WorldWideScience

Sample records for cathode depolarized cells

  1. Study of the cathodic depolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Romero, M. F. de; Duque, Z.; Rinco, O. T. de; Perez, O.; Araujo, I.

    2003-01-01

    A Desulfovibrio desulfuricans ssp. desulfuricans (SRB) was used to study the permeation of hydrogen, using a Devanatan and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanisms in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10% SRB concentrated at 10''8 cell/ml. the results indicate bacterial growth in the order of 10''9-10''10 cel/ml after 18 h both in the polarized and non-polarized, tests, indicating that SRB developed regardless of the surface polarized as a source of H''0, generating H 2 S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H* generated by the H 2 S dissociation (pd is not susceptible to corrosion at this condition). On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria. (Author) 8 refs

  2. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1983-01-04

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  3. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1981-10-20

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  4. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    Science.gov (United States)

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or

  5. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be

  6. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  7. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  8. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  9. Properties of cathode materials in alkaline cells

    International Nuclear Information System (INIS)

    Salkind, A.J.; McBreen, J.; Freeman, R.; Parkhurst, W.A.

    1985-01-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve-type silver-zinc batteries, a new material - AgNiO/sub 2/ - and several nickel electrodes for nickel-cadmium and nickel-hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities detected by XPS and SAM. After the first discharge AgNiO/sub 2/ can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic-bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)/sub 2/ largely eliminate this

  10. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  11. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  12. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    International Nuclear Information System (INIS)

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.; Costa, E.

    1986-01-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 μM) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 μM veratridine resulted in a depletion of enkephalin and catecholamine stores after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 μM dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 μM) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated

  13. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  14. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  15. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  16. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  17. Nicotine-evoked cytosolic Ca2+ increase and cell depolarization in capillary endothelial cells of the bovine adrenal medulla

    Directory of Open Access Journals (Sweden)

    RAÚL VINET

    2009-01-01

    Full Text Available Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary endothelial cells (B AMCECs respond to acetylcholine (ACh with a cytosolic Ca2+ increase and depolarization of the membrane potential (20.3±0.9 mV; n=23. The increase in cytosolic Ca2+ induced by 10µM ACh was mimicked by the same concentration of nicotine but not by muscarine and was blocked by 100 µM of hexamethonium. On the other hand, the increase in cytosolic Ca2+ could be depressed by nifedipine (0.01 -100 µM or withdrawal of extracellular Ca2+. Taken together, these results give evidence for functional nicotinic receptors (nAChRs in capillary endothelial cells of the adrenal medulla. It suggests that nAChRs in B AMCECs may be involved in the regulation of the adrenal gland's microcirculation by depolarizing the membrane potential, leading to the opening of voltage-activated Ca2+ channels, influx of external Ca2+ and liberation of vasoactive compounds.

  18. Cathode-supported hybrid direct carbon fuel cells

    DEFF Research Database (Denmark)

    Gil, Vanesa; Gurauskis, Jonas; Deleebeeck, Lisa

    2017-01-01

    The direct conversion of coal to heat and electricity by a hybrid direct carbon fuel cell (HDCFC) is a highly efficient and cleaner technology than the conventional combustion power plants. HDCFC is defined as a combination of solid oxide fuel cell and molten carbonate fuel cell. This work...... investigates cathode-supported cells as an alternative configuration for HDCFC, with better catalytic activity and performance. This study aims to define the best processing route to manufacture highly efficient cathode-supported cells based on La0.75Sr0.25MnO3/yttria-stabilized zirconia infiltrated backbones...

  19. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  20. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    Science.gov (United States)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  1. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang; Wei, Bin; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  2. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    Science.gov (United States)

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  3. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  4. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  5. On the biophysics of cathodal galvanotaxis in rat prostate cancer cells: Poisson-Nernst-Planck equation approach.

    Science.gov (United States)

    Borys, Przemysław

    2012-06-01

    Rat prostate cancer cells have been previously investigated using two cell lines: a highly metastatic one (Mat-Ly-Lu) and a nonmetastatic one (AT-2). It turns out that the highly metastatic Mat-Ly-Lu cells exhibit a phenomenon of cathodal galvanotaxis in an electric field which can be blocked by interrupting the voltage-gated sodium channel (VGSC) activity. The VGSC activity is postulated to be characteristic for metastatic cells and seems to be a reasonable driving force for motile behavior. However, the classical theory of cellular motion depends on calcium ions rather than sodium ions. The current research provides a theoretical connection between cellular sodium inflow and cathodal galvanotaxis of Mat-Ly-Lu cells. Electrical repulsion of intracellular calcium ions by entering sodium ions is proposed after depolarization starting from the cathodal side. The disturbance in the calcium distribution may then drive actin polymerization and myosin contraction. The presented modeling is done within a continuous one-dimensional Poisson-Nernst-Planck equation framework.

  6. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  7. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  8. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  9. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    International Nuclear Information System (INIS)

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-01-01

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts

  10. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides – SrTiO3(100), CaTiO3(100) and WO3(100) – are suggested for the subsequent reduction step....

  11. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one...

  12. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  13. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  14. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  15. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  16. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Science.gov (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  17. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst

  18. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    Science.gov (United States)

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  19. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  20. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook; Yang, Wulin; Saikaly, Pascal; Logan, Bruce E

    2018-01-01

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  1. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook

    2018-02-05

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  2. Oxytocin Depolarizes Fast-Spiking Hilar Interneurons and Induces GABA Release onto Mossy Cells of the Rat Dentate Gyrus

    Science.gov (United States)

    Harden, Scott W.; Frazier, Charles J.

    2016-01-01

    Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. PMID:27068005

  3. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  4. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

    KAUST Repository

    Deng, Qian; Li, Xinyang; Zuo, Jiane.; Ling, Alison; Logan, Bruce E.

    2010-01-01

    An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m-2, compared to lower values with cathodes made of plain carbon paper

  5. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells

    Directory of Open Access Journals (Sweden)

    Gábor J. Szebeni

    2017-10-01

    Full Text Available Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549, hepatocellular carcinoma (HepG2 and pancreatic cancer cell line (PANC-1. Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER and the up-regulation of ER stress-related unfolded protein response (UPR genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  6. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells.

    Science.gov (United States)

    Szebeni, Gábor J; Balázs, Árpád; Madarász, Ildikó; Pócz, Gábor; Ayaydin, Ferhan; Kanizsai, Iván; Fajka-Boja, Roberta; Alföldi, Róbert; Hackler, László; Puskás, László G

    2017-10-07

    Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G₀/G₁ cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5 , ATF4, XBP1 , and DDIT3 . The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  7. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

    KAUST Repository

    Xie, Xing; Pasta, Mauro; Hu, Liangbing; Yang, Yuan; McDonough, James; Cha, Judy; Criddle, Craig S.; Cui, Yi

    2011-01-01

    A carbon nanotube (CNT)-textile-Pt cathode for aqueous-cathode microbial fuel cells (MFCs) was prepared by electrochemically depositing Pt nanoparticles on a CNT-textile. An MFC equipped with a CNT-textile-Pt cathode revealed a 2.14-fold maximum power density with only 19.3% Pt loading, compared to that with a commercial Pt coated carbon cloth cathode. © 2011 The Royal Society of Chemistry.

  8. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    Science.gov (United States)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  9. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  10. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2). Microstructural analysis of the cathode/electrolyte interface carried out after removal of the cathode showed craters on the electrolyte surface where the lanthanum strontium manganite (LSM) particles had been located. The changes of shape and size...... of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  11. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  12. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  13. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    Science.gov (United States)

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  14. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  15. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2010-04-01

    Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.

  16. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge

  17. Increasing the Energy Efficiency of Aluminum-Reduction Cells Using Modified Cathodes

    Science.gov (United States)

    Jianping, Peng; Yang, Song; Yuezhong, Di; Yaowu, Wang; Naixiang, Feng

    2017-10-01

    A cathode with an inclined surface (5°) and increased bar collector height (230 mm high) was incorporated into two 300-kA industrial aluminum-reduction cells. The voltage of the cells with the modified cathode was reduced by approximately 200 mV when compared with that of a conventional cell with a flat cathode. Through the use of simulations, the reduction in the cell voltage was attributed to the cathode modification (40 mV) and a reduced electrolyte level of 0.5 cm (160 mV). As a result of reduced anode cathode distance (ACD), the ledge toe was extended to the anode shadow by 12 cm. This caused a large inverted horizontal current and a velocity increase. The ledge profile returned to the desired position when the cells were insulated more effectively, and the metal velocity and metal crest in the modified cells were reduced accordingly.

  18. Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Matsushita, Shotaro; Hyodo, Junji; Okuyama, Yuji; Matsuka, Maki; Ishihara, Tatsumi; Matsumoto, Hiroshige

    2012-01-01

    Highlights: ► Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer conducted a large amount of protons. ► YbDC can work as cathode interlayer for proton conducting electrolyte cells. ► Cathode overpotential of the YbDC interlayer cells showed a plateau at about 400 mV. - Abstract: Introduction of doped ceria interlayer to cathode/electrolyte interface of the electrochemical cell with proton conducting electrolyte was investigated using thin Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer of about 500 nm thickness. YbDC interlayer conducted a large amount of protons as much as 170 mA cm −2 . It was also found that cathode overpotential of the YbDC interlayer cells consistently showed a plateau at about 400 mV, at which that of the non-interlayer cells did not show, suggesting a possibility that cathode reaction is changed by introducing the doped ceria interlayer. This result also indicates that the interlayer showed high activity for cathode reaction when enough cathodic bias was applied. Especially, the interlayer showed high activity for the improvement of poor cathode reaction between SrZr 0.9 Y 0.1 O 3−α (SZY-91) electrolyte and platinum cathode.

  19. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  20. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  1. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allan J. Jacobson

    2006-09-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with

  2. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  3. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  4. Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    DEFF Research Database (Denmark)

    Sun, Guotao; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed...... to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production....... using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm(2), which was used for calculation of the current density. Electricity generation was evaluated by quantifying current...

  5. On the actual cathode mixed potential in direct methanol fuel cells

    Science.gov (United States)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  6. Lanthanum manganate based cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Juhl Joergensen, M.

    2001-07-01

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained a composite layer made from lanthanum strontium manganate (LSM) and yttria stabilised zirconia (YSZ) and a layer of pure LSM aimed for current collection. The performance of the composite electrodes was sensitive to microstructure and thickness. Further, the interface between the composite and the current collecting layer proved to affect the performance. In a durability study severe deg-radation of the composite electrodes was found when passing current through the electrode for 2000 hours at 1000 deg. C. This was ascribed to pore formation along the composite interfaces and densification of the composite and current collector microstructure. An evaluation of the measurement approach indicated that impedance spectroscopy is a very sensitive method. This affects the reproducibility, as small undesirable variations in for instance the microstructure from electrode to electrode may change the impedance. At least five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one medium frequency process in the impedance spectra, were observed. A low frequency arc related to gas diffusion limitation in a stagnant gas layer above the composite structure was detected. Finally, an inductive process, assumed to be connected to an activation process involving segregates at the triple phase boundary between electrode, electrolyte and gas phase, was found. (au)

  7. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan

    2011-01-01

    In this work we demonstrate that the experimentally measured area specific resistance and oxygen surface exchange of solid oxide fuel cell cathode perovskites are strongly correlated with the first-principles calculated oxygen p-band center and vacancy formation energy. These quantities...... are therefore descriptors of catalytic activity that can be used in the first-principles design of new SOFC cathodes....

  8. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    Science.gov (United States)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  9. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Science.gov (United States)

    Pitake, Saumitra; Ochs, Raymond S

    2016-04-01

    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. © 2015 by the Society for Experimental Biology and Medicine.

  10. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    International Nuclear Information System (INIS)

    Freguia, Stefano; Rabaey, Korneel; Yuan Zhiguo; Keller, Juerg

    2007-01-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m -3 (cathode total volume) or 50 W m -3 (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg COD m -3 d -1 , which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials

  11. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano; Rabaey, Korneel; Yuan, Zhiguo; Keller, Juerg [The University of Queensland, St. Lucia, Qld (Australia). Advanced Wastewater Management Centre

    2007-12-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m{sup -3} (cathode total volume) or 50 W m{sup -3} (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg{sub COD} m{sup -3} d{sup -1}, which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials. (author)

  12. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.

    Science.gov (United States)

    Li, Qing; Wang, Tanyuan; Havas, Dana; Zhang, Hanguang; Xu, Ping; Han, Jiantao; Cho, Jaephil; Wu, Gang

    2016-11-01

    Direct methanol fuel cells (DMFCs) hold great promise for applications ranging from portable power for electronics to transportation. However, apart from the high costs, current Pt-based cathodes in DMFCs suffer significantly from performance loss due to severe methanol crossover from anode to cathode. The migrated methanol in cathodes tends to contaminate Pt active sites through yielding a mixed potential region resulting from oxygen reduction reaction and methanol oxidation reaction. Therefore, highly methanol-tolerant cathodes must be developed before DMFC technologies become viable. The newly developed reduced graphene oxide (rGO)-based Fe-N-C cathode exhibits high methanol tolerance and exceeds the performance of current Pt cathodes, as evidenced by both rotating disk electrode and DMFC tests. While the morphology of 2D rGO is largely preserved, the resulting Fe-N-rGO catalyst provides a more unique porous structure. DMFC tests with various methanol concentrations are systematically studied using the best performing Fe-N-rGO catalyst. At feed concentrations greater than 2.0 m, the obtained DMFC performance from the Fe-N-rGO cathode is found to start exceeding that of a Pt/C cathode. This work will open a new avenue to use nonprecious metal cathode for advanced DMFC technologies with increased performance and at significantly reduced cost.

  13. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    Science.gov (United States)

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.

  14. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi; Cheng, Shaoan; Zhang, Xiaoyuan; Li, Xiao-yan; Logan, Bruce E.

    2011-01-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously

  15. Cathodes for lithium-air battery cells with acid electrolytes

    Science.gov (United States)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  16. Catalytic Surface Promotion of Composite Cathodes in Protonic Ceramic Fuel Cells

    DEFF Research Database (Denmark)

    Solis, Cecilia; Navarrete, Laura; Bozza, Francesco

    2015-01-01

    Composite cathodes based on an electronic conductor and a protonic conductor show advantages for protonic ceramic fuel cells. In this work, the performance of a La5.5WO11.25-δ/ La0.8Sr0.2MnO3+δ (LWO/LSM) composite cathode in a fuel cell based on an LWO protonic conducting electrolyte is shown...

  17. In situ X-ray studies of film cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fuoss, Paul; Chang, Kee-Chul; You, Hoydoo

    2013-01-01

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO 2 , and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone

  18. Mathematical micro-model of a solid oxide fuel cell composite cathode

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2004-01-01

    In a solid oxide fuel cell (SOFC), the cathode processes account for a majority of the overall electrochemical losses. A composite cathode comprising a mixture of ion-conducting electrolyte and electron-conducting electro-catalyst can help minimize cathode losses provided microstructural parameters such as particle-size, composition, and porosity are optimized. The cost of composite cathode research can be greatly reduced by incorporating mathematical models into the development cycle. Incorporated with reliable experimental data, it is possible to conduct a parametric study using a model and the predicted results can be used as guides for component design. Many electrode models treat the cathode process simplistically by considering only the charge-transfer reaction for low overpotentials or the gas-diffusion at high overpotentials. Further, in these models an average property of the cathode internal microstructure is assumed. This paper will outline the development of a 1-dimensional SOFC composite cathode micro-model and the experimental procedures for obtaining accurate parameter estimates. The micro-model considers the details of the cathode microstructure such as porosity, composition and particle-size of the ionic and electronic phases, and their interrelationship to the charge-transfer reaction and mass transport processes. The micro-model will be validated against experimental data to determine its usefulness for performance prediction. (author)

  19. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  20. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan; Logan, Bruce E.

    2011-01-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  1. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan

    2011-03-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  2. Neutron Depolarization in Superconductors

    Science.gov (United States)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  3. Air-cathode structure optimization in separator-coupled microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2011-12-01

    Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855mW/m 2 for 1-4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988mW/m 2) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8A/m 2), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode. © 2011 Elsevier B.V.

  4. Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating

    International Nuclear Information System (INIS)

    Chen Min; Luo Jingli; Chuang, Karl T.; Sanger, Alan R.

    2012-01-01

    Highlights: ► LSM cathode-supported cell prepared by slurry spin coating. ► Optimizing porosity in CFL resulting in power density of 0.58 W cm −2 at 850 °C. ► Activation polarization govern the impedance arcs measured under the OCV condition. ► Concentration polarization can induce the change of activation polarization. ► Four kinds of polarizations of our cells are separated and investigated. - Abstract: A cathode-supported SOFC consisting of LSM (La 0.8 Sr 0.2 MnO 3−δ ) cathode supporter, LSM–Sm 0.2 Ce 0.8 O 2−δ (SDC) cathode functional layer (CFL), yttria stabilized zirconia (YSZ)/SDC bi-layered electrolyte and Ni-YSZ anode layer was fabricated by a slurry spin coating technique. The influence of the porosity in both the CFL and cathode supporter on the electrochemical properties of the cells has been investigated. It was found that properly controlling the porosity in the CFL would improve the performance of the cells using O 2 in the cathode side (O 2 -cells), with a maximum power density (MPD) value achieving as high as 0.58 W cm −2 at 850 °C. However, this improvement is not so evident for the cells using air in the cathode side (air-cells). When increasing the porosity in the cathode-supporter, a significant increase of the power density for the air cells due to the decreasing R conc,c (cathode concentration polarization to the cell resistance) can be ascertained. In terms of our analysis on various electrochemical parameters, the R act (activation polarization to the cell resistance) is assumed to be mainly responsible for the impedance arcs measured under the OCV condition, with a negligible R conc,c value being able to be detected in our impedances. In this case, a significant decreasing size of the impedance arcs due to the increasing porosity in the cathode supporter would correspond to a decrease of the R act values, which was proved to be induced by the decreasing R conc,c .

  5. Model for solid oxide fuel cell cathodes prepared by infiltration

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2017-01-01

    A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC......, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed...... scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (rp) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural...

  6. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer....... The humidification effect was found to be dependent on both the degree of humidification and the cathode polarization. No significant effect of humidification was found at OCV which rules out the possibility of a traditional poisoning effect with a blocking of active sites. Post-mortem high resolution FEG......-SEM analysis showed clear changes at and around the cathode/electrolyte contact area. In contrast to Risø 2 G cells, a very high tolerance towards humidification of cathode gas air was observed for Risø 2.5 G cells with no detectable effect of humidification even when the humidification was as high as 12.8 mol%...

  7. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    KAUST Repository

    Luo, Yong

    2011-11-01

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m-2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m-2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth. © 2011 Elsevier B.V.

  8. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.

  9. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    International Nuclear Information System (INIS)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.; Lee, P.-H.; Chen, L.-I; Tsai, Y.-L.; Lin, B.-R.; Wang, Y.-L.; Jeng, J.-H.

    2007-01-01

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 μM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 μM. Short-term exposure to sanguinarine (> 0.5 μM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 μM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 μM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death

  10. Impregnation of LSM Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Højberg, Jonathan; Søgaard, Martin

    2011-01-01

    Composites cathodes consisting of strontium doped lanthanum manganite (LSM) and yttria stabilized zirconia have been impregnated with the nitrates corresponding to the nominal compositions: La0.75Sr0.25Mn1.05O3 +/-delta (LSM25), Ce0.8Sm0.2O2 (SDC) and a combination of both (dual). The latter...

  11. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori; Roberts, Timothy H.; Long, Timothy E.; Logan, Bruce E.; Hickner, Michael A.

    2011-01-01

    and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes

  12. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Yang, Wulin; Liu, Jia; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  13. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2014-01-01

    An analytical, 1-dimensional impedance model for a composite solid oxide fuel cell cathode is derived. It includes geometrical parameters of the cathode, e.g., the internal surface area and the electrode thickness, and also material parameters, e.g., the surface reaction rate and the vacancy...... diffusion coefficient. The model is successfully applied to a total of 42 impedance spectra, obtained in the temperature range 555°C–852°C and in the oxygen partial pressure range 0.028 atm–1.00 atm for a cathode consisting of a 50/50 wt% mixture of (La0.6Sr0.4)0.99CoO3 − δ and Ce0.9Gd0.1O1.95 − δ...... and providing both qualitative and quantitative information on the evolution of the impedance spectra of cathodes with changing parameters....

  15. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    Science.gov (United States)

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    Science.gov (United States)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  17. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  18. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition

    DEFF Research Database (Denmark)

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano

    2016-01-01

    Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes’ surface, which are thought...... to be strictly related to the SOFCs’ efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes...... in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels....

  19. Ethanol tolerant precious metal free cathode catalyst for alkaline direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Grimmer, Ilena; Zorn, Paul; Weinberger, Stephan; Grimmer, Christoph; Pichler, Birgit; Cermenek, Bernd; Gebetsroither, Florian; Schenk, Alexander; Mautner, Franz-Andreas

    2017-01-01

    Highlights: • Selective ORR catalysts are presented for alkaline direct ethanol fuel cells. • Perovskite based cathode catalysts show high tolerance toward ethanol. • A membrane-free alkaline direct ethanol fuel cell is presented. - Abstract: La 0.7 Sr 0.3 (Fe 0.2 Co 0.8 )O 3 and La 0.7 Sr 0.3 MnO 3 −based cathode catalysts are synthesized by the sol-gel method. These perovskite cathode catalysts are tested in half cell configuration and compared to MnO 2 as reference material in alkaline direct ethanol fuel cells (ADEFCs). The best performing cathode is tested in single cell setup using a standard carbon supported Pt 0.4 Ru 0.2 based anode. A backside Luggin capillary is used in order to register the anode potential during all measurements. Characteristic processes of the electrodes are investigated using electrochemical impedance spectroscopy. Physical characterizations of the perovskite based cathode catalysts are performed with a scanning electron microscope (SEM) and by X-ray diffraction showing phase pure materials. In half cell setup, La 0.7 Sr 0.3 MnO 3 shows the highest tolerance toward ethanol with a performance of 614 mA cm −2 at 0.65 V vs. RHE in 6 M KOH and 1 M EtOH at RT. This catalyst outperforms the state-of-the-art precious metal-free MnO 2 catalyst in presence of ethanol. In fuel cell setup, the peak power density is 27.6 mW cm −2 at a cell voltage of 0.345 V and a cathode potential of 0.873 V vs. RHE.

  20. Solid oxide fuel cell cathode with oxygen-reducing layer

    Science.gov (United States)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    2018-04-03

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  1. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  2. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

    KAUST Repository

    Deng, Qian

    2010-02-01

    An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m-2, compared to lower values with cathodes made of plain carbon paper (67 mW m-2), carbon felt (77 mW m-2), or platinum-coated carbon paper (124 mW m-2, 0.2 mg-Pt cm-2). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm-2) increases the maximum power density to 391 mW m-2. Power production is further increased to 784 mW m-2 by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m-2 (0.5 cm granules), and 667 mW m-2 (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst. © 2009 Elsevier B.V.

  3. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2010-01-01

    Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5-1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2-1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts. © 2009 Professor T. Nejat Veziroglu.

  4. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  5. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Kim, Seung-Goo; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Lim, Tae Hoon; Oh, In-Hwan; Hong, Seong-Ahn

    2004-01-01

    The chemical stabilities of modified NiO cathodes doped with 1.5 mol% CoO and 1.5 mol% LiCoO 2 fabricated by a conventional tape casting method were evaluated through the real MCFC single cell operation. The heat-treated samples before oxidation had proper porosities and microstructures for a MCFC cathode. At 150 mA cm -2 in current density, the MCFC single cell using a CoO-doped NiO cathode showed stable cell voltages in the range of 0.833-0.843 V for 1000 h. In contrast, the cell using a LiCoO 2 -doped NiO cathode with a maximum of 0.836 V at 500 h degraded to 0.826 V at 1000 h due to a wet seal breakdown at the cathode side. The amounts of nickel precipitated in the electrolytes of the cells using modified NiO cathodes doped with CoO and LiCoO 2 after the operation for 1000 h were 1.2 and 1.4 wt.%, respectively, which were about 60% lower than that of the standard cells using pure NiO cathodes. The enhanced chemical stability of modified NiO cathodes seems to be attributed to the fact that the presence of cobalt increases the lithium content in the cathodes by converting Ni 2+ to Ni 3+ , resulting in stabilizing the layered crystal structure

  6. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    Science.gov (United States)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  7. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  8. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  9. Thermal neutron measurements on electrolytic cells with deuterated palladium cathodes subjected to a pulsed current

    International Nuclear Information System (INIS)

    Granada, J.R.; Mayer, R.E.; Guido, G.; Florido, P.C.; Larreteguy, A.; Gillette, V.H.; Patino, N.E.; Converti, J.; Gomez, S.E.

    1990-01-01

    The present work describes the design of a high efficiency thermal neutron detection system and the measurements performed with it on electrolytic cells containing LiH dissolved in D 2 O with palladium cathodes. A procedure involving the use of a non-stationary (pulsed) current through the cell caused a correlated neutron production to be observed in a repeatable manner. These patterns are strongly dependent on the previous charging history of the cathodes. The technique employed seems to be very useful as a research tool for a systematic study of the different variables governing the phenomenon. (author)

  10. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  11. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  12. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunhua; Liu, Renzhu; Wang, Shaorong; Wang, Zhenrong; Qian, Jiqin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2009-07-15

    A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of {proportional_to}14 {mu}m was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H{sub 2} as fuel and O{sub 2} as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 C, respectively, with the maximum power densities of 157, 272 and 358 mW cm{sup -2} at corresponding temperatures. (author)

  13. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  14. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Yang, Fei; Ren, Lijiao; Pu, Yuepu; Logan, Bruce E.

    2013-01-01

    Single-chamber air-cathode microbial fuel cells (MFCs) were used to generate electricity from fermented primary sludge. Fermentation (30°C, 9days) decreased total suspended solids (26.1-16.5g/L), volatile suspended solids (24.1-15.3g/L) and pH (5

  15. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  16. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    Science.gov (United States)

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  17. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    Science.gov (United States)

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  18. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Directory of Open Access Journals (Sweden)

    Annette R. Rowe

    2018-02-01

    Full Text Available While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2 pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.

  19. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Science.gov (United States)

    Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241

  20. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Elaboration and characterisation of functionally graded cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, J.; Kapelski, G.; Bouvard, D. [Laboratoire de Genie Physique et Mecanique des Materiaux, Institut National Polytechnique de Grenoble, CNRS UMR 5010, BP 46, 38042 Saint Martin d' Heres cedex (France)

    2005-07-01

    The industrial development of solid oxide fuel cells (SOFC) requires decreasing their operating temperature from 1000 deg. C to 700 deg. C while keeping acceptable mechanical and electrochemical performances. A solution consists in designing composite bulk cathodes with numerous electro-chemical reaction sites. The fabrication of such cathodes has been investigated with classical materials as lanthanum strontium manganese (LSM) and yttrium stabilized zirconia (YSZ), which is also the constitutive material of the electrolyte. A composite cathode with continuous composition gradient has been obtained by co-sedimentation of the powders in a liquid and subsequent firing. The obtained composition is investigated with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS). It is found to be in good agreement with the prediction of a numerical model of the sedimentation process. (authors)

  2. Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Liu, Xiaowei [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001 (China); MEMS Center, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Peng; Zhang, Bo; Li, Jianmin; Deng, Huichao [MEMS Center, Harbin Institute of Technology, Harbin 150001 (China)

    2010-06-15

    An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm{sup 2} at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer. (author)

  3. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Daqian; Li, Xiang; Raymond, Dustin; Mooradain, James; Li, Baikun [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-15

    Multi-anode/cathode microbial fuel cells (MFCs) incorporate multiple MFCs into a single unit, which maintain high power generation at a low cost and small space occupation for the scale-up MFC systems. The power production of multi-anode/cathode MFCs was similar to the total power production of multiple single-anode/cathode MFCs. The power density of a 4-anode/cathode MFC was 1184 mW/m{sup 3}, which was 3.2 times as that of a single-anode/cathode MFC (350 mW/m{sup 3}). The effect of chemical oxygen demand (COD) was studied as the preliminary factor affecting the MFC performance. The power density of MFCs increased with COD concentrations. Multi-anode/cathode MFCs exhibited higher power generation efficiencies than single-anode/cathode MFCs at high CODs. The power output of the 4-anode/cathode MFCs kept increasing from 200 mW/m{sup 3} to 1200 mW/m{sup 3} as COD increased from 500 mg/L to 3000 mg/L, while the single-anode/cathode MFC showed no increase in the power output at CODs above 1000 mg/L. In addition, the internal resistance (R{sub in}) exhibited strong dependence on COD and electrode distance. The R{sub in} decreased at high CODs and short electrode distances. The tests indicated that the multi-anode/cathode configuration efficiently enhanced the power generation. (author)

  4. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.

  5. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan; Xia, Xue; Ivanov, Ivan; Huang, Xia; Logan, Bruce E.

    2014-01-01

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  6. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  7. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  8. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  9. Microstructural characterization of composite cobaltite and lanthanum-based ceria for use as fuel cell cathodes

    International Nuclear Information System (INIS)

    Rodrigues, E.R.T.; Nascimento, R.M.; Miranda, A.C. de; Lima, A.M. de; Macedo, D.A.

    2016-01-01

    Fuel cells are devices that convert chemical energy into electricity via redox reactions. In this work, the lanthanum cobaltite doped with strontium and iron (La_0_,_6Sr_0_,_4Co_0_,_2Fe_0_,_8O_3 - LSCF) a traditional cathodes material of the fuel cell was mixed with an electrolyte material (composite) to the base ceria doped with gadolinia and a eutectic mixture of lithium carbonates and sodium (CGO-NLC). The powders of LSCF and CGO-NLC were obtained by the citrate method and mixed to obtain a composite cathode. Samples obtained by uniaxial pressure between 5 and 10 MPa were sintered at 1100°C and investigated by X-ray diffraction, scanning electron microscopy and micro hardness test. A symmetric cell cathode / electrolyte / cathode, obtained by co-pressing and co-sintering was investigated by electron microscopy. The results indicated that the composite is chemically stable up to the sintering temperature used. The hardness ranged between 51 and 227 HV. (author)

  10. Mathematical modeling of current density distribution in composite cathode of solid oxide fuel cells. Paper no. IGEC-1-099

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2005-01-01

    Cathodes processes in a solid oxide fuel cell (SOFC) are thought to dominate the overall electrochemical losses. One strategy for minimizing the cathode electrochemical losses in a state-of-the-art SOFC that utilize lanthanum-strontium-manganate (LSM) electrocatalyst and yttria-stabilized-zirconia (YSZ) electrolyte is to utilize composite cathodes comprising a mixture of LSM and YSZ. Composite cathodes improve performance by extending the active reaction zone from electrolyte-electrode interface to throughout the electrode. In this study, a two-dimensional composite cathode model was developed to assess cathode performance in terms of current density distributions. The model results indicate that geometric and microstructural parameters strongly influence current density distribution. In addition electrode composition affects magnitude and distribution of current. An optimum composition for equal-sized LSM/YSZ is 40 vol% LSM and 60 vol% YSZ at 900 o C. (author)

  11. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  12. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells; FINAL

    International Nuclear Information System (INIS)

    Christini, R.A.; Dawless, R.K.; Ray, S.P.; Weirauch, D.A. Jr.

    2001-01-01

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  13. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    Science.gov (United States)

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.

    Science.gov (United States)

    Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell

    KAUST Repository

    Cusick, Roland D.

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2mA/m2), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0V, energy consumption from the power supply and pumping (0.2Wh/L, 7.5Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1g-COD/L-d) and ammonium removal (7-12mM) from digestate amended with 1g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. © 2014 Elsevier Ltd.

  16. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell

    KAUST Repository

    Cusick, Roland D.; Ullery, Mark L.; Dempsey, Brian A.; Logan, Bruce E.

    2014-01-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2mA/m2), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0V, energy consumption from the power supply and pumping (0.2Wh/L, 7.5Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1g-COD/L-d) and ammonium removal (7-12mM) from digestate amended with 1g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. © 2014 Elsevier Ltd.

  17. Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells.

    Science.gov (United States)

    Yue, Shizhong; Lu, Shudi; Ren, Kuankuan; Liu, Kong; Azam, Muhammad; Cao, Dawei; Wang, Zhijie; Lei, Yong; Qu, Shengchun; Wang, Zhanguo

    2017-05-01

    Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH 3 NH 3 PbI 3 /phenyl-C61-butyric acid methyl ester (PC 61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2011-08-01

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123mW/m 2 (cathode projected surface area; 35±4W/m 3 based on liquid volume), but it decreased by 40% after 1 year to 734±18mW/m 2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2mW/m 2 to 789±68mW/m 2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750mW/m 2 after 1 year. © 2011 Elsevier B.V.

  19. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  20. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin

    2012-01-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell...... was tested at 700 deg. C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current evoltage relationships. No measurable degradation in the cell voltage or increase...... in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79Wcm-2 at a cell voltage of 0.6 V at 750 deg. C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference...

  1. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  2. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-01-01

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs

  3. Efficient Polymer Solar Cells with Alcohol-Soluble Zirconium(IV Isopropoxide Cathode Buffer Layer

    Directory of Open Access Journals (Sweden)

    Zhen Luo

    2018-02-01

    Full Text Available Interfacial materials are essential to the performance and stability of polymer solar cells (PSCs. Herein, solution-processed zirconium(IV isopropoxide (Zr[OCH(CH32]4, ZrIPO has been employed as an efficient cathode buffer layer between the Al cathode and photoactive layer. The ZrIPO buffer layer is prepared simply via spin-coating its isopropanol solution on the photoactive layer at room temperature without any post-treatment. When using ZrIPO/Al instead of the traditionally used Ca/Al cathode in PSCs, the short-circuit current density (Jsc is significantly improved and the series resistance of the device is decreased. The power conversion efficiency (PCE of the P3HT:PCBM-based device with ZrIPO buffer layer reaches 4.47% under the illumination of AM1.5G, 100 mW/cm2. A better performance with PCE of 8.07% is achieved when a low bandgap polymer PBDTBDD is selected as donor material. The results indicate that ZrIPO is a promising electron collection material as a substitute of the traditional low-work-function cathode for high performance PSCs.

  4. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin

    2013-02-01

    Polarization, solution-separator, charge transfer, and diffusion resistances of clean and used separator electrode assemblies were examined in microbial fuel cells using current-voltage curves and electrochemical impedance spectroscopy (EIS). Current-voltage curves showed the total resistance was reduced at low cathode potentials. EIS results revealed that at a set cathode potential of 0.3 V diffusion resistance was predominant, and it substantially increased when adding separators. However, at a lower cathode potential of 0.1 V all resistances showed only slight differences with and without separators. Used separator electrode assemblies with biofilms had increased charge transfer and diffusion resistances (0.1 V) when one separator was used; however, charge transfer resistance increased, and diffusion resistance did not appreciably change with four separators. Adding a plastic mesh to compress the separators improved maximum power densities. These results show the importance of pressing separators against the cathode, and the adverse impacts of biofilm formation on electrochemical performance. © 2012 Elsevier Ltd. All Rights Reserved.

  5. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Science.gov (United States)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  6. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Li, Baikun [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States); Hu, Boxun [Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Suib, Steven [Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Lei, Yu. [Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-05-01

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m{sup -2}. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m{sup -2}. The internal resistance (R{sub in}) of the OMS-2 GACMFCs (18 {+-} 1 {omega}) was similar to that of the platinum GACMFCs (17 {omega}). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. (author)

  7. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin; Tokash, Justin C.; Zhang, Fang; Kim, Younggy; Logan, Bruce E.

    2013-01-01

    Polarization, solution-separator, charge transfer, and diffusion resistances of clean and used separator electrode assemblies were examined in microbial fuel cells using current-voltage curves and electrochemical impedance spectroscopy (EIS). Current-voltage curves showed the total resistance was reduced at low cathode potentials. EIS results revealed that at a set cathode potential of 0.3 V diffusion resistance was predominant, and it substantially increased when adding separators. However, at a lower cathode potential of 0.1 V all resistances showed only slight differences with and without separators. Used separator electrode assemblies with biofilms had increased charge transfer and diffusion resistances (0.1 V) when one separator was used; however, charge transfer resistance increased, and diffusion resistance did not appreciably change with four separators. Adding a plastic mesh to compress the separators improved maximum power densities. These results show the importance of pressing separators against the cathode, and the adverse impacts of biofilm formation on electrochemical performance. © 2012 Elsevier Ltd. All Rights Reserved.

  8. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-01-01

    Full Text Available Polymer electrolyte membrane (PEM is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density of membrane electrode assembly (MEA with catalyst cathode is slightly lower than that of the traditional one, its durability is significantly improved. No obvious degradation is evident in the MEA with double-layered catalyst cathode within durability testing. These results indicated that Pt/CeO2-C as inner cathode catalyst layer greatly improved the stability of MEA. The significant reason for the improved stability of MEA is the ability of CeO2 to act as free-radical scavengers.

  9. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Joong; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Lee, Hyun Hwi [Pohang Accelerator Laboratory, POSTECH, Jigokro-127beon-gil, Nam-gu, Pohang 790-784 (Korea, Republic of); Kal, Jinha; Hahn, Jungseok [Future Technology Research Group, Kolon Central Research Park, 154 Mabukro, Giheung-ku, Yongin-si, Kyunggi-do, 16910 (Korea, Republic of)

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  10. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    Science.gov (United States)

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  11. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2014-12-01

    The high cost of the catalyst material used for the oxygen reduction reaction in microbial fuel cell (MFC) cathodes is one of the factors limiting practical applications of this technology. Mesoporous nitrogen-rich carbon (MNC), prepared at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than that produced using MNC calined at 600 °C (715 ± 152 mW m-2), and only 14% lower than that obtained with Pt (1143 ± 54 mW m-2). The extent of COD removal and coulombic efficiencies were the same for all cathode materials. These results show that MNC could be used as an alternative to Pt in MFCs. © 2014 Elsevier B.V. All rights reserved.

  12. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    Science.gov (United States)

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability.

  13. Conical nano-structure arrays of Platinum cathode catalyst for enhanced cell performance in PEMFC (proton exchange membrane fuel cell)

    International Nuclear Information System (INIS)

    Khan, Aziz; Nath, Bhabesh Kumar; Chutia, Joyanti

    2015-01-01

    Conical nanostructure arrays of Pt (Platinum) as cathode catalyst are developed using a novel integrated plasma sputtering technique. The integration method involves successive deposition of Pt catalyst arrays one upon another maintaining a uniform time gap. Deposition by integrated approach results in the formation of dense arrays of Pt nanostructure as compared to continuous deposition. These high number density integrated arrays with low Pt loading of 0.10 mg cm −2 at the cathode provide enhanced performance compared to non-integrated cathode catalyst prepared by continuous deposition and standard commercial electrodes with Pt loadings of 1 mg cm −2 . The performance is compared on the basis of polarization curve measurements and the calculated power density values. PEM fuel cell with dual integrated cathode showed an improved power density of 0.90 W cm −2 , which is higher than continuously deposited cathode catalyst with maximum power density of 0.67 W cm −2 for the same Pt loading of 0.10 mg cm −2 . - Highlights: • Conical nanostructures with high number density are prepared by a novel integrated deposition technique. • Electrode with such catalyst shows maximum performance of 0.9 W cm −2 . • Integrated catalyst performs better than continuously prepared nanostructure catalyst.

  14. COD removal characteristics in air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Ren, Lijiao; Stager, Jennifer; Evans, Patrick J.; Logan, Bruce E.

    2015-01-01

    © 2014 Elsevier Ltd. Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs

  15. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    Science.gov (United States)

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  16. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells

    KAUST Repository

    Tenca, Alberto; Cusick, Roland D.; Schievano, Andrea; Oberti, Roberto; Logan, Bruce E.

    2013-01-01

    Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated

  17. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.; Albert, Istvan U.; Regan, John M.

    2013-01-01

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected

  18. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  19. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell

    OpenAIRE

    Miyoshi, Kota; Iwai, Hiroshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2016-01-01

    A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering chromium poisoning on the cathode side has been developed to investigate the evolution of the SOFC performance over long-term operation. The degradation model applied in the simulation describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium manganite (LSM)/yttria-sta...

  20. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shu-en [Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States)

    2010-01-01

    We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H{sub 2} as fuel. As cathode material, the perovskite Sr{sub 0.9}K{sub 0.1}FeO{sub 3-{delta}} (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-{mu}m thick pellet of the electrolyte La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 3-{delta}} (LSGM) with Sr{sub 2}MgMoO{sub 6} as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm{sup -2} at 800 C and 850 mW cm{sup -2} at 850 C, with pure H{sub 2} as fuel. The electronic conductivity shows a change of regime at T {approx} 350 C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC. (author)

  1. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  2. Collisional redistribution of the Na-D lines in a Ne, Xe filled vapour cell and depolarization in a flame

    International Nuclear Information System (INIS)

    Nieuwesteeg, K.J.B.M.

    1986-01-01

    1. Measurements of collisionally perturbed, 'complete' spectral profiles, i.e. core plus line wings of the Na-D lines, at the highest possible temperature in a fluorescence cell are reported. Both the shape of the profiles obtained in these experiments and the temperature dependence give information about the internuclear forces. Neon and xenon are chosen as perturbing atoms in order to extend and test potential shapes that have emerged from earlier beam experiments. 2. Possible ways are discussed of accurately calculating the cross sections of all elastic and inelastic processes in a Na- noble-gas system for any likely shape of the potentials involved. The main purpose of this discussion is to test these potentials by comparing the calculated cross sections with experimental data. Also a detailed comparison is made of the measured far-wing profile and the quasi-static profile calculated using these potentials. 3. In order to assess the validity of the approximations made in the theoretical model that was used for calculating the fluorescence-excitation profiles, the predictions of this model are compared with measurements of the polarization and the intensity ratio of the collision-induced Na-D fluorescence and Rayleigh scattering in an N 2 -diluted flame at 1 atm pressure. Using the Utrecht High-resolution Fourier Interferometer in the visible range, the Rayleigh peak and the collision-induced fluorescence were separated for the first time at laser detunings within the absorption line width. (Auth.)

  3. A high performance cathode for proton conducting solid oxide fuel cells

    KAUST Repository

    Wang, Zhiquan

    2015-01-01

    Intermediate temperature solid-oxide fuel cells (IT-SOFCs)), as one of the energy conversion devices, have attracted worldwide interest for their great fuel efficiency, low air pollution, much reduced cost and excellent longtime stability. In the intermediate temperature range (500-700°C), SOFCs based on proton conducting electrolytes (PSOFCs) display unique advantages over those based on oxygen ion conducting electrolytes. A key obstacle to the practical operation of past P-SOFCs is the poor stability of the traditionally used composite cathode materials in the steam-containing atmosphere and their low contribution to proton conduction. Here we report the identification of a new Ruddlesden-Popper-type oxide Sr3Fe2O7-δ that meets the requirements for much improved long-term stability and shows a superior single-cell performance. With a Sr3Fe2O7-δ-5 wt% BaZr0.3Ce0.5Y0.2O3-δ cathode, the P-SOFC exhibits high power densities (683 and 583 mW cm-2 at 700°C and 650°C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. More importantly, no decay in discharging was observed within a 100 hour test. © The Royal Society of Chemistry 2015.

  4. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  5. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    Directory of Open Access Journals (Sweden)

    Luis M. Rivera Gavidia

    2017-05-01

    Full Text Available Direct methanol fuel cells (DMFCs are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM and X-ray techniques such as photoelectron spectroscopy (XPS, diffraction (XRD and energy dispersive spectroscopy (EDX. The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M and temperatures (60 °C and 90 °C. The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  6. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  7. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells

    KAUST Repository

    Hou, Jie

    2015-01-01

    Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.

  8. Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

    Science.gov (United States)

    Call, Ann Virginia

    Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured moRPhologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm 0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 O cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively

  9. COD removal characteristics in air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2015-01-01

    © 2014 Elsevier Ltd. Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h- 1, which was higher than acetate or filtered WW with an open circuit (0.10h- 1), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge.

  10. Non-precious electrocatalysts for polymer electrolyte fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chung, H.T.; Zelenay, P. [Los Alamos National Laboratory, Los Alamos, NM (United States). Materials Physics and Applications

    2009-07-01

    This study investigated the feasibility of reducing the high cost of polymer electrolyte fuel cell stacks by using non-precious catalysts for the oxygen reduction reaction (ORR). Most research interest has focused on ORR catalysts based on heat-treated precursors of transition metals, nitrogen and carbon. While initial ORR activity of such catalysts has improved in recent years, it is not sufficient for automotive use. The long-term stability of these catalysts is also insufficient. The activity and durability of the catalysts must be improved significantly in order to overcome these limitations. In addition, innovative electrode structures must be developed to allow for operation with thick catalyst layers. The ORR reaction mechanism must also be well understood in terms of the active reaction site. This presentation summarized non-precious ORR catalysis research at Los Alamos, with particular focus on catalysts obtained by heat treatment of polymers (such as polyaniline) on high-surface-area carbon in the presence of transition metals, cobalt and iron. These heat-treated catalysts achieve respectable ORR activity and improved stability in both aqueous and polymer electrolytes. Electrochemical and non-electrochemical techniques such as XPS, XANES and XAFS were used to examine the source of ORR activity of these heat-treated catalysts.

  11. Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells

    Science.gov (United States)

    Gupta, Vinay; Kyaw, Aung Ko Ko; Wang, Dong Hwan; Chand, Suresh; Bazan, Guillermo C.; Heeger, Alan J.

    2013-01-01

    We report Barium (Ba) cathode layer for bulk-heterojunction solar cells which enhanced the fill factor (FF) of p-DTS(FBTTh2)2/PC71BM BHJ solar cell up to 75.1%, one of the highest value reported for an organic solar cell. The external quantum efficiency exceeds 80%. Analysis of recombination mechanisms using the current-voltage (J–V) characteristics at various light intensities in the BHJ solar cell layer reveals that Ba prevents trap assisted Shockley-Read-Hall (SRH) recombination at the interface and with different thicknesses of the Ba, the recombination shifts towards bimolecular from monomolecular. Moreover, Ba increases shunt resistance and decreases the series resistance significantly. This results in an increase in the charge collection probability leading to high FF. This work identifies a new cathode interlayer which outclasses the all the reported interlayers in increasing FF leading to high power conversion efficiency and have significant implications in improving the performance of BHJ solar cells. PMID:23752562

  12. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  13. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  14. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2016-08-11

    Microbial fuel cells (MFCs) can generate electricity from the oxidation of organic substrates using anodic exoelectrogenic bacteria and have great potential for harvesting electric energy from wastewater. Improving oxygen reduction reaction (ORR) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR in MFCs. The MFCs using NDC air cathodes achieved a high maximum power density of 2300 mW m−2, which was 1.7 times higher than the most commonly used Pt/C air cathodes and also higher than most state-of-the-art ORR catalyst air cathodes. Rotating disk electrode measurements verified the superior electrocatalytic activity of NDC with an efficient four-electron transfer pathway (n=3.9). These findings highlight NDC as a better-performing and cost-efficient catalyst compared with Pt/C, making it highly viable for MFC applications.

  15. Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell

    Science.gov (United States)

    Tong, Bo; Wang, Jiawei; Liu, Zhenjie; Ma, Lipo; Zhou, Zhibin; Peng, Zhangquan

    2018-04-01

    The electrochemical performance of lithium-ion batteries is dominated by the interphase electrochemistry between the electrolyte and electrode materials. A multitude of efforts have been dedicated to the solid electrolyte interphase (SEI) formed on the anode. However, the interphase on the cathode, namely the cathode electrolyte interphase (CEI), is left aside, partially due to the fact that it is hard to single out the CEI considering the complicated anode-cathode inter-talk. Herein, a partially delithiated lithium iron phosphate (Li0.25FePO4) electrode is used as the anode. Owing to a high voltage plateau (≈3.45 V vs. Li/Li+), negligible reduction reactions of electrolyte occur on the L0.25FePO4 anode. Therefore, the CEI can be investigated exclusively. Using a LiFePO4|Li0.25FePO4 symmetric cell configuration, we scrutinize the compatibility of the electrolytes containing a wide spectrum of lithium salts, Li[(FSO2)(Cm F2m+1SO2)N] (m = 0, 1, 2, 4), with the LiFePO4, in both cycling and calendar tests. It is found that the Li[(FSO2)(n-C4F9SO2)N] (LiFNFSI)-based electrolyte exhibits the highest compatibility with LiFePO4.

  16. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

    KAUST Repository

    Zhang, Yimin

    2010-11-01

    Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat plate electrodes. Cyclic voltammetry tests showed that the electrochemically active surface area of certain sized mesh could be three times larger than a flat sheet. The relative performance of SS mesh in linear sweep voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis in MEC tests. The best SS mesh size (#60) in MEC tests had a relatively thick wire size (0.02 cm), a medium pore size (0.02 cm), and a specific surface area of 66 m2/m3. An applied voltage of 0.9 V produced a high hydrogen recovery (98 ± 4%) and overall energy efficiency (74 ± 4%), with a hydrogen production rate of 2.1 ± 0.3 m3H 2/m3d (current density of 8.08 A/m2, volumetric current density of 188 ± 19 A/m3). These studies show that SS in mesh format shows great promise for the development of lower cost MEC systems for hydrogen production. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  18. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function.

    Science.gov (United States)

    Peachey, Neal S; Hasan, Nazarul; FitzMaurice, Bernard; Burrill, Samantha; Pangeni, Gobinda; Karst, Son Yong; Reinholdt, Laura; Berry, Melissa L; Strobel, Marge; Gregg, Ronald G; McCall, Maureen A; Chang, Bo

    2017-08-01

    GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6 nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6 nob8 retina were comparable to control. The Grm6 nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6 nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease. NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.

  19. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  20. Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, Carlos; Ruiz de Larramendi, I.

    2013-01-01

    -priced raw material and cost-effective production techniques.In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination......For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive - requiring both low...... (∼600°C) and electrode sintering (∼800°C) of LCFN electrodes, making them a cheaper alternative to conventional SOFC cathodes. An electrode polarization resistance as low as 0.10Ωcm2 at 800°C is reported, as determined by impedance spectroscopy studies of symmetrical cells sintered at a range...

  1. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors

    KAUST Repository

    Zhang, Fang; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2010-01-01

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal meshcurrent collectorsandinexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solutionside as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/ carbon layers achieved the highest maximum power density of 1610 ± 56 mW/m 2 (normalized to cathode projected surface area; 47.0 ± 1.6 W/m3 based on liquid volume). This power output was comparable to the best result of 1635 ± 62 mW/m2 obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies. © 2010 American Chemical Society.

  2. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors

    KAUST Repository

    Zhang, Fang

    2010-02-15

    A new and simplified approach for making cathodes for microbial fuel cells (MFCs) was developed by using metal meshcurrent collectorsandinexpensive polymer/carbon diffusion layers (DLs). Rather than adding a current collector to a cathode material such as carbon cloth, we constructed the cathode around the metal mesh itself, thereby avoiding the need for the carbon cloth or other supporting material. A base layer of poly(dimethylsiloxane) (PDMS) and carbon black was applied to the air-side of a stainless steel mesh, and Pt on carbon black with Nafion binder was applied to the solutionside as catalyst for oxygen reduction. The PDMS prevented water leakage and functioned as a DL by limiting oxygen transfer through the cathode and improving coulombic efficiency. PDMS is hydrophobic, stable, and less expensive than other DL materials, such as PTFE, that are commonly applied to air cathodes. Multiple PDMS/carbon layers were applied in order to optimize the performance of the cathode. Two PDMS/ carbon layers achieved the highest maximum power density of 1610 ± 56 mW/m 2 (normalized to cathode projected surface area; 47.0 ± 1.6 W/m3 based on liquid volume). This power output was comparable to the best result of 1635 ± 62 mW/m2 obtained using carbon cloth with three PDMS/carbon layers and a Pt catalyst. The coulombic efficiency of the mesh cathodes reached more than 80%, and was much higher than the maximum of 57% obtained with carbon cloth. These findings demonstrate that cathodes can be constructed around metal mesh materials such as stainless steel, and that an inexpensive coating of PDMS can prevent water leakage and lead to improved coulombic efficiencies. © 2010 American Chemical Society.

  3. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    Science.gov (United States)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  4. The effect of cathodic water on performance of a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Kulikovsky, A.A.

    2004-01-01

    A simple analytical model of water transport in the polymer electrolyte fuel cell is developed. Nonlinear membrane resistance and voltage loss due to incomplete membrane humidification are calculated. Both values depend on parameter r, the ratio of mass transport coefficients of water in the membrane and in the backing layer. Simple equation for cell performance curve, which incorporates the effect of cathodic water is constructed. Depending of the value of r, the cell may operate in one of the two regimes. When r ≥ 1, incomplete membrane humidification simply reduces cell voltage; the limiting current density is determined by oxygen transport in the backing layer (oxygen-limiting regime). If r < 1, limiting current density is determined by membrane drying (water-limiting regime). In that case there exists optimal current density, which provides minimal membrane resistance. It is shown that membrane drying may lead to parasitic 'in-plane' proton current

  5. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  6. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835±21 to 62±1mW/m3. Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. © 2010 Elsevier Ltd.

  7. Effect of substrate and cathode parameters on the properties of suspension plasma sprayed solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D.; Tang, Z.; Burgess, A. [British Columbia Univ., Vancouver, BC (Canada); Kesler, O. [Toronto Univ., ON (Canada)

    2008-07-01

    An axial injection suspension plasma spray system has been used to produce layers of fully stabilized yttriastabilized zirconia (YSZ) that could be used as solid oxide fuel cell (SOFC) electrolytes. Suspension plasma spraying is a promising technique for the rapid production of coatings with fine microstructures and controlled porosity without requiring a post-deposition heat treatment. This new manufacturing technique to produce SOFC active layers requires the build up of a number of different plasma sprayed SOFC functional layers (cathode, electrolyte and anode) sequentially on top of each other. To understand the influence of the substrate and previouslydeposited coating layers on subsequent coating layer properties, YSZ layers were deposited on top of plasma sprayed composite lanthanum strontium manganite (LSM)/YSZ cathode layers that were first deposited on porous ferritic stainless steel substrates. Three layer half cells consisting of the porous steel substrate, composite cathode, and suspension plasma sprayed electrolyte layer were then characterized. A systematic study was performed in order to investigate the effect of parameters such as substrate and cathode layer roughness, substrate surface pore size, and cathode microstructure and thickness on electrolyte deposition efficiency, cathode and electrolyte permeability, and layer microstructure. (orig.)

  8. Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells

    International Nuclear Information System (INIS)

    Whipple, Devin T.; Jayashree, Ranga S.; Egas, Daniela; Alonso-Vante, Nicolas; Kenis, Paul J.A.

    2009-01-01

    This paper reports the incorporation of a cluster-like Ru x Se y as a methanol tolerant cathode catalyst in a laminar flow fuel cell. The effect on cell performance of several concentrations of methanol in the cathode stream was investigated for the Ru x Se y catalyst and compared to a conventional platinum catalyst. While the Pt catalyst exhibited up to ∼80% drop in power density, the Ru x Se y catalyst showed no decrease in performance when the cathode was exposed to methanol. At several methanol concentrations the Ru x Se y catalyst performed better than the Pt catalyst. This demonstration of a methanol tolerant catalyst in a laminar flow fuel cell opens up the way for further miniaturization of the cell design and simplification of its operation as the need for an electrolyte stream to prevent fuel crossover has been eliminated.

  9. Transport phenomena in the cathode of a molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Berg, P.; Findlay, J.

    2009-01-01

    'Full text': A Molten Carbonate Fuel Cell (MCFC) is an electro-chemical energy conversion technology that runs on natural gas and employs a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 C, eliminating the need for noble catalysts. There has been only a limited amount of research on modelling the transport processes inside this device, mainly due to its limited ability for mobile applications. A model for the reaction-diffusion processes within the cathode of a MCFC is developed using Fick's Law for diffusion and incorporating Darcy's Law for convection. A model for Binary Diffusion is also discussed and compared to those for Fickian diffusion. It can be shown that there exists a limiting case for diffusion across the cathode that depends on the conductivity for the liquid potential, for which there exists an analytical solution. Results are also discussed for varying diffusivities and permeabilities. Ultimately, this research focuses on the optimization of the electrode porosity to increase the power output of the fuel cell. The porosity is considered as a function of position, and is optimized using the software package MATLAB. (author)

  10. Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO2 cathode degradation correlated with Co dissolution

    Directory of Open Access Journals (Sweden)

    Hiroki Nara

    2016-04-01

    Full Text Available Static degradation of LiCoO2 cathodes is a problem that hinders accurate analysis using our developed separable symmetric cell. Therefore, in this study we investigate the static degradation of LiCoO2 cathodes in separable symmetric cells by electrochemical impedance spectroscopy (EIS and inductively coupled plasma analyses. EIS measurements of LiCoO2 cathodes are conducted in various electrolytes, with different anions and with or without HF and/or H2O. This allows us to determine the static degradation of LiCoO2 cathodes relative to their increase of charge transfer resistance. The increase of the charge transfer resistance of the LiCoO2 cathodes is attributed to cobalt dissolution from the active material of LiCoO2. Cobalt dissolution from LiCoO2 is revealed to occur even at low potential in the presence of HF, which is generated from LiPF6 and H2O. The results indicate that avoidance of HF generation is important for the analysis of lithium-ion battery electrodes by using the separable cell. These findings reveal the condition to achieve accurate analysis by EIS using the separable cell.

  11. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  12. On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Veltzé, Sune

    2017-01-01

    Infiltration as a fabrication method for solid oxide fuel cells (SOFC) electrodes is offering significant improvements in cell performance at reduced materials and fabrication costs, especially when combined with co-sintering. However, important questions regarding the long-term performance...... and microstructural stability remain unanswered. Here, we present the results of a three-year project, where large footprint anode-supported SOFCs with a co-sintered cathode backbone and infiltrated La0.95Co0.4Ni0.6O3 (LCN) cathodes were developed and thoroughly characterized. The initial long-term performance...... in the electrode properties using SEM, BET area, and in-plane conductivity measurements. Finally, the mechanical properties of co-sintered cathode backbone cells were determined in four-point bending tests carried out both at room temperature and at 800°C in air. Based on these results, degradation mechanisms were...

  13. Preparation of cathode materials for Li-ion cells by acid dissolution

    International Nuclear Information System (INIS)

    Oh, Si Hyoung; Jeong, Woon Tae; Cho, Won Il; Cho, Byung Won; Woo, Kyoungja

    2005-01-01

    New synthesis route called acid dissolution method, preparing the high-performance cathode materials for the lithium-ion cells, was successfully developed. In this method, insoluble starting materials such as metal carbonates or metal hydroxides are dissolved in strong organic acidic solution which contains a chelating agent. And then, the solvent of the solution containing starting materials is eliminated to obtain the xerogel of the initial solution whose chemical form is expressed as Li[MA 3 ], where M is a transition metal atom and A is the anion of the organic acid. The xerogel is then calcined at the high temperature to obtain polycrystalline cathode materials. In this work, the applicability of this method was demonstrated synthesizing a polycrystalline single-phase LiCoO 2 using lithium carbonate, cobalt hydroxide as the insoluble starting materials and the acrylic acid as a chelating agent. The synthesized powders calcined at 800 deg. C showed a good electrochemical performance in the half-cell test

  14. Semitransparent Flexible Organic Solar Cells Employing Doped-Graphene Layers as Anode and Cathode Electrodes.

    Science.gov (United States)

    Shin, Dong Hee; Jang, Chan Wook; Lee, Ha Seung; Seo, Sang Woo; Choi, Suk-Ho

    2018-01-31

    Semitransparent flexible photovoltaic cells are advantageous for effective use of solar energy in many areas such as building-integrated solar-power generation and portable photovoltaic chargers. We report semitransparent and flexible organic solar cells (FOSCs) with high aperture, composed of doped graphene layers, ZnO, P3HT:PCBM, and PEDOT:PSS as anode/cathode transparent conductive electrodes (TCEs), electron transport layer, photoactive layer, and hole transport layer, respectively, fabricated based on simple solution processing. The FOSCs do not only harvest solar energy from ultraviolet-visible region but are also less sensitive to near-infrared photons, indicating semitransparency. For the anode/cathode TCEs, graphene is doped with bis(trifluoromethanesulfonyl)-amide or triethylene tetramine, respectively. Power conversion efficiency (PCE) of 3.12% is obtained from the fundamental FOSC structure, and the PCE is further enhanced to 4.23% by adding an Al reflective mirror on the top or bottom side of the FOSCs. The FOSCs also exhibit remarkable mechanical flexibilities through bending tests for various curvature radii.

  15. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  16. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  17. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.; Merrill, Mathew D.; Logan, Bruce E.

    2009-01-01

    Microbial electrolysis cells (MECs) are used to produce hydrogen gas from the current generated by bacteria, but low-cost alternatives are needed to typical cathode materials (carbon cloth, platinum and Nafion™). Stainless steel A286 was superior to platinum sheet metal in terms of cathodic hydrogen recovery (61% vs. 47%), overall energy recovery (46% vs. 35%), and maximum volumetric hydrogen production rate (1.5 m3 m-3 day-1 vs. 0.68 m3 m-3 day-1) at an applied voltage of 0.9 V. Nickel 625 was better than other nickel alloys, but it did not perform as well as SS A625. The relative ranking of these materials in MEC tests was in agreement with cyclic voltammetry studies. Performance of the stainless steel and nickel cathodes was further increased, even at a lower applied voltage (0.6 V), by electrodepositing a nickel oxide layer onto the sheet metal (cathodic hydrogen recovery, 52%, overall energy recovery, 48%; maximum volumetric hydrogen production rate, 0.76 m3 m-3 day-1). However, performance of the nickel oxide cathodes decreased over time due to a reduction in mechanical stability of the oxides (based on SEM-EDS analysis). These results demonstrate that non-precious metal cathodes can be used in MECs to achieve hydrogen gas production rates better than those obtained with platinum. © 2009 Elsevier B.V. All rights reserved.

  18. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2009-05-01

    Microbial electrolysis cells (MECs) are used to produce hydrogen gas from the current generated by bacteria, but low-cost alternatives are needed to typical cathode materials (carbon cloth, platinum and Nafion™). Stainless steel A286 was superior to platinum sheet metal in terms of cathodic hydrogen recovery (61% vs. 47%), overall energy recovery (46% vs. 35%), and maximum volumetric hydrogen production rate (1.5 m3 m-3 day-1 vs. 0.68 m3 m-3 day-1) at an applied voltage of 0.9 V. Nickel 625 was better than other nickel alloys, but it did not perform as well as SS A625. The relative ranking of these materials in MEC tests was in agreement with cyclic voltammetry studies. Performance of the stainless steel and nickel cathodes was further increased, even at a lower applied voltage (0.6 V), by electrodepositing a nickel oxide layer onto the sheet metal (cathodic hydrogen recovery, 52%, overall energy recovery, 48%; maximum volumetric hydrogen production rate, 0.76 m3 m-3 day-1). However, performance of the nickel oxide cathodes decreased over time due to a reduction in mechanical stability of the oxides (based on SEM-EDS analysis). These results demonstrate that non-precious metal cathodes can be used in MECs to achieve hydrogen gas production rates better than those obtained with platinum. © 2009 Elsevier B.V. All rights reserved.

  19. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    Science.gov (United States)

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  20. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    Science.gov (United States)

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  1. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    Science.gov (United States)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  2. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ralph E. White; Dr. Branko N. Popov

    2002-04-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Two approaches have been adopted to get a stable cathode material. First approach is the use of LiNi{sub 0.8}Co{sub 0.2}O{sub 2}, a commercially available lithium battery cathode material and the second is the use of tape cast electrodes prepared from cobalt coated nickel powders. The morphology and the structure of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and tape cast Co coated nickel powder electrodes were studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance of the two materials was investigated by electrochemical impedance spectroscopy and polarization studies. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. The model gives a good fit to the experimental data. The model has been used to analyze MCFC cathode performance under a wide range of operating conditions.

  3. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.

    Science.gov (United States)

    Tao, Hu-Chun; Liang, Min; Li, Wei; Zhang, Li-Juan; Ni, Jin-Ren; Wu, Wei-Min

    2011-05-15

    Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells.

    Science.gov (United States)

    Li, Yue; Li, Xiaojing; Sun, Yang; Zhao, Xiaodong; Li, Yongtao

    2018-04-05

    The microbial fuel cell (MFC) that uses a solid electrode as the inexhaustible electron acceptor is an innovative remediation technology that simultaneously generates bioelectricity. Chlorinated pollutants are better metabolized by reductive dechlorination in proximity to the cathode. Here, the removal efficiency of the herbicide metolachlor (ML) increased by 262 and 176% in soil MFCs that were spiked with 10 (C10) and 20 mg/kg (C20) of ML, respectively, relative to the non-electrode controls. The bioelectricity output of the C10 and C20 increased by over two- and eightfold, respectively, compared to that of the non-ML control, with maximum current densities of 49.6 ± 2.5 (C10) and 78.9 ± 0.6 mA/m 2 (C20). Based on correlations between ML concentrations and species abundances in the MFCs, it was inferred that Azohydromonas sp., Sphingomonas sp., and Pontibacter sp. play a major role in ML removal around the cathode, with peak removal efficiencies of 56 ± 1% (C10) and 58 ± 1% (C20). Moreover, Clostridium sp., Geobacter sp., Bacillus sp., Romboutsia sp., and Terrisporobacter sp. may be electricigens or closely related microbes due to the significant positive correlation between the bioelectricity generation levels and their abundances around the anode. This study suggests that a directional adaptation of the microbial community has taken place to increase both the removal of chlorinated herbicides around the cathode and the generation of bioelectricity around the anode in bioelectrochemical remediation systems.

  5. Effect of fabrication and operating parameters on electrochemical property of anode and cathode for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Zhou, Hongwei; Ding, Xianan; Li, Xinping; Zou, Dechun; Li, Xinyang; Wang, Xindong; Lee, Joong Kee

    2016-01-01

    Highlights: • A quick and simple method for optimizing assembly force of fuel cells. • Effect mechanisms of operating parameters on polarization of each electrode. • Working temperature is main factor to affect the optimal flow rates. • This paper is helpful to simulate the relation between operating parameters. - Abstract: A quick and simple method for optimizing assembly force of the direct methanol fuel cell has been introduced. Meanwhile, the effect mechanism of operating parameters on fuel cell performance and the properties of single anode and cathode have been intuitively investigated by a three-electrode system in this paper. The impedance curves indicate that internal resistance is the suitable intermediate to connect assembly torque and assembly force. The cathode polarization curve and limiting current density of methanol crossover are shown that the increasing methanol concentration markedly exacerbates the polarization in cathode due to serious methanol crossover phenomenon. Also, the higher cathode backpressure mainly improves cathode property, and lowers methanol crossover simultaneously. Finally, the summaries of peak power densities prove that the main factor that affected the optimal flow rates of methanol and oxygen is not the concentration or backpressure, but the working temperature.

  6. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

    KAUST Repository

    Zhang, Yimin; Merrill, Matthew D.; Logan, Bruce E.

    2010-01-01

    , and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat

  7. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

  8. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  9. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the

  10. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  11. Nanoporous silver cathode surface treated by atomic layer deposition of CeO_x for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-01-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO_x) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C–450 °C. Our work confirms that ALD CeO_x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO_x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO_x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO_x-treated Ag cathodes related to the microstructure of the layers. (paper)

  12. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    Science.gov (United States)

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  13. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    Science.gov (United States)

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

  14. Study on the water flooding in the cathode of direct methanol fuel cells.

    Science.gov (United States)

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  15. SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhu Tong; Du Chunyu; Liu Chuntao; Yin Geping; Shi Pengfei

    2011-01-01

    This paper describes the preparation of SiO 2 stabilized Pt/C catalyst (SiO 2 /Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO 2 /Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO 2 /Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO 2 /Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO 2 /Pt/C as a promising cathode catalyst for PEMFCs.

  16. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells.

    Science.gov (United States)

    Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J

    2013-04-21

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  17. Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes.

    Science.gov (United States)

    Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J

    2017-08-28

    Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  19. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    Science.gov (United States)

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  1. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    Science.gov (United States)

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  2. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ralph E. White; Dr. Branko N. Popov

    2001-10-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Lithium Cobalt oxide was coated on Ni cathode by a sol-gel coating. The morphology and the LiCoO{sub 2} formation of LiCoO{sub 2} coated NiO was studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance lithium cobalt oxide coated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. Dissolution of nickel into the molten carbonate melt was less in case of lithium cobalt oxide coated nickel cathodes. LiCoO{sub 2} coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, lithium cobalt oxide coated nickel shows similar polarization characteristics as nickel oxide. Conventional theoretical models for the molten carbonate fuel cell cathode are based on the thin film agglomerate model. The principal deficiency of the agglomerate model, apart from the simplified pore structure assumed, is the lack of measured values for film thickness and agglomerate radius. Both these parameters cannot be estimated appropriately. Attempts to estimate the thickness of the film vary by two orders of magnitude. To avoid these problems a new three phase homogeneous model has been developed using the volume averaging technique. The model considers the potential and current variation in both liquid and solid phases. Using this approach, volume averaged

  3. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  4. Water transport in the cathode channels of direct methanol fuel cells; Wasseraustrag aus den Kathodenkanaelen von Direkt-Methanol-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander

    2011-10-26

    Mass transport phenomena are vital for the operating performance of direct methanol fuel cells. In particular, the discharge of liquid water from the cathode channels is crucial for the supply of oxygen to the cathode and thus for operational stability. Droplets of water in the pores of the the diffusion layer and the cathode channels may lower the power output and induce locally negative current densities as they considerably limit the oxygen supply. This work investigates the water discharge from the cathode channels using neutron radiography, synchrotron radiography and locally resolved current density measurements and it identifies ways of improving the operational stability. Neutron radiography is a measuring technique suitable for detecting the water distribution in fuels cells under operating conditions. Synchrotron radiography is a method complementary to neutron radiography, allowing a more detailed analysis of smaller areas. Special test cells adapted to both measuring methods are developed. Their electrode areas are radiographed either frontally or laterally. To enable locally resolved current density measurements, a printed circuit board with a segmented contact area is integrated into each of the test cells. The measuring technique used is based on compensated sensor resistors, which ensure a reactionless measurement. In addition, the temperature distribution and the pressure drop on the cathod side are recorded. In order to correlated the water distribution, the current density distribution and the pressure drop, neutron radiography and synchrotron radiography are both combined with locally resolved current density measurements. Furthermore, current density measurements are performed under constant laboratory conditions to study the variation of paramenters. A measurement with a stack is also performed. The experiments reveal fundamental interdependencies between different factors and the discharge of water. At a given air ratio, the geometry and the

  5. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  6. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  7. Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2011-01-01

    A numerical model of a proton exchange membrane fuel cell (PEMFC) cathode with a tapered channel design has been developed in order to examine the dynamic behavior of liquid water transport. Three-dimensional, transient simulations employing the level-set method (available in COMSOL 3.5a, a

  8. Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

    DEFF Research Database (Denmark)

    Torres-Gomez, G,; Skaarup, Steen; West, Keld

    2000-01-01

    A study of the hybrid oganic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific...

  9. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2009-11-01

    Full Text Available In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  10. Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Søndergaard, Stine; Cleemann, Lars Nilausen; Jensen, Jens Oluf

    2017-01-01

    This paper describes the results of adding small amounts of CO gas to the cathode side in a HT-PEM fuel cell with a polybenzimidazole (PBI) membrane running on either oxygen or air. Experimental conditions: Temperature ranges 120–160 °C, constant current either 200 mA/cm2 or 800 mA/cm2 and CO...... improvement of the potential is seen before the situation goes back to normal. A good explanation for this is a competition between CO, O2 and H3PO4 at the three phase boundaries, also that a steady state exist in which CO constantly is oxidized to CO2....

  11. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  12. A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells

    International Nuclear Information System (INIS)

    Wang Qianpu; Song Datong; Navessin, Titichai; Holdcroft, Steven; Liu Zhongsheng

    2004-01-01

    A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst vertical bar electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design

  13. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Mark Daniel G. de [Department of Chemical Engineering, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Veciana, Mersabel L. [Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Su, Chia-Chi [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Lu, Ming-Chun, E-mail: mmclu@mail.chan.edu.tw [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer The electro-Fenton reactor using a double cathode electrochemical cell was applied. Black-Right-Pointing-Pointer The initial Fe{sup 2+} concentration was the most significant parameter for the acetaminophen degradation. Black-Right-Pointing-Pointer Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe{sup 2+} and H{sub 2}O{sub 2} concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe{sup 2+} concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  14. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    International Nuclear Information System (INIS)

    Luna, Mark Daniel G. de; Veciana, Mersabel L.; Su, Chia-Chi; Lu, Ming-Chun

    2012-01-01

    Highlights: ► The electro-Fenton reactor using a double cathode electrochemical cell was applied. ► The initial Fe 2+ concentration was the most significant parameter for the acetaminophen degradation. ► Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box–Behnken design was used to determine the effects of initial Fe 2+ and H 2 O 2 concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe 2+ concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  15. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  16. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia; Vargas, Ignacio T.; Bruns, Mary Ann; Regan, John M.

    2017-01-01

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  17. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia

    2017-08-03

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  18. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of a cathode buffer layer on the stability of organic solar cells

    International Nuclear Information System (INIS)

    Wang, Danbei; Zeng, Wenjin; Chen, Shilin; Su, Xiaodan; Wang, Jin; Zhang, Hongmei

    2015-01-01

    We present the effect of a cathode buffer layer on the performance and stability of organic photovoltaics (OPVs) based on a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Six kinds of cathode buffer layers, i.e. lithium fluoride, sodium chloride, NaCl/Mg, tris-(8-hydroxy-quinoline) aluminum, bathocuproine and 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene, were inserted between the photoactive layer and an Al cathode, which played a dominant role in the device’s performance. Devices with the cathode buffer layers above exhibited improved performance. The degradation of these devices with encapsulation was further investigated in an inert atmosphere. The results indicated that devices with inorganic cathode buffer layers exhibited better stability than those with organic cathode buffer layers. (paper)

  20. Electricity generation of microbial fuel cell with waterproof breathable membrane cathode

    Science.gov (United States)

    Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng

    2015-12-01

    Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.

  1. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  2. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance.

    Science.gov (United States)

    Liao, Sih-Hao; Jhuo, Hong-Jyun; Cheng, Yu-Shan; Chen, Show-An

    2013-09-14

    Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications.

    Science.gov (United States)

    Brushett, Fikile R; Thorum, Matthew S; Lioutas, Nicholas S; Naughton, Matthew S; Tornow, Claire; Jhong, Huei-Ru Molly; Gewirth, Andrew A; Kenis, Paul J A

    2010-09-08

    The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.

  4. Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells.

    Science.gov (United States)

    Vijayarathna, Soundararajan; Oon, Chern Ein; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-05-01

    Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC 50 ) and pro-oxidant (IC 50 and double IC 50 ) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC 50 concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells.

    Science.gov (United States)

    Sato, Mariko; Hirose, Katsumi; Kashiwakura, Ikuo; Aoki, Masahiko; Kawaguchi, Hideo; Hatayama, Yoshiomi; Akimoto, Hiroyoshi; Narita, Yuichiro; Takai, Yoshihiro

    2015-09-01

    Hypoxia‑inducible factor 1 (HIF‑1) activates the transcription of genes that act upon the adaptation of cancer cells to hypoxia. LW6, an HIF‑1 inhibitor, was hypothesized to improve resistance to cancer therapy in hypoxic tumors by inhibiting the accumulation of HIF‑1α. A clear anti‑tumor effect under low oxygen conditions would indicate that LW6 may be an improved treatment strategy for cancer in hypoxia. In the present study, the HIF‑1 inhibition potential of LW6 on the growth and apoptosis of A549 lung cancer cells in association with oxygen availability was evaluated. LW6 was observed to inhibit the expression of HIF‑1α induced by hypoxia in A549 cells at 20 mM, independently of the von Hippel‑Lindau protein. In addition, at this concentration, LW6 induced hypoxia‑selective apoptosis together with a reduction in the mitochondrial membrane potential. The intracellular reactive oxygen species levels increased in LW6‑treated hypoxic A549 cells and LW6 induced a hypoxia‑selective increase of mitochondrial O2•‑. In conclusion, LW6 inhibited the growth of hypoxic A549 cells by affecting the mitochondria. The inhibition of the mitochondrial respiratory chain is suggested as a potentially effective strategy to target apoptosis in cancer cells.

  6. Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan

    2009-01-01

    LaBO3 (B=Mn, Fe, Co, and Ni) perovskites form a family of materials of significant interest for cathodes of solid oxide fuel cells (SOFCs). In this paper ab initio methods are used to study both bulk and surface properties of relevance for SOFCs, including vacancy formation and oxygen binding...... reduction reaction on perovskite SOFC cathodes....

  7. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for ox...

  8. Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Vej-Hansen, Ulrik Grønbjerg

    2014-01-01

    for enhancing the cathode activity is to alloy Pt with transition metals [1-2]. However, alloys of Pt and late transition metals are typically unstable under fuel-cell conditions. Herein, we present experimental and theoretical studies showing the trends in activity and stability of novel cathode catalysts...

  9. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    Science.gov (United States)

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A novel layered perovskite cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2010-02-01

    BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) exhibits adequate proton conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered SmBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (SBSC) perovskite demonstrates advanced electrochemical properties based on doped ceria electrolyte. This research fully takes advantage of these advanced properties and develops novel protonic ceramic membrane fuel cells (PCMFCs) of Ni-BZCY7 vertical stroke BZCY7 vertical stroke SBSC. The results show that the open-circuit potential of 1.015 V and maximum power density of 533 mW cm{sup -2} are achieved at 700 C. With temperature increase, the total cell resistance decreases, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that SBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke SBSC cell is a promising functional material system for next generation SOFCs. (author)

  11. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.

    2013-06-18

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.; Li, Dong; Amy, Gary L.; Logan, Bruce E.; Saikaly, Pascal

    2013-01-01

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    Science.gov (United States)

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang; Cheng, Shaoan; Pant, Deepak; Bogaert, Gilbert Van; Logan, Bruce E.

    2009-01-01

    a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings

  15. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode

    International Nuclear Information System (INIS)

    Ongul, Fatih; Yuksel, Sureyya Aydın; Bozar, Sinem; Gunes, Serap; Cakmak, Gulbeden; Guney, Hasan Yuksel; Egbe, Daniel Ayuk Mbi

    2015-01-01

    In this paper, the photovoltaic characteristics of bulk heterojunction solar cells employing an eutectic gallium–indium (EGaIn) alloy as a top metal contact which was coated by a simple and inexpensive brush-painting was investigated. The overall solar cell fabrication procedure was vacuum-free. As references, regular organic bulk heterojunction solar cells employing thermally evaporated Aluminum as a top metal contact were also fabricated. Inserting the ZnO layer between the active layer and the cathode electrodes (Al and EGaIn) improved the photovoltaic performance of the herein investigated devices. The power conversion efficiencies with and without EGaIn top electrodes were rather comparable. Hence, we have shown that the EGaIn, which is liquid at room temperature, can be used as a cathode. It allows an easy and rapid device fabrication that can be implemented through a vacuum free process. (paper)

  16. Evaluation of Pt−Au/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Beltrán-Gastélum, M.; Salazar-Gastélum, M.I.; Félix-Navarro, R.M.; Pérez-Sicairos, S.; Reynoso-Soto, E.A.; Lin, S.W.; Flores-Hernández, J.R.; Romero-Castañón, T.; Albarrán-Sánchez, I.L.; Paraguay-Delgado, F.

    2016-01-01

    A comparative study between Pt−Au/MWCNT and Pt/C (commercial) as cathodic electrocatalyst of H_2/O_2 fuel cell is performed. Pt−Au/MWCNT is synthesized using the reverse microemulsion method and this procedure is scaled-up in order to prepare membrane-electrode assemblies for fuel cells with an active area of 9 cm"2. Those electrocatalysts are characterized by both physicochemical techniques and electrochemical measurements to evaluate their catalytic activity for ORR (Oxygen Reduction Reaction). In the half-cell study, Pt−Au/MWCNT show higher kinetic current density as cathodic electrocatalyst compared with Pt/C. Likewise, in a fuel cell hardware the maximum power density is significantly higher for Pt−Au/MWCNT cathode (625 mW cm"−"2 at 0.426 V) when compared with Pt/C anode (355 mW cm"−"2 at 0.499 V). - Highlights: • Pt−Au/MWCNT was synthesized by reverse microemulsión method. • Pt−Au/MWCNT and Pt/C were characterized by microscopic and spectroscopic techniques. • Both materials were studied as catalysts for ORR by electrochemical techniques. • Catalysts were used to prepare MEA's, the performance in fuel cell was evaluated. • Maximum power densities were 625 mW cm"−"2 for Pt−Au/MWCNT and 355 mW cm"−"2 for Pt/C.

  17. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    Science.gov (United States)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  18. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan

    2017-06-02

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  19. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Deepak, E-mail: deepak.pant@vito.b [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium); Van Bogaert, Gilbert; De Smet, Mark; Diels, Ludo; Vanbroekhoven, Karolien [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium)

    2010-11-01

    In the existing microbial fuel cells (MFCs), the use of platinized electrodes and Nafion as proton exchange membrane (PEM) leads to high costs leading to a burden for wastewater treatment. In the present study, two different novel electrode materials are reported which can replace conventional platinized electrodes and can be used as very efficient oxygen reducing cathodes. Further, a novel membrane which can be used as an ion permeable membrane (Zirfon) can replace Nafion as the membrane of choice in MFCs. The above mentioned gas porous electrodes were first tested in an electrochemical half cell configuration for their ability to reduce oxygen and later in a full MFC set up. It was observed that these non-platinized air electrodes perform very well in the presence of acetate under MFC conditions (pH 7, room temperature) for oxygen reduction. Current densities of -0.43 mA cm{sup -2} for a non-platinized graphite electrode and -0.6 mA cm{sup -2} for a non-platinized activated charcoal electrode at -200 mV vs. Ag/AgCl of applied potential were obtained. The proposed ion permeable membrane, Zirfonwas tested for its oxygen mass transfer coefficient, K{sub 0} which was compared with Nafion. The K{sub 0} for Zirfon was calculated as 1.9 x 10{sup -3} cm s{sup -1}.

  20. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan; Ahn, YongTae; Poirson, Thibault; Hickner, Michael A.; Logan, Bruce

    2017-01-01

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  1. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  2. Mechanistic modelling of a cathode-supported solid oxide fuel cell. Paper no. IGEC-1-103

    International Nuclear Information System (INIS)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M.D.; Fowler, M.W.; Douglas, P.L.; Entchev, E.

    2005-01-01

    A model for a cathode-supported tubular solid oxide fuel cell operating with humidified H 2 has been developed. Momentum-, mass-, energy- and charge-transport equations coupled with electrochemical reactions (H 2 oxidation and O 2 reduction) are considered in the model. The model also takes into account the radiative heat transfer between the cell and air-preheating tube. The model is validated against published experimental data ands shows a good agreement. The distributions of temperature, current density, reversible cell voltage, overpotential and species mole fractions within the cell are discussed in detail. (author)

  3. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  4. Depolarization on Earth-space paths

    Science.gov (United States)

    1981-01-01

    Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.

  5. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; He, Weihua; Wang, Haiman; Feng, Yujie

    2014-12-01

    The rolling catalyst layers in air cathode microbial fuel cells (MFCs) are prepared by introducing NH4HCO3 as pore former (PF) with four PF/activated carbon mass ratios of 0.1, 0.2, 0.3 and 1.0. The maximum power density of 892 ± 8 mW m-2 is obtained by cathodes with the mass ratio of 0.2, which is 33% higher than that of the control reactor (without PF, 671 ± 22 mW m-2). Pore analysis indicates the porosity increases by 38% and the major pore range concentrates between 0.5 μm-0.8 μm which likely facilitates to enrich the active reaction sites compared to 0.8 μm-3.0 μm in the control and other PF-cathodes. In addition, pore structure endows the cathode improved exchange current density by 2.4 times and decreased charge transfer resistance by 44%, which are the essential reasons to enhance the oxygen reduction. These results show that addition of NH4HCO3 proves an effective way to change the porosity and pore distribution of catalyst layers and then enhance the MFC performance.

  6. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts.

    Science.gov (United States)

    Kiely, Patrick D; Rader, Geoffrey; Regan, John M; Logan, Bruce E

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  8. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  10. Structure optimization of cathode microporous layer for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Ding, Xianan; Zhou, Hongwei; Chen, Ming; Wang, Manxiang; Zhao, Zhenxuan; Yin, Zhuang; Wang, Xindong

    2015-01-01

    Highlights: • Pore-forming technology was introduced to optimize microporous layer microstructure. • The water removal and gas mass transfer property of diffusion layer were improved. • The optimum DMFC performance reached 292 mW cm −2 at 80 °C. - Abstract: To obtain the cathode microporous layer (CML) with high mass transfer performance and high electronic conductivity, a pore-forming technology was introduced to optimize CML microstructure for direct methanol fuel cells. In this paper, the effects of carbon material type, carbon material loading and pore-forming agent loading in CML on fuel cell performance were discussed systematically. The results indicated that the optimized CML consisted of carbon nanotubes and ammonium oxalate with the loading of 1.5 and 3.5 mg cm −2 respectively. The fuel cell performance was improved by 30.3%, from 224 to 292 mW cm −2 at 80 °C under 0.3 MPa O 2 . Carbon nanotube was found to be the most suitable carbon material for the CML due to its great specific surface area and small particle size, resulting in increasing the number of the hydrophobic sites and the contact area between the support and the catalyst layer. The carbon material and pore-forming agent loading directly influenced the pore distribution and the contact resistance of membrane electrode assembly. The water removal capacity and the gas mass transfer property of diffusion layer were improved by optimizing the amount of micropore and macropore structures

  11. Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)

    International Nuclear Information System (INIS)

    Song, Xingjuan; Zhang, Dongming

    2014-01-01

    AFCs (alkaline fuel cells) is one of the promising fuel cells, due to their low working temperature and less corrosive environment. However, decreasing the catalyst cost and improving its performance are still the challenges in its application. Transition metal as the catalyst for AFCs not only can reduce its cost, but also has great electro-catalytic efficiency. In this paper, Carbon supported Ag–Ni bimetallic catalysts with differential Ag/Ni atomic ratios were prepared by chemically reducing silver and nickel salts. Ag 3 Ni/C shows the relatively higher ORR (oxygen reduction reaction) activity among the differential Ag/Ni bimetallic particles. In order to improve the activity and stability, the catalysts were heat-treated at the temperature of 500 °C. The results indicate that the limiting current density has been improved greatly for Ag 3 Ni/C-500 °C, which is as high as 2.5× that of Ag/C. The microstructure investigation show that the non-equilibrium state of Ag–Ni alloy by heat treatment is confirmed by HRTEM (high-resolution transmission electron microscopy) images, and Ag(111) surfaces are decreased in XRD pattern, which results in the ORR activity improved and overpotential decreased. Heat treatment also has contributed to Ag–Ni/C electrochemistry stability in some degree. - Highlights: • Ag–Ni/C is applied as cathode catalyst for AFCs (alkaline fuel cells). • Ag 3 Ni/C-500 °C shows the best performance. • Non-equilibrium state of Ag–Ni alloy by heat treatment is observed. • The decreased Ag(111) surfaces are favor to improve the catalyst activity

  12. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix

    OpenAIRE

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-01-01

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demon...

  13. Novel highly active Pt/graphene catalyst for cathodes of Cu(II/I)-mediated dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Krýsová, Hana; Janda, Pavel; Tarábková, Hana; Saygili, Y.; Freitag, M.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M.

    2017-01-01

    Roč. 251, OCT 2017 (2017), s. 167-175 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S EU Projects: European Commission(XE) 696656 - GrapheneCore1 Institutional support: RVO:61388955 Keywords : graphene * platinum * cathode catalyst * dye sensitized solar cell * Cu-complexes Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 4.798, year: 2016

  14. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Yang, Fei

    2013-01-01

    Single-chamber air-cathode microbial fuel cells (MFCs) were used to generate electricity from fermented primary sludge. Fermentation (30°C, 9days) decreased total suspended solids (26.1-16.5g/L), volatile suspended solids (24.1-15.3g/L) and pH (5.7-4.5), and increased conductivity (2.4-4.7mS/cm), soluble COD (2.66-15.5g/L), and volatile fatty acids (1.9-10.1g/L). To lower the COD and increase pH, fermentation supernatant was diluted with primary effluent before being used in the MFCs. The maximum power density was 0.32±0.01W/m2, compared to 0.24±0.03W/m2 with only primary effluent. Power densities were higher with phosphate buffer added to the supernatant (1.03±0.06W/m2) or the solution (0.87±0.05W/m2). Coulombic efficiencies ranged from 18% to 57%, and sCOD removals from 84% to 94%. These results demonstrated that sludge can effectively be used for power generation when fermented and then diluted with only primary effluent. © 2012 Elsevier Ltd.

  15. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, F; Baque, L; Troiani, H; Granada, M; Serquis, A, E-mail: aserquis@cab.cnea.gov.a [Instituto Balseiro-Centro Atomico Bariloche and CONICET, San Carlos de Bariloche (Argentina)

    2009-05-01

    La{sub 1-x}Sr{sub x}Co{sub 1-y}FeyO{sub 3-d}elta oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d}elta (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  16. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  17. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua; Zhang, Xiaoyuan; Liu, Jia; Zhu, Xiuping; Feng, Yujie; Logan, Bruce E.

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested

  18. Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

    International Nuclear Information System (INIS)

    Ramiar, A.; Mahmoudi, A.H.; Esmaili, Q.; Abdollahzadeh, M.

    2016-01-01

    In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (P_i_n) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement. - Highlights: • Mechanism of water and oxygen transport under flow pulsation are discussed. • Pulsating cathode flow increases the limiting current density and output power. • The performance of cell has no significant dependency on pulsation frequency. • The performance and output power increase with the pulsation amplitude. • Using pulsating flow at lower average pressures leads to higher water removal rate.

  19. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-05-15

    Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are

  20. TiO{sub 2} nanotubes as alternative cathode in microbial fuel cells: Effect of annealing treatment on its performance

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, S. Ait Ali, E-mail: aay-soraya@yahoo.fr [Department of Chemical and Environmental Engineering, Regional Campus of International Excellence of “Campus Mare Nostrum”, Polytechnic University of Cartagena, Campus La Muralla, E-30202 Cartagena, Murcia (Spain); Laboratory of Physics and Chemical Materials (L.P.C.M.), University Mouloud MAMMERI, Tizi-Ouzou 1500 (Algeria); Hamadou, L., E-mail: lamhama@yahoo.fr [Laboratory of Physics and Chemical Materials (L.P.C.M.), University Mouloud MAMMERI, Tizi-Ouzou 1500 (Algeria); Salar-García, M.J. [Department of Chemical and Environmental Engineering, Regional Campus of International Excellence of “Campus Mare Nostrum”, Polytechnic University of Cartagena, Campus La Muralla, E-30202 Cartagena, Murcia (Spain); Kadri, A. [Laboratory of Physics and Chemical Materials (L.P.C.M.), University Mouloud MAMMERI, Tizi-Ouzou 1500 (Algeria); Ortiz-Martínez, V.M.; Hernández-Fernández, F.J. [Department of Chemical and Environmental Engineering, Regional Campus of International Excellence of “Campus Mare Nostrum”, Polytechnic University of Cartagena, Campus La Muralla, E-30202 Cartagena, Murcia (Spain); Pérez de los Rios, A. [Chemical Engineering Department, University of Murcia, Campus de Espinardo, E-30071 Murcia (Spain); Benbrahim, N. [Laboratory of Physics and Chemical Materials (L.P.C.M.), University Mouloud MAMMERI, Tizi-Ouzou 1500 (Algeria)

    2016-11-30

    Highlights: • An alternative cathode using TiO{sub 2} nanotubes. • Determination of the structural, morphological and electronic characteristics of the cathode. • Effect of crystalline structure on MFCs performances. - Abstract: In the present work, amorphous and crystalline TiO{sub 2} nanotubes (TiNT) were fabricated via anodization and characterized as an alternative cathode for Microbial Fuel Cells (MFCs). The morphology of TiNT is characterized by scanning electron microscopy (SEM). The crystalline structure and chemical composition are examined by X-ray diffraction (XRD) and Energy dispersive X-ray spectroscopy (EDX). The electrical conductivity characteristics were examined by electrochemical impedance spectroscopy (EIS). MFCs based on the alternative cathodes were evaluated in terms of energy generation and wastewater treatment. The performances of the as-anodized nanotubes and TiNT annealed at 450 °C and at 550 °C were investigated in double-chamber MFCs with carbon rod and graphite granules as anode and polymer inclusion membrane based on ionic liquid as separator. Industrial wastewater was the source of carbon and inoculum for the experiments. The as grown amorphous nanotubes exhibited the best output power density of 15.16 mWm{sup −2}. The results reported here indicate that the specific surface area and the oxygen vacancies of the TiNT cathode can influence the MFCs performance together, because both factors play crucial role in the oxygen reduction reaction (ORR). As-anodized TiNT, due to its higher specific surface provide more active sites for electrode reactions. The final oxygen demand (COD) for all systems achieved a COD removal within the interval 54–71% after 10 days. This approved the suitability of MFCs for wastewater treatment.

  1. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells

    KAUST Repository

    Tenca, Alberto

    2013-02-01

    Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8-1.8 m3/m3-d), and COD removal rates (1.8-2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1-3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of -0.7 - 1.2 kWh/kg-COD using MoS 2 or Pt cathodes, and -3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  2. Modeling and Predicting the Electrical Conductivity of Composite Cathode for Solid Oxide Fuel Cell by Using Support Vector Regression

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.

  3. Nanostructured LnBaCo2O6− (Ln = Sm, Gd with layered structure for intermediate temperature solid oxide fuel cell cathodes

    Directory of Open Access Journals (Sweden)

    Augusto E. Mejía Gómez

    2017-04-01

    Full Text Available In this work, we present the combination of two characteristics that are beneficial for solid oxide fuel cell (SOFC cathodic performance in one material. We developed and evaluated for the first time nanostructured layered perovskites of formulae LnBaCo2O6-d with Ln = Sm and Gd (SBCO and GBCO, respectively as SOFC cathodes, finding promising electrochemical properties in the intermediate temperature range. We obtained those nanostructures by using porous templates to confine the chemical reagents in regions of 200-800 nm. The performance of nanostructured SBCO and GBCO cathodes was analyzed by electrochemical impedance spectroscopy technique under different operating conditions using Gd2O3-doped CeO2 as electrolyte. We found that SBCO cathodes displayed lower area-specific resistance than GBCO ones, because bulk diffusion of oxide ions is enhanced in the former. We also found that cathodes synthesized using smaller template pores exhibited better performance.

  4. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang; Zhang, Fang; Logan, Bruce E.; Hickner, Michael A.

    2013-01-01

    enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17

  5. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin; Tokash, Justin C.; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  6. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry

    KAUST Repository

    Yang, Wulin

    2017-04-21

    Differences in microbial fuel cell (MFC) architectures, materials, and solution chemistries, have previously hindered direct comparisons of improvements in power production due to new cathode materials. However, one common reactor design has now been used in many different laboratories around the world under similar operating conditions based on using: a graphite fiber brush anode, a platinum cathode catalyst, a single-chamber cube-shaped (4-cm) MFC with a 3-cm diameter anolyte chamber, 50 mM phosphate buffer, and an acetate fuel. Analysis of several publications over 10 years from a single laboratory showed that even under such identical operational conditions, maximum power densities varied by 15%, with an average of 1.36 ± 0.20 W m–2 (n=24), normalized to cathode projected area (34 W m–3 liquid volume). In other laboratories, maximum power was significantly less, with an average of 1.03 ± 0.46 W m–2 (n=11), despite identical conditions. One likely reason for the differences in power is cathode age. Power production with Pt catalyst cathodes significantly declined after one month of operation or more to 0.87 ± 0.31 W m–2 (n=18) based on studies where cathode aging was examined, while in many studies the age of the cathode was not reported. Using these studies as a performance baseline, we review the claims of improvements in power generation due to new anode or cathode materials, or changes in solution conductivities and substrates.

  7. Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer

    DEFF Research Database (Denmark)

    Molin, Sebastian; Jasinski, Piotr Z.

    2017-01-01

    In this work, novel functional layers were prepared by a low temperature spray pyrolysis method on the oxygen side of the solid oxide cells. Thin layers of Ce0.8Gd0.2O2 and LaNi0.6Fe0.4O3 are prepared between the electrolyte and the porous oxygen electrode. Additionally the influence of the sprayed...... ceria barrier layer on the zirconia based electrolyte with the new layers is evaluated. Impedance spectroscopy results show improvement in contact between the electrolyte and the porous cathode electrode. Additionally, electrochemical performance of the cathode is improved, as evidenced by a lowered...

  8. Heterogeneous incidence and propagation of spreading depolarizations

    Science.gov (United States)

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  9. Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Van Nong, Ngo

    2011-01-01

    This paper reports on the electrochemical performance of an SOFC cathode for potential use in intermediate-temperature solid oxide fuel cells (IT-SOFCs) using the oxygen non-stoichiometric misfit-layered cobaltite Ca3Co4O9+δ or composites of Ca3Co4O9+δ with Ce0.9Gd0.1O1.95 (CGO/Ca3Co4O9+δ......). Electrochemical impedance spectroscopy revealed that symmetric cells with an electrode of pure Ca3Co4O9+δ exhibit a cathode polarization resistance (Rp) of 12.4 Ω cm2, at 600 °C in air. Strikingly, Rp of the composite CGO/Ca3Co4O9+δ with 50 vol.% CGO was reduced by a factor of 19 (i.e. Rp = 0.64 Ω cm2......), the lowest value reported so far for the Ca3Co4O9 family of compounds. These findings together with the reported thermal expansion coefficient, good compatibility with CGO and chemical durability of this material suggest that it is a promising candidate cathode for IT-SOFCs....

  10. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    Science.gov (United States)

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  11. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.

    Science.gov (United States)

    Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun

    2017-12-01

    Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L -1 and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN 3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N 2 O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H 2 O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.

  12. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  13. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  14. Kinetics of oxygen reduction in perovskite cathodes for solid oxide fuel cells: A combined modeling and experimental approach

    Science.gov (United States)

    Miara, Lincoln James

    Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The

  15. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin

    2014-10-14

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct an inexpensive MFC cathode using a poly(vinylidene fluoride) (PVDF) binder and an activated carbon catalyst. The phase inversion process enabled cathode preparation at room temperatures, without the need for additional heat treatment, and it produced for the first time a cathode that did not require a separate diffusion layer to prevent water leakage. MFCs using this new type of cathode produced a maximum power density of 1470 ± 50 mW m–2 with acetate as a substrate, and 230 ± 10 mW m–2 with domestic wastewater. These power densities were similar to those obtained using cathodes made using more expensive materials or more complex procedures, such as cathodes with a polytetrafluoroethylene (PTFE) binder and a poly(dimethylsiloxane) (PDMS) diffusion layer, or a Pt catalyst. Even though the PVDF cathodes did not have a diffusion layer, they withstood up to 1.22 ± 0.04 m of water head (∼12 kPa) without leakage, compared to 0.18 ± 0.02 m for cathodes made using PTFE binder and PDMS diffusion layer. The cost of PVDF and activated carbon ($3 m–2) was less than that of the stainless steel mesh current collector ($12 m–2). PVDF-based AC cathodes therefore are inexpensive, have excellent performance in terms of power and water leakage, and they can be easily manufactured using a single phase inversion process at room temperature.

  16. Effect of Sodium Dodecyl Sulfate (SDS) and Tween 80 on Cell Viability in an Air-Cathode Microbial Fuel Cell

    KAUST Repository

    Fregoso, Luisa

    2011-07-01

    Microbial fuel cells (MFCs) generate current via electrochemical reactions produced by bacteria attached to the anode that oxidize organic matter. Due to their high volume use in household products, some concentration of surfactant will reach wastewater treatment plants. The average surfactant concentration in wastewater ranges from 10 to 20 mg L-1, and up to 300 mg L-1, for domestic and industrial wastewaters, respectively. This study aimed to demonstrate the feasibility of enhancing power production by adding Tween 80 and SDS surfactants to air-cathode MFCs, and their effect in cell viability at the anodic biofilm. In order to analyze the effect of anionic and nonionic surfactants in MFCs performance, eight MFCs were spiked with two types of surfactants, the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant Tween® 80 at two different concentrations 10 and 100 mg L-1. Cell viability at the anodic biofilms was examined using the LIVE/DEAD BacLight viability assay and images were visualized with a confocal laser scanning microscope. The electrochemical results demonstrate that, for an air-cathode MFC operating on 1 g L-1 acetate in a fed-batch mode, reactors where SDS was added show a lower overall performance, maximum PD of 544 mW m-2, CE of 12.3%, Rint of 322 Ω (10 mg L-1) and maximum PD of 265 mW m-2, CE of 9.4%, Rint of 758 Ω (100 mg L-1). Reactors where Tween 80 was added show quite stable performance, maximum PD of 623 mW m-2, CE of 15.4%, Rint of 216 Ω (10 mg L-1) and maximum PD of 591 mW m-2, CE of 10.8%, Rint of 279 Ω (100 mg L-1), compared with reactors operating at only acetate as a substrate, maximum PD of 574 mW m-2. Confocal microscopy images confirm this observation and biofilm viability appeared severely compromised in SDS reactors, especially at high concentrations. This study has opened up a whole new research area in determining which types of surfactants are toxic to the anodic biofilm and to further investigate the

  17. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. LaNi1-xCoxO3-δ (x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration

    DEFF Research Database (Denmark)

    Chrzan, Aleksander; Ovtar, Simona; Chen, Ming

    2015-01-01

    Performance of LaNi1-xCoxO3-δ (LNC) (x=0.4 to 0.7) as a cathode in solid oxide fuel cell (SOFC) is evaluated. Symmetrical cathode/electrolyte/cathode cells for electrochemical testing are prepared by infiltration of yttria stabilized zirconia (YSZ) backbone with LNC solutions. It is showed...... that the cathode infiltrated with LaNi0.5Co0.5O3-δ (LNC155) has the lowest polarization resistance and activation energy, 197 mΩ cm2 at 600 °C and 0.91 eV, respectively. Therefore it is the most promising material of the LNC group for electrochemical applications. X-ray diffraction analysis revealed that none...

  19. LaNi1-xCoxO3-δ (x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration

    Science.gov (United States)

    Chrzan, Aleksander; Ovtar, Simona; Chen, Ming

    2016-01-01

    Performance of LaNi1-xCoxO3-δ (LNC) (x=0.4 to 0.7) as a cathode in solid oxide fuel cell (SOFC) is evaluated. Symmetrical cathode/electrolyte/cathode cells for electrochemical testing are prepared by infiltration of yttria stabilized zirconia (YSZ) backbone with LNC solutions. It is showed that the cathode infiltrated with LaNi0.5Co0.5O3-δ (LNC155) has the lowest polarization resistance and activation energy, 197 mΩ cm2 at 600 °C and 0.91 eV, respectively. Therefore it is the most promising material of the LNC group for electrochemical applications. X-ray diffraction analysis revealed that none of the materials is single-phased after heat treatment at 800 °C as they contain residues of La2O3 and La2NiO4-δ

  20. Effect of a calcium cathode on water-based nanoparticulate solar cells

    Science.gov (United States)

    Vaughan, Ben; Stapleton, Andrew; Xue, Bofei; Sesa, Elisa; Zhou, Xiaojing; Bryant, Glenn; Belcher, Warwick; Dastoor, Paul

    2012-07-01

    Water-based nanoparticulate (NP) and bulk heterojunction (BHJ) organic photovoltaic (OPV) devices based on blends of poly(9,9-dioctylfluorene-co-N,N-bis(4-butylphenyl)-N,Ndiphenyl-1,4-phenylenediamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole (F8BT) have been fabricated with aluminium and calcium/aluminium cathodes. The NP devices exhibit power conversion efficiencies (PCEs) that are double that of the corresponding BHJ device. Moreover, the addition of calcium into the cathode structure results in a dramatic increase in open circuit voltage and PCEs approaching 1% for water-based polyfluorene OPV devices.

  1. Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Ping-Lin; Hsu, Chun-Han; Li, Wan-Ting; Jhan, Jing-Yi; Chen, Wei-Fu [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2010-12-15

    A sea urchin-like carbon (UC) material with high surface area (416 m{sup 2} g{sup -1}), adequate electrical conductivity (59.6 S cm{sup -1}) and good chemical stability was prepared by growing carbon nanotubes onto mesoporous carbon hollow spheres. A uniform dispersion of Pt nanoparticles was then anchored on the UC, where the Pt nanoparticles were prepared using benzylamine as the stabilizer. For this Pt loaded carbon, cyclic voltammogram measurements showed an exceptionally high electrochemically active surface area (EAS) (114.8 m{sup 2} g{sup -1}) compared to the commonly used commercial E-TEK catalyst (65.2 m{sup 2} g{sup -1}). The durability test demonstrates that the carbon used as a support exhibited minor loss in EAS of Pt. Compared to the E-TEK (20 wt%) cathode catalyst, this Pt loaded UC catalyst has greatly enhanced catalytic activity toward the oxygen reduction reaction, less cathode flooding and considerably improved performance, resulting in an enhancement of ca. 37% in power density compared with that of E-TEK. Based on the results obtained, the UC is an excellent support for Pt nanoparticles used as cathode catalysts in proton exchange membrane fuel cells. (author)

  2. Antimony doped barium strontium ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yihan, E-mail: lyhyy@mail.ustc.edu.cn [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Lu, Xiaoyong [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Niu, Jinan; Chen, Hui [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Ding, Yanzhi [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Ou, Xuemei [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Zhao, Ling [Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 (China)

    2016-05-05

    Antimony was doped to barium strontium ferrite to produce ferrite-based perovskites with a composition of Ba{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Sb{sub x}O{sub 3−δ} (x = 0.0, 0.05, 0.1) as novel cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The perovskite properties including oxygen nonstoichiometry (δ), mean valence of B-site, tolerance factors, thermal expansion coefficient (TEC) and electrical conductivity (σ) are explored as a function of antimony content. By defect chemistry analysis, the TECs decrease since the variable oxygen vacancy concentration is decreased by Sb doping, and σ decreases with x due to the reduced charge concentration of Fe{sup 4+} content. Consequently, the electrochemical performance was substantially improved and the interfacial polarization resistance was reduced from 0.213 to 0.120 Ωcm{sup 2} at 700 °C with Sb doping. The perovskite with x = 1.0 is suggested as the most promising composition as SOFC cathode material. - Highlights: • Antimony is doped to barium strontium ferrite to produce novel cathodes. • δ, TECs and σ are evaluated as a function of antimony content. • The electrochemical performance is substantially improved with antimony doping.

  3. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell.

    Science.gov (United States)

    Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung

    2009-03-07

    Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.

  4. Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the Solid Oxide Fuel Cell Cathode Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2017-04-06

    This final report for project FE0009656 covers the period from 10/01/2012 to 09/30/2015 and covers research accomplishments on the effects of carbon dioxide on the surface composition and structure of cathode materials for solid oxide fuel cells (SOFCs), specifically La1-xSrxFeyCo1- yO3-δ (LSCF). Epitaxially deposited thin films of LSCF on various single-crystal substrates have revealed the selective segregation of strontium to the surface thereby resulting in a surface enrichment of strontium. The near surface compositional profile in the films have been measured using total x-ray fluorescence (TXRF), and show that the kinetics of strontium segregation are higher at higher partial pressures of carbon dioxide. Once the strontium segregates to the surface, it leads to the formation of precipitates of SrO which convert to SrCO3 in the presence of even modest concentrations of carbon dioxide in the atmosphere. This has important implications for the performance of SOFCs which is discussed in this report. These experimental observations have also been verified by Density Functional Theory calculations (DFT) which predict the conditions under which SrO and SrCO3 can occur in LSCF. Furthermore, a few cathode compositions which have received attention in the literature as alternatives to LSCF cathodes have been studied in this work and shown to be thermodynamically unstable under the operating conditions of the SOFCs.

  5. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Lue Shiquan; Long, Guohui; Ji Yuan; Meng Xiangwei; Zhao Hongyuan; Sun Cuicui

    2011-01-01

    Research highlights: → We synthesize a new kind of layered perovskite SmBaCoCuO 5+x (SBCCO) as a cathode material of a solid oxide fuel cell. → There are some reports on the performance of cathodes in proton-conducting SOFCs based on BaCe 0.8 Sm 0.2 O 3-δ electrolyte. → However, to the best of our knowledge, the performance of SBCCO cathodes in oxygen-ion conducting SOFCs has not been reported to date. → In this work, the ceramic powder SBCCO is examined as a cathode for IT-SOFCs based on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte. - Abstract: The performance of SmBaCoCuO 5+x (SBCCO) cathode has been investigated for their potential utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The powder X-ray diffraction (XRD), thermal expansion and electrochemical performance on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte are evaluated. XRD results show that there is no chemical reaction between SBCCO cathode and GDC electrolyte when the temperature is below 950 o C. The thermal expansion coefficient (TEC) value of SBCCO is 15.53 x 10 -6 K -1 , which is ∼23% lower than the TEC of the SmBaCo 2 O 5+x (SBCO) sample. The electrochemical impedance spectra reveals that SBCCO symmetrical half-cells by sintering at 950 deg. C has the best electrochemical performance and the area specific resistance (ASR) of SBCCO cathode is as low as 0.086 Ω cm 2 at 800 o C. An electrolyte-supported fuel cell generates good performance with the maximum power density of 517 mW cm -2 at 800 deg. C in H 2 . Preliminary results indicate that SBCCO is promising as a cathode for IT-SOFCs.

  6. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  7. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.

  8. Quantum Stackelberg Duopoly Game in Depolarizing Channel

    International Nuclear Information System (INIS)

    Zhu Xia; Kuang Leman

    2008-01-01

    In this paper, we investigate the quantum Stackelberg duopoly (QSD) game in the noise environment with the depolarizing channel expressed by the Kraus-operator representation. It is found that the presence of the damping in the depolarizing channel always leads to the decrease of the quantities of the moves and payoffs of the two players in the QSD game. It is indicated that under certain conditions the first-mover advantage in the QSD game can be weakened due to the presence of the damping in the depolarizing channel.

  9. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.

    Science.gov (United States)

    Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino

    2014-07-15

    Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.

  10. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    Science.gov (United States)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  11. Effect of ‘A’-site non stoichiometry in strontium doped lanthanum ferrite based solid oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Koyel; Mukhopadhyay, Jayanta, E-mail: jayanta_mu@cgcri.res.in; Barman, Madhurima; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in

    2015-12-15

    Highlights: • La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2 system varying La-site (0.6–0.54) are studied. • Combustion synthesis technique is used to prepare the powder samples. • Highest electrical conductivity observed with largest A-site deficit composition. • Lowest cathode polarization is found with the same composition (0.02 Ω cm{sup 2}). • Composition with largest A-site deficiency exhibits best performance (2.84 A cm{sup −2}). - Abstract: Effect of A-site non-stoichiometry in strontium doped lanthanum cobalt ferrite (La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2) is studied in a systematic manner with variation of ‘A’ site stoichiometry from 1 to 0.94. The perovskite based cathode compositions are synthesized by combustion synthesis. Powder characterizations reveal rhombohedral crystal structure with crystallite size ranging from 29 to 34 nm with minimum lattice spacing of 0.271 nm. Detailed sintering studies along with total DC electrical conductivities are evaluated in the bulk form with variation of sintering temperatures. The electrode polarizations are measured in the symmetric cell configuration by impedance spectroscopy which is found to be the lowest (0.02 Ω cm{sup 2} at 800 °C) for cathode having highest degree of ‘A’-site deficiency. The same cathode composition exhibits a current density of 2.84 A cm{sup −2} (at 0.7 V, 800 °C) in anode-supported single cell. An attempt has been made to correlate the trend of electrical behaviour with increasing ‘A’-site deficiency for such cathode compositions.

  12. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    KAUST Repository

    Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.

    2011-01-01

    to that obtained with a carbon cloth cathode (1390 ± 72 mW m-2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m-2). The Coulombic efficiencies were a function of current density, with the highest

  13. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; Shi, Juan; Liang, Peng; Wei, Jincheng; Huang, Xia; Zhang, Chuanyi; Logan, Bruce E.

    2013-01-01

    (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm

  14. Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement

    International Nuclear Information System (INIS)

    Mohamed, W.A.N.W.; Kamikl, M. Haziq M.

    2016-01-01

    Highlights: • A study on the effect of hydrogen preheating using waste heat for low temperature PEM fuel cells. • Theoretical, experimental and analytical framework was established. • The maximum electrical power output increases by 8–10% under specific operating conditions. • Open loop hydrogen supply gives a better performance than closed loop. • The waste heat utilization is less than 10% due to heat capacity limitations. - Abstract: The electrochemical reaction kinetics in a Polymer Electrolyte Membrane (PEM) fuel cell is highly influenced by the reactants supply pressures and electrode temperatures. For an open cathode PEM fuel cell stack, the power output is constrained due to the use of air simultaneously as reactant and coolant. Optimal stack operation temperatures are not achieved especially at low to medium power outputs. Based on the ideal gas law, higher reactant temperatures would lead to higher pressures and subsequently improve the reaction kinetics. The hydrogen supply temperature and its pressure can be increased by preheating; thus, slightly offsetting the limitation of low operating stack temperatures. The exit air stream offers an internal source of waste heat for the hydrogen preheating purpose. In this study, a PEM open-cathode fuel cell was used to experimentally evaluate the performance of hydrogen preheating based on two waste heat recovery approaches: (1) open-loop and (2) closed loop hydrogen flow. The stack waste heat was channelled into a heat exchanger to preheat the hydrogen line before it is being supplied (open loop) or resupplied (closed loop) into the stack. At a constant 0.3 bar hydrogen supply pressure, the preheating increases the hydrogen temperature in the range of 2–13 °C which was dependant on the stack power output and cathode air flow rates. The achievable maximum stack power was increased by 8% for the closed loop and 10% for the open loop. Due to the small hydrogen flow rates, the waste heat utilization

  15. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain u...

  16. Composite cathode La0.15Bi0.85O1.5-Ag for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Gao Zhan; Mao Zongqiang; Huang Jianbing; Gao Ruifeng; Wang Cheng; Liu Zhixiang

    2008-01-01

    Composites consisting of silver and lanthanum stabilized bismuth oxide (La 0.15 Bi 0.85 O 1.5 ) were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria as electrolyte. No stable phases were formed via reaction between La 0.15 Bi 0.85 O 1.5 and Ag. The microstructure of the interfaces between composite cathodes and Ce 0.8 Sm 0.2 O 1.5 electrolytes was studied by scanning electron microscopy after sintering at various temperatures. Impedance spectroscopy measurements revealed that the performance of cathode fired at 700 deg. C was the best. When the optimum fraction of Ag was 50 vol.%, polarization resistance values for the LSB-Ag50 cathode were as low as 0.14 Ω cm 2 at 700 deg. C and 0.18 Ω cm 2 at 650 deg. C. The steady-state polarization investigations on LSB and LSB-Ag50 cathodes were performed using typical three-electrode test cells in air. The results showed that the LSB-Ag50 composite cathode exhibited a lower overpotential and higher exchange current density than LSB, which indicated the electrochemical performance of LSB-Ag50 for the oxygen reduction reaction was superior to the LSB

  17. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 2. La(Sr)CoO{sub 3} cathode

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Yoshida, Hiroyuki [The Kansai Electric Power, Hyogo (Japan); Miura, Kazuhiro [Kanden Kakou, Hyogo (Japan); Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa [Japan Fine Ceramics Center, Nagoya (Japan)

    2000-03-01

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM) electrolyte, La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} (LSCo) cathode, and Ni-(CeO{sub 2}){sub 0.8}(SmO{sub 1.5}){sub 0.2} (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm{sup 2}, at 800 C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO{sub 3}-YSZ cathode and Ni-YSZ cermet anode at 1000 C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm{sup 2} was measured for a cathode prepared by sintering at 1000 C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface. (orig.)

  18. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    Science.gov (United States)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  19. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    Science.gov (United States)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  20. Performance comparison of protonic and sodium phosphomolybdovanadate polyoxoanion catholytes within a chemically regenerative redox cathode polymer electrolyte fuel cell

    Science.gov (United States)

    Ward, David B.; Gunn, Natasha L. O.; Uwigena, Nadine; Davies, Trevor J.

    2018-01-01

    The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.

  1. Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study

    International Nuclear Information System (INIS)

    Mehr, A.S.; Mahmoudi, S.M.S.; Yari, M.; Chitsaz, A.

    2015-01-01

    Highlights: • Four biogas-fed solid oxide fuel cell power plants are proposed. • Performance of systems is compared with each other economically. • Efficiency of biogas fed fuel cell with anode–cathode recycling is the highest. • For current density of 6000 A/m"2 the optimum anode recycle ratio is around 0.25. • Unit product cost of biogas fed fuel cell with anode–cathode recycling is 19.07$/GJ. - Abstract: Four different configurations of natural gas and biogas fed solid oxide fuel cell are proposed and analyzed thermoeconomically, focusing on the influence of anode and/or cathode gas recycling. It is observed that the net output power is maximized at an optimum current density the value of which is lowered as the methane concentration in the biogas is decreased. Results indicate that when the current density is low, there is an optimum anode recycling ratio at which the thermal efficiency is maximized. In addition, an increase in the anode recycling ratio increases the unit product cost of the system while an increase in the cathode recycling ratio has a revers effect. For the same working conditions, the solid oxide fuel cell with anode and cathode recycling is superior to the other configurations and its thermal efficiency is calculated as 46.09% being 6.81% higher than that of the simple solid oxide fuel cell fed by natural gas. The unit product cost of the solid oxide fuel cell-anode and cathode recycling system is calculated as 19.07$/GJ which is about 35% lower than the corresponding value for the simple natural gas fed solid oxide fuel cell system.

  2. Effect of cathode electron-receiver on the performance of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiaoying; Li, Dong [Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Sun, Yongming; Yuan, Zhenhong; Li, Lianhua; Li, Yin [Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-07-15

    Performance of cathode electron receivers has direct effect on the voltage and power density of MFC. This paper explored the electrical performance of MFC with potassium permanganate, ferricyanide solution and dissolved oxygen (DO) as cathode electron receivers. The results showed that the internal resistance of MFC with DO depends on catalyst and is higher than that of MFC with potassium permanganate and potassium ferricyanide solution. The maximum volume power density is 4.35 W/m{sup 3}, and the smallest internal resistance is only about 54 {omega}. In case of DO, the internal resistance and power density is different depending on the catalyst and is not too much related to the membranes. (author)

  3. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  4. Pr0.6Sr0.4CoO3-δ electrocatalyst for solid oxide fuel cell cathode introduced via infiltration

    International Nuclear Information System (INIS)

    Lee, Shiwoo; Miller, Nicholas; Staruch, Margo; Gerdes, Kirk; Jain, Menka; Manivannan, Ayyakkannu

    2011-01-01

    Highlights: → High electrocatalytic activity of Sr-doped PrCoO 3 for oxygen reduction reaction has been demonstrated. → 35-38% of power density enhancement has been achieved for a commercial cell by introducing Sr-doped PrCoO 3 via infiltration. → Fuel cells modified with nano-sized electrocatalyst have shown relatively stable performance for 200 h. → Reliable performance comparison has been realized by utilizing a parallel cell testing system. - Abstract: Effects of infiltrated Pr 0.6 Sr 0.4 CoO 3-δ (PSCo) electrocatalyst on SOFC cathode performance have been studied. Nano-sized particulate catalysts, deposited on surfaces of a composite cathode of Sm 2 O 3 doped CeO 2 (SDC) and La 1-x Sr x Co 1-y Fe y O 3-δ (LSCF), are assumed to effectively widen active sites, or triple phase boundaries, for the oxygen reduction reaction. Area specific resistance of commercially available cells has been decreased by 36-40% with the addition of 23 wt% PSCo electrocatalyst on cathode. Analysis of the impedance spectra demonstrates that PSCo electrocatalyst plays a significant role in dissociation of oxygen molecules and adsorption of oxygen atoms into the cathode. A total of 200 h operation of the cells demonstrated that catalytic activity of PSCo has not been significantly degraded. Simultaneous operations of multiple cells using a parallel-cell testing system have made it possible to compare the performance of several cells with high reliability.

  5. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested with a single (two-sided) cathode module with a specific surface area of 29 m2 m−3 based on a total liquid volume (1.4 L; 20 m2 m−3 using the total reactor volume of 2 L), and two brush anode modules. Three different types of spacers were used in the cathode module to provide structural stability, and enhance air flow relative to previous cassette (combined anode–cathode) designs: a low-profile wire spacer; a rigid polycarbonate column spacer; and a flexible plastic mesh spacer. The best performance was obtained using the wire spacer that produced a maximum power density of 1100 ± 10 mW m−2 of cathode (32 ± 0.3 W m−3 based on liquid volume) with an acetate-amended wastewater (COD = 1010 ± 30 mg L−1), compared to 1010 ± 10 mW m−2 for the column and 650 ± 20 mW m−2 for the mesh spacers. Anode potentials were unaffected by the different types of spacers. Raw domestic wastewater produced a maximum of 400 ± 8 mW m−2 under fed batch conditions (wire-spacers), which is one of the highest power densities for this fuel. Over time the maximum power was reduced to 300 ± 10 mW m−2 and 275 ± 7 mW m−2 for the two anode compartments, with only slightly less power of 250 ± 20 mW m−2 obtained under continuous flow conditions. In fixed-resistance tests, the average COD removal was 57 ± 5% at a hydraulic retention time of 8 h. These results show that this modular MFC design can both simplify reactor construction and enable relatively high power generation from even relatively dilute wastewater.

  6. Development and testing of anode-supported solid oxide fuel cells with slurry-coated electrolyte and cathode

    Energy Technology Data Exchange (ETDEWEB)

    Muccillo, R.; Muccillo, E.N.S.; Fonseca, F.C.; Franca, Y.V.; Porfirio, T.C. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, C.P. 11049, Pinheiros, S. Paulo, SP 05422-970 (Brazil); de Florio, D.Z. [Instituto de Quimica, UNESP, R. Prof. Francisco Degni s/n, Araraquara, SP 14801-970 (Brazil); Berton, M.A.C.; Garcia, C.M. [Instituto de Tecnologia para o Desenvolvimento, DPMA, C.P. 19067, Curitiba, PR 81531-980 (Brazil)

    2006-06-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). The whole project consisted of the preparation of the component materials: anode, cathode and electrolyte, and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Several anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3}+NiO) thick anode/(ZrO{sub 2}:Y{sub 2}O{sub 3}) thin electrolyte/(La{sub 0.65}Sr{sub 0.35}MnO{sub 3}+ZrO{sub 2}:Y{sub 2}O{sub 3}) thin cathode have been prepared and tested at 700 and 800{sup o}C after in situ H{sub 2} anode reduction. The main results show that the slurry-coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  7. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell

    KAUST Repository

    Werner, Craig M.

    2013-02-01

    A microbial osmotic fuel cell (MOFC) has a forward osmosis (FO) membrane situated between the electrodes that enable desalinated water recovery along with power generation. Previous designs have required aerating the cathode chamber water, offsetting the benefits of power generation by power consumption for aeration. An air-cathode MOFC design was developed here to improve energy recovery, and the performance of this new design was compared to conventional microbial fuel cells containing a cation (CEM) or anion exchange membrane (AEM). Internal resistance of the MOFC was reduced with the FO membrane compared to the ion exchange membranes, resulting in a higher maximum power production (43W/m3) than that obtained with an AEM (40W/m3) or CEM (23W/m3). Acetate (carbon source) removal reached 90% in the MOFC; however, a small amount of acetate crossed the membrane to the catholyte. The initial water flux declined by 28% from cycle 1 to cycle 3 of operation but stabilized at 4.1L/m2/h over the final three batch cycles. This decline in water flux was due to membrane fouling. Overall desalination of the draw (synthetic seawater) solution was 35%. These results substantially improve the prospects for simultaneous wastewater treatment and seawater desalination in the same reactor. © 2012 Elsevier B.V.

  8. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang; Pant, Deepak; Logan, Bruce E.

    2011-01-01

    to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power

  9. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    KAUST Repository

    Yang, Wulin

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s -1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs. © 2014 Elsevier B.V. All rights reserved.

  10. A Simple Surface Modification of NiO Cathode with TiO2 Nano-Particles for Molten Carbonate Fuel Cells (MCFCs)

    International Nuclear Information System (INIS)

    Choi, Hee Seon; Kim, Keon; Yi, Cheolwoo

    2014-01-01

    The TiO 2 -modified Ni powders, prepared by the simple method (ball-milling and subsequent annealing) without resorting to any complex coating process, eventually form nickel titanate passive layer at high temperature. It as good corrosion resistance in molten carbonates media and higher electrical conductivity at high temperature. In addition, the modified cathode increases the degree of lithiation during the operation of MCFC. These positive effects provide a decrease in the internal resistance and improve the cell performance. Results obtained from this study can be applied to develop the surface modification of cathode materials and the performance of molten carbonate fuel cells. Molten carbonate fuel cells (MCFCs) are efficient energy conversion devices to convert chemical energy into electrical energy through the electrochemical reaction. Because of a lot of advantages of MCFC operated at high temperature, many researchers have been trying to apply it to large-scaled power generations, marine boats, and so on. Among various cathode materials, nickel oxide, NiO, is the most widely used cathode for MCFCs due to its stability and high electrical conductivity, but the degradation of cathode material, so-called NiO dissolution, prevents a long-term operation of MCFC. In order to overcome the drawback, numerous studies have been performed. One of the most useful ways to enhance the surface property and maintain the bulk property of the host materials is the surface modification. The most common modification method is coating and these coating procedures which need some complicated steps with the use of organic materials, but it restricts the large-scale fabrication. In this study, to improve the electrochemical performance, we have prepared an alternative MCFC cathode material, TiO 2 -modified NiO, by simple method without resorting to any complex coating process. Results obtained in this study can provide an effective way to mass-produce the cathode materials

  11. Experimental study on the effect of cathode flow humidity and temperature on the performance of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Emam, R.S.; Awad, M.M.; Hamed, A.M.; Tolba, M. [Mansoura Univ., Mansoura (Egypt). Dept. of Mechanical Engineering

    2009-07-01

    The fuel cell is an electrochemical energy conversion device that produces electricity directly from chemical energy, and the by-products are only water and heat. The fuel cell could provide a solution to a whole range of environmental challenges, such as global warming and harmful levels of local pollutants. One of the most promising alternative power generation methods is the proton exchange membrane fuel cell (PEMFC) because of its low operating temperature, relative tolerance for impurities, and high power-density. This paper presented an experimental study on the performance characteristics of a single unit of a PEMFC with an active area of 25 square centimetres using two different cell configurations. The test system was designed to control the temperature and the relative humidity of the cathode feeding gas. Oxygen and air were used as oxidizers, while dry hydrogen was the cell fuel. Two different cell configurations were assembled and integrated into the test stand. The paper described the experimental work and presented the results of the study. It was concluded that low oxygen relative humidity with the dry hydrogen caused membrane drying and ultimately resulted in a degradation of fuel cell power output and cell performance. 17 refs., 17 figs.

  12. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Chiba, Rubens

    2010-01-01

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  13. Use of a polyacetylene cathode in primary lithium-thionyl chloride cells

    Science.gov (United States)

    1983-10-01

    This report describes the work performed for the Navy with regard to the use of poly(acetylene), (CH)x, as a cathode material in a lithium/thionyl (Li/SOC12) battery. The objective of the project was three fold: (1) To characterize and understand the electrochemistry of (CH)x in a detailed manner, (2) To study the compatibility of (CH)x with SOC12 and (3) To synthesize and investigate modified (CH)x polymers which may possess more desirable properties than the parent polymer.

  14. Use of a polyacetylene cathode in primary lithium-thionyl chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes the work performed for the Navy with regard to the use of poly(acetylene), (CH)x, as a cathode material in a lithium/thionyl (Li/SOCl/sub 2/) battery. The objective of the project was three fold: (1) To characterize and understand the electrochemistry of (CH)x in a detailed manner, (2) To study the compatibility of (CH)x with SOCl/sub 2/ and (3) To synthesize and investigate 'modified' (CH)x polymers which may possess more desirable properties than the parent polymer.

  15. Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Yusuke Ayato

    2013-12-01

    Full Text Available A biofuel cell (BFC cathode has been developed based on direct electron transfer (DET of hemoglobin (Hb molecules with an indium-tin-oxide (ITO electrode and their electrocatalysis for reduction of hydrogen peroxide (H2O2. In this study, the ITO-coated glass plates or porous glasses were prepared by using a chemical vapor deposition (CVD method and examined the electrochemical characteristics of the formed ITO in pH 7.4 of phosphate buffered saline (PBS solutions containing and not containing Hb. In half-cell measurements, the reduction current of H2O2 due to the electrocatalytic activity of Hb increased with decreasing electrode potential from around 0.1 V versus Ag|AgCl|KCl(satd. in the PBS solution. The practical open-circuit voltage (OCV on BFCs utilizing H2O2 reduction at the Hb-ITO cathode with a hydrogen (H2 oxidation anode at a platinum (Pt electrode was expected to be at least 0.74 V from the theoretical H2 oxidation potential of −0.64 V versus Ag|AgCl|KCl(satd. in pH 7.4. The assembled single cell using the ITO-coated glass plate showed the OCV of 0.72 V and the maximum power density of 3.1 µW cm−2. The maximum power per single cell was recorded at 21.5 µW by using the ITO-coated porous glass.

  16. First Observation of a Snake Depolarizing Resonance

    International Nuclear Information System (INIS)

    Phelps, R.; Anferov, V.; Blinov, B.; Crandell, D.; Koutin, S.; Krisch, A.; Liu, T.; Ratner, L.; Wong, V.; Chu, C.; Lee, S.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.; von Przewoski, B.; Sato, H.

    1997-01-01

    Using a 104MeV stored polarized proton beam and a full Siberian snake, we recently found evidence for a so-called open-quotes snakeclose quotes depolarizing resonance. A full Siberian snake forces the spin tune ν s to be a half integer. Thus, if the vertical betatron tune ν y is set near a quarter integer, then the ν s =n±2ν y second-order snake resonance can depolarize the beam. Indeed, with a full Siberian snake, we found a deep depolarization dip when ν y was equal to 4.756; moreover, when ν y was changed to 4.781, the deep dip disappeared and the polarization was preserved. copyright 1997 The American Physical Society

  17. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix.

    Science.gov (United States)

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-11-05

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion(®) ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg(-1)Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion(®) ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.

  18. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  19. Effects of grain boundaries at the electrolyte/cathode interfaces on oxygen reduction reaction kinetics of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Gi; Koo, Ja Yang; Ahn, Min Woo; Lee, Won Young [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-04-15

    We systematically investigated the effects of grain boundaries (GBs) at the electrolyte/cathode interface of two conventional electrolyte materials, i.e., yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC). We deposited additional layers by pulsed laser deposition to control the GB density on top of the polycrystalline substrates, obtaining significant improvements in peak power density (two-fold for YSZ and three-fold for GDC). The enhanced performance at high GB density in the additional layer could be ascribed to the accumulation of oxygen vacancies, which are known to be more active sites for oxygen reduction reactions (ORR) than grain cores. GDC exhibited a higher enhancement than YSZ, due to the easier formation, and thus higher concentration, of oxygen vacancies for ORR. The strong relation between the concentration of oxygen vacancies and the surface exchange characteristics substantiated the role of GBs at electrolyte/cathode interfaces on ORR kinetics, providing new design parameters for highly performing solid oxide fuel cells.

  20. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  1. Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho

    2010-12-14

    Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.

  2. Polyelectrolyte microparticles for enhancing anode performance in an air–cathode μ-Liter microbial fuel cell

    International Nuclear Information System (INIS)

    Chen, Yan-Yu; Wang, Hsiang-Yu

    2015-01-01

    Highlights: • Microparticles with high consistency and surface area per volume are fabricated. • P(DADMAC) microparticles facilitate microorganism accumulation and charge transfer. • Microbes in microparticles are capable of proliferation and electricity generation. • Microparticles increase limiting current/power output to more than 200% of biofilm. • Microparticles decrease the anode charge-transfer resistance to 44% of biofilm. - Abstract: Microbial fuel cell (MFC) is considered an environmentally friendly energy source because it generates electrical power by digesting organic substrates in the wastewater. However, it is still challenging for MFC to become an economically affordable and highly efficient energy source due to its relatively low power output and coulombic efficiency. The aim of this study is to increase the performance of anode by using polyelectrolyte microparticles to facilitate the accumulation of microorganisms and the collection of electrons. The polyelectrolyte microparticle is subjected to microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and continuous electricity generation in an air–cathode μ-Liter MFC (μMFC) to validate its biocompatibility, ability in retaining redox species, reduced electron transfer resistance, and sustained energy generation. During the 168-hour operation, microorganisms proliferate inside the microparticle and generate around 250% power output and 200% limiting current of those from microorganism biofilm. The polyelectrolyte microparticle also decreased charge-transfer resistance of anode electrode in air–cathode μMFC by 56% compared with biofilm.

  3. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    International Nuclear Information System (INIS)

    Anferov, V.A.

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.Accel.36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to be similar in strength to those in the 250-GeV RHIC. Moreover, the strength of the 3-TeV booster's strongest intrinsic depolarizing resonances decreases with energy, in contrast with the energy growth of the depolarizing resonance's strength in most proton synchrotrons. copyright 1999 The American Physical Society

  4. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  5. Aluminum cathode plates in zinc electrowinning cells: microstructural and failure analysis

    International Nuclear Information System (INIS)

    Buarzaiga, M.; Dreisinger, D.; Tromans, D.; Gonzalez, J.A.

    2001-01-01

    The microstructure of aluminum cathode plates used in zinc electrowinning was analyzed using optical microscopy, scanning electron microscopy, and transmission electron microscopy. Three principal phases dominated the microstructure: primary aluminum, uniformly distributed intermetallic particles, and round rosettes. The intermetallics exhibited blade shape morphology, light gray color, and were aligned in the rolling direction. The chemical composition of the intermetallic particles was consistent with FeAl 3 . Angular particles of elemental silicon were also detected. Failure characteristics of industrial cathode plates were analyzed using optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, and x-ray diffraction analysis. Three distinct corrosion zones were identified on failed plates: Zone I below the electrolyte/air interface, Zone II 0-40 mm above the electrolyte/air interface, and Zone III 40-140 mm above the electrolyte/air interface. After 24 months in service, the corrosion damage in Zones I and III was equivalent to ca. 10% reduction in plate thickness. Zone II experienced the greatest corrosion damage; the reduction in plate thickness was ca. 80%. Some plates exhibited severe thinning and perforation, which occurred preferentially near the electrical contact edge. Plates often fail in service by fracture in Zone II. (author)

  6. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  7. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    Science.gov (United States)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  8. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    International Nuclear Information System (INIS)

    Chavez G, L.; Hinojosa R, M.; Medina L, B.; Ringuede, A.; Cassir, M.; Vannier, R. N.

    2017-01-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi_xCo_1_-_xO_3 (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi_0_._7Co_0_._3O_3, LaNi_0_._5Co_0_._5O_3 and LaNi_0_._3Co_0_._7O_3 structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi_xCo_1_-_xO_3/YSZ (Yttria-stabilized zirconia)/LaNi_xCo_1_-_xO_3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi_0_._5Co_0_._5O_3, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  9. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    Science.gov (United States)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  10. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  11. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C

    Science.gov (United States)

    Li, Mengran; Zhao, Mingwen; Li, Feng; Zhou, Wei; Peterson, Vanessa K.; Xu, Xiaoyong; Shao, Zongping; Gentle, Ian; Zhu, Zhonghua

    2017-01-01

    The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3−δ as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm2 in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm−2 in a Gd0.1Ce0.9O1.95-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells. PMID:28045088

  12. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin; He, Weihua; Zhang, Fang; Hickner, Michael A.; Logan, Bruce E.

    2014-01-01

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct

  13. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Gholam Reza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-03-15

    A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.

  14. Synthesis and characterization of gadolinia-doped ceria-silver cermet cathode material for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    A series of Ce 0.9 Gd 0.1 O 2-δ -Ag cermets with different Ag contents were prepared by conventional sintering process aiming at assessing the suitability of using them as cathode material for solid oxide fuel cell (SOFC) with Gadolinia-doped ceria electrolyte. The chemical compatibility between Ce 0.9 Gd 0.1 O 2-δ (CGO) and Ag was investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Thermal expansion coefficients of the cermets were measured as a function of Ag content and were found to increase with metallic content. Although oxygen adsorption at the surface of the cermets could be detected, no reaction or solid solubility between CGO and Ag was found

  15. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas....... Furthermore, the presence of irreducible liquid water is taken into account. In order to account for compression, porous media morphology variations are specified based on the gas diffusion layer (GDL) through-plane strain and intrusion which are stated as a function of compression. These morphology...... variations affect gas and liquid water transport, and hence liquid water distribution and the risk of blocking active sites. Hence, water transport is studied under GDL compression in order to investigate the qualitative effects. Two simulation cases are compared; one with and one without compression....

  16. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    Science.gov (United States)

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  17. A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells

    Science.gov (United States)

    Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin

    2018-06-01

    The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.

  18. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  19. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  20. Solid oxide fuel cell cathode infiltrate particle size control and oxygen surface exchange resistance determination

    Science.gov (United States)

    Burye, Theodore E.

    Over the past decade, nano-sized Mixed Ionic Electronic Conducting (MIEC) -- micro-sized Ionic Conducting (IC) composite cathodes produced by the infiltration method have received much attention in the literature due to their low polarization resistance (RP) at intermediate (500-700°C) operating temperatures. Small infiltrated MIEC oxide nano-particle size and low intrinsic MIEC oxygen surface exchange resistance (Rs) have been two critical factors allowing these Nano-Micro-Composite Cathodes (NMCCs) to achieve high performance and/or low temperature operation. Unfortunately, previous studies have not found a reliable method to control or reduce infiltrated nano-particle size. In addition, controversy exists on the best MIEC infiltrate composition because: 1) Rs measurements on infiltrated MIEC particles are presently unavailable in the literature, and 2) bulk and thin film Rs measurements on nominally identical MIEC compositions often vary by up to 3 orders of magnitude. Here, two processing techniques, precursor nitrate solution desiccation and ceria oxide pre-infiltration, were developed to systematically produce a reduction in the average La0.6Sr0.4Co0.8Fe 0.2O3-delta (LSCF) infiltrated nano-particle size from 50 nm to 22 nm. This particle size reduction reduced the SOFC operating temperature, (defined as the temperature where RP=0.1 Ocm 2) from 650°C to 540°C. In addition, Rs values for infiltrated MIEC particles were determined for the first time through finite element modeling calculations on 3D Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) reconstructions of electrochemically characterized infiltrated electrodes.

  1. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  2. Particle-in-cell simulation of electron trajectories and irradiation uniformity in an annular cathode high current pulsed electron beam source

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Zhou, Guangxue; Wang, Xiaofeng

    2017-02-01

    Highlights: • The transmission process of electrons and irradiation uniformity was simulated. • Influence of the irradiation parameters on irradiation uniformity are discussed. • High irradiation uniformity can be obtained in a wide processing window. - Abstract: In order to study electron trajectories in an annular cathode high current pulsed electron beam (HCPEB) source based on carbon fiber bunches, the transmission process of electrons emitted from the annular cathode was simulated using a particle-in-cell model with Monte Carlo collisions (PIC-MCC). The simulation results show that the intense flow of the electrons emitted from the annular cathode are expanded during the transmission process, and the uniformity of the electron distribution is improved in the transportation process. The irradiation current decreases with the irradiation distance and the pressure, and increases with the negative voltage. In addition, when the irradiation distance and the cathode voltage are larger than 40 mm and −15 kV, respectively, a uniform irradiation current distribution along the circumference of the anode can be obtained. The simulation results show that good irradiation uniformity of circular components can be achieved by this annular cathode HCPEB source.

  3. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    Science.gov (United States)

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, Keith [Farasis Energy Inc; Slater, Michael [Farasis Energy Inc

    2018-03-14

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The major technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.

  5. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    Science.gov (United States)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  6. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    Science.gov (United States)

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  7. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    OpenAIRE

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the ca...

  8. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode

    International Nuclear Information System (INIS)

    Lai, Chi-Yung; Wu, Chih-Hung; Meng, Chui-Ting; Lin, Chi-Wen

    2017-01-01

    Highlights: • A laccase-producing fungus on cathode of MFC was used to enhance degradation of azo dye. • Laccase-producing fungal cathodes performed better than laccase-free control cathodes. • A maximum power density of 13.38 mW/m"2 and an >90% decolorization of acid orange 7 were obtained. • Growing a fungal culture with continuous laccase production improved MFC’s electricity generation. - Abstract: Wood-degrading white-rot fungi produce many extracellular enzymes, including the multi-copper oxidative enzyme laccase (EC 1.10.3.2). Laccase uses atmospheric oxygen as the electron acceptor to catalyze a one-electron oxidation reaction of phenolic compounds and therefore has the potential to simultaneously act as a cathode catalyst in a microbial fuel cell (MFC) and degrade azo dye pollutants. In this study, the laccase-producing white-rot fungus Ganoderma lucidum BCRC 36123 was planted on the cathode surface of a single-chamber MFC to degrade the azo dye acid orange 7 (AO7) synergistically with an anaerobic microbial community in the anode chamber. In a batch culture, the fungus used AO7 as the sole carbon source and produced laccase continuously, reaching a maximum activity of 20.3 ± 0.3 U/L on day 19 with a 77% decolorization of the dye (50 mg/L). During MFC operations, AO7 in the anolyte diffused across a layer of polyvinyl alcohol-hydrogel that separated the cathode membrane from the anode chamber, and served as a carbon source to support the growth of, and production of laccase by, the fungal mycelium that was planted on the cathode. In such MFCs, laccase-producing fungal cathodes outperformed laccase-free controls, yielding a maximum open-circuit voltage of 821 mV, a closed-circuit voltage of 394 mV with an external resistance of 1000 Ω, a maximum power density of 13.38 mW/m"2, a maximum current density of 33 mA/m"2, and a >90% decolorization of AO7. This study demonstrates the feasibility of growing a white-rot fungal culture with continuous

  9. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care

    DEFF Research Database (Denmark)

    Dreier, Jens P; Fabricius, Martin; Ayata, Cenk

    2017-01-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly r...

  10. Challenge of non-precious metal oxide-based cathode for polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Akimitsu; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro [Yokohama National Univ. (Japan)

    2010-07-01

    The partially oxidized TaC{sub 0.58}N{sub 0.42} was investigated as non-platinum cathode for PEFC. In order to quantify the degree of oxidation, the degree of oxidation (DOO) was defined using the XRD peaks of Ta-CN and Ta{sub 2}O{sub 5}. The onset potential for the oxidation reduction reaction (ORR) had high value, that is, 0.9 V vs. RHE (reversible hydrogen electrode), at higher oxidation state of the TaC{sub 0.58}N{sub 0.42}. We found that the partial oxidation of TaC{sub 0.58}N{sub 0.42} was greatly useful to enhance the catalytic activity for the ORR. The volcano plot of the ionization potential vs. the E{sub ORR} suggested that there was a suitable interaction between the surface of the partially oxidized TaC{sub 0.58}N{sub 0.42} and oxygen. (orig.)

  11. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts.

    Science.gov (United States)

    Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M

    2017-08-01

    Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells.

    Science.gov (United States)

    Dong, Heng; Yu, Hongbing; Wang, Xin; Zhou, Qixing; Feng, Junli

    2012-11-01

    Single chambered air-cathode microbial fuel cells (MFCs) are promising to be scaled up as sustainable wastewater treatment systems. However, the current air-cathode made by brushing noble metal catalyst and Nafion binder onto carbon matrix becomes one of the biggest bottlenecks for the further development of MFCs due to its high cost, huge labor-consuming and less accuracy. A novel structure of air-cathode was constructed here by rolling activated carbon (AC) and polytetrafluoroethylene (PTFE) as catalyst layer to enhance the reproducibility and improve the performance by an optimized three-phase interface (TPI). Air-cathodes with AC/PTFE ratios of 3, 5, 6, 8 and 11 in the catalyst layer were prepared, and the physical and electrochemical techniques were employed to investigate their surface microstructure and electrochemical characteristics. Uniform cross-linked ropiness networks were observed from the catalyst layer of all the cathodes and increased as the AC/PTFE ratio decreased, while the exchange currents were positively related to this ratio. Maximum power densities (MPDs) decreased as follows: AC/PTFE = 6 (802 mW m(-2) at 3.4 A m(-2)), 5 (704 mW m(-2) at 2.2 mA m(-2)), 8 (647 mW m(-2) at 2.2 A m(-2)), 3 (597 mW m(-2) at 2.1 A m(-2)) and 11 (584 mW m(-2) at 2.0 mA m(-2)), which was due to the changes of both the capacitance characteristics and conductivities according to the electrochemical impedance spectrum (EIS) analysis. This study demonstrated that inexpensive, highly reproducible, high performance and scalable air-cathode can be produced by rolling method without using noble metal and expensive binder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  14. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  15. A scattering model for rain depolarization

    Science.gov (United States)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  16. Entanglement degradation in depolarizing light scattering

    International Nuclear Information System (INIS)

    Aiello, A.; Woerdman, J.P.

    2005-01-01

    Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)

  17. Correction of Depolarizing Resonances in ELSA

    Science.gov (United States)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  18. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  19. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez G, L.; Hinojosa R, M. [Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, San Nicolas de los Garza, 66450 Nuevo Leon (Mexico); Medina L, B.; Ringuede, A.; Cassir, M. [Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Vannier, R. N., E-mail: leonardo.chavezgr@uanl.edu.mx [Unite de Catalyse et de Chimie du Solide, UMR 8181 CNRS, 59655, Villeneuve d Ascq Cedex (France)

    2017-11-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi{sub x}Co{sub 1-x}O{sub 3} (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi{sub 0.7}Co{sub 0.3}O{sub 3}, LaNi{sub 0.5}Co{sub 0.5}O{sub 3} and LaNi{sub 0.3}Co{sub 0.7}O{sub 3} structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi{sub x}Co{sub 1-x}O{sub 3}/YSZ (Yttria-stabilized zirconia)/LaNi{sub x}Co{sub 1-x}O{sub 3} showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi{sub 0.5}Co{sub 0.5}O{sub 3}, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  20. μ+ depolarization in AlGd alloys

    International Nuclear Information System (INIS)

    Kohn, S.; Brown, J.A.; Heffner, R.H.; Huang, C.Y.; Kitchens, T.A. Jr.; Leon, M.; Olsen, C.E.; Schillaci, M.E.

    1979-01-01

    The μ + depolarization rate in dilute AlGd alloys containing 50 and 450 atomic ppm Gd was measured in a transverse field of 80 Oe over the temperature range 6-300 K. For both alloys, Λ increased dramatically above 200 K, reaching values of 0.69 and 0.93 μs -1 , respectively, near room temperature. The results are interpreted as providing evidence for a thermally-activated trapping mechanism. (Auth.)

  1. Neutron depolarization in compressed ferrite powders

    International Nuclear Information System (INIS)

    Rekveldt, M.Th.; Kraan, W.H.

    1976-01-01

    The polarization change of a polarized neutron beam after transmission through a partly magnetized ferromagnetic material can be described by a (3x3) depolarization matrix. This matrix can be expressed in terms of domain quantities such as the reduced mean magnetization M, the mean domain size delta and the mean square direction cosinus γsub(y) of the inner magnetization within the domain, and can be used for measuring magnetic properties of ferromagnetic materials. In the underlying depolarization theory it is assumed that no correlations exist between the direction of the spontaneous magnetization Bs in neighbouring domains, and between the direction of Bs and the individual domain sizes. In order to extend the measuring method for ferromagnetic materials, measurements have been made with different compressed ferrite powders assuming that the mean domain size is equal to the mean particle size. The neutron depolarization matrix is measured as a function of an alternative external magnetic field and interpreted in terms of m, γsub(y), and delta. The possibilities and limitations of the measuring method are discussed

  2. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  3. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    Science.gov (United States)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  4. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  5. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Science.gov (United States)

    Chouhan, Vijay; Kato, Shigeki; Nii, Keisuke; Yamaguchi, Takanori; Sawabe, Motoaki; Hayano, Hitoshi; Ida, Yoshiaki

    2017-08-01

    A detailed study on vertical electropolishing (VEP) of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H2 ) gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H2 gas bubbles and stirring were also observed in lab EP experiments.

  6. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Directory of Open Access Journals (Sweden)

    Vijay Chouhan

    2017-08-01

    Full Text Available A detailed study on vertical electropolishing (VEP of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H_{2} gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H_{2} gas bubbles and stirring were also observed in lab EP experiments.

  7. Estimating Depolarization with the Jones Matrix Quality Factor

    Science.gov (United States)

    Hilfiker, James N.; Hale, Jeffrey S.; Herzinger, Craig M.; Tiwald, Tom; Hong, Nina; Schöche, Stefan; Arwin, Hans

    2017-11-01

    Mueller matrix (MM) measurements offer the ability to quantify the depolarization capability of a sample. Depolarization can be estimated using terms such as the depolarization index or the average degree of polarization. However, these calculations require measurement of the complete MM. We propose an alternate depolarization metric, termed the Jones matrix quality factor, QJM, which does not require the complete MM. This metric provides a measure of how close, in a least-squares sense, a Jones matrix can be found to the measured Mueller matrix. We demonstrate and compare the use of QJM to other traditional calculations of depolarization for both isotropic and anisotropic depolarizing samples; including non-uniform coatings, anisotropic crystal substrates, and beetle cuticles that exhibit both depolarization and circular diattenuation.

  8. Fabrication of a large area cathode-supported thin electrolyte film for solid oxide fuel cells via tape casting and co-sintering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunhua; Liu, Renzhu; Wang, Shaorong; Wen, Tinglian [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2009-04-15

    A large area cathode-supported electrolyte film, comprising porous (La{sub 0.8}Sr{sub 0.2}){sub 0.95}MnO{sub 3} (LSM95) cathode substrate, LSM95/Zr{sub 0.89}Sc{sub 0.1}Ce{sub 0.01}O{sub 2-x} (SSZ) cathode active layer, and SSZ electrolyte, has been successfully fabricated by tape casting and co-sintering techniques. The interface reaction between cathode and electrolyte was inhibited by using A-site deficient LSM. A dense enough SSZ thin film with a thickness of {proportional_to}26 {mu}m was obtained at 1250 C. By using Pt as anode, the obtained single cell reached the maximum power density of 0.54 W cm{sup -2} at 800 C in O{sub 2}/humidified H{sub 2}, with open circuit voltage (OCV) value of 1.08 V. (author)

  9. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell

    Science.gov (United States)

    Liu, Di; Mo, Xiaoping; Li, Kexun; Liu, Yi; Wang, Junjie; Yang, Tingting

    2017-08-01

    Nano spinel bulk-like CoGa2O4 prepared via a facile hydrothermal method is used as a high efficient electrochemical catalyst in activated carbon (AC) air-cathode microbial fuel cell (MFC). The maximum power density of the modified MFC is 1911 ± 49 mW m-2, 147% higher than the MFC of untreated AC cathode. Transmission electron microscope (TEM) and X-ray diffraction (XRD) exhibit the morphology and crystal structure of CoGa2O4. Rotating disk electrode (RDE) confirms the four-electron pathway at the cathode during the oxygen reduction reaction (ORR). Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) illustrate that the high rate oxygen vacancy exist in the CoGa2O4. The oxygen vacancy of CoGa2O4 plays an important role in catalytic activity. In a word, the prepared nano spinel bulk-like CoGa2O4 provides an alternative to the costly Pt in air-cathode for power output.

  10. Multiscale Transient and Steady-State Study of the Influence of Microstructure Degradation and Chromium Oxide Poisoning on Solid Oxide Fuel Cell Cathode Performance

    Science.gov (United States)

    Li, Guanchen; von Spakovsky, Michael R.; Shen, Fengyu; Lu, Kathy

    2018-01-01

    Oxygen reduction in a solid oxide fuel cell cathode involves a nonequilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, making the modeling, especially in the transient regime, very difficult. Nonetheless, multiscale models are needed to improve the understanding of oxygen reduction and guide cathode design. Of particular importance for long-term operation are microstructure degradation and chromium oxide poisoning both of which degrade cathode performance. Existing methods are phenomenological or empirical in nature and their application limited to the continuum realm with quantum effects not captured. In contrast, steepest-entropy-ascent quantum thermodynamics can be used to model nonequilibrium processes (even those far-from equilibrium) at all scales. The nonequilibrium relaxation is characterized by entropy generation, which can unify coupled phenomena into one framework to model transient and steady behavior. The results reveal the effects on performance of the different timescales of the varied phenomena involved and their coupling. Results are included here for the effects of chromium oxide concentrations on cathode output as is a parametric study of the effects of interconnect-three-phase-boundary length, oxygen mean free path, and adsorption site effectiveness. A qualitative comparison with experimental results is made.

  11. LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3−δ electrolyte

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Lenrick, Filip

    2012-01-01

    Symmetric cells (cathode/electrolyte/cathode) were prepared using BaCe0.2Zr0.7Y0.1O3−δ (BCZY27) as proton conducting electrolyte and LaCoO3 (LC) infiltrated into a porous BCZY27 backbone as cathode. Single phased LC was formed after annealing in air at 600 °C for 2 h. Scanning electron micrograph...... that the presence of oxide ion conduction in the cathode material is not necessary for good performance.......Symmetric cells (cathode/electrolyte/cathode) were prepared using BaCe0.2Zr0.7Y0.1O3−δ (BCZY27) as proton conducting electrolyte and LaCoO3 (LC) infiltrated into a porous BCZY27 backbone as cathode. Single phased LC was formed after annealing in air at 600 °C for 2 h. Scanning electron micrographs...... showed the presence of the infiltrated LC in the full cathode depth. Transmission electron micrographs revealed LC grains (60–80 nm) covering partly the BCZY27 grains (200 nm–1 μm). Impedance spectra were recorded at 500 °C and 600 °C, varying the oxygen partial pressure and the water vapour pressure...

  12. High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+ x Cathode

    Science.gov (United States)

    Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan

    2018-03-01

    Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

  13. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells.

    Science.gov (United States)

    Hwa, Yoon; Zhao, Juan; Cairns, Elton J

    2015-05-13

    In recent years, lithium/sulfur (Li/S) cells have attracted great attention as a candidate for the next generation of rechargeable batteries due to their high theoretical specific energy of 2600 W·h kg(-1), which is much higher than that of Li ion cells (400-600 W·h kg(-1)). However, problems of the S cathode such as highly soluble intermediate species (polysulfides Li2Sn, n = 4-8) and the insulating nature of S cause poor cycle life and low utilization of S, which prevents the practical use of Li/S cells. Here, a high-rate and long-life Li/S cell is proposed, which has a cathode material with a core-shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell. The conformal carbon coating is easily obtained by a unique CVD coating process using a lab-designed rotating furnace without any repetitive steps. The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g(-1) of Li2S (corresponding to the 942 mA·h g(-1) of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate.

  14. A novel cobalt-free layered GdBaFe{sub 2}O{sub 5+{delta}} cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-07-01

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO{sub 2} and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe{sub 2}O{sub 5+{delta}} (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7). The button cells of Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBF were fabricated and characterized using complex impedance technique from 600 to 700 C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm{sup -2}, and a low electrode polarization resistance of 0.18 {omega} cm{sup 2} were achieved at 700 C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBF cell is a promising functional material system for solid oxide fuel cells. (author)

  15. Novel layered perovskite GdBaCoFeO{sub 5+{delta}} as a potential cathode for proton-conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-05-15

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO{sub 2}, high thermal expansion coefficients, etc. Partial B site substitution with Fe element is expected to be able to mitigate these problems while keeping high catalyst performance. In this paper, a layered perovskite GdBaCoFeO{sub 5+{delta}} (GBCF) was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolyte of stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7). The button cells of Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBCF were fabricated and tested from 600 to 700 C with humidified H{sub 2} ({proportional_to}3% H{sub 2}O) as a fuel and ambient oxygen as oxidant. An open-circuit potential of 1.002 V, maximum power density of 482 mW cm{sup -2}, and a low electrode polarization resistance of 0.11 {omega}cm{sup 2} were achieved at 700 C. The experimental results indicated that the layered perovskite GBCF is a good candidate for cathode material, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBCF cell is a promising functional material system for intermediate temperature solid oxide fuel cells. (author)

  16. Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode.

    Science.gov (United States)

    Liu, Peng; Liu, Xianhua; Dong, Feng; Lin, Qingxia; Tong, Yindong; Li, Yang; Zhang, Pingping

    2018-08-01

    Low-cost and highly active catalyst for oxygen reduction reaction is of great importance in the design of alkaline fuel cells. In this work, Cu 2 O-Cu composite catalyst has been fabricated by a facile laser-irradiation method. The addition of Cu 2 O-Cu composite in activated carbon air-cathode greatly improves the performance of the cathode. Our results indicate the enhanced performance is likely attributed to the synergistic effect of high conductivity of Cu and the catalytic activity of Cu 2 O towards the oxygen reduction reaction. Furthermore, an alkaline fuel cell equipped with the composite air-cathode has been built to turn banana peels into electricity. Peak power density of 16.12Wm -2 is obtained under the condition of 3M KOH and 22.04gL -1 reducing sugar, which is higher than other reported low-temperature direct biomass alkaline fuel cells. HPLC results indicate the main oxidation products in the alkaline fuel cell were small organic acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Modeling of proton exchange membrane fuel cell with variable distance gas flow in anode and cathode

    International Nuclear Information System (INIS)

    Mohd Shahbudin Masdar; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    A number of fundamental studies have been directed towards increasing our understanding of PEM fuel cell and their performance. Mathematical modeling is one of the way and very essential component in the development of this fuel cell. Model validation is presented, the validated model is then used to investigate the behavior of mole fraction of gases, current density, and the performances of stack using polarization curve depending on distance gases flow in channel. The model incorporates a complete cell with both the membrane electrode assembly (MEA) and the serpentine gas distributor channel. Finally, the parametric studies in single stack design are illustrated

  18. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  19. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities

    International Nuclear Information System (INIS)

    Hwang, Seong Hoon; Kim, Min Soo

    2016-01-01

    Highlights: • Proposal of a cathode humidification and evaporative cooling system for PEM fuel cells. • An external-mixing air-assist atomizer is used to produce a very fine water spray. • The system is effective in both cathode humidification and stack cooling. • Increased water flow rate improves stack performance and evaporative cooling capacity. • At a given water flow rate, lower stack temperatures cause greater humidification effect. - Abstract: Humidification and cooling are critical issues in enhancing the efficiency and durability of polymer electrolyte membrane fuel cells (PEMFCs). However, existing humidifiers and cooling systems have the disadvantage that they must be quite large to achieve adequate PEMFC performance. In this study, to eliminate the need for a bulky humidifier and to lighten the cooling load of PEMFCs, a cathode humidification and evaporative cooling system using an external-mixing air-assist atomizer was developed and its performance was investigated. The atomization performance of the nozzle was analyzed experimentally under various operating conditions with minimal changes in the system design. Experiments with a five-cell PEMFC stack with an active area of 250 cm"2 were carried out to analyze the effects of various parameters (such as the operating temperature, current density, and water injection flow rate) on the evaporation of injected water for humidification and cooling performances. The experimental results demonstrate that the direct water injection method proposed in this study is quite effective in cathode humidification and stack cooling in PEM fuel cells at high current densities. The stack performance was improved by humidification effect and the coolant temperature at the stack outlet decreased by evaporative cooling effect.

  20. Cermet cathodes for strontium and magnesium-doped LaGaO3-based solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Bronin, D.I.; Majewski, P.; Aldinger, F.

    2009-01-01

    To check the suitability of La 0.9 Sr 0.1 Ga 0.85 Mg 0.15 O 3-δ -Ag cermets as cathode material for solid oxide fuel cell (SOFC) with Sr- and Mg-doped LaGaO 3 electrolyte a series of cermets with different Ag contents were prepared by conventional sintering process. The chemical compatibility between La 0.9 Sr 0.1 Ga 0.85 Mg 0.15 O 3-δ (LSGM) and Ag was investigated by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Thermal expansion coefficient of the cermets was measured as a function of Ag content and was found to increase with increasing metallic content. Oxygen adsorption at the surface of the cermets could be detected but no reaction or solid solubility between LSGM and Ag was found. It was noticed that a minimum of 30 wt.% Ag is needed to form a cermet with percolating network. From impedance spectroscopy measurement activation energy for the polarization conductance was found to be around 110 kJ mol -1

  1. Cermet cathodes for strontium and magnesium-doped LaGaO{sub 3}-based solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradyot [Technische Universitaet Clausthal, Institut fuer Metallurgie, 42 Robert-Koch Strasse, 38678 Clausthal-Zellerfeld (Germany); Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische and Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)], E-mail: pradyot.datta@gmail.com; Bronin, D.I. [Institute of High-Temperature Electrochemistry of Russian Academy of Sciences, Ekaterinburg 620219, S. Kovalevskoz 22 (Russian Federation); Majewski, P. [University of South Australia, School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, Mawson Lakes, South Australia 5095 (Australia); Aldinger, F. [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische and Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)

    2009-03-15

    To check the suitability of La{sub 0.9}Sr{sub 0.1}Ga{sub 0.85}Mg{sub 0.15}O{sub 3-{delta}}-Ag cermets as cathode material for solid oxide fuel cell (SOFC) with Sr- and Mg-doped LaGaO{sub 3} electrolyte a series of cermets with different Ag contents were prepared by conventional sintering process. The chemical compatibility between La{sub 0.9}Sr{sub 0.1}Ga{sub 0.85}Mg{sub 0.15}O{sub 3-{delta}} (LSGM) and Ag was investigated by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Thermal expansion coefficient of the cermets was measured as a function of Ag content and was found to increase with increasing metallic content. Oxygen adsorption at the surface of the cermets could be detected but no reaction or solid solubility between LSGM and Ag was found. It was noticed that a minimum of 30 wt.% Ag is needed to form a cermet with percolating network. From impedance spectroscopy measurement activation energy for the polarization conductance was found to be around 110 kJ mol{sup -1}.

  2. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells.

    Science.gov (United States)

    Gnana Kumar, G; Awan, Zahoor; Suk Nahm, Kee; Xavier, J Stanley

    2014-03-15

    Nanotubular shaped α-MnO2/graphene oxide nanocomposites were synthesized via a simple, cost and time efficient hydrothermal method. The growth of hollow structured MnO2 nanotubes preferentially occurred along the [001] direction as evidenced from the morphological and structural characterizations. The tunnels of α-MnO2 nanotubes easily accommodated the molecular oxygen and exhibited excellent catalytic activity towards the oxygen reduction reaction over the rod structure and was further enhanced with the effective carbon support graphene oxide. The MnO2 nanotubes/graphene oxide nanocomposite modified electrode exhibited a maximum power density of 3359 mW m(-2) which is 7.8 fold higher than that of unmodified electrode and comparable with the Pt/C modified electrode. The microbial fuel cell equipped with MnO2 nanotubes/graphene oxide nanocomposite modified cathode exhibited quick start up and excellent durability over the studied electrodes and is attributed to the high surface area and number of active sites. These findings not only provide the fundamental studies on carbon supported low-dimensional transition-metal oxides but also open up the new possibilities of their applications in green energy devices. © 2013 Elsevier B.V. All rights reserved.

  3. Fuel cells cathode with multiple catalysis and electrocapillary convection; Catodo de celula a combustivel com catalise multipla e conveccao eletrocapilar

    Energy Technology Data Exchange (ETDEWEB)

    Bambace, Luis Antonio Waack; Nishimori, Miriam; Ramos, Fernando Manuel [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)], e-mail: bambace@dem.inpe.br; Bastos Netto, Demetrio [Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP (Brazil)

    2004-07-01

    This paper discusses a mathematical model for the chemical reactions and liquid phase flow processes occurring in a fuel cell cathode through non homogeneous catalysis carried by gold and Prussian Blue. The gold is applied inside the porous walls of micro-tubes, which may be obtained through several methods. The wall porosity ranging from 7 to 30% ensures gas exchange between the interior of a micro-tube and its exterior where gas flow takes place. The Prussian Blue consists of a thin porous layer located between the selective membrane and the micro-tube system, with void fraction in the 70 to 80% range. A porous electricity conducting carbide flux collector is placed between the tube system and the bipolar plates. The system return tubes possess a diameter much larger than one of the micro-tubes. The electric potential differences generated by the ionic currents in the system and its asymmetrical shape are used to generate electrocapillary flows, which are related with the surface tension changes with local potential. The hydrogen peroxide concentration and its transport to the Prussian Blue layer, and the oxygen transport inside the reactive tubular system are analyzed in this work. (author)

  4. Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes.

    Science.gov (United States)

    Ghadge, Anil N; Ghangrekar, Makarand M

    2015-04-01

    Performance of scalable air-cathode microbial fuel cell (MFC) of 26 L volume, made from clayware cylinder with multiple electrodes, was evaluated. When electrodes were connected in parallel with 100 Ω resistance (R ext), power of 11.46 mW was produced which was 4.48 and 3.73 times higher than individual electrode pair and series connection, respectively. Coulombic efficiency of 5.10 ± 0.13% and chemical oxygen demand (COD) removal of 78.8 ± 5.52% was observed at R ext of 3 Ω. Performance under different organic loading rates (OLRs) varying from 0.75 to 6.0 g CODL(-1)d(-1) revealed power of 17.85 mW (47.28 mA current) at OLR of 3.0 g CODL(-1)d(-1). Internal resistance (R int) of 5.2 Ω observed is among the least value reported in literature. Long term operational stability (14 months) demonstrates the technical viability of clayware MFC for practical applications and potential benefits towards wastewater treatment and electricity recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    Science.gov (United States)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-18

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  6. Stable inverted polymer/fullerene solar cells using a cationic polythiophene modified PEDOT:PSS cathodic interface

    Energy Technology Data Exchange (ETDEWEB)

    Rider, David A.; Worfolk, Brian J.; Buriak, Jillian M. [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); NRC National Institute for Nanotechnology, Edmonton, Alberta (Canada); Harris, Kenneth D.; Shahbazi, Kevin; Fleischauer, Michael D. [NRC National Institute for Nanotechnology, Edmonton, Alberta (Canada); Lalany, Abeed [Department of Electrical and Computer Engineering, University of Alberta, Edmonton (Canada); Brett, Michael J. [NRC National Institute for Nanotechnology, Edmonton, Alberta (Canada); Department of Electrical and Computer Engineering, University of Alberta, Edmonton (Canada)

    2010-08-09

    A cationic and water-soluble polythiophene [poly[3-(6-pyridiniumylhexyl)thiophene bromide](P3PHT{sup +}Br{sup -})] is synthesized and used in combination with anionic poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) (PEDOT:PSS){sup -} to produce hybrid coatings on indium tin oxide (ITO). Two coating strategies are established: i) electrostatic layer-by-layer assembly with colloidal suspensions of (PEDOT:PSS){sup -}, and ii) modification of an electrochemically prepared (PEDOT:PSS){sup -} film on ITO. The coatings are found to modify the work function of ITO such that it could act as a cathode in inverted 2,5-diyl-poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) polymer photovoltaic cells. The interfacial modifier created from the layer-by-layer assembly route is used to produce efficient inverted organic photovoltaic devices (power conversion efficiency {proportional_to}2%) with significant long-term stability in excess of 500 h. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Energy-saving chlorine production. Chlor-alkali electrolysis using innovative cathode technology; Energiesparende Chlorpoduktion. Chlor-Alkali-Elektrolyse mit innovativer Kathoden-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Woltering, Peter; Hofmann, Philipp; Funck, Frank; Kiefer, Randolf; Baeumer, Ulf-Steffen; Donst, Dmitri; Schmitt, Carsten [Thyssen Krupp Uhde GmbH, Dortmund (Germany)

    2013-11-01

    Chlorine is used in the synthesis of almost two thirds of all chemical products. Producing chlorine from salt by electrolysis is a very energy-intensive process. Through their joint venture UHDENORA S.p.A., ThyssenKrupp Uhde and Industrie De Nora S.p.A. have played a major part in the development of a globally available technology that can produce chlorine using up to 30 percent less energy than conventional processes. It uses oxygen depolarized cathode technology with an innovative new cathode chamber design in an Uhde single-cell element. In Germany alone, converting all existing plants to the new technology would save enough electricity to power a city the size of Cologne. (orig.)

  8. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production

    KAUST Repository

    Ambler, Jack R.; Logan, Bruce E.

    2011-01-01

    Microbial electrolysis cells (MECs) are often examined for hydrogen production using non-sustainable phosphate buffered solutions (PBS), although carbonate buffers have been shown to work in other bioelectrochemical systems with a platinum (Pt) catalyst. Stainless steel (SS) has been shown to be an effective catalyst for hydrogen evolution in MECs, but it has not been tested with carbonate buffers. We evaluated the combined using of SS cathodes and a bicarbonate buffer (BBS) at the applied voltages of 0.5, 0.7 and 0.9 V using a new inexpensive method for measuring gas production called the gas bag method (GBM). This method achieved an average error of only 5.0% based on adding known volumes of gas to the bag. Using the GBM, hydrogen production with SS and a BBS was 26.6 ± 1.8 mL which compared well to 26.4 ± 2.8 mL using Pt and BBS, and 26.8 ± 2.5 mL with a Pt cathode and PBS. Electrical energy efficiency was highest with a SS cathode and BBS at 159 ± 17%, compared to 126 ± 14% for the Pt cathode and BBS, and 134 ± 17% for a Pt cathode and PBS. The main disadvantage of the SS was a lower gas production rate of 1.1 ± 0.3 m3 H2-m-3 d-1 with BBS and 1.2 ± 0.3 m3 H2-m-3 d -1 with PBS, compared to 1.7 ± 0.4 m3 H 2-m-3 d-1 with Pt and PBS. These results show that the GBM is an effective new method for measuring gas production of anaerobic gas production processes, and that SS and bicarbonate buffers can be used to effectively produce hydrogen in MECs. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  9. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    Science.gov (United States)

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  10. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell.

    Science.gov (United States)

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-12-09

    In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  11. Optically Transparent FTO-Free Cathode for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Liska, P.; Zakeeruddin, S. M.; Grätzel, M.

    2014-01-01

    Roč. 6, č. 24 (2014), s. 22343-22350 ISSN 1944-8244 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Dye sensitized solar cells * electrochemical impendance spectroscopy * tungsten electrode Subject RIV: CG - Electrochemistry Impact factor: 6.723, year: 2014

  12. Improving the cathode of a microbial fuel cell for efficient electricity production

    NARCIS (Netherlands)

    Heijne, ter A.

    2010-01-01

    The worldwide demand for energy is increasing. At the same time, energy rich wastewaters are currently purified by oxygen supply, which costs a lot of energy. The Microbial Fuel Cell is a new technology that offers advantages in both directions: it produces electricity while purifying wastewaters.

  13. Diagnosis of a cathode-supported solid oxide electrolysis cell by electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Nechache, A.; Mansuy, A.; Petitjean, M.; Mougin, J.; Mauvy, F.; Boukamp, Bernard A.; Cassir, M.; Ringuede, A.

    2016-01-01

    High-temperature electrolysis (HTSE) is a quite recent topic where most of the studies are focused on performance measurements and degradation observations, mainly achieved by polarization curve. However, it mainly leads to the overall cell behaviour. To get more specific knowledge on the operation

  14. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Ivanov, Ivan; Nagaiah, Tharamani C.; Bordoloi, Ankur; Logan, Bruce E.

    2014-01-01

    at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than

  15. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode

    KAUST Repository

    Mink, Justine E.

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m2 and 19 mW/m2 the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. © 2013 American Chemical Society.

  16. Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, W.J. (Applied Electrochemistry Dept., AEA Industry Technology, Harwell (United Kingdom)); Neat, R.J. (Applied Electrochemistry Dept., AEA Industry Technology, Harwell (United Kingdom))

    Performance data on two polymorphs of titanium dioxide (anatase and rutile) operating in a lithium polymer electrolyte cell at 120 C are presented. On the first discharge lithium ions can be electrochemically inserted into both forms to an approximate composition LiTiO[sub 2]. However, only the rutile material cycles with a significant capacity ([proportional to] 0.5 Li/TiO[sub 2]) with an average cell voltage of 1.73 V corresponding to a theoretical energy density of [proportional to] 290 W h kg[sup -1]. Our results are in contrast to earlier work reported on the intercalation of lithium into these phases at room temperature, where only the anatase form was found to intercalate lithium. X-ray diffraction data indicate that the rutile form undergoes a structural change during the first discharge resulting in the formation of a hexagonal form of LiTiO[sub 2].

  17. Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Nazeeruddin, M. K.; Grätzel, M.

    2011-01-01

    Roč. 5, č. 11 (2011), s. 9171-9178 ISSN 1936-0851 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * dye sensitized solar cell * cobalt redox shuttle Subject RIV: CG - Electrochemistry Impact factor: 10.774, year: 2011

  18. Electrochemically Promoted Organic Isomerization Reactions at Polymer Electrolyte Fuel Cell Cathodes

    Science.gov (United States)

    2011-01-04

    fuel cells ( PEMFCs ) incorporate an ionomer membrane (e.g., Nafion 117) for support of electro- catalytic layers and proton conduction between the...central to PEMFC electrocatalysis. For example, a spin coated Nafion layer on polycrystalline Pt enhances electrocatalysis.7,8 Little is known about...CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of the Electrochemical Society, 2003. 150(12): p. A1599-A1605. 21

  19. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Graetzel, M.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 165-172 ISSN 1936-0851 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * dye sensitized solar cells * electrochemical impendance Subject RIV: CG - Electrochemistry Impact factor: 10.774, year: 2011

  20. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  1. Evaluation of Cation Migration in Lanthanum Strontium Cobalt Ferrite Solid Oxide Fuel Cell Cathodes via In-operando X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S.; Coyle, Christopher A.; Bonnett, Jeff F.; Templeton, Jared W.; Canfield, Nathan L.; Edwards, Danny J.; Mahserejian, Shant M.; Ge, Le; Ingram, Brian J.; Stevenson, Jeffry W.

    2018-01-28

    Anode-supported SOFCs with LSCF-6428 cathodes were operated at various temperatures for hundreds of hours in dry or humid (~3% water) cathode air with continuous cathode XRD. Additionally, one cell in dry air was held at OCV and another had 12% CO2 added to the humid air. Long cumulative XRD count times allowed identification of minor phases at <0.1 wt%. In humid air, performance improved during the first couple of hundred hours and Fe-rich Fe,Co spinel XRD peaks gradually shifted to lower angles while nano-nodules formed on LSCF surfaces. With 12% CO2 added, performance degraded after initial activation, unlike without CO2, where stability followed activation. In CO2, LSCF XRD peaks shifted indicating gradual decomposition. In dry air, fast initial degradation that decelerated over time occurred at constant current while the cell at OCV was stable. At OCV and 750°C or at constant current and 700°C in dry air, Fe-rich spinel XRD peaks shifted more slowly than in humid air tests; Co-rich Fe,Co spinel peaks shifted to higher angles; and SEM discovered smaller nano-nodules on LSCF than after humid air tests. At constant current at 750°C and 800°C in dry air, no nano-nodules or gradual changes in the XRD patterns were discovered.

  2. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri......-contusional cortex in 32 patients who underwent surgical treatment for TBI. Prospective electrocorticography was performed during neurointensive care with retrospective analysis of hourly nursing chart data. Recordings were 84 hr (median) per patient and 2,503 hr in total. In 17 patients (53%), 280 spreading...... depolarizations (spreading depressions and peri-infarct depolarizations) were observed. Depolarizations occurred in a bimodal pattern with peak incidence on days 1 and 7. The probability of a depolarization occurring increased significantly as a function of declining mean arterial pressure (MAP; R(2) = 0.78; p...

  3. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    Science.gov (United States)

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  4. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    Huang, Zhen-Ming; Su, Ay; Liu, Ying-Chieh

    2014-01-01

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H 2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  5. Recent Development of Graphene-Based Cathode Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Man-Ning Lu

    2016-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted extensive attention for serving as potential low-cost alternatives to silicon-based solar cells. As a vital role of a typical DSSC, the counter electrode (CE is generally employed to collect electrons via the external circuit and speed up the reduction reaction of I3- to I- in the redox electrolyte. The noble Pt is usually deposited on a conductive glass substrate as CE material due to its excellent electrical conductivity, electrocatalytic activity, and electrochemical stability. To achieve cost-efficient DSSCs, reasonable efforts have been made to explore Pt-free alternatives. Recently, the graphene-based CEs have been intensively investigated to replace the high-cost noble Pt CE. In this paper, we provided an overview of studies on the electrochemical and photovoltaic characteristics of graphene-based CEs, including graphene, graphene/Pt, graphene/carbon materials, graphene/conducting polymers, and graphene/inorganic compounds. We also summarize the design and advantages of each graphene-based material and provide the possible directions for designing new graphene-based catalysts in future research for high-performance and low-cost DSSCs.

  6. Flexible inverted polymer solar cells with an indium-free tri-layer cathode

    International Nuclear Information System (INIS)

    El Hajj, Ahmad; Lucas, Bruno; Schirr-Bonnans, Martin; Ratier, Bernard; Kraft, Thomas M.; Torchio, Philippe

    2014-01-01

    Indium tin oxide (ITO)-free inverted polymer solar cells (PSCs) have been fabricated without the need of an additional electron transport layer. The indium-free transparent electrode consists of a tri-layer stack ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm) deposited on glass and plastic substrates via ion-beam sputtering. The tri-layer electrodes exhibit similar physical properties to its ITO counterpart, specifically yielding high transmittance and low resistivity (76.5% T at 550 nm, R sq of 8 Ω/◻) on plastic substrates. The novel tri-layer electrode allows for the fabrication of inverted PSCs without the additional ZnO interfacial layer commonly deposited between ITO and the photoactive layer. This allows for the preparation of thinner plastic solar cells using less material than conventional architectures. Initial studies involving the newly realized architecture (tri-layer electrode/P3HT:PCBM/PEDOT:PSS/Ag) have shown great promise for the transition from ITO to other viable electrodes in organic electronics

  7. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

    KAUST Repository

    Chehab, Noura A.

    2014-11-01

    A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDIC+S reactors contained both a spacer and 1.4±0.2. mL of ion exchange resin (IER) per membrane channel, while the spacer was omitted in the SMEDIC-S reactors and so a larger volume of resin (2.4±0.2. mL) was used. The overall extent of desalination using the SMEDIC with a moderate (brackish water) salt concentration (13. g/L) was 90-94%, compared to only 60% for the SMDC after 7 fed-batch cycles of the anode. At a higher (seawater) salt concentration of 35. g/L, the extent of desalination reached 61-72% (after 10 cycles) for the SMEDIC, compared to 43% for the SMDC. The improved performance was shown to be due to the reduction in ohmic resistances, which were 130. Ω (SMEDIC-S) and 180. Ω (SMEDIC+S) at the high salt concentration, compared to 210. Ω without resin (SMDC). These results show that IERs can improve performance of stacked membranes for both moderate and high initial salt concentrations. © 2014 Elsevier B.V.

  8. Cathode Composition in a Saltwater Metal-Air Battery

    Directory of Open Access Journals (Sweden)

    William Shen

    2017-01-01

    Full Text Available Metal-air batteries consist of a solid metal anode and an oxygen cathode of ambient air, typically separated by an aqueous electrolyte. Here, simple saltwater-based models of aluminum-air and zinc-air cells are used to determine the differences between theoretical cell electric potentials and experimental electric potentials. A substantial difference is observed. It is also found that the metal cathode material is crucial to cell electric potential, despite the cathode not participating in the net reaction. Finally, the material composition of the cathode appears to have a more significant impact on cell potential than the submerged surface area of the cathode.

  9. A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells.

    Science.gov (United States)

    Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin

    2018-03-15

    The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer

    Directory of Open Access Journals (Sweden)

    Ding Zheng

    2017-08-01

    Full Text Available An innovative bilayer cathode interlayer (CIL with a nanostructure consisting of in situ thermal reduced graphene oxide (ITR-GO and poly[(9,9-bis(3′-(N,N-dimethylamionpropyl-2,7-fluorene-alt-2,7-(9,9-dioctyl fluorene] (PFN has been fabricated for inverted organic solar cells (OSCs. An approach to prepare a CIL of high electronic quality by using ITR-GO as a template to modulate the morphology of the interface between the active layer and electrode and to further reduce the work function of the electrode has also been realized. This bilayer ITR-GO/PFN CIL is processed by a spray-coating method with facile in situ thermal reduction. Meanwhile, the CIL shows a good charge transport efficiency and less charge recombination, which leads to a significant enhancement of the power conversion efficiency from 6.47% to 8.34% for Poly({4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl} (PTB7:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM-based OSCs. In addition, the long-term stability of the OSC is improved by using the ITR-GO/PFN CIL when compared with the pristine device. These results indicate that the bilayer ITR-GO/PFN CIL is a promising way to realize high-efficiency and stable OSCs by using water-soluble conjugated polymer electrolytes such as PFN.

  11. Layered perovskite LaBaCuMO{sub 5+x} (M = Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling Yihan; Lin Bin; Zhao Ling; Zhang Xiaozhen; Yu Jia; Peng Ranran; Meng Guangyao [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Liu Xingqin, E-mail: lyhyy@mail.ustc.edu.c [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)

    2010-03-18

    Layered perovskite LaBaCuFeO{sub 5+x} (LBCF) and LaBaCuCoO{sub 5+x} (LBCC) oxides are synthesized by a modified Pechini method and examined as potential cathode materials for intermediate-temperature protonic ceramic membrane fuel cells (IT-PCMFCs). Thin proton-conducting BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) electrolyte and NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY) anode functional layer are prepared over porous anode substrates composed of NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} by a one-step dry-pressing/co-firing process. Laboratory-sized quad-layer cells of NiO-BYCZ/NiO-BYCZ/BYCZ/LBCF (LBCC) are operated from 550 to 700 {sup o}C with humidified hydrogen ({approx}3% H{sub 2}O) as fuel and the static air as oxidant. The single cell with LBCF cathode shows peak power densities of only 327 mW cm{sup -2} at 700 {sup o}C and 105 mW cm{sup -2} for 550 {sup o}C, while the single cell with LBCC cathode shows peak power densities of 432 and 171 mW cm{sup -2} at 700 and 550 {sup o}C, respectively. The dramatic improvement of cell performance is attributed to higher cobaltites catalytic activity than that of ferrites for IT-PCMFCs, which is in good agreement with the results of impedance measurement.

  12. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.

    Science.gov (United States)

    Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan

    2013-06-06

    Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.

  13. Cobalt-free cathode material SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingjun [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); College of Science, Civil Aviation University of China, Tianjin 300300 (China); Zhang, Leilei; He, Tianmin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China)

    2010-02-15

    A cobalt-free cubic perovskite oxide, SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) for temperatures up to 1050 C. The electrical conductivity of SFN sample reached 34-70 S cm{sup -1} in the commonly operated temperatures of IT-SOFCs (600-800 C). The area specific resistance was 0.138 {omega} cm{sup 2} for SFN cathode on SDC electrolyte at 750 C. A maximum power density of 407 mW cm{sup -2} was obtained at 800 C for single-cell with 300 {mu}m thick SDC electrolyte and SFN cathode. (author)

  14. Electricity generation using white and red wine lees in air cathode microbial fuel cells

    Science.gov (United States)

    Pepe Sciarria, Tommy; Merlino, Giuseppe; Scaglia, Barbara; D'Epifanio, Alessandra; Mecheri, Barbara; Borin, Sara; Licoccia, Silvia; Adani, Fabrizio

    2015-01-01

    Microbial fuel cell (MFC) is a useful biotechnology to produce electrical energy from different organic substrates. This work reports for the first time results of the application of single chamber MFCs to generate electrical energy from diluted white wine (WWL) and red wine (RWL) lees. Power obtained was of 8.2 W m-3 (262 mW m-2; 500 Ω) and of 3.1 W m-3 (111 mW m-2; 500Ω) using white and red wine lees, respectively. Biological processes lead to a reduction of chemical oxygen (TCOD) and biological oxygen demand (BOD5) of 27% and 83% for RWL and of 90% and 95% for WWL, respectively. These results depended on the degradability of organic compounds contained, as suggest by BOD5/TCOD of WWL (0.93) vs BOD5/TCOD of RWL (0.33), and to the high presence of polyphenols in RWL that inhibited the process. Coulombic efficiency (CE) of 15 ± 0%, for WWL, was in line with those reported in the literature for other substrates, i.e. CE of 14.9 ± 11.3%. Different substrates led to different microbial consortia, particularly at the anode. Bacterial species responsible for the generation of electricity, were physically connected to the electrode, where the direct electron transfer took place.

  15. Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Varela, F.J.R. [Centro de Investigacion y de Estudios Avanzados, Coahuila (Mexico). Unidad Saltillo

    2008-07-01

    Recent studies have demonstrated that electroactive palladium (Pd) and Pd-alloy catalysts prepared using a sputtering technique possess a similar degree of activity as platinum (Pt) electrodes. This study demonstrated that Pd and Pd-alloys show a high degree of tolerance to ethanol during oxygen reduction reaction (ORR) processes. The onset potential of the ORR process in the presence of 0.5M of ethanol decreased by only 33 mV and 18 mV on Pd and Pd-cobalt (Co) catalysts. Linear sweep voltammetry experiments showed that no peak current density caused by the electro-oxidation of ethanol was observed in the Pd-based catalysts. The selective behaviour of the Pd and Pd-Co catalysts was attributed to a slow rate of adsorption of the ethanol as well as the presence of reaction intermediates on the catalytic surface. Results suggested that the Pd and Pd-Co catalysts are suitable candidates for direct alcohol fuel cell applications. 10 refs., 2 figs.

  16. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  17. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  18. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  19. Strong Resilience of Topological Codes to Depolarization

    Directory of Open Access Journals (Sweden)

    H. Bombin

    2012-04-01

    Full Text Available The inevitable presence of decoherence effects in systems suitable for quantum computation necessitates effective error-correction schemes to protect information from noise. We compute the stability of the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex Ising model. By studying the stability of the related ferromagnetic phase via both large-scale Monte Carlo simulations and the duality method, we are able to demonstrate an increased error threshold of 18.9(3% when noise correlations are taken into account. Remarkably, this result agrees within error bars with the result for a different class of codes—topological color codes—where the mapping yields interesting new types of interacting eight-vertex models.

  20. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes

    DEFF Research Database (Denmark)

    Fang, Cheng; Min, Booki; Angelidaki, Irini

    2011-01-01

    with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC......Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power...... density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3−–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode...

  2. Effect of the prominent catalyst layer surface on reactant gas transport and cell performance at the cathodic side of a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2010-01-01

    The cell performance enhancement of a proton exchange membrane fuel cell (PEMFC) has been numerically investigated with the prominence-like form catalyst layer surface of the same composition at the cathodic half-cell of a PEMFC. The geometries of the prominence-like form catalyst layer surface are assigned as one prominence, three prominences, and five prominences catalyst layer surfaces with constant distance between two prominences in the same gas diffusion layer (GDL) for the purpose of investigating the cell performance. To confine the current investigation to two-dimensional incompressible flows, we assume that the fluid flow is laminar with a low Reynolds number 15. The results indicate that the prominence-like form catalyst layer surface can effectively enhance the local cell performance of a PEMFC.

  3. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’ as, Eman Husni; Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2017-01-01

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  4. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’as, Eman Husni

    2017-10-28

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  5. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts

    KAUST Repository

    Kiely, Patrick D.; Rader, Geoffrey; Regan, John M.; Logan, Bruce E.

    2011-01-01

    fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835±21 to 62±1mW/m3. Cathodes performance degraded over

  6. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing; Saito, Tomonori; Regan, John M.

    2012-01-01

    biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode

  7. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  8. Single neuron dynamics during experimentally induced anoxic depolarization

    NARCIS (Netherlands)

    Zandt, B.; Stigen, Tyler; ten Haken, Bernard; Netoff, Theoden; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    We studied single neuron dynamics during anoxic depolarizations, which are often observed in cases of neuronal energy depletion. Anoxic and similar depolarizations play an important role in several pathologies, notably stroke, migraine, and epilepsy. One of the effects of energy depletion was

  9. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    DEFF Research Database (Denmark)

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...

  10. Depolarization Lidar Determination of Cloud-Base Microphysical Properties

    NARCIS (Netherlands)

    Donovan, D.P.; Klein Baltink, H; Henzing, J. S.; de Roode, S.R.; Siebesma, A.P.

    2016-01-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud

  11. Depolarization of ultracold neutrons during their storage in material bottles

    International Nuclear Information System (INIS)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U.

    2003-01-01

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to ∼(1-2)x10 -5 per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed

  12. Depolarization of ultracold neutrons during their storage in material bottles

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U

    2003-07-14

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to {approx}(1-2)x10{sup -5} per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed.

  13. Protective effect of the poly(ADP-ribose polymerase inhibitor PJ34 on mitochondrial depolarization-mediated cell death in hepatocellular carcinoma cells involves attenuation of c-Jun N-terminal kinase-2 and protein kinase B/Akt activation

    Directory of Open Access Journals (Sweden)

    Radnai Balazs

    2012-05-01

    Full Text Available Abstract Background 2,4-Dimethoxyphenyl-E-4-arylidene-3-isochromanone (IK11 was previously described to induce apoptotic death of A431 tumor cells. In this report, we investigated the molecular action of IK11 in the HepG2 human hepatocellular carcinoma cell line to increase our knowledge of the role of poly (ADP-ribose-polymerase (PARP, protein kinase B/Akt and mitogen activated protein kinase (MAPK activation in the survival and death of tumor cells and to highlight the possible role of PARP-inhibitors in co-treatments with different cytotoxic agents in cancer therapy. Results We found that sublethal concentrations of IK11 prevented proliferation, migration and entry of the cells into their G2 phase. At higher concentrations, IK11 induced reactive oxygen species (ROS production, mitochondrial membrane depolarization, activation of c-Jun N-terminal kinase 2 (JNK2, and substantial loss of HepG2 cells. ROS production appeared marginal in mediating the cytotoxicity of IK11 since N-acetyl cysteine was unable to prevent it. However, the PARP inhibitor PJ34, although not a ROS scavenger, strongly inhibited both IK11-induced ROS production and cell death. JNK2 activation seemed to be a major mediator of the effect of IK11 since inhibition of JNK resulted in a substantial cytoprotection while inhibitors of the other kinases failed to do so. Inhibition of Akt slightly diminished the effect of IK11, while the JNK and Akt inhibitor and ROS scavenger trans-resveratrol completely protected against it. Conclusions These results indicate significant involvement of PARP, a marginal role of ROS and a pro-apoptotic role of Akt in this system, and raise attention to a novel mechanism that should be considered when cancer therapy is augmented with PARP-inhibition, namely the cytoprotection by inhibition of JNK2.

  14. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells

    KAUST Repository

    Ribot-Llobet, Edgar; Nam, Joo-Youn; Tokash, Justin C.; Guisasola, Albert; Logan, Bruce E.

    2013-01-01

    Nickel foam (NF), stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated stainless steel mesh (MoS 2) electrodes have been proposed as catalysts for hydrogen gas production, but previous tests have primarily examined their performance in well buffered solutions. These materials were compared using two-chamber microbial electrolysis cells (MECs), and linear sweep voltammetry (LSV) in unbuffered saline solutions at two different initial pHs (7 and 12). There was generally no appreciable effect of initial pH on production rates or total gas production. NF produced hydrogen gas at a rate of 1.1 m3 H2/m 3·d, which was only slightly less than that using Pt (1.4 m3 H2/m3·d), but larger than that obtained with SSW (0.52 m3 H2/m3·d) or MoS2 (0.67 m3 H2/m3·d). Overall hydrogen gas recoveries with SSW (29.7 ± 0.5 mL), MoS2 (28.6 ± 1.3 mL) and NF (32.4 ± 2 mL) were only slightly less than that of Pt (37.9 ± 0.5 mL). Total energy recoveries, based on the gas produced versus electrical energy input, ranged from 0.75 ± 0.02 for Pt, to 0.55 ± 0.02 for SSW. An LSV analysis showed no effect of pH for NF and Pt, but overpotentials were reduced for MoS2 and SSW by using an initial lower pH. At cathode potentials more negative than -0.85 V (vs Ag/AgCl), NF had lower overpotentials than the MoS2. These results provide the first assessment of these materials under practical conditions of high pH in unbuffered saline catholytes, and position NF as the most promising inexpensive alternative to Pt.

  15. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells

    KAUST Repository

    Ribot-Llobet, Edgar

    2013-03-01

    Nickel foam (NF), stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated stainless steel mesh (MoS 2) electrodes have been proposed as catalysts for hydrogen gas production, but previous tests have primarily examined their performance in well buffered solutions. These materials were compared using two-chamber microbial electrolysis cells (MECs), and linear sweep voltammetry (LSV) in unbuffered saline solutions at two different initial pHs (7 and 12). There was generally no appreciable effect of initial pH on production rates or total gas production. NF produced hydrogen gas at a rate of 1.1 m3 H2/m 3·d, which was only slightly less than that using Pt (1.4 m3 H2/m3·d), but larger than that obtained with SSW (0.52 m3 H2/m3·d) or MoS2 (0.67 m3 H2/m3·d). Overall hydrogen gas recoveries with SSW (29.7 ± 0.5 mL), MoS2 (28.6 ± 1.3 mL) and NF (32.4 ± 2 mL) were only slightly less than that of Pt (37.9 ± 0.5 mL). Total energy recoveries, based on the gas produced versus electrical energy input, ranged from 0.75 ± 0.02 for Pt, to 0.55 ± 0.02 for SSW. An LSV analysis showed no effect of pH for NF and Pt, but overpotentials were reduced for MoS2 and SSW by using an initial lower pH. At cathode potentials more negative than -0.85 V (vs Ag/AgCl), NF had lower overpotentials than the MoS2. These results provide the first assessment of these materials under practical conditions of high pH in unbuffered saline catholytes, and position NF as the most promising inexpensive alternative to Pt.

  16. La0.99Co0.4Ni0.6O3−δ–Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Mogensen, Mogens Bjerg

    2011-01-01

    We have studied a new composite SOFC cathode consisting of LaCo0.4Ni0.6O3−δ (LCN60) and Ce0.9Gd0.1O1.95 (CGO). The polarisation resistance (RP) at 750°C and OCV was measured to 0.05±0.01Ωcm2 and the activation energy was determined to be about 1eV. The impedance spectra were modelled with an EQC......-infiltrated LCN60–CGO cathodes is substantially lower than that of LSM–YSZ and comparable with single phase LSC cathodes at low T due to its low EA. RP was also found to be stable at 750°C and OCV. The cathodes were integrated onto ScYSZ based anode supported cells which were measured to have an ASR of 0...

  17. The effect of channel flow pattern on internal properties distribution of a proton exchange membrane fuel cell for cathode starvation conditions

    International Nuclear Information System (INIS)

    Ko, Dong Soo; Kang, Young Min; Yang, Jang Sik; Jeong, Ji Hwan; Choi, Gyung Min; Kim, Duck Jool

    2010-01-01

    The effect of channel flow pattern on the internal properties distribution of a proton exchange membrane fuel cell (PEMFC) for cathode starvation conditions in a unit cell was investigated through numerical studies and experiments. The polarization curves of a lab-scale mixed serpentine PEMFC were measured with increasing current loads for different cell temperatures (40, 50, and 60 .deg. C) at a relative humidity of 100%. To study the local temperature on the membrane, the water content in the MEA, and the gas velocity in terms of the channel type of the PEMFC with operating characteristics, numerical studies using the es-pemfc module of STAR-CD, which have been matched to the experimental data, were conducted in detail. The water content and velocity at the cathode channel bend of the mixed serpentine channel were relatively higher than those at the single and double channels. Conversely, the local temperature and mean temperature on the membrane of a single serpentine channel were the highest among all channels. These results can be used to design the PEMFC system, the channel flow field, and the cooling device

  18. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    Science.gov (United States)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  19. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  20. Investigation of novel solid oxide fuel cell cathodes based on impregnation of SrTixFe1-xO3-δ into ceria-based backbones

    DEFF Research Database (Denmark)

    Brinch-Larsen, Mathias; Søgaard, Martin; Hjelm, Johan

    2013-01-01

    Solid oxide fuel cell (SOFC) cathodes were prepared by impregnating the nitrates corresponding to SrTixFe1-xO3-δ (STF), x= 0; 0.1; 0.2; 0.3; 0.4 and 0.5, into a porous backbone of Ce 0.9Gd0.1O2-δ (CGO). STF was chosen as very high oxygen surface exchange rate, high ionic conductivity and electroc......Solid oxide fuel cell (SOFC) cathodes were prepared by impregnating the nitrates corresponding to SrTixFe1-xO3-δ (STF), x= 0; 0.1; 0.2; 0.3; 0.4 and 0.5, into a porous backbone of Ce 0.9Gd0.1O2-δ (CGO). STF was chosen as very high oxygen surface exchange rate, high ionic conductivity...... backbone. All prepared electrodes were characterized as symmetric cells using impedance spectroscopy. Within the investigated series the infiltrate with x = 0.1 (STF10) showed the best performance with an area specific resistance (ASR) of ASR ≈ 6.4 Ω cm2 (STF10) at 600°C in air. The relatively poor...

  1. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    Science.gov (United States)

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  2. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Cao, Chun; Wei, Liling; Wang, Gang; Shen, Jianquan

    2017-01-01

    Highlights: • NiCo 2 O 4 nanoplatelets were in-situ growing on carbon cloth as ORR catalyst in biofuel cells. • Binder-free cathode with the lower internal resistance. • Binder-free cathode was low-cost. • NiCo 2 O 4 -CFC shows better power generation performance than Pt/C. - Abstract: Air-cathode microbial fuel cells (MFCs) was one of most promising sustainable new energy device as well as an advanced sewage treatment technology, and thoroughly studies have been devoted to lower its cost and enhance its power generation. Herein, a binder-free and low-cost catalyst air-cathode was fabricated by in-situ electro-deposition of NiCo 2 O 4 nanoplatelets on carbon cloth, followed by feasible calcinations. The catalytic activity of catalyst air-cathode was optimized by varying the deposition time. And the optimal air-cathode was installed in real MFCs and exhibited distinct maximum out-put power density (645 ± 6 mW m −2 ), which was 12.96% higher than commercial Pt/C (571 ± 11 mW m −2 ). Noted that its remarkable electricity generation performance in MFCs should absolutely attributed to the well catalytic activity for oxygen reduction reaction, and more likely ascribed to its low internal resistance since binder-free catalyst air-cathode can facilitate the electron/charge transfer process. Therefore, it was an efficient strategy to improve the electricity generation performance of MFCs by using this binder-free catalyst air-cathode, which was also potential for application in many other electrochemical devices.

  3. Cathodic protection -- Rectifier 46

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste

  4. Cathodic protection -- Rectifier 47

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste

  5. Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect

    Science.gov (United States)

    Wang, Ruofan; Sun, Zhihao; Pal, Uday B.; Gopalan, Srikanth; Basu, Soumendra N.

    2018-02-01

    Chromium poisoning is one of the major reasons for cathode performance degradation in solid oxide fuel cells (SOFCs). To mitigate the effect of Cr-poisoning, a protective coating on the surface of interconnect for suppressing Cr vaporization is necessary. Among the various coating materials, Cu-Mn spinel coating is considered to be a potential candidate due to their good thermal compatibility, high stability and good electronic conductivity at high temperature. In this study, Crofer 22 H meshes with no protective coating, those with commercial CuMn2O4 spinel coating and the ones with lab-developed CuMn1.8O4 spinel coating were investigated. The lab-developed CuMn1.8O4 spinel coating were deposited on Crofer 22 H mesh by electrophoretic deposition and densified by a reduction and re-oxidation process. With these different Crofer 22 H meshes (bare, CuMn2O4-coated, and CuMn1.8O4-coated), anode-supported SOFCs with Sr-doped LaMnO3-based cathode were electrochemically tested at 800 °C for total durations of up to 288 h. Comparing the mitigating effects of the two types of Cu-Mn spinel coatings on Cr-poisoning, it was found that the performance of the denser lab-developed CuMn1.8O4 spinel coating was distinctly better, showing no degradation in the cell electrochemical performance and significantly less Cr deposition near the cathode/electrolyte interface after the test.

  6. Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer

    Science.gov (United States)

    Liu, X.; Li, M.; An, N.; Zhang, T.; Cao, G.; Cheng, S.

    2018-04-01

    To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters the tolerance of wedge angle refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  7. STITCHING TYPE LARGE APERTURE DEPOLARIZER FOR GAS MONITORING IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm. In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters,the tolerance of wedge angle,refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  8. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

    Science.gov (United States)

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng

    2016-05-11

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.

  9. Li- and Mn-Rich Cathode Materials: Challenges to Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Myeong, Seungjun [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Cho, Woongrae [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Yan, Pengfei [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xiao, Jie [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Cho, Jaephil [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Zhang, Ji-Guang [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2016-12-14

    The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density, electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.

  10. Synthesis and electrochemical characterization of highly tolerant Pd electrocatalysts as cathodes in direct ethylene glycol fuel cells (DEGFC)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, F.J.; Fraire Luna, S. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)] e-mail: javier.varela@cinvestav.edu.mx; Savadogo, O. [Laboratoire d' Electrochimie et de Materiaux Energetiques, Ecole Polytechnique de Montreal, Montreal, QC (Canada)

    2009-09-15

    Highly selective Pd electrocatalysts were synthesized by the formic acid method and evaluated as cathodes for DEGFC applications. In rotating disc measurements in acid medium, the Pd/C cathode showed important catalytic activity for the Oxygen Reduction Reaction (ORR). In the presence of ethylene glycol (EG, C{sub 2}H{sub 6}O{sub 2}), Pd/C exhibited an excellent electrochemical behavior and full tolerance to the organic molecule. No current density peaks associated to the EG oxidation reaction emerged and the shift in onset potential for the ORR (Eonset) toward more negative potentials was negligible on this cathode. Moreover, the evaluation of Pd/C in a DEGFC operating at 80 degrees Celsius demonstrated its high performance as cathode. As a comparison, commercial Pt/C was tested under the same conditions showing a limited selectivity for the ORR. The detrimental effect of EG on the Pt electrocatalysts resulted in high intensity current density peaks due to the oxidation of EG and a significant shift in Eonset. Given these results, it is expected that highly efficient Pd-based cathodes can find application in DEGFCs. [Spanish] Se sintetizaron electrocatalizadores altamente selectivos mediante el metodo de acido formico y se evaluaron como catodos en aplicaciones de CCGED. En mediciones de disco rotatorio en medio acido, el catodo Pd/C mostro importante actividad catalitica en la reaccion de reduccion de oxigeno (RRO). En la presencia de glicol de etileno (GE, C{sub 2}H{sub 6}O{sub 2}), Pd/C exhibio un excelente comportamiento electromecanico y tolerancia total a la molecula organica. No surgieron picos de densidad de corriente asociados con la reaccion de oxidacion de GE y el corrimiento en el potencial de inicio para la RRO (Einicio) hacia potenciales mas negativos fue despreciable en este catodo. Como comparacion, se probo un Pt/C bajo las mismas condiciones y se observo una selectividad limitada para el RRO. El efecto perjudicial de GE en el electrocatalizador

  11. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

    Science.gov (United States)

    Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan

    2016-04-07

    Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.

  12. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum.

    Science.gov (United States)

    Yang, Zehui; Nakashima, Naotoshi

    2015-07-20

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.

  13. Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells.

    Science.gov (United States)

    Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian

    2014-03-12

    We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.

  14. Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry

    International Nuclear Information System (INIS)

    Li, Weiqi; Zhang, Chuanwei; Jiang, Hao; Chen, Xiuguo; Liu, Shiyuan

    2016-01-01

    Noticeable depolarization effects are observed in the measurement of the air using an in-house developed dual rotating-compensator Mueller matrix ellipsometer. We demonstrate that these depolarization effects are essentially artifacts and mainly induced when the compensator with wavelength-dependent optical properties is integrated with the finite bandwidth detector. We define a general formula to represent the actual Mueller matrix of the compensator by taking into account the depolarization artifacts. After incorporating this formula into the system model, a correction method is further proposed, and consequently, improved accuracy can be achieved in the Mueller matrix measurement. (paper)

  15. Evaluation of Ca3(Co,M2O6 (M=Co, Fe, Mn, Ni as new cathode materials for solid-oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Fushao Li

    2015-10-01

    Full Text Available Series compounds Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni with hexagonal crystal structure were prepared by sol–gel route as the cathode materials for solid oxide fuel cells (SOFCs. Effects of the varied atomic compositions on the structure, electrical conductivity, thermal expansion and electrochemical performance were systematically evaluated. Experimental results showed that the lattice parameters of Ca3(Co0.9Fe0.12O6 and Ca3(Co0.9Mn0.12O6 were both expanded to certain degree. Electron-doping and hole-doping effects were expected in Ca3(Co0.9Mn0.12O6 and Ca3(Co0.9Ni0.12O6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity. Thermal expansion coefficients (TEC of Ca3(Co0.9M0.12O6 were measured to be distributed around 16×10−6 K−1, and compositional elements of Fe, Mn, and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials. By using Ca3(Co0.9M0.12O6 as the cathodes operated at 800 °C, the interfacial area-specific resistance varied in the order of M=Cocell with La0.8Sr0.2Ga0.83Mg0.17O2.815 as electrolyte and Ni–Ce0.8Sm0.2O1.9 as anode. Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni can be used as the cost-effective cathode materials for SOFCs.

  16. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  17. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  18. Improving La0.6Sr0.4Co0.8Fe0.2O3-δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation

    Science.gov (United States)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-02-01

    Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.

  19. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  20. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2010-01-01

    Separators are needed in microbial fuel cells (MFCs) to reduce electrode spacing and preventing electrode short circuiting. The use of nylon and glass fiber filter separators in single-chamber, air-cathode MFCs was examined for their effect on performance. Larger pore nylon mesh were used that had regular mesh weaves with pores ranging from 10 to 160 μm, while smaller pore-size nylon filters (0.2-0.45 μm) and glass fiber filters (0.7-2.0 μm) had a more random structure. The pore size of both types of nylon filters had a direct and predictable effect on power production, with power increasing from 443 ± 27 to 650 ± 7 mW m-2 for pore sizes of 0.2 and 0.45 μm, and from 769 ± 65 to 941 ± 47 mW m-2 for 10 to 160 μm. In contrast, changes in pore sizes of the glass fiber filters resulted in a relatively narrow change in power (732 ± 48 to 779 ± 43 mW m-2) for pore sizes of 0.7 to 2 μm. An ideal separator should increase both power density and Coulombic efficiency (CE). However, CEs measured for the different separators were inversely correlated with power production, demonstrating that materials which reduced the oxygen diffusion into the reactor also hindered proton transport to the cathode, reducing power production through increased internal resistance. Our results highlight the need to develop separators that control oxygen transfer and facilitate proton transfer to the cathode. © 2010 The Royal Society of Chemistry.

  1. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells.

    Science.gov (United States)

    Seo, Yoonjoo; Kang, Hyemin; Chang, Sumin; Lee, Yun-Yeong; Cho, Kyung-Suk

    2018-01-02

    Membrane-less, single-chamber, air-cathode, microbial fuel cells (ML-SC MFCs) have attracted attention as being suitable for wastewater treatment. In this study, the effects of nitrate and sulfate on the performance of ML-SC MFCs and their bacterial structures were evaluated. The maximum power density increased after nitrate addition from 8.6 mW·m -2 to 14.0 mW·m -2 , while it decreased after sulfate addition from 11.5 mW·m -2 to 7.7 mW·m -2 . The chemical oxygen demand removal efficiencies remained at more than 90% regardless of the nitrate or sulfate additions. The nitrate was removed completely (93.0%) in the ML-SC MFC, while the sulfate removal efficiency was relatively low (17.6%). Clostridium (23.1%), Petrimonas (20.0%), and unclassified Rhodocyclaceae (6.2%) were dominant on the anode before the addition of nitrate or sulfate. After the addition of nitrate, Clostridium was still the most dominant on the anode (23.6%), but Petrimonas significantly decreased (6.0%) and unclassified Rhodocyclaceae increased (17.1%). After the addition of sulfate, the amount of Clostridium almost doubled in the composition on the anode (43.2%), while Petrimonas decreased (5.5%). The bacterial community on the cathode was similar to that on the anode after the addition of nitrate. However, Desulfovibrio was remarkably dominant on the cathode (32.9%) after the addition of sulfate. These results promote a deeper understanding of the effects of nitrate or sulfate on the ML-SC MFCs' performance and their bacterial community.

  2. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Han, Jia-Jun, E-mail: hanjiajunhitweihai@163.com [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Li-Feng [Dalian Chemical Institute of Chinese Academy of Sciences, Dalian 116011 (China); Li, Zhao-Yu; Cheng, Jin-Ning [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China)

    2017-04-01

    Highlights: • The polyaniline multi-walled carbon nanotubes composite with core-shell structures was synthetized via in situ chemical oxidative polymerization, and the materials were characterized by physical and chemical methods. • The PANI/WMCNTs was synthetized via in situ chemical oxidative polymerization with core-shell structures. • The WMCNTs highly enhanced the conductivity of composites. • The comopsites were more conducive to the intercalation and deintercalation of anions and cations. • The much better performance as the cathode for lithium-ion cells was acquired for the composites. • The composites are low cost and eco-friendly which have a good prospect in future. - Abstract: The aniline was polymerized onto functionalized multi-walled carbon nanotubes in order to obtain a cathode material with core-shell structures for lithium batteries. The structure and morphology of the samples were investigated by Fourier transform infrared spectroscopy analysis, scanning electron microscope, transmission electron microscope and X-ray diffraction. The electrochemical properties of the composite were characterized by the cyclic voltammetry, the charge/discharge property, coulombic efficiency, and ac impedance spectroscopy in detail. At a constant current density of 0.2 C, the first specific discharge capacity of the reduced and oxidized PANI/WMCNTs were 181.8 mAh/g and 135.1 mAh/g separately, and the capacity retention rates were corresponding to 76.75% and 86.04% for 100 cycles with 99% coulombic efficiency. It was confirmed that the CNTs obviously enhanced the conductivity and electrochemical performance of polyaniline, and compared with the pure PANI, the reduced composite possessed a quite good performance for the cathode of lithium batteries.

  3. Study on structural refinement and electrochemical behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    Science.gov (United States)

    Kautkar, Pranay R.; Shirbhate, Shraddha C.; Acharya, Smita A.

    2018-05-01

    Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) was prepared by ethylene glycol-citrate combined sol-gel combustion route and calcined at optimized temperature 1050°C. The X-ray Diffraction (XRD) data revealing the crystal purity of BSCF cathode was refined by the Cubic-type structure having the space group Pm-3m by Rietveld analysis. Refined lattice parameter of BSCF cathode is a = 3.9759 Å and unit cell volume is 62.85 (4) Å3, Co/Fe-O bond length from VESTA program figured out to be 1.987 (3) Å. Electron density distribution (EDD) of the unit cell of BSCF cathode shows the bonding feature with oxygen ions, this could represent oxygen vacancies are present in the lattice. These results reflected in electrochemical impedance spectra measurement of symmetric cell. Area of specific resistance (ASR) of the BSCF cathode was found to be 0.17 Ω.cm2 at 700°C and respective activation energy (Ea) 1.15 eV. It shows surface exchange at cathode interface, surface diffusion and self-diffusion happened through Ce0.85Sd0.15O1.95 (SDC15) electrolyte.

  4. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry

    KAUST Repository

    Yang, Wulin; Kim, Kyoung-Yeol; Saikaly, Pascal; Logan, Bruce E

    2017-01-01

    age. Power production with Pt catalyst cathodes significantly declined after one month of operation or more to 0.87 ± 0.31 W m–2 (n=18) based on studies where cathode aging was examined, while in many studies the age of the cathode was not reported

  5. Difference-frequency laser spectroscopy of molecular ions with a hollow-cathode cell: extended analysis of the ν1 band of H2D+

    International Nuclear Information System (INIS)

    Amano, T.

    1985-01-01

    A cooled hollow-cathode cell was used for observation of the infrared spectra of positive ions in the 3-μm region with a difference-frequency laser as a radiation source. About an order-of-magnitude enhancement of the signal intensity was attained, compared with the similar signals obtained with our previous glow-discharge cell. Ten more weaker lines of the ν 1 fundamental band of H 2 D + , which could not be observed in our previous experiment [J. Chem. Phys. 81, 2869 (1984)] were measured. Improved molecular constants were obtained from a least-squares fit including the infrared lines and the two millimeter-and submillimeter-wave lines in the ground state

  6. Possible Depolarization Mechanism due to Low Beta Squeeze

    International Nuclear Information System (INIS)

    Ranjbar, V.; Luccio, A.; Bai, M.

    2008-01-01

    Simulations reveal a potential depolarization mechanism during low beta squeeze. This depolarization appears to be driven by a spin tune modulation caused by spin precession through the strong low beta quads due to the vertical fields. The modulation of the spin tune introduces an additional snake resonance condition at ν s0 ± nν x - ν z l = integer which while the same numerology as the well known sextupole resonance, can operate in the absence of sextupole elements

  7. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene fluoride) binder. III - Chemical changes in the cathode

    Science.gov (United States)

    Bareño, Javier; Dietz Rago, Nancy; Dogan, Fulya; Graczyk, Donald G.; Tsai, Yifen; Naik, Seema R.; Han, Sang-Don; Lee, Eungje; Du, Zhijia; Sheng, Yangping; Li, Jianlin; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle; Bloom, Ira

    2018-05-01

    1.5 Ah pouch cells based on Li(Ni0.5Mn0.3Co0.2)O2 cathodes and graphite anodes, both containing poly (vinylidene fluoride) (PVDF) binders, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state of charge (SOC), at which point they vented. The cells were subsequently discharged to 0% SOC and disassembled under an inert atmosphere for characterization. A combination of X-ray photoelectron spectroscopy (XPS), scanning-electron microscopy (SEM), energy-dispersive spectroscopy (EDS), 6Li SSNMR, and X-ray diffraction (XRD) analysis of the NMC532 cathodes indicates the formation of a thin C- and O-rich cathode electrolyte interphase layer, progressive Li loss above 140% SOC, and retention of the bulk crystal structure at all states of charge.

  8. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  9. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji

    2013-01-10

    TiN, NbN, TaN, and Ta3N5 nanoparticles synthesized using mesoporous graphitic (mpg)-C3N4 templates were investigated for the oxygen reduction reaction (ORR) as cathode catalysts for polymer electrolyte fuel cells. The temperature-programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were then examined. With decreasing particle size, the density of molecularly adsorbed O2 per unit of surface area increased, indicating that a decrease in particle size increases the number of active sites. It is hard to determine the electrochemical active surface area for nonmetal electrocatalysts (such as oxides or nitrides), because of the absence of proton adsorption/desorption peaks in the voltammograms. In this study, O2-TPD for molecularly adsorbed O2 at low temperature demonstrated that the amount and strength of adsorbed O2 were key factors determining the ORR activity. The properties of molecularly adsorbed O2 on cathode catalysts are discussed against the ORR activity. © 2012 American Chemical Society.

  10. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities

    KAUST Repository

    Hoskins, Daniel L.

    2014-11-01

    © 2014 Elsevier Ltd. Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339 ± 29 mW/m2), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13 mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444 ± 8 mW/m2) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use.

  11. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Niobium-based catalysts prepared by reactive radio-frequency magnetron sputtering and arc plasma methods as non-noble metal cathode catalysts for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Ohnishi, Ryohji; Katayama, Masao; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2010-01-01

    Two vacuum methods, reactive radio-frequency (RF) magnetron sputtering and arc plasma deposition, were used to prepare niobium-based catalysts for an oxygen reduction reaction (ORR) as non-noble metal cathodes for polymer electrode fuel cells (PEFCs). Thin films with various N and O contents, denoted as NbO x and Nb-O-N, were prepared on glassy carbon plates by RF magnetron sputtering with controlled partial pressures of oxygen and nitrogen. Electrochemical measurements indicated that the introduction of the nitrogen species into the thin film resulted in improved ORR activity compared to the oxide-only film. Using an arc plasma method, niobium was deposited on highly oriented pyrolytic graphite (HOPG) substrates, and the sub-nanoscale surface morphology of the deposited particles was investigated using scanning tunneling microscopy (STM). To prepare practical cathode catalysts, niobium was deposited on carbon black (CB) powders by arc plasma method. STM and transmission electron microscopy observations of samples on HOPG and CB indicated that the prepared catalysts were highly dispersed at the atomic level. The onset potential of oxygen reduction on Nb-O-N/CB was 0.86 V vs. a reversible hydrogen electrode, and the apparent current density was drastically improved by the introduction of nitrogen.

  13. A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol

    International Nuclear Information System (INIS)

    Deng, Huichao; Zhang, Yufeng; Zheng, Xue; Li, Yang; Zhang, Xuelin; Liu, Xiaowei

    2015-01-01

    A novel MEA (membrane electrode assembly) structure of passive μ-DMFC (micro-direct methanol fuel cell) controls water management and decreases methanol crossover. The CNT (carbon nanotube) paper replacing CP (carbon paper) as GDL (gas diffusion paper) enhances water back diffusion which passively prevents flooding in the cathode and promotes low methanol crossover. Moreover, the unique structure of CNT paper can also enhance efficiency of oxygen mass transport and catalyst utilization. The passive μ-DMFC with CNT-MEA exhibits significantly higher performance than passive μ-DMFC with CP-MEA and can operate in high methanol concentration, showing the peak power density of 23.2 mW cm −2 . The energy efficiency and fuel utilization efficiency are obviously improved from 11.54% to 22.7% and 36.61%–49.34%, respectively, and the water transport coefficient is 0.47 which is lower than previously reported passive μ-DMFC with CP. - Highlights: • This novel GDL (gas diffusion layer) solves water management and methanol crossover. • This GDL creates a hydraulic pressure in the cathode increasing water back diffusion. • This GDL improves the electrical conductivity and activity of catalyst

  14. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.

    Science.gov (United States)

    Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T

    2013-11-28

    Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.

  15. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    Science.gov (United States)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  16. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    Science.gov (United States)

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-06

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.

  17. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  18. Electrochemical performance of Nd1.8Ce0.2CuO4+δ:Ce0.9Gd0.1O2 composite cathode for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Khandale, A.P.; Bhoga, S.S.

    2012-01-01

    Intermediate temperature solid oxide fuel cells (IT-SOFCs) are viewed as a promising power generation systems with high efficiency and low pollution. Recently, mixed ionic-electronic conductors (MIECs), with K 2 NiF 4 - type structure, attracted much attention as cathode for IT-SOFC

  19. Pt{sub 1-x}Co{sub x} nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huimin; Wexler, David; Liu Huakun [Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Savadogo, O. [Materials Engineering Department, Ecole Polytechique de Montreal, Montreal, QC H3C3A7 (Canada); Ahn, Jungho [Department of Materials Engineering, Andong National University, Andong (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Department of Chemistry and Forensic Science, University of Technology, Sydney, NSW 2007 (Australia)

    2010-11-01

    Nanosize carbon-supported Pt{sub 1-x}Co{sub x} (x = 0.2, 0.3, and 0.45) electrocatalysts were prepared by a chemical reduction method using sodium borohydride (NaBH{sub 4}) as the reduction agent. Transmission electron microscopy examination showed uniform dispersion of Pt{sub 1-x}Co{sub x} alloy catalysts on carbon matrix, with the particle size less than 10 nm. The electrochemical characteristics of Pt{sub 1-x}Co{sub x} alloy catalysts were studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometric testing. The as-prepared Pt{sub 1-x}Co{sub x} alloy nanoparticles could be promising cathode catalysts for oxygen reduction in proton exchange membrane fuel cells with the feature of much reduced cost, but significantly increased catalytic activity.

  20. Assessing the role of secondary electron emission on the characteristics of 6-cavity magnetrons with transparent cathode through particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hao; Joshi, Ravi P., E-mail: rjoshi@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246 (United States); Prasad, Sarita; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Ludeking, Lars [ATK Mission Systems, 8560 Cinderbed Road, Suite 700, Newington, Virginia 22122 (United States)

    2014-05-21

    Effects of secondary electron emission (SEE) on the performance of a 6-cavity relativistic magnetron with transparent cathodes are probed through particle-in-cell simulations. Appropriate relations for the secondary electron yield have been developed and used. For comparisons, separate simulations have been performed with- and without electron cascading. Simulation results seem to indicate SEE to be detrimental to the power output due to deviations in the starting trajectories of secondary electrons, and the reduced fraction with synchronized rotational velocity. A higher reduction in output power is predicted with electron cascading, though mode competition was not seen at the 0.65 T field. A possible solution to mitigating SEE in magnetrons for high power microwave applications would be to alter the surface properties of emitting electrodes through irradiation, which can lead to graphitic film formation.