WorldWideScience

Sample records for cathode active material

  1. Cathode materials review

    International Nuclear Information System (INIS)

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  2. Dual active material composite cathode structures for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, J.F. [Carnegie Mellon University, Departments of Materials Science and Engineering/Engineering and Public Policy, Pittsburgh, PA 15213 (United States); Zaghib, K. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel Boulet, Varennes, QC (Canada); West, W.C.; Ratnakumar, B.V. [Jet Propulsion Laboratory, Electrochemical Technologies Group, California Institute of Technology, Pasadena, CA, 91109 (United States)

    2008-03-01

    The efficacy of composite Li-ion battery cathodes made by mixing active materials that possessed either high-rate capability or high specific energy was examined. The cathode structures studied contained carbon-coated LiFePO{sub 4} and either Li[Li{sub 0.17}Mn{sub 0.58}Ni{sub 0.25}]O{sub 2} or LiCoO{sub 2}. These active materials were arranged using three different electrode geometries: fully intermixed, fully separated, or layered. Discharge rate studies, cycle-life evaluation, and electrochemical impedance spectroscopy studies were conducted using coin cell test structures containing Li-metal anodes. Results indicated that electrode configuration was correlated to rate capability and degree of polarization if there was a large differential between the rate capabilities of the two active material species. (author)

  3. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  4. Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries

    Science.gov (United States)

    He, Dong; Wu, Danni; Gao, Jing; Wu, Xiaomei; Zeng, Xiaoqin; Ding, Wenjiang

    2015-10-01

    Cobalt sulfides have become promising electrode materials for lithium ion batteries while their applications in rechargeable magnesium batteries are rarely reported. In this paper, we have done some research on the electrochemical properties of cobalt sulfide (CoS) as the cathode-active material for rechargeable magnesium batteries. Flower-like CoS with nanostructures is synthesized by a facile solvothermal route. The obvious redox peaks on the cyclic voltammetric curves confirm the possibility of applications. The galvanostatic charge-discharge tests display excellent cycle stability and high coulomb efficiency. Meanwhile, the possible mechanism of charge-discharge reactions is proposed and discussed. These results show that flower-like CoS is a promising candidate as cathode-active material for rechargeable magnesium batteries.

  5. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.

    Science.gov (United States)

    Wang, Xiaohong; Zhang, Wuxing; Huang, Yunhui; Xia, Tian; Lian, Yongfu

    2016-06-01

    Lithium iron phosphate (LiFePO4) has been evaluated as the most promising cathode material for the next generation lithium-ion batteries because of its high operating voltage, good cycle performance, low cost, and environmentally friendly safety. However, pure LiFePO4 shows poor reversible capacity and charge/discharge performance at high current density. Many methods including optimization of particle size, introduction of coating carbon and conductive polymer, and the doping of metal and halogen ions have been developed to improve its electrochemical performance. In this study, conductive polymer polyaniline (PANI), active carbon and LiFePO4 (C-LFP/PANI) composite cathodes were successfully prepared by chemical oxidation method. Electrochemical performance shows that a remarkable improvement in capacity and rate performance can be achieved in the C-LFP/PANI composite cathodes with an addition of HCI. In comparison with C-LFP cathode, the C-LFP/PANI doped with HCl composite exhibits ca. 15% and 26% capacity enhancement at 0.2 C and 10 C, respectively. PMID:27427742

  6. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material

    International Nuclear Information System (INIS)

    This study investigated the biological denitrification method which is a treatment method able to reduce inorganic nitrate compounds to harmless nitrogen gas. Autohydrogenotrophic denitrifying bacteria were used in this study to prevent any problematic outcomes associated with heterotrophic microorganisms. An upflow bio-electrochemical reactor (UBER) was used to accommodate hydrogenotrophic denitrifying bacteria employing palm shell granular activated carbon (GAC) as the biocarrier and cathode material. Bicarbonate as the external inorganic carbon source was fed to the reactor and hydrogen as the electron donor was generated in situ through electrolysis of water. Central composite design (CCD) and response surface methodology (RSM) were applied to investigate the effects of two operating parameters, namely electric current (I) and hydraulic retention time (HRT), on performance of the UBER. Electric current range of 0-20 mA and HRT range of 6-36 h were examined and results showed that nitrate can be entirely reduced within application of a wide operational range of electric current (10-16 mA) as well as HRT (13.5-30 h). However, increase of pH at cathode zone up to 10.5 inhibited nitrite reduction, and it was not reduced to the satisfactory level.

  7. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Shahin; Hasan, Masitah [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Aroua, Mohamed Kheireddine [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)], E-Mail: mk_aroua@um.edu.my

    2009-07-01

    This study investigated the biological denitrification method which is a treatment method able to reduce inorganic nitrate compounds to harmless nitrogen gas. Autohydrogenotrophic denitrifying bacteria were used in this study to prevent any problematic outcomes associated with heterotrophic microorganisms. An upflow bio-electrochemical reactor (UBER) was used to accommodate hydrogenotrophic denitrifying bacteria employing palm shell granular activated carbon (GAC) as the biocarrier and cathode material. Bicarbonate as the external inorganic carbon source was fed to the reactor and hydrogen as the electron donor was generated in situ through electrolysis of water. Central composite design (CCD) and response surface methodology (RSM) were applied to investigate the effects of two operating parameters, namely electric current (I) and hydraulic retention time (HRT), on performance of the UBER. Electric current range of 0-20 mA and HRT range of 6-36 h were examined and results showed that nitrate can be entirely reduced within application of a wide operational range of electric current (10-16 mA) as well as HRT (13.5-30 h). However, increase of pH at cathode zone up to 10.5 inhibited nitrite reduction, and it was not reduced to the satisfactory level.

  8. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  9. Characterisation of charge and discharge behaviour of lithium ion batteries with olivine based cathode active material

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, Michael A.; Sauer, Dirk Uwe [RWTH Aachen University, Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), 52066 Aachen (Germany); Vetter, Jens [BMW Group, 80788 Muenchen (Germany)

    2009-06-15

    This paper gives insight to the physical processes taking part during the two-phase transition in lithium intercalation compounds. The behaviour of olivine based electrodes is in the special focus of this work. These electrodes exhibit phase juxtaposition within the electrode particles over a wide state of charge (SOC) range. Measurements were made to explore effects related to the formation of distinct phase sequences within the particles. Asymmetric charge characteristics, a load history dependency of the internal resistance and a voltage effect related to the disappearance of certain phase regions (the later on called vanishing phase effect) were identified. Moreover, these measurements give evidence to the existence of stable phase regions inside the electrode active material. An intuitive model is given to visualize the phase regions within spherical olivine particles. Therefore an analytical approach is developed in order to take the geometry of the particles, the ion permeability as well as the size distribution of the particles in consideration. According to the developed approach and the obtained measurement results, an enhanced cell equivalent electrical circuit is evaluated, considering phase shell development effects. (author)

  10. Intermetallics as cathode materials in the electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Stojic, D.L.; Maksic, A.D.; Kaninski, M.P.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physical Chemistry; Cekic, B.D. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physics; Miljanic, S.S. [Belgrade Univ. (Serbia and Montenegro). Faculty of Physical Chemistry

    2005-01-01

    The intermetallics of transition metals have been investigated as cathode materials for the production of hydrogen by electrolysis from water-KOH solutions, in an attempt to increase the electrolytic process efficiency. We found that the best effect among all investigated cathodes (Hf{sub 2}Fe, Zr-Pt, Nb-Pd(I), Pd-Ta, Nb-Pd(II), Ti-Pt) exhibits the Hf{sub 2}Fe phase. These materials were compared with conventional cathodes (Fe and Ni), often used in the alkaline electrolysis. A significant upgrade of the electrolytic efficiency using intermetallics, either in pure KOH electrolyte or in combination with ionic activators added in situ, was achieved. The effects of these cathode materials on the process efficiency were discussed in the context of transition metal features that issue from their electronic configuration. (Author)

  11. Improvement of the cycling performance of LiNi(0.6)Co(0.2)Mn(0.2)O(2) cathode active materials by a dual-conductive polymer coating.

    Science.gov (United States)

    Ju, Seo Hee; Kang, Ik-Su; Lee, Yoon-Sung; Shin, Won-Kyung; Kim, Saheum; Shin, Kyomin; Kim, Dong-Won

    2014-02-26

    LiNi0.6Co0.2Mn0.2O2 cathode materials were surface-modified by coating with a dual conductive poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol) (PEDOT-co-PEG) copolymer, and their resulting electrochemical properties were investigated. The surface-modified LiNi0.6Co0.2Mn0.2O2 cathode material exhibited a high discharge capacity and good high rate performance due to enhanced transport of Li(+) ions as well as electrons. The presence of a protective conducting polymer layer formed on the cathode also suppressed the growth of a resistive layer and inhibited the dissolution of transition metals from the active cathode materials, which resulted in more stable cycling characteristics than the pristine LiNi0.6Co0.2Mn0.2O2 cathode material at 55 (o)C. PMID:24460052

  12. Synopsis of Cathode No.4 Activation

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature

  13. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge and...

  14. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    Science.gov (United States)

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-10-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg-1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors.

  15. Close cathode chamber: Low material budget MWPC

    International Nuclear Information System (INIS)

    Performance of asymmetric-type MWPC-s are presented. In this structure, referred to as Close Cathode Chamber in an earlier study, the material budget is significantly reduced on one hand by the elimination of external support frame, on the other hand by thin detector walls. In this paper it is demonstrated that the outline is compatible with large size detectors (1 m wire length), maintaining mechanical and operation stability, with total weight of 3 kg (including support structure) for a half square meter surface. The detection efficiency and response time is shown to be sufficient for L0 triggering in the ALICE VHMPID layout. Reduced sensitivity to cathode deformations (due to internal overpressure as mechanical strain) is directly demonstrated. On small sized chambers, improvement of position resolution with analog readout is evaluated, reaching 0.09 mm RMS with 2 mm wide cathode segments. Simulation results on signal time evolutions are presented. With the above studies, comparison of classical MWPC-s and the Close Cathode Chamber design is performed in all major aspects. -- Highlights: ► Asymmetric multi-wire proportional chamber, called the Close Cathode Chamber, is studied. ► Large size construction feasibility up to 1 m wire length is demonstrated in test beam and cosmic rays. ► Reduction of dependence of gas gain on chamber internal pressure is directly demonstrated. ► Position resolution and signal formation is shown to be compatible with classical MWPC.

  16. Development of cathode material for lithium-ion batteries

    OpenAIRE

    Rustam Mukhtaruly Turganaly; Ivan Trussov; Andrey Petrovich Kurbatov

    2014-01-01

    The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material

  17. NEW CATHODE MATERIALS FOR INERT AND OXIDIZING ATMOSPHERE PLASMA APPLICATION

    OpenAIRE

    Sadek, A; Kusumoto, K.; Ushio, M; Matsuda, F.

    1990-01-01

    This study has been carried out to develop new cathode materials for two types of thermionic cathode. First is concerning to the tungsten electrodes for the plasma furnace and welding torches. The second one is the electrodes for air plasma cutting torch. Tungsten electrodes activated with a single and combined additives of rare earth metal oxides, such as La2O3, Y2O3 and CeO2, are produced and pared with pure and thoriated tungsten electrode conventionally used, from the point of view of ele...

  18. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  19. Oxide diffusion in innovative SOFC cathode materials.

    Science.gov (United States)

    Hu, Y; Thoréton, V; Pirovano, C; Capoen, E; Bogicevic, C; Nuns, N; Mamede, A-S; Dezanneau, G; Vannier, R N

    2014-01-01

    Oxide diffusion was studied in two innovative SOFC cathode materials, Ba(2)Co(9)O(14) and Ca(3)Co(4)O(9)+δ derivatives. Although oxygen diffusion was confirmed in the promising material Ba(2)Co(9)O(14), it was not possible to derive accurate transport parameters because of an oxidation process at the sample surface which has still to be clarified. In contrast, oxygen diffusion in the well-known Ca(3)Co(4)O(9)+δ thermoelectric material was improved when calcium was partly substituted with strontium, likely due to an increase of the volume of the rock salt layers in which the conduction process takes place. Although the diffusion coefficient remains low, interestingly, fast kinetics towards the oxygen molecule dissociation reaction were shown with surface exchange coefficients higher than those reported for the best cathode materials in the field. They increased with the strontium content; the Sr atoms potentially play a key role in the mechanism of oxygen molecule dissociation at the solid surface. PMID:25407246

  20. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  1. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials.

    Science.gov (United States)

    Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander; Malik, Rahul; Kang, ShinYoung; Ceder, Gerbrand

    2016-07-01

    Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li(+) and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials. PMID:27325096

  2. Nanostructured cathode materials for rechargeable lithium batteries

    Science.gov (United States)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  3. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. PMID:26761603

  4. Electrochemical performance of polyaniline coated LiMn2O4 cathode active material for lithium ion batteries

    International Nuclear Information System (INIS)

    LiMn2O4 compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn2O4 particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g−1) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn2O4 was significantly improved by the polaniline coating

  5. Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging

    International Nuclear Information System (INIS)

    Highlights: • Closed form expression proposed for Li ion concentration in a spherical particle. • This solution for fast (dis)charging depends explicitly on time and radius. • Explicit internal stress solution derived further is useful in design calculations. - Abstract: The fundamental process underlying the operation of lithium ion batteries is the diffusion of charge-carrying ions through the electrolyte that separates the anode from the cathode, and the reversible insertion of lithium ions into the host material’s crystal structure (intercalation and de-intercalation). Alongside the principal electrochemical consequences of this process, mechanical phenomena that accompany (de)intercalation are of fundamental significance for deformation and fragmentation of the active materials, since it is these phenomena that ultimately determine the battery structural integrity and durability. This article presents a sequentially coupled analytical treatment of the transient diffusion and stress analysis (eigenstrain) problem related to the lithiation and de-lithiation processes at the level of an individual spherical secondary particle of active material. Explicit closed form approximate solutions are derived for the stresses that arise within the particles during fast charging. They provide a firm basis for the assessment of the charging conditions influence on the internal stress states and the effects on battery damage, mechanical integrity and durability

  6. Development of cathode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rustam Mukhtaruly Turganaly

    2014-08-01

    Full Text Available The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material

  7. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  8. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  9. A model of dispenser cathode activity

    Science.gov (United States)

    Lamartine, B. C.; Eyink, K. G.; Czarnecki, J. V.; Lampert, W. V.; Haas, T. W.

    1985-12-01

    A semiquantitative model of dispenser cathode activity based on recent work on the co-adsorption of Ba and O onto W surfaces is presented. The co-adsorption studies have determined the shape of a three-dimensional surface of work function as a function of θO and θBa, the surface coverages of O and Ba, respectively. Compositions of a variety of pedigreed dispenser cathodes were fitted to this surface and their composition changes during lifetime were modeled. Changes of surface composition with temperature and of workfunction, φ, with temperature were also found to fit these curves. The concept of a patchy surface implied by the co-adsorption measurements was used to explain earlier results on the shape of the X-ray excited Ba MNN Auger feature. Finally, SIMS measurements under UHV conditions was found to provide an extremely sensitive measurement of surface composition in the region of surface coverages of interest in the study of cathode phenomena. Extensions of this work to other types of cathodes such as M-types, and rhenium substrate cathodes is also discussed.

  10. The dependence of vircator oscillation mode on cathode material

    Science.gov (United States)

    Li, Limin; Liu, Lie; Cheng, Guoxin; Xu, Qifu; Wan, Hong; Chang, Lei; Wen, Jianchun

    2009-06-01

    This paper presents the effects of cathode materials on the oscillation mode of a virtual cathode oscillator (vircator). In the case of the stainless steel cathode, an oscillation mode hopping appeared with two separate frequencies. Interestingly, the vircator using the carbon fiber cathode exhibited an almost unchanged microwave frequency throughout the microwave pulse. To understand this phenomenon, several parameters are compared, including the diode voltage, accelerating gap, emitting area, and beam uniformity. It was found that a flat-top voltage and a relatively stable gap will provide a possibility of generating a constant microwave frequency. Further, the cathode operated in a regime where the beam current was between the space-charge limited current determined by Child-Langmuir law and the bipolar flow. On the cathode surface, the electron emission is initiated from discrete plasma spots and next from a continuing area, while there is a liberation process of multilayer gases on the anode surface. The changes in the emitting area of carbon fiber cathode showed a self-quenching process, which is not observed in the case of stainless steel cathode. The two-dimensional effect of microwave frequency is introduced, and the obtained results supported the experimental observations on the oscillation mode. By examining the cross section of electron beam, the electron beam for carbon fiber cathode was significantly centralized, while the discrete beam spots appeared for stainless steel cathode. These results show that the slowed diode closure, high emission uniformity, and stable microwave frequency tend to be closely tied.

  11. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    OpenAIRE

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-01-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg−1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single ele...

  12. Chromium (V) compounds as cathode material in electrochemical power sources

    Science.gov (United States)

    Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.

    A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.

  13. A study around the improvement of electrochemical activity of MnO2 as cathodic material in alkaline batteries

    International Nuclear Information System (INIS)

    An optimized combination of reduction by methane and sulfuric acid digestion was developed to improve the electrochemical activity of manganese dioxide at a battery set. Chemical manganese dioxide, CMD, and electrolytic manganese dioxide, EMD, which have been destroyed after discharge cycling process in potential window of 900-1650 mV versus Hg/HgO, were reduced in a furnace with a flow of methane at 300 and 250 deg. C correspondingly. Thereafter, the reduced samples, CMDr and EMDr, were digested in a solution of sulfuric acid with optimized concentration and temperature. It was found that digested samples, CMDro and EMDro, typically show more stability in cycling, higher capacity and more reversible redox reaction. Alternatively, we reported about the effect of digestion temperature on electrochemical and structural properties of the samples. Digestion at temperatures 60 and 98 deg. C in 1.5 M sulfuric acid as superior concentration was preferred after comparative experiments in the range 40-98 deg. C. The samples which were digested in 60 deg. C (CMDro1 and EMDro1) showed superior electrochemical activity at the early stages of discharge cycling. By contrast, the samples which were obtained at 98 deg. C (CMDro2 and EMDro2) showed more stability and were superior to the former samples in final stages of discharge cycling process. Afterward, the electrochemical behavior of the pretreated samples was investigated by means of cyclic voltammetry technique and discharge cumulative capacity profiles. Also X-ray diffraction was employed to verify the responses of voltammetric methods. In XRD patterns, peak at 2θ = 28.6 deg. which is due to β-MnO2 type was the strongest signal as temperature 98 deg. C was selected for digestion. After digestion at 60 deg. C, the characteristic peaks at 2θ = 38 deg. and 42 deg. were amplified which are attributed to formation of γ-MnO2. Interestingly enough, the results according to the XRD patterns were in good agreement with the

  14. A study around the improvement of electrochemical activity of MnO{sub 2} as cathodic material in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ghaemi, M.; Gholami, A. [Department of Chemistry, Science Faculty, Tarbiat Modares University, Tehran (Iran); Moghaddam, R.B. [Department of Chemistry, K.N. Toosi University of Technology, 15875-4416 Tehran (Iran)

    2008-03-10

    An optimized combination of reduction by methane and sulfuric acid digestion was developed to improve the electrochemical activity of manganese dioxide at a battery set. Chemical manganese dioxide, CMD, and electrolytic manganese dioxide, EMD, which have been destroyed after discharge cycling process in potential window of 900-1650 mV versus Hg/HgO, were reduced in a furnace with a flow of methane at 300 and 250{sup o}C correspondingly. Thereafter, the reduced samples, CMDr and EMDr, were digested in a solution of sulfuric acid with optimized concentration and temperature. It was found that digested samples, CMDro and EMDro, typically show more stability in cycling, higher capacity and more reversible redox reaction. Alternatively, we reported about the effect of digestion temperature on electrochemical and structural properties of the samples. Digestion at temperatures 60 and 98{sup o}C in 1.5 M sulfuric acid as superior concentration was preferred after comparative experiments in the range 40-98{sup o}C. The samples which were digested in 60{sup o}C (CMDro1 and EMDro1) showed superior electrochemical activity at the early stages of discharge cycling. By contrast, the samples which were obtained at 98{sup o}C (CMDro2 and EMDro2) showed more stability and were superior to the former samples in final stages of discharge cycling process. Afterward, the electrochemical behavior of the pretreated samples was investigated by means of cyclic voltammetry technique and discharge cumulative capacity profiles. Also X-ray diffraction was employed to verify the responses of voltammetric methods. In XRD patterns, peak at 2{theta} = 28.6 which is due to {beta}-MnO{sub 2} type was the strongest signal as temperature 98{sup o}C was selected for digestion. After digestion at 60{sup o}C, the characteristic peaks at 2{theta} = 38 and 42 were amplified which are attributed to formation of {gamma}-MnO{sub 2}. Interestingly enough, the results according to the XRD patterns were in good

  15. Development of artificial surface layers for thin film cathode materials

    OpenAIRE

    Carrillo Solano, Mercedes Alicia

    2016-01-01

    The present work was based on the investigation of different thin film components of Li ion batteries. A first part was dedicated to the deposition of cathodes in thin film form of a known material, LiCoO2, and an alternative one, Li(NiMnCo)O2 employing physical vapor deposition (PVD) and chemical vapor deposition (CVD), respectively. A second part was focused on the cathode-electrolyte interface for three case studies: 1) as deposited LiCoO2 cathode thin film, 2) ZrO2 coated LiCoO2 thin...

  16. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

  17. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  18. Titanium Dioxide as a Cathode Material in a Dry Cell

    OpenAIRE

    Duncan ALOKO; Eyitayo Amos AFOLABI

    2007-01-01

    Titanium dioxide was proposed as an alternative cathode material in place of Manganesse (IV) oxide. TiO2 was found to be highly polarized when in an electric field and its surface area of adsorption of solution determined to be 1070.32 m2/g. The adsorption of alkaline anions (i.e. SO42- , NO3-, Cl- and Br-) were investigated. The anions were adsorbed between the layers of the cathode material thereby altering its surface texture for a better performance. Increase in concentration of the anion...

  19. Li6V10O28, a novel cathode material for Li-ion battery

    International Nuclear Information System (INIS)

    A novel cathode material, lithium decavanadate Li6V10O28 with a large tunnel within the framework structure for lithium ion battery has been prepared by hydrothermal synthesis and annealing dehydration treatment. The structure and electrochemical properties of the sample have been investigated. The novel material shows good reversibility for Li+ insertion/extraction and long cycle life. High discharge capacity (132 m Ah/g) is obtained at 0.2 mA/cm2 discharge current and potential range between 2.0 and 4.2 V versus Li+/Li. AC impedance of the Li/Li6V10O28 cell reveals that the cathode process is controlled mainly by Li+ diffusion in the active material. The novel material would be a promising cathode material for Li-ion batteries

  20. Novel Nanosized Adsorbing Composite Cathode Materials for the Next Generational Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; ZHENG Wei; ZHANG Ping; WANG Lizhen; XIA Tongchi; HU Xinguo; YU Zhenxing

    2007-01-01

    A novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) under certain conditions. The physical and chemical performances of the novel carbon-sulfur nano-composite were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray diffraction (XRD). The electrochemical performances of nano-composite were characterized by charge-discharge characteristic, cyclic voltammetry and electrochemical impendence spectroscopy (EIS). The experimental results indicate that the electrochemical capability of nanocomposite material was superior to that of traditional S-containing composite material. The cathode made by carbon-sulfur nano-composite material shows a good cycle ability and a high specific charge-discharge capacity. The HSAAC shows a vital role in adsorbing sublimed sulfur and the polysulfides within the cathode and is an excellent electric conductor for a sulfur cathode and prevents the shuttle behavior of the lithium-sulfur battery.

  1. Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing

    OpenAIRE

    Mueller, Timothy K.; Hautier, Geoffroy; Jain, Anubhav; Ceder, Gerbrand

    2011-01-01

    Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory calculations to evaluate tavorite-structured oxyphosphates, fluorophosphates, oxysulfates, and fluorosulfates for use as cathode materials in lithium-ion batteries. For each material we consider the insertion of both one and two lithium ions per redox-active metal, calculatin...

  2. A Novel Method to Improve the Electrochemical Performance of LiMn2O4 Cathode Active Material by CaCO3 Surface Coating

    Institute of Scientific and Technical Information of China (English)

    Halil Sahan; Hüseyin G(o)ktepe; Saban Patat

    2011-01-01

    Spinel LiMn2O4 was synthesized by glycine-nitrate method and coated with CaCO3 in order to enhance the electrochemical performance at room temperature (25℃) and 55℃. The uncoated and CaCO3-coated LiMn2O4 materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. XRD and SEM results indicated that CaCO3 particles encapsulated the surface of the LiMn2O4 without causing any structural change. The charge-discharge tests showed that the specific discharge capacity fade of pristine electrode at 25 and 55℃ were 25.5% and 52%, respectively. However, surface modified cathode shows 7.4% and 29.5% loss compared to initial specific discharge capacity at 70th cycle for 25 and 55℃, respectively. The improvement of electrochemical performance is attributed to suppression of Mn2+dissolution into electrolyte via CaCO3 layer.

  3. Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl)phosphate Additive for Lithium Rich Cathode Materials

    International Nuclear Information System (INIS)

    Highlights: • Tris(trimethylsilyl)phosphate (TMSP) is investigated as a film-forming additive. • A modified SEI layer is formed due to the decomposition of TMSP additive. • Cells with 1.0 wt% TMSP exhibit enhanced cycle stability and rate performance. - Abstract: Tris(trimethylsilyl)phosphate (TMSP) has been investigated as an additive to form a modified solid electrolyte interface (SEI) on lithium rich cathode material Li[Li0.2Ni0.13Mn0.54Co0.13]O2 and improve its electrochemical performances. Linear sweep voltammetry (LSV) results show that TMSP additive decomposes at the potential ca. 4.1 V, lower than that of electrolyte solvent decomposition. The morphology images via TEM clearly demonstrate a continuous interfacial layer formed on the cathode surface after initial cycles. XPS results prove that the components of SEI are mainly derived from the decomposition of TMSP. The Li[Li0.2Ni0.13Mn0.54Co0.13]O2 cathode materials cycled in 1.0 wt% TMSP-containing electrolyte demonstrate obvious enhancement in its cycling stability and capacity retention reaches 91.1% after 50 cycles. The improved performances are ascribed to modified SEI which tightly covers on cathode particle, and effectively avoids a direct contact between cathode active material and electrolyte, leading to the stabilized interfacial structures

  4. Hollow cathode arc: effect of the cathode material on the internal plasma

    International Nuclear Information System (INIS)

    In discharges with hollow cathodes functioning in the arc regime, the cathode emits thermionic electrons which ionize the gas. To reduce the electrical power consumed by these discharges, cathodes made of thoriated tungsten and lathanum hexaboride have been used. The parameters of the plasma generated into the cathode have been measured with electrostatic probes. (Auth.)

  5. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  6. Correlation of cathode parameters of high power grid tubes with material characteristics of cathode-grid units

    International Nuclear Information System (INIS)

    One way to increase the longevity of dispenser cathodes is based on reducing the Barium evaporation. This can be achieved by the decrease of the reaction 'activity' of the emitter impregnant with the porous tungsten (W) body, which supplies free Barium from the interior of the porous cathode to its surface

  7. Correlation of cathode parameters of high power grid tubes with material characteristics of cathode-grid units

    Science.gov (United States)

    Melnikova, Irina P.; Polyakov, Igor V.; Usanov, Dmitry A.

    2005-09-01

    One way to increase the longevity of dispenser cathodes is based on reducing the Barium evaporation. This can be achieved by the decrease of the reaction "activity" of the emitter impregnant with the porous tungsten (W) body, which supplies free Barium from the interior of the porous cathode to its surface.

  8. In Situ XRD and XAS Investigation of Cathode Materials in Li-ion Battery

    Institute of Scientific and Technical Information of China (English)

    J.G.Duh; P.Y.Liao; H.W.Chan; S.Y.Tsai

    2007-01-01

    1 Results Lithium ion batteries have been widely used in modern portable electronics,such as cellular phones and notebook computers,because of their low cost,long life,and high energy density.In the lithium ion batteries,the cathode provides lithium ion source and plays a critical role to determinate the performance of battery.Lithium transition metal oxides have been investigated as active cathode materials due to their high potential versus Li/Li+ and large proportion of the lithium ions can be insert...

  9. Chromium impact on Strontium and Manganese-free cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Stodolny, M.K.; Rietveld, G.; Van Berkel, F.P.F. [Energy research Centre of the NetherlandsECN, Petten (Netherlands); Boukamp, B.A.; Blank, D.H.A. [Department of Science and Technology, MESA Institute for Nanotechnology, University of Twente, Enschede (Netherlands)

    2011-11-15

    The outline of the presentation shows (1) the aim: understanding degradation mechanisms of the Cr-poisoned LNF (the perovskite La(Ni,Fe))cathode; (2) Introduction: (2a) Cost-effective SOFC stack (cheap metallic interconnects), (2b) Cr-poisoning of SoA SOFC cathodes, and (2c) Promises of the La(Ni,Fe)O{sub 3} material; and (3) the subject of a PhD research: LNF stability in the presence of Cr species, focusing on (3a) Solid-state reactivity of LNF+Cr2O3 and (3b) Gas transport of Cr and impact on LNF for the Explanation of the Cr-poisoning mechanism. The Summary and Outlook slide shows Understanding of solid-state reactivity between LNF and Cr2O3, and Gas transport of Cr and its impact on the LNF {rho}properties established. It is concluded that Cr-poisoning is dependent on: LNF microstructure, Operating temperature, and Cr atmosphere. The Outlook shows: Impedance data deconvolution, In-depth explanation of Cr-poisoning on LNF, and Suggestions for Cr-resistant cathode.

  10. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  11. Analysis of cathode materials of perovskite structure for solid oxide fuel cells, sofc s

    International Nuclear Information System (INIS)

    Fuel cells directly and efficiently convert the chemical energy of a fuel into electrical energy. Of the various types of fuel cells, the solid oxide (Sofc), combine the advantages in environmentally benign energy generation with fuel flexibility. However, the need for high operating temperatures (800 - 1000 grades C) has resulted in high costs and major challenges in relation to the compatibility the cathode materials. As a result, there have been significant efforts in the development of intermediate temperature Sofc (500 - 700 grades C). A key obstacle for operation in this temperature range is the limited activity of traditional cathode materials for electrochemical reduction oxygen. In this article, the progress of recent years is discussed in cathodes for Sofc perovskite structure (ABO3), more efficient than the traditionally used La1-xSrxMnO3-δ (LSM) or (La, Sr) CoO3. Such is the case of mixed conductors (MIEC) double perovskite structure (A A B2O5+δ) using different doping elements as La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, dy, Mn, among others, which could improve the operational performance of existing cathode materials, promoting the development of optimized intermediate temperature Sofc designs. (Author)

  12. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO2 (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes

  13. Electrochemical performance of polyaniline coated LiMn{sub 2}O{sub 4} cathode active material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Şahan, Halil, E-mail: halil@erciyes.edu.tr; Dokan, Fatma Kılıc, E-mail: halil@erciyes.edu.tr; Aydın, Abdülhamit, E-mail: halil@erciyes.edu.tr; Özdemir, Burcu, E-mail: halil@erciyes.edu.tr; Özdemir, Nazlı, E-mail: halil@erciyes.edu.tr; Patat, Şaban, E-mail: halil@erciyes.edu.tr [Department of Chemistry, Science Faculty, Erciyes University, Kayseri, 38039 (Turkey)

    2013-12-16

    LiMn{sub 2}O{sub 4} compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn{sub 2}O{sub 4} particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g{sup −1}) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn{sub 2}O{sub 4} was significantly improved by the polaniline coating.

  14. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes

    International Nuclear Information System (INIS)

    All-solid-state cells, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes exhibited excellent cycling performance at room temperature. The cathode materials consisting of sulfur and CuS were synthesized by mechanical milling, using a mixture of sulfur and copper crystals with several different molar ratios. The cell performance was influenced by the composition of S/Cu for the cathode materials and the cell with the cathode material of S/Cu = 3 prepared by milling for 15 min retained large discharge capacities over 650 mA h g-1 for 20 cycles. Sulfur as well as CuS in the cathode materials proved to be utilized as active materials on charge-discharge processes in the all-solid-state batteries

  15. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  16. Mesoporous Magnesium Manganese Silicate as a CathodeMaterial for Rechargeable Magnesium Batteries

    Directory of Open Access Journals (Sweden)

    NULI Yan-Na, YANG Jun, ZHENG Yu-Pei, WANG Jiu-Lin

    2010-07-01

    Full Text Available Mesoporousmagnesium manganese silicate as a cathode material for rechargeable magnesiumbatteries was prepared using mesoporous silica MCM―41 as both template and siliconsource. X―ray diffraction (XRD), scanning electron microscope (SEM),transmissionelectron microscope (TEM) and N2 adsorption―desorption measurementswere performed to characterize the mesoporous structure of the as―preparedmaterial. Furthermore, the electrochemical performance of mesoporous and bulkmaterials were compared by cyclic voltammetry and direct currentcharge―discharge measurements. The larger surface area of the mesoporous material favors the efficientcontact between active material and electrolyte, providing more active sitesfor the electrochemical reaction. As a result, the mesoporous material exhibitsbetter electrochemical performance with lower polarization for magnesium de―intercalationand intercalation, larger discharge capacity and higher discharge flat plateaucompared with corresponding bulk material. In 0.25 mol/L Mg(AlCl2EtBu)2/THFelectrolyte, the initialdischarge capacity and discharge voltage plateau of the mesoporous material canreach 241.8 mAh/g and 1.65V, respectively. The mesoporous structure may providea new approach to improve the reaction activity of the cathode materials for rechargeablemagnesium batteries.

  17. Understanding electrochemical potentials of cathode materials in rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Chaofeng Liu

    2016-03-01

    Full Text Available Presently, sustainable energy as well as efficient and economical energy conversion and storage technologies has become important work in light of the rising environmental issues and dependence on portable and uninterrupted power sources. Increasingly more researchers are focusing on harvesting and converting solar energy, mechanical vibration, waste heat, and wind to electricity. Electrical energy storage technologies play a significant role in the demand for green and sustainable energy. Rechargeable batteries or secondary batteries, such as Li-ion batteries, Na-ion batteries, and Mg-ion batteries, reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes. The energy density of a rechargeable battery is determined collectively by the specific capacity of electrodes and the working voltage of the cell, which is the differential potential between the cathode and the anode. Over the past decades, a significant number of studies have focused on enhancing this specific capacity; however, studies to understand and manipulate the electrochemical potential of the electrode materials are limited. In this review, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed. In particular, the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions are investigated. In addition, we summarize the selection criteria for elements or compounds and the effect of the local atomic environment on the discharge potential, including the effects of site energy, defects, crystallinity, and microstructure, using LiMn2O4, V2O5, Mo6S8, LiFePO4, and LiCoO2 as model samples for discussion.

  18. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

    KAUST Repository

    Deng, Qian

    2010-02-01

    An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m-2, compared to lower values with cathodes made of plain carbon paper (67 mW m-2), carbon felt (77 mW m-2), or platinum-coated carbon paper (124 mW m-2, 0.2 mg-Pt cm-2). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm-2) increases the maximum power density to 391 mW m-2. Power production is further increased to 784 mW m-2 by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m-2 (0.5 cm granules), and 667 mW m-2 (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst. © 2009 Elsevier B.V.

  19. Mercury vapor hollow cathode component studies. [emissive materials for ion thruster requirements

    Science.gov (United States)

    Zuccaro, D. E.

    1973-01-01

    An experimental study of starting and operating characteristics of conventional hollow cathodes and of hollow cathodes without alkaline earth emissive materials demonstrated that the emissive mix is essential to obtain the desired cathode operation. Loss of the emissive mix by evaporation and chemical reaction was measured. New insert designs consisting of emissive mix supported on nickel and of barium impregnated porous tungsten were studied. Cathodes with a modified orifice geometry operated in a low voltage, 'spot' mode over a broad range of discharge current. Thermal degradation tests on cathode heaters showed the flame sprayed SERT II type to be the most durable at high temperatures. Thermal shock was observed to be a significant factor in limiting cathode heater life. A cathode having a barium impregnated porous tungsten tip and a heater which is potted in sintered alumina was found to have favorable operating characteristics.

  20. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2011-08-01

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123mW/m 2 (cathode projected surface area; 35±4W/m 3 based on liquid volume), but it decreased by 40% after 1 year to 734±18mW/m 2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2mW/m 2 to 789±68mW/m 2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750mW/m 2 after 1 year. © 2011 Elsevier B.V.

  1. Materials Characterization of Impregnated W and W-Ir Cathodes after Oxygen Poisoning

    OpenAIRE

    Polk, James E.; Capece, Angela M.

    2015-01-01

    Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharg...

  2. Carbon Fiber as Anode Material for Cathodic Prevention in Cementitious Materials

    OpenAIRE

    Zhang, Emma Qingnan; Tang, Luping; Zack, Thomas

    2016-01-01

    Cathodic prevention (CPre) technique is a promising method and has been used for the past two decades to prevent steel from corrosion in concrete structures. However, wide application of this technique has been restricted due to high costs of anode materials. In order to lower the cost and further improve this technique, carbon fiber composite anode has been introduced as an alternative anode material with affordable price and other outstanding properties. This paper presents the study of usi...

  3. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  4. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.

    Science.gov (United States)

    Wu, Min; Cui, Yi; Bhargav, Amruth; Losovyj, Yaroslav; Siegel, Amanda; Agarwal, Mangilal; Ma, Ying; Fu, Yongzhu

    2016-08-16

    An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries. PMID:27411083

  5. Microwave synthesis of LiCoO2 cathode materials

    Institute of Scientific and Technical Information of China (English)

    YU Yong-li; ZHAI Xiu-jing; FU Yan; YAO Guang-chun

    2005-01-01

    LiCoO2 powder used as cathode material for lithium ion battery was synthesized by microwave heating markedly affect the purity, morphology and electrochemical behaviors of the samples. X-ray diffraction (XRD) patterns display that the samples synthesized at 360 W for 10 min are pure layered LiCoO2, and SEM photos show that the powders are crystalline with well-defined facets whose sizes are about 5 μm. The performance of Co3O4 and starting materials by microwave heating and conventional heating was investigated. It is indicated that Co3O4 decomposes into CoO in microwave field at 750 ℃ and the mechanism of preparing LiCoO2 by microwave heating is different from that by conventional heating. The electrochemical behaviors of samples were tested. As a result, the highest specific discharge capacity is 134.3 mAh/g and the coulomb efficiency is 92.56%.

  6. Microstructure and properties of a Mo-CeO2 heated cathode material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiuxing; WAN Xiaofeng; LI Xiangbo; ZHOU Wenyuan; ZHOU Meiling

    2004-01-01

    The microstructure, mechanical properties, and electron-emission properties of a newly developed heated cath ode material Mo-CeO2 with 4.0% (mass fraction) of CeO2 were investigated. It is shown that the Mo-CeO2 cathode material possesses high tensile strength and good room-temperature ductility. After carbonized, the Mo-CeO2 cathode material has a higher zero field emission current density and a lower work function compared with the W-ThO2 cathode material.

  7. Synthesis and electrochemical characterization of pure and composite cathode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Favreau-Perreault, M.; Brisard, G. [Universite de Sherbrooke, Departement de Chimie, Sherbrooke, PQ (Canada)

    2004-10-01

    A rare earth cathode composed of various combinations of lanthanum, strontium, copper, iron oxide, cesium and gadolinium oxide was synthesized by using glycine-nitrate combustion techniques, and the Pechini method. Pure and composite complexes composed of these same materials were used to synthesize eight mol per cent yttria-stabilized zirconia cathodes by scanning electron microscopy. Cathode resistances were evaluated by electrochemical impedance spectroscopy and galvanostatic current interruption techniques. Both techniques were found to give identical results in evaluating the total polarization resistance of the cathodes. 24 refs., 2 tabs., 9 figs.

  8. Nanocomposite Materials for Cathodes and Electrolytes in Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    F. Croce; C.R. Martin; B. Scrosati; L. Settimi; C. Sides

    2005-01-01

    @@ 1Introduction Lithium-ion batteries are today the power sources of choice far portable electronics, a multi-billion dollar market[1]. This outstanding success has spawned great international interest in applying this technology to more demanding systems, such as electric of hybrid vehicles[2]. However, to achieve full success in this area,new electrode materials, less expensive, more energetic and more compatible with the environment than the present ones, have to be identified. Accordingly, intense R&D are in progress to reach this goal and few variable alternatives to the original lithium-ion battery design, have been proposed. Particularly interesting is the olivine-structured LiFePO4 cathode developed by Goodenough and co-workers[3], which offers several appealing features, such as high, flat voltage profile and relatively high specific capacity, combined with low cost and low toxicity. However, LiFePO4 has one crucial disadvantage, i.e. its inherently low electric conductivity which reflects in the inability to deliver high capacity at high discharge rates. Such as poor rate capability has been the object of investigation by various groups who have proposed different approaches to overcome it, including carbon coating[4], nano-fibril textures[5], optimized synthesis procedures[6] and foreign metal doping[7].

  9. Salts separation and removing method from material deposited on molten salt electrolyzing cathode

    International Nuclear Information System (INIS)

    Deposition materials on a cathode obtained by processing highly radioactive drainage discharged from spent fuel reprocessing steps and electrolyzing them in molten salts are incorporated with salts such as LiCl-KCl used as an electrolysis bath. Cadmium is added to the cathode deposition materials comprising lanthanoid and/or actinoid, and melted to form a molten material. The molten material are solidified by cooling to separate a metal portion and salts from the cathode deposition materials. The metal portion is kept at a temperature at which cadmium metal is evaporated to remove cadmium. Subsequently, the metal portion is kept at a temperature at which an intermetallic compound and/or an alloy of cadmium and lanthanoid and/or actinoid is decomposed to remove cadmium. Since salts can be removed efficiently from cathode deposition materials, aimed actinoid metals can be recovered at a high purity. (I.N.)

  10. Enhanced electrochemical performance and manganese redox activity of LiFe0.4Mn0.6PO4 by iodine anion substitution as cathode material for Li-ion battery

    Science.gov (United States)

    Sin, Byung Cheol; Singh, Laxman; An, JiEun; Lee, Hansol; Lee, Hyung-il; Lee, Youngil

    2016-05-01

    For the first time, an attempt has been made for the possible augmentation and exploration of iodine substitution into LiFe0.4Mn0.6PO4 (LFMP) material is assessed as a cathode material for lithium ion batteries. Iodine substituted LiFe0.4Mn0.6(PO4)1-xIx (LFMPI, x = 0, 0.01, 0.015, and 0.02) have been synthesized by a solid-state reaction without any external carbon source. X-ray diffraction shows that the LFMP and LFMPI cathode materials have formed the same single crystalline phase; the values of lattice parameters and unit cell volume have been insignificantly changed by I- anion substitution. Uniformly distributed grains of the LFMPI samples with grain sizes in the range of 250 nm to 0.9 μm have been obtained by scanning electron microscopy. X-ray photoelectron spectroscopy for the LFMPI with x = 0.02 have clearly observed at 619.5 and 630.7 eV for I 3d5/2 and I 3d3/2, respectively. The electrochemical properties of the pure LFMP cathode material have been compared with those of I- anion substituted LFMPI samples. LFMPI with x = 0.015 has delivered the highest discharge capacity of 141.5 mAh g-1 at 0.1C, and LFMPI with x = 0.01 has 102.1 mAh g-1 at high rate of 3C. Iodine substituted LFMPI have demonstrated improved electrochemical properties with excellent reversible cycling.

  11. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  12. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Libao Chen

    2013-01-01

    Full Text Available Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  13. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    Science.gov (United States)

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential. PMID:27487940

  14. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Libao Chen; Ming Zhang; Weifeng Wei

    2013-01-01

    Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  15. Ba1-xSrxCoyFe1-yO3-delta SOFC cathode materials : bulk properties, kinetics and mechanism of oxygen reduction

    OpenAIRE

    Wang, Lei

    2009-01-01

    This work is mainly concerned with the mixed conducting perovskite solid solution materials family Ba1-xSrxCoyFe1-yO3-delta (BSCF) which is discussed as solid oxide fuel cell (SOFC) cathode material. The aim is to get an improved understanding of the complex oxygen reduction reaction on such oxides in general, and in particular for the application as catalytically active cathode in SOFC. As a SOFC cathode candidate, the stability of BSCFs with regard to the application was first studied o...

  16. Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials.

    Science.gov (United States)

    Li, Yongjun; Jian, Zukai; Lang, Meidong; Zhang, Chunming; Huang, Xiaoyu

    2016-07-13

    Polymer-functionalized graphene sheets play an important role in graphene-containing composite materials. Herein, functionalized graphene sheets covalently linked with radical polymer, graphene-graft-poly(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl methacrylate) (G-g-PTMA), were prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). A composite cathode with G-g-PTMA as major active material and reduced graphene oxide (RGO) as conductive additive was fabricated via a simple dispersing-depositing process, and this composite cathode exhibited a relatively high specific capacity up to 466 mAh g(-1) based on the mass of PTMA, which is much higher than the theoretical capacity of PTMA. This extraordinary electrochemical performance is attributed to the fast one-electron redox reaction of G-g-PTMA and surface Faradaic reaction of RGO boosted by G-g-PTMA, which suggested that G-g-PTMA sheets play a dual role in the composite materials, that is, on the one hand provided the fast one-electron redox reaction of PTMA and on the other hand worked as nanofiller for facilitating the surface Faradaic reaction-based lithium storage of RGO. PMID:27328986

  17. Development of suitable potting material for dispenser cathodes of a high power microwave tube

    International Nuclear Information System (INIS)

    Highlights: ► Potting material. ► Doped alumina. ► Non-shrinkable. ► Dispenser cathode. ► Microwave tube. - Abstract: The present study aims to develop suitable advanced potting material for modern high performance dispenser cathodes for high power microwave tube through refinement of the alumina microstructure by using suitable dopant. Calcium oxide was selected as a dopant material and the resultant materials were characterized by X-ray diffraction studies and the microstructure monitored by SEM study and EDX analysis. The shrinkage, thermal and electrical properties of the resultant material was evaluated to establish its suitability to function as an advanced potting material.

  18. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.

    Science.gov (United States)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-08-01

    As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. PMID:27060219

  19. Polymer/Transitonal Metal Oxides Nanocomposites as Cathode Materials for Rechargeable Lithium/Lithium lon Batteries

    Institute of Scientific and Technical Information of China (English)

    Hui Kang Wu

    2000-01-01

    The synthesis and properties of polymer/transition metal oxides nanocomposite material were reviewed.The new nanocomposite material(PPY)0.5/MoO3 prepared by a new method is described.The application of the nanocomposite materials as cathode material in rechargeable lithium/lithium ion batteries was explored.

  20. Strontium-doped samarium manganite as cathode materials for oxygen reduction reaction in solid oxide fuel cells

    Science.gov (United States)

    Li, W.; Xiong, C. Y.; Jia, L. C.; Pu, J.; Chi, B.; Chen, X.; Schwank, J. W.; Li, J.

    2015-06-01

    SmxSr1-xMnO3 with x = 0.3, 0.5 and 0.8, denoted as SSM37, SSM55 and SSM82, respectively, have been prepared via a sol-gel route as materials for cathodes in solid oxide fuel cells. Their activities in the oxygen reduction reaction (ORR) have been evaluated in comparison with the state-of-the-art cathode material La0.8Sr0.2MnO3 (LSM82) by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG). Among all the prepared cathodes, the SSM55 exhibits the lowest values, while the LSM82 exhibits the highest polarization resistance, at open circuit voltage (OCV) and temperatures from 650 to 800 °C. This result indicates that the prepared SmxSr1-xMnO3 is a promising replacement for LSM82 as cathode material for SOFCs, and the SSM55 represents the optimal concentration in SmxSr1-xMnO3 series. The remarkably high ORR activity of the SSM55 is ascribed to its high surface Mn4+/Mn3+ and Oad/Olattice ratios and fast surface oxygen exchange kinetics.

  1. Diagnostics of cathode material loss in cutting plasma torch

    Czech Academy of Sciences Publication Activity Database

    Gruber, Jan; Šonský, Jiří; Hlína, Jan

    2014-01-01

    Roč. 47, č. 29 (2014). ISSN 0022-3727 Institutional support: RVO:61388998 Keywords : plasma torch * plasma cutting * cathode wear Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/29/295201/

  2. Electrochemical performance of LiFePO4 cathode material for Li-ion battery

    Institute of Scientific and Technical Information of China (English)

    LI Shuzhong; LI Chao; FAN Yanliang; XU Jiaqiang; WANG Tao; YANG Shuting

    2006-01-01

    In the search for improved materials for rechargeable lithium batteries, LiFePO4 offers interesting possibilities because of its low raw materials cost, environmental friendliness and safety. The main drawback with using the material is its poor electronic conductivity and this limitation has to be overcome. Here Al-doped LiFePO4/C composite cathode materials were prepared by a polymer-network synthesis technique. Testing of X-ray diffraction, charge-discharge, and cyclic voltammetry were carried out for its performance. Results show that Al-doped LiFePO4/C composite cathode materials have a high initial capacity, good cycle stability and excellent low temperature performance. The electrical conductivity of LiFePO4 material can be obviously improved by doping Al. The better electrochemical performances of Al-doped LiFePO4/C composite cathode materials have a connection with its conductivity.

  3. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Blinn; Yongman Choi; Meilin Liu

    2009-08-11

    The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

  4. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    Science.gov (United States)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  5. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuanhe; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Li, Xiang; Liu, Yongfeng; Pan, Hongge, E-mail: hgpan@zju.edu.cn

    2014-09-01

    Highlights: • Mesohollow and microporous carbon fibers were prepared via electrospinning and carbonization. • Sulfur (S) incorporated into the porous fibers by thermal heating in 60 wt.%, forming composite. • S fills fully in the micropores and partially in the mesohollows of the carbon fibers. • The composite shows high capacity and capacity retention as cathode material for Li–S batteries. • Mesohollow and microporous structure is effective in improving the property of S cathode. - Abstract: Mesohollow and microporous carbon nanofibers (MhMpCFs) were prepared by a coaxial electrospinning with polyacrylonitrile (PAN) and polymethylmethacrylate (PMMA) as outer and inner spinning solutions followed by a carbonization. The carbon fibers were thermal treated with sublimed sulfur to form S/MhMpCFs composite, which was used as cathode material for lithium–sulfur batteries. Electrochemical study shows that the S/MhMpCFs cathode material provides a maximum capacity of 815 mA h/g after several cycles of activation, and the capacity retains 715 mA h/g after 70 cycles, corresponding to a retention of 88%. The electrochemical property of the S/MhMpCFs composite is much superior than the S-incorporated solid carbon fibers prepared from electrospinning of single PAN. The mechanism of the enhanced electrochemical property of the S/MhMpCFs composite is discussed.

  6. Improved electrochemical performance of the Cr doped cathode materials for energy storage/conversion devices

    Science.gov (United States)

    Sangeeta, Agnihotri, Shruti; Arya, Anil; Sharma, A. L.

    2016-05-01

    Successful synthesis of a nanostructured Cr-doped LiFePO4 cathode material has been prepared by a sol-gel technique followed by a single step thermal treatment at 750° C for 12 hours. As olivine type LiFePO4 has already gained much attention due to its advantages over other cathode materials, doping of metal ion is done in the paper to improve its drawback of lower conductivity. FESEM couples with EDX were done to characterize the morphology and particle size of the materials. LiFe(1-x)CrxPO4 (x=0.1, 0.2, 0.3) materials have average particle size of 30 to 50 nm. EDX analysis confirmed the precursor used and also confirmed the presence of carbon which is in good agreement with chemical analysis result. Electrical conductivity of the prepared cathode materials is estimated of the order of 10-5 Scm-1 by AC impedance analysis. The energy density and power density of the cathode materials is improved drastically after addition of Cr as dopant. The estimated parameters appear at desirable value for use of materials as cathode in energy storage/conversion devices.

  7. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders

    Science.gov (United States)

    Hong, Xiaoheng; Jin, Jun; Wen, Zhaoyin; Zhang, Sanpei; Wang, Qingsong; Shen, Chen; Rui, Kun

    2016-08-01

    Sodium carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR), sodium alginate (SA) and LA132 are utilized as the polymer binders for the cathodes of Li-S batteries to study their dispersion mechanism on the cathode materials and the consequent influence on the performance of Li-S batteries. Zeta potential tests, differential scanning calorimetry analysis and calculations of the rotational barriers of the links of the polymer chains by General Atomic and Molecular Electronic Structure System (GAMESS) reveal that higher charge densities and better chain flexibility of the binders promise the dispersion of the downsized cathode materials. LA132 is found to have optimal characteristic for dispersing and stabilizing the cathode materials in aqueous environment. The cycling performance and SEM images of the cathodes demonstrate that cathodes with higher dispersion degree achieve higher discharge capacities. The electrochemical impedance spectroscopy (EIS) results further support that better dispersed cathodes have lower impedance resulting from their well established conducting frameworks.

  8. Nanoscale visualization of redox activity at lithium-ion battery cathodes.

    Science.gov (United States)

    Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu

    2014-01-01

    Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition. PMID:25399818

  9. Preparation and Characterization of Cathode Materials for Lithium-Oxygen Batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller

    A possible future battery type is the Li-air battery which theoretically has the potential of reaching gravimetric energy densities close to those of gasoline. The Li-airbattery is discharged by the reaction of Li-ions and oxygen, drawn from the air, reacting at the battery cathode to form Li2O2....... The type of cathode material affects the battery discharge capacity and charging potential and with a carbon based cathode many questions are still unanswered. The focus of this Ph.D. project has been the synthesis of reduced graphene oxide as well as the investigation of the effect of reduced...... discharge capacity of the battery as well as the charging potential. In situ X-ray diffraction studies on carbon black cathodes in a capillary battery showed the formation of crystalline Li2O2 on the first discharge cycle, the intensity of Li2O2 on the second discharge cycle was however diminished. The...

  10. Synthesis and Characterization of Nanostructured Cathode Material (BSCF) for Solid Oxide Fuel Cells

    OpenAIRE

    Darab, Mahdi

    2009-01-01

    This thesis focuses on developing an appropriate cathode material throughnanotechnology as a key component for a promising alternative of renewable energygenerating systems, Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC).Aiming at a working cathode material for IT-SOFC, a recently reported capable oxideperovskite material has been synthesized through two different chemical methods.BaxSr1-xCoyFe1-yO3−δ (BSCF) with y =0.8 and x =0.2 was fabricated in nanocrystallineform by a novel ch...

  11. Studies on niobium triselenide cathode material for lithium rechargeable cells

    Science.gov (United States)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  12. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    International Nuclear Information System (INIS)

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  13. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Capece, Angela M. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2015-05-30

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  14. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    Science.gov (United States)

    Mancini, Alessandro; Felice, Valeria; Natali Sora, Isabella; Malavasi, Lorenzo; Tealdi, Cristina

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3-d and La0.8Sr0.2Fe0.8Cu0.2O3-d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system.

  15. Critical parameters governing energy density of Li-storage cathode materials unraveled by confirmatory factor analysis

    Science.gov (United States)

    Sohn, Kee-Sun; Han, Su Cheol; Park, Woon Bae; Pyo, Myoungho

    2016-03-01

    Despite extensive effort during the past few decades, a comprehensive understanding of the key variables governing the electrochemical properties of cathode materials in Li-ion batteries is still far from complete. To elucidate the critical parameters affecting energy density (ED) and capacity (Q) retention in layer and spinel cathodes, we data-mine the existing experimental data via confirmatory factor analysis (CFA) based on a structural equation model (SEM), which is a proven, versatile tool in understanding complex problems in the social science. The data sets are composed of 18 and 15 parameters extracted from 38 layer and 33 spinel compounds, respectively. CFA reveals the irrelevance of Q retention to all the parameters we adopt, but it also reveals the sensitive variations of ED with specific parameters. We validate the usefulness of CFA in material science and pinpointed critical parameters for high-ED cathodes, hoping to suggest a new insight in materials design.

  16. Perovskites for energy applications. From cathode material for fuel cells to a gas separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Betz, M.; Buchkremer, H.P.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF); Serra, J.M.; Vert, V.B. [Universidad Politecnica de Valencia (Spain). Inst. de Tecnologia Quimica

    2010-07-01

    Oxyfuel power plants are one possibility for Carbon Capture and Storage (CCS) using pure oxygen instead of air to combust a carbon containing fuel. This oxygen can be produced by ceramic membranes, which consist of a Mixed Ionic Electronic Conductor (MIEC). Appropriate materials for oxygen separation from air are perovskites transporting oxygen ions through oxygen vacancies in the crystal lattice. Perovskites show highest permeability in particular Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) and offer a theoretical selectivity of 100%. However, perovskites with high permeability show in principle poor chemical stability e.g. in atmosphere containing CO{sub 2}, SO{sub 2}, or H{sub 2}O and particularly reducing conditions. Moreover the thermal and chemical expansion coefficient is very high, which makes the manufacturing of a gas-tight thin film on or joining to a material different from BSCF nearly impossible. Solid oxide fuel cells (SOFCs) are becoming promising candidates for highly efficient energy generation from conventional and biomass-derived fuels due to different reasons: (i) electricity can be obtained directly from a fuel; (ii) the sub-product is a high quality heat, usable in (micro) turbines and for building central heating (CHP) units; (iii) zero-emission operation is achieved when hydrogen is fuelled; (iv) SOFCs can operate besides H{sub 2} with hydrocarbons without extensive fuel purification and reforming; and (v) SOFCs are noiseless and modular. However, conventional SOFCs need to operate in the 800-1000 C temperature range. The reduction of the operating temperature below 700 C implies that the electrode polarization resistance of classical cathodes limits the whole cell operation, and consequently the performance is significantly reduced. Therefore, it is needed the development of new cathode materials with sufficient chemical stability and electrochemical activity to enable the operation at lower temperatures with

  17. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    Science.gov (United States)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  18. Optimization of Pt-Pd alloy catalyst and supporting materials for oxygen reduction in air-cathode Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Highlights: • Pt-Pd alloy catalyst was fabricated on carbon paper via electro-deposition. • MFCs with Pt-Pd cathode of 15 deposition cycles generated a maximum power density. • Graphene decoration did not improve ORR activity of the Pt-Pd electrode. • CNT as the supporting material enhanced ORR activity of the Pt-Pd electrode. • CNT-Pt-Pd cathode demonstrates the potential of replacing Pt catalyst in MFCs. - ABSTRACT: In this study, Pt-Pd alloy catalyst was fabricated on carbon papers via electro-deposition as an alternative catalyst for oxygen reduction in air-cathode Microbial Fuel Cells (MFCs). Effects of electro-deposition cycles and supporting materials (graphene and carbon nanotubes (CNTs)) on oxygen reduction reaction (ORR) activity of the Pt-Pd electrode and power generation in MFCs were investigated. The structural and electrochemical properties of the Pt-Pd catalyst were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Results showed that the Pt-Pd electrode showed a good ORR activity. A MFC with a Pt-Pd cathode of 15 deposition cycles produced a maximum power density of 1274 mWm−2, comparable to that with a conventional Pt/C cathode (0.5 mg Pt cm−2). CNT as the supporting material further increased ORR activity of the Pt-Pd electrode and power generation capacity in MFCs, while graphene as the supporting material did not produce positive effects. XRD results confirmed the presence of Pt/Pd elements on the electrode. SEM results showed that decoration using CNT reduced Pt-Pd particle size and promoted them even dispersion on the carbon paper. The Pt-Pd electrode attained a comparable performance to the Pt/C electrode when controlling an optimum deposition cycles and using CNT as the supporting materials, which demonstrates the potential of replacing Pt as an oxygen reduction catalyst in MFCs due to high oxygen reduction activity and relatively low cost

  19. Mass distribution of sputtered cathode material in the reflex discharge along the magnetic field mirror configuration

    International Nuclear Information System (INIS)

    he paper is concerned with the distribution of cathode material sputtered under the action of the pulsed reflex discharge plasma and deposited on the anode surface (vacuum chamber) by means of a set of discrete receiving plates. Correlative relationship has been found between the weight gain increase of the receiving plates due to the deposition of cathode material (Ti) particles on them and the increasing magnetic field regions. The maximum possible sputtering yield Ycurr has been evaluated. The authors have deduced parametric dependences of the sputtering ratio on the power function exponent that determines the shape of the radial plasma-density profile, and also, on the magnetic field induction value

  20. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  1. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  2. Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    A non-aqueous approach was developed to synthesize iron phosphate cathode materials by the atomic layer deposition (ALD) technique. Deposition of iron phosphate thin films was achieved on nitrogen-doped carbon nanotubes (NCNTs) by combining ALD subcycles of Fe2O3 (ferrocene-ozone) and POx (trimethyl phosphate-water) at 200 – 350 °C. The thickness of iron phosphate thin films depends linearly on the ALD cycle, indicating their self-limiting growth behavior. The growth per cycle of iron phosphate thin films was determined to be ∼ 0.2, 0.4, 0.6, and 0.5 Å, at 200, 250, 300, and 350 °C, respectively. Characterization by SEM, TEM, and HRTEM techniques revealed uniform and conformal coating of amorphous iron phosphates on the surface of NCNTs. XANES analysis confirmed Fe−O−P bonding in the iron phosphates prepared by ALD. Furthermore, electrochemical measurement verified the high electrochemical activity of the amorphous iron phosphate as a cathode material in lithium-ion batteries. It is expected that the amorphous iron phosphate prepared by this facile and cost-effective ALD approach will find applications in the next generation of lithium-ion batteries and thin film batteries as either cathode materials or surface coating materials

  3. Some aspects of carbon material application in auto-electron emission cathodes

    International Nuclear Information System (INIS)

    The detailed analysis of advantages and drawbacks of the carbon fibers and plane graphites with the developed surface application as cathode materials on the basis of the autoelectron emission is carried out. The original experimental results of studies on the carbon materials elementary composition, on the effect of thermal annealing on their structure and emission properties, on the decrease in the work yield by implantation of cesium therein are presented. The possibilities of radiation technologies by creating plane autoemission cathodes with the developed surface are considered; the dynamics of change in the emitting surface relief due to its bombardment by the residual gases low-energy ions is evaluated. Considerations on the advisability of realizing those or other structural solutions relative to the autoemission cathodes for various practical purposes are given

  4. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    International Nuclear Information System (INIS)

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y2O3 distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y2O3 improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y2O3 content in the samples. The maximum secondary emission yield δmax of the cathode with 15% amount of Y2O3 can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J0 of 4.18A/cm2 has reached at 1050 °Cb for this kind of cathode after being activated at 1200 °Cb, which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work

  5. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-15

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y{sub 2}O{sub 3} distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y{sub 2}O{sub 3} improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y{sub 2}O{sub 3} content in the samples. The maximum secondary emission yield δ{sub max} of the cathode with 15% amount of Y{sub 2}O{sub 3} can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J{sub 0} of 4.18A/cm{sup 2} has reached at 1050 °C{sub b} for this kind of cathode after being activated at 1200 °C{sub b}, which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work.

  6. Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance

    International Nuclear Information System (INIS)

    Herein reported is an efficient microwave-assisted (MA) approach for growing Cu network onto LiFePO4 (LFP) powders as cathode materials for high-performance Li-ion batteries. The MA approach is capable of depositing highly-porous Cu network, fully covered the LFP powders. The electrochemical performance of Cu-coated LFP cathodes are well characterized by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The Cu network acts as the key role in improving the specific capacity, rate capability, electrode polarization, as compared to fresh LFP cathode without the Cu coating. The EIS incorporated with equivalent circuit reveals that the completed Cu network obviously suppresses the charge transfer resistance. This result can be attributed to the fact that the Cu network ensures the LFP crystals to get electron easily, alleviating the electrode polarization in view of one-dimensional Li+ ion mobility in the olivine crystals. Based on the analysis of Randles plots, the relatively higher Li+ diffusion coefficient reflects the more efficient Li+ pathway in the LFP powders through the aid of porous Cu network. - Highlights: • An efficient route was used to prepare Cu/LiFePO4 (LFP) hybrid as cathode material. • The Cu/LFP cathodes exhibit an improved performance as compared to fresh LFP one. • The microwave approach can deposit Cu network, fully covered the LFP powders. • The Cu network ensures LFP to get electrons, alleviating electrode polarization

  7. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.

    Science.gov (United States)

    Pan, Yajun; Mo, Xiaoping; Li, Kexun; Pu, Liangtao; Liu, Di; Yang, Tingting

    2016-04-01

    In order to improve the performance of microbial fuel cell (MFC), iron-nitrogen-activated carbon (Fe-N-C) as an excellent oxygen reduction reaction (ORR) catalyst was prepared here using commercial activated carbon (AC) as matrix and employed in single chamber MFC. In MFC, the maximum power density increased to 2437±55mWm(-2), which was 2 times of that with AC. The open circuit potential (OCP) of Fe-N-C cathode (0.47) was much higher than that of AC cathode (0.21V). The R0 of Fe-N-C decreased by 47% from 14.36Ω (AC) to 7.6Ω (Fe-N-C). From X-ray photoelectron spectroscopy (XPS), pyridinic nitrogen, quaternary nitrogen and iron species were present, which played an important role in the ORR performance of Fe-N-C. These results demonstrated that the as-prepared Fe-N-C material provided a potential alternative to Pt in AC air cathode MFC for relatively desirable energy generation and wastewater treatment. PMID:26898678

  8. Development of suitable potting material for dispenser cathodes of a high power microwave tube

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kalyan S.; Ghosh, Sumana; Dandapat, Nandadulal [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Datta, Someswar, E-mail: sdatta@cgcri.res.in [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Basu, Debabrata [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Raju, R.S. [Microwave Tubes Division, CSIR - Central Electronics Engineering Research Institute, Pilani 333031, Rajasthan (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Potting material. Black-Right-Pointing-Pointer Doped alumina. Black-Right-Pointing-Pointer Non-shrinkable. Black-Right-Pointing-Pointer Dispenser cathode. Black-Right-Pointing-Pointer Microwave tube. - Abstract: The present study aims to develop suitable advanced potting material for modern high performance dispenser cathodes for high power microwave tube through refinement of the alumina microstructure by using suitable dopant. Calcium oxide was selected as a dopant material and the resultant materials were characterized by X-ray diffraction studies and the microstructure monitored by SEM study and EDX analysis. The shrinkage, thermal and electrical properties of the resultant material was evaluated to establish its suitability to function as an advanced potting material.

  9. Comparison of gap frame designs and materials for precision cathode strip chambers

    International Nuclear Information System (INIS)

    Precision cathode strip chamber perimeter designs that incorporate either continuous or discrete-post gap frames are analyzed. The effects of ten design and material combinations on gravity sag, mass, stress, and deflected shape are evaluated. Procedures are recommended for minimizing mass in the chamber perimeter region while retaining structural integrity and electrical design latitude

  10. A new candidate as the cathode material for intermediate and low temperature SOFCs

    Institute of Scientific and Technical Information of China (English)

    LI Song; SUN Xueli; WEN Zhongsheng; SUN Juncai

    2006-01-01

    In order to develop the new cathode materials suitable for intermediate and low temperature solid oxide fuel cells (IT/LTSOFCs), LaNi1-xFexO3(x=0.4-0.8) (LNF) materials were synthesized using coprecipitation method. Their structures and morphologies were investigated by XRD and SEM, and their electronic conductivities at different temperatures were measured by dc four terminal method. Fuel cells were fabricated to evaluate the electrochemical properties of the LNF materials as cathodes at different temperatures. The performance of 450-497 mW·cm-2 was obtained in the temperature region of 580-650 ℃ for the LaNi0.2Fe0.8O3 cathode, and of 209-227 mW·cm-2 at 400-500 ℃ for the LaNi0.4Fe0.6O3. The excellent fuel cell performances indicate that the LNF materials are good cathodes for IT/LTSOFCs.

  11. Submicron organic nanofiber devices with different anode-cathode materials: A simple approach

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Sturm, Heinz; Bøggild, Peter;

    2010-01-01

    The authors present a simple general method for simultaneously producing tens of submicron electrode gaps with different cathode and anode materials on top of nanofibers, nanowires, and nanotubes, with an optional gap size variation. Using this method, an ensemble of para-hexaphenylene (p6P) nano...

  12. Comparison of gap frame designs and materials for precision cathode strip chambers

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.; Pratuch, S.M.; Belser, F.C. [Lawrence Livermore National Lab., CA (United States)

    1993-09-16

    Precision cathode strip chamber perimeter designs that incorporate either continuous or discrete-post gap frames are analyzed. The effects of ten design and material combinations on gravity sag, mass, stress, and deflected shape are evaluated. Procedures are recommended for minimizing mass in the chamber perimeter region while retaining structural integrity and electrical design latitude.

  13. Different materials as a cathode modification layer on the impact of organic solar cells

    Science.gov (United States)

    Zhong, Jian; Huang, Qiuyan; Yu, Junsheng; Jiang, Yadong

    2010-10-01

    Organic thin film solar cells based on conjugated polymer or small molecules have showed an interesting approach to energy conversion since Tang reported a single donor-accepter hetero-junction solar cell. The power conversion efficiency of organic solar cells has increased steadily over last decade. Small-molecular weight organic double heterojunction donor-acceptor layer organic solar cells (OSC) with a structure of indium-tin-oxide (ITO)/CuPc(200Å)/C60(400Å)/x/Ag(1000Å), using CuPc(copper Phthalocyanine)as donor layer, and Alq3(8-Hydroxyquinoline aluminum salt), BCP(Bromocresol purple sodium salt) and Bphen(4'7-diphyenyl-1,10-phenanthroline) as cathode modification layer, respectively were fabricated. The performance of OSC was studied as a function of the different materials as an cathode modification layer to optimize the structure. The current-voltage characteristic of the solar cell under AM1.5 solar illumination at an intensity of 100 mw/cm2 showed that the power conversion efficiency (PCE) was dependent of the different materials of the cathode modification layer. the efficiency along with the different materials as an cathode modification layer will diminish under that standard solar illumination(AM1.5)was obtained. Using a double heterostructure of ITO/CuPc(200Å)/C60(400Å)/Alq3(60Å)/Ag(1000Å) with high-vacuum evaporation technology, the efficiency was 0.587%.the efficiency was 0.967% when the material of the cathode modification layer was BCP, with the structure of ITO/CuPc(200Å)/C60(400Å)/BCP(35Å)/Ag(1000Å), and the efficiency was 0.742% when the material of the cathode modification layer was Bphen, with the structure of ITO/CuPc(200Å)/C60(400Å)/ Bphen(50Å)/Ag(1000Å).Using different materials as a cathode modification layer, it can be seen that the material which matches the energy level could even eventually be able to improve the energy conversion efficiency more.

  14. Cathodes for lithium ion batteries: the benefits of using nanostructured materials

    International Nuclear Information System (INIS)

    Commercially available lithium ion cells, which are the most advanced among rechargeable batteries available so far, employ microcrystalline transition metal oxides as cathodes, which function as Li insertion hosts. In search for better electrochemical performance the use of nanomaterials in place of these conventional ones has emerged as excellent alternative. In this review we present a brief introduction about the motivations to use nanostructured materials as cathodes in lithium ion batteries. To illustrate such advantages we present some examples of research directed toward preparations and electrochemical data of the most used cathodes in nanoscale, such as LiCoO2, LiMn2O4, LiMnO2, LiV2O5 e LiFePO4. (author)

  15. Cathodic polarization curves of the oxygen reduction reaction on various structural materials of boiling water reactors in high temperature-high purity water

    International Nuclear Information System (INIS)

    Cathodic polarization curves of the O2 reduction reaction were measured by using electrodes made from typical structural materials of boiling water reactors (BWRs) to evaluate the effects of kind of material on the electrochemical corrosion potential (ECP) calculation. To estimate ECPs at any region in the BWRs on the basis of the BWR environmental conditions, anodic and cathodic polarization curves should be obtained in advance under relevant conditions. The concentration of oxidants such as O2 and H2O2 in coolant changes depending on the region in which they exist. As well, reduction reaction rates might differ depending on the kind of materials. In this work, the cathodic polarization curves of type 316L stainless steel (316L SS) and Alloy 182 were measured in high purity water at 553 K with different O2 concentrations and compared with those of type 304 SS (304 SS). The results showed that the cathodic polarization curves differed depending on the kind of materials at the activation-controlled region. But, the difference in the ECP vs. O2 concentration relationship was small when the ECPs were calculated by using both anodic and cathodic polarization curves measured on the objective material. (author)

  16. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  17. Cathode materials produced by spray flame synthesis for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, NoorAshrina Binti A.

    2013-07-03

    Lithium ion batteries are one of the most enthralling rechargeable energy storage systems for portable application due to their high energy density. Nevertheless, with respect to electromobility innovation towards better electrochemical properties such as higher energy and power density is required. Altering the cathode material used in Li-ion batteries is favorable since the mass- and volume performance is closely related to the cathode electrode mass. Instead of using LiCoO{sub 2} as cathode electrode, LiFePO{sub 4} has gained serious attention as this material owns a high theoretical capacity of 170 mAh g{sup -1}. It is non-toxic, cheap and consists of abundant materials but suffers from low electronic and ionic conductivity. Utilization of nanotechnology methods in combination with composite formation is known to cure this problem effectively. In this work, a new combination of techniques using highly scalable gas-phase synthesis namely spray-flame synthesis and subsequent solid-state reaction has been used to synthesize nanocomposite LiFePO{sub 4}/C. At first this work deals with the formation and characterization of nanosize FePO{sub 4} from a solution of iron(III)acetylacetonate and tributyl phosphate in toluene using spray-flame synthesis. It was shown that a subsequent solid state reaction with Li{sub 2}CO{sub 3} and glucose yielded a LiFePO{sub 4}/C nanocomposite with very promising electrochemical properties. Based on these initial findings the influence of two synthesis parameter - carbon content and annealing temperature - was investigated towards the physicochemical properties of LiFePO{sub 4}/C. It was shown that an annealing temperature of 700 C leads to high purity composite materials consisting of crystalline LiFePO{sub 4} with crystallite sizes well below 100 nm and amorphous carbon consisting of disordered and graphite-like carbon. Variation of glucose amount between 10 and 30 wt% resulted in carbon contents between 2.1 and 7.3 wt%. In parallel

  18. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    Science.gov (United States)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  19. Fe-N-C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery

    International Nuclear Information System (INIS)

    Highlights: • Hydrothermally-synthesized graphene sponge is excellent skeleton of Li-O2 cathode. • Fe-N-C catalyst loaded on GS was attained via pyrolysis of FePc and GS composites. • High capacity and good cyclability were achieved with Fe-N-GS air electrode. • The synergy of porous structure and catalytic activity leads to the high performance. - Abstract: The cathode of a lithium-oxygen battery needs the synergism of a porous conducting material and a catalyst to facilitate the formation and decomposition of lithium peroxide. Here we introduce a graphene sponge (GS) modified with Fe-N-C catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The porous, 3-dimensional conductive and free standing nature of the graphene sponge makes it become excellent skeleton of cathode for lithium-oxygen battery. The Fe-N-C catalyst nanoparticles dispersed uniformly on the graphene sheets show excellent catalytic reactivity in both discharge and charge processes. This kind of composite material greatly improves the capacity and cyclability of the lithium-oxygen battery. With dimethyl sulphoxide as electrolyte, the capacity reaches 6762 mAh g−1 which is twice of the pure graphene sponge. In addition, the cell containing Fe-N-GS air electrode exhibits stable cyclic performance and effective reduction of charge potential plateau, indicating that Fe-N-GS is promising as an OER catalyst in rechargeable lithium-air batteries

  20. Fe-N-C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ling, E-mail: yulingcug@126.com; Shen, Yue, E-mail: shenyue1213@mail.hust.edu.cn; Huang, Yunhui, E-mail: huangyh@mail.hust.edu.cn

    2014-05-15

    Highlights: • Hydrothermally-synthesized graphene sponge is excellent skeleton of Li-O{sub 2} cathode. • Fe-N-C catalyst loaded on GS was attained via pyrolysis of FePc and GS composites. • High capacity and good cyclability were achieved with Fe-N-GS air electrode. • The synergy of porous structure and catalytic activity leads to the high performance. - Abstract: The cathode of a lithium-oxygen battery needs the synergism of a porous conducting material and a catalyst to facilitate the formation and decomposition of lithium peroxide. Here we introduce a graphene sponge (GS) modified with Fe-N-C catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The porous, 3-dimensional conductive and free standing nature of the graphene sponge makes it become excellent skeleton of cathode for lithium-oxygen battery. The Fe-N-C catalyst nanoparticles dispersed uniformly on the graphene sheets show excellent catalytic reactivity in both discharge and charge processes. This kind of composite material greatly improves the capacity and cyclability of the lithium-oxygen battery. With dimethyl sulphoxide as electrolyte, the capacity reaches 6762 mAh g{sup −1} which is twice of the pure graphene sponge. In addition, the cell containing Fe-N-GS air electrode exhibits stable cyclic performance and effective reduction of charge potential plateau, indicating that Fe-N-GS is promising as an OER catalyst in rechargeable lithium-air batteries.

  1. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  2. Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: Great interest in anode materials has dramatically emerged with increasing demand for electrochemically generated oxidants in industrial electrochemistry. For the last five decades, these needs have been mostly achieved by the introduction of two well-known anode materials, the dimensional stable anode (DSA®) and boron-doped diamond (BDD) electrodes. Nevertheless, the high cost and complicated process in fabricating these electrodes remains as a big obstacle for further development. Here, we report a novel anode material for the production of oxidants, the dark blue colored TiO2 nanotube array (NTA) (denoted as Blue TiO2 NTA) which has never been successfully achieved with titania-based materials. This titania-based electrocatalyst with irreversible electrochromism and high conductivity was successfully fabricated with simple cathodic polarization of anatase TiO2 NTA and exhibits the excellent electrocatalytic activity in generating chlorine (Cl2) and hydroxyl radical (• OH) which is comparable to the commercial DSA® and BDD electrodes, respectively. Thus, this Blue TiO2 NTA is suggested as a potential cost effective anodic material in industrial electrochemistry. In addition, even in other metal oxides other than titania, the cathodic polarization (accompanied with irreversible electrochromism) method may be applied to explore a new route for low-cost and novel anodic materials

  3. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin

    2014-10-14

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct an inexpensive MFC cathode using a poly(vinylidene fluoride) (PVDF) binder and an activated carbon catalyst. The phase inversion process enabled cathode preparation at room temperatures, without the need for additional heat treatment, and it produced for the first time a cathode that did not require a separate diffusion layer to prevent water leakage. MFCs using this new type of cathode produced a maximum power density of 1470 ± 50 mW m–2 with acetate as a substrate, and 230 ± 10 mW m–2 with domestic wastewater. These power densities were similar to those obtained using cathodes made using more expensive materials or more complex procedures, such as cathodes with a polytetrafluoroethylene (PTFE) binder and a poly(dimethylsiloxane) (PDMS) diffusion layer, or a Pt catalyst. Even though the PVDF cathodes did not have a diffusion layer, they withstood up to 1.22 ± 0.04 m of water head (∼12 kPa) without leakage, compared to 0.18 ± 0.02 m for cathodes made using PTFE binder and PDMS diffusion layer. The cost of PVDF and activated carbon ($3 m–2) was less than that of the stainless steel mesh current collector ($12 m–2). PVDF-based AC cathodes therefore are inexpensive, have excellent performance in terms of power and water leakage, and they can be easily manufactured using a single phase inversion process at room temperature.

  4. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  5. Synthesis and investigation of novel cathode materials for sodium ion batteries

    Science.gov (United States)

    Sawicki, Monica

    Environmental pollution and eventual depletion of fossil fuels and lithium has increased the need for research towards alternative electrical energy storage systems. In this context, research in sodium ion batteries (NIBs) has become more prevalent since the price in lithium has increased due to its demand and reserve location. Sodium is an abundant resource that is low cost, and safe; plus its chemical properties are similar to that of Li which makes the transition into using Na chemistry for ion battery systems feasible. In this study, we report the effects of processing conditions on the electrochemical properties of Na-ion batteries made of the NaCrO2 cathode. NaCrO2 is synthesized via solid state reactions. The as-synthesized powder is then subjected to high-energy ball milling under different conditions which reduces particle size drastically and causes significant degradation of the specific capacity for NaCrO2. X-ray diffraction reveals that lattice distortion has taken place during high-energy ball milling and in turn affects the electrochemical performance of the cathode material. This study shows that a balance between reducing particle size and maintaining the layered structure is essential to obtain high specific capacity for the NaCrO2 cathode. In light of the requirements for grid scale energy storage: ultra-long cycle life (> 20,000 cycles and calendar life of 15 to 20 years), high round trip efficiency (> 90%), low cost, sufficient power capability, and safety; the need for a suitable cathode materials with excellent capacity retention such as Na2MnFe(CN)6 and K2MnFe(CN)6 will be investigated. Prussian blue (A[FeIIIFeII (CN)6]•xH2O, A=Na+ or K+ ) and its analogues have been investigated as an alkali ion host for use as a cathode material. Their structure (FCC) provides large ionic channels along the direction enabling facile insertion and extraction of alkali ions. This material is also capable of more than one Na ion insertion per unit formula

  6. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties.

    Science.gov (United States)

    Islam, M Saiful; Fisher, Craig A J

    2014-01-01

    Energy storage technologies are critical in addressing the global challenge of clean sustainable energy. Major advances in rechargeable batteries for portable electronics, electric vehicles and large-scale grid storage will depend on the discovery and exploitation of new high performance materials, which requires a greater fundamental understanding of their properties on the atomic and nanoscopic scales. This review describes some of the exciting progress being made in this area through use of computer simulation techniques, focusing primarily on positive electrode (cathode) materials for lithium-ion batteries, but also including a timely overview of the growing area of new cathode materials for sodium-ion batteries. In general, two main types of technique have been employed, namely electronic structure methods based on density functional theory, and atomistic potentials-based methods. A major theme of much computational work has been the significant synergy with experimental studies. The scope of contemporary work is highlighted by studies of a broad range of topical materials encompassing layered, spinel and polyanionic framework compounds such as LiCoO2, LiMn2O4 and LiFePO4 respectively. Fundamental features important to cathode performance are examined, including voltage trends, ion diffusion paths and dimensionalities, intrinsic defect chemistry, and surface properties of nanostructures. PMID:24202440

  7. Time and material dependence of the voltage noise generated by cathodic vacuum arcs

    International Nuclear Information System (INIS)

    The high frequency fluctuations of the burning voltage of cathodic vacuum arcs have been investigated in order to extract information on cathode processes, especially concerning evolution in time after arc ignition. Eight cathode materials (W, Ta, Hf, Ti, Ni, Au, Sn, Bi) were selected covering a wide range of cohesive energy. The voltage noise was recorded using both a broad-band voltage divider and an attenuator connected to a fast oscilloscope (limits 1 GHz analog and 5 GS s-1 digital). Fast Fourier transform revealed a power spectrum that is linear in log-log presentation, with a slope of 1/f 2, where f is the frequency (brown noise). The amplitude of the spectral power of the voltage noise was found to scale with the cohesive energy, in agreement with earlier measurements at lower resolution. These basic results do not depend on the time after arc initiation. However, lower arc current in the beginning of the pulse shows greater voltage noise, suggesting an inverse relation between the noise amplitude and number of emission sites (cathode spot fragments)

  8. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  9. Influence of the exchange-correlation potential on the electrochemical properties of multicomponent silicate cathode materials

    International Nuclear Information System (INIS)

    In this paper we report density-functional theory (DFT) calculations at various levels of accuracy to compare the electrochemical properties of several silicate compounds as possible cathode materials in Li-ion batteries. We have tested the already known olivine-like structure (LiMSiO4, M = Mn, Fe, Co, and Ni) and the more recently discovered tetrahedral Pmn21 Li2MSiO4 (M = Mn, Fe, Co, and Ni). Our calculations show the influence of exchange and correlation potentials used to compute the redox potentials, electronic band gaps and other properties of these materials. A detailed study of the multicomponent effect on those characteristics gives us useful insight about how to improve the electrochemical performance of the cathode and its efficiency in the Li-ion battery.

  10. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2014-12-01

    The high cost of the catalyst material used for the oxygen reduction reaction in microbial fuel cell (MFC) cathodes is one of the factors limiting practical applications of this technology. Mesoporous nitrogen-rich carbon (MNC), prepared at different temperatures, was examined as an oxygen reduction catalyst, and compared in performance to Pt in MFCs and electrochemical cells. MNC calcined at 800 °C produced a maximum power density of 979 ± 131 mW m-2 in MFCs, which was 37% higher than that produced using MNC calined at 600 °C (715 ± 152 mW m-2), and only 14% lower than that obtained with Pt (1143 ± 54 mW m-2). The extent of COD removal and coulombic efficiencies were the same for all cathode materials. These results show that MNC could be used as an alternative to Pt in MFCs. © 2014 Elsevier B.V. All rights reserved.

  11. Layered cathode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  12. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Alessandro [INSTM R.U. and Department of Chemistry–Physical Chemistry Division, University of Pavia, Pavia I-27100 (Italy); Felice, Valeria; Natali Sora, Isabella [INSTM R.U. and Department of Engineering, University of Bergamo, Dalmine, Bergamo I-24044 (Italy); Malavasi, Lorenzo [INSTM R.U. and Department of Chemistry–Physical Chemistry Division, University of Pavia, Pavia I-27100 (Italy); Tealdi, Cristina, E-mail: cristina.tealdi@unipv.it [INSTM R.U. and Department of Chemistry–Physical Chemistry Division, University of Pavia, Pavia I-27100 (Italy)

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25} has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La{sub 0.8}Sr{sub 0.2}MnO{sub 3−d} and La{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−d} and K{sub 2}NiF{sub 4}-type La{sub 2}NiO{sub 4+d} were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system. - Graphical abstract: Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25} has been extensively investigated by means of X-ray powder diffraction. - Highlights: • Chemical compatibility between melilite-type gallate and cathodes for SOFCs up to 1573 K. • No reactivity observed between La{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}. • Reactivity observed between La{sub 0.80}Sr{sub 0.20}MnO{sub 3−d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}. • Significant reactivity observed between La{sub 2}NiO{sub 4+d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}.

  13. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    International Nuclear Information System (INIS)

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3−d and La0.8Sr0.2Fe0.8Cu0.2O3−d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system. - Graphical abstract: Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by means of X-ray powder diffraction. - Highlights: • Chemical compatibility between melilite-type gallate and cathodes for SOFCs up to 1573 K. • No reactivity observed between La0.8Sr0.2Fe0.8Cu0.2O3−d and La1.50Sr0.50Ga3O7.25. • Reactivity observed between La0.80Sr0.20MnO3−d and La1.50Sr0.50Ga3O7.25. • Significant reactivity observed between La2NiO4+d and La1.50Sr0.50Ga3O7.25

  14. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    OpenAIRE

    Xinwei Cui; Jian Chen; Tianfei Wang; Weixing Chen

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the revers...

  15. Material characterization of the epoxy-coated cold-field-emission cathodes

    Czech Academy of Sciences Publication Activity Database

    Sergeev, E.; Knápek, A.; Mikmeková, Šárka; Grmela, L.; Klampár, M.

    Košice : Technical University of Košice, 2012 - (Tóthová, J.; Lisý, V.), s. 109-112 ISBN 978-80-553-1175-3. [Physics of Materials 2012. Košice (SK), 17.10.2012-19.10.2012] Institutional support: RVO:68081731 Keywords : composite cold field-emission cathode * scanning low- energy electron microscopy (SLEEM) * dielectric relaxation spectroscopy (DRS) Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  17. Synthesis and Characterization of LiCoxMn2-xO4 Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    YAO Yaochun; DAI Yongnian; YANG Bin; MA Wenhui; Takayuki Watanabe

    2007-01-01

    LiCoxMn2-xO4 cathode materials for lithium ion batteries were synthesized by mechanical activation-solid state reaction at 750℃ for 24 h in air atmosphere, and their crystal structure, morphology, element composition and electrochemical performance were characterized with XRD, SEM, ICP-AES and charge-discharge test. The experimental results show that all samples have a single spinel structure, well formed crystal shape and uniformly particle size distribution. The lattice parameters of LiCoxMa2-xO4 decrease and the average oxidation states of manganese ions increase with an increase in Co content. Compared with pure LiMn2O4, the LiCoxMn2-xO4(x=0.03-0.12) samples show a lower special capacity, but their cycling life are improved. The capacity loss of LiCo0.09Mn1.91O4 and LiCo0.12Mn1.88O4 is only 0.95% ,respectively, after the 20th cycle. The improvement of the cycle performance is attributed to the substitution of Co at the Mn sites in the spinel structure, which suppresses the Jahn-Teller distortion and improves the structural stability.

  18. Re-heating effect of Ni-rich cathode material on structure and electrochemical properties

    Science.gov (United States)

    Jo, Jae Hyeon; Jo, Chang-Heum; Yashiro, Hitoshi; Kim, Sun-Jae; Myung, Seung-Taek

    2016-05-01

    The re-heating effect for Ni-rich Li[Ni0.7Mn0.3]O2 is investigated because the process is required in surface modification and removal of adhered water molecules. A representative binary Ni-rich Li[Ni0.7Mn0.3]O2 (in which cationic distribution in Li layers is not affected by heteroelements) is selected and synthesized via co-precipitation. The as-synthesized Ni-rich Li[Ni0.7Mn0.3]O2 is re-heated at 200 °C, 400 °C, and 600 °C, so that the resulting structural and electrochemical properties are compared by means of X-ray diffraction, transmission electron microscopy, time of flight-secondary ion spectroscopy, thermogravimetric analysis, high temperature X-ray diffraction, and electrochemical tests. Raising the re-heating temperature increases the occupancy of Ni2+ in Li layers and accelerates the aggregation of lithium-related compounds such as Li2CO3 and LiOH towards the particle surface. Among the several conditions tested, re-heating at 200 °C results in a negligible change in the crystal structure; specifically, Ni2+ occupation in Li layers, higher capacity with good reversibility upon cycling tests, better rate capability, and thermal properties. Therefore, re-heating of cathode active materials, in particular Ni-rich compositions, should be considered to stabilize both electrode performances and thermal properties.

  19. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  20. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    Science.gov (United States)

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-04-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  1. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    Science.gov (United States)

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  2. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al2O3 can provide surface area for the deposition of Li2S and Li2S2. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g−1, and the remaining capacity was 585 mAh g−1 after 50 cycles at 0.25 mA cm−2. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  3. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    KAUST Repository

    Siegert, Michael

    2014-02-18

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.

  4. Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao, E-mail: huanghaohust1990@gmail.com

    2014-10-01

    Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action.

  5. Investigation of the removing process of cathode material in micro-EDM using an atomistic-continuum model

    International Nuclear Information System (INIS)

    Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action

  6. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    Science.gov (United States)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  7. Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries

    International Nuclear Information System (INIS)

    The charge and discharge characteristics of lithium batteries with sulfur composite cathodes have been investigated. The sulfur composites showed novel electrochemical characteristics. The analysis of the differential capacity indicated that the discharge process showed two voltage plateaus of 2.10 V and 1.88 V, and the charge process also presented two voltage plateaus of 2.22 V and 2.36 V. The overcharge test showed that the composite cannot be charged over 4.0 V, the voltage always stopped at about 3.9 V during charging, indicating that the composite presented the intrinsic safety for the overcharge of lithium batteries. The overcharge can cause serious safety problem for the conventional Li-ion batteries. The overcharge test also showed that the batteries with sulfur composite were destroyed when the upper cut-off voltage was over 3.6 V. However, the composite presented good reversible capacity after it was deep discharged even to 0 V. It showed stable cycleability and high cycling capacity of 1000 mAh g-1 when cycling between 0.1 V and 3.0 V, indicative of the different characteristic from the conventional oxide cathode materials. The prototype polymer battery with the composite cathode material presented the energy density of 246 Wh kg-1 and 401 Wh L-1

  8. Ionothermal Synthesis of Lithium Iron Phosphate Composite Nanoparticles as a Cathode Material for Li-ion Batteries

    OpenAIRE

    Miller, Ian Jacob

    2014-01-01

    An affordable yet high performance LiFePO4/C cathode material has been synthesized through an ionothermal approach. The incorporation of the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate in a bath synthesis with iron chloride and lithium phosphate as precursors has allowed for the precipitation of crystalline LiFePO4 using significantly less temperature and less time than previous methods. Post sintering with starch has yield a crystalline cathode material with a 155 mAh/...

  9. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  10. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    Science.gov (United States)

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries. PMID:24844948

  11. Characterization of tantalum doped lanthanum strontium ferrite as cathode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Natali Sora, Isabella, E-mail: isabella.natali-sora@unibg.it [INSTM R.U. Bergamo and Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, Dalmine, BG 24044 (Italy); Felice, Valeria [INSTM R.U. Bergamo and Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, Dalmine, BG 24044 (Italy); Zurlo, Francesca; Licoccia, Silvia; Di Bartolomeo, Elisabetta [Department of Chemical Science and Technologies & NAST Center University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 (Italy)

    2015-11-05

    The phase relations and crystal structures of La{sub 1−x}Sr{sub x}Fe{sub 1−y}Ta{sub y}O{sub 3} in the compositional range x = 0–0.60, y = 0–0.20 were investigated by powder X-ray diffraction (XRD). The formal concentration of Fe{sup 4+} in the La{sub 1−x}Sr{sub x}Fe{sub 1−y}Ta{sub y}O{sub 3±w} (LSFT) system was calculated and related to the electrical/electrochemical properties. To investigate the electrochemical behaviour as cathode material for SOFCs, impedance measurements were performed on LSFT/electrolyte/LSFT symmetrical cells by using La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM) as electrolyte material. The lowest area specific resistance (ASR), derived from the polarization resistance (R{sub p}), 1 Ω cm{sup 2} at 750 °C, was measured for the LSFT compound doped with x = 0.40 and y = 0.05. - Highlights: • The lowest area specific resistance was obtained with Sr = 0.40 and Ta = 0.05. • The activation energies E{sub a} are in the range of 1.3–1.6 eV. • The samples were single phase when Sr = 0, 0.20, 0.40, and 0.6 and Ta = 0.05. • A predictive trend of the electric conductivity is proposed.

  12. Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries

    OpenAIRE

    Yanna NuLi; Qiang Chen; Weikun Wang; Ying Wang; Jun Yang; Jiulin Wang

    2014-01-01

    We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g−1 at 3.9 mA g−1. These studies show that carbyne polysulfide is a promising cand...

  13. V2O5/Mesoporous Carbon Composite as a Cathode Material for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    ABSTRACT: V2O5/mesoporous carbon composite has been prepared by an ultrasonically assisted method followed by a sintering process. The as-prepared V2O5/mesoporous carbon material containing 90 wt% V2O5 shows better electrochemical performance, with capacity of 163 mA h g−1 after 100 cycles at the current density of 500 mA g−1, as well as better charge/discharge rate capability for lithium storage than V2O5 nanoparticles. The improved electrochemical performance indicates that the V2O5/mesoporous carbon composite could be used as a promising cathode material for lithium ion batteries

  14. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells

    Directory of Open Access Journals (Sweden)

    Biao Xiao

    2015-09-01

    Full Text Available Polymer solar cells (PSCs are a new type of renewable energy source currently being extensively investigated due to perceived advantages; such as being lightweight, low-cost and because of the unlimited materials resource. The power conversion efficiency of state-of-the-art PSCs has increased dramatically in the past few years, obtained mainly through the development of new electron donor polymers, acceptors, and novel device structures through the use of various electrode interfacial materials. In this short review, recent progress in solution-processed cathode interfacial layers that could significantly improve device performances is summarized and highlighted.

  15. Deciphering the thermal behavior of lithium rich cathode material by in situ X-ray diffraction technique

    Science.gov (United States)

    Muhammad, Shoaib; Lee, Sangwoo; Kim, Hyunchul; Yoon, Jeongbae; Jang, Donghyuk; Yoon, Jaegu; Park, Jin-Hwan; Yoon, Won-Sub

    2015-07-01

    Thermal stability is one of the critical requirements for commercial operation of high energy lithium-ion batteries. In this study, we use in situ X-ray diffraction technique to elucidate the thermal degradation mechanism of 0.5Li2MnO3-0.5LiNi0.33Co0.33Mn0.33O2 lithium rich cathode material in the absence and presence of electrolyte to simulate the real life battery conditions and compare its thermal behavior with the commercial LiNi0.33Co0.33Mn0.33O2 cathode material. We show that the thermal induced phase transformations in delithiated lithium rich cathode material are much more intense compared to similar single phase layered cathode material in the presence of electrolyte. The structural changes in both cathode materials with the temperature rise follow different trends in the absence and presence of electrolyte between 25 and 600 °C. Phase transitions are comparatively simple in the absence of electrolyte, the fully charged lithium rich cathode material demonstrates better thermal stability by maintaining its phase till 379 °C, and afterwards spinel structure is formed. In the presence of electrolyte, however, the spinel structure appears at 207 °C, subsequently it transforms to rock salt type cubic phase at 425 °C with additional metallic, metal fluoride, and metal carbonate phases.

  16. Is alpha-V2O5 a cathode material for Mg insertion batteries?

    Science.gov (United States)

    Sa, Niya; Wang, Hao; Proffit, Danielle L.; Lipson, Albert L.; Key, Baris; Liu, Miao; Feng, Zhenxing; Fister, Timothy T.; Ren, Yang; Sun, Cheng-Jun; Vaughey, John T.; Fenter, Paul A.; Persson, Kristin A.; Burrell, Anthony K.

    2016-08-01

    When designing a high energy density battery, one of the critical features is a high voltage, high capacity cathode material. In the development of Mg batteries, oxide cathodes that can reversibly intercalate Mg, while at the same time being compatible with an electrolyte that can deposit Mg reversibly are rare. Herein, we report the compatibility of Mg anodes with α-V2O5 by employing magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolytes at very low water levels. Electrolytes that contain a high water level do not reversibly deposit Mg, but interestingly these electrolytes appear to enable much higher capacities for an α-V2O5 cathode. Solid state NMR indicates that the major source of the higher capacity in high water content electrolytes originates from reversible proton insertion. In contrast, we found that lowering the water level of the magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte is critical to achieve reversible Mg deposition and direct evidence for reversible Mg intercalation is shown. Findings we report here elucidate the role of proton intercalation in water-containing electrolytes and clarify numerous conflicting reports of Mg insertion into α-V2O5.

  17. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Sulfated zirconia is successfully synthesized and uniformly coated onto a nickel-rich layered lithium oxide. • The electrochemical properties of the sulfated-zirconia-coated LiNi0.8Co0.1Mn0.1O2 electrode are greatly improved. • Sulfated zirconia coating is effective in reducing side reactions between the active materials and electrolyte. • Sulfated zirconia coating contributes to forming a more stable solid electrolyte interphase layer on the cathode surface. - ABSTRACT: Sulfated zirconia was successfully synthesized and uniformly coated onto a nickel-rich layered lithium oxide (LiNi0.8Co0.1Mn0.1O2), and investigated with a view to its potential use as a cathode material in Li-ion batteries. The uniformity of this sulfated zirconia coating was confirmed through electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy. Furthermore, the electrochemical properties of the sulfated-zirconia-coated LiNi0.8Co0.1Mn0.1O2 electrode were found to be greatly improved compared to those of pristine LiNi0.8Co0.1Mn0.1O2 and zirconia-coated LiNi0.8Co0.1Mn0.1O2, especially at elevated temperature (60 °C). These results are directly attributed to the sulfated zirconia coating, which is effective in reducing side reactions by preventing direct contact between the active materials and electrolyte solutions, as well as forming a more stable solid electrolyte interphase (SEI) layer on the active material surface

  18. The influence of reduced graphene oxide on electrical conductivity of LiFePO4-based composite as cathode material

    International Nuclear Information System (INIS)

    LiFePO4 is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g−1. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO4-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO4−based composite by varying mass of rGO in composition. Vibration of LiFePO4-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO4 nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO

  19. The influence of reduced graphene oxide on electrical conductivity of LiFePO4-based composite as cathode material

    Science.gov (United States)

    Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto; Abdullah, Mikrajuddin; Iskandar, Ferry

    2016-02-01

    LiFePO4 is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g-1. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO4-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO4-based composite by varying mass of rGO in composition. Vibration of LiFePO4-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO4 nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.

  20. Research on cathode material of Li-ion battery by yttrium doping

    Institute of Scientific and Technical Information of China (English)

    TIAN Yanwen; KANG Xiaoxue; LIU Liying; XU Chaqing; QU Tao

    2008-01-01

    Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematically. The results indicated that the mechanisms of Y doping in three cathode materials were different, so the influences on the material performance were different. The crystal structure of the three materials was not changed by Y doping. However, the crystal parameters were influenced. The crystal parameters of LiMn2O4 became smaller, and the interlayer distance of (100) crystal plane of Li1+xV3O8 was lengthened after Y doping. The grain size of Y-doped LiFePO4 became smaller and grain morphology became more regular than that of undoped LiFePO4. It indicated that Y doping had no influence on crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8 became irregular and its size became larger with the increase of Y. For LiFePO4 and Li1+xV3O8, both the initial discharge capacities and the cyclic performance were improved by Y doping. For LiMn2O4, the cyclic performance became better and the initial discharge capacities declined with increasing Y doping.

  1. Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes

    Science.gov (United States)

    Komini Babu, Siddharth; Mohamed, Alexander I.; Whitacre, Jay F.; Litster, Shawn

    2015-06-01

    This paper presents the use of nanometer scale resolution X-ray computed tomography (nano-CT) in the three-dimensional (3D) imaging of a Li-ion battery cathode, including the separate volumes of active material, binder plus conductive additive, and pore. The different high and low atomic number (Z) materials are distinguished by sequentially imaging the lithium cobalt oxide electrode in absorption and then Zernike phase contrast modes. Morphological parameters of the active material and the additives are extracted from the 3D reconstructions, including the distribution of contact areas between the additives and the active material. This method could provide a better understanding of the electric current distribution and structural integrity of battery electrodes, as well as provide detailed geometries for computational models.

  2. Surface structure evolution of cathode materials for Li-ion batteries

    Science.gov (United States)

    Yingchun, Lyu; Yali, Liu; Lin, Gu

    2016-01-01

    Lithium ion batteries are important electrochemical energy storage devices for consumer electronics and the most promising candidates for electrical/hybrid vehicles. The surface chemistry influences the performance of the batteries significantly. In this short review, the evolution of the surface structure of the cathode materials at different states of the pristine, storage and electrochemical reactions are summarized. The main methods for the surface modification are also introduced. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030200) and the National Basic Research Program of China (Grant Nos. 2014CB921002 and 2012CB921702).

  3. Electrochemical behavior of LiFePO4 cathode materials in the presence of anion adsorbents

    International Nuclear Information System (INIS)

    The poor rate capability is a major problem of olivine-structured lithium iron phosphate (LFP) cathode material in lithium-ion batteries due to its low electric conductivity and sluggish lithium diffusion. Other than the custom strategies to solve this problem like carbon coating and nano-size treatment, we simply mixed LFP with some anion adsorbents, which can store anions from the electrolytes swiftly. The effect of anion adsorbents on the performance of LFP composite electrode has been investigated by cyclic voltammetric tests and the corresponding apparent lithium diffusion coefficients have been measured

  4. Studies on Spinel LiMn2O4 Cathode Material Synthesized from Different Mn Sources

    Institute of Scientific and Technical Information of China (English)

    唐致远; 冯季军; 彭亚宁

    2004-01-01

    The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.

  5. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries.

    Science.gov (United States)

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean J; Kang, Feiyu; Li, Baohua; Zavadil, Kevin; Curtiss, Larry A

    2015-12-21

    Rechargeable lithium-air (Li-O2) batteries have drawn much interest owing to their high energy density. We report on the effect of deliberately introducing potassium impurities into the cathode material on the electrochemical performance of a Li-O2 battery. Small amounts of potassium introduced into the activated carbon (AC) cathode material in the synthesis process are found to have a dramatic effect on the performance of the Li-O2 cell. An increased amount of potassium significantly increases capacity, cycle life, and round-trip efficiency. This improved performance is probably due to a larger amount of LiO2 in the discharge product, which is a mixture of LiO2 and Li2O2, resulting from the increase in the amount of potassium present. No substantial correlation with porosity or surface area in an AC cathode is found. Experimental and computational studies indicate that potassium can act as an oxygen reduction catalyst, which can account for the dependence of performance on the amount of potassium. PMID:26630086

  6. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Haoran Yuan

    2014-01-01

    Full Text Available Nonactivated and activated biochars have been successfully prepared by bananas at different thermotreatment temperatures. The activated biochar generated at 900°C (Biochar-act900 exhibited improved oxygen reduction reaction (ORR and oxygen evolution reaction (OER performances in alkaline media, in terms of the onset potential and generated current density. Rotating disk electron result shows that the average of 2.65 electrons per oxygen molecule was transferred during ORR of Biochar-act900. The highest power density of 528.2 mW/m2 and the maximum stable voltage of 0.47 V were obtained by employing Biochar-act900 as cathode catalyst, which is comparable to the Pt/C cathode. Owning to these advantages, it is expected that the banana-derived biochar cathode can find application in microbial fuel cell systems.

  7. Synthesis of Co-Al-Cl LDH by cathodic material reprocessing from cellular phone batteries

    International Nuclear Information System (INIS)

    The aim of this paper was the recovering of the cathodic material from discarded lithium ion batteries for obtainment of the lamellar double hydroxides (LDHs) by the co-precipitation method at variable pH in HCl and H2O2 1:1 (v/v) acid solution containing Co and Al (extracted from cathodic material composed of LiCoO2 and aluminum foil). These metals were precipitated in LiOH at pH 9 or 11, or NH4OH at pH 9 and submitted to the hydrothermal treatment (HT) to improve the structural organization of the LDHs lamellae. After precipitation, the resulting solids were structurally characterized by XRD for phase identification and calculation of the unit cell parameter, thermally by TGA for the identification of the mass loss and morphologically by SEM. The sample obtained by precipitation with LiOH at pH 11 / hydrothermal treatment showed diffraction peaks similar to hydrotalcite, morphological and thermal characteristics similar to the pattern Co-Al-Cl LDH obtained by co-precipitation at constant pH 8. (author)

  8. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Quinonyl compounds containing –OH groups are reported as cathode of sustainable Li-ion battery. • Lithiation potential of these compounds is positively correlated to -OH group number on them. • These compounds exhibit a discharge plateau of 3 V and deliver a capacity of over 180 mAh g-1 at 20 mA g-1. - Abstract: Suitably designed organic compounds are promising renewable electrode materials for lithium ion batteries (LIBs) with minimal environmental impacts and no CO2 release. Herein we report a series of polycarbonyl organic compounds with different number of hydroxyl groups, which can be obtained from renewable plants, as cathode materials for LIBs. Density functional theory (DFT) calculations based on the natural bond orbital (NBO) reveal a positive correlation between the reduction potentials and the number of hydroxyl groups, which is borne out experimentally. Anthraquinone (AQ) with three or four -OH groups has the structural advantages for improving the discharge plateaus. Mechanistic studies show that AQ containing neighbouring carbonyl groups and hydroxyl groups facilitates the formation of six or five-membered rings with lithium ion. Charge/discharge tests show that AQ, 1,5-DHAQ, 1,2,7-THAQ, and 1,2,5,8-THAQ can achieve initial discharge capacities of 215, 190, 186 and 180 mAh g-1 at a current density of 20 mA g-1, corresponding to 84%, 85%, 89% and 91% of their theoretical capacities, respectively

  9. A porous vanadium pentoxide nanomaterial as cathode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Highlights: ► V2O5 with tubular pores was prepared through a sol–gel process using the electrospun PMMA fibers template. ► It could deliver a high initial capacity of 283 mAh g−1 at the 0.2C rate in the 4–2 V (vs. Li/Li+) range. ► It exhibited excellent rate capability as well as cycling ability. ► It would be a promising cathode material for rechargeable lithium batteries. -- Abstract: A porous vanadium pentoxide (V2O5) nanomaterial was prepared by using the electrospun PMMA fibers as a template, which could be removed by annealing at high temperature leaving tube-like pores with 1 μm in diameter. It is composed of numerous rice-like nanoparticles in 50–100 nm size. In the potential range of 4.0–2.0 V (vs. Li/Li+), it can deliver a high reversible capacity of 283 mAh g−1 at 0.2C rate and exhibits an excellent rate capability (104 mAh g−1 at 12C rate). Even cycled at the 4C rate, the discharge capacity still remains 85% of the initial one over 300 cycles, showing an excellent cycling performance. The results suggest the obtained V2O5 nanomaterial could develop into a promising cathode material for rechargeable lithium batteries

  10. A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time, sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g−1 at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g−1 at 0.1 C and 578 mA h g−1 at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries

  11. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries

    Science.gov (United States)

    Lv, Meixiang; Zhang, Fen; Wu, Yiwen; Chen, Mujuan; Yao, Chunfeng; Nan, Junmin; Shu, Dong; Zeng, Ronghua; Zeng, Heping; Chou, Shu-Lei

    2016-04-01

    The heteroaromatic organic compound, N,N’-diphenyl-1,4,5,8-naphthalenetetra- carboxylic diimide (DP-NTCDI-250) as the cathode material of lithium batteries is prepared through a simple one-pot N-acylation reaction of 1,4,5,8-naphthalenetetra-carboxylic dianhydride (NTCDA) with phenylamine (PA) in DMF solution followed by heat treatment in 250 °C. The as prepared sample is characterized by the combination of elemental analysis, NMR, FT-IR, TGA, XRD, SEM and TEM. The electrochemical measurements show that DP-NTCDI-250 can deliver an initial discharge capacity of 170 mAh g‑1 at the current density of 25 mA g‑1. The capacity of 119 mAh g‑1 can be retained after 100 cycles. Even at the high current density of 500 mA g‑1, its capacity still reaches 105 mAh g‑1, indicating its high rate capability. Therefore, the as-prepared DP-NTCDI-250 could be a promising candidate as low cost cathode materials for lithium batteries.

  12. Synthesis of Co-Al-Cl LDH by cathodic material reprocessing from cellular phone batteries

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio Augusto do; Machado, Erica Oliveira; Freitas, Leonardo Luis de; Santana, Laiane Kalita; Canobre, Sheila Cristina, E-mail: fabioamaral@yahoo.com.br, E-mail: fabioamaral@iqufu.ufu.br [Universidade Federal de Uberlandia (UFU/LAETE), (Brazil). Inst. de Quimica. Lab. de Armazenamento de Energia e Tratamento de Efluente

    2014-08-15

    The aim of this paper was the recovering of the cathodic material from discarded lithium ion batteries for obtainment of the lamellar double hydroxides (LDHs) by the co-precipitation method at variable pH in HCl and H{sub 2}O{sub 2} 1:1 (v/v) acid solution containing Co and Al (extracted from cathodic material composed of LiCoO{sub 2} and aluminum foil). These metals were precipitated in LiOH at pH 9 or 11, or NH{sub 4}OH at pH 9 and submitted to the hydrothermal treatment (HT) to improve the structural organization of the LDHs lamellae. After precipitation, the resulting solids were structurally characterized by XRD for phase identification and calculation of the unit cell parameter, thermally by TGA for the identification of the mass loss and morphologically by SEM. The sample obtained by precipitation with LiOH at pH 11 / hydrothermal treatment showed diffraction peaks similar to hydrotalcite, morphological and thermal characteristics similar to the pattern Co-Al-Cl LDH obtained by co-precipitation at constant pH 8. (author)

  13. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Zhong Dong Peng; Yan Bing Cao; Guo Rong Hu; Ke Du; Xu Guang Gao; Zheng Wei Xiao

    2009-01-01

    A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-type Li2FeSiO4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700 ℃ in 12 min. And the obtained Li2FeSiO4 materials show better electrochemical performance and microstructure than those of Li2FeSiO4 sample by the conventional solid-state reaction.

  14. Synthesis and Electrochemical Performance of Spinel LiMn2O4-x(SO4)x Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    CHEN,Zhao-Yong(陈召勇); HE,Yi(贺益); LI,Zhi-Jie(李志杰); GAO,Li-Zhen(高利珍); JIANG,Qi(江奇); YU,Zuo-Long(于作龙)

    2002-01-01

    The spinel LiMn2O4-x(SO4)x compound cathode materials were synthesized by solid-state reaction of the calculated amounts of LiOH@H2O,MnO2 and MnSO4.The results of the electrochemical test demonstrated that these materials exhibited excellent electrochemical properties.The highest reversible capacity of these series of cathode materials was~120mAh/g,and after 50 cycles,this reversible capacity was still around 116 mAh/g with nearly 100% reversible efficiency,which revealed that doped sulfate ion could improve the structural stability of spinel.

  15. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review

    Science.gov (United States)

    Pelosato, Renato; Cordaro, Giulio; Stucchi, Davide; Cristiani, Cinzia; Dotelli, Giovanni

    2015-12-01

    Nowadays, the cathode is the most studied component in Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs). Decreasing SOFCs operating temperature implies slow oxygen reduction kinetics and large polarization losses. Double perovskites with general formula REBaCo2O5+δ are promising mixed ionic-electronic conductors, offering a remarkable enhancement of the oxygen diffusivity and surface exchange respect to disordered perovskites. In this review, more than 250 compositions investigated in the literature were analyzed. The evaluation was performed in terms of electrical conductivity, Area Specific Resistance (ASR), chemical compatibility with electrolytes and Thermal Expansion Coefficient (TEC). The most promising materials have been identified as those bearing the mid-sized rare earths (Pr, Nd, Sm, Gd). Doping strategies have been analyzed: Sr doping on A site promotes higher electrical conductivity, but worsen ASR and TECs; B-site doping (Fe, Ni, Mn) helps lowering TECs, but is detrimental for the electrochemical properties. A promising boost of the electrochemical activity is obtained by simply introducing a slight Ba under-stoichiometry. Still, the high sensitivity of the electrochemical properties against slight changes in the stoichiometry hamper a conclusive comparison of all the investigated compounds. Opportunities for an improvement of double perovskite cathodes performance is tentatively foreseen in combining together the diverse effective doping strategies.

  16. Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, Michael A.; Sauer, Dirk Uwe [RWTH Aachen University, Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), 52066 Aachen (Germany); Vetter, Jens [BMW Group, 80788 Muenchen (Germany)

    2010-06-15

    Lithium-ion cells (Li-ion) comprising lithium iron phosphate (LiFePO{sub 4}) based cathode active material are a promising battery technology for future automotive applications and consumer electronics in terms of safety, cycle and calendar lifetime and cost. Those cells comprise flat open circuit voltage (OCV) characteristics and long-term load history dependent cell impedance. In this work the special electric characteristics of LiFePO{sub 4} based cells are elucidated, quantified and compared to Li-ion cells containing a competing cathode technology. Through pulse tests and partial cycle tests, performed with various olivine based cells, the cycling history dependency of the internal resistance and therefore on the power capability is shown. Hence, methods are illustrated to quantify this load history impact on the cells performance. Subsequently, methods to achieve a safe battery operation are elucidated. Furthermore strategies are given to obtain reliable information about the cells power capability, taking the mentioned properties into consideration. (author)

  17. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries

    Institute of Scientific and Technical Information of China (English)

    Guanghui Yuan; Haodong Wang

    2014-01-01

    In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (S/PPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared S/PPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing S/PPy composite cathode yields a discharge capacity of 1039 mAh·g-1 at the initial cycle and retains 59%of this value over 50 cycles at 0.1 C rate. At 1 C rate, the S/PPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g-1 after 50 cycles.

  18. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  19. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  20. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  1. Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

    DEFF Research Database (Denmark)

    Torres-Gomez, G,; Skaarup, Steen; West, Keld;

    2000-01-01

    A study of the hybrid oganic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific...

  2. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries

    International Nuclear Information System (INIS)

    Layered oxides of P2-type Na0.68Cu0.34Mn0.66O2, P2-type Na0.68Cu0.34Mn0.50Ti0.16O2, and O'3-type NaCu0.67Sb0.33O2 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries. (rapid communication)

  3. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    Science.gov (United States)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  4. Modeling study of a Li–O2 battery with an active cathode

    International Nuclear Information System (INIS)

    In this study, a new organic lithium oxygen (Li–O2) battery structure is proposed to enhance battery capacity. The electrolyte is forced to recirculate through the cathode and then saturated with oxygen in a tank external to the battery. The forced convection enhances oxygen transport and alleviates the problem of electrode blockage during discharge. A two dimensional, transient, non-isothermal simulation model is developed to study the heat and mass transfer within the battery and validate the proposed design. Results show that this novel active cathode design improves the battery capacity at all discharge current densities. The capacity of the Li–O2 battery is increased by 15.5 times (from 12.2 mAh g−1 to 201 mAh g−1) at the discharge current of 2.0 mA cm−2 when a conventional passive electrode is replaced by the newly designed active electrode. Furthermore, a cathode with non-uniform porosity is suggested and simulation results show that it can reach a higher discharge capacity without decreasing its power density. Detailed mass transport processes in the battery are also studied. - Highlights: • Electrolyte is circulated through the cathode and externally saturated with oxygen. • A two-dimensional, transient, non-isothermal model is developed for a Li–O2 battery. • The new design's capacity can be 15.5 times that of a battery with passive cathode. • A cathode with non-uniform porosity is proposed to further enhance battery capacity

  5. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  6. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    Science.gov (United States)

    Lin, Feng; Nordlund, Dennis; Li, Yuyi; Quan, Matthew K.; Cheng, Lei; Weng, Tsu-Chien; Liu, Yijin; Xin, Huolin L.; Doeff, Marca M.

    2016-01-01

    In technologically important LiNi1-x-yMnxCoyO2 cathode materials, surface reconstruction from a layered to a rock-salt structure is commonly observed under a variety of operating conditions, particularly in Ni-rich compositions. This phenomenon contributes to poor high-voltage cycling performance, impeding attempts to improve the energy density by widening the potential window at which these electrodes operate. Here, using advanced nano-tomography and transmission electron microscopy techniques, we show that hierarchically structured LiNi0.4Mn0.4Co0.2O2 spherical particles, made by a simple spray pyrolysis method, exhibit local elemental segregation such that surfaces are Ni-poor and Mn-rich. The tailored surfaces result in superior resistance to surface reconstruction compared with those of conventional LiNi0.4Mn0.4Co0.2O2, as shown by soft X-ray absorption spectroscopy experiments. The improved high-voltage cycling behaviour exhibited by cells containing these cathodes demonstrates the importance of controlling LiNi1-x-yMnxCoyO2 surface chemistry for successful development of high-energy lithium ion batteries.

  7. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Zhang, Jie-Nan; He, Min; Zhang, Xu-Dong; Yin, Ya-Xia; Li, Hong; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2016-08-10

    Li-rich layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, they suffer from severe voltage decay upon cycling, which hinders their further commercialization. Here, we report a Li-rich layered material 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 with high nickel content, which exhibits much slower voltage decay during long-term cycling compared to conventional Li-rich materials. The voltage decay after 200 cycles is 201 mV. Combining in situ X-ray diffraction (XRD), ex situ XRD, ex situ X-ray photoelectron spectroscopy, and scanning transmission electron microscopy, we demonstrate that nickel ions act as stabilizing ions to inhibit the Jahn-Teller effect of active Mn(3+) ions, improving d-p hybridization and supporting the layered structure as a pillar. In addition, nickel ions can migrate between the transition-metal layer and the interlayer, thus avoiding the formation of spinel-like structures and consequently mitigating the voltage decay. Our results provide a simple and effective avenue for developing Li-rich layered materials with mitigated voltage decay and a long lifespan, thereby promoting their further application in lithium-ion batteries with high energy density. PMID:27437556

  8. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Evgeny V. Antipov

    2015-01-01

    Full Text Available To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  9. High electrochemical properties of graphene nanoribbons-hybridized manganese dioxide as cathode material for lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiangyue; Fan, Zihan; Lin, Cunli; Jia, Lina; Lin, Baiwei; Wang, Jiaqi; Hu, Xiaolin, E-mail: linamethyst@fzu.edu.cn; Zhuang, Naifeng, E-mail: nfzhuang@fzu.edu.cn [Fuzhou University, College of Chemistry (China)

    2015-02-15

    Manganese dioxide crystallite and its composite hybridized with graphene nanoribbons (GNRs) are prepared by hydrothermal method. The effects of reaction temperature and time, surfactant, and reducing Mn resource are discussed. As the cathode material for Li battery, γ-MnO{sub 2} nanowire/nanorod hybridizing with (GNRs) (γ-MnO{sub 2}/GNRs) shows a higher discharge specific capacity than it covering with carbon nanotubes or graphene sheets. In addition, the discharge specific capacity of γ-MnO{sub 2}/GNRs is much higher than those of pure β-MnO{sub 2} and compact β-MnO{sub 2}/GNRs. The effects of crystal size, morphology, and GNR hybrid on the discharge specific capacity are discussed.

  10. High electrochemical properties of graphene nanoribbons-hybridized manganese dioxide as cathode material for lithium battery

    International Nuclear Information System (INIS)

    Manganese dioxide crystallite and its composite hybridized with graphene nanoribbons (GNRs) are prepared by hydrothermal method. The effects of reaction temperature and time, surfactant, and reducing Mn resource are discussed. As the cathode material for Li battery, γ-MnO2 nanowire/nanorod hybridizing with (GNRs) (γ-MnO2/GNRs) shows a higher discharge specific capacity than it covering with carbon nanotubes or graphene sheets. In addition, the discharge specific capacity of γ-MnO2/GNRs is much higher than those of pure β-MnO2 and compact β-MnO2/GNRs. The effects of crystal size, morphology, and GNR hybrid on the discharge specific capacity are discussed

  11. PAM Templating Mechanism for Synthesis of A Novel LiFePO4 Cathode Material

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-ting; ZHAO Na-hong; DONG Hong-yu; YUE Hong-yun; YANG Jin-xin

    2005-01-01

    A novel templated LiFePO4 cathode material was prepared with linear polyacrylamide, which exhibited excellent electrochemical properties, such as a 109.3 mA·h/g capacity at a rate of C/3 and a 120 mA·h/g capacity at a rate of C/6 as well as a good cycliability. We proposed the templating mechanism based upon the precursors' TG-DTA curves, X-ray diffraction patterns and FTIR spectra of the samples at different temperatures. A tapping-mode atomic force microscope was used to investigate the surfaces of the end products. We found that the polyacrylamide template produced metal organic compounds in the cross-linked gel precursor, and thereby modified the crystallization and particle surfaces during calcining. The template was "removed" in the end, which was partially pyrolyzed into the spiral carbon to form a conductive network with nanocrystalline LiFePO4 highly monodispersed in it.

  12. Synthesis Of Fe Doped LiMn2O4 Cathode Materials For Li Battery By Solid State Reaction

    Directory of Open Access Journals (Sweden)

    Horata N.

    2015-06-01

    Full Text Available LiFe0.1Mn1.9O4 is expected as a cathode material for the rechargeable lithium-ion batteries. LiMn2O4 has been received attention because this has advantages such as low cost and low toxicity compared with other cathode materials of LiCoO2 and LiNiO2. However, LiMn2O4 has some problems such as small capacity and no long life. LiMn2O4 is phase transformation at around human life temperature. One of the methods to overcome this problem is to stabilize the spinel structure by substituting Mn site ion in LiMn2O4 with transition metals (Al, Mg, Ti, Ni, Fe, etc.. LiFe0.1Mn1.9O4 spinel was synthesized from Li2CO3, Fe2O3 and MnO2 powder. The purpose of this study is to report the optimal condition of Fe doped LiFe0.1Mn1.9O4. Li2CO3, Fe2O3, and MnO2 mixture powder was heated up to 1173 K by TG-DTA. Li2CO3 was thermal decomposed, and CO2 gas evolved, and formed Li2O at about 800 K. LiFe0.1Mn1.9O4 was synthesized from a consecutive reaction Li2O, Fe2O3 and MnO2 at 723 ~ 1023 K. Active energy is calculated to 178 kJmol−1 at 723 ~ 1023 K. The X-ray powder diffraction pattern of the LiFe0.1Mn1.9O4 heated mixture powder at 1023 K for 32 h in air flow was observed.

  13. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

    Science.gov (United States)

    Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap

    2015-03-01

    LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials. PMID:26413683

  14. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    Science.gov (United States)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  15. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3-δ

    Science.gov (United States)

    Dong, Feifei; Ni, Meng; He, Wei; Chen, Yubo; Yang, Guangming; Chen, Dengjie; Shao, Zongping

    2016-09-01

    The B-site substitution with the minor amount of tin in BaFeO3-δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3-δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm-2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

  16. Evidence of the Current Collector Effect: Study of the SOFC Cathode Material Ca3Co4O9+d

    NARCIS (Netherlands)

    Rolle, A.; Thoréton, V.; Rozier, P.; Capoen, E.; Mentré, O.; Boukamp, B.A.; Daviero-Minaud, S.

    2012-01-01

    In the study of the performance of solid oxide fuel cell (SOFC) electrodes, the possible influence of the applied current collector is often not mentioned or recognized. In this article, as part of an optimization study of the potentially attractive Ca3Co4O9+δ cathode material (Ca349), special atten

  17. Estimation of the Efficiency of Material Injection into the Reflex Discharge by Sputtering the Cathode Material

    CERN Document Server

    Kovtun, Yu V; Skibenko, A I; Yuferov, V B

    2012-01-01

    The processes of injection of a sputtered-and-ionized working material into the pulsed reflex discharge plasma have been considered at the initial stage of dense gas-metal plasma formation. A calculation model has been proposed to estimate the parameters of the sputtering mechanism for the required working material to be injected into the discharge. The data obtained are in good accordance with experimental results.

  18. THE EFFECTS OF CARBON NANO-COATING ON Li(Ni0.8Co0.15Al0.05)O2 CATHODE MATERIAL USING ORGANIC CARBON FOR Li-ION BATTERY

    OpenAIRE

    JEONG-HUN JU; YOUNG-MIN CHUNG; YU-RIM BAK; MOON-JIN HWANG; KWANG-SUN RYU

    2010-01-01

    Carbon nano-coated LiNi0.8Co0.15Al0.05O2/C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the pr...

  19. Cathodic electrophoretic deposition of bismuth oxide (Bi2O3) coatings and their photocatalytic activities

    International Nuclear Information System (INIS)

    Graphical abstract: Bismuth oxide (Bi2O3) coating has been prepared by cathodic electrophoretic deposition method and exhibits high photocatalytic activities for the degradation of Rhodamine B. - Highlights: • The nano-Bi2O3 coatings have been firstly successfully fabricated by EPD method. • The EPD deposition mechanism of Bi2O3 coatings is firstly given. • Deposition dynamics are investigated by regulating different deposition times and applied field strengths in detail. • Obtained coating show great photocatalytic activities for the degradation of Rhodamine B. - Abstract: In this study, cathodic electrophoretic deposition (EPD), a low cost, one-step and flexible method, has been successfully developed to prepare bismuth oxide (Bi2O3) coatings. Stable suspensions consisted of isopropyl alcohol and trace additive-polyethyleneimine. Deposition was achieved on the cathode at applied field strengths of 5–25 V mm−1 using a total solids loading of 0.5–2 g L−1 at ambient temperature and pressure. The deposition mechanism of Bi2O3 coatings was firstly given, and deposition kinetics were investigated in detail. The deposits were characterized qualitatively by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) observation, atomic force microscope (AFM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis, respectively. Moreover, the photocatalytic activities of obtained coatings were evaluated through degradation of Rhodamine B under ultraviolet and visible light irradiation

  20. Nickel sulfide synthesized by ball milling as an attractive cathode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Nickel sulfide (NiS) powders were prepared by ball milling and melting as cathode materials for a lithium rechargeable battery which was charged and discharged at room temperature (30 deg. C). The NiS powders prepared by melting were composed of several phases such as Ni3S2, Ni7S6, NixS6, and Ni3S4, as derived from XRD. In order to synthesize a homogeneous nickel sulfide (NiS) phase, ball milling (BM) was adopted. A homogeneous NiS phase was easily formed after ball milling up to 12 h under an Ar atmosphere. The ball milled NiS particles were relatively large compared to those of the starting materials and they had a nanocrystalline structure. The initial discharge capacity of the NiS positive electrode prepared by ball milling is 580 mAh/g-NiS, at 1.4 V vs. Li/Li+. The NiS powders synthesized by ball milling show a better cycling property than NiS prepared by melting and also had a better rate capability. It exhibited 87% of its theoretical capacity at a current rate of 2C, comparable with that of 1/6C. This may be related with the small sized grains of NiS prepared by ball milling

  1. Electrochemical investigation of Li-excess layered oxide cathode materials/mesocarbon microbead in 18650 batteries

    International Nuclear Information System (INIS)

    The electrochemical performance of the 18650 lithium-ion batteries for layered Li-excess oxide Li1.144Ni0.136Co0.136Mn0.544O2(LNCMO) cathode material and mesocarbon microbead (MCMB) anode material is investigated. The battery shows an excellent rate capability with the capacity of 227 mAh g−1 at 8 C-rate (the cut-off voltage is 4.5 V). Furthermore, it exhibits excellent cycle performance that the capacity retention over 300 cycles in the voltage ranges of 2.5-4.5 V (vs. MCMB) and at 0.2 C-rate is about 85%. Although the medium voltage of the battery greatly reduces during the first 30 cycles, it keeps stable in the following cycles. The mechanisms of the capacity fade and voltage decay are also studied based on energy dispersive spectrometry, X-ray photoelectron spectroscopy, charge-discharge curves, and dQ/dV plots

  2. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales. PMID:24670975

  3. Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors

    International Nuclear Information System (INIS)

    Highlights: • MCMB with the optimal pre-lithiation capacity as negative electrode in LIC. • The capacity design of cathode affects the electrochemical performance of LIC. • The optimal designed capacity of positive electrode has been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated mesocarbon microbeads (MCMB) anode. The effect of AC cathode capacity design on the electrochemical performance of LIC is investigated by the galvanostatic charging-discharging and electrochemical impedance tests. As the designed capacity of AC positive electrode is lower than 50 mAh g−1, the working potential of negative electrode is always in the low and stable plateau, which is conductive to the sufficient utilization and the working potential stability of positive electrode. When the designed capacity of positive electrode is higher than 50 mAh g−1, the instability of negative electrode directly causes the reduced utilization and shortened working potential range of the positive electrode, which is responsible for the capacity attenuation and cycle performance deterioration of LIC. The positive electrode capacity design can realize the optimization of electrochemical performance of LIC. LIC50 exhibits the optimal electrochemical performance, high energy density up to 92.3 Wh kg−1 and power density as high as 5.5 kW kg−1 (based on active material mass of two electrodes), excellent capacity retention of 97.0 % after 1000 cycles. The power density and cycle performance of LIC can be further improved by reducing the AC positive electrode designed capacity

  4. Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    O'Toole, Alexander W.

    In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.

  5. A Bragg curve counter with an active cathode to improve the energy threshold in fragment measurements

    International Nuclear Information System (INIS)

    We have developed a Bragg curve counter (BCC) equipped with an active cathode to extend the energy acceptance to lower energies than for a conventional BCC to measure differential cross-sections of fragment production reactions induced by tens of MeV protons. The signal from the active cathode providing the timing signal of fragment incidence and the time difference signal between the cathode and anode gives information on the fragment range in the BCC on the basis of electron drift time. Utilization of the range information made possible identification of fragments less than 0.5 MeV/u that is lower than the identification threshold of a conventional BCC technique. After investigations on fundamental properties of a newly constructed BCC using heavy ion beams and alpha-particles, this method was applied successfully to a fragment production measurement for 70 MeV proton-induced reactions on carbon. With this technique, the energy threshold of the BCC was improved without introducing an additional detector or energy loss

  6. Structure of electrolyte decomposition products on high voltage spinel cathode materials determined by in situ neutron reflectometry

    Science.gov (United States)

    Browning, Jim; Veith, Gabriel; Baggetto, Loic; Dudney, Nancy; Tenhaeff, Wyatt

    2012-02-01

    Interfacial reactions on electrical energy storage (EES) materials mediate their stability, durability, and cycleablity. Understanding these reactions in situ is difficult since they occur at the liquid-solid interface of an optically absorbing material that hinders the use of techniques such as infra-red spectroscopy. Furthermore, since the interfaces involve liquids classic vacuum-based analytical methods can only probe reaction products, which are stable under vacuum. Here, we present the results of an in situ neutron reflectometry study detailing the formation of a thick solid-electrolyte interphase (SEI) on a high voltage spinel cathode material. The cathode/electrolyte system used in this study is a LiMn1.5Ni0.5O4 thin film subjected to a 1.2 molar LiPF6 in 1:1 ethylene carbonate - dimethyl carbonate electrolyte solution.

  7. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer.

    Science.gov (United States)

    Lee, Yoon-Sung; Shin, Won-Kyung; Kannan, Aravindaraj G; Koo, Sang Man; Kim, Dong-Won

    2015-07-01

    We demonstrate the effectiveness of dual-layer coating of cathode active materials for improving the cycling performance and thermal stability of lithium-ion cells. Layered nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material was synthesized and double-layer coated with alumina nanoparticles and poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol). The lithium-ion cells assembled with a graphite negative electrode and a double-layer-coated LiNi0.6Co0.2Mn0.2O2 positive electrode exhibited high discharge capacity, good cycling stability, and improved rate capability. The protective double layer formed on the surface of LiNi0.6Co0.2Mn0.2O2 materials effectively inhibited the dissolution of Ni, Co, and Mn metals from cathode active materials and improved thermal stability by suppressing direct contact between electrolyte solution and delithiated Li(1-x)Ni0.6Co0.2Mn0.2O2 materials. This effective design strategy can be adopted to enhance the cycling performance and thermal stability of other layered nickel-rich cathode materials used in lithium-ion batteries. PMID:26083766

  8. Influence of the cold cathode material on the operating mode of the pulse high-current vacuum diode in a microsecond range

    International Nuclear Information System (INIS)

    The present work is aimed at the description of experimental results on the drop fraction of high-power electrical vacuum discharge and analysis of processes,which take place in cold cathodes working in microsecond range of pulses,and also on the influence of the material of a cold cathode on the operating mode of the pulse high-current vacuum diode

  9. Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    The nitroxide radical polymer, poly (4-vinyloxy-2,2,6,6-tetramethyl-piperidine-N-oxyl) (PTVE), is a promising cathode material for greener and sustainable rechargeable Li batteries, but exhibits low Li electroactivity due to its poor electronic conductivity. Nanocomposite of PTVE and graphene was herein synthesized via a facile co-deposition method, and investigated with fourier transform infrared spectroscopy, scanning electron microscopy, electron spin resonance spectra, thermogravimetric analysis, cyclic voltammograms and galvanostatic charge–discharge techniques. The as-synthesized PTVE/graphene nanocomposite shows much improved Li electroactivities with a reversible one by one two-electron process redox reaction in the potential limits of 2.5–3.0 V and 3.5–3.7 V vs Li/Li+, respectively. A high specific capacity of 261 mAh g−1 close to the theoretical capacity of PTVE based on the two-electron redox reaction (270 mAh g−1) is obtained in the nanocomposite. The nanocomposite also exhibits excellent rate capability (up to 200 C) and long cycle life (up to 20,000 cycles) compared with pristine PTVE. The superior electrochemical properties benefit from the intrinsic fast redox reaction of nitroxide radicals with the help of unlimited electron transport via the 3D networks of graphene, as well as the good chemical and structural stabilities of PTVE which are also strengthened by the elastic graphene networks.

  10. High performance LiV3O8 cathode materials prepared by spray-drying method

    International Nuclear Information System (INIS)

    Layered LiV3O8 as promising cathode material for rechargeable lithium-ion batteries has been efficiently synthesized by an improved spray-drying method followed by heating at different temperatures. Results of X-ray diffraction, scanning electron microscopy, charge–discharge test, cyclic voltammogram and electrochemical impedance spectroscopy indicate that the sample heat-treated at 300 °C shows the best electrochemical performance. The LiV3O8 obtained at 300 °C displays a maximum discharge capacity of 338.9 mAh g−1 at current density of 25 mA g−1 and after 20 cycles, a discharge capacity with 330.5 mAh g−1 is obtained. Most important is that it displays an excellent cycling stability at large current density. It exhibits high discharge capacity of 251 mA g−1 at current density of 125 mA g−1 after 50 cycles.

  11. Preparation of lamellar carbon matrix for sulfur as cathode material of lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Sulfur is a promising cathode material for lithium batteries as it has high theoretical specific capacity and low cost. However, practical electrochemical performance of lithium-sulfur batteries needs to be improved. In this work, a new method is described to prepare carbon matrix for sulfur to improve electrochemical properties of sulfur electrodes. The carbon matrix is prepared by deoxidizing carbon precursor synthesized by carbonizing sucrose with concentrated sulfuric acid. Carbon matrix-sulfur composite has been characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared. Results indicate that carbon matrix-sulfur composite is composed of lamellas. The lamella contains a layer of carbon coating on the outside and chemical bonds of C-S. The formation of C-S bonds is promoted by deoxidizing carbon precursor. The carbon matrix-sulfur electrode exhibits improved discharge properties, which results from the appropriate structure. Carbon coating and C-S bonds confine sulfur and maintain contact between sulfur species and conductive carbon matrix

  12. Structural and morphological studies of manganese-based cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Manganese cathode nanomaterials were successfully obtained by modified sol–gel method. • Crystallinity of the powders was confirmed by various structural method. • AFM and Raman spectroscopy showed that LiMnPO4 is promising material for LIBs. - Abstract: Nanocrystalline powders: lithium-manganese oxide (LiMn2O4) of spinel and lithium-manganese phosphate (LiMnPO4) of olivine structure were synthesized by a modified sol–gel method. In this synthesizing process, lithium and manganese salts and complexing agent were used as reactants. The obtained powders were characterized by a number of methods: X-ray powder diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), atomic force microscopy (AFM) and Raman spectroscopy. The mean sizes of crystallites were about 30 nm for LiMn2O4 and 60 nm for LiMnPO4 nanoparticles. The influence of crystallographic structure on the stability of two manganese compounds was studied. The correlation between the structural and morphological results of spinel LiMn2O4 and olivine LiMnPO4 properties was examined for the first time in this work

  13. Excellent cycling stability and superior rate capability of a graphene-amorphous FePO4 porous nanowire hybrid as a cathode material for sodium ion batteries

    Science.gov (United States)

    Yang, Gaoliang; Ding, Bing; Wang, Jie; Nie, Ping; Dou, Hui; Zhang, Xiaogang

    2016-04-01

    A porous nanowire material consisting of graphene-amorphous FePO4 was investigated as an advanced cathode material for sodium ion batteries for large-scale applications. This hybrid cathode material showed excellent cycling performance and superior rate capability, which were attributed to the porous nanowire structure and the existence of graphene.A porous nanowire material consisting of graphene-amorphous FePO4 was investigated as an advanced cathode material for sodium ion batteries for large-scale applications. This hybrid cathode material showed excellent cycling performance and superior rate capability, which were attributed to the porous nanowire structure and the existence of graphene. Electronic supplementary information (ESI) available: Experimental section; SEM images, BET, XPS spectrum, TG curve and EIS spectra of the samples; the comparison of electrochemical performance with the reported results. See DOI: 10.1039/c6nr00409a

  14. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell.

    Science.gov (United States)

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca(3)Co(2)O(6) (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm(-2) is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  15. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    Science.gov (United States)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  16. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    Science.gov (United States)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  17. One-step microwave synthesized core-shell structured selenium@carbon spheres as cathode materials for rechargeable lithium batteries.

    Science.gov (United States)

    Guo, Jing; Wang, Qingsong; Qi, Chao; Jin, Jun; Zhu, Yingjie; Wen, Zhaoyin

    2016-04-12

    A core-shell structured selenium@carbon composite material was obtained by a facile one-step microwave synthesis method. The uniform carbon shells coated on selenium spheres greatly minimized the shuttle effect of Li-Se cells. The morphology analysis of the cathodes after different cycles revealed that the Se cores were perfectly confined inside the unbroken C shells all through the 100 cycles. PMID:27030554

  18. Electrochemical characterization of manganese oxide cathode materials based on Na 0.4MnO 2

    Science.gov (United States)

    Hu, Felix; Doeff, Marca M.

    Cathode materials for lithium rechargeable batteries were prepared from Na 0.4MnO 2 by solution and molten salt ion-exchanges. The former process results in partial replacement of sodium while the latter results in complete exchange. The discharge characteristics depend upon the sodium content, with the partially lithiated material exhibiting hysteresis in the charge/discharge profile and differential capacity plots from stepped potential experiments. For the fully lithiated material, a complex voltage profile with several distinct plateaus corresponding to several two-phase regions is observed. No evidence of spinel formation during ion-exchange or electrochemical cycling is seen for this system.

  19. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors

    Science.gov (United States)

    Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R.

    2014-05-01

    Nanowire Na0.35MnO2 was prepared by a simple and low energy consumption hydrothermal method; its electrochemical performance as a cathode material for aqueous asymmetric supercapacitors in Na2SO4 solution was investigated. Due to the nanowire structure its capacitance (157 F g-1) is much higher than that of the rod-like Na0.95MnO2 (92 F g-1) from solid phase reaction although its sodium content is lower. When it is assembled into an asymmetric aqueous supercapacitor using activated carbon as the counter electrode and aqueous 0.5 mol L-1 Na2SO4 electrolyte solution, the nanowire Na0.35MnO2 shows an energy density of 42.6 Wh kg-1 at a power density of 129.8 W kg-1 based on the total weight of the two electrode material, higher than those for the rod-like Na0.95MnO2, with an energy density of 27.3 Wh kg-1 at a power density of 74.8 W kg-1, and that of LiMn2O4. The new material presents excellent cycling behavior even when dissolved oxygen is not removed from the electrolyte solution. The results hold great promise for practical applications of this cathode material since sodium is much cheaper than lithium and its natural resources are rich.

  20. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Wachsman

    2006-09-30

    This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

  1. LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1 as a Cathode Active Material for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    N. Kalaiselvi

    2005-01-01

    Full Text Available LiMn2O4 is an attractive 4 V positive material in lithium rechargeable batteries owing to its favourable electrochemical characteristics besides its economic and environmental advantages. However, problems of limited cyclability, especially at elevated temperatures, have limited the utility and commercialization of this cathode material. Stabilization of the LiMn2O4 spinel structure has been sought to be realized by doping the spinel with suitable cations. In this paper, the results of an exploratory research on the capacity and cyclability of LiMn2O4 cathodes simultaneously doped with Cr3+ and Mg2+ are reported. LiMg y1Cr y2Mn2-y1-y2O4 spinels with y1 = 0.00, 0.05, 0.10, 0.20, 0.25 and 0.30 and y2 (0.3 - y1 were synthesized by a solid-state fusion method. While Mg2+ bestows a positive effect on cyclability, it leads to a considerable reduction in capacity due to the oxidation of Mn3+ to the inactive Mn4+ as a result of charge compensation. Cr3+ on the other hand, leads only to half as much reduction in capacity while according added stability to the structure. Any expectation of a synergistic effect by Cr3+ and Mg2+ ions was belied by these findings.

  2. Chemical stability of La2O3 in La2O3-Mo cathode materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical stability of La2O3 in carbonized and uncarbonized La2O3-Mo cathodes was studied by in-situ XPS analysis. Experimental results show that chemical stability of La2O3 is not good enough. In vacuum and at high temperature, oxygen can be dissociated from the lattice of La2O3 in the uncarbonized La2O3-Mo cathode. Binding energy shifts of La?3d5/2 and La?3d3/2 core peaks, and obvious decrease of satellite peak intensity in La?3d doublet with increasing temperature show that metallic La appears at carbonized La2O3-Mo cathode surface at high temperature.

  3. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    International Nuclear Information System (INIS)

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g−1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs. (paper)

  4. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.

    Science.gov (United States)

    Peng, Manhua; Li, Biao; Yan, Huijun; Zhang, Dongtang; Wang, Xiayan; Xia, Dingguo; Guo, Guangsheng

    2015-05-26

    Sodium-ion batteries are a very promising alternative to lithium-ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long-term stability still hinder their practical application. A cathode material, formed of RuO2 -coated Na3 V2 O2 (PO4 )2 F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na-ion batteries, a reversible capacity of 120 mAh g(-1) at 1 C and 95 mAh g(-1) at 20 C can be achieved after 1000 charge-discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3 V2 O2 (PO4 )2 F nanowires. PMID:25864686

  5. Hydrothermal Synthesis and Electrochemical Characterization of a-MnO2 Nanorods as Cathode Material for Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Yanyan Yang, Lifen Xiao, Yanqiang Zhao and Fengyun Wang

    2008-01-01

    Full Text Available One dimensional(1-D a- MnO2 nanorods with diameters of 10~20nm are directly prepared by hydrothermal treatment of g- MnO2. When used as lithium intercalation cathode, the a- MnO2 nanorods have delivered specific capacity of 220, 189 and152mAh/g at the current of 10, 50, and 100mA/g respectively. Also, the nanorods have exhibited quite good cycling stability with a cycling capacity of 130mAh/g after the 25th cycle. The results demonstrated a possible use of the a-MnO2 nanorods as a competitive cathode material for rechargeable lithium battery.

  6. Solid-state synthesis and electrochemical properties of SmVO4 cathode materials for low temperature SOFCs

    Institute of Scientific and Technical Information of China (English)

    SUN Xueli; LI Song; SUN Juncai

    2006-01-01

    A new cathode material fabricated by solid state reaction method was reported. The SmVO4 powder was obtained by firing the mixture of Sm2O3 and V2O5 powders in the temperature range of 700-1200 ℃. Its structure was identified by X-ray diffraction method and the electrochemical properties of SmVO4 as cathodes for solid oxide fuel cells (SOFCs) were investigated in single unit cell at the temperature ranged from 450-550 ℃. The results of the single fuel cell unit show that the maximum current densities are 641, 797, 688 mA·cm-2 and the maximum power output are 165, 268, 303 mW·cm-2 and the open circuit voltage are 1.04,0.96,0.92Vat 450, 500 and 550 ℃, respectively.

  7. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  8. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  9. Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery

    OpenAIRE

    Maowen Xu; Min Jia; Cuiping Mao; Sangui Liu; Shujuan Bao; Jian Jiang; Yang Liu; Zhisong Lu

    2016-01-01

    A novel approach was developed to prepare porous carbon materials with an extremely high surface area of 2459.6 m2g−1 by using Aspergillus flavus conidia as precursors. The porous carbon serves as a superior cathode material to anchor sulfur due to its uniform and tortuous morphology, enabling high capacity and good cycle lifetime in lithium sulfur-batteries. Under a current rate of 0.2 C, the carbon-sulfur composites with 56.7 wt% sulfur loading deliver an initial capacity of 1625 mAh g−1, w...

  10. Mechanism of high luminous efficacy in plasma display panel with high secondary electron emission coefficient cathode material analyzed through three-dimensional fluid model simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ohyung; Lee, Tae-Ho; Cheong, Hee-Woon; Whang, Ki-Woong [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical Engineering and Computer Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Bae, Hyun Sook; Jung, Hae-Yoon [Samsung Electronics Co. Ltd., Hwaseong, 445-701 (Korea, Republic of)

    2011-08-15

    The mechanism to realize high luminous efficacy in a plasma display panel fabricated with a cathode material possessing a high secondary electron emission coefficient ({gamma}) for Ne and Xe ions was studied via three-dimensional numerical simulation. When a high {gamma} cathode material is used, the increased electron heating efficacy is responsible for increasing vacuum ultraviolet (VUV) efficacy with 10% Xe content gas. However, the continued availability of sufficient secondary electrons during the dynamic moving phase of the cathode sheath in which the electric field remains weakened causes increasing VUV efficacy with 30% Xe content gas. It was found that the improvement of the luminous efficacy of the plasma display panel with a high {gamma} cathode material is maximized under the condition of high Xe content gas because of the simultaneous increase of the electron heating efficacy and Xe excitation efficacy.

  11. Pt–Au/C cathode with enhanced oxygen-reduction activity in PEFCs

    Indian Academy of Sciences (India)

    G Selvarani; S Vinod Selvaganesh; P Sridhar; S Pitchumani; A K Shukla

    2011-04-01

    Carbon-supported Pt–Au (Pt–Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt–Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt–Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt–Au/C catalysts, (3:1) Pt–Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt–Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0.6 V with (3:1) Pt–Au/C cathode delivers a maximum power-density of 0.65 W/cm2 in relation to 0.53 W/cm2 delivered by the PEFC with pristine carbon-supported Pt cathode.

  12. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Daisuke Asakura

    2016-03-01

    Full Text Available We evaluate the utilities of fluorescence-yield (FY modes in soft X-ray absorption spectroscopy (XAS of several cathode materials for Li-ion batteries. In the case of total-FY (TFY XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  13. Microscopic and spectroscopic properties of hydrothermally synthesized nano-crystalline LiFePO4 cathode material

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of nano-crystalline LiFePO4 cathode by hydrothermal synthesis. • Microstructural properties by XRD, FESEM and TEM. • Insights of chemical purity and binding nature through XPS, FTIR and Raman. • Stable electrochemical performance of nano-crystalline LiFePO4 cathode for lithium ion battery application. - Abstract: LiFePO4 is one of the most promising cathode materials as it offers low cost, high abundance, appropriate theoretical capacity and environmental friendly. In the present investigation, nano-crystalline LiFePO4 has been synthesized by hydrothermal method and studied spectroscopic and microscopic properties. The XRD and TEM studies exhibited the formation of orthorhombic structure with Pnma space group. The X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy studies confirm the phase purity of the LiFePO4 powder. The electrochemical characteristics of LiFePO4 are measured in non-aqueous region. It exhibited a good reversible cyclic voltammogram on sweeping the potential upward and downward. The chronopotentiometric measurements performed at various C-rates and the cell exhibited a discharge capacity of 143 mA h/g at 0.1 C with good cycling stability

  14. Micro-nano structure composite cathode material with high sulfur loading for advanced lithium–sulfur batteries

    International Nuclear Information System (INIS)

    ABSTRACT: A micro-nano structure based on polydopamine-grafted hollow carbon nanofiber–sulfur composite (HCNF@PDA–S) is designed as a cathode material for effective trapping of sulfur and polysulfides for lithium–sulfur batteries. Hollow carbon nanofiber@polydopamine (HCNF@PDA) micro-nano structure hybrid is first prepared by an in-situ polymerization dopamine monomer decorating on the surface of HCNFs and then elemental sulfur is infiltrated into the HCNF@PDA hybrid nanostructure by thermal treatment. The obtained HCNF@PDA–S composite shows the micro-nano structure based on the micron-sized hollow carbon nanofiber in length and nano-sized polydopamine grafted on the outer surfaces of the HCNFs with homogeneously distribution of sulfur. Compared with the HCNF–S composite, HCNF@PDA–S composite with a high sulfur content of approximately 80 wt% exhibits better electrochemical performance, which delivers initial discharge capacity of 800 mAh g−1 and maintains 530 mAh g−1 after 200 cycles at 0.5 C rate. The enhancements of electrochemical performances may be attributed to the unique micro-nano hybrid structure based on HCNFs and PDA coating layer, in which the micro-sized HCNFs offer the electronic conductivity and provide a firm porous network of the cathode tolerating the volume expansion of sulfur cathode, and nano-sized PDA layers effectively prevent the dissolution of the polysulfides into the electrolyte

  15. Microscopic and spectroscopic properties of hydrothermally synthesized nano-crystalline LiFePO{sub 4} cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Rosaiah, P.; Hussain, O.M., E-mail: hussainsvu@gmail.com

    2014-11-25

    Highlights: • Synthesis of nano-crystalline LiFePO{sub 4} cathode by hydrothermal synthesis. • Microstructural properties by XRD, FESEM and TEM. • Insights of chemical purity and binding nature through XPS, FTIR and Raman. • Stable electrochemical performance of nano-crystalline LiFePO{sub 4} cathode for lithium ion battery application. - Abstract: LiFePO{sub 4} is one of the most promising cathode materials as it offers low cost, high abundance, appropriate theoretical capacity and environmental friendly. In the present investigation, nano-crystalline LiFePO{sub 4} has been synthesized by hydrothermal method and studied spectroscopic and microscopic properties. The XRD and TEM studies exhibited the formation of orthorhombic structure with Pnma space group. The X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy studies confirm the phase purity of the LiFePO{sub 4} powder. The electrochemical characteristics of LiFePO{sub 4} are measured in non-aqueous region. It exhibited a good reversible cyclic voltammogram on sweeping the potential upward and downward. The chronopotentiometric measurements performed at various C-rates and the cell exhibited a discharge capacity of 143 mA h/g at 0.1 C with good cycling stability.

  16. Ab initio investigation of the surface properties of dispenser B-type and scandate thermionic emission cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig

    2009-05-01

    Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.

  17. Effect of microstructure on low temperature electrochemical properties of LiFePO4/C cathode material

    International Nuclear Information System (INIS)

    Graphical abstract: The low temperature performance of Li-ion batteries and LiFePO4/C composites was discussed. A conclusion that cathode material is the main limitation for the low temperature performance was come up, by comparing the low temperature performance of 18650 Li-ion batteries with LiMn2O4, LiNi1/3Co1/3Mn1/3O2 and LiFePO4/C as cathode materials. The low temperature performance results indicate the LiFePO4/C microstructure is the main factor influencing the low temperature performance of LiFePO4. A new LiFePO4/C with pomegranate-like spherical structure was proposed in this paper, which shows superior low temperature performance, which can be attributed to its uniform fine primary particles and smaller primary particles. - Highlights: • Low temperature performance of Li-ion battery and LiFePO4/C composite was discussed. • Cathode material mainly decided the low temperature performance of Li-ion battery. • LiFePO4/C microstructure mainly affects its low temperature performance. • Pomegranate-like spherical structure LiFePO4/C has good low temperature performance. - Abstract: The low-temperature electrochemical performance of Li-ion batteries is mainly determined by the choice of cathode material, as evident from a comparison of the low-temperature electrochemical performance of the 18650 batteries with the LiMn2O4, LiNi1/3Co1/3Mn1/3O2, and LiFePO4/C as the cathode, respectively, at −20 °C. LiFePO4/C materials with different morphologies and microstructures were prepared by different methods. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatic charge–discharge measurements and EIS. The low-temperature performance of the samples and those of the coin cells utilizing the materials as cathodes were measured. The results indicate that the microstructure of LiFePO4/C is a key factor determining the low-temperature performance of LiFePO4/C. A new type of

  18. Evaluation of Ca3(Co,M2O6 (M=Co, Fe, Mn, Ni as new cathode materials for solid-oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Fushao Li

    2015-10-01

    Full Text Available Series compounds Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni with hexagonal crystal structure were prepared by sol–gel route as the cathode materials for solid oxide fuel cells (SOFCs. Effects of the varied atomic compositions on the structure, electrical conductivity, thermal expansion and electrochemical performance were systematically evaluated. Experimental results showed that the lattice parameters of Ca3(Co0.9Fe0.12O6 and Ca3(Co0.9Mn0.12O6 were both expanded to certain degree. Electron-doping and hole-doping effects were expected in Ca3(Co0.9Mn0.12O6 and Ca3(Co0.9Ni0.12O6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity. Thermal expansion coefficients (TEC of Ca3(Co0.9M0.12O6 were measured to be distributed around 16×10−6 K−1, and compositional elements of Fe, Mn, and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials. By using Ca3(Co0.9M0.12O6 as the cathodes operated at 800 °C, the interfacial area-specific resistance varied in the order of M=Cocathode materials for SOFCs.

  19. Influence of Parameters of the Glow Discharge on Change of Structure and the Isotope Composition of the Cathode Materials

    Science.gov (United States)

    Savvatimova, I. B.; Gavritenkov, D. V.

    Results of examinations of changes in structure, element, and isotope composition of cathodes after the glow discharge exposure in hydrogen, deuterium, argon, and xenon are submitted. The voltage of the discharge was less than 1000 V and the current was 5-150 mA. Samples before and after ions bombardment in the glow discharge were explored by the methods of mass spectrometry: the secondary ions (SIMS), the secondary ions with additional ionization of neutral sprayed particles (SNMS), spark (SMS), and thermo-ionization (TIMS), and also methods of energy dispersion X-ray spectral analysis (EDX). The alpha-, beta-, gamma- emission, and gamma- spectrometry for radioactive uranium specimens were also carried out before and after experiments in the glow discharge. Changes in structure, isotope, and element composition of the cathode samples depend on current density, integrated ions flow (fluence of ions), kind of irradiating ions and other experimental conditions. Attempts are made to estimate qualitatively and quantitatively the role of each of the parameters on intensity of the observed changes in cathode composition. It is shown that the maximum changes in structure, chemical and isotope composition of the cathode material occur in "hot points," such as craters from microexplosions, phase segregations, blisters and other new formations. Various methods of the analysis revealed that the basic elements Mg, O, Si, Al, and Ca with quantities up to per cents and more were prevailing in these zones and not found out before experiment. The greatest changes of the isotope relations were observed for iron, calcium, silicon, chromium after experiments with pulsing current. EDX method finds out the elements missing in the samples before experiment such as cadmium, strontium, tin. The isotopes with mass number 59 (Co 100%), 55 (Mn 100%), 45 (Sc 100%) are also not found in initial samples and background measurement by TIMS method. Results of changes in the element and isotope

  20. The influence of reduced graphene oxide on electrical conductivity of LiFePO{sub 4}-based composite as cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto; Abdullah, Mikrajuddin [Physics of Electronic Materials Research Division, Department of Physics, Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia); Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id [Physics of Electronic Materials Research Division, Department of Physics, Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia); Research Center for Nanoscience and Nanotechnology Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia)

    2016-02-08

    LiFePO{sub 4} is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g{sup −1}. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO{sub 4}-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO{sub 4}−based composite by varying mass of rGO in composition. Vibration of LiFePO{sub 4}-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO{sub 4} nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.

  1. Synthesis of nano structured particles for Li-ion cathodic and anodic materials obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    The development of the nano technology has contributed to improve the electrochemical properties in rechargeable batteries. The Spray Pyrolysis method allows to obtain nano structured materials with spherical morphology, narrow particle size distribution and compositional homogeneity. Nano structured particles have been prepared in this work to be used as anodic and cathodic materials in lithium-ion batteries. Among the cathodic materials, the Na-Si-Con (Li3Fe2(PO4)3) structure and the olivine (LiFePO4) phases have been synthesised. The Na-Si-Con iron phosphate favours the accommodation of the ion host, the diffusion and thermal stability. The olivine structure has an open three-dimensional network, favourable for hosting Lithium ions. The characterization by X ray diffraction, electron microscopy (scanning and transmission) and electron diffraction have allowed to identify a mix of crystalline phases of LiFePO4 (Olivine) and Li3Fe2(PO4)3 (Na-Si-Con). Thermal treatments produce porous particles. The tryphilite phase (olivine) appears after a thermal treatment at 800 degree centigrade/12h. Electrochemical results confirm the presence of the Na-Si-Con and olivine phases. Among the materials for being used as anode, the titanium oxides have been classified as good candidates as lithium ion host. The synthesis results in different experimental conditions for obtaining spherical and nano structured titanium oxide particles are presented. (Author)

  2. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    Science.gov (United States)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g−1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g−1 after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g−1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials. PMID:27480798

  3. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    Science.gov (United States)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g‑1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g‑1 after 100 cycles at 0.1 C 84.5% retention) and high rate capability (specific capacity of 301 mA h g‑1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  4. Graphene-Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium-Selenium Secondary Battery Applications.

    Science.gov (United States)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    In this study, graphene-selenium hybrid microballs (G-SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G-SeHMs thus prepared is investigated for use as cathode material in applications of lithium-selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g(-1) at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g(-1) after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g(-1) at 5 C). These electrochemical properties are attributed to the fact that the G-SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials. PMID:27480798

  5. Analysis of cathode materials of perovskite structure for solid oxide fuel cells, sofc s; Analisis de materiales catodicos de estructura perovskita para celdas de combustible de oxido solido, sofcs

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado F, J.; Espino V, J.; Avalos R, L. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Quimica, Santiago Tapia 403, Morelia, Michoacan (Mexico)

    2015-07-01

    Fuel cells directly and efficiently convert the chemical energy of a fuel into electrical energy. Of the various types of fuel cells, the solid oxide (Sofc), combine the advantages in environmentally benign energy generation with fuel flexibility. However, the need for high operating temperatures (800 - 1000 grades C) has resulted in high costs and major challenges in relation to the compatibility the cathode materials. As a result, there have been significant efforts in the development of intermediate temperature Sofc (500 - 700 grades C). A key obstacle for operation in this temperature range is the limited activity of traditional cathode materials for electrochemical reduction oxygen. In this article, the progress of recent years is discussed in cathodes for Sofc perovskite structure (ABO{sub 3}), more efficient than the traditionally used La{sub 1-x}Sr{sub x}MnO{sub 3-δ} (LSM) or (La, Sr) CoO{sub 3}. Such is the case of mixed conductors (MIEC) double perovskite structure (A A B{sub 2}O{sub 5+δ}) using different doping elements as La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, dy, Mn, among others, which could improve the operational performance of existing cathode materials, promoting the development of optimized intermediate temperature Sofc designs. (Author)

  6. Solvothermal synthesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Li2MnSiO4/C nanocomposite has been synthesized by the solvothermal method. • The particles of Li2MnSiO4/C are much smaller and more uniform. • The presence of Ni improves discharge capacity of Li2MnSiO4/C cathode material. • The initial discharge capacity of Ni-modified Li2MnSiO4/C is 274.5 mAh g−1 at 25 °C. - Abstract: Orthorhombic structure Li2MnSiO4/C with Pmn21 space group is synthesized by the solvothermal method. Carbon coating and Ni2+ doping are used to improve the electronic conductivity and the cycling performance of Li2MnSiO4 cathode material, respectively. The particles of Li2MnSiO4/C are much smaller and more uniform than those of Li2MnSiO4 due to the carbon coating. It is shown that Ni2+ has been reduced into metal Ni during the synthesis process. The synthesized Ni-modified Li2MnSiO4/C (denoted as (LMS@Ni)/C) cathode material exhibits better electrochemical performance in comparison with Li2MnSiO4/C, attributing to higher lithium ion diffusion coefficient as well as electronic conductivity. The initial discharge capacity of (LMS@Ni)/C is 274.5 mA h g−1 and the reversible capacity after 20 cycles is 119.8 mA h g−1 at 25 °C

  7. LiV3O8/Ag composite nanobelts with enhanced performance as cathode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Graphical abstract: As cathode material for lithium batteries, the LiV3O8/Ag nanobelts exhibit enhanced rate capability and good cyclic stability. A maximum specific discharge capacity of 247, 214, 175, 149, 124, 113 and 103 mA h g−1 can be achieved at the current densities of 50, 100, 300, 500, 1000, 1500 and 2000 mA g−1, respectively. Highlights: • LiV3O8 nanobelts anchored with Ag nanoparticles are prepared by a sol–gel route. • LiV3O8/Ag composite have greatly reduced the charger transfer resistance. • LiV3O8/Ag composite exhibit superior cyclic stability and good rate capability. • High specific capacity of 128 mA h g−1 is remained after 250 cycles at 1000 mA g−1. -- Abstract: Ag nanoparticles anchored LiV3O8 nanobelts have been synthesized via a facile sol–gel route. The as-prepared thin LiV3O8/Ag composite nanobelts have a thickness of several nanometers and a length of dozens of micrometers. The EDX result confirms the existence of Ag element in LVO/Ag composite and the uniform dispersion of Ag nanoparticle among the LVO/Ag composite. When it is evaluated as a cathode material for lithium batteries, the LiV3O8/Ag composite nanobelts exhibit excellent rate capability and long-term cyclic stability. A maximum specific discharge capacity of 247, 214, 175, 149, 124, 113 and 103 mA h g−1 is achieved at the current densities of 50, 100, 300, 500, 1000, 1500 and 2000 mA g−1, respectively. It exhibits no capacity fading after 250 cycles at the current density of 1 A g−1. The superior electrochemical performance indicates their promising application as cathode material in lithium ion batteries

  8. Effect of Transition Metal Ordering on the Electronic Properties of LiNi1 - y - xCoyMnxO2 Cathode Materials for Li-ion Batteries

    Science.gov (United States)

    Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team

    2015-03-01

    Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.

  9. Marine microbial fuel cell : use of stainless steel electrodes as anode and cathode materials

    OpenAIRE

    Dumas, Claire; Mollica, Alfonso; Féron, Damien; Basséguy, Régine; Etcheverry, Luc; Bergel, Alain

    2007-01-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cath...

  10. Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries

    OpenAIRE

    Tatsuhiko Yajima; Masashi Inamoto; Hideki Kurihara

    2013-01-01

    Multivalent cation rechargeable batteries are expected to perform well as high-capacity storage devices. Rechargeable magnesium batteries have an advantage in terms of resource utilization and safety. Here, we report on sulfur-doped vanadium pentoxide (S-V2O5) as a potential material for the cathodes of such a battery; S-V2O5 showed a specific capacity of 300 mAh·g−1. S-V2O5 was prepared by a method using a low-temperature plasma generated by carbon felt and a 2.45 GHz microwave generator. Th...

  11. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell

    OpenAIRE

    Tao Wei; Yun-Hui Huang; Rui Zeng; Li-Xia Yuan; Xian-Luo Hu; Wu-Xing Zhang; Long Jiang; Jun-You Yang; Zhao-Liang Zhang

    2013-01-01

    A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, ...

  12. A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode

    Science.gov (United States)

    Karthikeyan, K.; Amaresh, S.; Kim, K. J.; Kim, S. H.; Chung, K. Y.; Cho, B. W.; Lee, Y. S.

    2013-06-01

    For the first time, we report the possibility of utilizing Li2CoPO4F as a novel cathode material for hybrid capacitor applications. Li2CoPO4F powders were prepared by a conventional two-step solid state method. A hybrid cell was fabricated using Li2CoPO4F as the cathode along with activated carbon (AC) as the anode in 1 M LiPF6 dissolved in 1 : 1 EC/DMC electrolyte and its electrochemical properties were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge (C-D) techniques. The Li2CoPO4F/AC cell is capable of delivering a discharge capacitance of 42 F g-1 at 150 mA g-1 current density within 0-3 V region having excellent coulombic efficiency of over 99% even after 1000 cycles. Furthermore, the Li2CoPO4F/AC cell exhibited excellent rate performance with an energy density of ~24 W h kg-1 at 1100 mA g-1 current and maintained about 92% of its initial value even after 30 000 C-D cycles. Electrochemical impedance spectroscopy was conducted to corroborate the results that were obtained and described.For the first time, we report the possibility of utilizing Li2CoPO4F as a novel cathode material for hybrid capacitor applications. Li2CoPO4F powders were prepared by a conventional two-step solid state method. A hybrid cell was fabricated using Li2CoPO4F as the cathode along with activated carbon (AC) as the anode in 1 M LiPF6 dissolved in 1 : 1 EC/DMC electrolyte and its electrochemical properties were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge (C-D) techniques. The Li2CoPO4F/AC cell is capable of delivering a discharge capacitance of 42 F g-1 at 150 mA g-1 current density within 0-3 V region having excellent coulombic efficiency of over 99% even after 1000 cycles. Furthermore, the Li2CoPO4F/AC cell exhibited excellent rate performance with an energy density of ~24 W h kg-1 at 1100 mA g-1 current and maintained about 92% of its

  13. Barium Doped Li2FeSiO4 Cathode Material for Li-Ion Secondary Batteries.

    Science.gov (United States)

    Kim, Cheong; Yoo, Gi Won; Son, Jong Tae

    2015-11-01

    Barium-doped Li2Fe(1-x)Ba(x)SiO4 (x = 0, 0.01) cathode materials were synthesized by the sol-gel and electrospinning processes. The structures of the samples were confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The sizes and the morphologies of the particles and nanofibers were observed by field emission scanning electron microscopy and atomic force microscopy. The initial discharge capacity of Li2FeSiO4 particles was 28 mAh/g, Li2FeSiO4 nanofibers and barium (Ba)-doped Li2FeSiO4 nanofibers showed the discharge capacities of 78 and 85 mAh/g, respectively. The lithium-ion diffusion coefficients of Li2FeSiO4 particles, Li2FeSiO4 nanofibers and Ba-doped Li2FeSiO4 nanofibers were calculated 5.15 x 10-(16), 3.52 x 10(-16), and 2.27 x 10(-15) cm2/s, respectively. The Ba-doped Li2FeSiO4 cathode material showed the highest lithium-ion diffusion coefficient, and its electrochemical properties were better than that of the pristine material. PMID:26726598

  14. Lithium Diffusion and Magnetism in Battery Cathode Material LixNi1/3Co1/3Mn1/3O2

    International Nuclear Information System (INIS)

    We have studied low-temperature magnetic properties as well as high-temperature lithium ion diffusion in the battery cathode materials LixNi1/3Co1/3Mn1/3O2 by the use of muon spin rotation/relaxation. Our data reveal that the samples enter into a 2D spin-glass state below TSG ≈ 12 K. We further show that lithium diffusion channels become active for T ≥ Tdiff ∼ 125 K where the Li-ion hopping-rate [v(T)] starts to increase exponentially. Further, v(T) is found to fit very well to an Arrhenius type equation and the activation energy for the diffusion process is extracted as Ea ≈ 100 meV

  15. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    Science.gov (United States)

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0active material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  16. Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries

    International Nuclear Information System (INIS)

    We facilely fabricate hierarchical 3D microspheres consisting of 2D V2O5 (vanadium pentoxide) nanosheets by a low temperature hydrothermal method and use it to structure hierarchical 3D micro-/nano-LIBs (lithium ion batteries) cathode. This is a template-free and facile method easy for scale-up production of hierarchical 3D micro-/nano-structured V2O5 spheres beneficial for high performance LIBs applications. Such a facile method resulted hierarchical 3D micro-/nano-V2O5 possess many unique features good for LIBs: (1) 2D V2O5 nanosheets facilitate the Li+ diffusions and electron transports; (2) hierarchical 3D micro-/nano-cathode structure built up by V2O5 nanosheet spheres will lead to the close and sufficient contact between electrolytes and activate materials and at the same time will create buffer volume to accommodate the volume change during discharging/charging process; and (3) micro-scale V2O5 spheres are easy to result in high cell packing density beneficial for high power battery. As revealed by the experimental results, the micro-/nano-V2O5 electrode demonstrates high initial discharge and charge capacities with no irreversible loss, high rate capacities at different currents and long-lasting lifespan. The high-energy and high-power performances of the micro-/nano-V2O5 electrode is ascribed to the unique hierarchical micro-/nano-structure merits of V2O5 spheres as abovementioned. In view of the advantages of facile fabrication method and unique features of 3D micro-/nano-V2O5 spheres for high power and high energy LIB battery, it is of great significance to beneficially broaden the applications of high-energy and high-power LIBs with creating novel hierarchical micro-/nano-structured V2O5 cathode materials. - Highlights: • Hierarchical 3D micro-/nano-V2O5 spheres were facile fabricated by a template free hydrothermal method for LIBs cathode. • High energy and high power LIBs were resulted from many unique features. • Unique hierarchical 3D micro

  17. Preparation of spherical spinel LiCr_(0.04)Mn_(1.96)O_4 cathode materials based on the slurry spray drying method

    Institute of Scientific and Technical Information of China (English)

    JIANG Qinglai; HU Guorong; PENG Zhongdong; DU Ke; CAO Yanbing; TANG Daichun

    2009-01-01

    Regular spherical chromium doped spinel lithium manganese oxides (LiCr_(0.04)Mn_(1.96)O_4) with an average particle size of about 20 μm were prepared by the slurry spray drying process. The materials were compared with non-spherical LiCr_(0.04)Mn_(1.96)O_4 materials prepared by the common drying process, and all materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser parti-cle analyzer and Brunauer-Emmett-Teller (BET) specific surface area test. Electrochemical performances of these cathode materials were studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Li/LiCr_(0.04)Mn_(1.96)O_4 battery test. The results show that the spherical active material is single spinel structure, compact, and with narrow particle size distribution and low BET specific surface area. Compared with the non-spherical material, the spherical material prepared by the spray drying process shows a lower electrochemical impedance, a fewer electrochemical polarization and a better charge/discharge rate capability and capacity retention at elevated temperatures.

  18. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    International Nuclear Information System (INIS)

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  19. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials

    Science.gov (United States)

    Yeo, Jae-Seong; Yoo, Eun-Ji; Ha, Sang-Hyeon; Cheong, Dong-Ik; Cho, Sung-Baek

    2016-05-01

    To investigate the feasibility of scaling up bio-inspired organic materials as cathode materials in lithium ion batteries, large-sized pouch cells are successfully prepared via tape casting using lumichrome with an alloxazine structure and aqueous styrene butadiene rubber-carboxymethyl cellulose (SBR-CMC) binders. A battery module with a two-in-series, six-in-parallel (2S6P) configuration is also successfully fabricated and is able to power blue LEDs (850 mW). Lumichrome shows no structural changes during the fabrication processes used to produce the positive electrode. The large-sized pouch cells show two sets of cathodic and anodic peaks with average potentials of 2.58 V and 2.26 V vs. Li/Li+, respectively. The initial discharge capacities are 142 mAh g-1 and 148 mAh g-1 for ethylene carbonate-dimethyl carbonate (EC-DMC) and tetraethylene glycol dimethyl ether (TEGDME) electrolytes, respectively, similar to that of a coin cell (149 mAh g-1). The EC-DMC-injected pouch cells exhibit higher rate performance and cyclability than the TEGDME-injected ones. The TEGDME electrolyte is not suitable for lithium metal anodes because of electrolyte decomposition and subsequent cell swelling.

  20. Enhancement of electrochemical behavior of nanostructured LiFePO4/Carbon cathode material with excess Li

    Science.gov (United States)

    Bazzi, K.; Nazri, M.; Naik, V. M.; Garg, V. K.; Oliveira, A. C.; Vaishnava, P. P.; Nazri, G. A.; Naik, R.

    2016-02-01

    We have synthesized carbon coated LiFePO4 (C-LiFePO4) and C-Li1.05FePO4 with 5 mol% excess Li via sol-gel method using oleic acid as a source of carbon for enhancing electronic conductivity and reducing the average particle size. Although the phase purity of the crystalline samples was confirmed by x-ray diffraction (XRD), the 57Fe Mössbauer spectroscopy analyses show the presence of ferric impurity phases in both stoichiometric and non-stoichiometric C-LiFePO4 samples. Transmission electron microscopy measurements show nanosized C-LiFePO4 particles uniformly covered with carbon, with average particle size reduced from ∼100 nm to ∼50 nm when excess lithium is used. Electrochemical measurements indicate a lower charge transfer resistance and better electrochemical performance for C-Li1.05FePO4 compared to that of C-LiFePO4. The aim of this work is to systematically analyze the nature of impurities formed during synthesis of LiFePO4 cathode material, and their impact on electrochemical performance. The correlation between the morphology, charge transfer resistance, diffusion coefficient and electrochemical performance of C-LiFePO4 and C- Li1.05FePO4 cathode materials are discussed.

  1. First-principles investigation of the structural characteristics of LiMO2 cathode materials for lithium secondary batteries

    Science.gov (United States)

    Kim, Yongseon

    2015-11-01

    The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.

  2. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    Science.gov (United States)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  3. Hierarchical modeling of active materials

    International Nuclear Information System (INIS)

    Intelligent (or smart) materials are increasingly becoming key materials for use in actuators and sensors. If an intelligent material is used as a sensor, it can be embedded in a variety of structure functioning as a health monitoring system to make their life longer with high reliability. If an intelligent material is used as an active material in an actuator, it plays a key role of making dynamic movement of the actuator under a set of stimuli. This talk intends to cover two different active materials in actuators, (1) piezoelectric laminate with FGM microstructure, (2) ferromagnetic shape memory alloy (FSMA). The advantage of using the FGM piezo laminate is to enhance its fatigue life while maintaining large bending displacement, while that of use in FSMA is its fast actuation while providing a large force and stroke capability. Use of hierarchical modeling of the above active materials is a key design step in optimizing its microstructure for enhancement of their performance. I will discuss briefly hierarchical modeling of the above two active materials. For FGM piezo laminate, we will use both micromechanical model and laminate theory, while for FSMA, the modeling interfacing nano-structure, microstructure and macro-behavior is discussed. (author)

  4. Electrodeposited Pd-Ni-Mo film as a cathode material for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    A Pd-Ni-Mo film was prepared on stainless steel substrate as a novel electrode material for hydrogen evolution reaction catalysis. The surface micro-morphology, chemical composition and microstructure of the Pd-Ni-Mo film were characterizated with SEM, EDS, XPS and TEM. The obtained film is a multiple phase ternary alloy containing crystallines and amorphous phases. The electrochemical measurements showed that the Pd-Ni-Mo film has excellent catalytic activity for hydrogen evolution reaction with good corrosion resistance in 1 M NaOH solution. The proton discharge electrosorption is the rate determining step of hydrogen evolution reaction on Pd-Ni-Mo film surface. The better electrocatalysis performance of the Pd-Ni-Mo film is attributed to its larger real surface as well as the enhanced electrochemical activity of the film surface due to the alloying effect

  5. Electrochemical Performance of LiV3O8-xCIxCathode Materials Synthesized by a Low-Temperature Solid State Method

    Institute of Scientific and Technical Information of China (English)

    LIU Li; JIAO Lifang; SUN Junli; LIU Sichen; YUAN Huatang; WANG Yongmei

    2009-01-01

    A series of cathode materials for lithium ion batteries with the formula LiV3O8-xC1x (x=0.00, 0.05, 0.10 and 0.15) were synthesized by a low-temperature solid-state method. The effects of CI substitution on the structure,morphology and electrochemical properties of the cathode materials were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments. The results show that an enhanced cycle performance is on the C1 doped cathode materials. LiV3O7.90C10.10 shows the best electrochemical performances with the discharge capacity remaining 198.6 mAh/g after 100 cycles, which results from a greater reversibility during cycling and decrease of particle-to-particle impedance.

  6. Development of highly active and stable hybrid cathode catalyst for PEMFCs

    Science.gov (United States)

    Jung, Won Suk

    Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs. In this dissertation, a novel catalyst synthesis methodology is developed and compared with catalysts prepared using impregnation method and commercial catalysts. Two approaches are investigated for the catalyst development. The catalyst durability was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The structural and electrochemical properties of Pt/CCC catalyst are investigated using high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical properties. The synergistic effect of CCC and Pt is confirmed by the observed high activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present within the CCC support into the Pt nanoparticles during heat-treatment. The optimized Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the catalyst prepared using the impregnation method in PEMFCs and showed high

  7. Electrochemical characterization of MnO2 as the cathode material for a high voltage hybrid capacitor

    Institute of Scientific and Technical Information of China (English)

    Jian-ling Li; Fei Gao; Yan Jing; Rui-ying Miao; Ke-zhong Wu; Xin-dong Wang

    2009-01-01

    Manganese dioxide (MnO_2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO_2 electrode reached 240 F-g-1. The new hybrid capacitor was constructed, combining Al/Al_2O_3 as the anode and MnO_2 as the cathode with electrolyte for the aluminum electrolytic capacitor to solve the problem of low working voltage of a supercapacitor unit. The results showed that the hybrid ca-pacitor had a high energy density and the ability of quick charging and discharging according to the electrochemical performance test. The capacitance was 84.4 μF, and the volume and mass energy densities were greatly improved compared to those of the traditional aluminum electrolytic capacitor of 47 μF. The analysis of electrochemical impedance spectroscopy (EIS) showed that the hybrid ca-pacitor had good impedance characteristics.

  8. The synergistic effect of inert oxide and metal fluoride dual coatings on advanced cathode materials for lithium ion battery applications.

    Science.gov (United States)

    Park, Kwangjin; Lee, Byoung-Sun; Park, Jun-Ho; Hong, Suk-Gi

    2016-06-21

    The effect of Al2O3/LiF dual coatings on the electrochemical performance of over-lithiated layered oxide (OLO) has been investigated. A uniform coating of Al2O3 and LiF is obtained on the surface of the layered pristine material. The OLO with a dual Al2O3/LiF coating with a ratio of 1 : 1.5 exhibits excellent electrochemical performance. An initial discharge capacity of 265.66 mA h g(-1) is obtained at a C-rate of 0.1C. This capacity is approximately 15 mA h g(-1) higher than that of pristine OLO. The capacity retention (92.8% at the 50th cycle) is also comparable to that of pristine OLO (91.4% at the 50th cycle). Coating the cathode with a dual layer comprising Al2O3 and LiF leads to improved charging and discharging kinetics, and prevents direct contact between the cathode and the electrolyte. PMID:27233109

  9. Determination of the type and thick cathode material of Geiger-Muller detector type side windows based on counting correction factors

    International Nuclear Information System (INIS)

    A material study for cathode tube of side window Geiger-Muller detector was carried out. Aim of the study is determine the counting correction factor to the absorption gamma radiation, so the type and thickness of materials tube can be settled. The method of this study is calculate the linear absorption coefficient of cathode tube materials to gamma radiation, in that transmitted by Co-60, Cs-137, and Na-22 isotopes, and then determine of the calculation correction factor. The materials choice are copper, glass, stainless steel, aluminum, by 0,03-0,3 mm thickness. Results of this experiment show that copper, glass, stainless steel, materials by 1 mm thick, have correction factor 7,92, 4,93, 1,44, respectively, in that Co-60 isotope is used in this experiment. The same material correction factors are 7,33, 8,30, 14,82, where Cs-137 isotope is as gamma source. If the Na-22 isotope is used as gamma source, so their correction factors are 1,53, 1,11, 1,32. For the aluminum 0,75 mm thick, has correction factor 1,07,1,29,1,20, in that Co-60, Cs-137, Na-22 is used in this experiment. Conclusion of this experiment are: the optimum thickness of cathode material of copper, aluminum, stainless steel, is 0,5 mm, whereas the glass cathode has 0,025 mm thick. (author)

  10. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Bernedo Alcazar

    Full Text Available The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses.The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique.The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research.Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups.The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies.

  11. Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: julian.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Adelhelm, C.; Bergfeldt, T. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chang, K. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 46 52074 Aachen (Germany); Ziebert, C.; Leiste, H.; Stüber, M.; Ulrich, S. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D.; Hallstedt, B. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 46 52074 Aachen (Germany); Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-01-01

    Today most commercially available lithium ion batteries are still based on the toxic and expensive LiCoO{sub 2} as a standard cathode material. However, lithium manganese based cathode materials are cheaper and environmentally friendlier. In this work cubic-LiMn{sub 2}O{sub 4} spinel, monoclinic-Li{sub 2}MnO{sub 3} and orthorhombic-LiMnO{sub 2} thin films have been synthesized by non-reactive r.f. magnetron sputtering from two ceramic targets (LiMn{sub 2}O{sub 4}, LiMnO{sub 2}) in a pure argon discharge. The deposition parameters, namely target power and working gas pressure, were optimized in a combination with a post deposition heat treatment with respect to microstructure and electrochemical behavior. The chemical composition was determined using inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The films' crystal structure, phase evolution and morphology were investigated by X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy. Due to the fact that these thin films consist of the pure active material without any impurities, such as binders or conductive additives like carbon black, they are particularly well suited for measurements of the intrinsic physical properties, which is essential for fundamental understanding. The electrochemical behavior of the cubic and the orthorhombic films was investigated by galvanostatic cycling in half cells against metallic lithium. The cubic spinel films exhibit a maximum specific capacity of ∼ 82 mAh/g, while a specific capacity of nearly 150 mAh/g can be reached for the orthorhombic counterparts. These films are promising candidates for future all solid state battery applications. - Highlights: ► Synthesis of 3 Li–Mn–O structures by one up-scalable thin film deposition method ► Formation of o-LiMnO{sub 2} by r.f. magnetron sputtering in combination with post-annealing ► Discharge capacity with o-LiMnO{sub 2} cathodes twice as high as for c

  12. Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering

    International Nuclear Information System (INIS)

    Today most commercially available lithium ion batteries are still based on the toxic and expensive LiCoO2 as a standard cathode material. However, lithium manganese based cathode materials are cheaper and environmentally friendlier. In this work cubic-LiMn2O4 spinel, monoclinic-Li2MnO3 and orthorhombic-LiMnO2 thin films have been synthesized by non-reactive r.f. magnetron sputtering from two ceramic targets (LiMn2O4, LiMnO2) in a pure argon discharge. The deposition parameters, namely target power and working gas pressure, were optimized in a combination with a post deposition heat treatment with respect to microstructure and electrochemical behavior. The chemical composition was determined using inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The films' crystal structure, phase evolution and morphology were investigated by X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy. Due to the fact that these thin films consist of the pure active material without any impurities, such as binders or conductive additives like carbon black, they are particularly well suited for measurements of the intrinsic physical properties, which is essential for fundamental understanding. The electrochemical behavior of the cubic and the orthorhombic films was investigated by galvanostatic cycling in half cells against metallic lithium. The cubic spinel films exhibit a maximum specific capacity of ∼ 82 mAh/g, while a specific capacity of nearly 150 mAh/g can be reached for the orthorhombic counterparts. These films are promising candidates for future all solid state battery applications. - Highlights: ► Synthesis of 3 Li–Mn–O structures by one up-scalable thin film deposition method ► Formation of o-LiMnO2 by r.f. magnetron sputtering in combination with post-annealing ► Discharge capacity with o-LiMnO2 cathodes twice as high as for c-LiMn2O4 ► Thin film deposition of m-Li2MnO3 and o-LiMnO2

  13. Synthesis and Electrochemical Studies of LiNi0.2Co0.8VO4 Cathode Material by Sol-Gel Method

    Science.gov (United States)

    Prakash, D.; Sanjeeviraja, C.

    2013-07-01

    Lithium nickel cobalt vanadate (LiNi0.2Co0.8VO4) cathode material was prepared by using sol-gel method. Rietveld refinement analysis of powder x-ray diffraction (PXRD) pattern confirmed the prepared compound having cubic structure and showed no evidence of secondary phase peaks. The field emission scanning microscopy (FESEM) image of the compound showed that the particles have submicron size. The x-ray photoelectron spectroscopy (XPS) results showed that the oxidation states of cobalt and vanadium was +3 and +5, respectively. The electrochemical performance of the cathode material was also performed.

  14. Effect of symbiotic compound Fe2P2O7 on electrochemical performance of LiFePO4/C cathode materials

    International Nuclear Information System (INIS)

    In order to study the effect of symbiotic compound Fe2P2O7 on electrochemical performance of LiFePO4/C cathode materials, the LiFePO4/Fe2P2O7/C cathode materials were synthesized by in-situ synthesis method. The phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscope (FESEM). Results indicate that the existence of Fe2P2O7 does not alter LiFePO4 crystal structure and the existence of Fe2P2O7 decreases the particles size of LiFePO4. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement and cyclic voltammetry (CV). The results show that the existence of Fe2P2O7 improves electrochemical performance of LiFePO4 cathode materials in specific capability and lithium ion diffusion rate. The charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase with Fe2P2O7 content and maximizes around the Fe2P2O7 content is 5 wt%. It has been had further proved that the Fe2P2O7 adding enhances the lithium ion transport to improve the electrochemical performance of LiFePO4 cathode materials. However, excessive Fe2P2O7 will block the electron transfer pathway and affect the electrochemical performances of LiFePO4 directly. - Graphical abstract: The LiFePO4/Fe2P2O7/C cathode materials were synthesized by in-situ synthesis method. The existence of Fe2P2O7 does not alter LiFePO4 crystal structure and the existence of Fe2P2O7 decreases the particles size of LiFePO4. The charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase with Fe2P2O7 content. However, excessive Fe2P2O7 will block the electron transfer pathway and affect the electrochemical performances of LiFePO4 directly. - Highlights: • The LiFePO4/Fe2P2O7/C cathode materials were synthesized by in-situ synthesis method. • The existence of Fe2P2O7 decreases the particles size of LiFePO4. • The existence of Fe2P2O7 enhanced

  15. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials

    Science.gov (United States)

    Tucker, Michael C.; Kurokawa, Hideto; Jacobson, Craig P.; De Jonghe, Lutgard C.; Visco, Steven J.

    Chromium contamination of metal oxides and SOFC cathode catalysts is studied in the range 700-1000 °C. Samples are exposed to a moist air atmosphere saturated with volatile Cr species in the presence and absence of direct contact between the sample and ferritic stainless steel powder. Chromium contamination of the samples is observed to occur via two separate pathways: surface diffusion from the stainless steel surface and vapor deposition from the atmosphere. Surface diffusion dominates in all cases. Surface diffusion is found to be a significant source of Cr contamination for LSM and LSCF at 700, 800, and 1000 °C. Vapor deposition of Cr onto LSCF was observed at each of these temperatures, but was not observed for LSM at 700 or 800 °C. Comparison of the behavior for LSM, LSCF, and single metal oxides suggests that Mn and Co, respectively, are responsible for the Cr contamination of these catalysts.

  16. Development of Graphene-based novel cathode material in MES system

    DEFF Research Database (Denmark)

    Chen, Leifeng; Aryal, Nabin; Ammam, Fariza;

    2014-01-01

    .The graphene (GP) has outstanding electrical conductivity, extremely high specific surface area,mechanical robustness and flexibility, chemical inertness, and biocompatibility. These special properties ofGP can provide excellent opportunity to improve the performance of MES. Gram negative microorganisms like...... Sporomusa ovata (S.O) typically have a negative outer-surface charge. The graphene oxide (GO) is the acceptor of the electron. If the GO accept electrons from the Sporomusa ovata and the GO can be reduced to graphene. This will lead to in situ construction of a bacteria/graphene network in the cathode. This...... characterizedand analyzed by SEM or AFM. Thanks to the high surface area for graphene, superior conductivity, biocompatibility, the incorporation of the large amount bacteria into the biofilm matrix, and forming multiplexed conductive pathways, so the hybrid biofilm can facilitate electron exchange between...

  17. Cathodes - Technological review

    International Nuclear Information System (INIS)

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented

  18. Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.

    Science.gov (United States)

    Chen, Ruiyong; Witte, Ralf; Heinzmann, Ralf; Ren, Shuhua; Mangold, Stefan; Hahn, Horst; Hempelmann, Rolf; Ehrenberg, Helmut; Indris, Sylvio

    2016-03-01

    Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V. PMID:26907961

  19. Study on the stability of Li2MnSiO4 cathode material in different electrolyte systems for Li-ion batteries

    International Nuclear Information System (INIS)

    This study reports on the thorough investigation into the interaction between nanosized carbon-coated Li2MnSiO4 and various electrolytes, which has revealed significant changes of the active material after soaking in the electrolyte. Apart from the standard electrolyte salt lithium hexafluorophosphate (LiPF6), lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and the F-free salt lithium bis-oxalatoborate (LiBOB) were used for soaking tests and compared in terms of corrosion power with Li2MnSiO4. Carbon-coated Li2MnSiO4 samples were obtained by solid-state synthesis and stored in contact with the electrolyte. The aged samples were fully characterized by means of several analytical techniques (XRD, XPS, SEM, ATR-FTIR). The results show that Li2MnSiO4 decomposes in LiPF6-based electrolyte at high temperatures, due to the formation of HF, which causes corrosion of the material and dissolution of Mn. No degradation was observed after soaking in the LiBOB-based electrolyte. The corrosion of the active material in standard electrolyte system, together with irreversible structural changes upon Li electrochemical extraction, are considered as the main reasons for the poor capacity retention upon cycling of the Li2MnSiO4-based cathode

  20. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    Science.gov (United States)

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited. PMID:24597673

  1. Facile synthesis of nanocrystalline LiFePO4/graphene composite as cathode material for high power lithium ion batteries

    International Nuclear Information System (INIS)

    We describe a simple strategy, which is based on the idea of space confinement, for the synthesis of carbon coating on LiFePO4 nanoparticles/graphene nanosheets composites in a water-in-oil emulsion system. The prepared composite displayed high performance as a cathode material for lithium-ion battery, such as high reversible lithium storage capacity (158 mA h g−1 after 100 cycles), high coulombic efficiency (over 97%), excellent cycling stability and high rate capability (as high as 83 mA h g−1 at 60 C). Very significantly, the preparation method employed can be easily adapted and be extended as a general approach to sophisticated compositions and structures for the preparation of highly dispersed nanosized structure on graphene

  2. Characterization of Inverse Spinel LiNiVO4 Cathode Materials Prepared by the Sol-gel Method

    International Nuclear Information System (INIS)

    LiNiVO4 is one of the most promising cathode materials due to its high cell voltage of 4.8 V. In this study, LiNiVO4 was prepared by the sol gel method. LiCH3COO.2H2O, Ni(CH3COO)2.4H2O and NH4VO3 were used as the staring reactants. The total weight loss was 69.07% from the TGA result which agrees with the reaction mechanism proposed in this work. The product was successfully obtained at 750 deg. C for 5 h by sintering process. XRD studies for the treated sample confirms the formation of highly crystalline LiNiVO4.

  3. Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage.

    Science.gov (United States)

    Yang, Jingsong; Xiao, Lifen; He, Wei; Fan, Jiangwei; Chen, Zhongxue; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2016-07-27

    The effect of the cutoff voltages on the working voltage decay and cyclability of the lithium-rich manganese-based layered cathode (LRMO) was investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy line scan technologies. It was found that both lower (2.0 V) and upper (4.8 V) cutoff voltages cause severe voltage decay with cycling due to formation of the spinel phase and migration of the transition metals inside the particles. Appropriate cutoff voltage between 2.8 and 4.4 V can effectively inhibit structural variation as the electrode demonstrates 92% capacity retention and indiscernible working voltage decay over 430 cycles. The results also show that phase transformation not only on high charge voltage but also on low discharge voltage should be addressed to obtain highly stable LRMO materials. PMID:27383918

  4. Effect of microstructure on low temperature electrochemical properties of LiFePO{sub 4}/C cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nannan; Zhi, Xiaoke; Wang, Li; Liu, Yanhui; Liang, Guangchuan, E-mail: liangguangchuan@hebut.edu.cn

    2015-10-05

    Graphical abstract: The low temperature performance of Li-ion batteries and LiFePO{sub 4}/C composites was discussed. A conclusion that cathode material is the main limitation for the low temperature performance was come up, by comparing the low temperature performance of 18650 Li-ion batteries with LiMn{sub 2}O{sub 4}, LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} and LiFePO{sub 4}/C as cathode materials. The low temperature performance results indicate the LiFePO{sub 4}/C microstructure is the main factor influencing the low temperature performance of LiFePO{sub 4}. A new LiFePO{sub 4}/C with pomegranate-like spherical structure was proposed in this paper, which shows superior low temperature performance, which can be attributed to its uniform fine primary particles and smaller primary particles. - Highlights: • Low temperature performance of Li-ion battery and LiFePO{sub 4}/C composite was discussed. • Cathode material mainly decided the low temperature performance of Li-ion battery. • LiFePO{sub 4}/C microstructure mainly affects its low temperature performance. • Pomegranate-like spherical structure LiFePO{sub 4}/C has good low temperature performance. - Abstract: The low-temperature electrochemical performance of Li-ion batteries is mainly determined by the choice of cathode material, as evident from a comparison of the low-temperature electrochemical performance of the 18650 batteries with the LiMn{sub 2}O{sub 4}, LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}, and LiFePO{sub 4}/C as the cathode, respectively, at −20 °C. LiFePO{sub 4}/C materials with different morphologies and microstructures were prepared by different methods. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatic charge–discharge measurements and EIS. The low-temperature performance of the samples and those of the coin cells utilizing the materials as cathodes were measured. The results

  5. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    Science.gov (United States)

    Feng-Ya, Rao; Fang-Hua, Ning; Li-Wei, Jiang; Xiang-Ming, Zeng; Mu-Sheng, Wu; Bo, Xu; Chu-Ying, Ouyang

    2016-02-01

    From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials. Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).

  6. Study of Poly (3,4-ethylenedioxythiophene)/MnO2 as Composite Cathode Materials for Aluminum-Air Battery

    International Nuclear Information System (INIS)

    Highlights: • Open-tunnel structure of MnO2 catalysts were prepared by the hydrothermal method. • PEDOT was deposited on MnO2/carbon paper by oxidative chemical vapor deposition. • PEDOT/α-MnO2/10AA composite cathode shows the highest discharge performance. • The enhancement on discharge performance was due to the clear charge transfer. - Abstract: This study focuses on the development of the composite electrode materials for an aluminum-air battery and improving the oxygen reduction reaction (ORR) of the air electrode by matching alpha- and beta- manganese dioxide (MnO2) with poly-(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer. The catalyst powders of α-MnO2 and β-MnO2 are prepared by hydrothermal method with different precursors, while PEDOT conducting polymer is subsequently deposited on the screen-printed electrodes (MnO2/carbon paper) by oxidative chemical vapor deposition (oCVD). Material characteristics of prepared MnO2 powder and PEDOT layer are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering spectroscopy. The half-cell polarization curve test is found to be strongly depended on the crystalline phases of MnO2. From experimental observations and a density functional theory (DFT) study, the conductivity of PEDOT/α-MnO2 is found to be higher than PEDOT/β-MnO2 contributed to structural effect mediated improvements in charge transfer. As a result, integrating the deposition of PEDOT on α-MnO2/carbon paper as composite cathode is suitable for the use in aluminum-air battery

  7. Highly Active and Redox-Stable Ce-Doped LaSrCrFeO-Based Cathode Catalyst for CO2 SOECs.

    Science.gov (United States)

    Zhang, Ya-Qian; Li, Jian-Hui; Sun, Yi-Fei; Hua, Bin; Luo, Jing-Li

    2016-03-16

    Lanthanum chromate-based perovskite oxides have attracted great attention as the cathode materials in the high-temperature CO2 electrolysis because of its good redox stability. However, the unsatisfied electrochemical catalytic activity and insufficient adsorption of CO2 at operating temperature still hindered the further improvement of electrochemical performance and the Faraday efficiency of the electrolysis cell. In this work, the catalytic and redox active Ce was doped into A site of La0.7Sr0.3Cr0.5Fe0.5O3-δ (LSCrF) to promote the catalytic performance, and to introduce oxygen vacancies in the lattice in situ after reduction under the operational condition. The increased amount of oxygen vacancies not only facilitates the mobility of oxygen ions, but also provides favorable accommodation for chemical adsorption of CO2. The CO2 electrolysis tests demonstrated the superior electrochemical performances, higher Faraday efficiencies of the Ce-doped LSCrF cathode catalyst in comparison with that without Ce doping, indicating the perspective application of this functional material. PMID:26901862

  8. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries

    International Nuclear Information System (INIS)

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO2, with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al2O3; for that the study of the formation of thin films in bilayer form LiMO2/AI2O3 is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO2 it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO2, it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li2O) obtaining stoichiometric LiNiO2. For the formation of the thin films of LiNiO2 it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO2 and LiNiO2). (Author)

  9. Microwave driven hydrothermal synthesis of LiMn2O4 nanoparticles as cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Among the various cathode materials studied for Li-ion batteries over the past many years, spinel LiMn2O4 is found to be one of the most attractive materials. Nanoparticles of the electrode materials sustain high rate capability due to large surface to volume ratio and small diffusion path length. Nanoparticles of spinel LiMn2O4 have been synthesized by microwave hydrothermal technique using prior synthesized amorphous MnO2 and LiOH. The phase and purity of spinel LiMn2O4 are confirmed by powder X-ray diffraction. The morphological studies have been investigated using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances of the material for Li insertion/extraction are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling and AC impedance studies. The initial discharge capacity is found to be about 89 mAh g-1 at current density of 21 mA g-1.

  10. Development of the ion source with cathode sputtering of working material for the JINR cyclotrons

    International Nuclear Information System (INIS)

    Experience of design and operation of a multicharged ion source (MIS) with cathode sputtering of the working substance for the U-300 and U-400 cyclotrons is described. The MIS sputtering electrode is placed into the discharge chamber through the side wall and it is not subjected to back-beam bombardment. Using the U-300 cyclotron with natural metallic magnesium (an auxiliary gas is xenon) extracted ion beams of 24Mg4+ and 26Mg4+ at 4.2 μA and 0.6 μA, respectively, are obtained. Prliminary tests on magnesium ion acceleration are carried out on the U-400 accelerator. Magnesium three-charged ion beams (of a natural isotope mixture) have the 10.5 μA maximum intensity (for magnesium-24) and 1.6 μA (for magnesium-26) at the 170 cm radius. The emission window dimensions of the ion source are the following: 2x8 mm and 3x15 mm for U-400 and U-300, respectively. The metallic magnesium flow rate is 25 mg/h and 15 mg/h on U-300 and U-400, respectively

  11. Thermionic emission investigation of materials for directly heated cathodes of electron tubes

    Science.gov (United States)

    Gellert, Bernd; Rohrbach, W.

    1994-05-01

    Thermionic emission of new material compositions are studied. Combinations of rare earth materials and tungsten offer great potential as thermal electron emitter into vacuum. The thermal emission properties of these materials are studied and compared to thoriated tungsten as a well-known thermal emitter. The corresponding work functions and Richardson Dushman constants are evaluated. The chemistry involved and the emission mechanism are discussed.

  12. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    Science.gov (United States)

    Hu, Enyuan

    Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as

  13. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

    Science.gov (United States)

    He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie

    2015-10-01

    Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.

  14. Preparation and electrical properties of Ca-doped La(2)NiO(4+δ) cathode materials for IT-SOFC.

    Science.gov (United States)

    Shen, Yongna; Zhao, Hailei; Liu, Xiaotong; Xu, Nansheng

    2010-12-01

    Ca-doped La(2)NiO(4+δ) is synthesized via the nitrate-citrate route. The effects of Ca substitution for La on the sinterability, lattice structure and electrical properties of La(2)NiO(4+δ) are investigated. Ca-doping is unfavorable for the densification process of La(2-x)Ca(x)NiO(4+δ) materials. The introduction of Ca leads to the elongation of the La-O(2) bond length, which provides more space for the migration of oxygen ion in La(2)O(2) rock salt layers. The substitution of Ca increases remarkably the electronic conductivity of La(2-x)Ca(x)NiO(4+δ). With increasing Ca-doping level, both the excess oxygen concentration and the activation energy of oxygen ion migration decrease, resulting in an optimization where a highest ionic conductivity is presented. Ca-doping is charge compensated by the oxidation of Ni(2+) to Ni(3+) and the desorption of excess oxygen. The substitution of Ca enhances the structural stability of La(2)NiO(4+δ) material at high temperatures and renders the material a good thermal cycleability. La(1.7)Ca(0.3)NiO(4+δ) exhibits an excellent chemical compatibility with CGO electrolyte. La(2-x)Ca(x)NiO(4+δ) is a promising cathode alternative for solid oxide fuel cells. PMID:20967398

  15. Synthesis, characterization and electrochemical studies of LiNi0.8M0.2O2 cathode material for rechargeable lithium batteries

    Indian Academy of Sciences (India)

    R Sathiyamoorthi; P Manisankar; P Shakkthivel; Mu Sang Lee; T Vasudevan

    2008-06-01

    LiNiO2 and substituted nickel oxides, LiNi0.8M0.2O2 and LiCo0.8M0.2O2 (M = Mg2+, Ca2+, Ba2+), have been synthesized using simple solid state technique and used as cathode active materials for lithium rechargeable cells. Physical properties of the synthesized products are discussed in the structural (XRD, TEM, SEM with EDAX) and spectroscopic (FTIR) measurements. XRD results show that the compounds are similar to LiNiO2 in structure. TEM and SEM analyses were used to examine the particle size, nature and morphological aspects of the synthesized oxides. The composition of the materials was explored by EDAX analysis. Electrochemical studies were carried out in the range 3–4.5 V (vs Li metal) using 1 M LiBF4 in ethylene carbonate/dimethyl carbonate as the electrolyte. The doping involving 20% Mg resulted in a discharge capacity of 185 mAhg-1 at 0.1 mA/cm2 and remained stable even after 25 cycles. Discharge capacity retention for Mg doped lithium nickelate at 25th cycle was noted to be nearly 7% higher than for the undoped material.

  16. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jiawei; Cai, Yurong; Zhong, Qiwei; Lai, Dongzhi; Yao, Juming

    2015-10-01

    The features of a carbon substrate are crucial for the electrochemical performance of lithium-sulfur (Li-S) batteries. Nitrogen doping of carbon materials is assumed to play an important role in sulfur immobilisation. In this study, natural silk fibroin protein is used as a precursor of nitrogen-rich carbon to fabricate a novel, porous, nitrogen-doped carbon material through facile carbonisation and activation. Porous carbon, with a reversible capacity of 815 mA h g-1 at 0.2 C after 60 cycles, serves as the cathode material in Li-S batteries. Porous carbon retains a reversible capacity of 567 mA h g-1, which corresponds to a capacity retention of 98% at 1 C after 200 cycles. The promising electrochemical performance of porous carbon is attributed to its mesoporous structure, high specific surface area and nitrogen doping into the carbon skeleton. This study provides a general strategy to synthesise nitrogen-doped carbons with a high specific surface area, which is crucial to improve the energy density and electrochemical performance of Li-S batteries.

  17. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries. PMID:27028048

  18. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xinyi Zhang

    2015-11-01

    Full Text Available Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4 cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g−1 increases from 112.2 mAh g−1 of Li2.0MnTiO4 to 187.5 mAh g−1 of Li2.4Mn0.8TiO4. In addition, the ex situ XRD experiments indicate that the monoclinic Li2MnTiO4 tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li2MnTiO4 phase shows better structural reversibility and stability.

  19. Preparation and Characterisation of LiFePO4/CNT Material for Li-Ion Batteries

    OpenAIRE

    Rushanah Mohamed; Shan Ji; Vladimir Linkov

    2011-01-01

    Li-ion battery cathode materials were synthesised via a mechanical activation and thermal treatment process and systematically studied. LiFePO4/CNT composite cathode materials were successfully prepared from LiFePO4 material. The synthesis technique involved growth of carbon nanotubes onto the LiFePO4 using a novel spray pyrolysis-modified CVD technique. The technique yielded LiFePO4/CNT composite cathode material displaying good electrochemical activity. The composite cathode exhibited excel...

  20. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    Science.gov (United States)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  1. Synthesis and Characterization of LiMXFe1-XPO4 (M = Cu, Sn; X = 0.02 Cathodes - A study on the Effect of Cation Substitution in LiFePO4 Material

    Directory of Open Access Journals (Sweden)

    N. Jayaprakash, N. Kalaiselvi, P. Periasamy

    2008-04-01

    Full Text Available An attempt has been made for the possible augmentation and exploration of partially substituted LiFePO4 material as a positive electrode for lithium battery applications. In this regard, cationic substitution of Cu and Sn (2% to the native LiFePO4/C electro active material has been carried out via. ball milling, with a view to understand the effect of respective transition and non-transition metals upon LiFePO4 individually. Uniformly distributed particles (SEM of LiMXFe1-XPO4/C (M= Cu, Sn with phase pure nature (XRD and finer crystallite size (<1mm were obtained. Further, it is interesting to note that irrespective of the nature of the dopant metal, the simple route of ball milled LiMXFe1-XPO4/C [M= Cu, Sn] cathodes endowed with improved conductivity and stable reversible capacity values (chare-discharge. In other words, the LiCu0.02Fe0.98PO4/C cathode delivered a reversible capacity of ~105 mAh/g with an excellent capacity retention characteristic. On the other hand LiSn0.02Fe0.98PO4/C cathodes exhibited an average specific capacity of ~100mAh/g with progressively enhanced efficiency values. Results of Fourier Transform Infra Red (FTIR spectroscopy and Cyclic Voltammetric studies of LiMXFe1-XPO4/C (M= Cu, Sn composites are also appended and correlated suitably.

  2. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  3. Synthesis of LiCoxNi1-xO2 cathode materials from electrolysis Co-Ni alloys

    Institute of Scientific and Technical Information of China (English)

    YE Mao; WEI Jin-ping; CAO Xiao-yan; ZHAI Jin-ling; WANG Xiao-yu; SUN Xin; YAN Jie

    2005-01-01

    The LiCoxNi1-xO2 (x-0.2, 0.5 and 0.8) cathode materials were synthesized by sintering the mixtures of lithium salt and Cox Ni1-x (OH)2 (x= 0.2, 0.5 and 0.8) which were achieved from corresponding Cox Ni1-x alloys by electrolysis technique. The structure and electrochemical characteristics of the obtained LiCoxNi1-xO2 were studied by XRD, SEM, PSCA and charge-discharge cycling test. The results show that the electrochemical capacities of the LiCoxNi1-xO2 (x=0.2, 0.5 and 0.8) materials are improved with the increase of the Ni content. The electrochemical performance of LiCo0.2 Ni0.8 O2 made in oxygen atmosphere has higher charge-discharge capacity and better cycleability compared with the one made in air atmosphere.

  4. Electrochemical properties of NiS as a cathode material for rechargeable lithium batteries prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Nickel sulfide (NiS) as a cathode material for a lithium rechargeable battery is charged and discharged at room temperature (30 deg. C). In order to synthesize a homogeneous NiS phase, mechanical alloying (MA) was adopted. The homogeneous NiS phase is easily formed after ball milling for 12 h under Ar atmosphere. The ball-milled NiS particles are relatively larger than those of the starting materials and have a nanocrystalline structure. The initial discharge capacity of the NiS positive electrode is 580 mAh/g-NiS, at 1.4 V versus Li/Li+. The NiS powders synthesized by MA show proper cycling properties, by retaining 65% of the initial discharge capacity even after 100 cycles at 30 deg. C. Also, NiS has a good rate capability. It has 87% of its theoretical capacity at a current rate of 2 C, comparable with that of 1/6 C

  5. Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium-Sulfur Battery

    Science.gov (United States)

    Xu, Maowen; Jia, Min; Mao, Cuiping; Liu, Sangui; Bao, Shujuan; Jiang, Jian; Liu, Yang; Lu, Zhisong

    2016-01-01

    A novel approach was developed to prepare porous carbon materials with an extremely high surface area of 2459.6 m2g-1 by using Aspergillus flavus conidia as precursors. The porous carbon serves as a superior cathode material to anchor sulfur due to its uniform and tortuous morphology, enabling high capacity and good cycle lifetime in lithium sulfur-batteries. Under a current rate of 0.2 C, the carbon-sulfur composites with 56.7 wt% sulfur loading deliver an initial capacity of 1625 mAh g-1, which is almost equal to the theoretical capacity of sulfur. The good performance may be ascribed to excellent electronic networks constructed by the high-surface-area carbon species. Moreover, the semi-closed architecture of derived carbons can effectively retard the polysulfides dissolution during charge/discharge, resulting in a capacity of 940 mAh g-1 after 120 charge/discharge cycles.

  6. Preparation of LiNixCol-xO2 Cathode Material for Li-ion Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cathode materials LiNixCo1-xO2(0≤x≤1) for lithium ion battery were prepared in solid phase. The effects of synthesis temperature, the time of heat treatment and also the ratio of raw materials on products were discussed. The results showed that the products preheated under 600℃ and then sintered under constant temperature 750℃ were better than those sintered under constant temperature 650℃ or 850℃,and their layer structures were more obvious and their initial capacity was higher. The longer the heat-treating time is,the stronger the products' XRD peaks intensity and the better their structures and electrochemical performance are. The samples LiNixCo1-xO2(0≤x≤1) with a perfect structure and electrochemical performance were synthesized. And the products initial capacity was perfect when n(Li)∶n(Ni)∶n(Co)=1.15∶0.3∶0.7,viz. 156.146mAh/g.

  7. Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method

    International Nuclear Information System (INIS)

    For the first time, rheological phase method, a simple and effective route, is applied to synthesize novel cathode material LiCoPO4. X-ray diffraction spectrometer (XRD), X-ray photoelectron spectrometer (XPS), transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) are taken to investigate this material, respectively. XRD figure shows that the rheological sample is better crystallized than the solid-state one. XPS result of the rheological sample exhibits that the valence of Co is 2+. TEM images show that better dispersed particles with smaller size can be formed by rheological method comparing to the solid-state route. Charge-discharge test is carried out in the range of 3.0-5.0 V at 0.2 mA cm-2. The initial discharge capacity for rheological phase and solid-state powder is 71.5 and 30.9 mAh g-1, respectively. The better electrochemical property should be ascribed to the better crystallized rheological phase production with better dispersed and smaller particles, which can greatly facilitate the diffusion of Li+.

  8. Hierarchical LiNixCoyO2 mesostructures as high-performance cathode materials for lithium ion batteries

    Science.gov (United States)

    Shang, Longmei; Li, He; Lai, Hongwei; Li, Danqin; Wu, Qiang; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2016-09-01

    Lithium ion batteries (LIBs) with enhanced performance to commercial ones are urgently demanded in portable electric devices. Herein, we demonstrate an efficient strategy to improve the electrochemical performance of a dominant commercial cathode material (LiCoO2) by constructing 3D hierarchical LiNixCoyO2 (h-LNCO). The h-LNCO presents porous spherical-shaped morphology at mesoscale while comprises interconnected primary nanoparticles at nanoscale. Such a unique morphology endows the h-LNCO with porous structure for easy penetration of electrolyte, relatively small size of primary particles with short Li+ ions diffusion length and abundant exposed surface in favor of Li+ intercalation/deintercalation. The synergism of these merits makes the h-LNCO exhibit superior electrochemical properties with high capacity, superior cyclability and rate capability, much better than the solid granular LNCO counterparts and commercial LiCoO2. This strategy of constructing porous hierarchical mesostructures could be extended to other electrode materials for electrochemical energy storage.

  9. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    Science.gov (United States)

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  10. Influence of Doping Rare Earth on Performance of Lithium Manganese Oxide Spinels as Cathode Materials for Lithium-Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Tang Zhiyuan; Zhang Na; Lu Xinghe; Huang Qinghua

    2005-01-01

    Some rare earth doping spinel LiMn2-xRExO4 (RE=La, Ce, Nd) cathode materials for lithium ion batteries were synthesized by the solid-state reaction method. The structure characteristics of these produced samples were investigated by XRD, SEM, and particle size distribution analysis. According to the microstructure and charge-discharge testing, the effect of doping rare earth on stabilizing the spinel structure was analyzed. Through a series of doping experiments, it is shown that when the doping content x within the range of 0.01~0.02 the cycle performance of the materials is greatly improved. The discharge capacity of the sample LiMn1.98La0.02O4, LiMn1.98Ce0.02O4 and LiMn1.98Nd0.02O4 remain 119.1, 114.2 and 117.5 mAh*g-1 after 50 cycles.

  11. Properties and Structure of Spinel Li-Mn-O-F Compounds for Cathode Materials of Secondary Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    CHEN, Zhao-Yong; GAO, Li-Zhen; LIU, Xin-Quan; YU, Zuo-Long

    2001-01-01

    The spinel Li-Mn-O-F compound cathode materials were syn-thesized by solid-state reaction from calculated amounts LiOH·H2O, MnO2(EMD) and LiF. The results of the elec-trochemical test demonstrated that these materials exhibited excellent electrochemical properties. It's initial capacity is ~ 115 mAh·g-1 and reversible efficiency is about 100%. After 60 cycles, its capacity is still around 110 mAh·g1 with nearly 100% reversible efficiency. The spinel Li-Mn-O-F compound possibly has two structure models: interstitial model [Li]-[Mn3+x Mn4+2-x-]O4Fδ, in which the fluorine is located on the interstice of crystal lattice, and substituted model [Li ]-[Mn3+x+Mn4+2-x]O4-δFδ, which the fluorine atom substituted the oxygen atom. The electrochemical result supports the interstitial model [Li] [Mn3+x+Mn4+2-x]O4Fδ.

  12. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells

    OpenAIRE

    Biao Xiao; Hongbin Wu; Yong Cao

    2015-01-01

    Polymer solar cells (PSCs) are a new type of renewable energy source currently being extensively investigated due to perceived advantages; such as being lightweight, low-cost and because of the unlimited materials resource. The power conversion efficiency of state-of-the-art PSCs has increased dramatically in the past few years, obtained mainly through the development of new electron donor polymers, acceptors, and novel device structures through the use of various electrode interfacial materi...

  13. Low activation materials for fusion

    International Nuclear Information System (INIS)

    The viability of fusion as a future energy source may eventually be determined by safety and environmental factors. Control of the induced radioactivity characteristics of the materials used in the first wall and blanket could have a major favorable impact on these issues. In the United States, materials program efforts are focused on developing new structural alloys with radioactive decay characteristics which would greatly simplify long-term waste disposal of reactor components. A range of alloy systems is being explored in order to maintain the maximum number of design options. Significant progress has been made, and it now appears probable that reduced-activation engineering alloys with properties at least equivalent to conventional alloys can be successfully developed and commercialized. 10 refs., 1 fig

  14. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan;

    2011-01-01

    In this work we demonstrate that the experimentally measured area specific resistance and oxygen surface exchange of solid oxide fuel cell cathode perovskites are strongly correlated with the first-principles calculated oxygen p-band center and vacancy formation energy. These quantities are there...

  15. Enhanced electrochemical properties of Al2O3-coated LiV3O8 cathode materials for high-power lithium-ion batteries

    Science.gov (United States)

    Huang, S.; Tu, J. P.; Jian, X. M.; Lu, Y.; Shi, S. J.; Zhao, X. Y.; Wang, T. Q.; Wang, X. L.; Gu, C. D.

    2014-01-01

    Surface modified-LiV3O8 cathode materials with Al2O3 are successfully synthesized via a facile thermolysis process. The 0.5 wt.% Al2O3-coated LiV3O8 exhibits an enhanced cyclic stability at various charge-discharge current densities. At a current density of 100 mA g-1, it delivers an initial specific discharge capacity of 283.1 mAh g-1 between 2.0 and 4.0 V. Moreover, high capacities of 139.4 and 118.5 mAh g-1 are obtained at the 100th cycle at current densities of 2000 and 3000 mA g-1, respectively. The improved electrochemical performance is attributed to the Al2O3 coating, which can hinder the irreversible phase transformation and act as a protective layer to prevent the active material from direct contact with electrolyte. Furthermore, the formation of a Li-V-Al-O solid solution at the LiV3O8/Al2O3 interface provides a fast Li+ diffusion path which is of benefit to the electrochemical behaviors.

  16. Freeze drying synthesis of Li3MnO4 cathode material for Li-ion batteries: A physico-electrochemical study

    International Nuclear Information System (INIS)

    Highlights: • Facilitated synthesis of Li3MnO4 with a smaller thermal budget via freeze drying. • Electrochemical activity enhanced by micro- and nanostructure modifications. • Capacity increase of 30% at 1st discharge versus standard synthesis process. - Abstract: Li3MnO4, a lithium rich phase containing manganese (V), is a promising cathode material for Li-ion batteries due to its very high theoretical capacity (698 A h kg−1). Li3MnO4 was synthesized from freeze dried precursors at 398 K. Combined structural, morphological and chemical characterization by XRD, TGA, SEM, TEM and XPS revealed improvements in the micro- and nanostructure in comparison to the material synthesized by a standard solid state chemistry route. The average particle size decreased from 10 μm to 3.5 μm and the average crystallite size from close to 100 nm to around 30 nm. These modifications enhanced the capacity (23% at 10 A kg−1 and up to 31% at 50 A kg−1 with a maximum discharge capacity of 290 A h kg−1) and the rate capability

  17. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.

    Science.gov (United States)

    Reitz, Christian; Breitung, Ben; Schneider, Artur; Wang, Di; von der Lehr, Martin; Leichtweiss, Thomas; Janek, Jürgen; Hahn, Horst; Brezesinski, Torsten

    2016-04-27

    Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries. PMID:26867115

  18. Freeze drying synthesis of Li{sub 3}MnO{sub 4} cathode material for Li-ion batteries: A physico-electrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Surace, Yuri; Simões, Mário; Karvonen, Lassi; Yoon, Songhak; Pokrant, Simone [Laboratory Materials for Energy Conversion, EMPA – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Weidenkaff, Anke, E-mail: weidenkaff@imw.uni-stuttgart.de [Materials Chemistry, Institute for Materials Science, University of Stuttgart, Heisenbergstrasse 3, DE-70569 Stuttgart (Germany)

    2015-09-25

    Highlights: • Facilitated synthesis of Li{sub 3}MnO{sub 4} with a smaller thermal budget via freeze drying. • Electrochemical activity enhanced by micro- and nanostructure modifications. • Capacity increase of 30% at 1st discharge versus standard synthesis process. - Abstract: Li{sub 3}MnO{sub 4}, a lithium rich phase containing manganese (V), is a promising cathode material for Li-ion batteries due to its very high theoretical capacity (698 A h kg{sup −1}). Li{sub 3}MnO{sub 4} was synthesized from freeze dried precursors at 398 K. Combined structural, morphological and chemical characterization by XRD, TGA, SEM, TEM and XPS revealed improvements in the micro- and nanostructure in comparison to the material synthesized by a standard solid state chemistry route. The average particle size decreased from 10 μm to 3.5 μm and the average crystallite size from close to 100 nm to around 30 nm. These modifications enhanced the capacity (23% at 10 A kg{sup −1} and up to 31% at 50 A kg{sup −1} with a maximum discharge capacity of 290 A h kg{sup −1}) and the rate capability.

  19. Structure and performance of LiFePO4 cathode materials: A review

    Science.gov (United States)

    Zhang, Wei-Jun

    2011-03-01

    LiFePO4 has been considered a promising battery material in electric vehicles. However, there are still a number of technical challenges to overcome before its wide-spread applications. In this article, the structure and electrochemical performance of LiFePO4 are reviewed in light of the major technical requirements for EV batteries. The rate capability, capacity density, cyclic life and low-temperature performance of various LiFePO4 materials are described. The major factors affecting these properties are discussed, which include particle size, doping, carbon coating, conductive carbon loading and synthesis techniques. Important future research for science and engineering is suggested.

  20. Praseodymium-deficiency Pr0.94BaCo2O6-δ double perovskite: A promising high performance cathode material for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Meng, Fuchang; Xia, Tian; Wang, Jingping; Shi, Zhan; Zhao, Hui

    2015-10-01

    Praseodymium-deficiency Pr0.94BaCo2O6-δ (P0.94BCO) double perovskite has been evaluated as a cathode material for intermediate-temperature solid oxide fuel cells. X-ray diffraction pattern shows the orthorhombic structure with double lattice parameters from the primitive perovskite cell in Pmmm space group. P0.94BCO has a good chemical compatibility with Ce0.9Gd0.1O1.95 (CGO) electrolyte even at 1000 °C for 24 h. It is observed that the Pr-deficiency can introduce the extra oxygen vacancies in P0.94BCO, further enhancing its electrocatalytic activity for oxygen reduction reaction. P0.94BCO demonstrates the promising cathode performance as evidenced by low polarization are-specific resistance (ASR), e. g. 0.11 Ω cm2 and low cathodic overpotential e. g. -56 mV at a current density of -78 mA cm-2 at 600 °C in air. These features are comparable to those of the benchmark cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ. The fuel cell CGO-Ni|CGO|P0.94BCO presents the attractive peak power density of 1.05 W cm-2 at 600 °C. Furthermore, the oxygen reduction kinetics of P0.94BCO material is also investigated, and the rate-limiting steps for oxygen reduction reaction are determined.

  1. High-rate Lithium Iron(Ⅱ)Phosphate as Cathode Material for Rechargeable Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming; JIAO Li-Fang; YUAN Hua-Tang; SUN Jun-Li; FENG Yan

    2008-01-01

    High-rate carbon coated LiFePO4 was synthesized by citric acid assistant aqueous chemical route employing polyethyleneoxide as the carbon source.The structural and electrochemical properties were intensively investigated by thermogravimetry,powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge-discharge tests.The results of structural tests showed that the material consisted of small LiFePO4 particles of good phase purity and the particles of the material were coated and connected with approximate 5 wt% incompact porous carbon.The material performed very well in electrochemical measurements,and was suitable for high-rate charge and discharge.The material exhibited stable discharge capacities of 120,90 and 60mAh·g-1 at 5C,10C and 20C rates respectively(1 C=150mA·g-1,charge at 1 C).

  2. An Effectively Activated Hierarchical Nano-/Microspherical Li1.2 Ni0.2 Mn0.6 O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yu; Bai, Ying; Bi, Xuanxuan; Qian, Ji; Ma, Lu; Tian, Jun; Wu, Chuan; Wu, Feng; Lu, Jun; Amine, Khalil

    2016-04-01

    Rechargeable lithium-ion batteries with high energy and high power density are required in the application of electric vehicles and portable electronics. Herein, we introduce a type of spherical Li-rich cathode material, Li1.2 Ni0.2 Mn0.6 O2 , assembled from uniform nanocubes by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal method. The material with a hierarchical nano-/microstructure exhibits stable high-rate performance. Furthermore, the precipitant (i.e., urea) and the structure-directing agent (i.e., PVP) effectively activated the Li2 MnO3 components in the microscale material to achieve a high specific capacity of 298.5 mAh g(-1) in the first cycle. This Li-rich cathode material still delivered 243 mAh g(-1) at 0.1 C after 200 cycles and the capacity retentions at 0.5, 1, 2, and 5 C were 94.4, 78.7, 76.3, and 67.8 % after 150 cycles, respectively. The results make this Li-rich nano-/microstructure a promising cathode material for long-life and high-performance lithium-ion batteries. PMID:26940745

  3. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    Science.gov (United States)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  4. Synthesis of LiFePO4/Pani/C composite as a cathode material for lithium ion battery

    Science.gov (United States)

    Rahayu, Iman; Hidayat, Sahrul; Aryadi, Lutfi

    2016-02-01

    In recent years, LiFePO4 studied intensively as a cathode material for Li-ion batteries because of high theoretical capacity, stability, and environmental friendly. However, its low intrinsic electronic conductivity. One way to improve its conductivity is addition of conductive material. Polyaniline (PANI) is one of the conductive polymer materials that widely studied because its unique physical and chemical properties which can be an insulator and conductor by doping-dedoping processes and has large potential application. The purpose of this research is to improve the conductivity of LiFePO4 with conductive polymer PANI. The method is performed by the addition of LiFePO4 during the polymerization process to form LiFePO4 polyaniline then added to the C-PANI with the addition of mass percent variation of 5%, 10%, 15%, 20% form-LiFePO4 composite PANI-C. In LiFePO4 added during polymerization PANI provide a smooth surface profile after composited with the carbon to LiFePO4-PANI-C compared to LiFePO4-C. LiFePO4-PANI-C composite provided higher conductivity is 18.45×10-4 S/cm compared to LiFePO4-C is 10.48×10-4 S/cm at 20% addition of carbon. This is due to PANI in LiFePO4 is added to the polyaniline polymerization process can act as a conductive adhesive to glue between carbon and LiFePO4.

  5. Single crystal LaB6: a comparison with currently used thermionic cathodes for broad beam applications

    International Nuclear Information System (INIS)

    The use of single crystal LaB6 cathodes in microbeam applications has grown dramatically in the past few years, due to recognition of the high current density/low volatility characteristics of this material. We present here experimental results suggesting that advanced, single crystal LaB6 cathodes should also satisfy the requirements of broad beam applications, such as satellite-borne traveling wave tubes, where high current density, long lifetime and excellent stability and reproducibility are necessary. The most important parameters for cathode characterization are available emitted current density, material vaporization rate, lifetime and power consumption. Other important characteristics are activation procedure, resistance to poisoning by impurities, emission stability and emission uniformity across the cathode emitting surface. The current state of the art cathode type used in commercial devices is the impregnated dispenser cathode (IDC). The construction of such cathodes are outlined briefly, and their operating properties are discussed

  6. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode was synthesized. • Structural and electrochemical properties of Na2/3Ni1/4TixMn3/4-xO2 were studied. • Ti substituted cathodes exhibit enhanced cycleability and rate performance. • Ti substitution has impact on stabilizing the P2 structure during cycling. -- Abstract: Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material with the composition of Na2/3Ni1/4TixMn3/4-xO2 has been synthesized by solid state method. The influence of Ti substitution for Mn on the structure, morphology and electrochemical performances of P2-Na2/3Ni1/4Mn3/4O2 has been investigated. X-ray diffraction (XRD) results of Ti substituted sample show that they exhibit same diffraction patterns as those of pristine P2-Na2/3Ni1/4Mn3/4O2. Progressive change in the lattice parameters of Ti substituted samples suggests that Mn was successfully substituted by Ti. In contrast to P2-Na2/3Ni1/4Mn3/4O2 which shows step-type voltage profiles, Ti substituted samples show sloping voltage profiles. Drastic capacity fade occurred for P2-Na2/3Ni1/4Mn3/4O2 cathode, while Ti substituted cathodes still show high capacity retention over 92% after 25 cycles at the voltage range of 2.0-4.3 V. Even cycled at high upper cut-off voltage of 4.5 V, Ti=0.20 sample can deliver a reversible capacity of 140 mAhg−1 with the capacity retention over 92% after 25 cycles. Furthermore, Ti substituted cathodes exhibit enhanced rate capability over pristine P2-Na2/3Ni1/4Mn3/4O2 cathode. Comparison of the Ex-situ XRD results of the cycled P2-Na2/3Ni1/4Mn3/4O2 and its substituted samples provides evidence that the improved electrochemical performance of Ti substituted cathodes would be attributed to the stabilization of the structure with Ti substitution

  7. Synthesis of Nanoscale Lithium-Ion Battery Cathode Materials Using a Porous Polymer Precursor Method

    KAUST Repository

    Deshazer, H.D.

    2011-01-01

    Fine particles of metal oxides with carefully controlled compositions can be easily prepared by the thermal decomposition of porous polymers, such as cellulose, into which solutions containing salts of the desired cations have been dissolved. This is a simple and versatile method that can be used to produce a wide variety of materials with a range of particle sizes and carefully controlled chemical compositions. Examples of the use of this method to produce fine particles of LiCoO2 and Li(NiMnCo)1/3O2, which are used in the positive electrodes of lithium-ion batteries, are shown. Experiments have demonstrated that materials made using this method can have electrochemical properties comparable to those typically produced by more elaborate procedures. © 2011 The Electrochemical Society.

  8. Chemical States of Lanthanum in Carbonized La2O3-Mo Thermionic Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    王金淑; 周美玲; 王亦曼; 张久兴; 聂祚仁; 左铁镛

    2003-01-01

    The chemical reaction between lanthanum oxide and molybdenum carbide was studied by thermodynamic calculation, thermal analysis and in-situ X-ray Photoelectron Spectroscopy. The theoretical results show that at the environment allowing for the evaporation of lanthanum, such as in high vacuum, La2O3 in the La2O3-Mo materials can be reduced to metallic lanthanum by molybdenum carbide (Mo2C). To confirm the conclusion, many analysis methods such as XRD, SPS, and TG-DTA were taken. The experimental results show that the chemical state of lanthanum changes during heating. It was proved, for the first time, that reacted metallic lanthanum appears at the surface of this kind of material at high temperature.

  9. A new high-performance cathode material for rechargeable lithium-ion batteries: Polypyrrole/vanadium oxide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cui Chaojun, E-mail: tjccj2008@yahoo.com.c [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Wu Guangming, E-mail: wugm@tongji.edu.c [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Yang Huiyu; She Shifeng; Shen Jun; Zhou Bin; Zhang Zhihua [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China)

    2010-12-01

    Polypyrrole/vanadium oxide nanotubes (PPy/VOx-NTs) as a new high-performance cathode material for rechargeable lithium-ion batteries are synthesized by a combination of hydrothermal treatment and cationic exchange technique. The morphologies and structures of the as-prepared samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential scanning calorimeter (TG-DSC) and X-ray powder diffraction (XRD). The results indicate that the organic templates are mainly substituted by the conducting polymer polypyrrole without destroying the previous nanotube structure. Their electrochemical properties are evaluated via galvanostatic charge/discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that PPy/VOx-NTs exhibit high discharge capacity and excellent cycling performance at different current densities compared to vanadium oxide nanotubes (VOx-NTs). After 20 cycles, the reversible capacity of PPy/VOx-NTs (159.5 mAh g{sup -1}) at the current density of 80 mA g{sup -1} is about four times of magnitude higher than that of VOx-NTs (37.5 mAh g{sup -1}). The improved electrochemical performance could be attributed to the enhanced electronic conductivity and the improved structural flexibility resulted from the incorporation of the conducting polymer polypyrrole.

  10. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material

    Science.gov (United States)

    Dong, Xin; Xu, Youlong; Xiong, Lilong; Sun, Xiaofei; Zhang, Zhengwei

    2013-12-01

    Monoclinic layered Li2MnO3 has been extensively investigated due to its large discharge capacity. However, the poor cycling stability hinders its application as a cathode material of lithium-ion batteries. Herein we present a new strategy of sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 through a conventional solid state reaction. In the electrochemical window of 2.0-4.6 V vs. Li/Li+, Li1.90Na0.10MnO3 delivers an initial discharge capacity of 181 mAh g-1 with an excellent capacity retention of 99.3% after 45 cycles at 1/10 C, and 161 mAh g-1 with a capacity retention of 98.6% after 100 cycles at 1/2 C. Sodium substitution for partial lithium is promising to make Li2MnO3 be practically applied at a low current density.

  11. Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Yajima

    2013-10-01

    Full Text Available Multivalent cation rechargeable batteries are expected to perform well as high-capacity storage devices. Rechargeable magnesium batteries have an advantage in terms of resource utilization and safety. Here, we report on sulfur-doped vanadium pentoxide (S-V2O5 as a potential material for the cathodes of such a battery; S-V2O5 showed a specific capacity of 300 mAh·g−1. S-V2O5 was prepared by a method using a low-temperature plasma generated by carbon felt and a 2.45 GHz microwave generator. This study investigates the ability of S-V2O5 to achieve high capacity when added to metal oxide. The highest recorded capacity (420 mAh·g−1 was reached with MnO2 added to composite SMn-V2O5, which has a higher proportion of included sulfur than found in S-V2O5. Results from transmission electron microscopy, energy-dispersive X-ray spectroscopy, Micro-Raman spectroscopy, and X-ray photoelectron spectroscopy show that the bulk of the SMn-V2O5 was the orthorhombic V2O5 structure; the surface was a xerogel-like V2O5 and a solid solution of MnO2 and sulfur.

  12. Three-dimensional graphene/LiFePO4 nanostructures as cathode materials for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: Graphene/LiFePO4 composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO4/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO4 nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO4 was examined by a variety of electrochemical testing techniques. The graphene/LiFePO4 nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g−1 at 0.1 C and 114 mAh g−1 at 5 C without further incorporation of conductive agents

  13. Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery

    International Nuclear Information System (INIS)

    Research highlights: → The surface of LiFePO4/C particles was coated with SiO2 via a sol-gel method. → The existence of SiO2 coating effectively enhanced the discharge capacity, reduced capacity fading at high temperature and alleviated the cell impedance. → The SiO2 coating played a regulatory role for Li-ion inserting the lattice, by increasing the order of lithium ion intercalating the outer lattice of the particle. - Abstract: The surface of LiFePO4/C particles was coated with SiO2 via a sol-gel method, and the electrochemical performance of SiO2-coated LiFePO4 cathode materials at room temperature and 55 deg. C was investigated. Compared with pristine LiFePO4, the structure of LiFePO4 with SiO2 coating had no change, the existence of SiO2 coating effectively enhanced the cycling capacity, reduced capacity fading at high temperature and alleviated the cell impedance. The SiO2 coating played a regulatory role for Li-ion inserting the lattice, by increasing the order of lithium ion intercalating the outer lattice of the particle. As a consequence, capacity retention improves significantly.

  14. A new high-performance cathode material for rechargeable lithium-ion batteries: Polypyrrole/vanadium oxide nanotubes

    International Nuclear Information System (INIS)

    Polypyrrole/vanadium oxide nanotubes (PPy/VOx-NTs) as a new high-performance cathode material for rechargeable lithium-ion batteries are synthesized by a combination of hydrothermal treatment and cationic exchange technique. The morphologies and structures of the as-prepared samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential scanning calorimeter (TG-DSC) and X-ray powder diffraction (XRD). The results indicate that the organic templates are mainly substituted by the conducting polymer polypyrrole without destroying the previous nanotube structure. Their electrochemical properties are evaluated via galvanostatic charge/discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that PPy/VOx-NTs exhibit high discharge capacity and excellent cycling performance at different current densities compared to vanadium oxide nanotubes (VOx-NTs). After 20 cycles, the reversible capacity of PPy/VOx-NTs (159.5 mAh g-1) at the current density of 80 mA g-1 is about four times of magnitude higher than that of VOx-NTs (37.5 mAh g-1). The improved electrochemical performance could be attributed to the enhanced electronic conductivity and the improved structural flexibility resulted from the incorporation of the conducting polymer polypyrrole.

  15. Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: •The V2O5 nanotubes are prepared by eletrospinning with using low-cost inorganic vanadium source. •The as-prepared V2O5 has porous, hollow and interconnected nanostructures. •By controlling the annealing time, a small amount of carbon can be retained in V2O5 nanotubes. •The V2O5 nanotubes with carbon exhibit excellent high rate performance and cycling stability. -- Abstract: In this work, porous vanadium pentoxide (V2O5) nanotubes have been synthesized by a simple electrospinning technique followed by an annealing process with using low-cost inorganic vanadium precursor. By controlling the annealing time at 400 °C, a small amount of polymer pyrolysis carbon can be retained which improves the conductivity of the porous V2O5 nanotubes. When evaluated as a cathode material for lithium ion batteries, the porous V2O5 nanotubes delivered capacities of 114.9, 99.7 and 79.6 mAh g−1 at 10, 20 and 50C in the voltage range of 2.5-4.0 V, respectively. Moreover, the porous V2O5 nanotubes display good cycling performance, the capacity retention is 97.4% after 200 cycles at 50C. The results indicate that fabricating nanostructured V2O5 with a porous interconnected morphology is an effective way to improve the electrochemical performance of V2O5

  16. Development of capacities in cathode olivine/carbon nano-composite materials

    Czech Academy of Sciences Publication Activity Database

    Bouša, Milan; Frank, Otakar; Kavan, Ladislav

    Praha : Ústav fyzikální chemie J. Heyrovského AV ČR, v.v.i, 2011 - (Mansfeldová, V.; Tarábková, H.). s. 49-49 ISBN 978-80-87351-17-8. [Heyrovský Discussion. Nanostructures on Electrodes /44./. 26.06.2011-30.06.2011, Třešť] Institutional research plan: CEZ:AV0Z40400503 Keywords : nano-composite materials * lithium-ion batteries Subject RIV: CG - Electrochemistry

  17. Ab initio study of vacancy formation in cubic LaMnO3 and SmCoO3 as cathode materials in solid oxide fuel cells

    Science.gov (United States)

    Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H.

    2016-07-01

    Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.

  18. Studies on Relationship Between Structure of Over-Charge State and Thermal Stability for LiNiO2 Based Cathode Materials

    International Nuclear Information System (INIS)

    A synchrotrons x-ray source was used for In Situ x-ray diffraction studies on cathode materials during charge and discharge. Two new cathode materials, LiNi0.75Mg0.125Ti0.125O2 and LiNi0.56Co0.25Mg0.05Ti0.05O2, were studied in comparison with LiNiO2, and LiCo0.2Ni0.8O2. The relationship between the structural changes and thermal stability at over-charged state has been investigated. For the W time, The thermal stability of these materials are related to their structural changes during charge, especially to the formation of a hexagonal phase H3 with collapsed lattice along ''c'' axis. A hypothesis is proposed that through suppressing the formation of H3 phase when charged above 4.3 V, the thermal stability of the cathode materials can be improved

  19. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition

    DEFF Research Database (Denmark)

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano;

    2016-01-01

    to be strictly related to the SOFCs’ efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes...... and the materials’ structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still...... preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging...

  20. Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries

    OpenAIRE

    Kiya, Yasuyuki; Henderson, Jay C.; Hutchison, Geoffrey R; Abruña, Héctor D.

    2007-01-01

    We present a family of a novel class of organosulfur compounds based on dimercaptothiophene and its derivatives, with a variety of functional groups (electron-donating or electron-withdrawing groups) and regiochemistries, designed as potential high-energy cathode materials with sufficient charge/discharge cyclability for lithium/lithium-ion rechargeable batteries. This study uses as a point of departure the electrochemical and computational understanding of the electrocatalytic effect of poly...

  1. A sodium layered manganese oxides as 3 V cathode materials for secondary lithium batteries

    International Nuclear Information System (INIS)

    The synthesis of a new anhydrous sodium manganese oxide α-Na0.66MnO2.13 obtained via a sol-gel process in organic medium is reported. The partial and limited removal of sodium ions from the layered host lattice (hexagonal symmetry; a = 2.84 A, c = 11.09 A) allows to get a high and stable specific capacity of 180 mAh g-1 at C/20 in the cycling limits 4.3/2 V with a mean working voltage of 3 V without the emergence of a spinel phase. By introducing acetylene black in solution during the sol-gel reaction, a composite material containing 8 wt.% AB has been obtained. The rate capability is shown to be significantly improved leading to an increase of the available specific capacity with for instance 200 and 90 mAh g-1 at C/20 and C rate. This effect is ascribed to a better electronic contact between particles and/or the modification of the oxide surface which makes the intercalation process more homogeneous and more efficient

  2. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m2 g−1 and a total pore volume of 2.66 cm3 g−1 with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life

  3. Enhanced rate performance of multiwalled carbon nanotube encrusted olivine type composite cathode material using polyol technique

    Science.gov (United States)

    Muruganantham, R.; Sivakumar, M.; Subadevi, R.

    2015-12-01

    Olivine type multi-walled carbon nanotube encrusted LiFePO4/C composites have been prepared using economic and energy efficient simple polyol technique without any subsequent heat treatment. The prepared material has an olivine type orthorhombic phase. Also, the iron oxidation state is 2+, which is identified by X-ray diffraction and X-ray photoelectron spectroscopy. It is possible to attain the discharge capacity almost close to theoretical capacity of LiFePO4 as in high temperature methods with ∼100% coulombic efficiency. The specific surface area has been increased upon encrusting multi walled carbon nano tube on LiFePO4/C, which results in enhanced reversible capacity upto 166 mAh g-1 at C/10. Also, it exhibits 89 mAh g-1 even at 30 C rate. This is due to the formation of conductive networks by carbon nanotube, and excellent attachment of LiFePO4/C composite particles on multi-walled carbon nanotube, which induced the kinetics during intercalation/deintercalation process. Multi-walled carbon nanotube acts as the electro-conductive filler on the LiFePO4 surface. The direct addition of MWCNT would result better performances than blending the MWCNT with LiFePO4/C.

  4. Influence of Sc3+ on LiMn2O4 cathode materials at elevated temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Huiyong; DENG Ganqun; GUO Yonglang

    2008-01-01

    Sc3+-doped lithium manganese oxides were synthesized by solid-state reaction. The influences of doping element on structure,mean valence of manganese, and electrochemical performances were studied by X-ray diffraction (XRD), galvanostatic charge-discharge and cyclic voltammetric tests, and also electrochemical impedance spectroscopy (EIS). XRD tests showed that doped lithium manganese oxides were pure spinel structure without other phases. Redox titration and visible spectrophotometry tests indicated that the mean valence of man-ganese in doped lithium manganese oxides was higher than that of pure one. LiSc0.02Mn1.98O4 remained 92.9% of the initial specific discharge capacity after 50th cycle at a constant current of 50 m/g, and the reversibility of LiSc0.02Mn1.98O4 was improved in comparison with pure LiMn2O4 at 50 ℃. EIS indicated that film deposition on spinel particles was suppressed because of Sc3+ doping, and the charge transfer be-tween the surface film and spinel particles with increasing temperature for Sc3+-doped materials became easier as compared with undoped one.

  5. In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni).

    Science.gov (United States)

    Arroyo-de Dompablo, M E; Krich, C; Nava-Avendaño, J; Palacín, M R; Bardé, F

    2016-07-20

    Basic electrochemical characteristics of CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni) as cathode materials for Ca ion batteries are investigated using first principles calculations at the Density Functional Theory level (DFT). Calculations have been performed within the Generalized Gradient Approximation (GGA) and GGA+U methodologies, and considering cubic and orthorhombic perovskite structures for CaxMO3 (x = 0, 0.25, 0.5, 0.75 and 1). The analysis of the calculated voltage-composition profile and volume variations identifies CaMoO3 as the most promising perovskite compound. It combines good electronic conductivity, moderate crystal structure modifications, and activity in the 2-3 V region with several intermediate CaxMoO3 phases. However, we found too large barriers for Ca diffusion (around 2 eV) which are inherent to the perovskite structure. The CaMoO3 perovskite was synthesized, characterized and electrochemically tested, and results confirmed the predicted trends. PMID:27398629

  6. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C. PMID:22121727

  7. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C

    Science.gov (United States)

    Mori, Takuya; Orikasa, Yuki; Nakanishi, Koji; Kezheng, Chen; Hattori, Masashi; Ohta, Toshiaki; Uchimoto, Yoshiharu

    2016-05-01

    The aluminum rechargeable battery is a desirable device for large-scale energy storage owing to the high capacity derived from the properties of the aluminum metal anode. The development of cathode materials is needed to compose battery systems. However, the design principles of the cathode materials have not been determined. We focus on the high capacity FeS2 cathode materials and investigate the discharge/charge reaction mechanisms in chloroaluminate ionic liquids as the electrolyte at 55°C. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements are performed for the discharged and charged samples. S 3p-orbitals are shown to play an important role in the redox reactions from the results of the S and Fe K-edge XANES spectra. As a result of the redox reaction, FeS2 is transformed into low crystalline FeS and amorphous Al2S3, as shown by the XRD and S, Al, and Fe K-edge XANES spectra. This reaction mechanism is different from the reaction observed with lithium ion.

  8. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries

    Science.gov (United States)

    Cui, Kai; Hu, Shuchun; Li, Yongkui

    2016-09-01

    In this study, nitrogen-doped graphene decorated LiVPO4F cathode material is firstly synthesized via a facile method. Well-dispersed LiVPO4F nanoparticles are embedded in nitrogen-doped graphene nanosheets, forming an effective conducting network. The added nitrogen-doped graphene nanosheets greatly enhance the electronic conductivity and Li-ion diffusion of LiVPO4F sample. When tested as cathode material for rechargeable lithium-ion batteries, the hybrid electrode exhibits superior high-rate performance and long-term cycling stability between 3.0 and 4.5 V. It delivers a large discharge capacity of 152.7 mAhg-1 at 0.1 C and shows a capacity retention of 97.8% after 60 cycles. Moreover, a reversible capacity of 90.1 mAhg-1 is maintained even after 500 cycles at a high rate of 20 C. The charge-transfer resistance of LiVPO4F electrode is also reduced in the nitrogen-doped graphene, revealing that its electrode-electrolyte complex reactions take place easily and thus improve the electrochemical performance. The above results provide a facile and effective strategy for the synthesis of LiVPO4F cathode material for high-performance lithium-ion batteries.

  9. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition of...... the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was...

  10. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  11. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    Science.gov (United States)

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  12. Thermally Controlled V2O5 Nanoparticles as Cathode Materials for Lithium-Ion Batteries with Enhanced Rate Capability

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted - Abstract: Vanadium pentoxide (V2O5) is an attractive cathode material for lithium-ion batteries (LIBs) because of its low cost, high abundance, and relatively high theoretical capacity (294 mA h g−1 with two lithium insertions/extractions per unit formula at 2.0–4.0 V). However, practical applications of V2O5 are hampered by its poor structural stability, low electrical conductivity, and slow ion diffusion kinetics, resulting in poor long-term cycling stability and rate performance. In this study, V2O5 nanoparticles are synthesized by a fast sol-gel method with citric acid (C6H8O7) at 400, 500, 600, and 700 °C. The thickness of the amorphous layers on the surface of the V2O5 nanoparticles is controlled from approximately 4–5 to 1–2 nm by adjusting the calcination temperature. The V2O5 nanoparticles synthesized at 600 °C show better electrochemical performances than the other samples. They exhibit a high initial discharge capacity of 276 mA h g−1 between 2.1 and 4.0 V at a rate of 1 C, and good capacity retention of 83% after 50 cycles. Even at 10 C rate, a discharge capacity of about 168 mA h g−1 is obtained after 100 cycles. The excellent rate capability and cycling stability are also achieved at current densities of 0.5–20 C

  13. Spinel LiNixMn2−xO4 as cathode material for aqueous rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Ni-doped spinel LiNixMn2−xO4 (x = 0, 0.05, 0.10) samples were prepared by a sol–gel method. Structure and morphology of the samples were characterized by X-ray diffraction, scanning electron microscopy, Brunnauer–Emmet–Teller method and inductively coupled plasma atomic absorption spectrometry. The electrochemical behavior as a cathode material (positive mass) for aqueous rechargeable lithium batteries (ARLBs) was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, capacity measurements and cycling tests. The results show that the LiNi0.1Mn1.9O4 electrode presents the best rate and cycling performance but low reversible capacity. In contrast, the LiNi0.05Mn1.95O4 electrode shows a higher reversible capacity and relatively good cycling behavior. At a current density of 150 mA g−1, LiNi0.05Mn1.95O4 delivers a reversible capacity of 102 mA h g−1. At the relative high current densities of 1500 and 3000 mA g−1, the LiNi0.05Mn1.95O4 electrode still delivers reversible capacities of 95.0 and 88.7 mA h g−1, respectively. The Ni-doped samples show excellent cycling life in 0.5 mol L−1 Li2SO4 aqueous solution. The capacity retention ratios for LiNi0.05Mn1.95O4 and LiNi0.10Mn1.90O4 after 800 cycles at a current density of 1500 mA g−1 are 79.4% and 91.1%, respectively, much higher than that for the undoped LiMn2O4 at only 37.8%

  14. Synthesis of Nano FePO4 and Electrochemical Characterization of Composite Cathode Material LiFePO4/C

    Directory of Open Access Journals (Sweden)

    WU Yu-Ling, PU Wei-Hua, REN Jian-Guo, JIANG Chang-Yin, WAN Chun-Rong

    2012-04-01

    Full Text Available Nano FePO4·xH2O powders were synthesized by controlled crystallization method, using Fe(3) compound as the iron source. The nano FePO4·xH2O powders were pretreated at 500¡䟦or 4 h in air to obtain nano FePO4 precursor. Then the olivine nano LiFePO4/C composites were obtained through carbonthermal reduction process at different temperatures. The structure, morphology, physicochemical properties and electrochemical properties of the nano FePO4·xH2O powder, FePO4 precursor and LiFePO4/C composites synthesized at different temperatures were characterized in detail by thermogravimetric/differential scanning calorimeter (TG/DSC), X―ray diffraction (XRD), scanning?electron?microscope (SEM), Brunauer―Emmett―Teller (BET) surface area measurement and electrochemical measurement. The results show that the nano LiFePO4/C composite calcined at 700¡䟦or 10 h has fine particle sizes of about 40―100 nm .The BET test shows that the as―prepared nano LiFePO4/C composite has great specific surface area of 79.8 m2/g. The nano LiFePO4/C composite cathode material can deliver an initial discharge capacity of 156.5, 134.9, 105.8, 90.3 and 80.9 mAh/g in the voltage range of 2.5―4.2 V, at rate of 0.1C, 1C, 5C, 10C and 15C respectively, which exhibits good rate performance. The nano LiFePO4/C composite also demonstrates excellent cyclic performance.

  15. Preparation and characterization of Li1-xNi1+xO2 powder used as cathode materials

    International Nuclear Information System (INIS)

    Li1-xNi1+xO2 powder used as cathode materials was prepared by a sol-gel method using oxalic acid as a chelating agent. Mole ratio of lithium: nickel: oxalic acid was 1:1:2. The x-ray diffraction analysis of the powder calcined at 650 and 700 deg C showed the existence of Li1-xNi1+xO2 containing a small concentration of Li2CO3 and Li2Ni8O10 as impurities. At 750 and 800 deg C, the single phase of Li1-xNi1+xO2 was detected. The maximum (I(003+104/I(101 and minimum (I(006+102/I(101) intensity ratios, the maximum Ni3+ content in total nickel and the maximum oxidation state of nickel are existent at the same temperature of 750 deg C. The Fourier transform infrared spectra of the mixture of the carboxylate precursors and the powder calcined at 650-800 deg C are used to explain the vibrational bonding. The thermogravimetric curves of oxalic acid, lithium acetate dihydrate, nickel acetate tetrahydrate and the mixture of carboxylate precursors show weight loss due to the evaporation and decomposition processes. The best condition for preparation the powder is 750 deg C for 44 h. The Ni3+ content in total nickel and mean oxidation state of nickel are 68.33% and 2.68, respectively. The scanning electron micrograph shows good crystallinity. A possible mechanism of formation the powder was proposed. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. 质子导体燃料电池阴极材料的研究及发展概述%The development review of cathode materials for proton conducting solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    赵凌; 夏长荣

    2013-01-01

    Energy crisis and environmental pollutions are the problems which the whole world is now fac-ing for the sustainable development. Solid oxide fuel cells(SOFCs),which have been regarded as keystone for the future energy economy,have received considerable attention for their high energy conversion efficiency and low impact to environment as a mean of generating electricity. Proton conducting solid oxide fuel cells(H-SOFCs) have attracted much attention for their unique characters,such as great efficiency in fuel utilization,high electro-motive force,high ionic transferring numbers and low activation energies for proton conduction. However, compared with oxygen-ion conducting SOFCs(O-SOFCs),the materials and theories on H-SOFC are just inchoate, especially for cathodes of H-SOFC. In H-SOFC,hydrogen is oxidized at the anode to form protons,which migrate through the electrolyte to the cathode,and undergo a half-cell reaction with oxygen to produce water, which makes the cathode reactions more complex compared with those of O-SOFC. Such distinguished characteristic of cathode reactions calls for intensive consideration on reaction mechanism and might lead to some special demands on the cathode materials. This review is focused on the hisrory of cathode materials for H-SOFC. The elec-trochemical performancesandreactionmodelsofdifferentconductionmechanismcathodematerialsaresummarized, providing some useful means and ways for the development and application of cathode materials for H-SOFC.%  能源危机和环境污染是全世界在可持续发展道路中所面临的难题。固体氧化物燃料电池(SOFC)具有高能量转化效率和低污染排放,被认为是未来能源经济的基石。其中,以质子导体作为电解质的固体氧化物燃料电池(H-SOFC)由于具有高燃料利用率、高理论电动势、高离子迁移数以及低传导活化能,因而备受关注。然而,与氧离子导体固体氧化物燃料电池(O-SOFC)相

  17. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    Science.gov (United States)

    Santoro, Carlo; Serov, Alexey; Villarrubia, Claudia W. Narvaez; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J.; Atanassov, Plamen

    2015-11-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.

  18. Fabrication and characterization of 900 °C-sintered Ni/Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Highlights: ► Ni/Cu/YSZ cermet cathodes were fabricated by high energy ball-milling and sintering. ► Electrical conductivity and microstructure of the cermet cathode were investigated. ► Fabrication of the cermets showed a good prospect for HTE cathode material. - Abstract: Ni/Cu/YSZ cermet (volume ratio of Ni:Cu:YSZ = 40:20:40) is more electronically conductive than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of nickel, copper, and YSZ powders, pressing into pellets (Ø 10 mm × 1 mm) and subsequent sintering process at 900 °C under flowing 5%-H2/Ar gas. The Ni/Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as SEM, XRD, and laser diffraction and scattering method. Electrical conductivity of sintered Ni/Cu/YSZ cermet pellets fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermet. The effect of ball-milling time on electrical conductivity and microstructure of Ni/Cu/YSZ cermets for HTE was investigated. The particle size of Ni/Cu/YSZ decreased while electrical conductivity increased with milling time: enhanced electrical conductivity is attributed to well-connected Ni/Cu/YSZ particles rendered by increased ball-milling time.

  19. Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method

    International Nuclear Information System (INIS)

    Highlights: • Dual-doped LiMn2O4 nanofiber cathode is synthesized by electrospinning. • Nanofiber cathode forms porous “network-like” structures. • Al/Ni dual-dope markedly improved the cycle stability and rate performance. - Abstract: One-dimensional LiAl0.05Ni0.05Mn1.9O4 nanofibers are prepared by an electrospinning method followed by calcination process to investigate the influences of Al/Ni dual-doping on the structural and electrochemical properties of as-prepared cathode materials for Li-ion batteries. X-ray diffraction (XRD) and scanning electron microscope (SEM) characterization results indicate that the as-prepared material have good crystallinity and uniform morphology. Galvanostatic charge–discharge tests demonstrate LiAl0.05Ni0.05Mn1.9O4 has an improved cyclic performance at 25 °C and high temperature (55 °C), which originates from the enhanced stability by decreasing lattice constant and suppression of Jahn–Teller effect revealed by XPS analysis. Moreover, From the EIS analysis, it is revealed reduced charge transfer resistance of LiAl0.05Ni0.05Mn1.9O4 compared with those of undoped LiMn2O4

  20. Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries.

    Science.gov (United States)

    Tan, Rui; Yang, Jinlong; Hu, Jiangtao; Wang, Kai; Zhao, Yan; Pan, Feng

    2016-01-18

    We report the formation of core-shell nano-FeS2@N-doped graphene as a novel cathode material and its mechanism for use in rechargeable Li-ion batteries. A benefit of the amount of FeS2 nano-crystals as the core for Li-ion storage with high capacity and using coated N-doped graphene as the shell is that FeS2@N-graphene exhibits a remarkable specific energy (950 W h kg(-1) at 0.15 kW g(-1)) and higher specific power (543 W h kg(-1) at 2.79 kW g(-1)) than commercial rechargeable LIB cathodes, as well as stable cycling performance (∼600 W h kg(-1) at 0.75 kW g(-1) after 400 cycles). PMID:26592428

  1. Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: Study in cathode atmosphere

    International Nuclear Information System (INIS)

    For economic and ecological reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 degrees C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a new Cr-free Fe-Ni-Co alloy were tested in cathode atmosphere (H2/H2O) at 800 degrees C. The alloy exhibits a poor oxidation resistance but an excellent ASR parameter, as a result of the formation of a highly-conductive Cr-free surface spinel layer. Moreover, the role of water vapour and hydrogen was discussed and a diffusion mechanism in cathode atmosphere could be suggested. (authors)

  2. Electrochemical Properties of Spinel LiMn2O4-d Fd for Cathode Materials of Secondary Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The spinel LiMn2O4-δ Fδ cathode materials were synthesized by solid-state reaction, with calculated amounts of LiOH·H2O, MnO2(EMD), LiF. The results of electrochemical test demonstrated that these new materials exhibited excellent electrochemical properties. Its initial capacity reached ~115 mAh·g-1 and reversible efficiency is about 100%. After 60 cycles, its capacity was still around 110 mAh·g-1, with nearly 100% reversible efficiency.

  3. Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells

    KAUST Repository

    Ribot-Llobet, Edgar

    2013-03-01

    Nickel foam (NF), stainless steel wool (SSW), platinum coated stainless steel mesh (Pt), and molybdenum disulfide coated stainless steel mesh (MoS 2) electrodes have been proposed as catalysts for hydrogen gas production, but previous tests have primarily examined their performance in well buffered solutions. These materials were compared using two-chamber microbial electrolysis cells (MECs), and linear sweep voltammetry (LSV) in unbuffered saline solutions at two different initial pHs (7 and 12). There was generally no appreciable effect of initial pH on production rates or total gas production. NF produced hydrogen gas at a rate of 1.1 m3 H2/m 3·d, which was only slightly less than that using Pt (1.4 m3 H2/m3·d), but larger than that obtained with SSW (0.52 m3 H2/m3·d) or MoS2 (0.67 m3 H2/m3·d). Overall hydrogen gas recoveries with SSW (29.7 ± 0.5 mL), MoS2 (28.6 ± 1.3 mL) and NF (32.4 ± 2 mL) were only slightly less than that of Pt (37.9 ± 0.5 mL). Total energy recoveries, based on the gas produced versus electrical energy input, ranged from 0.75 ± 0.02 for Pt, to 0.55 ± 0.02 for SSW. An LSV analysis showed no effect of pH for NF and Pt, but overpotentials were reduced for MoS2 and SSW by using an initial lower pH. At cathode potentials more negative than -0.85 V (vs Ag/AgCl), NF had lower overpotentials than the MoS2. These results provide the first assessment of these materials under practical conditions of high pH in unbuffered saline catholytes, and position NF as the most promising inexpensive alternative to Pt.

  4. High energy cathode material

    Science.gov (United States)

    Li, Bin; Caldwell, Marissa; Tong, Wei; Kaye, Steven; Bhat, Vinay

    2015-09-01

    A composition for use in a battery electrode comprising a compound including lithium, manganese, nickel, and oxygen. The composition is characterized by a powder X-ray diffraction pattern having peaks including 18.6.+-.0.2, 35.0.+-.0.2, 36.4.+-.0.2, 37.7.+-.0.2, 42.1.+-.0.2, and 44.5.+-.0.2 degrees 2.theta. as measured using Cu K.sub..alpha. radiation.

  5. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X. S.

    2013-12-01

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg2+ doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg2+ doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li+ diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg2+ doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of ``cushion'' as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co

  6. 钒系磷酸盐锂离子电池正极材料%Vanadium-Based Phosphates as Cathode Materials for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    任慢慢; 刘素文; 卢启芳

    2011-01-01

    Nowadays Li ion batteries have been widely used in many fields as power suppliers for mobile equipment.In commercialized Li ion batteries,cathode materials are mainly lithium transition-metal oxides.However,high cost and security problem limit their large-scale use.Phosphate materials,with a rigid phosphate network and remarkable electrochemical and thermal stability,are considered as a substitution for lithium transition-metal oxides.Among the newly-exploited phosphate cathode materials,vanadium-based phosphates,with stable structure and high theoretical specific capacity,have been attracting much research interest.In this review,recent progress is summarized on the vanadium-based phosphate cathode materials for lithium ion batteries,particularly focusing on the structure,preparation methods,and electrochemical performances of this series of materials.Also,the strategies and the corresponding mechanisms are discussed for the improvement of their general performances.%商业化锂离子电池以锂过渡金属氧化物作正极材料,由于安全性等问题限制了其更广泛的应用。在已经研究和开发的众多新型锂离子电池正极材料中,钒系磷酸盐由于具有较高的对锂电位和理论比容量而成为研究热点。本文综述了各种钒系磷酸盐类锂离子电池正极材料的研究现状,重点对各种材料的结构、制备方法和电化学性能进行了总结,并对改善材料综合性能的方法和机理进行了探讨。

  7. Recent progress of sulfur composites as cathode materials for lithium sulfur batteries%锂硫电池正极复合材料研究现状

    Institute of Scientific and Technical Information of China (English)

    杨蓉; 邓坤发; 刘晓艳; 曲冶; 雷京; 任冰

    2015-01-01

    锂硫电池由于其高理论能量密度(2600W·h/kg)而受到了广泛的关注,是极具应用前景的电池体系。硫基正极材料作为锂硫电池的重要组成部分,是提高电池性能的关键。然而锂硫电池还存在一些问题,如硫的利用率低及正极结构的稳定性差等。本文综述了近几年锂硫电池硫正极复合材料的研究现状,分别从硫/碳复合、硫/导电聚合物复合、硫/氧化物复合3个方面进行介绍,指出了未来锂硫电池正极材料要注意结合硫/导电聚合物及硫/氧化物的优势并注重材料结构的设计,向核壳或类核壳结构方向发展的趋势,同时还要提高载硫量,提高循环稳定性,以获得高性能的锂硫电池。%As a promising battery system,lithium-sulfur battery with high theoretical energy density (2600W·h/kg) has attracted great attention. As one of the essential ingredients for lithium-sulfur batteries,sulfur cathode material is the key to improve the performance of batteries. However,there are some serious and unavoidable problems for lithium-sulfur battery,such as low utilization efficiency of sulfur in cathode and poor stability of electrode structure. In this review,the recent progress of sulfur composites as cathode materials for lithium-sulfur batteries is introduced. Cathode materials are divided into three kinds of composites,such as sulfur/carbon,sulfur/polymer and sulfur/oxide composite materials,which are discussed respectively. It is pointed out that the coming development of cathode materials for lithium-sulfur batteries should be focused on the combination of advantages of sulfur/polymer and sulfur/oxide composite materials,and the design of material structure,such as core-shell or core-shell-like structure for cathode materials. At the same time,high sulfur loading and high cycle stability will be good for the performance improvement of lithium-sulfur batteries.

  8. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells

    KAUST Repository

    Tenca, Alberto

    2013-02-01

    Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8-1.8 m3/m3-d), and COD removal rates (1.8-2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1-3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of -0.7 - 1.2 kWh/kg-COD using MoS 2 or Pt cathodes, and -3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater. © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1.

    Science.gov (United States)

    Dubey, S; Kalia, Y N

    2011-06-30

    Cathodal iontophoresis of anionic macromolecules has been considered a major challenge owing to (i) the presence of a negative charge on the skin under physiological conditions and (ii) the electroosmotic solvent flow in the (opposite) anode-to-cathode direction. Moreover, electroosmosis, and not electromigration, was considered as the likely electrotransport mechanism for high molecular weight cations. However, it was recently shown that electromigration governed anodal iontophoretic transport of Cytochrome c (12.4 kDa) and Ribonuclease A (RNAse A; 13.6 kDa). Thus, the objective of this study was to investigate the feasibility of iontophoresing a negatively charged protein, the enzyme Ribonuclease T1 (RNAse T1, 11.1 kDa), from the cathode across intact skin. Cumulative permeation and skin deposition of RNAse T1 were investigated as a function of current density (0.15, 0.3 and 0.5 mA/cm(2) applied for 8h) using porcine ear skin and quantified by an enzymatic activity assay. Although RNAse T1 permeation was dependent upon current density (22.41 ± 8.10, 76.41 ± 56.98 and 142.19 ± 62.23μg/cm(2), respectively), no such relationship was observed with respect to skin deposition (9.78 ± 2.39, 7.76 ± 4.34 and 8.70 ± 2.94 μg/cm(2), respectively). MALDI-TOF spectra and the activity assay confirmed that RNAse T1 retained structural integrity and enzymatic function post-iontophoresis. Acetaminophen iontophoresis demonstrated the anode-to-cathode directionality of electroosmotic solvent flow confirming that RNAse T1 electrotransport was due entirely to electromigration. Interestingly, despite its lower net charge and higher molecular weight, electromigration of cationic Ribonuclease A was superior to that of RNAse T1 after iontophoresis at 0.5 mA/cm(2) for 8h. These results provide further evidence that charge to mass ratio and hence electric mobility might not alone be sufficient to predict protein electrotransport across the skin; three dimensional structures and the

  10. Organic active materials for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Weng, Wei; Amine, Khalil

    2016-08-16

    A rechargeable battery includes a compound having at least two active sites, R.sup.1 and R.sup.2; wherein the at least two active sites are interconnected by one or more conjugated moieties; each active site is coordinated to one or more metal ions M.sup.a+ or each active site is configured to coordinate to one or more metal ions; and "a" is 1, 2, or 3.

  11. Exoemissive noise activity of different metallic materials

    Science.gov (United States)

    Bichevin, V.; Käämbre, H.; Sammelselg, V.; Kelle, H.; Asari, E.; Saks, O.

    1996-11-01

    A method is proposed for testing the exoemission activity of different metals, used as materials in high sensitivity electrometry (attoammetry). The presented test results allow us to select materials with weaker exoelectron spurious currents.

  12. In operando study of the high voltage spinel cathode material LiNi(0.5)Mn(1.5)O4 using two dimensional full-field spectroscopic imaging of Ni and Mn.

    Science.gov (United States)

    Bauer, Sondes; de Biasi, Lea; Glatthaar, Sven; Toukam, Leonel; Gesswein, Holger; Baumbach, Tilo

    2015-07-01

    LiNi0.5Mn1.5O4 spinel cathode was studied during the first discharge cycle using combined full field Transmission X-ray Microscopy (TXM) and X-ray Absorption Near Edge Structure Spectroscopy (XANES) techniques to follow the chemical phase transformation as well as the microstructural evolution of cathode materials upon operation within an electrochemical cell. The spatial distribution and electrochemical process of the spinel material with spherical granules of 30 μm and 3 μm crystallite size was investigated. The spectroscopic imaging of the cathode within field of view of 40 × 32 μm(2) and spatial resolution of 40 nm has revealed an increase of the LiNi0.5Mn1.5O4 granule size during lithiation providing an insight into the effect of the particle size and morphology on the electrochemical process. The chemical elemental distribution and the content of the different oxidation states of the two absorbing elements (Ni and Mn) have been determined in operando from the XANES imaging. A gradual increase in the content of the oxidation state Mn(3+) from 8% up to 64% has been recorded during the discharge from 5 V to 2.7 V. The study of the local oxidation reduction behavior of Mn(3+) reveals a reversibility aspect in the local electrochemical reaction of Mn(4+) toward Mn(3+) in areas located in the center of the aggregate as well as in areas closed to the electrolyte. During the discharge process, a mixture of Mn(3+) and Mn(4+) has been detected while only single electron valence states have been found in the case of Ni. Probing the chemical changes during the discharge using two-dimensional XANES reveals spatial differences in the electrochemical activities of the two absorbing elements Ni and Mn. PMID:26051380

  13. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  14. Bismuth and niobium co-doped barium cobalt oxide as a promising cathode material for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    He, Shaofei; Le, Shiru; Guan, Lili; Liu, Tao; Sun, Kening

    2015-11-01

    Perovskite oxides BaBi0.05Co0.95-yNbyO3-δ (BBCNy, 0 ≤ y ≤ 0.2) are synthesized and evaluated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Highly charged Nb5+ successfully stabilizes the cubic perovskite structure to room temperature with Nb substituting content y ≥ 0.1. The phase structure, thermal expansion behavior, electrical conductivity and electrochemical performance of BBCNy with cubic phase are systematically studied. The samples exhibit excellent chemical compatibility with GDC and have sufficiently high electrical conductivities. However, the thermal expansion coefficients of BBCNy samples are nearly twice those of the most commonly used electrolyte materials YSZ and GDC, which is a major drawback for application in IT-SOFCs. The polarization resistances of BBCNy with y = 0.10, 0.15 and 0.20 on GDC electrolyte are 0.086, 0.079 and 0.107 Ω cm2 at 700 °C, respectively. Even though the YSZ electrolyte membrane and GDC barrier layer are approximately 50 μm and 10 μm in thickness, the highest maximum power density (1.23 W cm-2) of the single cell Ni-YSZ|YSZ|GDC|BBCN0.15 is obtained at 750 °C. Good long-term stability of the single cell with BBCN0.15 cathode is also demonstrated. These results demonstrate that BBCNy perovskite oxides with cubic structure are very promising cathode materials for IT-SOFCs.

  15. Facile one step synthesis and enhanced electrochemical performance of Molybdenum dioxide and carbon co-modified lithium manganese silicate cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • MoO2-modified Li2MnSiO4/C cathode materials have been successfully prepared via facile one step sol-gel method. • The cathode material coated with 1 wt% MoO2 exhibits a reversible capacity of 184.9 mA h/g at 0.1C and maintains 127.5 mA h/g even at a high rate of 1C. • Coating 1 wt% MoO2 can reduce the interfacial resistance and significantly improve the lithium ion diffusion coefficient. - Abstract: Through facile one step sol-gel method, Li2MnSiO4-based cathode materials have been successfully synthesized and co-modified with carbon and MoO2 coating. The phase compositions and morphology of the as-prepared products have been characterized by XRD, SEM and TEM. The physical characterization indicates the introduced MoO2 exists on the particle surface of orthorhombic Li2MnSiO4, forming a hybrid coating layer with amorphous carbon. Meanwhile, the addition of MoO2 improves the dispersion of particle size distribution. Therefore, the electrochemical performance of the pristine Li2MnSiO4/C has been significantly improved after coating MoO2, especially in the case of 1 wt% MoO2 component. The optimal as-prepared sample exhibits a reversible capacity of 184.9 mA h/g at 0.1C and maintains 127.5 mA h/g even at a high rate of 1C. The excellent rate performance can be attributed to reduced interfacial resistance and enhanced lithium ion diffusion coefficient

  16. Kinetic Behavior of LiFePO4/C Thin Film Cathode Material for Lithium-Ion Batteries

    OpenAIRE

    Kucinskis, G; Bajārs, G; Kleperis, J.; Smits, J.

    2010-01-01

    LiFePO4 was prepared in a solid state synthesis with various levels of carbon content. LiFePO4/C thin films were obtained via magnetron sputtering. The surface morphology and structure was examined. Electrochemical properties of LiFePO4/C were studied, by using cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Thin films acquired show a potential use as a cathode in lithium ion batteries, displaying charge capacity up to 34 mAh g-1.

  17. Synthesis of LiFePO4/Graphene Nanocomposite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries

    OpenAIRE

    2015-01-01

    LiFePO4/graphene nanocomposite was successfully synthesized by rheological phase method and its electrochemical properties as the cathode materials for lithium ion batteries were measured. As the iron source in the synthesis, FeOOH nanorods anchored on graphene were first synthesized. The FeOOH nanorods precursors and the final LiFePO4/graphene nanocomposite products were characterized by XRD, SEM, and TEM. While the FeOOH precursors were nanorods with 5–10 nm in diameter and 10–50 nm in leng...

  18. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    OpenAIRE

    Weifeng Huang; Jing Zhou; Biao Li; Jin Ma; Shi Tao; Dingguo Xia; Wangsheng Chu; Ziyu Wu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemicall...

  19. Activation of porous MOF materials

    Science.gov (United States)

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  20. Gas poisoning investigations of scandate and M-type dispenser cathodes

    Science.gov (United States)

    Shao, Wensheng; Zhang, Ke; Li, Ji; Yan, Suqiu; Chen, Qilue

    2003-06-01

    Gas poisoning tests of cathode emission were carried out with four kinds of thermal cathodes: W+Sc 2O 3 mixed matrix cathode, impregnated scandate cathode, Ir-coated cathode, Os-coated cathode. As a result, M-type cathodes are more sensitive to O 2, but can recover absolutely in a short time; scandate-type cathodes react slowly and recover partly after a long time. Compared to O 2, ambient air leaked into the vacuum chamber has a smaller influence on the cathode emission; H 2 has a little effect of activation on the four cathodes, especially on the Os-coated cathode.

  1. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  2. Research and Development of Spherical Cathode Materials for Lithium Ion Battery%锂离子电池球形正极材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    李军; 周燕; 靳世东; 郑育英

    2011-01-01

    球形化可以提高锂离子正极材料的压实密度、体积比容量并改善其加工性能和极片的质量.简要介绍了球形材料的特点,综述了球形LiCoO、LiNiMO、LiMnO、LiFeP0等的制备及其性能,展望了球形正极材料的应用前景.%Sphericition has become the important development direction of lithium-ion battery cathode materials. Because they have high energy density and excellent electrochemistry capability,manufacturing performance and so on. Basic characteristics of spherical materials are introduced briefly. New progress of lithium ion battery spherical cathode materials were summarized during recent years, including LiCoO2, LiNixM1-xO2, LiMn2O4 and LiFePO4 and so on.

  3. Electrochemical studies on Li+/K+ ion exchange behaviour in K4Fe(CN)6 cathode material for Li, K-ion battery

    Indian Academy of Sciences (India)

    Bikash Mandal; I Basumallick; Susanta Ghosha

    2015-01-01

    The electrochemical studies of anhydrous K4Fe(CN)6 is reported. Anhydrous material was produced after dehydrating K4Fe(CN)6.3H2O crystal at 200°C in an open atmosphere. The material, as obtained, was characterized by various spectroscopic techniques, such as UV-Visible, FTIR, powder X-ray diffraction and FESEM-EDX. Electrochemical and Li+/K+ ion exchange behaviour of the synthesized material were studied by cyclic voltametry (CV), chronoamperometry (CA) and galvanostatic charge-discharge method after preparing a laboratory model cell against lithium anode instead of potassium. During anodic scan in the 1st cycle, peak maximum was observed at 3.93 V vs. Li+/Li due to removal of K+ ions from the ferrocyanide matrix, whereas, in the reverse scan (cathodic sweep) as well as in consequent cycles, peak maxima due to Li+ ion insertion and extraction were observed at 2.46 V and 3.23 V vs. Li+/Li, respectively. Cell, assembled using ferrocyanide cathode and lithium anode, shows an open circuit potential of 3.08 V and delivers a maximum capacity of 61 mAh g-1 (theoretical capacity 72 mAh g-1) at a rate of 0.2 C at room temperature.

  4. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  5. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m-3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g-1, respectively, with a volume capacity of 300.6 mAh cm-3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g-1 and a volume capacity of 176.94 mAh cm-3.

  6. La2NiO4+δ Infiltration of Plasma-Sprayed LSCF Coating for Cathode Performance Improvement

    Science.gov (United States)

    Li, Ying; Zhang, Shan-Lin; Li, Cheng-Xin; Wei, Tao; Yang, Guan-Jun; Li, Chang-Jiu; Liu, Meilin

    2016-01-01

    Perovskite-structured (La0.6Sr0.4Co0.2Fe0.8O3) LSCF has been widely studied as a cathode material for intermediate-temperature solid oxide fuel cells. However, the application of LSCF cathode is likely to be limited by its sluggish surface catalytic properties and long-term stability issues. Oxygen hyper-stoichiometric La2NiO4+δ with K2NiF4 structure exhibits higher catalytic properties, ionic conductivity, and stability in comparison with LSCF cathode. Due to the good chemical compatibility of these two cathode materials, it is possible to prepare a composite cathode by the infiltration of La2NiO4+δ in the porous LSCF. This composite structure fully utilizes the advantages of the two cathodes and enhances the LSCF cathode performance. In this study, the LSCF cathode was deposited by using an atmospheric plasma spray technique, and the porous LSCF cathode was then infiltrated by La2NiO4+δ. The atmospheric plasma spray technique was used to reduce the SOFC manufacturing cost. The microstructure of coatings was characterized by SEM and EDS. The cathode polarization resistance was found to decrease by ~40% after the La2NiO4+δ infiltration. Also, the activation energy decreased from 1.53 to 1.40 eV.

  7. Fabrication of Fe-Doped LiCoO2 Sandwich-Like Nanocomposites as Excellent Performance Cathode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Li; Zhang, Huijuan; Yang, Jiao; Mu, Yanping; Wang, Yu

    2015-12-21

    In this article, the two-layer sandwiched graphene@LiFe0.2 Co0.8 O2 nanoparticles (SG@LFCO) have been prepared and investigated as high-rate and long-life cathode materials for rechargeable lithium-ion batteries. The materials possess a high-surface area (267.1 m(2)  g(-1) ) and lots of void spaces. By combining various favorable conditions, such as Fe doping, coating graphene, and designing novel morphology, the as-prepared materials deliver a specific capacity of 115 mAh g(-1) at 10 C. At the 0.1 C cycling rate, the capacity retention of 97.2 % is sustained after 250 cycles and a coulombic efficiency of around 97.6 % is obtained. PMID:26552860

  8. Recent development of LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium ion battery.

    Science.gov (United States)

    Zhu, Ji-Ping; Xu, Quan-Bao; Yang, Hong-Wei; Zhao, Jun-Jie; Yang, Guang

    2011-12-01

    Layered LiNi1/3Co1/3Mn1/3O2, owing to its excellent electrochemical properties, has been used as cathode material for lithium-ion batteries, especially for hybrid electric vehicles. It has many merits such as high capacity, long cycle life, low cost and little harm to environment. Therefore, LiNi1/3Co1/3Mn1/3O2 has become a great concern by scholars on energy and material fields. However, the electronic conductivity and the charge-discharge capacity at high current should be enhanced before any materials modifications. Here, this paper summarizes the main synthetic technologies of LiNi1/3Co1/3Mn1/3O2 in recent years, including synthesis methods, doping, surface coating modification, and the future development trends discussed. PMID:22408910

  9. CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates

    International Nuclear Information System (INIS)

    Graphical abstract: Discharge capacity of pristine and 2.0 wt.% CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cells at a rate of 5C between 3.0 and 4.6 V at 60 °C. Highlights: ► CuO was coated uniformly onto the surface of Li[Ni0.5Co0.2Mn0.3]O2 particles. ► The 2.0 wt.% CuO coated sample exhibits higher rate capacity and superior cycle performance at elevated temperature. ► The CV and EIS results revealed that CuO coating reduced the polarization and improved the electrochemical activity of cathode. - Abstract: CuO was used to modify the surface of Li[Ni0.5Co0.2Mn0.3]O2 cathode material. The structure and electrochemical properties of the CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 were investigated using X-ray diffraction, scanning electron microscope, and charge/discharge tests. The results showed that the CuO coated Li[Ni0.5Co0.2Mn0.3]O2 cathode exhibited an improved rate capability at room and elevated temperature at high rates. The 2.0 wt.% CuO coated sample had the capacity retention of higher than 89%, and high capacity of 179.7 mAh g−1 at 5C, in comparison with the capacity retention of 60% and capacity of 161.5 mAh g−1 for the pristine one at elevated temperature. The cyclic voltammograms and impedance spectra results revealed that the CuO coating reduced the polarization and improved the electrochemical activity of cathode. Thus the CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 shows a potential lithium ion batteries for high power applications.

  10. Synthesis, characterization and rate capability performance of the micro-porous MnO{sub 2} nanowires as cathode material in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    R, Ranjusha; S, Sonia T.; S, Roshny; V, Lakshmi [Nano Solar Division, Amrita Centre for Nanosciences, Kochi 682 041 (India); Kalluri, Sujith [Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2500 (Australia); Kim, Taik Nam [Department of Materials Engineering, Paichai University, Daejeon 302-735 (Korea, Republic of); Nair, Shantikumar V. [Nano Solar Division, Amrita Centre for Nanosciences, Kochi 682 041 (India); Balakrishnan, A., E-mail: avinash.balakrishnan@gmail.com [Nano Solar Division, Amrita Centre for Nanosciences, Kochi 682 041 (India)

    2015-10-15

    Graphical abstract: Translating MnO{sub 2} nanowires as cathode materials in coin cell and studying their discharge behavior and cycling stability at different C-rates. - Highlights: • MnO{sub 2} nanowires have been synthesized via hydrothermal route. • The nanowires were employed as cathode materials in Li-batteries. • Discharge and cycling stability were studied at different C-rates. • Specific capacity and power density of 251 mAh g{sup −1} and 200 W kg{sup −1} were attained. - Abstract: A peculiar architecture of one-dimensional MnO{sub 2} nanowires was synthesized by an optimized hydrothermal route and has been lucratively exploited to fabricate highly efficient microporous electrode overlays for lithium batteries. These fabricated electrodes comprised of interconnected nanoscale units with wire-shaped profile which exhibits high aspect ratio in the order of 10{sup 2}. Their outstanding intercalation/de-intercalation prerogatives have also been studied to fabricate lithium coin cells which revealed a significant specific capacity and power density of 251 mAh g{sup −1} and 200 W kg{sup −1}, respectively. A detailed electrochemical study was performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes influence the cyclic behavior of the electrode. Rate capability tests at different C-rates were performed to evaluate the capacity and cycling performance of these coin cells.

  11. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling

    Science.gov (United States)

    Kobayashi, Genki; Irii, Yuta; Matsumoto, Futoshi; Ito, Atsushi; Ohsawa, Yasuhiko; Yamamoto, Shinji; Cui, Yitao; Son, Jin-Young; Sato, Yuichi

    2016-01-01

    Controlling a cathode/electrolyte interface by modifying the surface of a cathode material with metal oxides or phosphates is a concept being explored as a possible strategy for improving the electrochemical performance of such materials. This study therefore looks at the crystal structure and chemical bonding state from bulk to surface of Al2O3-coated Li[Li0.2Ni0.18Co0.03Mn0.58]O2 and explores the influence that surface modification has on the electrochemical performance. Investigation by X-ray diffraction, hard X-ray photoelectron spectroscopy (HAXPES) and galvanostatic charge/discharge reaction reveals that the surface-modification layer is composed of Li-Al oxides and Al oxides, with a LiM1-xAlxO2 (M = transition metal) interlayer formed between the modification layer and Li[Li0.2Ni0.18Co0.03Mn0.58]O2 particles. The cycling performance of the Li-rich layered oxide is enhanced by its surface modification with Al2O3, achieving a discharge capacity of more than 310 mA h-1 and excellent cycling stability at 50 °C when combined with a more gradual Li-insertion/de-insertion process (i.e., stepwise precycling treatment).

  12. Synthesis of LiFePO4/Graphene Nanocomposite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaoling Ma

    2015-01-01

    Full Text Available LiFePO4/graphene nanocomposite was successfully synthesized by rheological phase method and its electrochemical properties as the cathode materials for lithium ion batteries were measured. As the iron source in the synthesis, FeOOH nanorods anchored on graphene were first synthesized. The FeOOH nanorods precursors and the final LiFePO4/graphene nanocomposite products were characterized by XRD, SEM, and TEM. While the FeOOH precursors were nanorods with 5–10 nm in diameter and 10–50 nm in length, the LiFePO4 were nanoparticles with 20–100 nm in size. Compared with the electrochemical properties of LiFePO4 particles without graphene nanosheets, it is clear that the graphene nanosheets can improve the performances of LiFePO4 as the cathode material for lithium ion batteries. The as-synthesized LiFePO4/graphene nanocomposite showed high capacities and good cyclabilities. When measured at room temperature and at the rate of 0.1C (1C = 170 mA g−1, the composite showed a discharge capacity of 156 mA h g−1 in the first cycle and a capacity retention of 96% after 15 cycles. The improved performances of the composite are believed to be the result of the three-dimensional conducting network formed by the flexible and planar graphene nanosheets.

  13. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H2/Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  14. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H2/Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  15. High Cycling Performance Cathode Material: Interconnected LiFePO4/Carbon Nanoparticles Fabricated by Sol-Gel Method

    OpenAIRE

    2014-01-01

    Interconnected LiFePO4/carbon nanoparticles for Li-ion battery cathode have been fabricated by sol-gel method followed by a carbon coating process involving redox reactions. The carbon layers coated on the LiFePO4 nanoparticles not only served as a protection layer but also supplied fast electrons by building a 3D conductive network. As a cooperation, LiFePO4 nanoparticles encapsulated in interconnected conductive carbon layers provided the electrode reactions with fast lithium ions by offer...

  16. Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode

    KAUST Repository

    Ou, Yiwei

    2011-11-01

    The polymerized complex (PC) method was used to synthesize highly dispersed iron-based catalysts for the oxygen reduction reaction (ORR). The catalysts were prepared with an addition of 1,10-phenanthroline (Phen) and transition metals (M), such as Ta, Ti, and W, in an attempt to enhance the ORR activity and durability of the catalysts. The composition and properties of the catalysts were characterized by thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalyst components, after extensive dissolution in a strong acid solution, were characterized by inductively coupled plasma mass spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ti-Fe catalyst showed improved ORR performance, and the Ta-Fe catalyst showed enhanced stability towards ORR in acidic solution. The catalytic activity and stability for ORR was observed by adding Ti or Ta into the catalyst formulation, suggesting that the interaction between added hetero-ions (Ti and Ta) and ionic Fe active sites was beneficial for the ORR. A single-cell test with the synthesized catalyst in the cathode initially generated a high power density, but the low stability remains an issue to be solved.

  17. Voigt-wave propagation in active materials

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give rise to a material that supports the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by infiltration with an active dye.

  18. Low voltage cathodic protection for high strength steels. Part 1: Definition of a new aluminum galvanic anode material

    Energy Technology Data Exchange (ETDEWEB)

    Pautasso, J.P. [Ministry of Defense, Paris (France); Le Guyader, H.; Debout, V. [Direction des Constructions Navales Cherbourg (France)

    1998-12-31

    Zn or Al-Zn-In sacrificial anodes are commonly used to protect submerged marine structures from general corrosion and galvanic corrosion. However, such electronegative alloys can also induce stress corrosion cracking or hydrogen embrittlement on high strength steels. Decreasing the electronegative potential applied to the structure, in the suitable range (around {minus}0.80 V vs Ag/AgCl) can significantly reduce the amount of hydrogen produced by the cathodic reaction and thus limit the risk of hydrogen embrittlement. The present work has consisted in determining the criteria for a new cathodic protection system with low voltage anodes and selecting one anode that matches the determined requirements, on the basis of laboratory tests. Among the various alloys tested the Al-O.1% Ga anode provided the most promising results and therefore was selected. The first full scale marine tests performed on an industrial casting of this anode have shown the effectiveness of the Al-O.1% Ga anode in the chosen potential range, with a satisfactory galvanic efficiency in real environments.

  19. Graphene oxide assisted facile hydrothermal synthesis of LiMn0.6Fe0.4PO4 nanoparticles as cathode material for lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    Changchang Xu; Li Li; Fangyuan Qiu; Cuihua An; Yanan Xu; Ying Wang; Yijing Wang; Lifang Jiao; Huatang Yuan

    2014-01-01

    Assisted by graphene oxide (GO), nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hy-drothermal method as cathode material for lithium ion battery. SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4 (S2) was about 80 nm in diameter. The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh·g-1 in the first cycle. It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.

  20. Carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode material prepared by a PVA assisted sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Tao; Pan Wencheng; Wang Jian [College of Materials Science and Engineering, Jilin University, Changchun 130012 (China); Bie Xiaofei; Du Fei [College of Physics and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Wei Yingjin, E-mail: yjwei@jlu.edu.c [College of Physics and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Wang Chunzhong; Chen Gang [College of Physics and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2010-04-30

    Carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 A. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g{sup -1} when cycled at 1 C rate. The apparent Li{sup +} diffusion coefficients of the material ranged between 9.5 x 10{sup -10} and 0.9 x 10{sup -10} cm{sup 2} s{sup -1}, which were larger than those of olivine LiFePO{sub 4}. The large lithium diffusion coefficient of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} has been attributed to its special NASICON-type structure.

  1. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method

    International Nuclear Information System (INIS)

    Carbon coated Li3V2(PO4)3 cathode material was prepared by a poly(vinyl alcohol) (PVA) assisted sol-gel method. PVA was used both as the gelating agent and the carbon source. XRD analysis showed that the material was well crystallized. The particle size of the material was ranged between 200 and 500 nm. HRTEM revealed that the material was covered by a uniform surface carbon layer with a thickness of 80 A. The existence of surface carbon layer was further confirmed by Raman scattering. The electrochemical properties of the material were investigated by charge-discharge cycling, CV and EIS techniques. The material showed good cycling performance, which had a reversible discharge capacity of 100 mAh g-1 when cycled at 1 C rate. The apparent Li+ diffusion coefficients of the material ranged between 9.5 x 10-10 and 0.9 x 10-10 cm2 s-1, which were larger than those of olivine LiFePO4. The large lithium diffusion coefficient of Li3V2(PO4)3 has been attributed to its special NASICON-type structure.

  2. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  3. Zirconium phosphate wrapped LiMn1.5Ni0.5O4 used in lithium ion batteries as high voltage cathode material

    International Nuclear Information System (INIS)

    Highlights: • Zirconium phosphate with different aspects (ZrP-3M and ZrP-6M) have been synthesized and exfoliated to form zirconium phosphate nanosheets, which can be used as coating materials. • Zirconium phosphate wrapped cathode material LiMn1.5Ni0.5O4 (LMNO@ZrP), have been prepared by a hydrothermal method. • The morphology analysis demonstrates ZrP-3M can be effectively coated on LMNO surface. • LMNO@ZrP-3M-2 exhibits enhanced cycling stability and low charge transfer impedance. - Abstract: To solve the major problem of interfacial side reactions between LiMn1.5Ni0.5O4 (LMNO) and liquid electrolyte at high voltages, zirconium phosphate (ZrP) wrapped cathode material LMNO@ZrP, with different aspect of ZrP in 2 wt% and 4 wt%, have been prepared by a hydrothermal method. In particular, we focus on the distribution of ZrP on the LMNO surface to find out the optimal coating material and amount. The effects of ZrP coating layer have been investigated by comparison of the properties of the ZrP coated LMNO (LMNO@ZrP) and pristine LMNO electrodes by several electrochemical characterizations. The electrochemical impedance spectroscopy results show that LMNO@ZrP-3M-2 electrode exhibits an improved electrochemical property of suppressing the impedance increase. In the cell life test, LMNO@ZrP-3M-2 electrode shows a high capacity retention of 94.6% after 200 cycles at 55 °C

  4. Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Highlights: •Co-doped Pt core–shell type catalyst having 0.75 nm thick Pt shell is synthesized. •Co-doped Pt exhibited mass activity of 0.44 A mgPt−1 at 0.9 ViR-free. •Co-doped Pt cathode catalyst showed high stability under cycling conditions. •Co-doped Pt catalyst showed only 16% power density loss after 30,000 cycles. •The enhanced stability is due to the increase in onset potential for PtO2 formation. -- Abstract: Cathode catalyst based on Co-doped Pt deposited on carbon composite catalyst (CCC) support with high measured activity and stability under potential cycling conditions for polymer electrolyte membrane (PEM) fuel cells was developed in this study. The catalyst was synthesized through platinum deposition on Co-doped CCC support containing pyridinic-nitrogen active sites followed by controlled heat-treatment. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) studies confirmed uniform Pt deposition (Pt/CCC catalyst, dPt = 2 nm) and formation of Co-doped Pt/CCC catalyst (dPt = 5.4 nm) respectively. X-ray energy dispersive spectrometry (XEDS) line-scan studies showed the formation of Co-core Pt-shell type catalyst with a Pt-shell thickness of ∼0.75 nm. At 0.9 ViR-free, the Co-doped Pt/CCC catalyst showed initial mass activity of 0.44 A mgPt−1 and 0.25 A mgPt−1 after 30,000 potential cycles between 0.6 and 1.0 V corresponding to an overall measured activity loss of 42.8%. The commercial Pt-Co/C showed initial mass activity of 0.38 A mgPt−1 and ∼70% loss of activity after 30,000 cycles. The enhanced catalytic activity at high potentials and stability of mass activity for the Co-doped Pt/CCC catalyst are attributed to the formation of compressive Pt lattice catalyst due to Co doping. The Co-doped Pt/CCC showed stable open circuit potential close to 1.0 V under H2-air with an initial power density of 857 mW cm−2 and only 16% loss after 30,000 cycles. Catalyst durability studies performed between 0

  5. Voigt-wave propagation in active materials

    OpenAIRE

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2015-01-01

    If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give ris...

  6. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.

  7. Highly Crystallized Na2CoFe(CN)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wu, Xianyong; Wu, Chenghao; Wei, Congxiao; Hu, Ling; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Wang, Jiulin; Yang, Hanxi

    2016-03-01

    Prussian blue and its analogues have received particular attention as superior cathodes for Na-ion batteries due to their potential 2-Na storage capacity (∼170 mAh g(-1)) and low cost. However, most of the Prussian blue compounds obtained from the conventional synthetic routes contain large amounts of Fe(CN)6 vacancies and coordinated water molecules, which leads to the collapse of cyano-bridged framework and serious deterioration of their Na-storage ability. Herein, we propose a facile citrate-assisted controlled crystallization method to obtain low-defect Prussian blue lattice with greatly improved Na-storage capacity and cycling stability. As an example, the as-prepared Na2CoFe(CN)6 nanocrystals demonstrate a reversible 2-Na storage reaction with a high specific capacity of 150 mAh g(-1) and a ∼ 90% capacity retention over 200 cycles, possibly serving as a low cost and high performance cathode for Na-ion batteries. In particular, the synthetic strategy described in this work may be extended to other coordination-framework materials for a wide range of energy conversion and storage applications. PMID:26849278

  8. Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance for activated carbon air-cathode in microbial fuel cells

    Science.gov (United States)

    Li, Nan; Liu, Yinan; An, Jingkun; Feng, Cuijuan; Wang, Xin

    2014-12-01

    The slow diffusion of hydroxyl out of the catalyst layer as well as the biofouling on the surface of cathode are two problems affecting power for membrane-less air-cathode microbial fuel cells (MFCs). In order to solve both of them simultaneously, here we simply modify activated carbon air-cathode using a bifunctional quaternary ammonium compound (QAC) by forced evaporation. The maximum power density reaches 1041 ± 12 mW m-2 in an unbuffered medium (0.5 g L-1 NaCl), which is 17% higher than the control, probably due to the accelerated anion transport in the catalyst layer. After 2 months, the protein content reduced by a factor of 26 and the power density increases by 33%, indicating that the QAC modification can effectively inhibit the growth of cathodic biofilm and improve the stability of performance. The addition of NaOH and QAC epoxy have a negative effect on power production due to the clogging of pores in catalyst layer.

  9. Activity measurements of radon from construction materials

    International Nuclear Information System (INIS)

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: ► Radon activity in air related to building materials was measured. ► The index of activity concentration of building materials was evaluated. ► The radium equivalent activity of building materials was evaluated. ► The external hazard index of building materials was evaluated.

  10. Activity measurements of radon from construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  11. Effect of thermal treatment on the properties of electrospun LiFePO4–carbon nanofiber composite cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: The composites prepared with the thermal treatment process of stabilization at 280 °C for 4 h with a heating rate of 2 °C min−1 in air followed by carbonization at 800 °C for 14 h with a heating rate of 2 °C min−1 in argon exhibit the optimal electrochemical properties. - Highlights: • Binder-free LiFePO4–CNF composite cathode materials are prepared. • The conductive carbon and LiFePO4 formation take place simultaneously during thermal treatment. • The reaction behavior of the LiFePO4 precursors during thermal treatment are investigated. • Different thermal treatment processes would generate different electrochemical performance. • Cycling performance and rate capability are improved with a suitable thermal treatment condition. - Abstract: Binder-free LiFePO4–carbon nanofiber (LiFePO4–CNF) composites as lithium-ion battery cathode materials are fabricated by electrospinning and subsequent thermal treatments. The thermal decomposition behavior of the electrospun LiFePO4 precursor–polyacrylonitrile (LiFePO4 precursor–PAN) nanofiber composites and the reaction of the LiFePO4 precursors during thermal treatment are investigated. The effects of thermal treatment parameters such as heating rate, temperature, and duration for stabilization and carbonization on the microstructure, morphology, carbon content, crystal structure of the composites, and electrochemical performance of the resultant half-cell are also studied. When the electrospun LiFePO4 precursor–PAN nanofiber composites are first stabilized in air at 280 °C for 4 h with a heating rate of 2 °C min−1 and then carbonized in argon at 800 °C for 14 h with a heating rate of 2 °C min−1, the obtained LiFePO4–CNF composites exhibit optimal electrochemical properties in terms of a higher initial discharge capacity, more stable charge–discharge cycle behavior, and better rate performance. The initial discharge capacity of the composites is 146.3 mA h g−1 at

  12. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells

    OpenAIRE

    Haoran Yuan; Lifang Deng; Yujie Qi; Noriyuki Kobayashi; Jiahuan Tang

    2014-01-01

    Nonactivated and activated biochars have been successfully prepared by bananas at different thermotreatment temperatures. The activated biochar generated at 900°C (Biochar-act900) exhibited improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances in alkaline media, in terms of the onset potential and generated current density. Rotating disk electron result shows that the average of 2.65 electrons per oxygen molecule was transferred during ORR of Biochar-act900...

  13. NiCr (x) Fe2-x O-4 as cathode materials for electrochemical reduction of NO (x)

    DEFF Research Database (Denmark)

    Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2010-01-01

    Solid solutions of spinel-type oxides with the composition NiCr x Fe2-x O4 (x = 0.0, 0.5, 1.0, 1.5, 2.0) were prepared with the glycine–nitrate combustion synthesis. Four-point DC resistivity measurements show an increase in the conductivity as more Cr is introduced into the structure, whereas...... dilatometer measurements show that the linear thermal expansion decreases with increasing Cr content. The oxides were used as electrode materials in a pseudo-three-electrode setup in the temperature range of 300–600 °C. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize...... the electrochemical behavior in 1% NO, 1% NO2, and 10% O2. NiCr2O4 shows high activity in NO and NO2 relative to O2 and can therefore be considered as a possible electrode material. Peaks were detected in the voltammograms recorded on NiCr2O4 in 1% NO. The origin of the peaks seems to be related to the oxidation...

  14. Effects of a low work function cathode on electron beam generation in a hollow cathode discharge

    International Nuclear Information System (INIS)

    Recent simulations reveal that a large contribution to the formation of the hollow cathode discharge comes from secondary electron emission due to ion bombardment of the hollow cathode surface. The simulations suggest that a decrease in work function of the hollow cathode surface will lead to enhanced plasma formation during the initial and latter phases of the discharge. The use of this enhanced plasma to more efficiently generate beams (both ion and electron) was studied. A pulsed hollow cathode discharge was constructed using low work function dispenser cathode material as the hollow cathode. The electron beam characteristics of the discharge were investigated. Other hollow cathodes constructed with various materials (molybdenum, copper) were constructed and the results will be compared. Applications of the new source are discussed

  15. Research progress in cathode materials for lithium-air battery%锂空气电池正极材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    娄永兵; 刘艳; 朱林

    2012-01-01

    综述了目前国内外锂空气电池研究领域的进展,尤其是正极材料的研究进展;分析了目前研究的局限和问题的集中所在,如过电位、循环稳定性和安全性等;展望了锂空气电池的发展方向及应用趋势.%The progress in lithium-air battery research was reviewed,specifically the progress in cathode materials. The current research limitations and existing problems were discussed,such as over potential, cycle stability and safety, the development direction and application trend were forecasted.

  16. Na3MnCO3PO4 – A High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Na3MnCO3PO4 has been predicted via ab initio calculations (Hautier et al., 2011) to have a high specific capacity of 191 mAh/g, owing to its potential to deliver two-electron transfer reactions per formula via Mn2+/Mn3+ and Mn3+/Mn4+ redox reactions. This study demonstrates, for the first time, that Na3MnCO3PO4 can indeed display a specific capacity of 176.7 mAh/g experimentally, reaching 92.5% of its theoretical. The low electronic conductivity is found to be the limiting factor for the previously observed low specific capacities for Na3MnCO3PO4. With a specific capacity as high as 176.7 mAh/g, Na3MnCO3PO4 has a great potential to be a viable cathode material for Na-ion batteries

  17. Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel

    International Nuclear Information System (INIS)

    CuV2O6 is a very promising cathode material for rechargeable lithium batteries. By a soft chemistry method, CuV2O6 is successfully synthesized from V2O5 hydrogel and Cu2O powder. CuV2O6 with different degrees of crystallinity are obtained by heating CuV2O6 precursor at various temperatures. XRD, TG-DTA, TEM and SEM experiments are conducted to characterize its physical properties, and the electrochemical properties have been investigated by galvanostatic charge-discharge experiments. As a result, CuV2O6 annealed at 550 deg. C has smaller crystal lattice constants and better electrochemical properties compared to the sample synthesized by the conventional solid-state method

  18. Reduced graphene oxide decorated with FeF3 nanoparticles: Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    In this paper, we demonstrate the preparation of reduced graphene oxide (rGO) decorated with FeF3 nanoparticles (FeF3NPs) by adding FeF3 aqueous solution to the rGO ethanol/water dispersion. The obtained FeF3/rGO nanocomposite is further tested as a cathode material for rechargeable lithium batteries and found to have high discharge capacities, good rate capabilities and cycling performance. It can deliver a high discharge capacity of 476 mAh g−1 at a current density of 50 mA g−1 in the voltage range 1.0–4.5 V. It still delivers a discharge capacity of 146 mAh g−1 with 81% capacity retention after 50 charge–discharge cycles under a current density of 1000 mA g−1 in the voltage range 1.7–4.5 V

  19. Preparation and Electrochemical Properties of Coral-like Li2FeSiO4/C Cathode Material by Two-Step Precipitation Method

    Science.gov (United States)

    Yan, Yinglin; Ren, Bing; Xu, Yunhua; Wang, Juan; Yang, Rong; Zhong, Lisheng; Zhao, Nana; Wu, Hong

    2016-06-01

    Lithium iron silicate (Li2FeSiO4) cathode materials have been synthesized by a soft chemical method combined with spray drying, being both simple and economical. Super P, as a new kind of nanoscale carbon black, was added in the synthesis process. The phase and microstructure of the samples were characterized by x-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The results show that the obtained Li2FeSiO4 possessed coral-like morphology with size range from 250 nm to 450 nm. Super P was decorated on the surface of the Li2FeSiO4 particles. Furthermore, the electrochemical properties of the products were tested, indicating that the as-obtained Li2FeSiO4/C composite presented high specific discharge capacities and stable cycling performance, which can be attributed to the coral-like morphology and Super P coating.

  20. Study of the Durability of Doped Lanthanum Manganite and Cobaltite Cathode Materials under ''Real World'' Air Exposure Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States); Mahapatra, Manoj [Univ. of Connecticut, Storrs, CT (United States); Ramprasad, Rampi [Univ. of Connecticut, Storrs, CT (United States); Minh, Nguyen [Univ. of California, San Diego, CA (United States); Misture, Scott [Alfred Univ., NY (United States)

    2014-11-30

    The overall objective of the program is to develop and validate mechanisms responsible for the overall structural and chemical degradation of lanthanum manganite as well as lanthanum ferrite cobaltite based cathode when exposed to “real world” air atmosphere exposure conditions during SOFC systems operation. Of particular interest are the evaluation and analysis of degradation phenomena related to and responsible for (a) products formation and interactions with air contaminants, (b) dopant segregation and oxide exolution at free surfaces, (c) cation interdiffusion and reaction products formation at the buried interfaces, (d) interface morphology changes, lattice transformation and the development of interfacial porosity and (e) micro-cracking and delamination from the stack repeat units. Reaction processes have been studied using electrochemical and high temperature materials compatibility tests followed by structural and chemical characterization. Degradation hypothesis has been proposed and validated through further experimentation and computational simulation.

  1. Gelatin-assisted synthesis of LiNi0.5Mn1.5O4 cathode material for 5V lithium rechargeable batteries

    International Nuclear Information System (INIS)

    In this work, gelatin is for the first time utilized to conduct polymer-assisted synthesis of LiNi0.5Mn1.5O4 as the cathode material for 5 V lithium rechargeable batteries. The effect of different amounts of gelatin on structural and morphological properties, electrochemical characterization of the obtained products are investigated by XRD, SEM, charge/discharge testing, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS), respectively. It's found that with the addition of moderate amount of gelatin, the sample displays a higher degree of crystallinity and phase purity, more uniform shape and monodispersed nanometric size. As a result, electrochemical cycling stability and rate performance are significantly enhanced. CV and EIS measurements further demonstrate that using an optimal amount of gelatin can improve electrochemical performance due to the reversible reaction, faster insertion/extraction of Li ions in the spinel structure and decreased interface independence.

  2. Synthesis and characterization of LiMgyMn2–yO4 cathode materials by a modified Pechini process for lithium batteries

    Indian Academy of Sciences (India)

    A Subramania; N Angayarkanni; A R Sathiya Priya; R Gangadharan; T Vasudevan

    2005-12-01

    Cubic spinels of composition, LiMgyMn2–yO4, with = 0.0, 0.05, 0.1, 0.15 and 0.2, were synthesized by a modified Pechini process using polyethylene glycol and citric acid. The phase formation and/or crystallization of the precursors were studied by thermal analysis. Products were characterized by X-ray diffraction and SEM analysis. Coin cells were fabricated with lithium as the anode and LiMgyMn2–yO4 as the cathode in an electrolyte of 1 M LiPF6 in a 1 : 1 (v/v) mixture of EC and DEC. The charge–discharge studies were performed and the results were compared with materials prepared by a solid state thermal method.

  3. High rate performance of LiFePO4 cathode materials co-doped with C and Ti4+ by microwave synthesis

    Indian Academy of Sciences (India)

    Yan Cui; Miao Wang; Ruisong Guo

    2009-12-01

    Nanostructured LiFePO4 powder with a narrow particle size (ca. 100 nm) for high rate lithium-ion battery cathode application was obtained by microwave heating and using citric acid as carbon source. The microstructures and morphologies of the synthesized materials were investigated by X-ray diffraction and scanning electron microscope while the electrochemical performances were evaluated by galvanostatic charge–discharge. The carbon coating and Ti4+ could improve the conductivity both between the LiFePO4 particles and the intrinsic electronic conductivity. The LiFePO4 doped with 5% C and 1% Ti4+ resulted in a specific capacity of 114.95 mAh.g-1 and 102.4 mAh.g-1 at discharge rates of 0.3C and 1C, respectively, and the cycle performance is very good.

  4. A three-dimensional LiFePO{sub 4}/carbon nanotubes/graphene composite as a cathode material for lithium-ion batteries with superior high-rate performance

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Xingling [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, Haiyan, E-mail: hyzhang@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Chen, Yiming, E-mail: chenym@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Wang, Wenguang [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China); Ye, Yipeng; Zheng, Chuchun; Deng, Peng [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Shi, Zhicong [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006 (China)

    2015-03-25

    Graphical abstract: The excellent electrochemical performances can be attributed to the synergistic effect of CNTs and graphene. - Highlights: • The LFP–CNT–G composite was successfully prepared by solid station method. • The interlaced CNTs reduced the crumple of graphene and improved tap density of the composite. • The LFP–CNT–G electrode exhibited superior electrochemical performance. - Abstract: A three-dimensional lithium iron phosphate (LiFePO{sub 4})/carbon nanotubes (CNTs)/graphene composite was successfully synthesized via solid-state reaction. The LiFePO{sub 4}/carbon nanotubes/graphene (LFP–CNT–G) composite used as Li-ions battery cathode material exhibits superior high-rate capability and favorable charge–discharge cycle performance under relative high current density compared with that of LiFePO{sub 4}/carbon nanotubes (LFP–CNT) composite and LiFePO{sub 4}/graphene (LFP–G) composite. Graphene nanosheets and CNTs construct 3D conducting networks are favor for faster electron transfer, higher Li-ions diffusion coefficient and lower resistance during the Li-ions reversible reaction. The synergistic effect of graphene nanosheets and CNTs improves the rate capability and cycling stability of LiFePO{sub 4}-based cathodes. The LFP–CNT–G electrode shows reversible capacity of 168.9 mA h g{sup −1} at 0.2 C and 115.8 mA h g{sup −1} at 20 C. The electrochemical impedance spectroscopy demonstrate that the LFP–CNT–G electrode has the smallest charge-transfer resistance, indicating that the fast electron transfer from the electrolyte to the LFP–CNT–G active materials in the Li-ions intercalation/deintercalation reactions owing to the three-dimensional networks of graphene and carbon nanotubes.

  5. A three-dimensional LiFePO4/carbon nanotubes/graphene composite as a cathode material for lithium-ion batteries with superior high-rate performance

    International Nuclear Information System (INIS)

    Graphical abstract: The excellent electrochemical performances can be attributed to the synergistic effect of CNTs and graphene. - Highlights: • The LFP–CNT–G composite was successfully prepared by solid station method. • The interlaced CNTs reduced the crumple of graphene and improved tap density of the composite. • The LFP–CNT–G electrode exhibited superior electrochemical performance. - Abstract: A three-dimensional lithium iron phosphate (LiFePO4)/carbon nanotubes (CNTs)/graphene composite was successfully synthesized via solid-state reaction. The LiFePO4/carbon nanotubes/graphene (LFP–CNT–G) composite used as Li-ions battery cathode material exhibits superior high-rate capability and favorable charge–discharge cycle performance under relative high current density compared with that of LiFePO4/carbon nanotubes (LFP–CNT) composite and LiFePO4/graphene (LFP–G) composite. Graphene nanosheets and CNTs construct 3D conducting networks are favor for faster electron transfer, higher Li-ions diffusion coefficient and lower resistance during the Li-ions reversible reaction. The synergistic effect of graphene nanosheets and CNTs improves the rate capability and cycling stability of LiFePO4-based cathodes. The LFP–CNT–G electrode shows reversible capacity of 168.9 mA h g−1 at 0.2 C and 115.8 mA h g−1 at 20 C. The electrochemical impedance spectroscopy demonstrate that the LFP–CNT–G electrode has the smallest charge-transfer resistance, indicating that the fast electron transfer from the electrolyte to the LFP–CNT–G active materials in the Li-ions intercalation/deintercalation reactions owing to the three-dimensional networks of graphene and carbon nanotubes

  6. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    OpenAIRE

    Shim, J; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01

    The electrochemical properties of LiFePO4 cathodes with different carbon contents were studied to find out the role of carbon as conductive additive. LiFePO4 cathodes containing from 0 percent to 12 percent of conductive additive (carbon black or mixture of carbon black and graphite) were cycled at different C rates. The capacity of LiFePO4 cathode increased, as conductive additive content increased. Carbon increased the utilization of active material and the electrical conductivity of e...

  7. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm2 of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm2. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10-8 Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined all

  8. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  9. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries

    Science.gov (United States)

    Yi, Ting-Feng; Mei, Jie; Zhu, Yan-Rong

    2016-06-01

    Spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most promising high voltage cathode materials for future application due to its advantages of large reversible capacity, high thermal stability, low cost, environmental friendliness, and high energy density. LNMO can provide 20% and 30% higher energy density than traditional cathode materials LiCoO2 and LiFePO4, respectively. Unfortunately, LNMO-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. Hence, it is necessary to systematically and comprehensively summarize the progress in understanding and modifying LNMO cathode from various aspects. In this review, the structure, transport properties and different reported possible fading mechanisms of LNMO cathode are first discussed detailedly. And then, the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of LNMO-based batteries, including synthesis, control of special morphologies, element doping and surface coating etc., especially at elevated temperatures. Finally, an insight into the future research and further development of LNMO cathode is discussed.

  10. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO4-core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO4. The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO4/C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m2 g−1. As cathode material for lithium ion battery, the core-shell LiFePO4/C composite exhibits high initial capacity of 161 mAh g−1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g−1 at 5 C and perfect cycling retention of 99.6% at 100th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO4/C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  11. Ordered LiNi0.5Mn1.5O4 hollow microspheres as high-rate 5 V cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Ordered LiNi0.5Mn1.5O4 hollow microspheres are prepared by an impregnation method. • The hollow structure and ordering are tightly relative to the calcination temperature. • Ordered LiNi0.5Mn1.5O4 has better rate capability and cyclability than the disordered. - Abstract: Ordered LiNi0.5Mn1.5O4 hollow microspheres have been synthesized by an impregnation method followed by a simple solid-state reaction, and their electrochemical performance is investigated as cathode material for lithium ion batteries. The morphologies of the LiNi0.5Mn1.5O4 products prepared at different temperatures reveal that the formation for the hollow structure is tightly relative to the temperature for the solid-state reaction. Then ordered LiNi0.5Mn1.5O4 hollow microspheres are formed under the solid-state reaction temperature of 800 °C along with post-annealing at 700 °C, but the sample prepared without post-annealing exists at the form of disordered structure. When the ordered LiNi0.5Mn1.5O4 hollow microspheres were applied as the cathode materials for lithium ion batteries, they exhibited superior rate capability (116 mAh g−1 at 5 C, 85 mAh g−1 at 10 C for charge and discharge) and good cyclability, which are much better than the disordered sample. The durable high-rate capability was attributed to their single-crystal surface configuration that benefits fast Li insertion/extraction kinetics

  12. LiFe1−xMIIxPO4/C (MII = Co, Ni, Mg) as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • LiFe1−xMIIxPO4/C (MII = Co, Ni, Mg) cathode materials for LIBs were studied. • LiFePO4 doping results in the charge/discharge rate increase. • LiFe0.9Ni0.1PO4 retains 62 mAh/g capacity at discharge current 3000 mA/g. • MII ion ordering takes place in LiFe1−xMIIxPO4/C (MII = Co, Ni) materials. - Abstract: LiFe1−xMIIxPO4/C (MII = Co, Ni, Mg) composites had been obtained by sol–gel method. Structure and morphology of the obtained materials have been studied with the use of the XRD-analysis, SEM and Mössbauer spectroscopy. Their electrochemical behavior has been investigated with the use of charge/discharge tests. The materials doped by cobalt and nickel were shown to be characterized by an increased lithium intercalation and deintercalation rates, and retain a high capacity during charge and discharge the battery at high currents densities (LiFe0.9Ni0.1PO4 capacity amounts to 145 and 62 mAh/g at a discharge current 50 and 3000 mA/g). Mg2+ incorporation into LiFePO4/C cathode material results in the slight increase of charge/discharge rate and significant capacity decrease. Mössbauer spectroscopy has shown that MII ions in the LiFe1−xMIIxPO4/C (MII = Co, Ni) materials are orderly distributed both in charged and discharged states, each iron ion has no more than one MII ion in the nearest environment. In the case of Ni-doped samples the ordering is less pronounced. The reasons of the changes observed in the electrochemical performances and charge/discharge rate have been discussed on the base of Mössbauer spectroscopy and XRD data

  13. Magnetism in olivine-type LiCo(1-x)Fe(x)PO4 cathode materials: bridging theory and experiment.

    Science.gov (United States)

    Singh, Vijay; Gershinsky, Yelena; Kosa, Monica; Dixit, Mudit; Zitoun, David; Major, Dan Thomas

    2015-12-14

    In the current paper, we present a non-aqueous sol-gel synthesis of olivine type LiCo1-xFexPO4 compounds (x = 0.00, 0.25, 0.50, 0.75, 1.00). The magnetic properties of the olivines are measured experimentally and calculated using first-principles theory. Specifically, the electronic and magnetic properties are studied in detail with standard density functional theory (DFT), as well as by including spin-orbit coupling (SOC), which couples the spin to the crystal structure. We find that the Co(2+) ions exhibit strong orbital moment in the pure LiCoPO4 system, which is partially quenched upon substitution of Co(2+) by Fe(2+). Interestingly, we also observe a non-negligible orbital moment on the Fe(2+) ion. We underscore that the inclusion of SOC in the calculations is essential to obtain qualitative agreement with the observed effective magnetic moments. Additionally, Wannier functions were used to understand the experimentally observed rising trend in the Néel temperature, which is directly related to the magnetic exchange interaction paths in the materials. We suggest that out of layer M-O-P-O-M magnetic interactions (J⊥) are present in the studied materials. The current findings shed light on important differences observed in the electrochemistry of the cathode material LiCoPO4 compared to the already mature olivine material LiFePO4. PMID:26548581

  14. Synthesis and Electrochemical Characterization of Li2FeSiO4/Carbon Nanofiber Composite Cathode Material for Li Ion Batteries

    Science.gov (United States)

    Kumar, Ajay; Nazri, Gholam Abbas; Naik, Ratna; Naik, Vaman M.

    2014-03-01

    Lithium transition metal silicates (Li2MSiO4) , where, M =Ni, Mn, Fe, and Co with a theoretical capacity of ~ 330 mAh/g have attracted great interest as possible replacements for cathode material in rechargeable batteries. However, this class of materials exhibit very low electronic conductivity and low lithium diffusivity. In order to enhance the electronic conductivity and reduce the diffusion length for lithium ion, we have synthesized Li2FeSiO4/carbon nanofiber (15 % wt) composites by sol-gel method. The composite materials were characterized by x-ray diffraction and scanning electron microscopy. The XRD data confirmed the formation of Li2FeSiO4 crystallites with size ~ 25 nm for composites annealed at 600 °C under argon atmosphere. The composite material was used as positive electrode in a coin cell configuration and the cells were characterized by AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The cells showed a discharge capacity of ~ 230 mAh/g in the initial cycles, which suggests that more than one Li ion is extracted from the electrode. The effect of annealing at higher temperature on the electrochemical performance of Li2FeSiO4/carbon nanofiber composites will be presented.

  15. High Cycling Performance Cathode Material: Interconnected LiFePO4/Carbon Nanoparticles Fabricated by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Zhigao Yang

    2014-01-01

    Full Text Available Interconnected LiFePO4/carbon nanoparticles for Li-ion battery cathode have been fabricated by sol-gel method followed by a carbon coating process involving redox reactions. The carbon layers coated on the LiFePO4 nanoparticles not only served as a protection layer but also supplied fast electrons by building a 3D conductive network. As a cooperation, LiFePO4 nanoparticles encapsulated in interconnected conductive carbon layers provided the electrode reactions with fast lithium ions by offering the lithium ions shortening and unobstructed pathways. Field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD tests showed optimized morphology. Electrochemical characterizations including galvanostatic charge/discharge, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS tests, together with impedance parameters calculated, all indicated better electrochemical performance and excellent cycling performance at high rate (with less than 9.5% discharge capacity loss over 2000 cycles, the coulombic efficiency maintained about 100%.

  16. Synthesis of Li2FeP2O7/Carbon nanocomposite as cathode materials for Li-ion batteries

    Science.gov (United States)

    Nagano, Hiroaki; Taniguchi, Izumi

    2015-12-01

    A Li2FeP2O7/Carbon (C) nanocomposite was successfully synthesized via a combination of spray pyrolysis and wet ball milling followed by annealing from a precursor solution; in which LiNO3, H3PO4 and Fe(NO3)3·9H2O were stoichiometrically dissolved into distilled water. Ascorbic acid was added to the precursor solution as a reduction agent. The peaks of the Li2FeP2O7/C nanocomposite obtained by X-ray diffraction analysis were indexed to the monoclinic structure with the space group P21/c. The Li2FeP2O7/C nanocomposite cathode delivered a first discharge capacity of 100 mAh g-1 at 0.05 C, which corresponded to 91% of its theoretical capacity. After various higher discharge rates from 0.05 to 2 C in the cycle performance test, a discharge capacity of 93 mAh g-1 was achieved at 0.05 C, which showed an excellent capacity retention (93%) after 29 cycles.

  17. A Highly Active and Alcohol-Tolerant Cathode Electrocatalyst Containing Ag Nanoparticles Supported on Graphene

    International Nuclear Information System (INIS)

    A highly active oxygen reduction reaction (ORR) catalyst was synthesized by supporting Ag nano-particles on graphene nano platelets (Ag/GNP) via ultrasound treatment. The Ag/GNP catalyzes the O2 molecule through a 4-electron reduction to water in 0.1 M KOH electrolyte. The half-wave potential for the ORR on Ag/GNP is similar to a Pt black coated electrode (i.e -0.27 V at Ag/GNP, and -0.18 V at 40% Pt/C vs.SCE). The kinetic rate for the ORR on Ag/GNP is 3.16 × 10−2 cm · s−1 at -0.4 V vs. SCE. The effect of alcohols and other impurities on the ORR catalytic activity for Ag/GNP was examined and found to be highly tolerant to methanol, ethanol and ethylene glycol. The Ag/GNP catalyst is also tolerant to tetraalkyl ammonium hydroxides; i.e. functional groups related to the chemical structure of common alkaline electrolyte membranes

  18. Carbon-free bifunctional cathodes for the use in Lithium - Air Batteries with an aqueous alkaline electrolyte

    OpenAIRE

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas

    2014-01-01

    Carbon materials are widely used in gas diffusion electrodes due to their high electronic conductivity, relatively low costs and catalytic activity towards oxygen reduction reaction (ORR), the cathodic reaction during discharging. During charging a lithium-air battery the cathode is operated in oxygen evolution reaction (OER) mode. Carbon materials corrode in OER mode, this leads to degradation and a power loss of the electrode. To improve long-term stability and reduce side reactions as H2 a...

  19. Simple cathode design for Li-S batteries : cell performance and mechanistic insights by in operando X-ray diffraction

    OpenAIRE

    Kulisch, Jörn; Sommer, Heino; Brezesinski, Torsten; Janek, Jürgen

    2014-01-01

    Rechargeable batteries have been receiving increasing attention over the past several years, particularly with regard to the accelerated development of electric vehicles, but also for their potential in grid storage applications. Among the broad range of cathode active materials, elemental sulfur has the highest theoretical specific capacity, thereby making it one of the most promising positive electrode materials these days. In the present work, we show that already a simple cathode design (...

  20. Neutron activation analysis of reference materials

    International Nuclear Information System (INIS)

    The importance is pointed out of neutron activation analysis in the preparation of reference materials, and studies are reported conducted recently by UJV. Instrumental neutron activation analysis has been used in testing homogeneity and in determining 28 elements in newly prepared reference standards of coal fly ash designated ENO, EOP and ECH. For accuracy testing, the same method was used in the analysis of NBS SRM-1633a Trace Elements in Coal Fly Ash and IAEA CRM Soil-5 and RM Soil-7. Radiochemical neutron activation analysis was used in determining Cd, Cu, Mn, Mo, and Zn in biological materials NBS SRM-1577 Bovine Liver, Bowen's Kale and in IAEA RM Milk Powder A-11 and Animal Muscle H-4. In all instances very good precision and accuracy of neutron activation analysis results were shown. (author)

  1. Improving the electrochemical properties of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route

    International Nuclear Information System (INIS)

    Graphical abstract: Li1.2Mn0.52Co0.08Ni0.2O2 cathode material uniformly nanocoated with samarium fluoride (SmF3) has been successfully synthesized through a chemical deposition method followed by low-temperature hydrothermal treatment. The surface modified cathode shows a significantly improved cycling stability and rate capability. - Highlights: • Samarium fluoride is originally used as coating material of Li-rich layered cathode. • Low-temperature hydrothermal treatment is employed to establish uniform surface coating. • Cathode nanocoated with SmF3 shows improved rate capability and cycling stability. • Coating material suppresses the side reaction between electrode and electrolyte. - Abstract: Surface nanocoating of lithium-rich layered Li1.2Mn0.52Co0.08Ni0.2O2 with samarium fluoride (SmF3) has been performed through a chemical deposition route combined with a low-temperature hydrothermal treatment. The surface-modified Li1.2Mn0.52Co0.08Ni0.2O2 particles are uniformly and completely covered by an amorphous SmF3 protective layer with a thin thickness of ∼20 nm. After surface modification, the coated Li1.2Mn0.52Co0.08Ni0.2O2 as cathode shows a significantly improved cycling stability, keeping a capacity retention of 84.5% after 150 cycles at 2 C, much higher than 68.9%forits uncoated counterpart. Moreover, the coated sample delivers an enhanced rate capability with an average capacity of ∼132.3 mA h g−1 when charged at 5 C and discharged at 0.2 C, while the uncoated counterpart only exhibits a capacity of ∼111.4 mA h g−1 under the same conditions. Our results reveal that the remarkably improved electrochemical performance of the surface-modified cathode is attributed to the presence of uniform, robust, and nanoscale SmF3 coating layer, which not only suppresses the growth of SEI layer by reducing the side reaction between cathode and electrolyte solution, but also strengthens the structure stability of the Li-rich layered cathode materials

  2. Low activated materials as plasma facing component

    International Nuclear Information System (INIS)

    Low activated materials such as ferritic steel, vanadium alloy and SiC/SiC composite have to be developed for realization of a fusion demonstration reactor. Major issues concerning these low activated materials have been evaluation of neutron irradiation effects and feasibility as blanket materials. Since these are also in-vessel materials, issues of plasma material interactions have to be investigated. Ferritic steel, F82H, is well oxidized in the atmosphere. Thus, pre-baking is necessary before installation. The required baking temperature is higher than 900 K. Vanadium alloy, V-4Cr-4Ti, absorbs hydrogen well and hydrogen embrittlement takes place when the hydrogen concentration exceeds a critical level. In order to avoid hydrogen absorption, the formation of an oxide layer on the alloy was found to be very useful. In JFT-2M, the vanadium alloy was exposed to a deuterium discharge environment for 9 months. On the alloy surface, an oxide deposition layer with a thickness of 200 nm was formed. The deuterium concentration observed was very low, only 1.3 wppm. SiC/SiC composite may be employed as divertor plates in addition to its use as blanket material. Fuel hydrogen retention was very similar to that of graphite but the chemical erosion was negligibly small. (author)

  3. Sodium expansion and creep of cathode carbon

    OpenAIRE

    Hop, Jørund Gimmestad

    2003-01-01

    An apparatus to measure compressive creep in carbon materials has been developed. Using the final experimental set-up five material properties could be measured in each electrolysis experiment. Creep, sodium expansion, compressive strength and E-modulus were measured for 3 commercial cathode materials at 25 and 980 °C with and without electrolysis. The sodium diffusion coefficient (D) was calculated from the sodium expansion results.Filler materials for cathode blocks, i.e., certain anthracit...

  4. Hollow cathode hydrogen ion source

    International Nuclear Information System (INIS)

    High current density ion sources have been used to heat plasmas in controlled thermonuclear reaction experiments. High beam currents imply relatively high emission currents from cathodes which have generally taken the form of tungsten filaments. This paper describes a hydrogen ion source which was primarily developed to assess the emission current capability and design requirements for hollow cathodes for application in neutral injection devices. The hydrogen source produced ions by electron bombardment via a single hollow cathode. Source design followed mercury ion thruster technology, using a weak magnetic field to enhance ionization efficiency. A 1.3-cm diameter hollow cathode using a low work function material dispenser performed satisfactorily over a discharge current range of 10 to 90 A. Cylindrical probe measurements taken without ion extraction indicate maximum ion number densities on the order of 1012 cm-3. Discharge durations ranged from 30 seconds to continuous operation. Tests with beam extraction at 2.5 keV and 30 A discharge current yield average ion beam current densities of 0.1 A cm-2 over a 5-cm extraction diameter. Results of this study can be used to supply the baseline information needed to scale hollow cathodes for operation at discharge currents of hundreds of amperes using distributed cathodes

  5. Synthesis and structural stability of Li2.1Mn0.9[PO4]0.1[SiO4]0.9/C mixed polyanion cathode material for Li-ion battery

    International Nuclear Information System (INIS)

    Li2MnSiO4/C nanocomposites have been successfully prepared by a two-step method to accurately control the formation of the orthorhombic Pmnb phase, and phosphate substitution is used to improve the electrochemical performance of this cathode material. The structure and electrochemical properties are investigated using X-ray diffraction, scanning electron microscope and electrochemical tests. The crystal structure of this material is confirmed to be Pmnb polymorph and the average grain size is about 80–100 nm. The electrochemical tests indicate that Li2.1Mn0.9[PO4]0.1[SiO4]0.9/C nanocomposites deliver a discharge specific capacity of 216.9 mAh·g−1 after initial activation and it shows much enhanced electrochemical performance compared with Li2MnSiO4/C nanocomposites. Furthermore, the XRD patterns, HRTEM images and Raman analysis reveal the crystal structural changes of the two samples during cycling. Thus, this material has shown potential for high power applications in Li-ion batteries

  6. Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon

    International Nuclear Information System (INIS)

    Highlights: •This paper reports an improved solid-state method which leads to a uniform coating. The influence of Li3PO4 and carbon coating on the electrochemical performance of LiFePO4 was studied. •LiFePO4 coating with Li3PO4 and carbon shows a higher capacity than pure carbon coating sample. •Results indicate that the surface structure has an important influence on the electrochemical performance of LiFePO4. The addition of Li3PO4 can decrease the interfacial resistance of Li FePO4. -- Abstract: Li3PO4 coating on the surface of LiFePO4 particles was prepared by direct dispersing LiFePO4 precursor in starch slurry with nano-Li3PO4. The existence of nano-Li3PO4 was confirmed with X-ray powder diffraction (XRD). And the particle size and morphology were observed by scanning electron microscope (SEM) and transmission electron microscope analysis (TEM). The effects of the mixture coating on rate performance of LiFePO4 cathode vs Li anode at 25 °C was investigated. Li3PO4 and carbon mixing coated LiFePO4 cathode materials exhibited markedly improved rate capability relative to bare carbon-coated LiFePO4. Analyses on cell impedance showed that the Li3PO4 coating decreased the interfacial impedance. Transmission electron microscope analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) were carried out to explain the reason of better rate performance by Li3PO4 coating

  7. Improving rate performance of LiFePO{sub 4} cathode materials by hybrid coating of nano-Li{sub 3}PO{sub 4} and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shi-Xi, E-mail: zhaosx@sz.tsinghua.edu.cn [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Ding, Hao; Wang, Yan-Chao [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Li, Bao-Hua [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Nan, Ce-Wen [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2013-07-25

    Highlights: •This paper reports an improved solid-state method which leads to a uniform coating. The influence of Li{sub 3}PO{sub 4} and carbon coating on the electrochemical performance of LiFePO{sub 4} was studied. •LiFePO{sub 4} coating with Li{sub 3}PO{sub 4} and carbon shows a higher capacity than pure carbon coating sample. •Results indicate that the surface structure has an important influence on the electrochemical performance of LiFePO{sub 4}. The addition of Li{sub 3}PO{sub 4} can decrease the interfacial resistance of Li FePO{sub 4}. -- Abstract: Li{sub 3}PO{sub 4} coating on the surface of LiFePO{sub 4} particles was prepared by direct dispersing LiFePO{sub 4} precursor in starch slurry with nano-Li{sub 3}PO{sub 4}. The existence of nano-Li{sub 3}PO{sub 4} was confirmed with X-ray powder diffraction (XRD). And the particle size and morphology were observed by scanning electron microscope (SEM) and transmission electron microscope analysis (TEM). The effects of the mixture coating on rate performance of LiFePO{sub 4} cathode vs Li anode at 25 °C was investigated. Li{sub 3}PO{sub 4} and carbon mixing coated LiFePO{sub 4} cathode materials exhibited markedly improved rate capability relative to bare carbon-coated LiFePO{sub 4}. Analyses on cell impedance showed that the Li{sub 3}PO{sub 4} coating decreased the interfacial impedance. Transmission electron microscope analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) were carried out to explain the reason of better rate performance by Li{sub 3}PO{sub 4} coating.

  8. Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 cathode materials for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    The LiZnxMn2-xO4 (x = 0.00-0.15) cathode materials for rechargeable lithium-ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and succinic acid as the chelating agent. The gel precursors of metal succinates were dried in vacuum oven for 10 h at 120 oC. After drying, the gel precursors were ground and heated at 900 oC. The structural characterization was carried out by X-ray powder diffraction and X-ray photoelectron spectroscopy to identify the valance state of Mn in the synthesized materials. The sample exhibited a well-defined spinel structure and the lattice parameter was linearly increased with increasing the Zn contents in LiZnxMn2-xO4. Surface morphology and particle size of the synthesized materials were determined by scanning electron microscopy and transmission electron microscopy, respectively. Electrochemical properties were characterized for the assembled Li/LiZnxMn2-xO4 coin type cells using galvanostatic charge/discharge studies at 0.5 C rate and cyclic voltammetry technique in the potential range between 2.75 and 4.5 V at a scan rate of 0.1 mV s-1. Among them Zn doped spinel LiZn0.10Mn1.90O4 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.

  9. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    International Nuclear Information System (INIS)

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging

  10. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  11. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Science.gov (United States)

    Dyartanti, Endah Retno; Jumari, Arif; Nur, Adrian; Purwanto, Agus

    2016-02-01

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  12. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15]O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Highlights: • Al2O3-coated concentration-gradient oxide is synthesized by a freeze drying method. • The effect of Al2O3-coating on concentration-gradient cathode is firstly studied. • Al2O3-coated sample exhibits high capacity and significantly enhanced cyclability. • Improved cyclability is ascribed to the effective protection of uniform Al2O3 layer. - Abstract: In order to enhance the electrochemical performance of the high capacity layered oxide cathode with a Ni-rich core and a concentration-gradient shell (NRC-CGS), we use a freeze drying method to coat Al2O3 layer onto the surface of NRC-CGS Li[Ni0.73Co0.12Mn0.15]O2 material. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge-discharge measurements and electrochemical impedance spectroscopy. It is revealed that an amorphous Al2O3 layer of about 5 nm in thickness is uniformly formed on the surface of NRC-CGS Li[Ni0.73Co0.12Mn0.15]O2 material by the freeze drying procedure. The freeze drying Al2O3-coated (FD-Al2O3-coated) sample demonstrates similar discharge capacity and significantly enhanced cycling performances, in comparison to the pristine and conventional heating drying Al2O3-coated (HD-Al2O3-coated) samples. The capacity decay rate of FD-Al2O3-coated Li[Ni0.73Co0.12Mn0.15]O2 material is 1.7% after 150 cycles at 55 °C, which is 9 and 12 times lower than that of the pristine and HD-Al2O3-coated samples. The superior electrochemical stability of the FD-Al2O3-coated sample is attributed to the synergistic protection of CGS and high-quality Al2O3 coating that effectively protect the active material from electrolyte attack. The freeze drying process provides an effective method to prepare the high performance surface-coated electrode materials

  13. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Full concentration-gradient (Ni0.8Co0.1Mn0.1)(OH)2 is prepared via co-precipitation. • Its oxidate has better electrochemical properties than the homogeneous one. • The capacity of Li(Ni0.8Co0.1Mn0.1)O2 is 185.2 mA h g−1 at 1 C between 2.8 and 4.3 V. • The initial capacity retains 93.2% after 100 cycles. - Abstract: A high-energy full concentration-gradient cathode material with an average composition of Li(Ni0.8Co0.1Mn0.1)O2 has been successfully synthesized by a hydroxide co-precipitation method. Ni content decreases gradually along the radius of the spherical particle, and the content of Co and Mn increases. The electrochemical properties of this concentration-gradient material are studied and compared to those of the homogeneous Li(Ni0.8Co0.1Mn0.1)O2 material. In the concentration-gradient material of Li(Ni0.8Co0.1Mn0.1)O2, the inside part rich in Ni delivers a very high capacity, while the Mn-rich outside part improves the cycling stability and rate performance. The concentration-gradient material has superior electrochemical properties compared to the homogeneous material. The initial capacity of the concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 is 185.2 mA h g−1 at 1 C between 2.8 and 4.3 V and retains 93.2% after 100 cycles. The composite also has a good rate performance with a high capacity of about 175 mA h g−1 even at 2 C rate

  14. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Li-rich layered oxides are of great potential to promote the development of cathode materials for Li-ion batteries. In this work, the Li-rich layered Li(Li0.17Ni0.2Co0.05Mn0.58)O2 (LNCMO) oxides are synthesized by a co-precipitation method followed by a solid-state reaction. Amorphous LiAlSiO4 (LAS) material is used to modify the LNCMO material via a sol-gel method. The structure and morphology of pristine and LAS-coated materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Infrared radiation (IR) and X-ray photoelectron spectroscopy (XPS) detection confirm the existence of LAS. All the peaks in XPS standing for Co2p, Ni2p and Mn2p move slightly to higher binding energy after coating with LAS, implying the activation of the cathode materials surface layer by LAS. The sample modified with optimized amount (2 wt.%) of LAS presents obviously improved initial coulombic efficiency, cyclic capacity, high rate performance and cycle stability. It can deliver high discharge capacity of 173.3 mAh g−1 at 5 C rate with a capacity retention of 84.59% after 200 cycles which is much higher than that (147.6 mAh g−1, 79.13% after 100 cycles) of the pristine material. The LAS-coated samples also present superior thermal stability proved by differential scanning calorimetry (DSC). The improvement of the electrochemical performance and thermal stability are attributed to the LAS amorphous coating films that can remarkably inhibit the change of the structure, activate the cathode and offer the fast Li-ion diffusion pathways

  15. Composite Cathodes for Dual-Rate Li-Ion Batteries

    Science.gov (United States)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  16. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.

    Science.gov (United States)

    Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam

    2016-02-01

    Sulfur cathodes have become appealing for rechargeable batteries because of their high theoretical capacity (1675 mA h g(-1) ). However, the conventional cathode configuration borrowed from lithium-ion batteries may not allow the pure sulfur cathode to put its unique materials chemistry to good use. The solid(sulfur) -liquid(polysulfides) -solid(sulfides) phase transitions generate polysulfide intermediates that are soluble in the commonly used organic solvents in Li-S cells. The resulting severe polysulfide diffusion and the irreversible active-material loss have been hampering the development of Li-S batteries for years. The present study presents a robust, ultra-tough, flexible cathode with the active-material fillings encapsulated between two buckypapers (B), designated as buckypaper/sulfur/buckypaper (B/S/B) cathodes, that suppresses the irreversible polysulfide diffusion to the anode and offers excellent electrochemical reversibility with a low capacity fade rate of 0.06% per cycle after 400 cycles. Engineering enhancements demonstrate that the B/S/B cathodes represent a facile approach for the development of high-performance sulfur electrodes with a high areal capacity of 5.1 mA h cm(-2) , which increases further to approach 7 mA h cm(-2) on coupling with carbon-coated separators. PMID:26715383

  17. Lightweight rechargeable storage batteries using polyacetylene, /CH/x as the cathode-active material

    Science.gov (United States)

    Nigrey, P. J.; Macinnes, D., Jr.; Nairns, D. P.; MacDiarmid, A. G.; Heeger, A. J.

    1981-08-01

    It is pointed out that polyacetylene, (CH)x is the first example of a covalent organic polymer which may be chemically doped either p- or n-type to give a series of semiconductors and ultimately 'organic metals'. The electric conductivity can be varied over twelve orders of magnitude depending on the dopant concentration. A number of different dopant ions, solvents, electrolytes, electrolyte concentrations, and battery configurations have been investigated, only one of which is described in order to illustrate the potential application of (CH)x in batteries. The simplest battery configuration shown consists basically of a piece of (CH)x film, nearly all of which was immersed in a propylene carbonate solution of LiClO4. The top of the film was attached to a galvanostat. The negative terminal was attached to a lithium metal electrode immersed in the solution.

  18. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  19. 锂离子电池纳米锂锰氧化物正极材料的研究进展%Research Progress in Nano-scale Lithium Manganese Oxide as Cathode Material for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    曾丽珍

    2012-01-01

    综述了近年来锂离子电池正极材料锂锰氧化物的研究现状,重点对锂锰氧化物的结构和性能的关系,尖晶石锂锰氧化物的制备以及其改性研究进行了阐述。%New progress of nanotechnology applied in lithium ion battery of lithium manganese oxide as cathode material was summarized during recent years,focusing on the relationship between structure and properties of lithium manganese oxide,the preparation methods of nanometer lithium manganese oxide materials cathode material and modification of spinel lithium manganese oxide materials were described.

  20. Studies on Bare and Mg-doped LiCoO2 as a cathode material for Lithium ion Batteries

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Layered compounds, Li(MgxCo1-x)O2 (x = 0, 0.03, 0.05) prepared by molten salt method. • They were characterized by XRD, SEM, density and cyclic voltammetry and Galvano static cycling. • Compounds showed reversible capacity values of 147 mAh/g (x = 0), 127 mAh/g (x = 0.03), and 132 mAh/g (x = 0.05), at the end of 60th cycle. - Abstract: In this paper, we report on the preparation of bare and Mg-doped Li(MgxCo1-x)O2 (x = 0, 0.03, 0.05) phases by a molten salt method and their electrochemical properties. They were prepared at 800 °C for 6 h in air. Rietveld refined X-Ray Diffraction data of bare (x = 0) and Mg-doped (x = 0.03, 0.05) compounds show a well-ordered hexagonal layer-type structure (a ∼ 2.81 Å, c ∼ 14.05 Å). Scanning Electron Microscopy (SEM) show hexagonal type morphology at 800 °C. Powder density was close to 5.02 gcm−3, which compares well with the theoretical value. Electrochemical properties were studied in the voltage range of 2.5-4.3 V vs. Li using Cyclic Voltammetry (CV) and galvanostatic cycling. CV studies on bare and Mg-doped LiCoO2 show main cathodic and anodic redox peaks at ∼ 3.9 V and ∼ 4.0 V, respectively. Galvanostatic cycling of Li(MgxCo1-x)O2 (x = 0, 0.03, 0.05) showed reversible capacity values at the 60th cycle to be: 147 (±3) mAh g−1 (x = 0), 127 (±3) mAh g−1 (x = 0.03), and 131 (±3) mAh g−1 (x = 0.05) cycled at a current density of 30 mA g−1. Capacity retention is also favourable at 98.5%

  1. Performance of cobalt-free double-perovskite NdBaFe2−xMnxO5+δ cathode materials for proton-conducting IT-SOFC

    International Nuclear Information System (INIS)

    Highlights: • A novel series of double-perovskite NdBaFe2−xMnxO5+δ cathode materials were prepared. • Among the materials, the NBFM10 exhibits the highest conductivity of 114 S cm−1. • P-type electronic conduction is dominant in the oxygen partial pressure range tested. • Peak power density of the cell using NBFM10–BZCY composite cathode reached 453 mW cm−2. • The interfacial polarization resistance (Rp) is as low as 0.06 Ω cm2 at 700 °C. - Abstract: A novel series of cobalt-free cathode materials, NdBaFe2−xMnxO5+δ (0.0 ⩽ x ⩽ 0.3), are prepared by a citric acid–nitrate process. X-ray diffraction (XRD) analysis indicates that all the samples are double-perovskite phases with cubic structure. The conductivity dependence of the cathode materials on temperature (300–800 °C) and oxygen partial pressure (1–10−10 atm) is investigated. Among the tested samples, NdBaFe1.9Mn0.1O5+δ (NBFM10) exhibits the highest conductivity of 114 S cm−1 in air at 550 °C. The H2/air fuel cell with the NBFM10–BZCY composite cathode and NiO–BZCY composite anode as well as BaZr0.1Ce0.7Y0.2O3−α (BZCY) electrolyte membrane (ca. 30 μm thickness) was assembled and tested at 500–700 °C. The peak power density of the cell reaches 453 mW cm−2, and the interfacial polarization resistance Rp is only 0.06 Ω cm2 under open circuit conditions, at 700 °C

  2. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    Science.gov (United States)

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C. PMID:23981067

  3. LINI0.80Co0.20O2 Cathode Materials Synthesized by Particulate Sol-Gel Method for Lithium Ion Batteries

    Science.gov (United States)

    Zhu, X. J.; Zhang, W.; Gan, X. Y.; Hu, C.; Cao, M. H.; Luo, D. B.; Xu, Q.; Chen, W.; Zhou, J.; Liu, H. X.

    2006-06-01

    A particulate sol-gel (PSG) method has been successfully developed to prepare LiNi0.80Co0.20O2 cathode materials, utilizing the reaction of LiOH · H2O with Ni(CH3COO)2 · 4H2O and Co(CH3COO)2 · 4H2O in water-ethanol system. The thermal history of the as-prepared xerogel was established by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Powder X-ray diffraction (XRD) confirmed the formation of well-layered α-NaFeO2 structure at temperature of 700 °C under flowing oxygen. Scanning electron microscope (SEM) exhibited that the crystalline powder prepared by PSG method had relatively smaller particle size with narrow distribution than the one prepared by solid-state reaction. The first discharge capacity of the material prepared by PSG method was 193.5 mAh/g, and the 15th discharge capacity was 185.1 mAh/g at the current density of 18 mA/g between 3.0 and 4.3 V. Its cycling reversibility was observed to be much better than that of the one by solid-state reaction, which had 182.9 mAh/g of the first discharge capacity and 162.0 mAh/g of the 15th discharge capacity

  4. Synthesis and Characteristics of LiNi0.85Co0.15O2 Cathode Materials by Particulate Sol-Gel Method for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Jun; CHEN Hong-Hao; ZHAN Hui; LIU Han-Xing; YANG Dai-Ling; ZHOU Yun-Hong

    2005-01-01

    A particulate sol-gel (PSG) method has been successfully used to prepare LiNi0.85Co0.15O2 cathode materials,utilizing the reaction of LiOH·H2O with Ni(CH3COO)2·4H2O and Co(CH3COO)2·4H2O in water-ethanol system.The thermal history of the as-prepared xerogel was established by differential thermal analysis and thermogravimetric analysis. Powder X-ray diffraction confirmed the formation of layered α-NaFeO2 structure at temperature of 700℃ under flowing oxygen. Scanning electron microscope exhibited that the crystalline powder prepared by PSG method had relatively smaller particle size with narrow distribution than the one prepared by solid state reaction.The first discharge capacity of the material by PSG method was 196.4 mAh/g, and the 10th discharge capacity was 189.1 mAh/g at the current density of 18 mA/g between 3.0 and 4.3 V. Its cycling reversibility was observed to be much better than that by solid state reaction, which had 187.3 mAh/g of the first discharge capacity and 167.1mAh/g of the 10th discharge capacity.

  5. Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction

    International Nuclear Information System (INIS)

    Simple wet chemical processes were deployed to prepare low-cost conducting nanocomposites based on natural clays with 2:1 layered structures such as sodium montmorillonite (MMT). Ce(IV) modified MMT was used for the spontaneous polymerization of pyrrole within clay interlayers. The resulted clay-conducting polypyrrole nanocomposites containing the reduced form of the oxidising agent, have been extensively characterized by X-ray diffraction (XRD) technique for interlayer spacing variations and by Fourier transform infra red (FT-IR) spectroscopy to study the interactions between the clay and polymer functional groups. DC polarization technique with both blocking and non-blocking electrodes was used to distinguish between the ionic and electronic transport numbers and to recognize the type of mobile ionic species. AC impedance analysis further resolved the electrical conduction of these materials. Bulk conductivity analysis implied that the polypyrrole (PPY) formed within Ce(IV) modified MMT posses dominant electronic conductivity. The low-cost, light-weight and stable polymer-clay nanocomposite prepared by Ce(IV) intercalated MMT, [Ce(III)-PPY-MMT], seems to be a promising cathode material for oxygen reduction and hence may find applications in fuel cell industries.

  6. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    International Nuclear Information System (INIS)

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  −  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ∼160 µm. (paper)

  7. Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method

    Science.gov (United States)

    Liu, Hongmei; Zhu, Guobin; Zhang, Li; Qu, Qunting; Shen, Ming; Zheng, Honghe

    2015-01-01

    A spinel lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode material is synthesized with a modified oxalate co-precipitation method by controlling pH value of the precursor solution and introducing excessive Li source in the precursor. All the samples synthesized through this method are of Fd3m phase with a small amount of P4332 phase. It is found that pH value of the precursor solution considerably affects the morphology, stoichiometry and crystallographic structure of the target material, thereby resulting in different amounts of Mn3+ (i.e., different degree of disorder). 5% excessive Li source in the precursor may compensate for the lithium loss during the high-temperature sintering process and eliminate the LixNi1-xO impurity phase. Under the optimized synthesis conditions, the obtained high-purity LiNi0.5Mn1.5O4 spinel exhibits enhanced electrochemical performances. A reversible capacity of ca. 140 mAh g-1 can be delivered at 0.1C and the electrode retains 106 mAh g-1 at 10C rate. When cycled at 0.2C, a capacity retention of more than 98% is obtained in the initial 50 electrochemical cycles.

  8. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    Science.gov (United States)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  9. Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries

    Science.gov (United States)

    Risthaus, Tim; Wang, Jun; Friesen, Alex; Wilken, Andrea; Berghus, Debbie; Winter, Martin; Li, Jie

    2015-10-01

    Spinel LiNi0.5Mn1.5O4 material has been synthesized by a spray drying process and subsequent solid state reaction. Polyvinylpyrrolidone (PVP) is given as additive to the spray drying precursor solution and its effects on structural and electrochemical properties are evaluated. By using PVP in the synthesis process, the obtained sample displays a secondary plate morphology which is consisting of densely arranged primary octahedrally shaped particles. The new cathode material has a lesser degree of impurity phases, a higher discharge capacity, a superior rate capability, and a slightly better cycling performance than the sample synthesized without PVP. In more detail, by the use of PVP the ratio of Mn3+ to Mn4+ in the final product decreases from 20.8 to 9.2%. The initial discharge capacity at 0.1 C exhibits an increase of about 14%. The normalized capacity at 20 C is 84.1% instead of 67.0%. A slightly improved cycling performance with the capacity retention increase from 93.8 to 97.9% could be observed as well.

  10. Electrochemical performance of single crystal belt-like NH4V3O8 as cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    NH4V3O8 with belt-like morphology has been synthesized via a hydrothermal process, using acetic acid as acidulant. The resulting phase-pure NH4V3O8 microcrystals have smooth surfaces and are typically 25–45 μm long, 2–15 μm wide, and 0.6–1.2 μm thick. Electrochemical studies by means of cyclic voltammetry and galvanostatic cycling show that the pristine material is a suitable host for reversible Li+ de-/intercalation. Analysis of the peak currents from cyclic voltammetry by means of the Randles-Sevcik equation suggests that the Li+ de-/intercalation is diffusion-controlled with D ∼ 5·10−15 cm2 s−1. The maximum discharge capacity, at 20 mA g−1, amounts to 299 mA h g−1. At 90 mA g−1, it is still 201 mA hg−1 with a capacity retention of 90% in the 100th cycle, indicating the belt-like NH4V3O8 being a promising candidate for application as cathode material in secondary lithium-ion batteries

  11. Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Mesoporous FePO4 could deliver enhanced specific capacity of 160 mAh g-1 at first discharge process, 90% of theoretical capacity of pure FePO4, and 135 mAh g-1 in the following cycles at 0.1 C rate. At 1 and 3 C rates, the capacities are 110 and 85 mAh g-1, respectively, which is much higher than that of previously reported for modified FePO4 materials. Electrochemical impedance spectroscopy (EIS) tests proved that mesoporous structure in FePO4 materials enhanced the lithium ion intercalation/deintercalation kinetics as indicated by smaller charge transfer resistance (Rct) of these materials. These results revealed that this mesoporous electrode material can be a potential candidate for high-power energy conversion devices

  12. Effect of thermal treatment on the properties of electrospun LiFePO{sub 4}–carbon nanofiber composite cathode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Changhuan; Liang, Yinzheng; Yao, Lan; Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn

    2015-04-05

    Graphical abstract: The composites prepared with the thermal treatment process of stabilization at 280 °C for 4 h with a heating rate of 2 °C min{sup −1} in air followed by carbonization at 800 °C for 14 h with a heating rate of 2 °C min{sup −1} in argon exhibit the optimal electrochemical properties. - Highlights: • Binder-free LiFePO{sub 4}–CNF composite cathode materials are prepared. • The conductive carbon and LiFePO{sub 4} formation take place simultaneously during thermal treatment. • The reaction behavior of the LiFePO{sub 4} precursors during thermal treatment are investigated. • Different thermal treatment processes would generate different electrochemical performance. • Cycling performance and rate capability are improved with a suitable thermal treatment condition. - Abstract: Binder-free LiFePO{sub 4}–carbon nanofiber (LiFePO{sub 4}–CNF) composites as lithium-ion battery cathode materials are fabricated by electrospinning and subsequent thermal treatments. The thermal decomposition behavior of the electrospun LiFePO{sub 4} precursor–polyacrylonitrile (LiFePO{sub 4} precursor–PAN) nanofiber composites and the reaction of the LiFePO{sub 4} precursors during thermal treatment are investigated. The effects of thermal treatment parameters such as heating rate, temperature, and duration for stabilization and carbonization on the microstructure, morphology, carbon content, crystal structure of the composites, and electrochemical performance of the resultant half-cell are also studied. When the electrospun LiFePO{sub 4} precursor–PAN nanofiber composites are first stabilized in air at 280 °C for 4 h with a heating rate of 2 °C min{sup −1} and then carbonized in argon at 800 °C for 14 h with a heating rate of 2 °C min{sup −1}, the obtained LiFePO{sub 4}–CNF composites exhibit optimal electrochemical properties in terms of a higher initial discharge capacity, more stable charge–discharge cycle behavior, and better rate

  13. Neutron activation analysis of geological materials

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is an extremely sensitive, selective and precise method, which yields a wealth of elemental information from even a small-sized sample. With the recent advances in nuclear reactors and high-efficiency and high-resolution semiconductor detectors, NAA has become a powerful method for multielemental analysis. The concentration of major, minor, and trace elements vary from 1 to 4 orders of magnitude in geological materials. By varying neutron fluxes, irradiation times, decay and counting intervals and using both instrumental and radiochemical techniques in NAA, it is possible to accurately determine about 50 elements in a sample aliquant. The practical aspects of the NAA method as applied to geological materials are discussed in detail, and are demonstrated by the analysis of the United States Geological Survey (USGS) and the International Atomic Energy Agency (IAEA) standard reference geological materials. General aspects of the elemental interpretations in terrestrial samples are also discussed. (author)

  14. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  15. Nondestructive gamma activation analysis of mineral materials

    International Nuclear Information System (INIS)

    The basic problems are described related to the use of gamma activation analysis. The applicability was studied of instrumental gamma activation analysis (IGAA) in geology. A number of minerals, rocks, marine sediments and reference materials were studied. For irradiation a betatron and a microtron were used. The results show that IGAA allows the simultaneous determination of a number of trace elements at concentrations of tenths of ppm. The results are given of comparisons made of the analytical possibilities of microtron IGAA and reactor INAA in geology. Tables show the results of the application of IGAA, the main products and parameters of photoexcitation reactions and graphically represented are the gamma spectra of measured materials. (J.B.)

  16. Reactor neutron activation analysis of industrial materials

    International Nuclear Information System (INIS)

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  17. Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Vej-Hansen, Ulrik Grønbjerg;

    2014-01-01

    One of the main obstacles to the commercialisation of low-temperature fuel cells is the slow kinetics of the oxygen reduction reaction (ORR). In order to decrease the ORR overpotential and reduce the Pt loading we need to develop more active and stable electrocatalysts. A fruitful strategy for...... enhancing the cathode activity is to alloy Pt with transition metals [1-2]. However, alloys of Pt and late transition metals are typically unstable under fuel-cell conditions. Herein, we present experimental and theoretical studies showing the trends in activity and stability of novel cathode catalysts...... based on alloys of Pt and lanthanides. Sputter-cleaned, polycrystalline Pt5Gd shows a five-fold increase in ORR activity [3], relative to Pt at 0.9 V in 0.1 M HClO4. The rest of the Pt5Ln (Ln = lanthanide) tested present at least a 3-fold enhancement in activity [4,5]. In all cases, a Pt overlayer with...

  18. Preparation and performance of Nano-LiFePO4/C cathode material for lithium-ion battery

    Science.gov (United States)

    Qin, Xianzhong; Yang, Gai; Ma, Feng; Cai, Feipeng

    2016-01-01

    A high energy density LiFePO4/C material for lithium batteries was synthesized by controlled crystallization-carbothermal reaction, which has been experienced as an effective process for mass production of electrode materials. The structure and morphology of the LiFePO4/C material were characterized by X-ray diffraction and Scanning Electron Microscope (SEM). The electrochemical properties of the synthesized nano-LiFePO4/C were investigated by charge-discharge processing and cyclic voltammetry (CV). The initial discharge capacities of the LiFePO4/C battery were 163.9, 158.4, 154.5, 151.4, and 142 mA h g-1 at 0.1C, 1C, 2C, 5C, and 10C, respectively. The capacity of LiFePO4/C material maintained 98.5% at the rate of 1C after 100 cycles, demonstrating excellent rate capability and cycling performance.

  19. Preparation and characterization of new cathodic materials for Li-ion battery based polypyrrole-FePO4

    International Nuclear Information System (INIS)

    To investigate the electrochemical properties and stability of our samples, we used cyclic voltammetry and electrochemical impedance spectroscopy. We found that PEG-PPy layer on the particles FePO4 considerably increased material conductivity in comparison with a layer of pure PPy. It also improved the incorporation of Li+ ions into FePO4 structure during charging and discharging. (Authors)

  20. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4 cathode materials

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wei, C.B.;

    2016-01-01

    characterized the morphology and structure of the synthesized materials by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The honeycomb morphology was identified using SEM. The XRD patterns show that the Bragg peak of the plane (111) for TiO2/LiMn2O4 appears at the lower diffraction...

  1. In situ X-ray studies of film cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO2, and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone

  2. Performance of Stainless Steel Mesh Cathode and PVDF-graphite Cathode in Microbial Fuel Cells

    Science.gov (United States)

    Huang, Liping; Tian, Ying; Li, Mingliang; He, Gaohong; Li, Zhikao

    2010-11-01

    Inexpensive and conductive materials termed as stainless steel mesh and polyvinylidene fluoride (PVDF)-graphite were currently used as the air cathode electrodes in MFCs for the investigation of power production. By loading PTFE (poly(tetrafluoroethylene)) on the surface of stainless steel mesh, electricity production reached 3 times as high as that of the naked stainless steel. A much high catalytic activity for oxygen reduction was exhibited by Pt based and PTFE loading stainless steel mesh cathode, with an electricity generation of 1144±44 mW/m2 (31±1 W/m3) and a Coulombic efficiency (CE) of 77±2%. When Pt was replaced by an inexpensive transition metal based catalyst (cobalt tetramethylphenylporphyrin, CoTMPP), power production and CE were 845±21 mW/m2 (23±1 W/m3) and 68±1%, respectively. Accordingly, power production from PVDF-graphite (hydrophobic) MFC and PVDF-graphite (hydrophile) MFC were 286±20 mW/m2(8±1 W/m3) and 158±13 mW/m2(4±0.4 W/m3), respectively using CoTMPP as catalyst. These results give us new insight into materials like stainless steel mesh and PVDF-graphite as low cost cathode for reducing the costs of MFCs for wastewater treatment applications.

  3. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    OpenAIRE

    Ju-Myung Kim; Jang-Hoon Park; Chang Kee Lee; Sang-Young Lee

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structura...

  4. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur-Battery Cathode Material with High Capacity and Cycling Stability

    OpenAIRE

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-01-01

    We report the synthesis of a graphene-sulfur composite material by wrapping polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite sh...

  5. The Effect of Counterpart Material on the Sliding Wear of TiAlN Coatings Deposited by Reactive Cathodic Pulverization

    Directory of Open Access Journals (Sweden)

    Michell Felipe Cano Ordoñez

    2015-11-01

    Full Text Available This work aims to study the effect of the counterpart materials (100Cr6, Al2O3 and WC-Co on the tribological properties of TiAlN thin films deposited on AISI H13 steel substrate by reactive magnetron co-sputtering. The structural characterization of the TiAlN films, performed by X-ray diffraction, showed (220 textured fcc crystalline structure. The values of hardness and elastic modulus obtained by nanoindentation were 27 GPa and 420 GPa, respectively, which resulted in films with a relatively high resistance to plastic deformation. Ball-on-disk sliding tests were performed using normal loads of 1 N and 3 N, and 0.10 m/s of tangential velocity. The wear coefficient of the films was determined by measuring the worn area using profilometry every 1000 cycles. The mechanical properties and the chemical stability of the counterpart material, debris formation and the contact stress influences the friction and the wear behavior of the studied tribosystems. Increasing the hardness of the counterpart decreases the coefficient of friction (COF due to lower counterpart material transference and tribofilm formation, which is able to support the contact pressure. High shear stress concentration at the coating/substrate interface was reported for higher load promoting failure of the film-substrate system for all tribopairs

  6. Synthesis and Electrochemical Properties of Sodium Manganese-based Oxide Cathode Material for Sodium-ion Batteries

    International Nuclear Information System (INIS)

    Hexagonal P2-structure sodium manganese-based NaLi0.2Mn0.8O2 oxide is successfully synthesized by a simple conventional solid-state reaction method. XRD analysis reveals that the NaLi0.2Mn0.8O2 material has layered structure, space group P63/mmc, and lattice parameters of a = 2.8616 Å, and c = 11.0659 Å. Lithium ions can stabilize the P2-structure of sodium manganese-based NaxMnO2 oxides even though the mole ratio of alkali metals to transition metal is as high as 1.5. The NaLi0.2Mn0.8O2 material has a high initial discharge capacity of 241 mAh g−1 between 1.5–4.5 V at a current density of 26.6 mA g−1. The structure of the NaLi0.2Mn0.8O2 material is stable over a wide range of sodium concentrations during the charge-discharge process, and capacity retention is 78% after 40 cycles

  7. Hydrothermal synthesis of spindle-like Li2FeSiO4-C composite as cathode materials for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Haiyan Gao; Zhe Hu; Kai Zhang; Fangyi Cheng; Zhanliang Tao; Jun Chen

    2014-01-01

    In this paper, we report on the preparation of Li2FeSiO4, sintered Li2FeSiO4, and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries. Spindle-like Li2FeSiO4 was synthesized by a facile hydrothermal method with (NH4)2Fe(SO4)2 as the iron source. The spindle-like Li2FeSiO4 was sintered at 600◦C for 6 h in Ar atmosphere. Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190◦C for 3 h. Electrochemical measurements show that after carbon coating, the electrode performances such as discharge capacity and high-rate capability are greatly enhanced. In particular, Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at 45◦C (0.1 C), revealing the potential application in lithium-ion batteries.

  8. Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Zong-Kai; Shu, Jie; Zhu, Qian-Cheng; Cao, Bo-Yu; Chen, Hui; Wu, Xue-Yan; Bartlett, Bart M.; Wang, Kai-Xue; Chen, Jie-Sheng

    2016-03-01

    A novel graphene-nanosheet-wrapped LiV3O8 nanoflakes (GNS/LiV3O8) nanocomposite has been generated by sheet-to-sheet self-assembly of ultrathin LiV3O8 nanoflakes and graphene nanosheets. When used as a cathode material for lithium-ion batteries, the GNS/LiV3O8 nanocomposites show superior rate capability and excellent cycling stability. Discharge capacities of approximately 328.7, 305.3, 276.9, 251.4, and 209.3 mAh g-1 are achieved at current densities of 2, 5, 10, 20, and 50C, respectively. A reversible capacity of approximately 287.2 mAh g-1 is retained even after 100 cycles at 1.0 A g-1 (about 3C), approximately 88.3% of the initial discharge capacity. It is believed that the unique nanoflake morphology of LiV3O8 and the surface modification by graphene nanosheets contribute to the improved kinetics of lithium-ion diffusion, excellent structural stability and superior electrochemical performance. The structural evolution of LiV3O8 species upon charging and discharging is investigated by in situ X-ray diffraction technique. Anisotropic lattice expansion is found occurring along a, b and c axes upon the insertion of lithium ions into the crystal structure of LiV3O8.

  9. One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties

    Science.gov (United States)

    Jiang, Qianqian; Wang, Xingyao; Zhang, Han

    2016-08-01

    The spinel LiMn2O4 was prepared by a one-step hydrothermal method using acetone as the reductant under different hydrothermal temperatures. X-ray diffraction and scanning electron microscopy analysis indicated that optimal LiMn2O4 particles (LMO-120) were synthesized at the temperature of 120°C and the particles were well distributed and about 410 nm in size. Electrochemical performance showed that the as-prepared LiMn2O4 particles exhibited a higher initial discharge capacity than commercial LiMn2O4 (131.5 mAh g-1 versus 115.6 mAh g-1 at 0.2 C). An excellent discharge capacity retention rate of 94.07% was observed after 60 charge-discharge cycles. On the other hand, when cycled at the high rate of 1 C, the optimal LiMn2O4 in this work showed a high discharge capacity of 107.5 mAh g-1 in contrast to only 92.3 mAh g-1 of the commercial LiMn2O4. These results indicate that LMO-120 showed excellent electrochemical performance, especially the prolonged cycling life and high-rate performance, which suggested that this spinel LiMn2O4 has promise for practical application as a high-rate cathode material for lithium ion batteries.

  10. Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries

    Science.gov (United States)

    Hao, Hao; Wang, Junbo; Liu, Jiali; Huang, Tao; Yu, Aishui

    2012-07-01

    Li2FeSiO4/C composites doped by vanadium at Fe/Si sites have been investigated as cathode materials for lithium ion batteries. Effects of vanadium substitution at different sites on the structure of Li2FeSiO4/C are examined by X-ray diffraction, X-photoelectron spectroscopy and scanning electron microscopy. XPS results show that the oxidation state of vanadium doped at Fe sites is +3, whereas is +5 when doped at Si sites. Electrochemical measurements show that the Li2FeSi0.9V0.1O4/C sample exhibits the best electrochemical performance with initial discharge capacity of 159 mAh g-1 and excellent cyclability with capacity of 145 mAh g-1 at 30th cycle, which can be ascribed to larger cell volume and higher lithium ion diffusion coefficient, however, the initial discharge of the Li2Fe0.9V0.1SiO4/C sample is only 90% of the undoped Li2FeSiO4, which can be attributed to the loss of Fe content.

  11. Encapsulation of LiFePO4 by in-situ graphitized carbon cage towards enhanced low temperature performance as cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    The severe capacity decay of LiFePO4 at low temperatures (≤0 °C) limits its wide applications as cathode materials for energy storage batteries. Creating comprehensive carbon network between particles with improved electronic conductivity is a well known solution to this problem. Here, a novel structured LiFePO4/C composite was prepared by a facile solid state route, in which nanosized LiFePO4 spheres were encapsulated by in-situ graphitized carbon cages. With the enhancement in electronic conductivity (2.15e−1 S cm−1), the composite presented excellent rate performance at room temperature and remarkable capacity retention at −40 °C, with charge transfer resistance much lower than commercial LiFePO4. - Graphical abstract: A novel structured LiFePO4/C composite was prepared by a facile solid state route, in which nanosized LiFePO4 spheres were encapsulated by in-situ graphitized carbon cages. - Highlights: • Several nano-sized LiFePO4 particles are encapsulated in carbon cage. • Carbon is in-situ graphitized with enhanced electronic conductivity. • The as prepared LiFePO4 exhibits notable capacity retention at −40 °C. • Rct is lowered by a factor of ∼10 compared with commercial LiFePO4

  12. Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery

    Science.gov (United States)

    Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen

    2016-03-01

    Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.

  13. Synthesis and characterization of layered Li(Ni1/3Mn1/3Co1/3)O2 cathode materials by spray-drying method

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-min; HU Guo-rong; PENG Zhong-dong; DENG Xin-rong; LIU Ye-xiang

    2007-01-01

    Spherical Li(Ni1/3Mn1/3Co1/3)O2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. The impacts of different sintering temperatures on the structure and electrochemical performances of Li(Ni1/3Mn1/3Co1/3)O2 were compared by means of X-ray diffractometry(XRD), scanning electron microscopy(SEM), and charge/discharge test as cathode materials for lithium ion batteries. The experimental results show that the spherical morphology of the spray-dried powers maintains during the subsequent heat treatment and the specific capacity increases with rising sintering temperature. When the sintering temperature rises up to 900 ℃, Li(Ni1/3Mn1/3Co1/3)O2 attains a reversible capacity of 153 mA·h/g between 3.00 and 4.35 V at 0.2C rate with excellent cyclability.

  14. Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material

    Science.gov (United States)

    Joo, Sung-Ho; Shin, Dongju; Oh, ChangHyun; Wang, Jei-Pil; Shin, Shun Myung

    2016-02-01

    We investigate the separation of manganese by an antagonistic effect from a leaching solution of ternary cathodic material of spent lithium-ion batteries that contain 11,400 mg L-1 Co, 11,700 mg L-1 Mn, 12,200 mg L-1 Ni, and 5300 mg L-1 Li using a mixture of alkyl monocarboxylic acid and di-(2-ethylhexyl)phosphoric acid extractants. pH isotherm, distribution coefficient, separation factor, McCabe-Thiele diagram, selective scrubbing, and countercurrent extraction tests are carried out to prove an antagonistic effect and to recover manganese using alkyl monocarboxylic in the mixed extractant. Slope analysis is used to determine the extraction mechanism between a mixture of extractants and valuable metals. An increasing concentration of alkyl monocarboxylic acid in the mixture of extractants results in a decrease in distribution coefficient of cobalt and manganese, however, the separation factor value (β(Mn/Co)) increases at pH 4.5. This is caused by slope analysis where alkyl monocarboxylic acid disrupts the extraction mechanism between di-(2-ethylhexyl)phosphoric acid and cobalt. Finally, continuous countercurrent extraction in a mini-plant test demonstrate the feasibility of manganese recovery from cobalt, nickel, and lithium.

  15. High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries

    Science.gov (United States)

    Fu, Bi; Zhou, Xuan; Wang, Yaping

    2016-04-01

    Sodium-ion batteries (SIBs) are considered as one of the most promising candidates to replace lithium-ion batteries (LIBs), because of their similar electrochemical properties, and geographical limitations of lithium. However, searching for the appropriate cathode materials for SIBs that can accommodate structure change during the insertion and extraction of sodium ions is facing great challenges due to the relatively larger size of sodium ion. Na0.44MnO2 has recently attracted significant attention because its crystal structure exhibits two types of large channels formed by MnO6 octahedra and MnO5 square pyramids, which facilitate the transportation of sodium ions. However, suffering from the slow kinetics and structural degradation, its rate performance is still not satisfied. Here, we report the fabrication of two types of Na0.44MnO2 hierarchical structures by optimized electrospinning and controlled subsequent annealing process. One is nanofiber (NF) which demonstrates a superior rate performance with reversible specific capacity of 69.5 mAh g-1 at 10 C, attributed to its one-dimensional (1D) ultralong and continuous fibrous network structure; the other is nanorod (NR) which exhibits an excellent cyclic performance with reversible specific capacity of 120 mAh g-1 after 140 cycles, due to its large S-shaped tunnel structure with a single crystalline structure.

  16. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  17. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al2O3.

    Science.gov (United States)

    Du, Ke; Xie, Hongbin; Hu, Guorong; Peng, Zhongdong; Cao, Yanbing; Yu, Fan

    2016-07-13

    The electrochemical performance of Ni-rich cathode material at high temperature (>50 °C) and upper voltage operation (>4.3 V) is a challenge for next-generation lithium-ion batteries (LIBs) because of the rapid capacity degradation over cycling. Here we report improved performance of LiNi0.8Co0.15Al0.05O2 materials via a LiAlO2 coating, which was prepared from a Ni0.80Co0.15Al0.05(OH)2 precursor by spray-drying coating with nano-Al2O3. Investigations by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy revealed that an Al2O3 layer is uniformly distributed on the precursor and a LiAlO2 layer on the as-prepared cathode material. Such a coating shell acts as a scavenger to protect the cathode material from attack by HF and serious side reactions, which remarkably enhances the cycle performance at 55 °C and upper operating voltage (4.4 and 4.5 V). In particular, the sample with a 2% Al2O3 coating shows capacity retentions of 90.40%, 85.14%, 87.85%, and 81.1% after 150 cycles at a rate of 1.0C at room temperature, 55 °C, 4.4 V, and 4.5 V, respectively, which are significantly higher than those of the pristine one. This is mainly due to the significant improvement of the structural stability led by the effective coating technique, which could be extended to other cathode materials to obtain LIBs with enhanced safety and excellent cycling stability. PMID:27328728

  18. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  19. An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries

    Science.gov (United States)

    Wang, Hongbo; Gu, Minyi; Jiang, Jingyu; Lai, Chao; Ai, Xinping

    2016-09-01

    A single phase O3-type layered NaNi0.5Mn0.3Ti0.2O2 compound synthesized via simple solid-state reaction is first reported as a promising cathode material for sodium-ion batteries. A high reversible capacity of approximately 138 mAh g-1 and initial coulombic efficiency of above 96% can be obtained in half-cell. The performance of sodium-ion full-cells with NaNi0.5Mn0.3Ti0.2O2 as the cathode and presodiated hard carbon as the anodes were also evaluated. Based on the mass of cathode, the full-cells can still exhibit a high reversible capacity of ca. 131 mAh g-1. The prominent capacities make NaNi0.5Mn0.3Ti0.2O2 as an important cathode candidate for room temperature sodium-ion batteries.

  20. Freeze-drying synthesis of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Y.Q. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.L., E-mail: wangxl@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Mai, Y.J.; Xia, X.H.; Zhang, J.; Gu, C.D. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Tu, J.P., E-mail: tujp@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C was synthesized by freeze-drying method. Black-Right-Pointing-Pointer A specific capacity of 105.6 mAh g{sup -1} can be obtained at 14.8 C. Black-Right-Pointing-Pointer 93.3 mAh g{sup -1} can be delivered at a higher current density of 29.6 C. Black-Right-Pointing-Pointer The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C electrode shows a good cycling performance. - Abstract: Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode material was synthesized by using a freeze-drying method followed by carbon-thermal reduction. This as-prepared material has a uniform particle size distribution and a well carbon coating on the surface of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} particles. The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C exhibits good electrochemical performance and cycling stability. Between 3.0 and 4.3 V, the composite delivered a reversible capacity of 125.2 mAh g{sup -1} at a charge-discharge rate of 1.48 C (1 C = 133 mA g{sup -1}) and without obviously capacity fading after 100 cycles. Even at 14.8 C and 29.6 C rates, it can still deliver discharge capacities of 105.6 mAh g{sup -1} and 93.3 mAh g{sup -1}, and the discharge capacities of 84.5 and 60.5 mAh g{sup -1} are sustained after 500 cycles, respectively.