 2,3,6a,9a-tetrahydro- 4-methoxycyclo penta[c] furo[3’,2’:4,5] furo [2,3-h][l] benzopyran-1,11-dione (aflatoxin B1, AFB1) by a differential pulse cathodic stripping voltammetry on a hanging mercury drop electrode (HMDE) in aqueous solution with Britton-Robinson buffer (BRb) as supporting electrolyte. Effect of instrumental parameters such as accumulation potential (Eacc), accumulation time (tacc) and ...

  2. Electrolytic decontamination of the 3013 inner can

    International Nuclear Information System (INIS)

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can and welded shut under a helium atmosphere. This activity takes place totally within the confinement of the glove box line. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. This fixture is then filled with a flowing electrolyte solution. A low DC electric current is made to flow between the can, acting as the anode, and the fixture, acting as the cathode. Following the decontamination, the system provides a flow of rinse water through the fixture to rinse the can of remaining salt residues. The system then carried out a drying cycle. Finally, the fixture is opened from the opposite side of the partition and the can surface monitored directly and through surface smears to assure that decontamination is adequate

  3. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  4. Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte

    Science.gov (United States)

    Peng, Gang; Yao, Xiayin; Wan, Hongli; Huang, Bingxin; Yin, Jingyun; Ding, Fei; Xu, Xiaoxiong

    2016-03-01

    An insightful study on the fundamental lithium storage behavior of all-solid-state lithium battery with a structure of LiNi0.8Co0.15Al0.05O2 (NCA)/Li10GeP2S12/Li-In is carried out in this work. The relationship between electrochemical performances and particle size, surface impurities and defects of the NCA positive material is systematically investigated. It is found that a ball-milling technique can decrease the particle size and remove surface impurities of the NCA cathode while also give rise to surface defects which could be recovered by a post-annealing process. The results indicate that the interfacial resistance between the NCA and Li10GeP2S12 is obviously decreased during the ball-milling followed by a post-annealing. Consequently, the discharge capacity of NCA in the NCA/Li10GeP2S12/Li-In solid-state battery is significantly enhanced, which exhibits a discharge capacity of 146 mAh g-1 at 25 °C.

  5. X-ray evaluation of the boundary between polymer electrolyte and platinum and carbon functionalization to conduct protons in polymer electrolyte fuel cells

    Science.gov (United States)

    Oka, Kazuki; Ogura, Yuta; Izumi, Yasuo

    2014-07-01

    In polymer electrolyte fuel cells (PEFCs), it is important to secure proximate diffusion paths of reactants and electrons. One approach is to optimize the boundary between polymer electrolyte and Pt nanoparticle surface. Based on synchrotron X-ray absorption fine structure to monitor directly the status of catalysts in PEFCs, it was found that Pt sites were reduced to Pt0 by alcohols contained in polymer electrolyte dispersion solution during the preparation of cathode of PEFC. As in membrane electrolyte assembly, only the Pt sites not covered by polymer electrolyte re-oxidized to Pt2+/4+. Thus, the interface between Pt and polymer electrolyte was evaluated. The other approach is to functionalize carbon surface with sulfonate/sulfate group to conduct protons. Similar level of proton conductivity was observed in current-voltage dependence compared to using polymer electrolyte, but polymer electrolyte was advantageous to lose less voltage for activation. Based on this comparison, optimum catalyst on cathode is proposed comprising surface sulfonate/sulfate group on carbon mixed with polymer electrolyte. Further optimization of cathode catalyst is proposed to functionalize carbon with sulfonate group linked to fluorocarbon branch.

  6. Gas evolution in aluminum electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Aleixandre, C.; Albella, J.M.; Martinez-Duart, J.M.

    1984-03-01

    Gas evolution in aluminum electrolytic capacitors constitutes one of their main drawbacks in comparison to other types of capacitors lacking a liquid electrolyte. In this respect, one of the most common causes of failure shown by liquid electrolyte capacitors is electrolyte leakage through the seal or even explosions produced by internal pressure buildup. In order to prevent these hazards, some substances, known as depolarizers, are usually added to the capacitor electrolyte with the purpose of absorbing the hydrogen evolved at the cathode (1, 2). Although the gas evolution problem in electrolytic capacitors has been known for a long time, there is a lack of literature on both direct measurements of the gas evolved and assessments of the amount of depolarizer active for the hydrogen absorption process. Aluminum electrolytic capacitors of 100..mu..F and 40V nominal voltage, miniature type (diam 8 mm, height 18.5 mm), were manufactured under standard specifications. The capacitors were filled with about 0.5 ml of an electrolyte consisting essentially of a solution of boric, adipic, and phosphoric acids in ethylene glycol. Picric acid and p-benzoquinone in molar concentrations of 0.01M and 0.05M, respectively, were added as depolarizers, yielding an electrolyte with a resistivity of about 80 ..cap omega..-cm and a pH of 5.1. The pressure inside the capacitors was monitored by a conventional Ushaped manometer made from a capillary glass tube filled with distilled water. The number of mols of gas generated in the capacitor (/eta/ /SUB g/ ) was calculated from the measured pressure (sensitivity 0.1 mm Hg) and the value of the internal volume of the manometercapacitor system.

  7. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  8. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries.

    Science.gov (United States)

    Bitenc, Jan; Pirnat, Klemen; Bančič, Tanja; Gaberšček, Miran; Genorio, Boštjan; Randon-Vitanova, Anna; Dominko, Robert

    2015-12-21

    Mg batteries are a promising battery technology that could lead to safer and significantly less expensive non-aqueous batteries with energy densities comparable or even better than state-of-the-art Li-ion batteries. Although the first prototype Mg battery using stable Mo6S8 as cathode was introduced over fifteen years ago, major challenges remain to be solved. In particular, the design of high energy cathode materials and the development of non-corrosive electrolytes with high oxidative stability are issues that need to be tackled. Herein, we present a new, general, and robust approach towards achieving stable cycling of Mg batteries. The core of our approach is the use of stable polymer cathode and Mg powder anode coupled with non-nucleophilic electrolytes. Our systems exhibit an excellent rate capability and significant improvement in electrochemical stability. PMID:26610185

  9. Chemical compatibility, redox behavior, and electrochemical performance of Nd1−xSrxCoO3−δ cathodes based on Ce1.9Gd0.1O1.95 for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: ► Nd1−xSrxCoO3−δ (x = 0.3, 0.4, 0.5, 0.6, and 0.7) are synthesized by glycine nitrate method and investigated the effect of Sr substitution for Nd. ► Electrical properties of the samples are identified by a four-terminal DC arrangement in air. ► Symmetrical half cells are measured by impedance spectroscopy at 500, 550, 600, 650, and 700 °C in air under an open-circuit condition. ► Electrochemical performances of Nd1−xSrxCoO3−δ cathodes are investigated using an anode supported cell based on GDC electrolyte for application to IT-SOFCs. - Abstract: The effect of Sr substitution for Nd on Nd1−xSrxCoO3−δ (NSC) (x = 0.3, 0.4, 0.5, 0.6, and 0.7) is investigated to evaluate NSC as a cathode material based on Gd0.1Ce0.9O1.95 (GDC) electrolyte for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The NSC powders are prepared by the glycine nitrate method. At a given temperature, the electrical conductivity increases with increasing Sr content up to x = 0.5 and then decreases for x > 0.5. The redox behavior of NSC (x = 0.3, 0.5, and 0.7) cathodes is studied by the coulometric titration at 700 °C. In order to investigate the area specific resistances of NSC–GDC cathodes, symmetrical half cells (cathode/electrolyte/cathode) are measured using impedance spectroscopy at various temperatures in air under open circuit voltage (OCV) condition. The electrochemical performance of NSC–GDC cathodes is measured using an NSC–GDC/GDC/Ni-GDC anode supported cell. The maximum power density of NSC–GDC cathodes increases with increasing strontium content up to x = 0.5 and then decreases at 700 °C. In terms of electrical conductivity and electrochemical performance, Nd1−xSrxCoO3−δ (x = 0.5) is more suitable as a cathode material based on GDC electrolyte in IT-SOFC applications.

  10. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    Science.gov (United States)

    Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

    1992-03-17

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

  11. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide

    Science.gov (United States)

    Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2015-10-01

    We propose a new strategy for alleviating the reverse current phenomenon using a unique "atmospheric resistive switching mechanism" (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.

  12. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  13. High-voltage virtual-cathode microwave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.; Snell, C.M.

    1991-01-01

    In contrast to a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential is sufficiently large to cause electron reflection. The region associated with electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and by reflexing electrons trapped in the potential well formed between the real and virtual cathodes. A virtual-cathode device based on the first mechanism is a vircator while one based on latter mechanism is a reflex diode. A large number of low-voltage virtual-cathode microwave configurations have been investigated. Initial simulations of a high-voltage virtual-cathode device using a self-consistent particle-in-cell code indicated reasonable conversion efficiency with no frequency chirping. The nonchirping character of the high-voltage virtual-cathode device lead to the interesting possibility of locking four very-high-power microwave devices together using the four transmission lines available at Aurora. Subsequently, in support of two high-voltage experiments, simulations were used to investigate the effect of field-emission threshold and velvet position on the cathode; anode and cathode shape; anode-cathode gap spacing; output waveguide radius; diode voltage; a cathode-coaxial-cavity resonator; a high-frequency ac-voltage drive; anode foil scattering and energy loss; and ion emission on the microwave frequency and power. Microwave

  14. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA xiao-xia; WANG Fu-qiang

    2007-01-01

    Based on the commercial CFD software CFX-4.3, two-phase flow of electrolyte in 156 kA drained aluminum reduction cells with a new structure was numerically simulated by multi-fluid model and k-εturbulence model. The results show that the electrolyte flow in the drained cells is more even than in the conventional cells. Corresponding to center point feeding,the electrolyte flow in the drained cells is more advantageous to the release of anode gas, the dissolution and diflusion of alumina, and the gradient reduction of the electrolyte density and temperature. The average velocity of the electrolyte is 8.3 cm/s, and the maximum velocity is 59.5 cm/s.The average and maximum velocities of the gas are 23.2 cm/s and 61.1 cm/s, respectively. The cathode drained slope and anode cathode distance have certain effects on the electrolyte flow.

  15. Fabrication and performance of PEN SOFCs with proton-conducting electrolyte

    Institute of Scientific and Technical Information of China (English)

    ZHONG Li; LUO Jingli

    2007-01-01

    A positive-electrolyte-negative (PEN) assembly solid oxide fuel cell (SOFC) with a thin electrolyte film for intermediate temperature operation was fabricated.Instead of the traditional screen-printing method,both anode and cathode catalysts were pressed simultaneously and formed with the fabrication of nano-composite electrolyte by press method.This design offered some advantageous configurations that diminished ohmic resistance between electrolyte and electrodes.It also increased the proton-conducting rate and improved the performance of SOFCs due to the reduction of membrane thickness and good contact between electrolyte and electrodes.The fabricated PEN cell generated electricity between 600℃ and 680~C using H2S as fuel feed and Ni-S-based composite anode,nano-composite electrolyte (Li2SO4 + Al2O3) film and a NiO-based composite cathode were achieved at 600℃ and 680℃,respectively.

  16. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.;

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries in...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER...... 'coffee bag arrangement' were assembled and tested. The electrolyte works as separator and binder for the cathodes. Self-diffusion NMR studies on the system (EC/PC/Li+N(SO2CF3)(2)(-)/ORMOCER(R)) resulted in cationic transport numbers t(+)) of 0.42 for the EC/PC/salt system and 0.35 for the ternary...

  17. Compatibility of La26O27(BO3)8 electrolyte with

    OpenAIRE

    Kravchyk, K. V.; Quarez, E.; Caldes, M.; Le Gal La Salle, A.; Joubert, O.

    2011-01-01

    The chemical and mechanical compatibility of proton conducting La26O27(BO3)8 (LBO) electrolyte with standard cathode materials LSM, LSCM, La2NiO4 and BSCF was investigated. The results show that LSM, LSCM and La2NiO4 cathodes are chemically and mechanically stable with the LBO electrolyte, and BSCF reacts with LBO after heat-treatment of their mechanical ground mixtures at T=1150°C. Symmetrical cell tests based on LBO demonstrated that the values of the cathode ASR (area specif...

  18. Investigation of the process of plasma-electrolyte formation surface microrelief of cobalt chromium alloy

    Science.gov (United States)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2014-11-01

    The goal is to investigate the possibilities of plasma-electrolytic formation of microrelief for replacement method of sandblasting. We found that with the cathode mode of plasma electrolytic surface treatment, CoCr-alloy has two kinds of structures: "porous" and "reflow". "Reflow" the surface was also covered with tubercles, the size of 200 - 300 nm. Analysis of roughness parameters and surface microrelief showed the possibility of replacing the sandblasting on the plasma-electrolytic treatment.

  19. Low-temperature Fabrication of Highly-Efficient, Optically-Transparent (FTO-free) Graphene Cathode for Co-Mediated Dye-Sensitized Solar Cells with Acetonitrile-free Electrolyte Solution

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Liska, P.; Zakeeruddin, S. M.; Grätzel, M.

    2016-01-01

    Roč. 195, MAR 2016 (2016), s. 34-42. ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : dye sensitized solar cell * electrochemical impedance spectroscopy * stainless-steel Subject RIV: CG - Electrochemistry Impact factor: 4.504, year: 2014

  20. High performance MCFC using Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  1. Li-air batteries having ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  2. Break down of losses in thin electrolyte SOFCs

    DEFF Research Database (Denmark)

    Barfod, Rasmus; Hagen, Anke; Ramousse, S.; Hendriksen, P.V.; Mogensen, Mogens Bjerg

    2006-01-01

    /YSZ cermet anode, and a LSM composite cathode. Additional, qualitative information was obtained using symmetric cells with LSM composite electrodes. The investigations were carried out in the temperature interval from 700 to 850 degrees C. The electrolyte and anode activation energies obtained were 0.9 and 1...

  3. Molybdenum sulfide nanosheet arrays supported on Ti plate: an efficient hydrogen-evolving cathode over the whole pH range

    International Nuclear Information System (INIS)

    Electrochemical water splitting offers a simple route to make hydrogen and it is of great importance but still remains a big challenge to develop cost-effective electrocatalysts for catalyzing the hydrogen evolution reaction over the whole pH range. In this work, molybdenum sulfide nanosheet arrays are hydrothermally grown on Ti plate as an integrated 3D hydrogen-evolving cathode. This electrode exhibits high catalytic activity in acidic media, displaying 10 and 100 mA cm−2 at overpotentials of 108 and 205 mV, respectively, and it operates stably within 55 h of operation. Moreover, this electrode is also capable of efficiently catalyzing the HER under neutral and strongly basic conditions

  4. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements, in...... particularfor vehicle propulsion, and electrochemical and constructional factors. It isargued that the energy obtainable at a given load is limited by saturation ofthe surface layers of cathode particles with cations, and that the time beforesaturation occurs is determined by diffusion of cations and electrons...... diffusioncoefficient in the solid exceeds 10–10 cm2 sec–1. On the basis of an approximaterelation between cathode thickness and electrode spacing the specificenergy for the Li/TiS2 system with organic electrolyte is estimated to be 120–150W-hr/kg in agreement with published values. ©1979 The Electrochemical Society...

  5. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  6. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  7. Pt–Au/C cathode with enhanced oxygen-reduction activity in PEFCs

    Indian Academy of Sciences (India)

    G Selvarani; S Vinod Selvaganesh; P Sridhar; S Pitchumani; A K Shukla

    2011-04-01

    Carbon-supported Pt–Au (Pt–Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt–Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt–Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt–Au/C catalysts, (3:1) Pt–Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt–Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0.6 V with (3:1) Pt–Au/C cathode delivers a maximum power-density of 0.65 W/cm2 in relation to 0.53 W/cm2 delivered by the PEFC with pristine carbon-supported Pt cathode.

  8. Improved Dispenser Cathodes

    Science.gov (United States)

    Ives, R. Lawrence; Falce, Lou

    2006-01-01

    Variations in emission current from dispenser cathodes can be caused by variations in temperature and work function over the surface. This paper described research to reduce these variations using improved mechanical designs and controlled porosity cathodes made from sintered tungsten wires. The program goal is to reduce current emission variations to less than 5% over the surface of magnetron injection guns operating temperature limited.

  9. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode

    Indian Academy of Sciences (India)

    K K Tintula; S Pitchumani; P Sridhar; A K Shukla

    2010-05-01

    Nano-sized Pt-Ru supported onto a mixed-conducting polymer composite comprising poly(3,4-ethylenedioxythiophene)-polystyrene sulphonic acid (PEDOT-PSSA) is employed as anode in a solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC) and its performance compared with the SPE-DMFC employing conventional Vulcan XC-72R carbon supported Pt-Ru anode. Physical characterization of the catalyst is conducted by Fourier-transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDAX) in conjunction with cyclic voltammetry and chronoamperometry. The study suggests that PEDOT-PSSA to be a promising alternative catalyst-support-material for SPE-DMFCs.

  10. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    OpenAIRE

    Polk, J. E.; Marrese-Reading, C. M.; Thornber, B.; Dang, L.; Johnson, L. K.; Katz, I

    2007-01-01

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measu...

  11. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  12. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  13. Solid polymer electrolyte water electrolysis

    Science.gov (United States)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  14. Electrolytic production of uranous nitrate

    International Nuclear Information System (INIS)

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP

  15. Polyamidoamine Dendrimer-Based Binders for High-Loading Lithium-Sulfur Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Jiguang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  16. Molten salt electrolyte separator

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  17. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation.

    Science.gov (United States)

    Lee, H H; Yang, J W

    2000-10-01

    To simultaneously avoid a decrease of electro-osmotic flow by hydrogen ions and to increase heavy metal precipitation due to hydroxide ions, simulated electrokinetic remediation was conducted in saturated kaolinite specimens loaded with lead(II) using an electrolyte circulation method to control electrolyte pH. At an electrolyte circulation rate of 1.1 ml/min, it was possible to increase the anolyte pH from 2 to 4 and decrease the catholyte pH from 12 to 8. Using electrolyte circulation, it was observed that the rate of decrease of clay pH due to the change of electrolyte pH was reduced. As a result, the operable period was extended and the removal efficiency for lead(II) was also increased. It was observed that most of the effluent lead(II) from the cathode compartment was electroplated onto the cathode and that residual effluent lead(II) did not precipitate onto, or adsorb to, the clay at the anode compartment during circulation. Therefore, there was no need to treat the electrolyte because there was virtually no effluent from the cathode compartment in the circulation system. It was also found that the electrolyte volume required to sustain the electrolytic reaction was sufficient for the whole electrokinetic remediation process. PMID:10946130

  18. Is alpha-V2O5 a cathode material for Mg insertion batteries?

    Science.gov (United States)

    Sa, Niya; Wang, Hao; Proffit, Danielle L.; Lipson, Albert L.; Key, Baris; Liu, Miao; Feng, Zhenxing; Fister, Timothy T.; Ren, Yang; Sun, Cheng-Jun; Vaughey, John T.; Fenter, Paul A.; Persson, Kristin A.; Burrell, Anthony K.

    2016-08-01

    When designing a high energy density battery, one of the critical features is a high voltage, high capacity cathode material. In the development of Mg batteries, oxide cathodes that can reversibly intercalate Mg, while at the same time being compatible with an electrolyte that can deposit Mg reversibly are rare. Herein, we report the compatibility of Mg anodes with α-V2O5 by employing magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolytes at very low water levels. Electrolytes that contain a high water level do not reversibly deposit Mg, but interestingly these electrolytes appear to enable much higher capacities for an α-V2O5 cathode. Solid state NMR indicates that the major source of the higher capacity in high water content electrolytes originates from reversible proton insertion. In contrast, we found that lowering the water level of the magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte is critical to achieve reversible Mg deposition and direct evidence for reversible Mg intercalation is shown. Findings we report here elucidate the role of proton intercalation in water-containing electrolytes and clarify numerous conflicting reports of Mg insertion into α-V2O5.

  19. The dependence of vircator oscillation mode on cathode material

    Science.gov (United States)

    Li, Limin; Liu, Lie; Cheng, Guoxin; Xu, Qifu; Wan, Hong; Chang, Lei; Wen, Jianchun

    2009-06-01

    This paper presents the effects of cathode materials on the oscillation mode of a virtual cathode oscillator (vircator). In the case of the stainless steel cathode, an oscillation mode hopping appeared with two separate frequencies. Interestingly, the vircator using the carbon fiber cathode exhibited an almost unchanged microwave frequency throughout the microwave pulse. To understand this phenomenon, several parameters are compared, including the diode voltage, accelerating gap, emitting area, and beam uniformity. It was found that a flat-top voltage and a relatively stable gap will provide a possibility of generating a constant microwave frequency. Further, the cathode operated in a regime where the beam current was between the space-charge limited current determined by Child-Langmuir law and the bipolar flow. On the cathode surface, the electron emission is initiated from discrete plasma spots and next from a continuing area, while there is a liberation process of multilayer gases on the anode surface. The changes in the emitting area of carbon fiber cathode showed a self-quenching process, which is not observed in the case of stainless steel cathode. The two-dimensional effect of microwave frequency is introduced, and the obtained results supported the experimental observations on the oscillation mode. By examining the cross section of electron beam, the electron beam for carbon fiber cathode was significantly centralized, while the discrete beam spots appeared for stainless steel cathode. These results show that the slowed diode closure, high emission uniformity, and stable microwave frequency tend to be closely tied.

  20. Contactless monitoring of cathodic protection

    International Nuclear Information System (INIS)

    Cathodic protection is a very efficient and economical way for protecting underground structures from electrolytic corrosion. The protection is maintained when the potential between the structure surface and the surrounding electrolyte keeps the material in an immune state from corrosion. This means, that the potential on every spot of the protected pipeline should be checked and maintained. Checking the potential can be on few way. The classical way, measuring the pipe to soil potential on the test post spaced 1 - 2 km apart only 'potential samples' can be obtained while 'hot spots' can be left between the test post. The so called 'intensive measurements', when potential is surveyed along the pipeline by a moving electrode connected to a test post. By checking the magnetic field of the returning current along the pipeline, the same anomalies can be found, as by checking the potential distribution along the pipeline, so the places with contacts with foreign structures or coating damages can be located. This measurements can be done by one person walking along the pipeline route. If the pipe route is without obstacles, the measurements can be performed from a vehicle moving along the pipe route. By using a computer based recording device in the vehicle, the measured values can be combined with the location of the anomalies and the printout will show directly the sort and location of the anomalies. Using a helicopter, when up to several hundreds of km pipeline route can be checked daily, makes further improvements. This paper presents current situation on this field, and equipment in FZC I I Oktomvri in Kumanovo. (Author)

  1. Deciphering the thermal behavior of lithium rich cathode material by in situ X-ray diffraction technique

    Science.gov (United States)

    Muhammad, Shoaib; Lee, Sangwoo; Kim, Hyunchul; Yoon, Jeongbae; Jang, Donghyuk; Yoon, Jaegu; Park, Jin-Hwan; Yoon, Won-Sub

    2015-07-01

    Thermal stability is one of the critical requirements for commercial operation of high energy lithium-ion batteries. In this study, we use in situ X-ray diffraction technique to elucidate the thermal degradation mechanism of 0.5Li2MnO3-0.5LiNi0.33Co0.33Mn0.33O2 lithium rich cathode material in the absence and presence of electrolyte to simulate the real life battery conditions and compare its thermal behavior with the commercial LiNi0.33Co0.33Mn0.33O2 cathode material. We show that the thermal induced phase transformations in delithiated lithium rich cathode material are much more intense compared to similar single phase layered cathode material in the presence of electrolyte. The structural changes in both cathode materials with the temperature rise follow different trends in the absence and presence of electrolyte between 25 and 600 °C. Phase transitions are comparatively simple in the absence of electrolyte, the fully charged lithium rich cathode material demonstrates better thermal stability by maintaining its phase till 379 °C, and afterwards spinel structure is formed. In the presence of electrolyte, however, the spinel structure appears at 207 °C, subsequently it transforms to rock salt type cubic phase at 425 °C with additional metallic, metal fluoride, and metal carbonate phases.

  2. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    International Nuclear Information System (INIS)

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measurements of the external temperature during cathode operation and are used to calibrate the pyrometer system in situ with a small oven enclosing the externally heated cathode. The diagnostic method and initial measurements of the temperature distribution in a hollow cathode are discussed

  3. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  4. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  5. Cathodes - Technological review

    International Nuclear Information System (INIS)

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented

  6. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  7. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions

    OpenAIRE

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-01-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~6...

  8. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode

    OpenAIRE

    Kaya, Sarp; Casalongue, Hernan Sanchez; Viswanathan, Venkatasubramanian ; Miller, Daniel J. ; Friebel, Daniel ; Hansen, Heine A. ; Nørskov, Jens K. ; Nilsson, Anders ; Ogasawara, Hirohito

    2013-01-01

    The performance of polymer electrolyte membrane fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. Here we use ambient pressure X-ray photoelectron spectroscopy, and directly probe the correlation between the adsorbed species on the surface and the electrochemical potential. We demonstrate that, during the oxygen reduction reaction, hydroxyl intermediates on the cathode surface occur in sever...

  9. Preparation, characterization and degradation investigations of cathode catalysts for automotive PEM fuel cells systems

    OpenAIRE

    Marcu, Alina

    2014-01-01

    This research was designed to meet Daimler systematic efforts to address future electromobility demands. The work focuses on developing potential cathode catalysts and tests procedures to be employed in prototype fuel cells. In order to achieve commercial cost-competitive polymer electrolyte membrane fuel cells (PEM FC), the following major challenges have to be addressed: i) The catalytic mass activity of the cathode catalysts has to be at least 0.44 A/mg Pt representing an increased factor ...

  10. Effect of cathode separator structure on performance characteristics of free-breathing PEMFCs

    OpenAIRE

    Tabe, Yutaka; Park, Sang-Kyun; Kikuta, Kazushige; Chikahisa, Takemi; Hishinuma, Yukio

    2006-01-01

    The performance of free-breathing polymer electrolyte membrane fuel cells (PEMFCs) was studied experimentally and the effect of the cathode separator structure on the cell performance was investigated. Two types of cathode separators were used for a cell with an 18 cm2 active area: an open type with parallel rectangular open-slits and a channel type with straight vertical channels with open ends. The polarization curves, cell impedance, and contact pressure distribution of the separators were...

  11. Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl)phosphate Additive for Lithium Rich Cathode Materials

    International Nuclear Information System (INIS)

    Highlights: • Tris(trimethylsilyl)phosphate (TMSP) is investigated as a film-forming additive. • A modified SEI layer is formed due to the decomposition of TMSP additive. • Cells with 1.0 wt% TMSP exhibit enhanced cycle stability and rate performance. - Abstract: Tris(trimethylsilyl)phosphate (TMSP) has been investigated as an additive to form a modified solid electrolyte interface (SEI) on lithium rich cathode material Li[Li0.2Ni0.13Mn0.54Co0.13]O2 and improve its electrochemical performances. Linear sweep voltammetry (LSV) results show that TMSP additive decomposes at the potential ca. 4.1 V, lower than that of electrolyte solvent decomposition. The morphology images via TEM clearly demonstrate a continuous interfacial layer formed on the cathode surface after initial cycles. XPS results prove that the components of SEI are mainly derived from the decomposition of TMSP. The Li[Li0.2Ni0.13Mn0.54Co0.13]O2 cathode materials cycled in 1.0 wt% TMSP-containing electrolyte demonstrate obvious enhancement in its cycling stability and capacity retention reaches 91.1% after 50 cycles. The improved performances are ascribed to modified SEI which tightly covers on cathode particle, and effectively avoids a direct contact between cathode active material and electrolyte, leading to the stabilized interfacial structures

  12. Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen

    2011-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various...... because the predominant transport mechanism is diffusion. Consequently, operating conditions with a high net water transport from anode to cathode should be avoided as it is important to keep the cathode catalyst layer well humidified in order to prevent high protonic losses. Addition of the micro...

  13. Close cathode chamber: Low material budget MWPC

    International Nuclear Information System (INIS)

    Performance of asymmetric-type MWPC-s are presented. In this structure, referred to as Close Cathode Chamber in an earlier study, the material budget is significantly reduced on one hand by the elimination of external support frame, on the other hand by thin detector walls. In this paper it is demonstrated that the outline is compatible with large size detectors (1 m wire length), maintaining mechanical and operation stability, with total weight of 3 kg (including support structure) for a half square meter surface. The detection efficiency and response time is shown to be sufficient for L0 triggering in the ALICE VHMPID layout. Reduced sensitivity to cathode deformations (due to internal overpressure as mechanical strain) is directly demonstrated. On small sized chambers, improvement of position resolution with analog readout is evaluated, reaching 0.09 mm RMS with 2 mm wide cathode segments. Simulation results on signal time evolutions are presented. With the above studies, comparison of classical MWPC-s and the Close Cathode Chamber design is performed in all major aspects. -- Highlights: ► Asymmetric multi-wire proportional chamber, called the Close Cathode Chamber, is studied. ► Large size construction feasibility up to 1 m wire length is demonstrated in test beam and cosmic rays. ► Reduction of dependence of gas gain on chamber internal pressure is directly demonstrated. ► Position resolution and signal formation is shown to be compatible with classical MWPC.

  14. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  15. All-solid-state proton battery using gel polymer electrolyte

    International Nuclear Information System (INIS)

    A proton conducting gel polymer electrolyte system; PMMA+NH4SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm−1. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4⋅7H2O anode and MnO2 cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain

  16. Hydrodynamic Reaction Model of a Spouted Bed Electrolytic Reactor

    Science.gov (United States)

    Alireza Shirvanian, Pezhman; Calo, Joseph

    2002-08-01

    An Eulerian model is presented that has been developed to describe the hydrodynamics, mass transfer, and metal ion reduction mass transfer in a cylindrical, spouted bed electrolytic reactor. Appropriate boundary conditions are derived from kinetic theory and reaction kinetics for the hydrodynamics and mass transfer and reaction on the cathodic conical bottom of the reactor, respectively. This study was undertaken as a part of a project focused on the development of a Spouted Bed Electrolytic Reactor (SBER) for metals recovery. The results presented here include the effect of particle loading, inlet jet velocity, Solution pH, and temperature on void fraction distribution, pressure drop, particles recirculation rate, and metal recovery rate.

  17. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, Mw=250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO2, V6O13, and LixMnO2), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V6O13 cathodes deliver the highest capacity and LixMnO2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V6O13) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  18. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  19. In situ X-ray studies of film cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO2, and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone

  20. Optimization of Ferritic Steel Porous Supports for Protonic Fuel Cells Working at 600°C

    DEFF Research Database (Denmark)

    Venkatachalam, Vinothini; Molin, Sebastian; Chen, Ming;

    2014-01-01

    is particularly helpful for a porous metal supported cell because it limits the corrosion of the metal by exposure to water vapor in the anode gas. In this work, we show the effect of composition and microstructure on the high temperature corrosion and phase stability (formation of sigma phase......Metal supported protonic fuel cells (PCFC) offer one major advantage over standard solid oxide fuel cells (SOFC) with oxygen conducting electrolytes, namely that the product, water, is produced on the cathode (air) side. This feature simplifies the engineering of the stack, boosts efficiency, and...... are very promising materials for cost effective protonic fuel cells operating at 600°C....

  1. Influence of Electrolyte on ESR of Medium Voltage Wet Tantalum Capacitors

    Institute of Scientific and Technical Information of China (English)

    刘仲娥; 宋金荣; 陈晓静; 李忆莲; 桂娟

    2004-01-01

    In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducing Equivalent Series Resistance(ESR). According to the theory of depolarization in electrochemistry and the theory of cathode capacitance of electrolytic capacitor, different kinds of depolarisers are added separately into the foregone electrolyte. Then capacitors are assembled with tantalum cores dipped with the compounded electrolytes. The best depolariser and its concentration in the whole electrolyte could be selected according to the test results of the capacitance and ESR of the capacitors. The results of our experiment show that depolariser Fe2(SO4)3 used in working electrolyte of 100 V/100 μF wet tantalum capacitors can help to obtain lower ESR and higher capacitance at frequency from 0.1 kHz to 100 kHz.

  2. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  3. The electrodeposition of lead from chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.

    1986-11-28

    At low current densities, lead was deposited onto a lead substrate as a fine powder that did not adhere well to the substrate. At higher current densities dendritic growth occurred. Lead does not adhere to a graphite substrate and, since copper and titanium substrates require higher cell voltages than lead substrates, these three substrates were rejected. The temperature of the electrolyte must be maintained above 69/sup 0/C to avoid the precipitation of lead chloride in the cell. Optimum current efficiencies at the anode and cathode were obtained at 80/sup 0/C, and no improvement in the morphology of the deposit was observed at higher temperatures. A combination of Quebracho extract and cuprous ions achieved the greatest improvement in the morphology of the deposit, while maintaining high current efficiencies at the anode and cathode. However, when the deposition time was increased, dendritic growth was much in evidence. A compact, adherent deposit of lead could not be obtained from chloride electrolytes. 22 refs., 21 figs., 11 tabs.

  4. One-dimensional steady state algebraic model on the passive direct methanol fuel cell with consideration of the intermediate liquid electrolyte

    Science.gov (United States)

    Yin, Ken-Ming

    2015-05-01

    One-dimensional steady state performance equations of passive direct methanol fuel cell are formulated at the presence of intermediate liquid electrolyte. This model evaluates the effect of liquid electrolyte on the cell polarization curve in detail. It is shown that liquid electrolyte employed reduce the methanol crossover rate, increase the fuel utilization, and decrease the cathode voltage loss. The prediction shows that ohmic potential drop is significant at high polarization if low methanol concentration is fed. Cell is better performed without liquid electrolyte. On the other hand, the cathode voltage loss by the mixed potential is more influential at high methanol concentration. Thus, liquid electrolyte reduces the cathode over-potential, and cell performs better with the liquid film.

  5. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  6. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  7. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  8. Stable artificial solid electrolyte interfaces for lithium batteries

    OpenAIRE

    Ma, Lin; Kim, Mun Sek; Archer, Lynden A.

    2016-01-01

    A rechargeable lithium metal battery (LMB), which uses metallic lithium at the anode, is among the most promising technologies for next generation electrochemical energy storage devices due to its high energy density, particularly when Li is paired with energetic conversion cathodes such as sulfur, oxygen/air, and carbon dioxide. Practical LMBs in any of these designs remain elusive due to multiple stubborn problems, including parasitic reactions of Li metal with liquid electrolytes, unstable...

  9. Hybrid electrolytes with controlled network structures for lithium metal batteries.

    Science.gov (United States)

    Pan, Qiwei; Smith, Derrick M; Qi, Hao; Wang, Shijun; Li, Christopher Y

    2015-10-21

    Solid polymer electrolytes (SPEs) with tunable network structures are prepared by a facile one-pot reaction of polyhedral oligomeric silsesquioxane and poly(ethylene glycol). These SPEs, with high conductivity and high modulus, exhibit superior resistance to lithium dendrite growth even at high current densities. Measurements of lithium metal batteries with a LiFePO4 cathode show excellent cycling stability and rate capability. PMID:26316140

  10. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Benziger, Jay; Chia, E.; Karnas, E.; Moxley, J.; Teuscher, C.; Kevrekidis, I. G.

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The S...

  11. Solid electrolyte interphase in semi-solid flow batteries: a wolf in sheep's clothing.

    Science.gov (United States)

    Ventosa, E; Zampardi, G; Flox, C; La Mantia, F; Schuhmann, W; Morante, J R

    2015-10-18

    The formation of the alkyl carbonate-derived solid electrolyte interphase (SEI) enables the use of active materials operating at very cathodic potentials in Li-ion batteries. However, the SEI in semi-solid flow batteries results in a hindered electron transfer between a fluid electrode and the current collector restricting the operating potentials to ca. 0.8 V vs. Li/Li(+) for EC-based electrolytes. PMID:26242756

  12. Controllable synthesis of high loading LiFePO4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes

    Institute of Scientific and Technical Information of China (English)

    Fei; Cheng; Duo; Li; Anhui; Lu; Wencui; Li

    2013-01-01

    Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.

  13. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery

    International Nuclear Information System (INIS)

    Highlights: • P(MMA-co-BA)/nano-SiO2/PE based GPE was developed for high voltage lithium ion battery. • P(MMA-co-BA)/nano-SiO2/PE has uniform and interconnected pore structure. • The GPE exhibits improved ionic conductivity and compatibility with electrodes. • 5 V battery using the GPE presents excellent cyclic stability. - Abstract: Nano-SiO2 as dopant was used for preparing polyethylene-supported poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)/PE) based membrane and corresponding gel polymer electrolyte (GPE), which is applied to improve the cyclic stability of high voltage lithium ion battery. P(MMA-co-BA)/nano-SiO2/PE based membranes and corresponding GPEs were characterized with scanning electron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, mechanical test, thermogravimetric analysis, linear sweep voltammetry, and charge/discharge test. It is found that the GPE with 5 wt.% nano-SiO2 shows the best performance. Compared to the undoped membrane, the 5 wt.% nano-SiO2 doped membrane has a better pore structure and higher electrolyte uptake, leading to the enhancement in ionic conductivity of the resulting GPE from 1.23 × 10−3 to 2.26 × 10−3 S.cm−1 at room temperature. Furthermore, the thermal stability of the doped membrane is increased from 300 to 320 °C while its decomposition potential of GPE is from 5.0 to 5.6 V (vs. Li/Li+). The cyclic stability of Li/GPE/Li(Li0.13Ni0.30Mn0.57)O2 cell at the high voltage range of 3.5 V ∼ 5.0 V is consequently improved, the capacity retention of the cell using the doped membrane is 92.8% after 50 cycles while only 88.9% for the cell using undoped membrane and 66.9% for the cell using liquid electrolyte

  14. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  15. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several...

  16. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries

    Science.gov (United States)

    Chen, Renjie; Liu, Fan; Chen, Yan; Ye, Yusheng; Huang, Yongxin; Wu, Feng; Li, Li

    2016-02-01

    Succinonitrile (SN) has been used as functional additive to improve the thermal stability and broaden the oxidation electrochemical window of commercial electrolyte 1 M LiPF6/EC/DEC (1:1, by volume) for high-voltage LIBs (cathode: Li1.2Ni0.2Mn0.6O2, anode: Li). 1 wt % SN-based electrolyte showed a wide electrochemical oxidation window of 5.4 V vs Li+/Li and excellent thermal stability demonstrated by thermogravimetry (TG) and X-ray photoelectron spectroscopy (XPS), as well as theoretical analysis according to molecular orbital theory. The LNMO (Li1.2Ni0.2Mn0.6O2) battery with 1 wt % SN-based electrolyte showed better cyclability and capacity retention when charged to higher cut-off voltage. The improved battery performance is mainly attributed to the formation of uniform cathode electrolyte interface (CEI) formed by interfacial reactions between the LNMO cathode and electrolyte. The outcome of this work and the continuous research on this subject can generate critical knowledge for designing thermal stability electrolytes for large format lithium-ion batteries.

  17. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan

  18. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    Science.gov (United States)

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  19. Zinc electrodes for alkaline reserve cells. [German patent; Ag oxide cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lala, A.

    1977-01-20

    Higher current densities at lower operational temperatures can be obtained from alkaline filler elements with silver oxide cathodes if according to the invention a foil or net each of aluminium or aluminium alloy lies on both sides of the current tap of the anode and a zinc foil each on the electrolyte side.

  20. Cathodic processes in the electrochemical synthesis of niobium borides in chloride-fluoride melts

    International Nuclear Information System (INIS)

    Cathodic processes in the electrochemical synthesis of niobium borides are studied. The possibility of electrochemical synthesis of the niobium boride coatings in the kinetic regime is indicated. The electrolyte composition is selected the process parameters which make it possible to obtain both crystal and roentgenoamorphous niobium boride coatings 20-30 μm thick are determined

  1. Analysis of electrolyte level change in a lithium air battery

    Science.gov (United States)

    Huang, Jing; Faghri, Amir

    2016-03-01

    A two-dimensional physical model that employs the deformed mesh method to track the electrolyte level in a Li-air coin cell battery is presented and used to investigate the effects of electrolyte level drop during cell discharge. The electrolyte level drop is caused by solid phase volume decrease and electrolyte solvent evaporation. Simulation results show that by neglecting the drop in electrolyte level, a Li-air battery model would under-estimate cell discharge capacity by as much as 22.5% in the parameter range studied. This counter-intuitive result is explained by an in-depth analysis of simulation results. A more realistic prediction of Li2O2 deposit distribution is obtained, with the peak value of Li2O2 volume fraction in the middle of the cathode instead of on the top surface, as predicted by previous studies. The interaction between the battery and its surroundings is considered by incorporating the air chamber into the computation domain. The diffusion of solvent vapor and oxygen in this chamber is included. For batteries using volatile solvents such as DMF, increasing the air chamber radius from 5 cm to 15 cm would result in a 72% increase of discharge capacity at the cost of losing a large amount of electrolyte.

  2. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    MichaelStoukides

    2014-01-01

    Full Text Available Developed in the early 1900's, the “Haber-Bosch” synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  3. Pipeline integrity through cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. [Gas Authority India Ltd., New Delhi (India); Khanna, A.S. [Indian Inst. of Technology, Bombay (India)

    2008-07-01

    Pipeline integrity management is defined as a process for assessing and mitigating pipeline risks in an effort to reduce both the likelihood and consequences of incidents. Defects on pipelines result in production losses, environmental losses, as well as loss of goodwill and subsequent financial losses. This presentation addressed pipeline integrity through cathodic protection. It noted that pipeline integrity can be strengthened by successfully controlling, monitoring and mitigating corrosion strategies. It can also be achieved by avoiding external and internal corrosion failures. A good coating offers the advantages of low current density; lower power consumption; low wear of anodes; larger spacing between cathodic protection stations; and minimization of interference problems. The presentation reviewed cathodic protection of cross-country pipelines; a sacrificial cathodic protection system; and an impressed current cathodic protection system. The efficiency of a cathodic system was shown to depend on the use of reliable power sources; proper protection criterion; efficient and effective monitoring of cathodic protection; proper maintenance of the cathodic protection system; and effective remedial measures. Selection criteria, power sources, and a comparison of cathodic protection sources were also presented. Last, the presentation addressed protection criteria; current interruption circuits; monitoring of the cathodic protection system; use of corrosion coupons; advantages of weightless coupons; checking the insulating flanges for shorted bolts; insulated/short casings; anodic and cathodic interference; common corridor problems; and intelligent pigging. tabs., figs.

  4. Electrochemical performance and thermal stability of LiCoO{sub 2} cathodes surface-modified with a sputtered thin film of lithium phosphorus oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwan-Ho; Jeon, Jun-Hong; Lee, Sung-Man [Department of Advanced Materials Science and Engineering, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea); Park, Hong-Kyu [Battery Research Institute, LG Chemical Limited, Taejon 305-380 (Korea)

    2010-12-15

    A lithium phosphorus oxynitride (LiPON) glass-electrolyte thin film is coated on a lithium cobalt oxide (LiCoO{sub 2}) composite cathode by means of a radio frequency (RF) magnetron sputtering method. The effect of the LiPON coating layer on the electrochemical performance and thermal stability of the LiCoO{sub 2} cathode is investigated. The thermal stability of the delithiated LiCoO{sub 2} cathode in the presence of liquid electrolyte is examined by differential scanning calorimetry (DSC). It is found that the LiPON coating, improves the rate capability and the thermal stability of the charged LiCoO{sub 2} cathode. The LiPON film appears to suppress impedance growth during cycling and inhibits side-reactions between delithiated LiCoO{sub 2} and the electrolyte. (author)

  5. SOFC Cathode Mechanisms

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse;

    1996-01-01

    litterature. It is argued that this kind of mechanism can only partly explain the experimental observations. The capacitive part of the low frequency response at anodic potentials is shown to be due to gas enclosures at the lectrode-electrolyte interface. As to the inductive activation mechanism of the...

  6. SOFC Cathode Mechanisms

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse; Skaarup, Steen

    litterature. It is argued that this kind of mechanism can only partly explain the experimental observations. The capacitive part of the low frequency response at anodic potentials is shown to be due to gas enclosures at the lectrode-electrolyte interface. As to the inductive activation mechanism of the...

  7. Electrolytic cell stack with molten electrolyte migration control

    Science.gov (United States)

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  8. Enhanced Methanol Tolerance of Highly Pd rich Pd-Pt Cathode Electrocatalysts in Direct Methanol Fuel Cells

    International Nuclear Information System (INIS)

    Methanol crossover critically restricts the practical application of direct methanol fuel cells (DMFCs). To resolve this crucial difficulty from the standpoint of electrocatalysis, an electrode material having high activity for the oxygen reduction reaction and low activity for the methanol oxidation reaction compared to widely used Pt-based electrodes is needed for DMFC cathodes. In this research carbon-supported Pd-rich Pd–Pt bimetallic nanoparticle electrocatalysts with 60 wt.% metal content were prepared for this purpose by sodium borohydride reduction of metal chlorides. The physical features of the prepared nanoparticles were investigated by transmission electron microscopy, energy dispersive X-ray spectroscopy, atomic absorption spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption near edge spectroscopy. Methanol tolerance was tested by means of rotating disk electrode (RDE) voltammetry using oxygen-saturated methanol-containing electrolyte solutions as the anode fuel for DMFC unit cell performance tests. In the RDE measurements, Pd-rich electrocatalysts (carbon-supported Pd19Pt1 nanoparticles) showed excellent methanol tolerance compared with Pd-free Pt electrocatalyst. When Pd19Pt1 nanoparticles were used as a DMFC cathode catalyst, unit cell performance tests showed that the i-V curves of the Pd19Pt1 electrocatalyst decreased slightly with increasing methanol concentration, while that of the Pt electrocatalyst decreased rapidly. The results in a liquid-feed DMFC unit cell test were in good agreement with the methanol tolerant characteristics identified in the RDE measurements

  9. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  10. Investigation of the process of plasma-electrolyte formation surface microrelief of cobalt chromium alloy

    International Nuclear Information System (INIS)

    The goal is to investigate the possibilities of plasma-electrolytic formation of microrelief for replacement method of sandblasting. We found that with the cathode mode of plasma electrolytic surface treatment, CoCr-alloy has two kinds of structures: ''porous'' and ''reflow''. ''Reflow'' the surface was also covered with tubercles, the size of 200 - 300 nm. Analysis of roughness parameters and surface microrelief showed the possibility of replacing the sandblasting on the plasma-electrolytic treatment

  11. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  12. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 oC were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O3-δ, Ni-(CeO2)1-x(SmO1.5) x cermet anode, and Sm(Sr)CoO3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 oC was obtained using high temperature off-gas from SOFC

  13. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO3 electrolyte on porous anodic aluminum oxide substrate

    International Nuclear Information System (INIS)

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm2 at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C

  14. Cathode for tritium-forming exothermic reaction by electrolysis

    International Nuclear Information System (INIS)

    The present invention provides a cathode used for a reaction in which liquid containing heavy water is electrolyzed under a room temperature to generate energy greater than that required for electrolysis in the liquid. The cathode used in this electrolysis includes any of those described below. (a) metal uranium (U metal) coated with palladium (Pd), (b) U metal contained in porous aluminum (Al203) container and (c) an alloy of U metal and Pd metal contained in a porous aluminum container. According to the result of an experiment, the temperature of the electrolyte is elevated to 40degC at 50 min after the start of electric supply and tritium in the electrolyte is increased to about three times of background, by using any one of cathodes (a), (b) and (c). Based on the result of the experiment, it is assumed that a specific tritium-forming exothermic reaction like that a nuclear fusion reaction is caused in this reaction. (I.S.)

  15. A Study on a Salt Clean-up with Solid Cathode- Perforated Ceramic Container

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; You, Y.J.; Paek, S.W.; Kim, S.H.; Kim, K.R.; Shim, J.B.; Chung, H.; Ahn, D.H. [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2008-07-01

    Electrorefining is a key technology of pyrochemical processing. The electrorefining is generally composed of two recovery steps: deposit of uranium onto a solid cathode and the recovery of actinide elements by a liquid cadmium cathode. After the operation of the liquid cadmium cathode, it is necessary to remove the remaining TRU (transuranic) elements from the molten salt before a treatment of waste salt or salt regeneration. In this study, we attempted to clean up a molten salt with a cathode of solid cathode-perforated ceramic container and a glassy carbon anode. LiCl-KCl eutectic salt was used as a medium of the electrolytic bath. Uranium and cerium were used as solutes, where uranium was used as a surrogate for the TRU elements. Initial contents of uranium and cerium in the salt were varied in the range of 0 to 5 wt. %. Electrolysis experiments were carried out by passing a constant current between the anode and the cathode at 500 deg. C. The solute contents were measured by using ICP (inductively coupled plasma-atomic emission) spectroscopy. The initial cathode potential was about -1.6 V. This value decreased with decreasing content of uranium in the salt. The electro-refiner was successfully operated and uranium in the molten salt was effectively recovered onto the cathode. (authors)

  16. Fabrication of electrocatalyst based on nitrogen doped graphene as highly efficient and durable support for using in polymer electrolyte fuel cell

    Science.gov (United States)

    Heydari, Ahmad; Gharibi, Hussein

    2016-09-01

    In this work, we have used an efficient approach to prepare nitrogen-doped graphene supported Pt nanoparticles (Pt/N-rGO). The nitrogen-doped graphene nanocomposites (N-rGO) were derived from pyrolysis of graphene oxide/polyaniline composites in nitrogen atmosphere. X-ray powder diffraction, FTIR spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and Transmission and Scanning electron microscopy (TEM&SEM) were used to characterize the morphology and microstructure of the prepared catalysts. The TEM and elemental mapping images indicate that metal nanoparticles are more uniformly dispersed on the surface of N-doped graphene than other supports, and Pt nanoparticles dispersed without any aggregation. The catalytic activity and durability of the catalysts was evaluated by various electrochemical techniques. Compared to undoped Pt/rGO and commercial Pt/C catalysts, an enhanced electrocatalytic activity was obtained in the case of the Pt/N-rGO with optimized composition and nanostructure. The maximum power density of MEA for Pt/N-rGO was 1.4 times more than that of MEA fabricated by commercial Pt/C 20%.

  17. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  18. Arc cathode spots

    International Nuclear Information System (INIS)

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  19. Deposição eletrolítica catódica e anódica simultâneas para minimizar interferências de cobre e chumbo na determinação espectrofotométrica de cádmio em água e alimentos via reação com Verde de Malaquita e iodeto Cathodic and anodic simultaneous electrolytic deposition to minimize copper and lead interferences on spectrophotometric determination of cadmium by the Malachite Green-iodide reaction

    OpenAIRE

    Adriana Paiva de Oliveira; Gian Paulo Giovanni Freschi; Carolina Sinabucro Dakuzaku; Mercedes de Moraes; Marisa Spirandeli Crespi; José Anchieta Gomes Neto

    2001-01-01

    Simultaneous electrolytic deposition is proposed for minimization of Cu2+ and Pb2+ interferences on automated determination of Cd2+ by the Malachite Green-iodide reaction. During electrolysis of sample in a cell with two Pt electrodes and a medium adjusted to 5% (v/v) HNO3 + 0.1% (v/v) H2SO4 + 0.5 mol L-1 NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. With 60 s electrolysis time and 0.25 A current, Pb2+ and Cu2+ levels up t...

  20. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structure and texture of electrolytic superconducting coatings of high-purity niobium

    Science.gov (United States)

    Kolosov, V. N.; Shevyrev, A. A.

    2014-08-01

    Modes of epitaxial growth of electrolytic superconducting coatings of high-purity niobium on substrates of niobium, molybdenum, and tungsten have been investigated. The dynamics of changes in the structure and texture of the coatings depending on the method of treatment of substrates, cathode current density, and thickness of the deposited niobium layer has been studied.

  2. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  3. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO2 (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes

  4. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  5. Micro-electro-mechanical systems phosphoric acid fuel cell

    Science.gov (United States)

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  6. Mercury vapor hollow cathode component studies. [emissive materials for ion thruster requirements

    Science.gov (United States)

    Zuccaro, D. E.

    1973-01-01

    An experimental study of starting and operating characteristics of conventional hollow cathodes and of hollow cathodes without alkaline earth emissive materials demonstrated that the emissive mix is essential to obtain the desired cathode operation. Loss of the emissive mix by evaporation and chemical reaction was measured. New insert designs consisting of emissive mix supported on nickel and of barium impregnated porous tungsten were studied. Cathodes with a modified orifice geometry operated in a low voltage, 'spot' mode over a broad range of discharge current. Thermal degradation tests on cathode heaters showed the flame sprayed SERT II type to be the most durable at high temperatures. Thermal shock was observed to be a significant factor in limiting cathode heater life. A cathode having a barium impregnated porous tungsten tip and a heater which is potted in sintered alumina was found to have favorable operating characteristics.

  7. Understanding and Overcoming the Challenges Posed by Electrode/Electrolyte Interfaces in Rechargeable Magnesium Batteries

    Directory of Open Access Journals (Sweden)

    Fuminori eMizuno

    2014-11-01

    Full Text Available Guided by the great achievements of lithium (Li-ion battery technologies, post Li-ion battery technologies have gained a considerable interest in recent years. Their success would allow us to realize a sustainable society, enabling us to mitigate issues like global warming and resource depletion. Of such technologies, Magnesium (Mg battery technologies have attracted attention as a high energy-density storage system due to the following advantages: (1 potentially high energy-density derived from a divalent nature, (2 low-cost due to the use of an earth abundant metal, and (3 intrinsic safety aspect attributed to non-dendritic growth of Mg. However, these notable advantages are downplayed by undesirable battery reactions and related phenomena. As a result, there are only a few working rechargeable Mg battery systems. One of the root causes for undesirable behavior is the sluggish diffusion of Mg2+ inside a host lattice. Another root cause is the interfacial reaction at the electrode/electrolyte boundary. For the cathode/electrolyte interface, Mg2+ in the electrolyte needs a solvation-desolvation process prior to diffusion inside the cathode. Apart from the solid electrolyte interface (SEI formed on the cathode, the divalent nature of Mg should cause kinetically slower solvation-desolvation processes than that of Li-ion systems. This would result in a high charge transfer resistance and a larger overpotential. On the contrary, for the anode/electrolyte interface, the Mg deposition and dissolution process depends on the electrolyte nature and its compatibility with Mg metal. Also, the Mg metal/electrolyte interface tends to change over time, and with operating conditions, suggesting the presence of interfacial phenomena on the Mg metal. Hence, the solvation-desolvation process of Mg has to be considered with a possible SEI. Here, we focus on the anode/electrolyte interface in a Mg battery, and discuss the next steps to improve the battery

  8. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    Science.gov (United States)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.

  9. Cathodic treatment of the Si-SiO2 system in salt melts

    International Nuclear Information System (INIS)

    This paper studies metal ion transport in SiO2 dielectric layers during their cathodic treatment in salt melts. The preparation of the samples is described. It is shown that an important special feature of cathodic treatments of the silicon-thermal oxide system in salt melts is the formation of a new solid phase at the bottom of the micropores which leads to blocking of the current during subsequent anodic polarization. This is a difference relative to aqueous electrolyes, where cathodic treatment involving hydrogen evolution promotes corrosion of the micropores. The C-V characteristics of the electrolyte-dielectric-semiconductor systems that had been subjected to cathodic treatment in melts are examined at room temperature in 0.0 N KC1. The results are shown

  10. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Zhang, Wei; Mogensen, Mogens Bjerg

    2014-01-01

    observed. Apart from the CNTs, graphitic layers covering zirconia nanoparticles are also widely observed. This work describes nano-zirconia acting as a catalyst for the growth of CNT during electrochemical conversion of CO2 and H2O in a Ni-YSZ cermet under strong cathodic polarization. An electrocatalytic......Growth of carbon nanotubes (CNTs) catalyzed by zirconia nanoparticles was observed in the Ni-yttria doped zirconia (YSZ) composite cathode of a solid oxide electrolysis cell (SOEC) at approximately 875 °C during co-electrolysis of CO2 and H2O to produce CO and H 2. CNT was observed to grow under...... large cathodic polarizations specifically at the first 1 to 2 μm Ni-YSZ active cathode layer next to the YSZ electrolyte. High resolution transmission electron microscopy (HRTEM) shows that the CNTs are multi-walled with diameters of approximately 20 nm and the catalyst particles have diameters in the...

  11. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  12. A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    The electrodeposition of zinc-iron alloys from a chloride-based electrolyte has been studied using electrochemical polarisation techniques, Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and Computer Assisted Pulse Plating (CAPP). A...... change in the electrodeposition mechanism from equilibrium codeposition to anomalous codeposition with a change in cathodic current density has been observed. Zn-Fe alloys with compositions ranging from 5 wt-% to more than 75 wt-% Fe have been electrodeposited from a single electrolyte, making this...... system ideal for production of compositional modulated alloy (CMA) electrodeposits. Chloride content, pH and agitation of the electrolyte have been observed to have a strong influence on the reaction at the cathode surface, just as the use of pulse reversal current during electrodeposition. A theory on...

  13. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  14. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria–zirconia bilayer electrolytes on modified anode substrate

    International Nuclear Information System (INIS)

    Highlights: ► Fabricate thin film YSZ/SDC bilayer electrolytes SOFCs by pulsed laser deposition. ► The thin YSZ layer blocks electronic current in SDC layer. ► The bilayer cell retains the chemical, mechanical and structural integrity. ► The electrochemical performance and OCVs of the cell have been improved. -- Abstract: Bilayer electrolytes composed of an yttria stabilized zirconia (YSZ) layer (∼2 μm) and a samaria doped ceria (SDC) layer (∼6 μm) have been successfully fabricated by pulsed laser deposition (PLD) technique at 600 °C for thin film solid oxide fuel cells (SOFCs). A NiO-YSZ (60:40 wt.% with 10 wt.% starch) anode supported YSZ/SDC bilayer electrolytes cell with Sm0.5Sr0.5CoO3−δ-Ce0.8Sm0.2O2−δ (SSC-SDC, 70:30 wt.%) cathode was tested, yielding open circuit voltage (OCV) value of 0.843 V and maximum power density of 0.87 W cm−2 at 700 °C. With a NiO-YSZ anode functional layer (50:50 wt.%) introduced into anode/electrolyte interface, significantly enhanced cell performance was achieved, i.e., the cell OCV of 0.959 V and 0.98 V with maximum power density of 1.19 W cm−2 and 1.08 W cm−2 at 750 °C and 700 °C, respectively. The electrical current leakage in the SDC single layer cell caused by the reduction of Ce4+ to Ce3+ in reducing environment has been eliminated by depositing the YSZ thin film as a blocking layer. Characterization analysis of the cell showed that the bilayer electrolyte deposited by PLD technique have retained the chemical, mechanical and structural integrity of the cell

  15. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix

    Science.gov (United States)

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-11-01

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg-1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.

  16. Electrolytic hydrogen in beta titanium

    International Nuclear Information System (INIS)

    Permeation of electrolytic hydrogen through beta titanium foils with palladium coated surfaces was studied using Ti--11.5 Mo--6 Zr--4.5 Sn. Ion bombardment etching followed by thin film vapor deposition of palladium were used to produce oxide-free titanium specimens for electrochemical hydrogen permeation and embrittlement studies. A thin metallic foil is cathodically charged with hydrogen on one side while the other side is maintained at a sufficiently anodic potential so that all the diffusing hydrogen is oxidized and turned into an equivalent current. The current is analyzed to determine diffusivity and solubility of hydrogen. X-ray diffraction was also used to determine the effects of hydrogen on the lattice parameter. Permeation experiments conducted with basic cyanide solutions exhibited simple diffusion behavior. The diffusivity at 210C for hydrogen through the beta alloy was 5.60 (+-1.92) x 10-7 cm2/s. Anomalous permeation occurred with hydrogen chemical potentials in acidic and basic solutions without cyanide during the later stages of the approach to steady state in the charging. This behavior is consistent with the trapping model of hydrogen in metals of McNabb and Foster. Plastic deformation and spontaneous cracking at the wetted portion of the specimen were observed under extreme conditions during this anomalous behavior. Part of the deformation is found to be reversible. In the mandrel bend experiments on the embrittlement phenomenon, the transgranular cleavage mode of fracture occurred. Interstitially dissolved hydrogen expanded the bcc lattice of the beta titanium with accompanying diffraction line broadening. The lattice contracted upon removal of the hydrogen. The satisfactory performance of the beta alloy Ti--11.5 Mo--6 Zr--4.5 Sn, in moderate electrochemical environments results principally from the protective oxide film

  17. Extended area cathode for transverse discharge gas lasers

    International Nuclear Information System (INIS)

    Laser cathodes of extended emission area are disclosed having a plurality of substantially aligned electrically conductive plates spaced from one another and disposed in respective planes perpendicular to the longitudinal axis of the laser housing. Adjacent plates are spaced by a spacing s selected to achieve the ''hollow'' cathode effect and satisfying the relation s = k/p where p is the laser gas pressure and k is a constant determined by the laser gas and lying in the range of from about 5 to about 20 torr-cm. In one embodiment the cathode plates are supported by and attached to a pair of longitudinally extending electrically conductive rods. In another embodiment the cathode consists of a laminated array of alternatively disposed aligned taller and shorter electrically conductive plates. (U.S.)

  18. Temperature variation of a thermionic cathode during electron emission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is necessary to know the actual temperature of a thermionic cathode that works as the electron source in a microwave tube. It has been found that the temperature of the cathode drops markedly during the thermionic emission. For example, the temperature could fall by about 30oC under a current density of 2.92 A/cm2. Using the molecular thermodynamics, the dependence of the cathode temperature on the emission current density has been obtained. It has been theoretically pointed out that several factors, such as heating model and temperature coefficient of resis-tance of heater, can influence the cathode temperature. These theoretical conclu-sions were supported by the experimental results.

  19. Manufacturing of intermediate-temperature solid oxide fuel cells using novel cathode compositions

    Science.gov (United States)

    Torres Garibay, Claudia Isela

    The development of intermediate temperatures solid oxide fuel cells (IT-SOFC) with YSZ electrolytes imposes a double requirement in their manufacturing. First, the electrolyte has to be kept as thin as possible to minimize ohmic polarization losses. Second, the cathode compositions used must exhibit an adequate catalytic activity at the operating temperature (600--800°C). Current methods to manufacture thin YSZ electrolytes require complex processes, and sometimes costly equipment. Cathode compositions traditionally used for high temperature solid oxide fuel cells, such as (La,Sr)MnO3 do not exhibit good catalytic properties at intermediate temperatures. These challenges present areas of opportunity in the development of original manufacturing techniques and new cathode compositions. This study presents a low-cost fabrication procedure for IT-SOFC using tape casting, co-firing and screen printing. The electrochemical performance of the cells is evaluated using a known cathode composition for IT-SOFC, such as La0.6Sr0.4CoO 3-delta (LSC), novel perovskite oxides, such as Nd0.6Sr 0.4CoO3-delta (NSC), and perovskite-related intergrowth oxides compositions, like Sr0.7La0.3Fe1.4Co 0.6O7-delta (SLFCO7) and LaSr3Fe1.5Co 1.5O10-delta (LSFCO10). The impact of conductivity is studied by substituting Fe for Co in the case of the perovskite oxides, with compositions such as La0.6Sr0.4Co0.5Fe0.5O 3-delta (LSCF), and Nd0.6Sr0.4Co0.5Fe 0.5O3-delta (NSCF) and by infiltration of NSCF with silver. The effect of the cathode sintering temperature is studied using LSC and LSCF cathodes. It is found that there is generally a correlation between cell performance and conductivity. However, the microstructure of the cathode is also important in determining cell performance by tailoring the cathode sintering temperature. IT-SOFC with SLFCO7 cathodes show a performance comparable to cells with LSFC cathode. In the case of LSFCO10, the performance loss associated with its lower conductivity

  20. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell

    Science.gov (United States)

    Miyoshi, Kota; Iwai, Hiroshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2016-09-01

    A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering chromium poisoning on the cathode side has been developed to investigate the evolution of the SOFC performance over long-term operation. The degradation model applied in the simulation describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium manganite (LSM)/yttria-stabilized zirconia (YSZ)/Ni-YSZ and LSM-YSZ/YSZ/Ni-YSZ. Their electrode microstructures are acquired by imaging with a focused ion beam scanning-electron microscope (FIB-SEM). The simulation results qualitatively reproduce the trends of chromium poisoning reported in the literature. It has been revealed that the performance degradation by chromium is primarily due to an increase in the cathode activation overpotential. In addition, in the LSM-YSZ composite cathode, TPBs in the vicinity of the cathode-electrolyte interface preferentially deteriorate, shifting the active reaction site towards the cathode surface. This also results in an increase in the cathode ohmic loss associated with oxide ion conduction through the YSZ phase. The effects of the cell temperature, the partial pressure of steam at the chromium source, the cathode microstructure, and the cathode thickness on chromium poisoning are also discussed.

  1. Emission from ferroelectric cathodes

    International Nuclear Information System (INIS)

    The authors have recently initiated an investigation of electron emission from ferroelectric cathodes. The experimental apparatus consisted of an electron diode and a 250 kV, 12 ohm, 70 ns pulsed high voltage power source. A planar triode modulator driven by a synthesized waveform generator initiates the polarization inversion and allows inversion pulse tailoring. The pulsed high voltage power source is capable of delivering two high voltage pulses within 50 μs of each other and is capable of operating at a sustained repetition rate of 5 Hz. The initial measurements indicate that emission current densities above the Child-Langmuir Space Charge Limit, JCL, are possible. They explain this effect to be based on a non-zero initial energy of the emitted electrons. They also determined that this effect is strongly coupled to relative timing between the inversion pulse and application of the main anode-cathode pulse. They also have initiated brightness measurements of the emitted beam and estimate a preliminary lower bound to be on the order of 109 A/m2-rad2 for currents close to JCL and factor of two less at currents over 4JCL. As in previous measurements at this Laboratory, they performed the measurement using a pepper pot technique. Beamlet profiles are recorded with a fast phosphor and gated cameras. They describe their apparatus and preliminary measurements

  2. Electrolytic hydrogen production

    Science.gov (United States)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  3. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy+ (N-methyl-N-propyl pyrrolidinium) cation and TFSI− (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  4. Virtual cathode microwave devices -- Basics

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  5. Virtual cathode microwave devices: Basics

    Science.gov (United States)

    Thode, L. E.; Snell, C. M.

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating virtual-cathode frequency exceeds the reflexing-electron frequency while in other designs the reflexing-electron frequency exceeds the oscillating virtual-cathode frequency. For the flex diode, a periodic disruption in magnetic insulation can modulate the high-frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement.

  6. The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

    International Nuclear Information System (INIS)

    Highlights: • The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements. • When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes. • At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. -- Abstract: We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1 bar hydrogen pressure and 340 K, is equal to 670 ± 50 μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67 J/(K mol)) corresponds to a reversible heat release of 22 kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1 ± 5 J/(K mol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6 ± 2 kJ/mol at 340 K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile

  7. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    Science.gov (United States)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  8. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jin, S. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Thomas Jefferson National Accelerator Facility, 600 Kelvin Drive, Postal Suite 8, Newport News, VA 23606 (United States); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, A.T., E-mail: andywu@jlab.org [Thomas Jefferson National Accelerator Facility, 600 Kelvin Drive, Postal Suite 8, Newport News, VA 23606 (United States); Lu, X.Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Rimmer, R.A. [Thomas Jefferson National Accelerator Facility, 600 Kelvin Drive, Postal Suite 8, Newport News, VA 23606 (United States); Lin, L.; Zhao, K. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Mammosser, J. [Thomas Jefferson National Accelerator Facility, 600 Kelvin Drive, Postal Suite 8, Newport News, VA 23606 (United States); Gao, J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I–V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson–Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  9. Preparation and properties of biodegradable polymer-layered silicate nanocomposite electrolytes for zinc based batteries

    International Nuclear Information System (INIS)

    Highlights: • Organically modified MMT is used as nanofiller to enhance the properties of the polymer PCL-zinc triflate salt complex. • The nanocomposite showed enhancement in conductivity, excellent electrochemical and thermal stability. • Cyclic voltammetry revealed feasibility of intercalation/deintercalation of Zn2+ ions with MnO2 cathode. • Best conducting electrolyte showed remarkable degradability in soil compost over a period of 90 days. - Abstract: Polymer-layered silicate nanocomposite electrolytes (PLSNEs) were prepared by utilizing a biodegradable polymer namely poly(ϵ-caprolactone) as host polymer and zinc triflate as dopant salt with the incorporation of varying concentrations of octadecylamine modified montmorillonite nanoclay and further characterized using various experimental techniques. A maximum conductivity of 9.5 × 10−5 S cm−1 was achieved for a 15 wt% loading of the nanoclay. X-ray diffraction and differential scanning calorimetric studies revealed the change occurring in the crystalline behavior of the electrolyte as a result of incorporation of the nanoclay. An appreciably good thermal and electrochemical stability was also observed thus suggesting applicability of the prepared electrolyte in commericial systems and therefore the feasibility of reduction and oxidation processes of MnO2 cathode with the prepared electrolyte system has also been evaluated by means of cyclic voltammetry. The best conducting sample of the polymer electrolyte showed a remarkable degradability over a degradation period of 90 days in soil compost

  10. Miniature Reservoir Cathode: An Update

    Science.gov (United States)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  11. Solution phase thermodynamics of strong electrolytes based on ionic concentrations, hydration numbers and volumes of dissolved entities

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2013-01-01

    Roč. 24, č. 6 (2013), s. 1895-1901. ISSN 1040-0400 Institutional support: RVO:68081707 Keywords : Solution thermodynamics * Aqueous electrolytes * Partial electrolytic dissociation Subject RIV: BO - Biophysics Impact factor: 1.900, year: 2013

  12. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  13. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  14. PLASMA ELECTROLYTIC OXIDATION OF TITANIUM

    OpenAIRE

    Aliasghari, Sepideh *

    2014-01-01

    Plasma electrolytic oxidation is used to prepare corrosion- and wear-resistant coatings on light metals. The extensive literature reports on coatings formed under a wide range of different electrical regimes and in diverse electrolyte compositions. However, little work is available that investigates systematically PEO of titanium under a range of electrical variables in a particular electrolyte. In the present work, coatings are formed in a silicate electrolyte under a range of current densit...

  15. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  16. The electrolytic deposition of carbon from molten Li2CO3

    International Nuclear Information System (INIS)

    Electrodeposition of carbon on an nickel electrode in molten salt has been investigated with the aid of scanning electron microscopy (SEM) and cyclic voltammetry, using molten LiCl, as a base electrolyte with adding of 1 and 5 % of Li2CO3. Commercial nickel wire was used as a cathode and graphite crucible as the anode electrode. A cyclic voltammograms for an nickel electrode indicates that the deposition or discharge of carbon at the cathode occurs at potential range of - 0.8 to -1.7 V. Further, SEM observations showed that morphology of the carbon at the cathode is in the form of a fairly hard black deposit. It was found that the quality of the deposit depends by the cathode surface, applied overpotential, content of lithium carbonate and the thickness of the carbon film. (Original)

  17. High speed electrostatic photomultiplier tube for the 1.06 micrometer wavelength. Cup and slat dynode chain combined with flat cathode and coax output produces 0.25 nsec rise time

    Science.gov (United States)

    Sparks, S. D.

    1973-01-01

    The Varian cup and slat dynode chain was modified to have a flat cathode. These modifications were incorporated in an all-electrostatic photomultiplier tube having a rise time of 0.25 n sec. The tube delivered under the contract had a flat S-20 opaque cathode with a useful diameter of 5 mm. The design of the tube is such that a III to V cathode support is mounted in place of the existing cathode substrate. This cathode support is designed to accept a transferred III to V cathode and maintain the cathode surface in the same position as the S-20 photocathode.

  18. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  19. 3-D Flow Field of Cathode Design for NC Precision Electrochemical Machining Integer Impeller Based on CFD

    Directory of Open Access Journals (Sweden)

    Rui Wu

    2011-09-01

    Full Text Available In order to achieve high efficiency and low cost cathode designing, improve stability of process in NC precision electrochemical machining of integer impeller, a method of applying Computational Fluid Dynamics (CFD to aid designing flow field structure of cathode and parameters for NC-ECM has been proposed in this study. The designing of flow field is the key point in cathode design and a suitable flow field design guarantees the process stability in electrochemical machining. A numerical model of the three-dimension flow field was built according to the geometrical model of interelectrode gap and cathode outline. Then the numerical simulation of 3-D flow field was performed by using the standard k-, turbulence model when the turbulence state in electrochemical machining had been determined. The effect of cathode’s structure and initial electrolyte pressure on the electrolyte flow field was analyzed according to the results of numerical simulation. A series of results similar to the actual experimental results are obtained. The method deduced in this paper could be used to achieve high efficiency and low cost cathode design, select of initial electrolyte pressure, and consequently a lot of “trial and error” cycles will be deduced.

  20. Metal supported tubular solid oxide fuel cells fabricated by suspension plasma spray and suspension high velocity oxy-fuel spray

    Science.gov (United States)

    Yoo, Yeong; Wang, Youliang; Deng, Xiaohua; Singh, Devinder; Legoux, Jean-Gabriel

    2012-10-01

    Low temperature (LT) metal supported solid oxide fuel cells (SOFCs) have many advantages in comparison to conventional electrode or electrolyte supported type SOFCs. NRC has demonstrated high performance LT metal supported planar SOFCs fabricated by either wet colloidal spray/sintering or suspension thermal spray. The combination of tubular configuration and metal supported SOFCs may produce more unique and very attractive advantages such as easy and inexpensive sealing method and materials, high specific and volumetric power density, cost-effective fabrication, enhanced robustness, rapid start up, red-ox cycle tolerance and potential use for a pressurized integrated system. In this paper, thin film solid electrolyte of Sm0.2Ce0.8O1.90 (SDC) and NiO-SDC composite anode on sintered porous tubular metal supports were deposited by suspension HVOF spray and suspension plasma spray, respectively on sintered porous tubular metal support. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode on the SDC electrolyte was formed by wet colloidal spray and subsequent sintering process as the final fabrication step. The detailed investigation of suspension and process-related parameters for suspension thermal spray was performed in order to produce thin and crack-free SDC thin film coatings. The electrochemical performance of single cells was demonstrated.

  1. Polymer membrane based electrolytic cell and process for the direct generation of hydrogen peroxide in liquid streams

    Science.gov (United States)

    White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)

    1997-01-01

    An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.

  2. Lithium-ion transport in inorganic solid state electrolyte

    Science.gov (United States)

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  3. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining

    Directory of Open Access Journals (Sweden)

    Sawicki Jerzy

    2015-01-01

    Full Text Available The paper presents the results of experimental studies of electrochemical machining process oriented on occurring in the treatment critical states caused by electrolyte flow hydrodynamic conditions in the gap between electrodes. Material forming in electrochemical machining is carried out by anodic dissolution. In general in ECM process, the essence of the treatment is that the workpiece is the anode and the tool is the cathode. The space between the anode and cathode is filled by electrolyte. The current flow between the electrodes causes anodic dissolution process, resulting in the removal of material from the anode. Choosing in the process of electrochemical machining, respectively: anode and cathode material, electrolyte and processing parameters, such conditions can be created that enable a high process efficiency and smoothness of the surface. Inappropriate selection of machining parameters can cause the emergence of critical states in the ECM, which are mainly related to the flow of the electrolyte in the gap between electrodes. This work is an attempt to assess the occurring critical states in ECM on the example of machining of curved surfaces with any sort of outline and curved rotating surfaces.

  4. An investigation of energy balances in palladium cathode electrolysis experiments

    International Nuclear Information System (INIS)

    In recently publicized cold fusion experiments at the University of Utah, generation of excess heat was reported. To investigate mechanisms that may contribute to energy flows in electrolysis cells, a series of experiments was performed at the Idaho National Engineering Laboratory (INEL). Ordinary water (H2O), heavy water (D2O), and mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in two configurations. Energy balances in these experiments revealed that some of the required voltage to sustain a given current is due to irreversibilities associated with cell operation. Particularly significant are electrolyte resistance and activation energy polarization effects. Energy balances in the INEL experiments showed there was no significant net grain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was seen in the INEL experiments. 4 refs., 6 figs., 2 tabs

  5. Use of Thermodynamic Modeling for Selection of Electrolyte for Electrorefining of Magnesium from Aluminum Alloy Melts

    Science.gov (United States)

    Gesing, Adam J.; Das, Subodh K.

    2016-06-01

    With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.

  6. Understanding the interfacial phenomena of a 4.7 V and 55 °C Li-ion battery with Li-rich layered oxide cathode and grap2hite anode and its correlation to high-energy cycling performance

    Science.gov (United States)

    Pham, Hieu Quang; Hwang, Eui-Hyung; Kwon, Young-Gil; Song, Seung-Wan

    2016-08-01

    Research progress of high-energy performance and interfacial phenomena of Li1.13Mn0.463Ni0.203Co0.203O2 cathode and graphite anode in a 55 °C full-cell under an aggressive charge cut-off voltage to 4.7 V (4.75 V vs. Li/Li+) is reported. Although anodic instability of conventional electrolyte is the critical issue on high-voltage and high-temperature cell operation, interfacial phenomena and the solution to performance improvement have not been reported. Surface spectroscopic evidence revealed that structural degradation of both cathode and anode materials, instability of surface film at cathode, and metal-dissolution from cathode and -deposition at anode, and a rise of interfacial resistance with high-voltage cycling in 55 °C conventional electrolyte are resolved by the formation of a stable surface film with organic/inorganic mixtures at cathode and solid electrolyte interphase (SEI) at anode using blended additives of fluorinated linear carbonate and vinylene carbonate. As a result, significantly improved cycling stability of 77% capacity retention delivering 227-174 mAhg-1 after 50 cycles is obtained, corresponding to 819-609 Wh per kg of cathode active material. Interfacial stabilization approach would pave the way of controlling the performance and safety, and widening the practical application of Li-rich layered oxide cathode materials and high-voltage electrolyte materials in various high-energy density Li-ion batteries.

  7. Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries

    Science.gov (United States)

    Nair, Jijeesh R.; Destro, Matteo; Bella, Federico; Appetecchi, Giovanni B.; Gerbaldi, Claudio

    2016-02-01

    Truly solid polymer electrolyte membranes are designed by thermally induced free radical polymerisation. The overall membrane architecture is built on a semi-interpenetrating polymer network (s-IPN) structure, where a di-methacrylate oligomer is cross-linked (in situ) in the presence of a long thermoplastic linear PEO chain and a supporting lithium salt to obtain a freestanding, flexible and non-tacky film. In the envisaged systems, the di-methacrylate functions as a soft cross-linker, thus avoiding physico-mechanical deformation of the s-IPNs at elevated temperature, without hampering the ionic conductivity. s-IPNs exhibit remarkable stability towards lithium metal and no traces of impurity are detected while testing their oxidation stability (4.7 V vs. Li/Li+) towards anodic potential. The newly elaborated system is also successfully tested at moderately high temperature in Li metal cells in which LiFePO4/C is used as the cathode active material, showing excellent indications of safe and highly durable electrolyte separator (i.e., 2000 cycles at reasonably high 1C rate).

  8. Role of Chloride for a Simple, Non-Grignard Mg Electrolyte in Ether-Based Solvents.

    Science.gov (United States)

    Sa, Niya; Pan, Baofei; Saha-Shah, Anumita; Hubaud, Aude A; Vaughey, John T; Baker, Lane A; Liao, Chen; Burrell, Anthony K

    2016-06-29

    Mg battery operates with Chevrel phase (Mo6S8, ∼1.1 V vs Mg) cathodes that apply Grignard-based or derived electrolytes, which allow etching of the passivating oxide coating forms at the magnesium metal anode. Majority of Mg electrolytes studied to date are focused on developing new synthetic strategies to achieve a better reversible Mg deposition. While most of these electrolytes contain chloride as a component, and there is a lack of literature which investigates the fundamental role of chloride in Mg electrolytes. Further, ease of preparation and potential safety benefits have made simple design of magnesium electrolytes an attractive alternative to traditional air sensitive Grignard reagents-based electrolytes. Work presented here describes simple, non-Grignard magnesium electrolytes composed of magnesium bis(trifluoromethane sulfonyl)imide mixed with magnesium chloride (Mg(TFSI)2-MgCl2) in tetrahydrofuran (THF) and diglyme (G2) that can reversibly plate and strip magnesium. Based on this discovery, the effect of chloride in the electrolyte complex was investigated. Electrochemical properties at different initial mixing ratios of Mg(TFSI)2 and MgCl2 showed an increase of both current density and columbic efficiency for reversible Mg deposition as the fraction content of MgCl2 increased. A decrease in overpotential was observed for rechargeable Mg batteries with electrolytes with increasing MgCl2 concentration, evidenced by the coin cell performance. In this work, the fundamental understanding of the operation mechanisms of rechargeable Mg batteries with the role of chloride content from electrolyte could potentially bring rational design of simple Mg electrolytes for practical Mg battery. PMID:27255422

  9. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    Science.gov (United States)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  10. Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Nickel sulfide (NiS) as a cathode material for a lithium rechargeable battery was charged and discharged at elevated temperature (80 deg. C) using a PEO solid polymer electrolyte. In order to synthesize a homogeneous NiS phase, very fine nickel metal powder was ball milled with sulfur powder for 12 h under argon gas. We found using ex-situ XRD measurements that the NiS cathode active material was transformed into other phases such as Ni3S2, nickel and sulfur during discharge. The initial discharge capacity of the NiS positive electrode was 580 mAh/g NiS at 1.5 V vs. Li/Li+ with PEO electrolyte. It has good cycling properties, retaining 93% of the initial discharge capacity even after 200 cycles with a PEO solid polymer electrolyte

  11. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell.

    Science.gov (United States)

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca(3)Co(2)O(6) (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm(-2) is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  12. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  13. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, Jie; Zhang, Jiguang; Wang, Chong M.

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.

  14. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  15. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  16. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  17. Aprotic gel polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Sedlaříková, M.; Krejza, O.

    Brno : University of Technology Brno, 2008, s. 71-72. ISBN 978-80-214-3659-6. [International Conference Advanced Batteries and Accumulators /9./. Brno (CZ), 29.06.2008-03.07.2008] R&D Projects: GA ČR(CZ) GA104/06/1471; GA AV ČR(CZ) KJB208130604 Institutional research plan: CEZ:AV0Z40320502 Keywords : gel polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  18. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  19. Micro-hollow cathode dischargers

    International Nuclear Information System (INIS)

    In order to develop a hollow cathode discharge (HCD) with its increased current over planar electrode glow discharges, the cathode fall, which is on the order of the mean free path for ionization, must be comparable in length to the hole diameter. This indicates that the discharge parameters vary with pressure, p, times hole diameter, D. The pD product for stable operation of a hollow cathosde discharge was quoted to be on the order of one to ten Torr cm for noble gases, less for molecular gases. White (1959) observed the hollow cathode effect in a neon discharge at a pressure of 100 Torr when the hole dimensions were less than 1 mm. The cathode hole in his experiments changed from a cylindrical into a spherical cavity due to sputtering. The anode consisted in White's experiment of a pin on the axis of the discharge geometry. We have studied micro-hollow (submillimeter) cathode discharges between two electrodes with aligned cylindrical holes by determining the current-voltage characteristics and the visual appearance of the discharge in argon over a wide range of pressure and voltage. The cross-section of the discharge geometry. The cathode is made of molybdenum or barium oxide inserted into a tungsten matrix (dispenser-cathode), the anode of molybdenum, and the dielectric spacer is mica. The discharge was operated under dc conditions, with half-wave rectified ac voltage applied, and pulsed with a 400 μs rectangular voltage pulse. The lower limit in pressure was determined by the maximum voltage which could be applied to the discharge geometry without breakdown along insulators. The upper limit, in this study, is determined by the transition from cathode electrode emission due to ion-impact to thermal emission of electrons, which causes a dramatic increase in current and a drop in forward voltage to values on the order of 20 V

  20. Investigation of the telluric effects arising along the cathodically protected natural gas pipeline between Karadeniz Ereğli and Düzce

    OpenAIRE

    DEMİREL, Bilal; YALÇIN, Hayri

    2013-01-01

    Cathodic protection is one of the most widely used applications for protecting underground and submarine metallic structures from corrosion. This method is based on providing the electrons, which metallic structures lose as a result of electrolytic reaction, by the cathodic protection system. However, from time to time, it may be possible that there is some unwanted interference input into the metallic structure in such applications. This study is aimed at ascertaining the existence...

  1. Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: • A novel Nickel fibers was developed as additive for sulfur cathode. • Composite cathode containing 3% nickel fibers has remarkable cycling stability and great rate capability. • Electrochemical analysis shows nickel fibers can absorb polysulfides, improve electronic conductivity, and facilitate the redox reactions in sulfur cathode. - Abstract: The commercialization of lithium sulfur batteries have so far hindered by the low electrochemical utilization and rapid capacity fading of sulfur cathode, which is induced by low electron conductivity and high dissolution of intermediate polysulfides. Recent studies have shown that the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and its metallic porous nanostructure can suppress the shuttle effect. In this work, we use the porous nanostructure of nickel fibers/sulfur as-designed composite cathode material for lithium sulfur batteries. The initial discharge capacity of the cathode with the added 3(%) nickel fibers was 805 mAh g−1, and the remaining capacity was 440 mAh g−1 after 50 cycles at 0.766 mA cm−2. Even at a high current density of 1.532 mA cm−2, it also kept a high discharge capacity of 310 mAh g−1. Compared with pure sulfur electrodes, the electrodes containing nickel fibers showed an obviously improved cycle and rate performances, confirming that metallic porous nanostructure of nickel can not only contribute to reducing the dissolution of polysulfides into electrolytes, but also has a catalytic effect on the redox reactions during charge-discharge process

  2. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    Science.gov (United States)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  3. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    Science.gov (United States)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  4. Hollow cathode hydrogen ion source

    International Nuclear Information System (INIS)

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm diameter hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10 to 90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 1012 cm-3. Discharge durations ranged from 30 seconds to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A cm-2 over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes

  5. Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries

    International Nuclear Information System (INIS)

    A soft matter solid electrolyte was prepared by polymerizing a monomer trimethylolpropane trimethylacrylate (TMPTMA) using in situ thermal polymerization into a non-ionic plastic crystal electrolyte, which is consisted of 5 mol% lithium bis-trifluoromethanesulfonimide dissolved in succinonitrile (SN). X-ray diffraction, differential scanning calorimetry and conductivity measurements are used to investigate the structural and electrochemical performance of the polymer electrolyte films. It exhibits high ionic conductivities, wide electrochemical window and excellent mechanical strength. The solid electrolyte with 7.5 wt% TMPTMA displays a high initial discharge capacity of 160.3 mA h g−1 at 0.1 C when combined with a LiFePO4 cathode and excellent capacity retention. With their beneficial properties, the polymer electrolytes are considered to have significant potential applications for lithium ion batteries

  6. Coalescence of Bubbles in Electrolyte Solutions.

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek

    Ozarow Mazowiecki : Nobell Compressing sp. z o.o, 2015 - (Kosinsky, K.; Urbanczyk, M.; Žerko, S.), s. 106 ISBN N. [Smart and Green Interfaces: Fundamentals and Diagnostics. Sofia (BG), 29.10.2015-31.10.2015] R&D Projects: GA ČR GAP504/12/1186 Institutional support: RVO:67985858 Keywords : coalescence * bubble * electrolytes Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  7. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  8. Mechanical and electrical properties of a LiCoO{sub 2} cathode prepared by screen-printing for a lithium-ion micro-battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon-Soo [School of Advanced Materials Science and Engineering, College of Engineering Yonsei University, Seoul 120-749 (Korea); Samsung Electro-Mechanics Maetan-3-dong, YeongTong-gu, Suwon City, Gyeonggi Province 442-743 (Korea); Hyun, Sang-Hoon [School of Advanced Materials Science and Engineering, College of Engineering Yonsei University, Seoul 120-749 (Korea); Nam, Sang-Cheol [Nuricell Inc., 4F, GS Caltex New Energy Development Center, 453-2, Seongnae-dong, Gangdong-gu, Seoul 134-030 (Korea)

    2007-11-01

    A thick-film cathode was fabricated by a screen-printing technique using LiCoO{sub 2} paste to improve the discharge capacity in lithium-ion micro-batteries. A LiCoO{sub 2} thick film (approximately 6 {mu}m) was formulated by screen-printing using ethyl-cellulose-based paste. As the adhesion force between the printed cathode and substrate was very weak, delamination was observed during the evaporation of a Li anode on a lithium phosphorous oxynitride (LiPON) solid electrolyte. In order to enhance the adhesion force, a small amount of epoxy was added to the ethyl-cellulose-based LiCoO{sub 2} paste. The printed cathode developed in this work showed a typical discharge curve of a LiCoO{sub 2} cathode with a discharge capacity close to the theoretical value when the cell was tested using an organic electrolyte. The assembly of an all-solid-state micro-battery with a stable open-circuit voltage (OCV) free from delamination or electrical problems is possible using LiPON solid electrolyte and Li evaporated onto printed LiCoO{sub 2} cathode thick films. The printed LiCoO{sub 2} thick film was shown to be a potential candidate for cathodes of all-solid-state micro-batteries, despite the fact that a low discharge capacity was obtained in this work. (author)

  9. Mechanical and electrical properties of a LiCoO2 cathode prepared by screen-printing for a lithium-ion micro-battery

    International Nuclear Information System (INIS)

    A thick-film cathode was fabricated by a screen-printing technique using LiCoO2 paste to improve the discharge capacity in lithium-ion micro-batteries. A LiCoO2 thick film (approximately 6 μm) was formulated by screen-printing using ethyl-cellulose-based paste. As the adhesion force between the printed cathode and substrate was very weak, delamination was observed during the evaporation of a Li anode on a lithium phosphorous oxynitride (LiPON) solid electrolyte. In order to enhance the adhesion force, a small amount of epoxy was added to the ethyl-cellulose-based LiCoO2 paste. The printed cathode developed in this work showed a typical discharge curve of a LiCoO2 cathode with a discharge capacity close to the theoretical value when the cell was tested using an organic electrolyte. The assembly of an all-solid-state micro-battery with a stable open-circuit voltage (OCV) free from delamination or electrical problems is possible using LiPON solid electrolyte and Li evaporated onto printed LiCoO2 cathode thick films. The printed LiCoO2 thick film was shown to be a potential candidate for cathodes of all-solid-state micro-batteries, despite the fact that a low discharge capacity was obtained in this work

  10. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles. PMID:26990320

  11. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H2 S O4 solution containing As2 O3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  12. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  13. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders

    Science.gov (United States)

    Hong, Xiaoheng; Jin, Jun; Wen, Zhaoyin; Zhang, Sanpei; Wang, Qingsong; Shen, Chen; Rui, Kun

    2016-08-01

    Sodium carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR), sodium alginate (SA) and LA132 are utilized as the polymer binders for the cathodes of Li-S batteries to study their dispersion mechanism on the cathode materials and the consequent influence on the performance of Li-S batteries. Zeta potential tests, differential scanning calorimetry analysis and calculations of the rotational barriers of the links of the polymer chains by General Atomic and Molecular Electronic Structure System (GAMESS) reveal that higher charge densities and better chain flexibility of the binders promise the dispersion of the downsized cathode materials. LA132 is found to have optimal characteristic for dispersing and stabilizing the cathode materials in aqueous environment. The cycling performance and SEM images of the cathodes demonstrate that cathodes with higher dispersion degree achieve higher discharge capacities. The electrochemical impedance spectroscopy (EIS) results further support that better dispersed cathodes have lower impedance resulting from their well established conducting frameworks.

  14. A Li-O₂/air battery using an inorganic solid-state air cathode.

    Science.gov (United States)

    Wang, Xiaofei; Zhu, Ding; Song, Ming; Cai, Shengrong; Zhang, Lei; Chen, Yungui

    2014-07-23

    The "(-) lithium (Li) anode|organic anolyte + inorganic catholyte|solid-state cathode (+)" Li-O2/air battery based on an inorganic solid-state air cathode was fabricated with a simple method. The electrochemical performance and reaction products of the Li-O2/air batteries under pure O2 and ambient air were investigated, respectively. The inorganic Li-ion conductive solid-state electrolyte Li1.3Al0.3Ti1.7(PO4)3 was stable during cycling and avoided the decomposition and volatilization problems that conventional organic electrolytes faced. Moreover, the porous air cathode provided a sufficient gas-phase O2-transport channel, facilitating the achievement of a high capacity of 14192 or 7869 mA h g(-1) under pure O2 or ambient air, respectively. Our results demonstrate that the Li-O2/air battery using an inorganic porous air cathode has a great potential for practical application. PMID:24959838

  15. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.

    Science.gov (United States)

    Wei, Shuya; Ma, Lin; Hendrickson, Kenville E; Tu, Zhengyuan; Archer, Lynden A

    2015-09-23

    Sulfur/polyacrylonitrile composites provide a promising route toward cathode materials that overcome multiple, stubborn technical barriers to high-energy, rechargeable lithium-sulfur (Li-S) cells. Using a facile thermal synthesis procedure in which sulfur and polyacrylonitrile (PAN) are the only reactants, we create a family of sulfur/PAN (SPAN) nanocomposites in which sulfur is maintained as S3/S2 during all stages of the redox process. By entrapping these smaller molecular sulfur species in the cathode through covalent bonding to and physical confinement in a conductive host, these materials are shown to completely eliminate polysulfide dissolution and shuttling between lithium anode and sulfur cathode. We also show that, in the absence of any of the usual salt additives required to stabilize the anode in traditional Li-S cells, Li-SPAN cells cycle trouble free and at high Coulombic efficiencies in simple carbonate electrolytes. Electrochemical and spectroscopic analysis of the SPAN cathodes at various stages of charge and discharge further show a full and reversible reduction and oxidation between elemental sulfur and Li-ions in the electrolyte to produce Li2S as the only discharge product over hundreds of cycles of charge and discharge at fixed current densities. PMID:26325146

  16. High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte membrane supported by a nickel-based anode of unique architecture

    Science.gov (United States)

    Sun, Haibin; Chen, Yu; Chen, Fanglin; Zhang, Yujun; Liu, Meilin

    2016-01-01

    Solid oxide fuel cells (SOFCs) based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte membrane supported by a nickel-based anode often suffers from undesirable reaction/diffusion between the Ni anode and the LSGM during high-temperature co-firing. In this study, a high performance intermediate-temperature SOFC is fabricated by depositing thin LSGM electrolyte membranes on a LSGM backbone of unique architecture coated with nano-sized Ni and Gd0.1Ce0.9O2-δ (GDC) particles via a combination of freeze-drying tape-casting, slurry drop-coating, and solution infiltration. The thickness of the dense LSGM electrolyte membranes is ∼30 μm while the undesirable reaction/diffusion between Ni and LSGM are effectively hindered because of the relatively low firing temperature, as confirmed by XRD analysis. Single cells show peak power densities of 1.61 W cm-2 at 700 °C and 0.52 W cm-2 at 600 °C using 3 vol% humidified H2 as fuel and ambient air as oxidant. The cell performance is very stable for 115 h at a constant current density of 0.303 A cm-2 at 600 °C.

  17. Diagnostics of cathode material loss in cutting plasma torch

    Czech Academy of Sciences Publication Activity Database

    Gruber, Jan; Šonský, Jiří; Hlína, Jan

    2014-01-01

    Roč. 47, č. 29 (2014). ISSN 0022-3727 Institutional support: RVO:61388998 Keywords : plasma torch * plasma cutting * cathode wear Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/29/295201/

  18. Modeling study of a Li–O2 battery with an active cathode

    International Nuclear Information System (INIS)

    In this study, a new organic lithium oxygen (Li–O2) battery structure is proposed to enhance battery capacity. The electrolyte is forced to recirculate through the cathode and then saturated with oxygen in a tank external to the battery. The forced convection enhances oxygen transport and alleviates the problem of electrode blockage during discharge. A two dimensional, transient, non-isothermal simulation model is developed to study the heat and mass transfer within the battery and validate the proposed design. Results show that this novel active cathode design improves the battery capacity at all discharge current densities. The capacity of the Li–O2 battery is increased by 15.5 times (from 12.2 mAh g−1 to 201 mAh g−1) at the discharge current of 2.0 mA cm−2 when a conventional passive electrode is replaced by the newly designed active electrode. Furthermore, a cathode with non-uniform porosity is suggested and simulation results show that it can reach a higher discharge capacity without decreasing its power density. Detailed mass transport processes in the battery are also studied. - Highlights: • Electrolyte is circulated through the cathode and externally saturated with oxygen. • A two-dimensional, transient, non-isothermal model is developed for a Li–O2 battery. • The new design's capacity can be 15.5 times that of a battery with passive cathode. • A cathode with non-uniform porosity is proposed to further enhance battery capacity

  19. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  20. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. PMID:26761603

  1. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  2. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

    Science.gov (United States)

    Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua; Yi, Feng; Zhu, Yujie; Liu, Yihang; Yang, Junhe; Wang, Chunsheng

    2013-12-23

    Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing process in cell assembly. The in situ formed Li2S/MC film cathode shows high Coulombic efficiency and long cycling stability in a conventional commercial Li-ion battery electrolyte (1.0 M LiPF6 + EC/DEC (1:1 v/v)). The reversible capacities of Li2S/MC cathodes remain about 650 mAh/g even after 900 charge/discharge cycles, and the Coulombic efficiency is close to 100% at a current density of 0.1C, which demonstrates the best electrochemical performance of Li2S/MC cathodes reported to date. Furthermore, this Li2S/MC film cathode fabricated via our in situ lithiation strategy can be coupled with a Li-free anode, such as graphite, carbon/tin alloys, or Si nanowires to form a rechargeable Li-ion cell. As the Li2S/MC cathode is paired with a commercial graphite anode, the full cell of Li2S/MC-graphite (Li2S-G) shows a stable capacity of around 600 mAh/g in 150 cycles. The Li2S/MC cathodes prepared by high-temperate sulfur infusion and SLMP prelithiation before cell assembly are ready to fit into current Li-ion batteries manufacturing processes and will pave the way to commercialize low-cost Li2S-G Li-ion batteries. PMID:24251957

  3. Electrodes/electrolyte interfaces in the presence of a surface-modified photopolymer electrolyte: application in dye-sensitized solar cells.

    Science.gov (United States)

    Sacco, Adriano; Bella, Federico; De La Pierre, Stefano; Castellino, Micaela; Bianco, Stefano; Bongiovanni, Roberta; Pirri, Candido Fabrizio

    2015-04-01

    Since hundreds of studies on photoanodes and cathodes show that the electrode/electrolyte interfaces represent a key aspect at the base of dye-sensitized solar cell (DSSC) performances, it is reported here that these interfaces can be managed by a smart design of the spatial composition of quasi-solid electrolytes. By means of a cheap, rapid, and green process of photoinduced polymerization, composition-tailored polymer electrolyte membranes (PEMs) with siloxane-enriched surfaces are prepared, and their properties are thoroughly described. When assembled in DSSCs, the interfacial action promoted by the composition-tailored PEMs enhances the photocurrent and fill factor values, thus increasing the global photovoltaic conversion efficiency with respect to the non-modified PEMs. Moreover, the presence of the siloxane-chain-enriched surface increases the hydrophobicity and reduces the water vapor permeation into the device, thus enhancing the cell's durability. PMID:25677499

  4. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte

    Science.gov (United States)

    Dudney, Nancy J.

    Three rechargeable lithium cells have been fabricated using thin films of Li and sputter-deposited Li xMn 2- yO 4 as the electrodes, and a LiPF 6 organic liquid electrolyte. Cells were cycled up to 18 times between 4.5 and 2.5 V at 25°C both with and without the addition of the thin-film lithium phosphorus oxynitride solid electrolyte, known as Lipon. Of the cells tested, the Lipon film was most effective in maximizing the capacity and cycling efficiency when deposited in direct contact with the cathode; however, a significant improvement over the Lipon-free cell was also observed with Lipon sandwiched between layers of the liquid electrolyte. In the latter case, the Lipon was deposited onto a microporous polypropylene separator membrane.

  5. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, N.J. [Oak Ridge National Lab., TN (United States). Solid State Div.

    2000-08-01

    Three rechargeable lithium cells have been fabricated using thin films of Li and sputter-deposited Li{sub x}Mn{sub 2-y}O{sub 4} as the electrodes, and a LiPF{sub 6} organic liquid electrolyte. Cells were cycled up to 18 times between 4.5 and 2.5 V at 25 C both with and without the addition of the thin-film lithium phosphorus oxynitride solid electrolyte, known as Lipon. Of the cells tested, the Lipon film was most effective in maximizing the capacity and cycling efficiency when deposited in direct contact with the cathode; however, a significant improvement over the Lipon-free cell was also observed with Lipon sandwiched between layers of the liquid electrolyte. In the latter case, the Lipon was deposited onto a microporous polypropylene separator membrane. (orig.)

  6. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    Science.gov (United States)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  7. Neutronic measurements on electrolytic cells with deuterated palladium in a submarine environment

    International Nuclear Information System (INIS)

    Using a high efficiency system for the neutron thermal detection and a pulsed electrolytic current procedure, measurements were made on cells containing Pd cathodes and electrolytes at a D2O and H2O base. The peculiarity of these experiments is that they were carried out on board of the A.R.A. Santa Cruz submarine, at a depth of 50m under sea level, attaining ultra deep-down conditions in the measurements, corresponding to a reduction in a factor = 50 in relation to lab conditions. The mean level of the signal -obtained from counting combination of deuterated cathodes- results to be separated from the deep-down level by four standard deviations. (Author)

  8. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells

    KAUST Repository

    Hou, Jie

    2015-01-01

    Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.

  9. Deposição eletrolítica catódica e anódica simultâneas para minimizar interferências de cobre e chumbo na determinação espectrofotométrica de cádmio em água e alimentos via reação com Verde de Malaquita e iodeto Cathodic and anodic simultaneous electrolytic deposition to minimize copper and lead interferences on spectrophotometric determination of cadmium by the Malachite Green-iodide reaction

    Directory of Open Access Journals (Sweden)

    Adriana Paiva de Oliveira

    2001-12-01

    Full Text Available Simultaneous electrolytic deposition is proposed for minimization of Cu2+ and Pb2+ interferences on automated determination of Cd2+ by the Malachite Green-iodide reaction. During electrolysis of sample in a cell with two Pt electrodes and a medium adjusted to 5% (v/v HNO3 + 0.1% (v/v H2SO4 + 0.5 mol L-1 NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. With 60 s electrolysis time and 0.25 A current, Pb2+ and Cu2+ levels up to 50 and 250 mg L-1 respectively, can be tolerated without interference. With on-line extraction of Cd2+ in anionic resin minicolumn, calibration graph in the 5.00 - 50.0 µg Cd L-1 range is obtained, corresponding to twenty measurements per hour, 0.7 mg Malachite Green and 500 mg KI and 5 mL sample consumed per determination. Results of the determination of Cd in certified reference materials, vegetables and tap water were in agreement with certified values and with those obtained by GFAAS at 95% confidence level. The detection limit is 0.23 µg Cd L-1 and the RSD for typical samples containing 13.0 µg Cd L-1 was 3.85 % (n= 12.

  10. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  11. Cathodic micro-arc electrodeposition of yttrium stabilized zirconia (YSZ) coatings on FeCrAl alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The formation of ceramic coatings on metal substrate by cathodic electrolytic deposition (CELD) has received more attention in recent years. But only thin films can be prepared via CELD. Yttrium stabilized zirconia (YSZ) ceramic coatings were deposited on FeCrAl alloy by a novel technique--cathodic micro-arc electrodeposition (CMED). The result shows that, when a high pulse electric field is applied to the cathode which was pre-deposited with a thin YSZ film, dielectric breakdown occurs and micro-arc discharges appear. Coatings with reasonably thickness of ~300μm and crystalline structure can be deposited on the cathode by utilizing the energy of the micro-arc. The thickness of the as-deposited coating is dominated by the voltage and the frequency. Y2O3 is co-deposited with ZrO2 when Y(NO3)3 was added to the electrolyte, which stabilize t-phase, t′- phase and c-phase of ZrO2 at room temperature. The amount of the m-ZrO2 in the coating is diminished by increasing the concentration of Y(NO3)3 in the electrolyte. This report describes the processing of CMED and studies the microstructure of the deposited YSZ coatings.

  12. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  13. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

    Science.gov (United States)

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng

    2016-05-11

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials. PMID:27090502

  14. Separation of Fluoride Ions in an Electrolytic Cell by Using an AnionExchange Membrane

    International Nuclear Information System (INIS)

    Separation of fluoride ions in an electrolytic cell with an anionexchange membrane which is so-called an electrodialysis process has beenperformed. The experiment have been taken place in room temperature in anelectrolytic cell made by plexiglas consisted on anode and cathode chambersseparated by an anion exchange membrane in dimension of 4 x 4 cm. The carbonand stainless steel are applied as an anode and platinum as s' cathode. Theanolyte is a HNO3 0.3 M solution, while a solution of NaF 0.3 M, and amixture of NaF 0.3 M containing uranyl nitrate solution for separating offluoride ions and uranium are used as a catholyte. The distance between theelectrode and the membrane is 1.5 cm and this distance is kept constant. Theparameters observed are the current voltage, cathode applied, and uraniumconcentration. For the solution without uranium, the results show that thefluoride ions transferred are around 50 % using carbon as a cathode for 3hours and the voltage of 10 volts, while for SS as a cathode are around 93 %.For the solution containing uranium, the fluoride ions transferred are around78 % for 3.5 hours and the uranium ions remain in the catholyte in which mostof them are as 8 yellow deposit of Na2U2O7 on the cathode surface andothers are as a white precipitate of NaUF5 on the bottom of the cathodechamber. (author)

  15. Electrolytes - Technology review

    International Nuclear Information System (INIS)

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted

  16. Electrolytes - Technology review

    Energy Technology Data Exchange (ETDEWEB)

    Meutzner, Falk; Ureña de Vivanco, Mateo [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  17. Physiological aspects of fluid and electrolyte balance

    OpenAIRE

    Lobo, Dileep N.

    2003-01-01

    The intake of water and electrolytes is inseparable from feeding by natural or artificial means and careful attention to salt and water balance is a vital component of perioperative care and of nutritional support. Nutritional support with water and sodium restriction in post-intensive care patients with oedema, dilutional hypoalbuminaemia and fluid excess of 10 L, cleared oedema over 7-10 days, with a 1 g/L rise in serum albumin for every kg loss in weight. Return of gastrointestinal func...

  18. Synthesis of a Lewis-acidic boric acid ester monomer and effect of its addition to electrolyte solutions and polymer gel electrolytes on their ion transport properties

    International Nuclear Information System (INIS)

    A polymerizable anion receptor based on a boric acid ester was synthesized. When the anion receptor was added to different electrolyte solutions consisting of an aprotic solvent and a lithium salt, the ionic conductivity of certain electrolyte solutions, composed of low polar solvents or salts with low dissociation abilities, was enhanced appreciably. Viscosity measurements for the electrolyte solutions, with and without the added anion receptor, indicated that the conductivity enhancement was caused by an increase in the ionic dissociation due to the addition of the anion receptor. Pulse-field-gradient spin-echo (PGSE) NMR and 11B-NMR spectra supported that the ionic dissociation was facilitated by interaction between the Lewis-acidic anion receptor and Lewis-basic anions. The polymerizable anion receptor was crosslinked with a polyether macromonomer in different electrolyte solutions. Ionic conductivity of the resulting polymer gel electrolytes was also altered like that of the electrolyte solutions containing the anion receptor monomer

  19. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  20. Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells

    OpenAIRE

    Volkov, Sergey; Vonk, Vedran; Khorshidi, Navid; Franz, Dirk; Kubicek, Markus; Kilic, Volkan; Felici, Roberto; Huber, Tobias M.; Navickas, Edvinas; Rupp, Ghislain M.; Fleig, Jürgen; Stierle, Andreas

    2016-01-01

    We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % y...

  1. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate

    OpenAIRE

    Massot, Laurent; Chamelot, Pierre; Taxil, Pierre

    2006-01-01

    This article demonstrates that coatings of tantalum carbide can be obtained by electrodeposition of carbon in molten fluorides on a tantalum substrate as an alternative to the CVD process. The structural characteristics of the carbon deposited by the electrolytic route lead to a high reactivity of this element towards a tantalum cathode to produce tantalum carbide. Mutual reactivity was shown to be enhanced if tantalum plate is replaced by an electrodeposited layer of tantalum, where th...

  2. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson;

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  3. Electrochemical characteristics, thermal and chemical compatibility in the La0.7Sr0.3CoO3 electrode-γ-BIFEVOX electrolyte system

    OpenAIRE

    Buyanova, E. S.; Shafigina, R. R.; Morozova, M. V.; Emel'yanova, Yu. V.; Khisametdinova, V. V.; Zhukovskii, V. M.; Petrova, S. A.; Tarakina, N. V.

    2013-01-01

    The electrochemical characteristics and compatibility of components of the electrode-electrolyte system, where the electrolyte is chosen to be γ-BIFEVOX compositions crystallizing in a stable tetragonal phase and the cathode material is chosen to be composite electrodes of composition La 0.7Sr0.3CoO3 + Bi4V 1.7Fe0.3O11-δ, were studied. © 2013 Pleiades Publishing, Ltd.

  4. Effect of LiFePO4 cathode density and thickness on electrochemical performance of lithium metal polymer batteries prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Highlights: • Electrode density and thickness affect redox property of lithium metal polymer cells. • Higher density and lower thickness in LiFePO4 cathodes lead to better performances. • An optimized LiFePO4 and polymer electrolyte delivers a good cycle life at a 2 C rate. - Abstract: In order to investigate the effects of electrode density and thickness on the room temperature electrochemical performance of lithium metal polymer batteries (LMPBs), four LiFePO4 cathodes with different electrode density/thickness (1.6 g cm−3/20 μm, 1.6 g cm−3/40 μm, 2.0 g cm−3/20 μm, and 2.0 g cm−3/40 μm) are prepared. Several types of unit cells employing each cathode are prepared using in situ thermally cross-linked polymer electrolytes controlled under the same manufacturing condition. The unit cells employing the thinnest cathode with highest density achieve the most improved rate capability and cycle life, which seems to be attributed to the higher electrical conductivity of the cathode and shorter diffusion length of Li+ ions within the cathode pores. In addition, the LMPB with an optimized LiFePO4 cathode (2.0 g cm−3, 20 μm) and polymer electrolyte (5 vol% of the crosslinking agent with non-volatile liquid electrolytes) delivers a high and stable charge/discharge capacity under very fast charging and discharging conditions (at a 2 C rate) at room temperature

  5. Application of wet powder spraying for anode supported solid oxide fuel cell with a perovskite SrTi{sub 0.98}Nb{sub 0.02}O{sub 3-{delta}} anode

    Energy Technology Data Exchange (ETDEWEB)

    Gdaniec, Pawel; Karczewski, Jakub; Bochentyn, Beata; Gazda, Maria; Kusz, Boguslaw [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, 80-233 (Poland); Molin, Sebastian; Jasinski, Piotr [Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, 80-233 (Poland); Krupa, Andrzej [Institute of Fluid Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, Gdansk, 80-231 (Poland)

    2013-12-15

    Anode-supported solid oxide fuel cell with SrTi{sub 0.98}Nb{sub 0.02}O{sub 3-{delta}}anode, yttria-stabilized zirconia electrolyte and La(Ni{sub 0.6}Fe{sub 0.4})O{sub 3{+-}{delta}} cathode has been successfully fabricated and evaluated. Process of anode support fabrication has been presented. Wet powder spraying and high temperature sintering method have been studied and applied to deposit the thin electrolyte layer.In order to improve catalytic properties of the anode, it has been impregnated with Ni. Electrical properties of fuel cells have been measured to determine their performance. The open cell voltage of 1.08 V and maximum power density at the level of 160 mWcm {sup -2} were observed at 800 C. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Thin film polymeric gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  7. Development of highly active and stable hybrid cathode catalyst for PEMFCs

    Science.gov (United States)

    Jung, Won Suk

    Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs. In this dissertation, a novel catalyst synthesis methodology is developed and compared with catalysts prepared using impregnation method and commercial catalysts. Two approaches are investigated for the catalyst development. The catalyst durability was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The structural and electrochemical properties of Pt/CCC catalyst are investigated using high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical properties. The synergistic effect of CCC and Pt is confirmed by the observed high activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present within the CCC support into the Pt nanoparticles during heat-treatment. The optimized Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the catalyst prepared using the impregnation method in PEMFCs and showed high

  8. A novel stability-enhanced lithium-oxygen battery with cellulose-based composite polymer gel as the electrolyte

    International Nuclear Information System (INIS)

    Highlights: • A novel cellulose-based composite polymer gel electrolyte (PGE) membrane is prepared. • PGE exhibits excellent ionic conductivity and electrochemical stability. • PEG reduces the penetration of oxygen to lithium anode and electrolyte loss. • Non-aqueous Li/O2 battery employing PGE membrane displays good cyclic stability. - Abstract: A novel lithium-oxygen (Li-O2) battery with a polymer gel electrolyte (PGE) membrane is successfully prepared. The membrane is a blend of cellulose acetate (CA) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and is fabricated using a solution casting technique followed by impregnation with lithium bis(trifluoromethane sulfonimide) (LiTFSI) solution. We demonstrate that the PGE membrane has good electrolyte uptake and shows high ionic conductivity as well as excellent thermal and electrochemical stability. A Li-O2 battery containing our PGE as the electrolyte and separator exhibits good rate capability and enhanced cycling capacity retention compared to a battery using commercial liquid electrolyte and a polyethylene (PE) separator under the same conditions. We attribute this enhanced performance to the PGE, which maybe restrain the diffusion of oxygen from the air cathode to the Li metal anode. This study may prove valuable for resolving the problem of poor cycling stability in Li-O2 batteries caused by oxygen diffusion from cathode to anode

  9. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  10. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  11. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    International Nuclear Information System (INIS)

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs

  12. Radioactive Waste Minimization by Electrolytic Extraction and Destruction in a Purex-Truex Actinide Separation System

    International Nuclear Information System (INIS)

    Electrolytic extraction of noble metals from nitric acid media was investigated. The largest deposition yield was obtained for Pd, supported by its large rate constants. Rate constants of RuNO3+ and ReO4- were, however, smaller than that of Pd2+; their yield can be improved under high cathode current supply in lower nitric acid concentration. Rather high apparent activation energy was observed for the deposition of RuNO3+. Peculiar masking or synergistic effects in their electrodeposition behaviors might be due to mutual interaction of RuNO3+, Pd2+ with ReO4- in nitric acid solution. Sufficiently different redissolution potentials for deposited metals indicate their fractional recovery by anode processing.Mediatory electrochemical oxidation (MEO) was investigated for the mineralization of waste OφD[iB]CMPO (hereafter CMPO) by burning its bulky hydrocarbon moiety under the existence of various kinds of metal ions. Only Ag2+/+ offered high-current efficiency up to 75%, fairly exceeding that by direct electrooxidation. Redox coupling characterized by a simple electron transfer, Mm+ + ne- M(m-n)+ provided high E0, will act exactly as an active mediator. As for the destruction paths for CMPO by MEO, cleavage between carbonyl C and N of amide moiety was of principal importance. The coupling of Co3+/2+ is also recommended because of hydraulic advantages

  13. Fabrication of TiO2 Cathodes by Anodic Oxidation for Hydrogen Generation from Electrolysis of Water

    Directory of Open Access Journals (Sweden)

    *İ. Koyuncu

    2014-09-01

    Full Text Available In this investigation, titanium oxide plates were used as cathode for hydrogen production in the aqueous solutions of sulfuric acid, potassium hydroxide, acetic acid and ammonia hydroxides electrolytes separately. Gaseous hydrogen was produced at the cathode and oxygen at the anode. For this purpose, titanium plates were fabricated in acid solution by anodic oxidation. Microstructure of TiO2 nanorod observation was conducted with scanning electron microscopy (SEM. The effects of operating conditions and the electrochemical test parameters, such as electrolytes concentration, temperature, and cell voltage were investigated. Also the performance of TiO2 cathode was compared to zirconium oxide and graphite electrodes. The results show that the highly rated, hydrogen production performance on TiO2 cathode has better than the other electrodes. The maximum rate of hydrogen production is by TiO2 cathode 8.18 ml/ (h. cm2. The cell efficiency for water electrolysis was reached 95% using titanium oxide electrode in 1.5 M H2SO4.

  14. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  15. Hollow cathode arc: effect of the cathode material on the internal plasma

    International Nuclear Information System (INIS)

    In discharges with hollow cathodes functioning in the arc regime, the cathode emits thermionic electrons which ionize the gas. To reduce the electrical power consumed by these discharges, cathodes made of thoriated tungsten and lathanum hexaboride have been used. The parameters of the plasma generated into the cathode have been measured with electrostatic probes. (Auth.)

  16. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  17. Hydrolysis of and oxide solubilities in melts related to electrolytic magnesium production

    Energy Technology Data Exchange (ETDEWEB)

    Vindstad, J.E.

    1996-12-31

    It takes about 13-14 kWh to produce 1 kg magnesium metal by today`s technology, although the thermodynamic energy required is only about 6.8 kWh/kg (at 700{sup o}C). The specific energy consumption of a magnesium electrolysis cell is inversely proportional to the current efficiency, which is affected by the presence of impurities in the electrolyte. A high current efficiency requires that the cathode is well wetted by the liquid magnesium and that the latter is well wetted by the electrolyte. If the metal does not wet the cathode, and the melt not the metal, then the cathodic overvoltage and thus also the energy consumption increases. The presence of water has a detrimental effect on the electrolysis because an MgO film forms on the metal when the water reacts with the magnesium produced, thus interfering with the wetting of the cathode by the metal. It follows that a thorough knowledge of the processes going on in the hydrolysis is important for improving the energy efficiency of the magnesium production. The first part of this doctoral thesis discusses experiments on the equilibria established during hydrolysis of pure liquid MgCl{sub 2} and of a liquid NaCl-MgCl{sub 2} mixture at 730 and 675 {sup o}C. The second part deals with the effect of fluoride on the solubility of MgO in MgCl{sub 2}-containing melts. 67 refs., 35 figs., 12 tabs.

  18. Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); West, Robert [Organosilicon Research Center, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (United States)

    2010-09-15

    Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, -(CH{sub 2}CH{sub 2}O)-{sub n}, n = 2-7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by {sup 1}H, {sup 13}C, and {sup 29}Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF{sub 6}, the disiloxane electrolytes showed conductivities up to 6.2 x 10{sup -4} S cm{sup -1} at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF{sub 6}, LiBOB can provide a good passivation film on the graphite anode. The LiPF{sub 6}/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi{sub 0.80}Co{sub 0.15}Al{sub 0.05}O{sub 2} as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries. (author)

  19. Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membranes based on a solid state reaction

    NARCIS (Netherlands)

    Bi, Lei; Fang, Shumin; Tao, Zetian; Zhang, Shangquan; Peng, Ranran; Liu, Wei

    2009-01-01

    We describe a solid state reaction for the preparation of both NiO–BaCe0.7Ta0.1Y0.2O3−δ anode substrates and BaCe0.7Ta0.1Y0.2O3−δ (BCTY10) electrolyte membranes on porous NiO–BCTY10 anode substrates. The amounts of the pore forming additive in the substrates showed a significant influence on the den

  20. Performance Evaluation of Stirrers for Preventing Dendrite Growth on Liquid Cathode

    International Nuclear Information System (INIS)

    An electrolytic system (zinc anode-gallium cathode) was setup to evaluate the performance of several stirrers prepared for this study, where stirrers have been used to prevent uranium from forming dendrite on the cathode in pyrochemical process. In the case of no-stirring condition, zinc dendrites began to grow on the gallium surface in 1 hour and some dendrite grew out of the cathode crucible around 6 hours. When a rectangular stirrer or a tilt stirrer was rotated, at 40150 rpm, to mix the liquid gallium cathode, dendritic growth of zinc metal was prevented irrespective of revolution speed, but some of the deposits overflowed out of the cathode crucible owing to the large centrifugal forces at 150 rpm. The harrow stirrer did not nearly retard the dendrite growth at 40 rpm, but the dendrite growth was retarded at higher than 100 rpm and the zinc deposits also did not overflow at 150 rpm. Pounder could also prevent the dendrite growth to some extent but it had some difficulties in operation compared with other types of stirrers.

  1. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  2. Electrolytes and thermoregulation

    Science.gov (United States)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  3. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    Science.gov (United States)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy

  4. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance

    OpenAIRE

    Arnab Ghosh; Swapnil Shukla; Gaganpreet Singh Khosla; Bimlesh Lochab; Sagar Mitra

    2016-01-01

    A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical conf...

  5. Lanthanum germanate-based apatites as electrolyte for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D.; Diaz-Carrasco, P.; Ramos-Barrado, J.R. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain)

    2011-02-15

    Germanate apatites with composition La{sub 10-x}Ge{sub 5.5}Al{sub 0.5}O{sub 26.75-3x/2} have been evaluated for the first time as possible electrolytes for solid oxide fuel cells (SOFCs). Different electrode materials have been considered in this study, i.e. manganite, ferrite, nickelates and cobaltite as cathode materials; and NiO-CGO composite and chromium-manganite as anodes. The chemical compatibility and electrochemical performance of these electrodes with La{sub 9.8}Ge{sub 5.5}Al{sub 0.5}O{sub 26.45} have been studied by X-ray powder diffraction (XRPD) and impedance spectroscopy. The XRPD analysis did not reveal appreciable bulk reactivity with the formation of reaction products between the germanate electrolyte and these electrodes up to 1,200 C. However, a significant cation interdiffusion was observed by energy dispersive spectroscopy (EDS) at the electrode/electrolyte interface, which leads to a significant decrease of the performance of these electrodes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Development of a high-performance composite cathode for LT-SOFC

    Science.gov (United States)

    Lee, Byung Wook

    Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were

  7. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte.

    Science.gov (United States)

    Chellamuthu, Jeganathan; Nagaraj, Pavithra; Chidambaram, Sabari Girisun; Sambandam, Anandan; Muthupandian, Ashokkumar

    2016-09-01

    High purity light sensitive photoactive protein Bacteriorhodopsin (BR) was isolated successfully via a simple two phase extraction technique (ATPS) as an alternate method for the tedious sucrose gradient ultracentrifugation procedure (SGU). Bio sensitized solar cells (BSSCs) were fabricated by the integration of BR into TiO2 (photo anode) with acetamide based gel electrolytes and platinum (photo cathode) as a counter electrode. The structural and photoelectrical behaviours of BR and BSSCs were analyzed by Atomic Force Microscopy, Raman spectroscopy, photocurrent and photovoltage (IV) measurement and electrochemical impedance spectroscopy. The short circuit photocurrent (Jsc) and photoelectric conversion efficiency (η) of acetamide based gel electrolyte (AG) (1.08mAcm(-2), 0.49%) are twice higher than that of traditional triiodide based liquid electrolyte (LE) (0.62mAcm(-2), 0.19%). Also, quasi-Fermi level and lifetime of photogenerated electrons in acetamide based gel electrolyte is about four times higher than that observed in traditional triiodide redox electrolyte. A comparison of the observed results with similar BSSCs made of other natural photoactive protein systems shows that BR as sensitizer has better photovoltaic performance. The enhanced photocurrent generation of the BSSC constructed in our study could be due to the interaction of BR with acetamide based modified poly(ethylene)oxide (PEO) gel electrolyte. PMID:27380296

  8. Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Highlights: • “MEEP” based gel polymer electrolytes: high ionic conductivities (σtotal = 2.3 mS cm−1 at 30 °C and high lithium transference number (T+ = 0.31 at 90 °C) . • Electrochemically stable vs. lithium metal to 4.5 V. • 500 cycles of lithium plating/stripping without dendrite formation. • High capacity of 140 mAh g−1 using “MEEP” gel polymer electrolyte with LiFePO4 cathode at 5 C discharge rate. - Abstract: A detailed electrochemical study is presented of the lithium ion transport in polyphosphazene based gel polymer electrolytes. The polyphosphazene poly[bis(2-(2-methoxyethoxy) ethoxy) phosphazene (MEEP) was chosen for the polymeric network. In combination with liquid electrolytes (organic carbonates with lithium bis(oxalato) borate and lithium(hexafluoro) phosphate) gel polymer electrolyte membranes with very good ionic conductivities of 2.3 mS cm−1 at 30 °C and high lithium transference numbers of 0.31 at 90 °C were prepared. The investigated electrolytes exhibited very good interface stability at lithium metal electrodes during long term lithium plating/stripping experiments with up to 500 cycles. Discharge rate investigations on full cells consisting of lithium metal ∣ MEEP gel polymer ∣ LiFePO4 delivered high capacities of 140 mAh g−1 at a discharge rate of 5C

  9. Multi-Field Coupling Mechanism of Electrolytic In-process Dressing- Ultrasonic Honing System

    Directory of Open Access Journals (Sweden)

    Jicai Kuai

    2013-07-01

    Full Text Available This paper proposes the ELID (Electrolytic in Process Dressing ultrasonic honing system, and conducts simulation for the solution - acoustic coupling mechanism of electrolyte between the anion and cathode of ELID ultrasonic honing system. Meanwhile, a comparative experiment is carried out for the ultrasonic honing and ordinary honing. The simulation results show that there is no obvious increase of the coupling speed of the system’s electrolyte, but the rapid change of local speed, which will accelerate the electrolyte renewal around the electrode, thereby intensifying the mass transfer of reactive ion of the electrochemical double layer, increasing the updating speed of ion concentration and speeding up the electrode reaction process; the intense variations of coupling pressure further enhances the updating speed of the electrolyte; Then the electrolytic parameters, ultrasound parameters and honing parameters obtained by simulation are respectively used to conduct experiments of ELID-ultrasound honing, ultrasound honing and traditional honing for ZrO2 ceramic. The comparative experiment results show that the machining accuracy of ELID-ultrasonic honing is 10 times of the traditional honing and twice of the ultrasonic honing; the new acoustic system adopted in ELID-ultrasound honing system reduces the amplitude, so the processing efficiency increase is not significant. This ELID-ultrasonic honing system is more suitable for the ultra-precision honing of certain difficult-to-cut materials.  

  10. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  11. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Science.gov (United States)

    Rahmawati, Suci A.; Sulistyaningsih, Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R.

    2016-02-01

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  12. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    International Nuclear Information System (INIS)

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF

  13. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.

    Science.gov (United States)

    Yu, Xingwen; Bi, Zhonghe; Zhao, Feng; Manthiram, Arumugam

    2015-08-01

    Lithium-sulfur (Li-S) batteries are receiving great attention as the most promising next-generation power source with significantly high charge-storage capacity. However, the implementation of Li-S batteries is hampered by a critical challenge because of the soluble nature of the intermediate polysulfide species in the liquid electrolyte. The use of traditional porous separators unavoidably allows the migration of the dissolved polysulfide species from the cathode to the lithium-metal anode and results in continuous loss of capacity. In this study, a LiSICON (lithium super ionic conductor) solid membrane is used as a cation-selective electrolyte for lithium-polysulfide (Li-PS) batteries to suppress the polysulfide diffusion. Ionic conductivity issue at the lithium metal/solid electrolyte interface is successfully addressed by insertion of a "soft", liquid-electrolyte integrated polypropylene interlayer. The solid LiSICON lithium-ion conductor maintains stable ionic conductivity during the electrochemical cycling of the cells. The Li-PS battery system with a hybrid solid/liquid electrolyte exhibits significantly enhanced cyclability relative to the cells with the traditional liquid-electrolyte integrated porous separator. PMID:26161547

  14. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  15. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  16. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.R. [State Key Laboratory of Environmental Adaption for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510663 (China); Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: lixiaogang99@263.net; Ma, J. [State Key Laboratory of Environmental Adaption for Industrial Products, China National Electric Apparatus Research Institute, Guangzhou 510663 (China); Dong, C.F. [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Huang, Y.Z. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2009-05-15

    The corrosion behavior of aluminum alloy 7075-T6 dependent of the thin electrolyte layers in 1 M sodium sulfate solution has been investigated using cathodic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The oxygen reduction current is measured to be maximum at -1.1 V by cathodic polarization test when the thickness of the electrolyte layer is 110 {mu}m. The EIS results show that the corrosion rate increases with the increase of the immersing time independent of thickness of the electrolyte layer although 110 {mu}m thick electrolyte layer produces the largest corrosion rate over the immersing time between 0 h and 96 h. However, with the longer immersing time, corrosion rate of the sample in bulk solution becomes higher. This result can be explained that the diffusion of the corrosion product and the metal ions from the electrode in the case of the thicker layer is easier. SEM morphologies reveal that corrosion products on the surface of the samples are distributed unhomogenously, with their amount near edges being more than the center area. In addition, XPS analysis demonstrates that corrosion products are mainly composed of Al(OH){sub 3} and Al{sub 2}(SO{sub 4}){sub 3}.

  17. Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-12-01

    We propose in this work a polyethylene glycol dimethyl ether (MW 500) dissolving lithium trifluoromethansulfonate (LiCF3SO3) salt as suitable electrolyte media for a safe and efficient use of the lithium metal anode in battery. Voltammetry and galvanostatic tests reveal significant enhancement of the electrolyte characteristics, in terms of cycling life and chemical stability, by the addition of lithium nitrate (LiNO3) to the solution. Furthermore, PFG NMR measurements suggest the applicability of the electrolyte in battery in terms of ionic conductivity, lithium transference number, ionic-association degree and self-diffusion coefficient. Accordingly, the electrolyte is employed in a lithium battery using lithium iron phosphate as the selected cathode. The battery delivers a stable capacity of 150 mAh g-1 and flat working voltage of 3.5 V, thus leading to a theoretical energy density referred to the cathode of 520 Wh kg-1. This battery is considered a suitable energy storage system for advanced applications requiring both high safety and high energy density.

  18. Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries

    International Nuclear Information System (INIS)

    The improvement of LiFePO4 (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf6 as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10th cycles of LiFePO4 with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, such as higher capacity and better efficiency

  19. Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries

    Science.gov (United States)

    Honggowiranto, Wagiyo; Kartini, Evvy

    2016-02-01

    The improvement of LiFePO4 (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf6 as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10th cycles of LiFePO4 with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, such as higher capacity and better efficiency.

  20. Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis

    Science.gov (United States)

    Moriche, R.; Marrero-López, D.; Gotor, F. J.; Sayagués, M. J.

    2014-04-01

    Mechanosynthesis of La1-xSrxMnO3 (x = 0, 0.25, 0.5, 0.75 and 1) was carried out at room temperature from stoichiometric mixtures of La2O3, Mn2O3 and SrO, obtaining monophasic powders with the perovskite structure. Physical properties of these materials and their chemical compatibility with the electrolyte yttria stabilized zirconia (YSZ), which depend strongly on the La/Sr ratio, were evaluated to corroborate availability to be implemented as cathode material in solid oxide fuel cells (SOFCs). Electrical conductivity values in air ranged between 100 and 400 S cm-1 in the temperature range of 25-850 °C. Samples presented low reactivity with YSZ in the working temperature range (600-1000 °C) maintaining the grain size small enough to preserve the catalytic activity for oxygen reduction.

  1. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    International Nuclear Information System (INIS)

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  2. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte.

    Science.gov (United States)

    Liu, Zhen; Pulletikurthi, Giridhar; Endres, Frank

    2016-05-18

    The development of rechargeable zinc ion batteries with high capacity and high cycling stability is a great challenge in aqueous solution due to hydrogen evolution and dendritic growth of zinc. In this study, we present a zinc ion secondary battery, comprising a metallic zinc anode, a bio-ionic liquid-water electrolyte, and a nanostructured prussian blue analogue (PBA) cathode. Both the Zn anode and the PBA cathode exhibit good compatibility with the bio-ionic liquid-water electrolyte, which enables the electrochemical deposition/dissolution of zinc at the zinc anode, and reversible insertion/extraction of Zn(2+) ions at the PBA cathode. The cell exhibits a well-defined discharge voltage plateau of ∼1.1 V with a specific capacity of about 120 mAh g(-1) at a current of 10 mA g(-1) (∼0.1 C). The Zn anode shows great reversibility, and dendrite-free Zn deposits were obtained after 100 deposition/dissolution cycles. The integration of an environmentally friendly PBA cathode, a nontoxic and low-cost Zn anode, and a biodegradable ionic liquid-water electrolyte provides new perspective to develop rechargeable zinc ion batteries for various applications in electric energy storage. PMID:27119430

  3. Countermeasures for electrolytic corrosion - Part I: Traditional methods and their problems

    International Nuclear Information System (INIS)

    When an underground pipeline runs parallel with DC-powered railways, it suffers from electrolytic corrosion caused by the stray current leaked from the railway negative returns. Perforation due to the electrolytic corrosion may bring about large-scale accidents even in cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Korea. In this paper, we report the real-time measurement data of the pipe-to-soil potential variation in the presence and absence of the IR compensation. The drainage current variation was also measured using the Stray Current Logger developed. By analysing them, the problems of current countermeasures for electrolytic corrosion are discussed. (authors)

  4. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell

    OpenAIRE

    Tao Wei; Yun-Hui Huang; Rui Zeng; Li-Xia Yuan; Xian-Luo Hu; Wu-Xing Zhang; Long Jiang; Jun-You Yang; Zhao-Liang Zhang

    2013-01-01

    A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, ...

  5. Cathodic protection to control microbiologically influenced corrosion

    International Nuclear Information System (INIS)

    Information about the cathodic protection performance in environments with microbiologically influenced corrosion (MIC) effects is very fragmented and often contradictory. Not enough is known about the microbial effects on cathodic protection effectiveness, criteria, calcareous deposits, corrosion rates and possible hydrogen embrittlement of titanium and some stainless steel condenser tubes. This paper presents a review of cathodic protection systems, describes several examples of cathodic protection in environments with MIC effects and provides preliminary conclusions about cathodic protection design parameters, criteria and effectiveness in MIC environments. 30 refs

  6. Corrosion behavior of Mg-10Gd-2Y-0.4Zr alloy under thin electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [Corrosion and Protection Lab., Key Lab. of Superlight Materials and Surface Technology (Harbin Engineering Univ.), Ministry of Education, Harbin (China); Zhang, T.; Meng, G.; Shao, Y.; Wang, F. [Corrosion and Protection Lab., Key Lab. of Superlight Materials and Surface Technology (Harbin Engineering Univ.), Ministry of Education, Harbin (China); State Key Lab. for Corrosion and Protection, Inst. of Metal Research, Chinese Academy of Sciences, Shenyang (China); Li, X. [State Key Lab. for Corrosion and Protection, Inst. of Metal Research, Chinese Academy of Sciences, Shenyang (China); Corrosion and Protection Center, Univ. of Science and Technology Beijing (China); Dong, C. [Corrosion and Protection Center, Univ. of Science and Technology Beijing (China)

    2010-05-15

    The corrosion behavior of Mg-10Gd-2Y-0.4Zr (GW102K) alloy under thin electrolyte layer (TEL) with various thicknesses was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN). Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The experimental results showed that the anodic and cathodic processes of the corrosion of GW102K alloy were both retained under thin electrolyte layers. Whether under TEL or not, the cathodic process was dominated by hydrogen evolution reaction. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrated that there were two kinds of effects for thin electrolyte layer on the corrosion behavior of GW102K alloy: (i) the rate of pit initiation was evidently retarded compared to that in bulk solution; (ii) the probability of pit growth decreased, which should be the real reason why the corrosion rate of GW102K alloy decreased with the decrease in layer thickness. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition

    International Nuclear Information System (INIS)

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800C was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs

  8. Synopsis of Cathode No.4 Activation

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature

  9. Hybrid microwave oscillators with a virtual cathode

    International Nuclear Information System (INIS)

    A review is given of the developments and theoretical investigations of a fundamentally new class of microwave devices, namely, hybrid microwave oscillators with a virtual cathode, which combine the useful properties of virtual cathodes with the advantages of those traditional microwave oscillators that operate with subcritical-current beams and have a high efficiency in generating ultrarelativistic electron beams. Among such devices are the following: a hybrid diffractional microwave oscillator with a virtual cathode, a hybrid gyro-device with a virtual cathode, a hybrid beam-plasma vircator, a hybrid gyrocon with a virtual cathode, a hybrid Cherenkov oscillator with a virtual cathode, a hybrid microwave oscillator of the 'vircator + traveling-wave tube' type, an original two-beam tube with a virtual cathode, and a klystron-like vircator

  10. Polymer anion-selective membrane for electrolytic water splitting: the impact of a liquid electrolyte composition on the process parameters and long-term stability

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 4779-4787. ISSN 0360-3199 Institutional support: RVO:61389013 Keywords : water electrolysis * alkaline environment * polymer electrolyte Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.313, year: 2014

  11. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  12. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  13. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    International Nuclear Information System (INIS)

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm−1 at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g−1, at the specific current of 2.67 A g−1. • The energy density and power density of 25.7 Wh kg−1 and 35.2 kW kg−1, respectively

  14. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  15. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.

    Science.gov (United States)

    Gao, Ping; Reddy, M Anji; Mu, Xiaoke; Diemant, Thomas; Zhang, Le; Zhao-Karger, Zhirong; Chakravadhanula, Venkata Sai Kiran; Clemens, Oliver; Behm, R Jürgen; Fichtner, Maximilian

    2016-03-18

    A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode. PMID:26924132

  16. Effect of zirconium and niobium on process of uranium dioxide cathodic deposition in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The process of electrocrystallization of uranium dioxide from molten chloride electrolytes in the presence of tetravalent and pentavalent niobium has been studied by voltammetric method. it has been ascertained that tetravalent zirconium interacts according o exchange mechanism with uranium dioxide with formation of solid solutions (1-x)UO2·xZrO2. Pentavalent niobium is reduced to tetravalent one on the cathode with formation of solid solution (1-y)UO2·NbO2. In simultaneous presence in electrolyte of Zr(4) and Nb(5) ternary solid solutions (1-y-x)UO2·xZrO2·NbO2 are formed on the cathode. 12 refs., 4 figs

  17. Interfacial Tension of Electrolyte Solutions

    OpenAIRE

    Levin, Yan

    2000-01-01

    A theory is presented to account for the increase in surface tension of water in the presence of electrolyte. Unlike the original ``grand-canonical'' calculation of Onsager and Samaras, which relied on the Gibbs adsorption isotherm and lead to a result which could only be expressed as an infinite series, our approach is ``canonical'' and produces an analytic formula for the excess surface tension. For small concentrations of electrolyte, our result reduces to the Onsager-Samaras limiting law.

  18. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W.; Klingler, Robert J.

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  19. Wetting phenomena in electrolyte solutions

    OpenAIRE

    Ibagon, Ingrid

    2014-01-01

    The present study analyzes wetting phenomena in electrolyte solutions. They are investigated by means of classical density functional theory. First, the wetting of a charged substrate by an electrolyte solution is studied with emphasis on the influence of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition. The corresponding models consist of solvent particles, anions, and cations. Two mean field approaches ar...

  20. Electrolytes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.