WorldWideScience

Sample records for catheter integrating 3d

  1. Reduction of Fluoroscopic Exposure Using a New Fluoroscopy Integrating Technology in a 3D-Mapping System During Pulmonary Vein Isolation With a Circular Multipolar Irrigated Catheter.

    Science.gov (United States)

    Blockhaus, Christian; Schmidt, Jan; Kurt, Muhammed; Clasen, Lukas; Brinkmeyer, Christoph; Katsianos, Efstratios; Müller, Patrick; Gerguri, Shqipe; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2016-05-25

    Pulmonary vein isolation (PVI) is a cornerstone therapy in patients with atrial fibrillation (AF). With increasing numbers of PVI procedures, demand arises to reduce the cumulative fluoroscopic radiation exposure for both the physician and the patient. New technologies are emerging to address this issue. Here, we report our first experiences with a new fluoroscopy integrating technology in addition to a current 3D-mapping system. The new fluoroscopy integrating system (FIS) with 3D-mapping was used prospectively in 15 patients with AF. Control PVI cases (n = 37) were collected retrospectively as a complete series. Total procedure time (skin to skin), fluoroscopic time, and dose-area-product (DAP) data were analyzed. All PVI procedures were performed by one experienced physician using a commercially available circular multipolar irrigated ablation catheter. All PVI procedures were successfully undertaken without major complications. Baseline characteristics of the two groups showed no significant differences. In the group using the FIS, the fluoroscopic time and DAP were significantly reduced from 571 ± 187 seconds versus 1011 ± 527 seconds (P = 0.0029) and 4342 ± 2073 cGycm(2) versus 6208 ± 3314 cGycm(2) (P = 0.049), respectively. Mean procedure time was not significantly affected and was 114 ± 31 minutes versus 104 ± 24 minutes (P = 0.23) by the FIS.The use of the new FIS with the current 3D-mapping system enables a significant reduction of the total fluoroscopy time and DAP compared to the previous combination of 3D-mapping system plus normal fluoroscopy during PVI utilizing a circular multipolar irrigated ablation catheter. However, the concomitant total procedure time is not affected. Thus, the new system reduces the radiation exposure for both the physicians and patients. PMID:27181037

  2. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  3. Fast vision-based catheter 3D reconstruction

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  4. 3D ablation catheter localisation using individual C-arm x-ray projections

    Science.gov (United States)

    Haase, C.; Schäfer, D.; Dössel, O.; Grass, M.

    2014-11-01

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm.

  5. 3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    CERN Document Server

    Fallavollita, Pascal

    2009-01-01

    Radiofrequency (RF) catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours). Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.

  6. 3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    Directory of Open Access Journals (Sweden)

    Pascal Fallavollita

    2009-09-01

    Full Text Available Radiofrequency (RF catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours. Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.

  7. Experimental validation of radiographic 3D navigation of the laser catheter to the target site

    International Nuclear Information System (INIS)

    The present experimental study determined the feasibility and accuracy of online radiographic 3D localization for device navigation. Such a procedure is based on radiographic image pairs and corresponding projection data. An automatic data and image acquision system was developed to perform online measurements. Image errors caused by geomagnetism were compensated instrumentally. A centimeter grid and an attached laser catheter were imaged in common biplane projections. Possible ablation sites on the grid were sequentially localized from the acquired image pairs. The 3D coordinates computed with reference to the catheter tip were compared with their true coordinates. The mean± SD of the measurement time and localization error were calculated. The 3D localization took 10 ± 2 sec. The overall absolute localization error was 0,61 ± 0,32 mm. The time frame and accuracy of the 3D localization make a radiographic catheter navigation feasible. Further development towards a navigation system for routine use is justified. (author)

  8. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  9. Integral 3D display using multiple LCDs

    Science.gov (United States)

    Okaichi, Naoto; Miura, Masato; Arai, Jun; Mishina, Tomoyuki

    2015-03-01

    The quality of the integral 3D images created by a 3D imaging system was improved by combining multiple LCDs to utilize a greater number of pixels than that possible with one LCD. A prototype of the display device was constructed by using four HD LCDs. An integral photography (IP) image displayed by the prototype is four times larger than that reconstructed by a single display. The pixel pitch of the HD display used is 55.5 μm, and the number of elemental lenses is 212 horizontally and 119 vertically. The 3D image pixel count is 25,228, and the viewing angle is 28°. Since this method is extensible, it is possible to display an integral 3D image of higher quality by increasing the number of LCDs. Using this integral 3D display structure makes it possible to make the whole device thinner than a projector-based display system. It is therefore expected to be applied to the home television in the future.

  10. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  11. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    International Nuclear Information System (INIS)

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora® Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators

  12. Using a wireless motion controller for 3D medical image catheter interactions

    Science.gov (United States)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  13. 3D Integration for Wireless Multimedia

    Science.gov (United States)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  14. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    International Nuclear Information System (INIS)

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σx, σy, σz) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize performance in clinical

  15. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  16. Fast integrated intravascular photoacoustic/ultrasound catheter

    Science.gov (United States)

    Choi, Changhoon; Cho, Seunghee; Kim, Taehoon; Park, Sungjo; Park, Hyoeun; Kim, Jinmoo; Lee, Seunghoon; Kang, Yeonsu; Jang, Kiyuk; Kim, Chulhong

    2016-03-01

    In cardiology, a vulnerable plaque is considered to be a key subject because it is strongly related to atherosclerosis and acute myocardial infarction. Because conventional intravascular imaging devices exhibit several limitations with regard to vulnerable plaque detection, the need for an effective lipid imaging modality has been continuously suggested. Photoacoustic (PA) imaging is a medical imaging technique with a high level of ultrasound (US) resolution and strong optical contrast. In this study, we successfully developed an integrated intravascular photoacoustic/ultrasound (IV-PAUS) imaging system with a catheter diameter of 1.2 mm for lipid-rich atherosclerosis imaging. An Nd:YAG pulsed laser with an excitation wavelength of 1064 nm was utilized. IV-PAUS offers 5-mm depth penetration and axial and lateral PA imaging resolutions of 94 μm and 203 μm, respectively, as determined by imaging a 6-μm carbon fiber. We initially obtained 3-dimensional (3D) co-registered PA/US images of metal stents. Subsequently, we successfully obtained 3D coregistered PA/US ex vivo images using an iliac artery from a rabbit atherosclerosis model. Accordingly, lipid-rich plaques were sufficiently differentiated from normal tissue in the ex vivo experiment. We validated these findings histologically to confirm the lipid content.

  17. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen

    2009-01-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  18. Designing TSVs for 3D Integrated Circuits

    CERN Document Server

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  19. Catheter ablation of atrial fibrillation without radiation exposure using a 3D mapping system

    Directory of Open Access Journals (Sweden)

    Marco Scaglione, MD; Elisa Ebrille, MD; Francesca Di Clemente, MD; Fiorenzo Gaita, MD Meet the expert doctor Doctor Do You want to talk to a Electro physiologist about your AFIB..?? Then ask now! Now It's Free* Dr. Y Madhu Reddy, MD, FACC, FHRS Introduction to AFib Click here for more Videos..! Upcoming Events

    2015-02-01

    Full Text Available ranscatheter ablation procedures have been traditionally performed under fluoroscopic guidance. However, x-ray exposure is afflicted by the risk of developing malignancies as well as other deterministic effects of radiation. For this reason, radiation doses in the interventional laboratory should be reduced “As Low As Reasonably Achievable”, with respect to the safety of the patients and the medical staff. This is of utmost importance in atrial fibrillation (AF ablations, which are usually lengthy procedures. With the improvement of technology, the development of additional imaging tools and the widespread of 3D electroanatomic mapping systems (EAM, near-zero fluoroscopy AF ablation procedure is becoming a reality, limiting fluoroscopy use mainly to guide transseptal puncture. In the present paper we reviewed the risks to health related to x-ray exposure and we discussed the current state of knowledge of catheter ablation of AF without fluoroscopy in the 3D EAM system era.

  20. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine. PMID:25476164

  1. Design of 3D integrated circuits and systems

    CERN Document Server

    Sharma, Rohit

    2014-01-01

    Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and sys

  2. Performance Analysis of 3-D Monolithic Integrated Circuits

    OpenAIRE

    Bobba, Shashikanth; Chakraborthy, Ashutosh; Olivier THOMAS (LEREPS-GRES); Batude, Perrine; Pavlidis, Vasileios; Micheli, Giovanni De

    2010-01-01

    3-D monolithic integration (3DMI), also termed as sequential integration, is a potential technology for future gigascale circuits. Since the device layers are processed in sequential order, the size of the vertical contacts is similar to traditional contacts unlike in the case of parallel 3-D integration with through silicon vias (TSVs). Given the advantage of such small contacts, 3DMI supports stacking active layers such that fine-grain integration of 3-D circuits can be implemented. This pa...

  3. Integrated Biogeomorphological Modeling Using Delft3D

    Science.gov (United States)

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  4. Integrating 3D modeling, photogrammetry and design

    CERN Document Server

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  5. Three wafer stacking for 3D integration.

    Energy Technology Data Exchange (ETDEWEB)

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

    2011-11-01

    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  6. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    Science.gov (United States)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  7. 2D and 3D heterogeneous photonic integrated circuits

    Science.gov (United States)

    Yoo, S. J. Ben

    2014-03-01

    Exponential increases in the amount of data that need to be sensed, communicated, and processed are continuing to drive the complexity of our computing, networking, and sensing systems. High degrees of integration is essential in scalable, practical, and cost-effective microsystems. In electronics, high-density 2D integration has naturally evolved towards 3D integration by stacking of memory and processor chips with through-silicon-vias. In photonics, too, we anticipate highdegrees of 3D integration of photonic components to become a prevailing method in realizing future microsystems for information and communication technologies. However, compared to electronics, photonic 3D integration face a number of challenges. This paper will review two methods of 3D photonic integration --- fs laser inscription and layer stacking, and discuss applications and future prospects.

  8. 3D integrated hybrid silicon laser.

    Science.gov (United States)

    Song, Bowen; Stagarescu, Cristian; Ristic, Sasa; Behfar, Alex; Klamkin, Jonathan

    2016-05-16

    Lasers were realized on silicon by flip-chip bonding of indium phosphide (InP) devices containing total internal reflection turning mirrors for surface emission. Light is coupled to the silicon waveguides through surface grating couplers. With this technique, InP lasers were integrated on silicon. Laser cavities were also formed by coupling InP reflective semiconductor optical amplifiers to microring resonator filters and distributed Bragg reflector mirrors. Single-mode continuous wave lasing was demonstrated with a side mode suppression ratio of 30 dB. Up to 2 mW of optical power was coupled to the silicon waveguide. Thermal simulations were also performed to evaluate the low thermal impedance afforded by this architecture and potential for high wall-plug efficiency. PMID:27409867

  9. Wafer-Level 3D Integration for ULSI Interconnects

    Science.gov (United States)

    Gutmann, Ronald J.; Lu, Jian-Qiang

    Three-dimensional (3D) integration in a system-in-a-package (SiP) implementation (packaging-based 3D) is becoming increasingly used in consumer, computer, and communication applications where form factor is critical. In particular, the hand-held market for a growing myriad of voice, data, messaging, and imaging products is enabled by packaging-based 3D integration (i.e., stacking and connecting individual chips). The key drivers are for increased memory capacity and for heterogeneous integration of different IC technologies and functions.

  10. Impact Performance of 3D Integrated Cellular Woven Composite Panel

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; ZHU Cheng-yan

    2006-01-01

    This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact,comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is incrensing with the hollow percentage; tiny deformation will not emerge on samples until the acting force gets to 85% of the maximum;similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.

  11. Microstructure of Cu-Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties.

    Science.gov (United States)

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The preparation, characterization, and antibacterial testing of Cu-Ag sputtered polyurethane (PU) catheters are addressed in this study. PU catheters with different atomic ratios Cu:Ag have been sputtered and led to different optical properties as followed by diffuse reflectance spectroscopy (DRS) and the surface redox properties were also different for different Cu-Ag ratios as observed by X-ray photoelectron spectroscopy (XPS). The surface atomic percentage concentration of the oxidized/reduced C-species originating from bacterial cultures before and after bacterial inactivation were determined on the Cu-Ag PU catheters. The crystallographic properties were determined by X-ray diffraction (XRD). The XRD-diffractogram showed the presence of Cu2O (111), Cu (200), CuO (020), and Ag (111) indicating that Cu nanoparticles present a more crystalline character compared to Ag nanoparticles. Increasing the percentage of Ag in the Cu-Ag films, bigger Ag-particle agglomerates were detected by scanning transmission electron microscopy (STEM) microanalysis confirming the results obtained by AFM. The bacterial inactivation kinetics of the sputtered Cu-Ag films on PU catheters was investigated in detail. Quasi-instantaneous bacterial inactivation kinetics was induced by the sputtered films on PU catheters after optimization of the Cu-Ag film thickness. PMID:26700113

  12. 3D augmented reality with integral imaging display

    Science.gov (United States)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  13. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    Science.gov (United States)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  14. Clinical implication of parameteroptimized 3D-FISP MR angiography (MRA) in children with aortic coarctation: comparison with catheter angiography

    International Nuclear Information System (INIS)

    Purpose: To implement parameter-optimized 3D-FISP MR angiography (MRA) with interleaved double-slab excitation and to compare the result with catheter angiography in children with aortic coarctation. Materials and Methods: Eighteen children aged 2-15 years (mean 9.1 years) underwent MR imaging on a 1.5 T body scanner (Magnetom Vision, Siemens, Germany). All patients had undergone correlative catheter angiography. T1-weighted turbo spin echo (TSE) images (TR 600 ms, TE 17 ms, flip 160 , slice thickness 2-4 mm) were obtained in axial and parasagittal orientation, followed by an optimized 3D-FISP MR angiography in a sagittal plane (TR 12.5 ms, TE 5.5 ms, flip 22 , matrix 256 x 256, slice thickness 1.25 mm). All children were sedated but on spontaneous breathing. Image quality was graded by two experienced reviewers using a 4-point scoring system. Source images and reformatted maximum intensity projections (MIP) were analyzed for blood-tissue contrast as well as size and focal stenoses of the aortic arch. Results: Aortic coarctation was found in 13 of 18 patients, using the 3D-FISP MRA. A high correlation value (r=0.96) was found compared to catheter angiography. Image quality was high in 94% with well defined blood-tissue contrast in all cases. The sensitivity of flow and breathing motion was low. Examination time was about 15 minutes depending on volume of interest and heart rate. Diagnostic accuracy has shown improvement using a combined analysis of source and MIP images. The mentioned technique has provided an excellent display of thoracic vasculature. (orig.)

  15. Highly functional tunnelling devices integrated in 3D

    DEFF Research Database (Denmark)

    Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter; Andreani, Pietro

    2003-01-01

    circuit in order to optimize the performance of the device. In addition to the tunnelling structure below the grating, these transistors may be integrated in 3D by the introduction of another tunnelling structure directly over the metal grating. In the integrated device structure, the gate acts...

  16. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  17. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  18. The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2003-01-01

    . This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... Integral Method" to simulate viscoelastic flow, the governing equations are solved for the particle positions (Lagrangian kinematics). Therefore, the transient motion of surfaces can be followed in a particularly simple fashion even in 3D viscoelastic flow. The "3D Lagrangian Integral Method" is described...... equation. This can be resolved using some kind of Molecular Stress Function (MSF) model allowing the use of dissipative convective constraint release in the constitutive equation (see M.H. Wagner, P. Rubio and H. Bastian, J. Rheol. Vol. 45, p. 1387-1412 (2001) ). The implemented constitutive equation...

  19. Progress in 3D imaging and display by integral imaging

    Science.gov (United States)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  20. Integrating 3D visualisation in landscape design and environmental planning

    Energy Technology Data Exchange (ETDEWEB)

    Lange, E.; Hehl-Lange, S.

    2006-07-01

    Information is a key element in environmental decision making. In landscape and environmental planning, information can be presented in a number of ways, ranging from texts and statistics to realistic representations such as 3D visualisations. We assume that 3D visualisations of scenarios for landscape changes are a key element for informed decision making. In order to assess the role of 3D visualisation in the planning and decision making process, we have examined three case studies related to generating energy (i.e., hydro power, reclamation of a brown coal surface mine, and wind turbines). In the early 1990s when 3D visualisation technology was just becoming more widely available, the application was typically limited to large infrastructure projects that were often subject to an environmental impact assessment. At that time 3D visualisation was only used to show the results of the planning and decision making process. There are indications that this is now changing towards integrating visualisation already in the earliest planning steps. Such integration allows both planning experts and the public to engage on equal footing in the entire planning and decision making process.

  1. Collaborative Design in PDM/3D CAD Integrated Environment

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhuoning; ZHANG Fen; YAN Xiaoguang; BIN Hongzan

    2006-01-01

    Some key issues in supporting collaborative design in product data management (PDM) system and 3D computer aided design(CAD) system integrated environment are analyzed. The general architecture of the integrated environment is divided into five tiers and employs the transparently integrated mode, with the mode, function calling and information exchanging among independent PDM and CAD processes are carried out via message translation /parse approach.Product layout feature(PLF ) model definition is presented,PLF model is used to represent design intention at the preliminary design phase. The collaborative design methodology employing the PLF model in PDM/3D CAD integrated environment is analyzed. The design methodology can speed up the design process, reduce the investment and improve the product quality.

  2. [An integrated segmentation method for 3D ultrasound carotid artery].

    Science.gov (United States)

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  3. A 3D Hybrid Integration Methodology for Terabit Transceivers

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy;

    2015-01-01

    integration are described. An equivalent circuit model of the via-throughs connecting the RF circuitry to the modulator is proposed and its lumped element parameters are extracted. Wire bonding transitions between the driving and RF circuitry were designed and simulated. An optimized 3D interposer design...... demonstrated a simulated -3 dB transmission bandwidth up to 95 GHz with associated return loss better than 10 dB. A thermal analysis of a subassembly for the packaged transmitter module is performed. A maximum temperature of 74 °C is predicted when copper-tungsten is used as the material of the sub-mount and...

  4. Integrating Quality Management Into a 3d Geospatial Server

    Science.gov (United States)

    Coors, V.; Krämer, M.

    2011-08-01

    In recent years the technology and workflow for producing and management of large 3D urban models has been established and widely been used. Standards such as CityGML enable the modelling and exchange of semantically enriched multi-purpose 3D urban models for applications like urban planning, public participation, environmental simulation and navigation. However, data quality management is essential to control and enhance the quality of these models in order to be able to meet the needs of the aforementioned applications. Quality management should be performed throughout the whole lifecycle of geospatial datasets - from data acquisition to processing, analysis and visualisation. In this paper, we therefore focus on the integration of a quality management software module into a 3D geospatial data server. First results of a prototype system developed at HFT Stuttgart together with Fraunhofer IGD will be presented in this paper as a starting point for further research into the field of quality management of 3D city models.

  5. Integrated modeling and 3D visualization for mine complex fields

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-xue; SUN En-ji; LI Cui-ping; MA Bin

    2007-01-01

    Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models,and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.

  6. Customisable 3D printed microfluidics for integrated analysis and optimisation.

    Science.gov (United States)

    Monaghan, T; Harding, M J; Harris, R A; Friel, R J; Christie, S D R

    2016-08-16

    The formation of smart Lab-on-a-Chip (LOC) devices featuring integrated sensing optics is currently hindered by convoluted and expensive manufacturing procedures. In this work, a series of 3D-printed LOC devices were designed and manufactured via stereolithography (SL) in a matter of hours. The spectroscopic performance of a variety of optical fibre combinations were tested, and the optimum path length for performing Ultraviolet-visible (UV-vis) spectroscopy determined. The information gained in these trials was then used in a reaction optimisation for the formation of carvone semicarbazone. The production of high resolution surface channels (100-500 μm) means that these devices were capable of handling a wide range of concentrations (9 μM-38 mM), and are ideally suited to both analyte detection and process optimisation. This ability to tailor the chip design and its integrated features as a direct result of the reaction being assessed, at such a low time and cost penalty greatly increases the user's ability to optimise both their device and reaction. As a result of the information gained in this investigation, we are able to report the first instance of a 3D-printed LOC device with fully integrated, in-line monitoring capabilities via the use of embedded optical fibres capable of performing UV-vis spectroscopy directly inside micro channels. PMID:27452498

  7. 3D integration of sub-surface photonics with CMOS

    Science.gov (United States)

    Jalali, Bahram; Indukuri, Tejaswi; Koonath, Prakash

    2006-02-01

    The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manufacturing. In this technique, photonic devices are realized in subsurface silicon layers that are separated from the surface silicon layer by an intervening SiO II layer. The surface silicon layer may then be utilized for electronic circuitry. SIMOX 3-D sculpting involves (1) the implantation of oxygen ions into a patterned silicon substrate followed by (2) high temperature anneal to create buried waveguide-based photonic devices. This process has produced subterranean microresonators with unloaded quality factors of 8000 and extinction ratios >20dB. On the surface silicon layers, MOS transistor structures have been fabricated. The small cross-sectional area of the waveguides lends itself to the realization of nonlinear optical devices. We have previously demonstrated spectral broadening and continuum generation in silicon waveguides utilizing Kerr optical nonlinearity. This may be combined with microresonator filters for on-chip supercontiuum generation and spectral carving. The monolithic integration of CMOS circuits and optical modulators with such multi-wavelength sources represent an exciting avenue for silicon photonics.

  8. Hybrid animation integrating 2D and 3D assets

    CERN Document Server

    O'Hailey, Tina

    2010-01-01

    Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos

  9. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E; Racine, E; Beaulieu, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands)

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  10. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-04-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.

  11. 3D plasmonic nanoantennas integrated with MEA biosensors

    Science.gov (United States)

    Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco

    2015-02-01

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic

  12. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    Science.gov (United States)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  13. Gold Nanoparticle Synthesis by 3D Integrated Micro-solution Plasma in a 3D Printed Artificial Porous Dielectric Material

    Science.gov (United States)

    Sotoda, Naoya; Tanaka, Kenji; Shirafuji, Tatsuru

    2015-09-01

    Plasma in contact with HAuCl4 aqueous solution can promote the synthesis of gold nanoparticles. To scale up this process, we have developed 3D integrated micro-solution plasma (3D IMSP). It can generate a large number of argon microplasmas in contact with the aqueous solution flowing in a porous dielectric material. The porous dielectric material in our prototype 3D IMSP reactor, however, consists of non-regularly arranged random-sized pores. These pore parameters may be the parameters for controlling the size and dispersion of synthesized gold nanoparticles. We have hence fabricated a 3D IMSP reactor with an artificial porous dielectric material that has regularly arranged same-sized pores by using a 3D printer. We have applied the reactor to the gold- nanoparticle synthesis. We have confirmed the synthesis of gold nanoparticles through the observation of a plasmon resonance absorption peak at 550 nm in the HAuCl4 aqueous solution treated with 3D IMSP. The size and distribution of the synthesized gold nanoparticles are under investigation. We expect that these characteristics of the gold nanoparticles can be manipulated by changing pore size and their distribution in the porous dielectric material.

  14. A monolithic 3D integrated nanomagnetic co-processing unit

    Science.gov (United States)

    Becherer, M.; Breitkreutz-v. Gamm, S.; Eichwald, I.; Žiemys, G.; Kiermaier, J.; Csaba, G.; Schmitt-Landsiedel, D.

    2016-01-01

    As CMOS scaling becomes more and more challenging there is strong impetus for beyond CMOS device research to add new functionality to ICs. In this article, a promising technology with non-volatile ferromagnetic computing states - the so-called Perpendicular Nanomagnetic Logic (pNML) - is reviewed. After introducing the 2D planar implementation of NML with magnetization perpendicular to the surface, the path to monolithically 3D integrated systems is discussed. Instead of CMOS substitution, additional functionality is added by a co-processor architecture as a prospective back-end-of-line (BEOL) process, where the computing elements are clocked by a soft-magnetic on-chip inductor. The unconventional computation in the ferromagnetic domain can lead to highly dense computing structures without leakage currents, attojoule dissipation per bit operation and data-throughputs comparable to state-of-the-art high-performance CMOS CPUs. In appropriate applications and with specialized computing architectures they might even circumvent the bottleneck of time-consuming memory access, as computation is inherently performed with non-volatile computing states.

  15. 3D Vectorial Time Domain Computational Integrated Photonics

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the

  16. Holographic Image Plane Projection Integral 3D Display

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for a 3D virtual reality environment providing scientific data visualization without special user devices, Physical Optics Corporation...

  17. Integration of Motion Capture into 3D Animation Workflows

    OpenAIRE

    Unver, Ertu; Hughes, Daniel; Walker, Bernard; Blackburn, Ryan; Chien, Lin

    2011-01-01

    The research aims to test and evaluate Motion Capture (MoCap) technology on a live CG animation project and discover how it can actually con¬tribute to the animation production workflow. MoCap is a technique for gathering data of the movements of the human body. With the intention of using this information to drive the movements of 3D models in computer generated animation. MoCap offers significant advantages for producing natural and believable movement in 3D animation and opens up the pos...

  18. Pipe3D, a pipeline to analyze Integral Field Spectroscopy data: I. New fitting phylosophy of FIT3D

    CERN Document Server

    Sánchez, S F; Sánchez-Blázquez, P; González, J J; Rosález-Ortega, F F; Cano-Díaz, M; López-Cobá, C; Marino, R A; de Paz, A Gil; Mollá, M; López-Sánchez, A R; Ascasibar, Y; Barrera-Ballesteros, J

    2015-01-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. FIT3D is a tool developed to analyze Integral Field Spectroscopy data and it is the basis of Pipe3D, a pipeline already used in the analysis of datasets like CALIFA, MaNGA, and SAMI. We describe the philosophy behind the fitting procedure, and in detail each of the different steps in the analysis. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations. In summary, we find that using different stellar population templates we reproduce the mean properties of the stellar population (age, metallicity, and dust attenuation) within ~0.1 dex. A similar approach is adopted for the ionized gas, where a set of simulated emission- line systems was created. Finally, we compare the results of the analysis using FIT3D with those pro...

  19. Laser induced forward transfer of interconnects for 3D integration

    NARCIS (Netherlands)

    Oosterhuis, G.; Prenen, A.; Huis in 't veld, A.J.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSVs) for chip stacking, but also for other interconnect steps like re-distribution layers and solder bumps. Especially in applications with a low number (<100 mm-2) of relatively large fea

  20. 3D-GEM: Geo-technical extension towards an integrated 3D information model for infrastructural development

    Science.gov (United States)

    Tegtmeier, W.; Zlatanova, S.; van Oosterom, P. J. M.; Hack, H. R. G. K.

    2014-03-01

    In infrastructural projects, communication as well as information exchange and (re-)use in and between involved parties is difficult. Mainly this is caused by a lack of information harmonisation. Various specialists are working together on the development of an infrastructural project and all use their own specific software and definitions for various information types. In addition, the lack of and/or differences in the use and definition of thematic semantic information regarding the various information types adds to the problem. Realistic 3D models describing and integrating parts of the earth already exist, but are generally neglecting the subsurface, and especially the aspects of geology and geo-technology. This paper summarises the research towards the extension of an existing integrated semantic information model to include surface as well as subsurface objects and in particular, subsurface geological and geotechnical objects. The major contributions of this research are the definition of geotechnical objects and the mechanism to link them with CityGML, GeoSciML and O&M standard models. The model is called 3D-GEM, short for 3D Geotechnical Extension Model.

  1. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  2. Preliminary Investigation: 2D-3D Registration of MR and X-ray Cardiac Images Using Catheter Constraints

    OpenAIRE

    Truong, Michael V.N.; Aslam, Abdullah; Rinaldi, Christopher Aldo; Razavi, Reza; Penney, Graeme P.; Rhode, Kawal

    2009-01-01

    Cardiac catheterization procedures are routinely guided by X-ray fluoroscopy but suffer from poor soft-tissue contrast and a lack of depth information. These procedures often employ pre-operative magnetic resonance or computed tomography imaging for treatment planning due to their excellent soft-tissue contrast and 3D imaging capabilities. We developed a 2D-3D image registration method to consolidate the advantages of both modalities by overlaying the 3D images onto the X-ray. Our method uses...

  3. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    Science.gov (United States)

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study. PMID:26699928

  4. Status and perspectives of pixel sensors based on 3D vertical integration

    International Nuclear Information System (INIS)

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors. - Highlights: • 3D integration is a promising technology for pixel sensors in high energy physics. • Experimental results on two-layer 3D CMOS pixel sensors are presented. • The outcome of the first run from the 3D-IC consortium is discussed. • The AIDA network is studying via-last 3D integration of heterogeneous layers. • New ideas based on 3D vertically integrated pixels are being developed for HEP

  5. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Science.gov (United States)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  6. Improvement of integral 3D image quality by compensating for lens position errors

    Science.gov (United States)

    Okui, Makoto; Arai, Jun; Kobayashi, Masaki; Okano, Fumio

    2004-05-01

    Integral photography (IP) or integral imaging is a way to create natural-looking three-dimensional (3-D) images with full parallax. Integral three-dimensional television (integral 3-D TV) uses a method that electronically presents 3-D images in real time based on this IP method. The key component is a lens array comprising many micro-lenses for shooting and displaying. We have developed a prototype device with about 18,000 lenses using a super-high-definition camera with 2,000 scanning lines. Positional errors of these high-precision lenses as well as the camera's lenses will cause distortions in the elemental image, which directly affect the quality of the 3-D image and the viewing area. We have devised a way to compensate for such geometrical position errors and used it for the integral 3-D TV prototype, resulting in an improvement in both viewing zone and picture quality.

  7. Explicit Expressions for 3D Boundary Integrals in Potential Theory

    Energy Technology Data Exchange (ETDEWEB)

    Nintcheu Fata, Sylvain [ORNL

    2009-01-01

    On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expressions are derived for all surface potentials involved in the numerical solution of three-dimensional singular and hyper-singular boundary integral equations of potential theory. These formulae, which are valid for an arbitrary source point in space, are represented as analytic expressions over the edges of the integration triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique. Also, the constant element approximation can be directly obtained with no extra effort. Sample problems solved by the collocation boundary element method for the Laplace equation are included to validate the proposed formulae.

  8. Galerkin Boundary Integral Analysis for the 3D Helmholtz Equation

    Energy Technology Data Exchange (ETDEWEB)

    Swager, Melissa [Emporia State University; Gray, Leonard J [ORNL; Nintcheu Fata, Sylvain [ORNL

    2010-01-01

    A linear element Galerkin boundary integral analysis for the three-dimensional Helmholtz equation is presented. The emphasis is on solving acoustic scattering by an open (crack) surface, and to this end both a dual equation formulation and a symmetric hypersingular formulation have been developed. All singular integrals are defined and evaluated via a boundary limit process, facilitating the evaluation of the (finite) hypersingular Galerkin integral. This limit process is also the basis for the algorithm for post-processing of the surface gradient. The analytic integrations required by the limit process are carried out by employing a Taylor series expansion for the exponential factor in the Helmholtz fundamental solutions. For the open surface, the implementations are validated by comparing the numerical results obtained by using the two different methods.

  9. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    Science.gov (United States)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  10. Integrated interconnect technologies for 3D nanoelectronic systems

    CERN Document Server

    Bakir, Muhannad S

    2008-01-01

    This cutting-edge book on off-chip technologies puts the hottest breakthroughs in high-density compliant electrical interconnects, nanophotonics, and microfluidics at your fingertips, integrating the full range of mathematics, physics, and technology issues together in a single comprehensive source.

  11. Lagrangian structures, integrability and chaos for 3D dynamical equations

    International Nuclear Information System (INIS)

    In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion

  12. An object-oriented 3D integral data model for digital city and digital mine

    Science.gov (United States)

    Wu, Lixin; Wang, Yanbing; Che, Defu; Xu, Lei; Chen, Xuexi; Jiang, Yun; Shi, Wenzhong

    2005-10-01

    With the rapid development of urban, city space extended from surface to subsurface. As the important data source for the representation of city spatial information, 3D city spatial data have the characteristics of multi-object, heterogeneity and multi-structure. It could be classified referring to the geo-surface into three kinds: above-surface data, surface data and subsurface data. The current research on 3D city spatial information system is divided naturally into two different branch, 3D City GIS (3D CGIS) and 3D Geological Modeling (3DGM). The former emphasizes on the 3D visualization of buildings and the terrain of city, while the latter emphasizes on the visualization of geological bodies and structures. Although, it is extremely important for city planning and construction to integrate all the city spatial information including above-surface, surface and subsurface objects to conduct integral analysis and spatial manipulation. However, either 3D CGIS or 3DGM is currently difficult to realize the information integration, integral analysis and spatial manipulation. Considering 3D spatial modeling theory and methodologies, an object-oriented 3D integral spatial data model (OO3D-ISDM) is presented and software realized. The model integrates geographical objects, surface buildings and geological objects together seamlessly with TIN being its coupling interface. This paper introduced the conceptual model of OO3D-ISDM, which is comprised of 4 spatial elements, i.e. point, line, face and body, and 4 geometric primitives, i.e. vertex, segment, triangle and generalized tri-prism (GTP). The spatial model represents the geometry of surface buildings and geographical objects with triangles, and geological objects with GTP. Any of the represented objects, no mater surface buildings, terrain or subsurface objects, could be described with the basic geometry element, i.e. triangle. So the 3D spatial objects, surface buildings, terrain and geological objects can be

  13. On the Implementation of 3D Galerkin Boundary Integral Equations

    Energy Technology Data Exchange (ETDEWEB)

    Nintcheu Fata, Sylvain [ORNL; Gray, Leonard J [ORNL

    2010-01-01

    In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.

  14. Integration of 3D vision based structure estimation and visual robot control

    OpenAIRE

    Prljaca, Naser

    1995-01-01

    Enabling robot manipulators to manipulate and/or recognise arbitrarily placed 3D objects under sensory control is one of the key issues in robotics. Such robot sensors should be capable of providing 3D information about objects in order to accomplish the above mentioned tasks. Such robot sensors should also provide the means for multisensor or multimeasurement integration. Finally, such 3D information should be efficiently used for performing desired tasks. This work develops a novel comp...

  15. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

    OpenAIRE

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmen...

  16. Lagrangian structures, integrability and chaos for 3D dynamical equations

    CERN Document Server

    Bustamante, M D; Bustamante, Miguel D.; Hojman, Sergio A.

    2003-01-01

    In this paper we consider the general setting for constructing Action Principles for three-dimensional first order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and we show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behavior or homoclinic orbits have not been verified up to now. The Euler-Lagrange equations we get for these systems usually present "time reparameterization" symmetry, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrabi...

  17. Experiment for Integrating Dutch 3d Spatial Planning and Bim for Checking Building Permits

    Science.gov (United States)

    van Berlo, L.; Dijkmans, T.; Stoter, J.

    2013-09-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D model. The project realized a proof of concept to generate a 3D spatial planning model. The team used the model to integrate it with several 3D Building Information Models (BIMs) described in the open data standard Industry Foundation Classes (IFC). Goal of the project was (1) to generate a 3D BIM model from spatial planning information to be used by the architect during the early design phase, and (2) allow 3D checking of building permits. The team used several technologies like CityGML, BIM clash detection and GeoBIM to explore the potential of this innovation. Within the project a showcase was created with a part of the spatial plan from the city of The Hague. Several BIM models were integrated in the 3D spatial plan of this area. A workflow has been described that demonstrates the benefits of collaboration between the spatial domain and the AEC industry in 3D. The research results in a showcase with conclusions and considerations for both national and international practice.

  18. Status and perspectives of pixel sensors based on 3D vertical integration

    CERN Document Server

    Re, V

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors.

  19. GTP-based Integral Real-3D Spatial Model for Engineering Excavation GIS

    Institute of Scientific and Technical Information of China (English)

    WU Lixin; SHI Wenzhong

    2004-01-01

    Engineering excavation GIS (E2GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G-GTP is used for the real-3D modeling of subsurface geological bodies, and E-GTP is used for the real-3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E2GIS, the modeling principles of G-GTP and E-GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object-oriented integral real-3D data model and integral spatial topological relations are discussed.

  20. Integral identities for 3d dualities with SP(2N) gauge groups

    CERN Document Server

    Amariti, Antonio

    2015-01-01

    In this note we study the reduction of 4d Seiberg duality to 3d for SP(2N) SQCD with an adjoint field. We follow a general prescription that consists in compactifying the dual 4d theories on the circle. This generates an effective 3d duality. The pure 3d duality is obtained by combining the zero radius limit with a real mass flow. Here we perform this limit by a double scaling procedure: we turn on real masses proportional to the radius before shrinking the circle. We apply this mechanism to the reduction of the 4d superconformal index to the three sphere partition function. While the reduction of the 4d index on the circle is straightforward, the 3d limit necessitates the double scaling. We describe this limit on the index, finding the integral identity for the partition functions of the 3d dual theories.

  1. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    Directory of Open Access Journals (Sweden)

    Paoli Alessandro

    2011-02-01

    Full Text Available Abstract Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast and preoperative (radiographic template models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.

  2. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    Science.gov (United States)

    Baik, A.; Yaagoubi, R.; Boehm, J.

    2015-08-01

    This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS) to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM). This JHBIM consists of a Hijazi Architectural Objects Library (HAOL) that supports higher level of details (LoD) while decreasing the time of modelling. The Hijazi Architectural Objects Library has been modelled based on the Islamic historical manuscripts and Hijazi architectural pattern books. Moreover, the HAOL is implemented using BIM software called Autodesk Revit. However, it is known that this BIM environment still has some limitations with the non-standard architectural objects. Hence, we propose to integrate the developed 3D JHBIM with 3D GIS for more advanced analysis. To do so, the JHBIM database is exported and semantically enriched with non-architectural information that is necessary for restoration and preservation of historical monuments. After that, this database is integrated with the 3D Model in the 3D GIS solution. At the end of this paper, we'll illustrate our proposed framework by applying it to a Historical Building called Nasif Historical House in Jeddah. First of all, this building is scanned by the use of a Terrestrial Laser Scanner (TLS) and Close Range Photogrammetry. Then, the 3D JHBIM based on the HOAL is designed on Revit Platform. Finally, this model is integrated to a 3D GIS solution through Autodesk InfraWorks. The shown analysis presented in this research highlights the importance of such integration especially for operational decisions and sharing the historical knowledge about Jeddah Historical City. Furthermore, one of the historical buildings in Old Jeddah, Nasif Historical House, was chosen as a test case for the project.

  3. Evaluation of left atrial function by multidetector computed tomography before left atrial radiofrequency-catheter ablation: Comparison of a manual and automated 3D volume segmentation method

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Florian, E-mail: florian.wolf@meduniwien.ac.a [Department of Radiology, Medical University of Vienna, Vienna (Austria); Ourednicek, Petr [Philips Medical Systems, Prague (Czech Republic); Loewe, Christian [Department of Radiology, Medical University of Vienna, Vienna (Austria); Richter, Bernhard; Goessinger, Heinz David; Gwechenberger, Marianne [Department of Cardiology, Medical University of Vienna, Vienna (Austria); Plank, Christina; Schernthaner, Ruediger Egbert; Toepker, Michael; Lammer, Johannes [Department of Radiology, Medical University of Vienna, Vienna (Austria); Feuchtner, Gudrun M. [Department of Radiology, Innsbruck Medical University, Innsbruck (Austria); Institute of Diagnostic Radiology, University Hospital Zurich (Switzerland)

    2010-08-15

    Introduction: The purpose of this study was to compare a manual and automated 3D volume segmentation tool for evaluation of left atrial (LA) function by 64-slice multidetector-CT (MDCT). Methods and materials: In 33 patients with paroxysmal atrial fibrillation a MDCT scan was performed before radiofrequency-catheter ablation. Atrial function (minimal volume (LAmin), maximal volume (LAmax), stroke volume (SV), ejection fraction (EF)) was evaluated by two readers using a manual and an automatic tool and measurement time was evaluated. Results: Automated LA volume segmentation failed in one patient due to low LA enhancement (103HU). Mean LAmax, LAmin, SV and EF were 127.7 ml, 93 ml, 34.7 ml, 27.1% by the automated, and 122.7 ml, 89.9 ml, 32.8 ml, 26.3% by the manual method with no significant difference (p > 0.05) and high Pearsons correlation coefficients (r = 0.94, r = 0.94, r = 0.82 and r = 0.85, p < 0.0001), respectively. The automated method was significantly faster (p < 0.001). Interobserver variability was low for both methods with Pearson's correlation coefficients between 0.98 and 0.99 (p < 0.0001). Conclusions: Evaluation of LA volume and function with 64-slice MDCT is feasible with a very low interobserver variability. The automatic method is as accurate as the manual method but significantly less time consuming permitting a routine use in clinical practice before RF-catheter ablation.

  4. Metadata and Tools for Integration and Preservation of Cultural Heritage 3D Information

    Directory of Open Access Journals (Sweden)

    Achille Felicetti

    2011-12-01

    Full Text Available In this paper we investigate many of the various storage, portability and interoperability issues arising among archaeologists and cultural heritage people when dealing with 3D technologies. On the one side, the available digital repositories look often unable to guarantee affordable features in the management of 3D models and their metadata; on the other side the nature of most of the available data format for 3D encoding seem to be not satisfactory for the necessary portability required nowadays by 3D information across different systems. We propose a set of possible solutions to show how integration can be achieved through the use of well known and wide accepted standards for data encoding and data storage. Using a set of 3D models acquired during various archaeological campaigns and a number of open source tools, we have implemented a straightforward encoding process to generate meaningful semantic data and metadata. We will also present the interoperability process carried out to integrate the encoded 3D models and the geographic features produced by the archaeologists. Finally we will report the preliminary (rather encouraging development of a semantic enabled and persistent digital repository, where 3D models (but also any kind of digital data and metadata can easily be stored, retrieved and shared with the content of other digital archives.

  5. Integral Imaging Based 3-D Image Encryption Algorithm Combined with Cellular Automata

    OpenAIRE

    Li, X. W.; Kim, D. H.; Cho, S. J.; Kim, S. T.

    2013-01-01

    A novel optical encryption method is proposed in this paper to achieve 3-D image encryption. This proposed encryption algorithm combines the use of computational integral imaging (CII) and linear-complemented maximum- length cellular automata (LC-MLCA) to encrypt a 3D image. In the encryption process, the 2-D elemental image array (EIA) recorded by light rays of the 3-D image are mapped inversely through the lenslet array according the ray tracing theory. Next, the 2-D EIA is encrypted by LC-...

  6. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    OpenAIRE

    A. Baik; Yaagoubi, R.; J. Boehm

    2015-01-01

    This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS) to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM). This JHBIM consists of a Hijazi Architectural Objects Library (HAOL) that supports higher level of details (LoD)...

  7. 3D Multiscale Integrated Modeling Approach of Complex Rock Mass Structures

    OpenAIRE

    Mingchao Li; Yanqing Han; Gang Wang; Fugen Yan

    2014-01-01

    Based on abundant geological data of different regions and different scales in hydraulic engineering, a new approach of 3D engineering-scale and statistical-scale integrated modeling was put forward, considering the complex relationships among geological structures and discontinuities and hydraulic structures. For engineering-scale geological structures, the 3D rock mass model of the study region was built by the exact match modeling method and the reliability analysis technique. For statisti...

  8. Development of integrated transport code, TASK3D, and its applications to LHD experiment

    International Nuclear Information System (INIS)

    The integrated transport code for helical plasmas, TASK3D, has been developed both by modifying modules in TASK to be applicable to three-dimensional magnetic configurations, and by adding new modules for stellarator-heliotron specific physics and incorporating three-dimensional equilibria. In this paper, these module developments so far are collectively introduced, and recent progress on the applications of TASK3D to heat transport analyses of LHD plasmas is introduced. (author)

  9. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    OpenAIRE

    Sadikot, Abbas F; D. Louis Collins

    2011-01-01

    Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI) methods. We present techniques used to create: 1) a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER); and 2) a higher resolution 3D atlas derived from a single set of manually segmented histologic...

  10. Creation of Computerized 3D MRI-Integrated Atlases of the Human Basal Ganglia and Thalamus

    OpenAIRE

    Sadikot, Abbas F; Chakravarty, M Mallar; Bertrand, Gilles; Rymar, Vladimir V.; Al-Subaie, Fahd; Collins, D. Louis

    2011-01-01

    Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current magnetic resonance imaging (MRI) methods. We present techniques used to create: (1) a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER); and (2) a higher resolution 3D atlas derived from a single set of manually segmented histolog...

  11. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    Science.gov (United States)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections group in retaining knowledge of difficult instances of sectional anatomy after the retention interval. The benefit

  12. 3D stereotaxis for epileptic foci through integrating MR imaging with neurological electrophysiology data

    International Nuclear Information System (INIS)

    Objective: To improve the accuracy of the epilepsy diagnoses by integrating MR image from PACS with data from neurological electrophysiology. The integration is also very important for transmiting diagnostic information to 3D TPS of radiotherapy. Methods: The electroencephalogram was redisplayed by EEG workstation, while MR image was reconstructed by Brainvoyager software. 3D model of patient brain was built up by combining reconstructed images with electroencephalogram data in Base 2000. 30 epileptic patients (18 males and 12 females) with their age ranged from 12 to 54 years were confirmed by using the integrated MR images and the data from neurological electrophysiology and their 3D stereolocating. Results: The corresponding data in 3D model could show the real situation of patients' brain and visually locate the precise position of the focus. The suddessful rate of 3D guided operation was greatly improved, and the number of epileptic onset was markedly decreased. The epilepsy was stopped for 6 months in 8 of the 30 patients. Conclusion: The integration of MR image and information of neurological electrophysiology can improve the diagnostic level for epilepsy, and it is crucial for imp roving the successful rate of manipulations and the epilepsy analysis. (authors)

  13. Integral Imaging Based 3-D Image Encryption Algorithm Combined with Cellular Automata

    Directory of Open Access Journals (Sweden)

    X. W. Li

    2013-08-01

    Full Text Available A novel optical encryption method is proposed in this paper to achieve 3-D image encryption. This proposed encryption algorithm combines the use of computational integral imaging (CII and linear-complemented maximum- length cellular automata (LC-MLCA to encrypt a 3D image. In the encryption process, the 2-D elemental image array (EIA recorded by light rays of the 3-D image are mapped inversely through the lenslet array according the ray tracing theory. Next, the 2-D EIA is encrypted by LC-MLCA algorithm. When decrypting the encrypted image, the 2-D EIA is recovered by the LC-MLCA. Using the computational integral imaging reconstruction (CIIR technique and a 3-D object is subsequently reconstructed on the output plane from the 2-D recovered EIA. Because the 2-D EIA is composed of a number of elemental images having their own perspectives of a 3-D image, even if the encrypted image is seriously harmed, the 3-D image can be successfully reconstructed only with partial data. To verify the usefulness of the proposed algorithm, we perform computational experiments and present the experimental results for various attacks. The experiments demonstrate that the proposed encryption method is valid and exhibits strong robustness and security.

  14. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

    CERN Document Server

    Lim, Sung Kyu

    2013-01-01

    This book describes the design of through-silicon-via (TSV) based three-dimensional integrated circuits.  It includes details of numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs, developed with tools covered in the book. Readers will benefit from the sign-off level analysis of timing, power, signal integrity, and thermo-mechanical reliability for 3D IC designs.  Coverage also includes various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the 3D IC design process. Describes design issues and solutions for high performance and low power 3D ICs, such as the pros/cons of regular and irregular placement of TSVs, Steiner routing, buffer insertion, low power 3D clock routing, power delivery network design and clock design for pre-bond testability. Discusses topics in design-for-electrical-reliability for 3D ICs, such as TSV-to-TSV coupling, current crowding at the wire-to-TSV junction and the e...

  15. Initiator-integrated 3D printing enables the formation of complex metallic architectures.

    Science.gov (United States)

    Wang, Xiaolong; Guo, Qiuquan; Cai, Xiaobing; Zhou, Shaolin; Kobe, Brad; Yang, Jun

    2014-02-26

    Three-dimensional printing was used to fabricate various metallic structures by directly integrating a Br-containing vinyl-terminated initiator into the 3D resin followed by surface-initiated atomic-transfer radical polymerization (ATRP) and subsequent electroless plating. Cu- and Ni-coated complex structures, such as microlattices, hollow balls, and even Eiffel towers, were prepared. Moreover, the method is also capable of fabricating ultralight cellular metals with desired structures by simply etching the polymer template away. By combining the merits of 3D printing in structure design with those of ATRP in surface modification and polymer-assisted ELP of metals, this universal, robust, and cost-effective approach has largely extended the capability of 3D printing and will make 3D printing technology more practical in areas of electronics, acoustic absorption, thermal insulation, catalyst supports, and others. PMID:24328276

  16. Catheter-based endomyocardial delivery of mesenchymal precursor cells using 3D echo guidance improves cardiac function in a chronic myocardial injury ovine model.

    Science.gov (United States)

    Cheng, Yanping; Yi, Genghua; Conditt, Gerard B; Sheehy, Alexander; Kolodgie, Frank D; Tellez, Armando; Polyakov, Igor; Gu, Anguo; Aboodi, Michael S; Wallace-Bradley, David; Schuster, Michael; Martens, Timothy; Itescu, Silviu; Kaluza, Greg L; Basu, Shubhayu; Virmani, Renu; Granada, Juan F; Sherman, Warren

    2013-01-01

    The administration of bone marrow-derived stem cells may provide a new treatment option for patients with heart failure. Transcatheter cell injection may require multi-imaging modalities to optimize delivery. This study sought to evaluate whether endomyocardial injection of mesenchymal precursor cells (MPCs) could be guided by real-time 3D echocardiography (RT3DE) in treating chronic, postinfarction (MI) left ventricular (LV) dysfunction in sheep. Four weeks after induction of an anterior wall myocardial infarction in 39 sheep, allogeneic MPCs in doses of either 25 × 10(6) (n = 10), 75 × 10(6) (n = 9), or 225 × 10(6) (n = 10) cells or nonconditioned control media (n = 10) were administered intramyocardially into infarct and border zone areas using a catheter designed for combined fluoroscopic and RT3DE-guided injections. LV function was assessed before and after injection. Infarct dimension and vascular density were evaluated histologically. RT3DE-guided injection procedures were safe. Compared to controls, the highest dose MPC treatment led to increments in ejection fraction (3 ventricula 3% in 225M MPCs vs. -5 ± 4% in the control group, p logistical obstacles. Significant increases in LV performance (ejection fraction and wall thickening) and neovascularization resulted from this technique, and so this technique has important implications for treating patients with postischemic LV dysfunction. PMID:23107489

  17. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    DEFF Research Database (Denmark)

    Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.;

    2014-01-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models...... and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the...

  18. Supporting Product Family Design in a 3D CAD/PDM Integrated System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fen; CHEN Zhuo-ning; YAN Xiao-guang; BIN Hong-zan

    2006-01-01

    This paper addresses some key issues in supporting product family design in a 3D CAD/PDM integrated system and introduces the techniques developed or adopted in building the integrated system. The general architecture of a 3D CAD/PDM integrated system is organized as five tiers. Multi-agent technology is applied with a collaborative design environment. The rule-based product family architecture (PFA) and tabular layouts of article characteristics (TLAC) technique are applied to represent the knowledge for product families. They make the knowledge understandable, simplified and can be exchanged among heterogeneous information systems. A transparently concentric integrated mode is put forward to enable the heterogeneous processes to interact and communicate regardless of the language used to construct each process. With the mode, function calling and information exchanging among different processes are carried out via message translation/parse approach. Currently, the integrated system is implemented in the platform of Windows NT and 2000.

  19. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric en-gineering geology,a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then,according to the classified thought of the object-oriented technique,the different 3D models of geological and engi-neering objects were realized based on the data structure,including terrain class,strata class,fault class,and limit class;and the modeling mechanism was alterna-tive. Finally,the 3D integrated model was established by Boolean operations be-tween 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification,the arbitrary slicing analysis of the 3D model,the geological analysis of the dam,and underground engineering. They provide powerful theoretical prin-ciples and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.

  20. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects

    Institute of Scientific and Technical Information of China (English)

    ZHONG DengHua; LI MingChao; LIU Jie

    2007-01-01

    Aiming at 3D modeling and analyzing problems of hydraulic and hydroelectric engineering geology, a complete scheme of solution is presented. The first basis was NURBS-TIN-BRep hybrid data structure. Then, according to the classified thought of the object-oriented technique, the different 3D models of geological and engineering objects were realized based on the data structure, including terrain class,strata class, fault class, and limit class; and the modeling mechanism was alternative. Finally, the 3D integrated model was established by Boolean operations between 3D geological objects and engineering objects. On the basis of the 3D model,a series of applied analysis techniques of hydraulic and hydroelectric engineering geology were illustrated. They include the visual modeling of rock-mass quality classification, the arbitrary slicing analysis of the 3D model, the geological analysis of the dam, and underground engineering. They provide powerful theoretical principles and technical measures for analyzing the geological problems encountered in hydraulic and hydroelectric engineering under complex geological conditions.

  1. 3D Integral Model of Induction Heating of Thin Nonmagnetic Structures

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Šolín, Pavel; Ulrych, B.

    Perugia: University of Perugia, 2002. s. 276. [Biennial IEEE Conference on Electromagnetic Field Computation /10./. 16.06.2002-19.06.2002, Perugia] R&D Projects: GA MŠk ME 542 Keywords : 3D integral model * thin nonmagnetic structures Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. Perfusion-based three dimensional (3D) tissue engineering platform with integrated bioimpedance sensing

    OpenAIRE

    Muhammad, Haseena Bashir; Canali, Chiara; Heiskanen, Arto; Hemmingsen, Mette; Wolff, Anders; Dufva, Martin; Emnéus, Jenny

    2014-01-01

    We present an 8-channel bioreactor array with integrated bioimpedance sensors, which enables perfusion culture of cells seeded onto porous 3D scaffolds. Results show the capability of the system for monitoring cell proliferation within the scaffolds through a culture period of 19 days.

  3. Perfusion-based three dimensional (3D) tissue engineering platform with integrated bioimpedance sensing

    DEFF Research Database (Denmark)

    Muhammad, Haseena Bashir; Canali, Chiara; Heiskanen, Arto;

    2014-01-01

    We present an 8-channel bioreactor array with integrated bioimpedance sensors, which enables perfusion culture of cells seeded onto porous 3D scaffolds. Results show the capability of the system for monitoring cell proliferation within the scaffolds through a culture period of 19 days....

  4. Flatbed-type 3D display systems using integral imaging method

    Science.gov (United States)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  5. Simulation study of a 3-D device integrating FinFET and UTBFET

    KAUST Repository

    Fahad, Hossain M.

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate FinFETs with unprecedented levels of chip-area efficiency. This makes it suitable for ultralarge-scale integration high-performance logic at and beyond the 10-nm technology node.

  6. Integrating 3D CAD data for manufacturing and fabrication the core model of reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    This paper describe the intrigue integration of digital 3 Dimensional Computer Aided Design (3D CAD) data manipulation for the Core Model fabrication of REAKTOR TRIGA PUSPATI and ready for mass manufacturing. 3 Dimensional CAD data from Computer Aided Design program will be used as an interpreter in the fabrication of this project. The Core Model of REAKTOR TRIGA PUSPATI will be fabricated with the aid of 3D CAD drawings and digital files. The components will be segregated and divided into 2 categories namely Conventional d Rapid Fabrication. (Author)

  7. 3-D fracture analysis using a partial-reduced integration scheme

    International Nuclear Information System (INIS)

    This paper presents details of 3-D elastic-plastic analyses of axially orientated external surface flaw in an internally pressurized thin-walled cylinder and discusses the variation of the J-integral values around the crack tip. A partial-reduced-integration-penalty method is introduced to minimize this variation of the J-integral near the crack tip. Utilizing 3-D symmetry, an eighth segment of a tube containing an elliptically shaped external surface flaw is modelled using 20-noded isoparametric elements. The crack-tip elements are collapsed to form a 1/r stress singularity about the curved crack front. The finite element model is subjected to internal pressure and axial pressure-generated loads. The virtual crack extension method is used to determine linear elastic stress intensity factors from the J-integral results at various points around the crack front. Despite the different material constants and the thinner wall thickness in this analysis, the elastic results compare favourably with those obtained by other researchers. The nonlinear stress-strain behaviour of the tube material is modelled using an incremental theory of plasticity. Variations of the J-integral values around the curved crack front of the 3-D flaw were seen. These variations could not be resolved by neglecting the immediate crack-tip elements J-integral results in favour of the more remote contour paths or else smoothed out when all the path results are averaged. Numerical incompatabilities in the 20-noded 3-D finite elements used to model the surface flaw were found. A partial-reduced integration scheme, using a combination of full and reduced integration elements, is proposed to determine J-integral results for 3-D fracture analyses. This procedure is applied to the analysis of an external semicircular surface flaw projecting halfway into the tube wall thickness. Examples of the J-integral values, before and after the partial-reduced integration method is employed, are given around the

  8. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    International Nuclear Information System (INIS)

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment

  9. Immersive Learning Environment Using 3D Virtual Worlds and Integrated Remote Experimentation

    Directory of Open Access Journals (Sweden)

    Roderval Marcelino

    2013-01-01

    Full Text Available This project seeks to demonstrate the use of remote experimentation and 3D virtual environments applied to the teaching-learning in the areas of exact sciences-physics. In proposing the combination of remote experimentation and 3D virtual worlds in teaching-learning process, we intend to achieve greater geographic coverage, contributing to the construction of new methodologies of teaching support, speed of access and foremost motivation for students to continue in scientific study of the technology areas. The proposed architecture is based on a model implemented fully featured open source and open hardware. The virtual world was built in OpenSim software and integrated it a remote physics experiment called "electrical panel". Accessing the virtual world the user has total control of the experiment within the 3D virtual world.

  10. Micromorph silicon tandem solar cells with fully integrated 3D photonic crystal intermediate reflectors

    Science.gov (United States)

    Üpping, J.; Bielawny, A.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Steidl, L.; Zentel, R.; Beckers, T.; Lambertz, A.; Carius, R.; Wehrspohn, R. B.

    2010-05-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell providing an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally-selective intermediate reflective layer (IRL) is necessary. We present the first fully-integrated 3D photonic thin-film IRL device incorporated on a planar substrate. Using a ZnO inverted opal structure the external quantum efficiency of the top cell in the spectral region of interest could be enhanced. As an outlook we present the design and the preparation of a 3D self organized photonic crystal structure in a textured micromorph tandem solar cell.

  11. Offshore 3D seismic, geochemical data integration, Main Pass project, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Belt, J.Q. Jr.; Rice, G.K. [GeoFrontiers Corp., Dallas, TX (United States)

    1996-04-01

    A bottom cable, 3D seismic, and shallow piston-core geochemical survey was conducted in summer 1992 on Main Pass Blocks 41 and 58 in the Gulf of Mexico. The 15.5 sq mile study area is in 11--24 m (36--79 ft) of water. Two hundred seventy-six shallow, 2 m piston-core sediment samples were collected using a uniform grid pattern on 400 m (1,320 ft) spaced intervals. Retrieved sediment samples were immediately sealed in metal 1 pt cans containing biocide solution. The purpose of the 3D seismic survey and geochemical offshore data integration project was three-fold: determine if near-shore, low-cost shallow piston-core sediment samples would be affected by fluvial contamination; evaluate the efficiency of a shallow-core, dense-grid sample design program in detecting thermogenic hydrocarbons at depth; evaluate the benefits of integrating offshore, shallow sediment geochemistry with 3D seismic data in developing a petroleum geological model. All 3D seismic survey data and block boundaries, as described in illustrations and figures, are only generally located within the Main Pass Area.

  12. Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow

    Science.gov (United States)

    Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne

    2014-05-01

    3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from

  13. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

    Directory of Open Access Journals (Sweden)

    Ken Soléakhéna

    2013-01-01

    Full Text Available Abstract Background To integrate 3D MR spectroscopy imaging (MRSI in the treatment planning system (TPS for glioblastoma dose painting to guide simultaneous integrated boost (SIB in intensity-modulated radiation therapy (IMRT. Methods For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT, one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation. The fusion between the metabolic maps and the planning CT scans were assessed. Dosimetry comparisons were performed between the different plans of 60-Gy 3D-CRT, 60-Gy IMRT and 72-Gy SIB-IMRT, the last plan was targeted on MRSI abnormalities and contrast enhancement (CE. Results Fusion assessment was performed for 160 transformations. It resulted in maximum differences p  Conclusions Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies.

  14. 3D Printed Unibody Lab-on-a-Chip: Features Survey and Check-Valves Integration

    Directory of Open Access Journals (Sweden)

    Germán Comina

    2015-04-01

    Full Text Available The unibody lab-on-a-chip (ULOC concept entails a fast and affordable micro-prototyping system built around a single monolithic 3D printed element (unibody. A consumer-grade stereo lithography (SL 3D printer can configure ULOCs with different forms of sample delivery, transport, handling and readout, while minimizing material costs and fabrication time. ULOC centralizes all complex fabrication procedures and replaces the need for clean room resources, delivering prototypes for less than 1 US$, which can be printed in 10 min and ready for testing in less than 30 min. Recent examples of ULOC integration of transport, chemical sensing for optical readout and flow mixing capabilities are discussed, as well as the integration of the first check-valves for ULOC devices. ULOC valves are strictly unidirectional up to 100 psi, show an exponential forward flow behavior up to 70 psi and can be entirely fabricated with the ULOC approach.

  15. 3D Multiscale Integrated Modeling Approach of Complex Rock Mass Structures

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    2014-01-01

    Full Text Available Based on abundant geological data of different regions and different scales in hydraulic engineering, a new approach of 3D engineering-scale and statistical-scale integrated modeling was put forward, considering the complex relationships among geological structures and discontinuities and hydraulic structures. For engineering-scale geological structures, the 3D rock mass model of the study region was built by the exact match modeling method and the reliability analysis technique. For statistical-scale jointed rock mass, the random network simulation modeling method was realized, including Baecher structure plane model, Monte Carlo simulation, and dynamic check of random discontinuities, and the corresponding software program was developed. Finally, the refined model was reconstructed integrating with the engineering-scale model of rock structures, the statistical-scale model of discontinuities network, and the hydraulic structures model. It has been applied to the practical hydraulic project and offers the model basis for the analysis of hydraulic rock mass structures.

  16. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  17. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  18. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery.

    Science.gov (United States)

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266

  19. A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

    Science.gov (United States)

    Nowell, Mark; Rodionov, Roman; Zombori, Gergely; Sparks, Rachel; Rizzi, Michele; Ourselin, Sebastien; Miserocchi, Anna; McEvoy, Andrew; Duncan, John

    2016-01-01

    Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-step fashion, starting with image acquisition, proceeding through image co-registration, manual segmentation, brain and vessel extraction, 3D visualization and manual planning of stereoEEG (SEEG) implantations. With dissemination of the software this pipeline can be reproduced in other centres, allowing other groups to benefit from 3DMMI. We also describe the use of an automated, multi-trajectory planner to generate stereoEEG implantation plans. Preliminary studies suggest this is a rapid, safe and efficacious adjunct for planning SEEG implantations. Finally, a simple solution for the export of plans and models to commercial neuronavigation systems for implementation of plans in the operating theater is described. This software is a valuable tool that can support clinical decision making throughout the epilepsy surgery pathway. PMID:27286266

  20. 3D integration technology for hybrid pixel detectors designed for particle physics and imaging experiments

    International Nuclear Information System (INIS)

    Hybrid pixel detectors are now widely used in particle physics experiments and are becoming established at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the advantages of 3D Integration come from reduced inter chip dead area even on large surfaces and from improved detector construction yield resulting from the use of single chip 4-side buttable tiles. For many years, numerous R and centres and companies have put a lot of effort into developing 3D integration technologies and today, some mature technologies are ready for prototyping and production. The core technology of the 3D integration is the TSV (Through Silicon Via) and for many years, LETI has developed those technologies for various types of applications. In this paper we present how one of the TSV approaches developed by LETI, called TSV last, has been applied to a readout wafer containing readout chips intended for a hybrid pixel detector assembly. In the first part of this paper, the 3D design adapted to the read-out chip will be described. Then the complete process flow will be explained and, finally, the test strategy adopted and

  1. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

    International Nuclear Information System (INIS)

    To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation. The fusion between the metabolic maps and the planning CT scans were assessed. Dosimetry comparisons were performed between the different plans of 60-Gy 3D-CRT, 60-Gy IMRT and 72-Gy SIB-IMRT, the last plan was targeted on MRSI abnormalities and contrast enhancement (CE). Fusion assessment was performed for 160 transformations. It resulted in maximum differences <1.00 mm for translation parameters and ≤1.15° for rotation. Dosimetry plans of 72-Gy SIB-IMRT and 60-Gy IMRT showed a significantly decreased maximum dose to the brainstem (44.00 and 44.30 vs. 57.01 Gy) and decreased high dose-volumes to normal brain (19 and 20 vs. 23% and 7 and 7 vs. 12%) compared to 60-Gy 3D-CRT (p < 0.05). Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies

  2. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    International Nuclear Information System (INIS)

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  3. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  4. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  5. Coarse integral holography approach for real 3D color video displays.

    Science.gov (United States)

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components. PMID:27136858

  6. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    International Nuclear Information System (INIS)

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation. (paper)

  7. Compound forming technology of outside 3D integral fin of copper tubes

    Institute of Scientific and Technical Information of China (English)

    XIANG Jian-hua; TANG Yong; YE Bang-yan; ZHOU Wei; YAN Hui; HU Zhi-hua

    2009-01-01

    Using rolling-ploughing-extrusion compound processing methods, a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion (P-E) depth were 0.2 mm, rotating speed was 50 r/min, feed speed was 0.16 mm/r, 3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove, and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth, and pitch and P-E depth, respectively. Based on the analysis of interaction of rolling and P-E processing, it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.

  8. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  9. Integration of a 3D perspective view in the navigation display: featuring pilot's mental model

    Science.gov (United States)

    Ebrecht, L.; Schmerwitz, S.

    2015-05-01

    Synthetic vision systems (SVS) appear as spreading technology in the avionic domain. Several studies prove enhanced situational awareness when using synthetic vision. Since the introduction of synthetic vision a steady change and evolution started concerning the primary flight display (PFD) and the navigation display (ND). The main improvements of the ND comprise the representation of colored ground proximity warning systems (EGPWS), weather radar, and TCAS information. Synthetic vision seems to offer high potential to further enhance cockpit display systems. Especially, concerning the current trend having a 3D perspective view in a SVS-PFD while leaving the navigational content as well as methods of interaction unchanged the question arouses if and how the gap between both displays might evolve to a serious problem. This issue becomes important in relation to the transition and combination of strategic and tactical flight guidance. Hence, pros and cons of 2D and 3D views generally as well as the gap between the egocentric perspective 3D view of the PFD and the exocentric 2D top and side view of the ND will be discussed. Further a concept for the integration of a 3D perspective view, i.e., bird's eye view, in synthetic vision ND will be presented. The combination of 2D and 3D views in the ND enables a better correlation of the ND and the PFD. Additionally, this supports the building of pilot's mental model. The authors believe it will improve the situational and spatial awareness. It might prove to further raise the safety margin when operating in mountainous areas.

  10. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    Science.gov (United States)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  11. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    Science.gov (United States)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  12. A new 3-D integral code for computation of accelerator magnets

    International Nuclear Information System (INIS)

    For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed fields in the bore region satisfy Maxwell's equations exactly. A new integral code employing the edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible

  13. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    Science.gov (United States)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  14. 3D probe array integrated with a front-end 100-channel neural recording ASIC

    International Nuclear Information System (INIS)

    Brain–machine interface technology can improve the lives of spinal cord injury victims and amputees. A neural interface system, consisting of a 3D probe array and a custom low-power (1 mW) 100-channel (100-ch) neural recording application-specific integrated circuit (ASIC), was designed and implemented to monitor neural activity. In this study, a microassembly 3D probe array method using a novel lead transfer technique was proposed to overcome the bonding plane mismatch encountered during orthogonal assembly. The proposed lead transfer technique can be completed using standard micromachining and packaging processes. The ASIC can be stacking-integrated with the probe array, minimizing the form factor of the assembled module. To minimize trauma to brain cells, the profile of the integrated probe array was controlled within 730 μm. The average impedance of the assembled probe was approximately 0.55 MΩ at 1 kHz. To verify the functionality of the integrated neural probe array, bench-top signal acquisitions were performed and discussed. (paper)

  15. Classification of curves in 2D and 3D via affine integral signatures

    CERN Document Server

    Feng, S; Krim, H

    2008-01-01

    We propose a robust classification algorithm for curves in 2D and 3D, under the special and full groups of affine transformations. To each plane or spatial curve we assign a plane signature curve. Curves, equivalent under an affine transformation, have the same signature. The signatures introduced in this paper are based on integral invariants, which behave much better on noisy images than classically known differential invariants. The comparison with other types of invariants is given in the introduction. Though the integral invariants for planar curves were known before, the affine integral invariants for spatial curves are proposed here for the first time. Using the inductive variation of the moving frame method we compute affine invariants in terms of Euclidean invariants. We present two types of signatures, the global signature and the local signature. Both signatures are independent of parameterization (curve sampling). The global signature depends on the choice of the initial point and does not allow u...

  16. 3D integration of planar crossbar memristive devices with CMOS substrate

    International Nuclear Information System (INIS)

    Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and thus less resistive metal wires as the bottom electrodes. Planar memristive devices integrated with CMOS have demonstrated much lower programing voltages and excellent switching uniformity. With the inclusion of the Moiré pattern, the integration process has sub-20 nm alignment accuracy, opening opportunities for 3D hybrid circuits in applications in the next generation of memory and unconventional computing. (paper)

  17. Application of CART3D to Complex Propulsion-Airframe Integration with Vehicle Sketch Pad

    Science.gov (United States)

    Hahn, Andrew S.

    2012-01-01

    Vehicle Sketch Pad (VSP) is an easy-to-use modeler used to generate aircraft geometries for use in conceptual design and analysis. It has been used in the past to generate metageometries for aerodynamic analyses ranging from handbook methods to Navier-Stokes computational fluid dynamics (CFD). As desirable as it is to bring high order analyses, such as CFD, into the conceptual design process, this has been difficult and time consuming in practice due to the manual nature of both surface and volume grid generation. Over the last couple of years, VSP has had a major upgrade of its surface triangulation and export capability. This has enhanced its ability to work with Cart3D, an inviscid, three dimensional fluid flow toolset. The combination of VSP and Cart3D allows performing inviscid CFD on complex geometries with relatively high productivity. This paper will illustrate the use of VSP with Cart3D through an example case of a complex propulsion-airframe integration (PAI) of an over-wing nacelle (OWN) airliner configuration.

  18. Heavy Ion Induced SEU Sensitivity Evaluation of 3D Integrated SRAMs

    CERN Document Server

    Cao, Xuebing; Huo, Mingxue; Wang, Tianqi; Li, Anlong; Qi, Chunhua; Wang, Jinxiang

    2016-01-01

    Heavy ions induced single event upset (SEU) sensitivity of three-dimensional integrated SRAMs are evaluated by using Monte Carlo sumulation methods based on Geant4. The cross sections of SEUs and Multi Cell Upsets (MCUs) for 3D SRAM are simulated by using heavy ions with different energies and LETs. The results show that the sensitivity of different die of 3D SRAM has obvious discrepancies at low LET. Average percentage of MCUs of 3D SRAMs rises from 17.2% to 32.95% when LET increases from 42.19 MeV cm2/mg to 58.57MeV cm2/mg. As for a certain LET, the percentage of MCUs shows a notable distinction between face-to-face structure and back-to-face structure. For back-to-face structure, the percentage of MCUs increases with the deeper die. However, the face-to-face die presents the relatively low percentage of MCUs. The comparison of SEU cross sections for planar SRAMs and experiment data are conducted to indicate the effectiveness of our simulation method. Finally, we compare the upset cross sections of planar p...

  19. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    Science.gov (United States)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  20. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    International Nuclear Information System (INIS)

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems

  1. A metastable phase of tin in 3D integrated circuit solder microbumps

    International Nuclear Information System (INIS)

    A metastable phase of Sn has been found to co-exist with β-Sn in Pb-free SnAg microbumps in 3D integrated circuit technology. Synchrotron microbeam X-ray diffraction, high-resolution TEM imaging and selected-area electron diffraction were used to confirm the metastable phase, which has an orthorhombic lattice, with lattice parameter a = 0.635 nm, b = 0.639 nm, and c = 1.147 nm. Its composition is Sn containing a few percent of Ni. A higher rate of nucleation might have enabled its formation

  2. Obtaining raised density connections by thermosonic microwelding in 3D integrated microcircuits

    Directory of Open Access Journals (Sweden)

    Lanin V. L.

    2014-06-01

    Full Text Available The authors consider the processes of obtaining raised density microwelded connections in 3D-integrated microcircuits by the thermosonic microwelding. The processes include the use of the raised frequencies of ultrasound, application of the microinstrument with a thinning of the working end and precision devices for ball formation, which provide reproducibility of connections quality. At a small step of contact pads, the use of a wire of small diameter (not more than 25 µm is necessary for devices with a multilevel arrangement of leads and chess arrangement of contact pads on the chip, providing the maximum length of the formed crosspieces does not exceed 4—5 mm.

  3. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    Science.gov (United States)

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es. PMID:27108186

  4. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    OpenAIRE

    Yi-Ting Chen; Ching-Long Shih; Guan-Ting Chen

    2015-01-01

    Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedi...

  5. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

    International Nuclear Information System (INIS)

    Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutive models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations

  6. Study of deeply buried waveguides: A way towards 3D integration

    International Nuclear Information System (INIS)

    Ion-exchange on glass is now a mature integrated optics technology. Indeed, many devices such as wavelength multiplexers, splitters, optical amplifiers, lasers or sensors have been already realized. The challenge now is to integrate all these functions on a single chip. Two different paths can be used to achieve this goal: the first one consists of a reduction of the waveguides' dimensions by an increase of the refractive index change, whereas the second one, which is addressed in this paper, is based on the realization of multilayered devices. Because ion-exchange on glass allows manufacturing either surface or buried waveguides, this technology is well adapted for 3D integration. However, to realize integrated optical devices with two different layers, it is mandatory to prevent any parasitic light transfer between them. This condition can be fulfilled if the top and bottom waveguides are sufficiently separated. In this article, we present the development of ion-exchanged waveguides deeply buried into a glass substrate and their application to 3D integrated devices. Deeply buried waveguides have been realized by means of a two steps silver-sodium ion-exchange on a dedicated custom made silicate glass. First, a thermal ion-exchange has been carried out at 330 deg. C during 2 min in a 0.8NaNO3-0.2AgNO3 molten salt in order to create the core of the waveguide. Then, this core has been buried into the glass substrate by applying an electric field of 450 kV/m during 1 h 30 min in a sodium nitrate solution at 260 deg. C. The obtained waveguide has been measured to be 22 μm under the glass surface. It is singlemode at λ = 1.55 μm. In order to prove the good isolation between this waveguide and the surface, a top layer has been added to the device by the realization of surface channel waveguides through a thermal ion-exchange performed in a 0.8NaNO3-0.2AgNO3 molten salt at 330 deg. C during 2 min. The near-field observation of the device output has shown no coupling

  7. Research on fine management and visualization of ancient architectures based on integration of 2D and 3D GIS technology

    International Nuclear Information System (INIS)

    Aimed at ancient architectures which own the characteristics of huge data quantity, fine-grained and high-precise, a 3D fine management and visualization method for ancient architectures based on the integration of 2D and 3D GIS is proposed. Firstly, after analysing various data types and characters of digital ancient architectures, main problems and key technologies existing in the 2D and 3D data management are discussed. Secondly, data storage and indexing model of digital ancient architecture based on 2D and 3D GIS integration were designed and the integrative storage and management of 2D and 3D data were achieved. Then, through the study of data retrieval method based on the space-time indexing and hierarchical object model of ancient architecture, 2D and 3D interaction of fine-grained ancient architectures 3D models was achieved. Finally, take the fine database of Liangyi Temple belonging to Wudang Mountain as an example, fine management and visualization prototype of 2D and 3D integrative digital ancient buildings of Liangyi Temple was built and achieved. The integrated management and visual analysis of 10GB fine-grained model of the ancient architecture was realized and a new implementation method for the store, browse, reconstruction, and architectural art research of ancient architecture model was provided

  8. 3D simulation of integrated multi-coil ICP source with azimuthal modes

    Science.gov (United States)

    Brcka, Jozef

    2015-09-01

    Integrated multi-coil (IMC) planar ICP source with azimuthal motion is presented. Scaling ICP sources to larger substrate size is always complicated due to many technical issues and is challenged by the plasma chemistry. The source described in this work has capability of azimuthally moving plasma and has potential for large area and high density plasma applications. Hence, this system does not have an ideal axial symmetry, the 3D model approach has to be used to assess its transient performance. Moreover, reactor walls are imposing stronger boundary conditions on distribution of the radicals in ``off-axis reactive plasma.'' Intrinsic asymmetry of source and plasma were investigated by 3D fluid model developed under Plasma Module framework and supported by COMSOL Multiphysics solvers. Operation modes have potential to control plasma distribution, reaction chemistry and increase/modulate radicals' production. Simulation confirmed assumption that plasma distribution may essentially change in different gas. Under specific conditions integrated multi-coil ICP source is producing pulsed plasma. Temporal, spatial and population plasma characteristics were investigated in an inert carrier gas (Ar) and reactive plasma consisting of several gases (Ar, H2, CO and CH4).

  9. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  10. Algorithm development with the integrated vision system to get the 3D location data

    Science.gov (United States)

    Lee, Ji-hyeon; Kim, Moo-hyun; Kim, Yeong-kyeong; Park, Mu-hun

    2011-10-01

    This paper introduces an Integrated Vision System that enables us to detect the image of slabs and coils and get the complete three dimensional location data without any other obstacles in the field of unmanned-crane automation system. Existing laser scanner research tends to be easily influenced by the environment of the work place and therefore cannot give the exact location information. Also, CCD cameras have some problems recognizing the pattern because of the illumination intensity caused in an industrial setting. To overcome these two weaknesses, this thesis suggests laser scanners should be combined with a CCD camera named Integrated Vision System. This system can draw clearer pictures and take advanced 3D location information. The suggested system is expected to help improve the unmanned-crane automation system.

  11. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  12. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    Science.gov (United States)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  13. 77 FR 4982 - Solicitation of Input From Stakeholders Regarding the Smith-Lever 3(d) Extension Integrated Pest...

    Science.gov (United States)

    2012-02-01

    ...-Lever 3(d) Extension Integrated Pest Management Competitive Grants Program AGENCY: National Institute of...(d) of the Smith-Lever Act (7 U.S.C. 343(d)) to provide the ] opportunity for 1862 and 1890 Land... agency, CSREES, on October 6, 2008 and March 26, 2009 about the restructuring of the Smith-Lever 3(d)...

  14. Scientific Subsurface data for EPOS - integration of 3D and 4D data services

    Science.gov (United States)

    Kerschke, Dorit; Hammitzsch, Martin; Wächter, Joachim

    2016-04-01

    The provision of efficient and easy access to scientific subsurface data sets obtained from field studies and scientific observatories or by geological 3D/4D-modeling is an important contribution to modern research infrastructures as they can facilitate the integrated analysis and evaluation as well as the exchange of scientific data. Within the project EPOS - European Plate Observing System, access to 3D and 4D data sets will be provided by 'WP15 - Geological information and modeling' and include structural geology models as well as numerical models, e.g., temperature, aquifers, and velocity. This also includes validated raw data, e.g., seismic profiles, from which the models where derived. All these datasets are of high quality and of unique scientific value as the process of modeling is time and cost intensive. However, these models are currently not easily accessible for the wider scientific community, much less to the public. For the provision of these data sets a data management platform based on common and standardized data models, protocols, and encodings as well as on a predominant use of Free and Open Source Software (FOSS) has been devised. The interoperability for disciplinary and domain applications thus highly depends on the adoption of generally agreed technologies and standards (OGC, ISO…) originating from Spatial Data Infrastructure related efforts (e.g., INSPIRE). However, since not many standards for 3D and 4D geological data exists, this work also includes new approaches for project data management, interfaces for tools used by the researchers, and interfaces for the sharing and reusing of data.

  15. The Avignon Bridge: a 3d Reconstruction Project Integrating Archaeological, Historical and Gemorphological Issues

    Science.gov (United States)

    Berthelot, M.; Nony, N.; Gugi, L.; Bishop, A.; De Luca, L.

    2015-02-01

    The history and identity of the Avignon's bridge is inseparable from that of the Rhône river. Therefore, in order to share the history and memory of the Rhône, it is essential to get to know this bridge and especially to identify and make visible the traces of its past, its construction, its interaction with the river dynamics, which greatly influenced his life. These are the objectives of the PAVAGE project that focuses on digitally surveying, modelling and re-visiting a heritage site of primary importance with the aim of virtually restoring the link between the two sides which, after the disappearance of the Roman bridge of Arles, constituted for a long time the only connection between Lyon or Vienna and the sea. Therefore, this project has an important geo-historical dimension for which geo-morphological and paleoenvironmental studies were implemented in connection with the latest digital simulation methods exploiting geographic information systems. By integrating knowledge and reflections of archaeologists, historians, geomorphologists, environmentalists, architects, engineers and computer scientists, the result of this project (which involved 5 laboratories during 4 years) is a 3D digital model covering an extension of 50 km2 achieved by integrating satellite imagery, UAV-based acquisitions, terrestrial laser scanning and photogrammetry, etc. Beyond the actions of scientific valorisation concerning the historical and geomorphological dimensions of the project, the results of this work of this interdisciplinary investigation and interpretation of this site are today integrated within a location-based augmented reality application allowing tourists to exploring the virtual reconstruction of the bridge and its environment through tablets inside the portion of territory covered by this project (between Avignon and Villeneuve-lez-Avignon). This paper presents the main aspects of the 3D virtual reconstruction approach.

  16. First Steps Towards AN Integrated Citygml-Based 3d Model of Vienna

    Science.gov (United States)

    Agugiaro, G.

    2016-06-01

    This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. The work described in this paper is embedded within the European Marie-Curie ITN project "Ci-nergy, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  17. THREE DIMENSIONAL INTEGRATED CHARACTERIZATION AND ARCHIVING SYSTEM (3D-ICAS)

    Energy Technology Data Exchange (ETDEWEB)

    George Jarvis

    2001-06-18

    The overall objective of this project is to develop an integrated system that remotely characterizes, maps, and archives measurement data of hazardous decontamination and decommissioning (D&D) areas. The system will generate a detailed 3-dimensional topography of the area as well as real-time quantitative measurements of volatile organics and radionuclides. The system will analyze substrate materials consisting of concrete, asbestos, and transite. The system will permanently archive the data measurements for regulatory and data integrity documentation. Exposure limits, rest breaks, and donning and removal of protective garments generate waste in the form of contaminated protective garments and equipment. Survey times are increased and handling and transporting potentially hazardous materials incur additional costs. Off-site laboratory analysis is expensive and time-consuming, often necessitating delay of further activities until results are received. The Three Dimensional Integrated Characterization and Archiving System (3D-ICAS) has been developed to alleviate some of these problems. 3D-ICAS provides a flexible system for physical, chemical and nuclear measurements reduces costs and improves data quality. Operationally, 3D-ICAS performs real-time determinations of hazardous and toxic contamination. A prototype demonstration unit is available for use in early 2000. The tasks in this Phase included: (1) Mobility Platforms: Integrate hardware onto mobility platforms, upgrade surface sensors, develop unit operations and protocol. (2) System Developments: Evaluate metals detection capability using x-ray fluorescence technology. (3) IWOS Upgrades: Upgrade the IWOS software and hardware for compatibility with mobility platform. The system was modified, tested and debugged during 1999 and 2000. The 3D-ICAS was shipped on 11 May 2001 to FIU-HCET for demonstration and validation of the design modifications. These modifications included simplifying the design from a two

  18. INTEGRATING HEAD POSE TO A 3D MULTITEXTURE APPROACH FOR GAZE DETECTION

    Directory of Open Access Journals (Sweden)

    Hanan Salam

    2013-08-01

    Full Text Available Lately, the integration of gaze detection systems in human-computer interaction (HCI applications has been increasing. For this to be available for everyday use and for everybody, the imbedded gaze tracking system should be one that works with low resolution images coming from ordinary webcams and permits a wide range of head poses. We propose the 3D Multi-Texture Active Appearance Model (MT-AAM: an iris model is merged with a local eye skin model where holes are put in the place of the sclera-iris region. The iris model rotates under the eye hole permitting the synthesis of new gaze directions. Depending on the head pose, the left and right eyes are unevenly represented in the webcam image. Thus, we additionally propose to use the head pose information to ameliorate gaze detection through a multi-objective optimization: we apply the 3D MT-AAM simultaneously on both eyes and we sum the resulting errors while multiplying each by a weighting factor that is a function of the head pose. Tests show that our method outperforms a classical AAM of the eye region trained on people committing different gaze directions. Moreover, we compare our proposed approach to the state-of-art method of Heyman et al. [12] which manually initialize their algorithm: without any manual initialization, we obtain the same level of accuracy in gaze detection.

  19. A CNN-based approach to integrate the 3-D turbolent diffusion equation

    Science.gov (United States)

    Nunnari, G.

    2003-04-01

    The paper deals with the integration of the 3-D turbulent diffusion equation. This problem is relevant in several application fields including fluid dynamics, air/water pollution, volcanic ash emissions and industrial hazard assessment. As it is well known numerical solution of such a kind of equation is very time consuming even by using modern digital computers and this represents a short-coming for on-line applications. To overcome this drawback a Cellular Neural Network Approach is proposed in this paper. CNN's proposed by Chua and Yang in 1988 are massive parallel analog non-linear circuits with local interconnections between the computing elements that allow very fast distributed computations. Nowadays several producers of semiconductors such as SGS-Thomson are producing on chip CNN's so that their massive use for heavy computing applications is expected in the near future. In the paper the methodological background of the proposed approach will be outlined. Further some results both in terms of accuracy and computation time will be presented also in comparison with traditional three-dimensional computation schemes. Some results obtained to model 3-D pollution problems in the industrial area of Siracusa (Italy), characterised by a large concentration of petrol-chemical plants, will be presented.

  20. The cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe effect

    Science.gov (United States)

    Zieser, Britta; Merkel, Philipp M.

    2016-06-01

    We present the first calculation of the cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe (iSW) effect. Both signals are combined in a single formalism, which permits the computation of the full covariance matrix. In order to avoid the uncertainties presented by the non-linear evolution of the matter power spectrum and intrinsic alignments of galaxies, our analysis is restricted to large scales, i.e. multipoles below ℓ = 1000. We demonstrate in a Fisher analysis that this reduction compared to other studies of 3D weak lensing extending to smaller scales is compensated by the information that is gained if the additional iSW signal and in particular its cross-correlation with lensing data are considered. Given the observational standards of upcoming weak-lensing surveys like Euclid, marginal errors on cosmological parameters decrease by 10 per cent compared to a cosmic shear experiment if both types of information are combined without a cosmic wave background (CMB) prior. Once the constraining power of CMB data is added, the improvement becomes marginal.

  1. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    Science.gov (United States)

    Guerfi, Y.; Doucet, J. B.; Larrieu, G.

    2015-10-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  2. 3D-NTT: a versatile integral field spectro-imager for the NTT

    Science.gov (United States)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  3. Observation of Majorization Principle for quantum algorithms via 3-D integrated photonic circuits

    CERN Document Server

    Flamini, Fulvio; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicoló; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio

    2016-01-01

    The Majorization Principle is a fundamental statement governing the dynamics of information processing in optimal and efficient quantum algorithms. While quantum computation can be modeled to be reversible, due to the unitary evolution undergone by the system, these quantum algorithms are conjectured to obey a quantum arrow of time dictated by the Majorization Principle: the probability distribution associated to the outcomes gets ordered step-by-step until achieving the result of the computation. Here we report on the experimental observation of the effects of the Majorization Principle for two quantum algorithms, namely the quantum fast Fourier transform and a recently introduced validation protocol for the certification of genuine many-boson interference. The demonstration has been performed by employing integrated 3-D photonic circuits fabricated via femtosecond laser writing technique, which allows to monitor unambiguously the effects of majorization along the execution of the algorithms. The measured ob...

  4. Development of generic key performance indicators for PMBOK® using a 3D project integration model

    Directory of Open Access Journals (Sweden)

    Craig Langston

    2013-12-01

    Full Text Available Since Martin Barnes’ so-called ‘iron triangle’ circa 1969, much debate has occurred over how best to describe the fundamental constraints that underpin project success. This paper develops a 3D project integration model for PMBOK® comprising core constraints of scope, cost, time and risk as a basis to propose six generic key performance indicators (KPIs that articulate successful project delivery. These KPIs are defined as value, efficiency, speed, innovation, complexity and impact and can each be measured objectively as ratios of the core constraints. An overall KPI (denoted as s3/ctr is also derived. The aim in this paper is to set out the case for such a model and to demonstrate how it can be employed to assess the performance of project teams in delivering successful outcomes at various stages in the project life cycle. As part of the model’s development, a new PMBOK® knowledge area concerning environmental management is advanced.

  5. FDSOI bottom MOSFETs stability versus top transistor thermal budget featuring 3D monolithic integration

    Science.gov (United States)

    Fenouillet-Beranger, C.; Previtali, B.; Batude, P.; Nemouchi, F.; Cassé, M.; Garros, X.; Tosti, L.; Rambal, N.; Lafond, D.; Dansas, H.; Pasini, L.; Brunet, L.; Deprat, F.; Grégoire, M.; Mellier, M.; Vinet, M.

    2015-11-01

    To set up specification for 3D monolithic integration, for the first time, the thermal stability of state-of-the-art FDSOI (Fully Depleted SOI) transistors electrical performance is quantified. Post fabrication annealings are performed on FDSOI transistors to mimic the thermal budget associated to top layer processing. Degradation of the silicide for thermal treatments beyond 400 °C is identified as the main responsible for performance degradation for PMOS devices. For the NMOS transistors, arsenic (As) and phosphorus (P) dopants deactivation adds up to this effect. By optimizing both the n-type extension implantations and the bottom silicide process, thermal stability of FDSOI can be extended to allow relaxing upwards the thermal budget authorized for top transistors processing.

  6. Integration of the virtual 3D model of a control system with the virtual controller

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  7. The digital bee brain: integrating and managing neurons in a common 3D reference system

    Directory of Open Access Journals (Sweden)

    Jürgen Rybak

    2010-07-01

    Full Text Available The honeybee standard brain (HSB serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/. The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1 The reconstruction of the neuron, facilitated by an automatic extraction of the neuron’s skeleton based on threshold segmentation, and (2 the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2 to the reconstructed neurons of step (1. The most critical issue of this protocol in terms of user interaction time – the segmentation process – is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology. Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations.

  8. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    Science.gov (United States)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  9. Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging

    Science.gov (United States)

    Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng

    2013-09-01

    A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.

  10. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    Science.gov (United States)

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs. PMID:26878319

  11. Fully 3D-Integrated Pixel Detectors for X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gabriella, Carini [SLAC National Accelerator Lab., Menlo Park, CA (United States); Enquist, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grybos, Pawel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holm, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lipton, Ronald [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maj, Piotr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patti, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Siddons, David Peter [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Szczygiel, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarema, Raymond [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  12. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  13. Fully integrated system-on-chip for pixel-based 3D depth and scene mapping

    Science.gov (United States)

    Popp, Martin; De Coi, Beat; Thalmann, Markus; Gancarz, Radoslav; Ferrat, Pascal; Dürmüller, Martin; Britt, Florian; Annese, Marco; Ledergerber, Markus; Catregn, Gion-Pol

    2012-03-01

    We present for the first time a fully integrated system-on-chip (SoC) for pixel-based 3D range detection suited for commercial applications. It is based on the time-of-flight (ToF) principle, i.e. measuring the phase difference of a reflected pulse train. The product epc600 is fabricated using a dedicated process flow, called Espros Photonic CMOS. This integration makes it possible to achieve a Quantum Efficiency (QE) of >80% in the full wavelength band from 520nm up to 900nm as well as very high timing precision in the sub-ns range which is needed for exact detection of the phase delay. The SoC features 8x8 pixels and includes all necessary sub-components such as ToF pixel array, voltage generation and regulation, non-volatile memory for configuration, LED driver for active illumination, digital SPI interface for easy communication, column based 12bit ADC converters, PLL and digital data processing with temporary data storage. The system can be operated at up to 100 frames per second.

  14. Alternative approach in 3D MEMS-IC integration using fluidic self-assembly techniques

    International Nuclear Information System (INIS)

    Nowadays, industries are investigating new, original and appropriate solutions to address challenges in 3D MEMS-IC large-scale integration. Self-assembly techniques are among those. We report on an alternative approach inspired from fluidic self-assembly and using the flip-chip method. Here, solder bumps are directly formed onto a MEMS chip using liquid solder solution in a bath. The self-alignment process is operated after surface treatment by plasma deposition to form high and low wettability selective patterns. Finally, MEMS and electronic chips are permanently bonded after low thermal heating without any pressure. Electrical contact is established and electromechanisms of the microsystems are proven. Compared to classic MEMS-IC flip-chip methods, this strategy presents many advantages: it is a low-cost and fast fabrication process requiring no specific equipment for deposition of solder bumps. Furthermore, it can be applied on different substrates and it does not require a specific pressure method during the bonding process. This strategy is also an appropriate fabrication method for large-scale MEMS integration where electronic connection density is high

  15. 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation

    OpenAIRE

    Tu, Xiaolong; Wang, Lina; Jin, Wei; Bin WANG; Tang, Yadong; Shi, Jian; Zhang, Zhijun; Chen, Yong

    2016-01-01

    Three dimensional (3D) printing techniques can be used for scaffold fabrication but the most of them are limited by resolution and material choice. To bypass these limitations, we developed an approach by combining conventional 3D printing and freeze-drying techniques to produce lattice-type backbone and embedding microporous structures. Polyethylene glycol diacrylate (PEGDA), a biocompatible and photosensitive pre-polymer, was chosen for 3D printing of the backbone, while gelatin was used fo...

  16. An Integrated System for 3D Gaze Recovery and Semantic Analysis of Human Attention

    OpenAIRE

    Paletta, Lucas; Santner, Katrin; Fritz, Gerald

    2013-01-01

    This work describes a computer vision system that enables pervasive mapping and monitoring of human attention. The key contribution is that our methodology enables full 3D recovery of the gaze pointer, human view frustum and associated human centered measurements directly into an automatically computed 3D model in real-time. We apply RGB-D SLAM and descriptor matching methodologies for the 3D modeling, localization and fully automated annotation of ROIs (regions of interest) within the acquir...

  17. NFkB disrupts tissue polarity in 3D by preventing integration of microenvironmental signals.

    Science.gov (United States)

    Becker-Weimann, Sabine; Xiong, Gaofeng; Furuta, Saori; Han, Ju; Kuhn, Irene; Akavia, Uri-David; Pe'er, Dana; Bissell, Mina J; Xu, Ren

    2013-11-01

    The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant S1 cells that form polarized spheres ('acini'), the malignant T4-2 cells that form large tumor-like clusters, and the 'phenotypically reverted' T4-2 cells that polarize as a result of correction of the microenvironmental signaling. We identified 180 genes that display an increased expression in disorganized compared to polarized structures. Network, GSEA and transcription factor binding site analyses suggested that NFkB is a common activator for the 180 genes. NFkB was found to be activated in disorganized breast cancer cells, and inhibition of microenvironmental signaling via EGFR, beta1 integrin, MMPs, or their downstream signals suppressed its activation. The postulated role of NFkB was experimentally verified: Blocking the NFkB pathway with a specific chemical inhibitor or shRNA induced polarization and inhibited invasion of breast cancer cells in 3D cultures. These results may explain why NFkB holds promise as a target for therapeutic intervention: Its inhibition can reverse the oncogenic signaling involved in breast cancer progression and integrate the essential microenvironmental control of tissue architecture. PMID:24243820

  18. Pipe3D, a pipeline to analyse integral field spectroscopy data: II. Analysis sequence and CALIFA dataproducts

    OpenAIRE

    Sánchez, S. F.; Pérez, E; Sánchez-Blázquez, P.; García-Benito, R.; Ibarra-Mede, H. J.; González, J. J.; Rosales-Ortega, F. F.; Sánchez-Menguiano, L.; Ascasibar, Y.; Bitsakis, T.; Law, D; Cano-Díaz, M.; López-Cobá, C.; Marino, R.A.; de Paz, A. Gil

    2016-01-01

    We present Pipe3D, an analysis pipeline based on the FIT3D fitting tool, devel- oped to explore the properties of the stellar populations and ionized gas of Integral Field Spectroscopy data. Pipe3D was created to provide with coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). Along this article we describe ...

  19. Magnetic field analysis and leakage inductance calculation in current transformers by means of 3-D integral methods

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, K. [Technical Univ. of Lodz (Poland). Inst. of Electrical Machines and Transformers; Tomczuk, B. [Technical Univ. of Opole (Poland). Dept. of Electrical Engineering and Automatic Control

    1996-05-01

    This paper presents 3-D integral approach to the magnetic field and inductance calculations. A minimization of the kernel norm has been carried out for the integral equation governing the field. The software package TRACAL3, based on the integral methods for field and inductance calculations, has been developed and implemented for personal computers. The application of the 3-D mathematical models has been made for the leakage field in a current transformer. The results of calculations were compared with the measured ones. The comparison yields good agreement. Thus, the worked out software package seems to be one of the CAD tools.

  20. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    Science.gov (United States)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  1. Integrated canopy, building energy and radiosity model for 3D urban design

    CERN Document Server

    Burdet, Etienne; Morand, Denis; Diab, Youssef

    2014-01-01

    We present an integrated, three dimensional, model of urban canopy, building energy and radiosity, for early stage urban designs and test it on four urban morphologies. All sub-models share a common descriptions of the urban morphology, similar to 3D urban design master plans and have simple parameters. The canopy model is a multilayer model, with a new discrete layer approach that does not rely on simplified geometry such as canyon or regular arrays. The building energy model is a simplified RC equivalent model, with no hypotheses on internal zoning or wall composition. We use the CitySim software for the radiosity model. We study the effects of convexity, the number of buildings and building height, at constant density and thermal characteristics. Our results suggest that careful three dimensional morphology design can reduce heat demand by a factor of 2, especially by improving insolation of lower levels. The most energy efficient morphology in our simulations has both the highest surface/volume ratio and ...

  2. From 3D Bioprinters to a fully integrated Organ Biofabrication Line

    Science.gov (United States)

    Passamai, V. E.; Dernowsek, J. A.; Nogueira, J.; Lara, V.; Vilalba, F.; Mironov, V. A.; Rezende, R. A.; da Silva, J. V.

    2016-04-01

    About 30 years ago, the 3D printing technique appeared. From that time on, engineers in medical science field started to look at 3D printing as a partner. Firstly, biocompatible and biodegradable 3D structures for cell seeding called “scaffolds” were fabricated for in vitro and in vivo animal trials. The advances proved to be of great importance, but, the use of scaffolds faces some limitations, such as low homogeneity and low density of cell aggregates. In the last decade, 3D bioprinting technology emerged as a promising approach to overcome these limitations and as one potential solution to the challenge of organ fabrication, to obtain very similar 3D human tissues, not only for transplantation, but also for drug discovery, disease research and to decrease the usage of animals in laboratory experimentation. 3D bioprinting allowed the fabrication of 3D alive structures with higher and controllable cell density and homogeneity. Other advantage of biofabrication is that the tissue constructs are solid scaffold-free. This paper presents the 3D bioprinting technology; equipment development, stages and components of a complex Organ Bioprinting Line (OBL) and the importance of developing a Virtual OBL.

  3. Integration of 2D and 3D nanostructure fabrication with wafer-scale microelectronics: Photonic crystals and graphene

    OpenAIRE

    Arpiainen, Sanna

    2015-01-01

    This Thesis considers different aspects of heterogeneous integration of 2- and 3-dimensional nanostructures with today's microelectronics process flow. The applications in the main focus are integrated 3D photonic crystals on a photonic chip and graphene biosensors, both exploiting directed self-assembly but at different length scales. View point is from the fabrication and integration challenges, but the future prospects of the selected fields of applications are also reviewed. Utilizatio...

  4. Integrating airborne LiDAR dataset and photographic images towards the construction of 3D building model

    Science.gov (United States)

    Idris, R.; Latif, Z. A.; Hamid, J. R. A.; Jaafar, J.; Ahmad, M. Y.

    2014-02-01

    A 3D building model of man-made objects is an important tool for various applications such as urban planning, flood mapping and telecommunication. The reconstruction of 3D building models remains difficult. No universal algorithms exist that can extract all objects in an image successfully. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) technology have changed the conventional method of topographic mapping and increased the interest of these valued datasets towards 3D building model construction. Airborne LiDAR has proven accordingly that it can provide three dimensional (3D) information of the Earth surface with high accuracy. In this study, with the availability of open source software such as Sketch Up, LiDAR datasets and photographic images could be integrated towards the construction of a 3D building model. In order to realize the work an area comprising residential areas situated at Putrajaya in the Klang Valley region, Malaysia, covering an area of two square kilometer was chosen. The accuracy of the derived 3D building model is assessed quantitatively. It is found that the difference between the vertical height (z) of the 3D building models derived from LiDAR dataset and ground survey is approximately ± 0.09 centimeter (cm). For the horizontal component (RMSExy), the accuracy estimates derived for the 3D building models were ± 0.31m. The result also shows that the qualitative assessment of the 3D building models constructed seems feasible for the depiction in the standard of LOD 3 (Level of details).

  5. Integrating airborne LiDAR dataset and photographic images towards the construction of 3D building model

    International Nuclear Information System (INIS)

    A 3D building model of man-made objects is an important tool for various applications such as urban planning, flood mapping and telecommunication. The reconstruction of 3D building models remains difficult. No universal algorithms exist that can extract all objects in an image successfully. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) technology have changed the conventional method of topographic mapping and increased the interest of these valued datasets towards 3D building model construction. Airborne LiDAR has proven accordingly that it can provide three dimensional (3D) information of the Earth surface with high accuracy. In this study, with the availability of open source software such as Sketch Up, LiDAR datasets and photographic images could be integrated towards the construction of a 3D building model. In order to realize the work an area comprising residential areas situated at Putrajaya in the Klang Valley region, Malaysia, covering an area of two square kilometer was chosen. The accuracy of the derived 3D building model is assessed quantitatively. It is found that the difference between the vertical height (z) of the 3D building models derived from LiDAR dataset and ground survey is approximately ± 0.09 centimeter (cm). For the horizontal component (RMSExy), the accuracy estimates derived for the 3D building models were ± 0.31m. The result also shows that the qualitative assessment of the 3D building models constructed seems feasible for the depiction in the standard of LOD 3 (Level of details)

  6. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    International Nuclear Information System (INIS)

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition

  7. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; /Fermilab; Shochet, M.; Tang, F.; /Chicago U.; Demarteau, M.; /Argonne /INFN, Padova

    2011-04-13

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern

  8. Integration of Notification with 3D Visualization of Rover Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — 3D visualization has proven effective at orienting remote ground controllers about robots operating on a planetary surface. Using such displays, controllers can...

  9. The Gyracc : an integrated sensor for 3D rate of turn and acceleration

    OpenAIRE

    Kooi, Berend Jan

    2005-01-01

    There is a need for systems that can sense motions in the 3D-space for position and orientation determination. In the biomedical field such a sensing system should ultimately be small enough for implantation in human beings

  10. Integration of Complex Geometry, 3D Woven Preforms via Innovative Stitching Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thick, 3D woven carbon/phenolic composites offer potential improvement over legacy thermal protection systems (TPS) for re-entry vehicle heat shield applications....

  11. Integration of a MEMS Inertial Measuring Unit with a MEMS Magnetometer for 3D Orientation Estimation

    DEFF Research Database (Denmark)

    Cai, Junping; Malureanu, Christian; Andersen, Niels Lervad

    2011-01-01

    This paper presents an algorithm for combining the measurements of a MEMS Inertial Measurement Unit (IMU) and a MEMS magnetometer. The measurements are done using a special designed and customized miniature detecting system for 3D orientation estimation, and position tracking......This paper presents an algorithm for combining the measurements of a MEMS Inertial Measurement Unit (IMU) and a MEMS magnetometer. The measurements are done using a special designed and customized miniature detecting system for 3D orientation estimation, and position tracking...

  12. Design of Resonant Clock Distribution Networks for 3-D Integrated Circuits

    OpenAIRE

    Rahimian Omam, Somayyeh; Pavlidis, Vasileios; De Micheli, Giovanni

    2011-01-01

    Designing a low power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce the power consumption while delivering a full swing clock signal to the sink nodes. A design method for 3-D resonant clock networks is presented. The p...

  13. Immersive Learning Environment Using 3D Virtual Worlds and Integrated Remote Experimentation

    OpenAIRE

    Roderval Marcelino; Juarez Bento da Silva; Vilson Gruber; Simone Meister Bilessimo

    2013-01-01

    This project seeks to demonstrate the use of remote experimentation and 3D virtual environments applied to the teaching-learning in the areas of exact sciences-physics. In proposing the combination of remote experimentation and 3D virtual worlds in teaching-learning process, we intend to achieve greater geographic coverage, contributing to the construction of new methodologies of teaching support, speed of access and foremost motivation for students to continue in scientific study of the tech...

  14. Integration of time-dependent features within 3D city model

    OpenAIRE

    Fan, Hongchao

    2010-01-01

    This thesis presents an object-oriented event-state spatiotemporal data model for storage and management of both semantic and geometric changes of 3D building objects in a city. The data model is mainly composed of two parts: an event model that describes events happened to building objects; and a hierarchical spatial data model that describes 3D geometries and semantics of building objects including their valid time span. In this way, histories of building objects are modeled.

  15. Development of a fast 3D treatment planning platform for clinical interstitial microwave hyperthermia within free-hand obliquely implanted HDR catheters

    Science.gov (United States)

    Scott, Serena J.; Salgaonkar, Vasant A.; Prakash, Punit; Curto, Sergio; Hsu, I.-Chow; Diederich, Chris J.

    2015-03-01

    A treatment planning platform for interstitial microwave hyperthermia was developed for practical, free-hand clinical implants. Such implants, consisting of non-parallel, moderately curved antennas with varying insertion depths, are used in HDR brachytherapy for treating locally advanced cancer. Numerical models for commercially available MA251 antennas (915 MHz, BSD Medical) were developed in COMSOL Multiphysics, a finite element analysis software package. To expedite treatment planning, electric fields, power deposition and temperature rises were computed for a single straight antenna in 2D axisymmetric geometry. A precomputed library of electric field and temperature solutions was created for a range of insertion depths (5-12 cm) and blood perfusion rates (0.5-5 kg/m3/s). 3D models of multiple antennas and benchtop phantoms experiments using temperature-sensitive liquid crystal paper to monitor heating by curved antennas were performed for comparative evaluation of the treatment planning platform. A patient-customizable hyperthermia treatment planning software package was developed in MATLAB with capabilities to interface with a commercial radiation therapy planning platform (Oncentra, Nucleotron), import patient and multicatheter implant geometries, calculate insertion depths, and perform hyperthermia planning with antennas operating in asynchronous or synchronous mode. During asynchronous operation, the net power deposition and temperature rises were approximated as a superposition sum of the respective quantities for one single antenna. During synchronous excitation, a superposition of complex electrical fields was performed with appropriate phasing to compute power deposition. Electric fields and temperatures from the pre-computed single-antenna library were utilized following appropriate non-rigid coordinate transformations. Comparison to 3D models indicated that superposition of electric fields around parallel antennas is valid when they are at least 15 mm

  16. Estimation of uncertainties in geological 3D raster layer models as integral part of modelling procedures

    Science.gov (United States)

    Maljers, Denise; den Dulk, Maryke; ten Veen, Johan; Hummelman, Jan; Gunnink, Jan; van Gessel, Serge

    2016-04-01

    applied for DGM Deep proves to be an effective way to (graphically) represent the reliability of the DGM Deep model, although the relative contribution of the various error sources needs further attention. For the DGM Shallow model a cross-validation procedure in a moving window environment has been used to calculate mean deviations and standard errors on a sub-regional scale. Subsequently, these cross validation standard errors have been rescaled to account for local data configuration and clustering. This resulted in standard deviations expressing both regional and local uncertainties. Both workflows are state-of-the-art, form an integral part of the geological modelling and result in reproducible uncertainty values. They can be considered a good starting point for incorporating other errors that contribute to uncertainties of geological 3D raster layer models. For example, the mis-positioning of data used or the error underlying mis-ties at well locations. An additional, perhaps more easy-to-read, parameter that can be calculated to visualize these uncertainties would be the information entropy, as proposed by Wellmann & Regenauer-Lieb (2012). Where a value of 0 means there is no uncertainty, and a value of 1 means there is a high uncertainty. At the moment depth uncertainty information is disseminated through our webportals (www.dinoloket.nl and www.nlog.nl) in an on-line map viewer and as downloadable GIS products.

  17. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera.

    Science.gov (United States)

    Lagudi, Antonio; Bianco, Gianfranco; Muzzupappa, Maurizio; Bruno, Fabio

    2016-01-01

    The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera. PMID:27089344

  18. An Alignment Method for the Integration of Underwater 3D Data Captured by a Stereovision System and an Acoustic Camera

    Directory of Open Access Journals (Sweden)

    Antonio Lagudi

    2016-04-01

    Full Text Available The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.

  19. Hybrid Image Visualization Tool for 3D integration of CT coronary anatomy and quantitative myocardial perfusion PET

    OpenAIRE

    Marinelli, Martina; Positano, Vincenzo; Nekolla, Stephan G.; Marcheschi, Paolo; Todiere, Giancarlo; Esposito, Natalia; Puzzuoli, Stefano; L’Abbate, Giuseppe A.; Marraccini, Paolo; Neglia, Danilo

    2012-01-01

    Purpose: Multimodal cardiac imaging by CTA and quantitative PET enables acquisition of patient-specific coronary anatomy and absolute myocardial perfusion at rest and during stress. In the clinical setting, integration of this information is performed visually or using coronary arteries distribution models. We developed a new tool for CTA and quantitative PET integrated 3D visualization, exploiting XML and DICOM clinical standards. Methods: The Hybrid Image Tool (HIT) developed in the present...

  20. The integrated code system CASCADE-3D for advanced core design and safety analysis

    International Nuclear Information System (INIS)

    The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)

  1. p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

    OpenAIRE

    Sandin, C.; Becker, T.; Roth, M. M.; Gerssen, J.; Monreal-Ibero, A.; Böhm, P; Weilbacher, P.

    2010-01-01

    The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required in order to convert raw data into, typically a large number of, spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d that is designed to be used with fiber-fed IFSs. Important components of p3d incl...

  2. Lagrangian Finite Element Method for 3D Time-Dependent Viscoelastic Flow Computations using Integral Models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    (polymeric melts) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymer melt into an elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can...

  3. Integrated 3D-printed reactionware for chemical synthesis and analysis.

    Science.gov (United States)

    Symes, Mark D; Kitson, Philip J; Yan, Jun; Richmond, Craig J; Cooper, Geoffrey J T; Bowman, Richard W; Vilbrandt, Turlif; Cronin, Leroy

    2012-05-01

    Three-dimensional (3D) printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. An attractive, but unexplored, application is to use a 3D printer to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Here, using a low-cost 3D printer and open-source design software we produced reactionware for organic and inorganic synthesis, which included printed-in catalysts and other architectures with printed-in components for electrochemical and spectroscopic analysis. This enabled reactions to be monitored in situ so that different reactionware architectures could be screened for their efficacy for a given process, with a digital feedback mechanism for device optimization. Furthermore, solely by modifying reactionware architecture, reaction outcomes can be altered. Taken together, this approach constitutes a relatively cheap, automated and reconfigurable chemical discovery platform that makes techniques from chemical engineering accessible to typical synthetic laboratories. PMID:22522253

  4. Integrated endoscope for real-time 3D ultrasound imaging and hyperthermia: feasibility study.

    Science.gov (United States)

    Pua, Eric C; Qiu, Yupeng; Smith, S W

    2007-01-01

    The goal of this research is to determine the feasibility of using a single endoscopic probe for the combined purpose of real-time 3D (RT3D) ultrasound imaging of a target organ and the delivery of ultrasound therapy to facilitate the absorption of compounds for cancer treatment. Recent research in ultrasound therapy has shown that ultrasound-mediated drug delivery improves absorption of treatments for prostate, cervical and esophageal cancer. The ability to combine ultrasound hyperthermia and 3D imaging could improve visualization and targeting of cancerous tissues. In this study, numerical modeling and experimental measurements were developed to determine the feasibility of combined therapy and imaging with a 1 cm diameter endoscopic RT3D probe with 504 transmitters and 252 receive channels. This device operates at 5 MHz and has a 6.3 mm x 6.3 mm aperture to produce real time 3D pyramidal scans of 60-120 degrees incorporating 64 x 64 = 4096 image lines at 30 volumes/sec interleaved with a 3D steerable therapy beam. A finite-element mesh was constructed with over 128,000 elements in LS-DYNA to simulate the induced temperature rise from our transducer with a 3 cm deep focus in tissue. Quarter-symmetry of the transducer was used to reduce mesh size and computation time. Based on intensity values calculated in Field II using the transducer's array geometry, a minimum I(SPTA) of 3.6 W/cm2 is required from our endoscope probe in order to induce a temperature rise of 4 degrees C within five minutes. Experimental measurements of the array's power output capabilities were conducted using a PVDF hydrophone placed 3 cm away from the face of the transducer in a watertank. Using a PDA14 Signatec data acquisition board to capture full volumes of transmitted ultrasound data, it was determined that the probe can presently maintain intensity values up to 2.4 W/cm2 over indefinite times for therapeutic applications combined with intermittent 3D scanning to maintain targeting

  5. Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation

    International Nuclear Information System (INIS)

    Current transperineal prostate brachytherapy uses transrectal ultrasound (TRUS) guidance and a template at a fixed position to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the brachytherapy needles along parallel trajectories. To solve the PAI problem, some investigators have explored other insertion trajectories than parallel, i.e., oblique. However, parallel trajectory constraints in current brachytherapy procedure do not allow oblique insertion. In this paper, we describe a robot-assisted, three-dimensional (3D) TRUS guided approach to solve this problem. Our prototype consists of a commercial robot, and a 3D TRUS imaging system including an ultrasound machine, image acquisition apparatus and 3D TRUS image reconstruction, and display software. In our approach, we use the robot as a movable needle guide, i.e., the robot positions the needle before insertion, but the physician inserts the needle into the patient's prostate. In a later phase of our work, we will include robot insertion. By unifying the robot, ultrasound transducer, and the 3D TRUS image coordinate systems, the position of the template hole can be accurately related to 3D TRUS image coordinate system, allowing accurate and consistent insertion of the needle via the template hole into the targeted position in the prostate. The unification of the various coordinate systems includes two steps, i.e., 3D image calibration and robot calibration. Our testing of the system showed that the needle placement accuracy of the robot system at the 'patient's' skin position was 0.15 mm±0.06 mm, and the mean needle angulation error was 0.07 deg. . The fiducial localization error (FLE) in localizing the intersections of the nylon strings for image calibration was 0.13 mm, and the FLE in localizing the divots for robot calibration was 0.37 mm. The fiducial registration error for image calibration was 0

  6. Performance of a non-tapered 3D morphing wing with integrated compliant ribs

    International Nuclear Information System (INIS)

    Morphing wings have a high potential for improving the performance and reducing the fuel consumption of modern aircraft. Thanks to its simplicity, the compliant belt-rib concept is regarded by the authors as a promising solution. Using the compliant rib designed by Hasse and Campanile as a starting point, a compliant morphing wing made of composite materials is designed. Innovative methods for optimal placing of the actuation and for the quantification of the morphing are used. The performance of the compliant morphing wing in terms of three-dimensional (3D) structural behaviour and aerodynamic properties, both two- and three-dimensional, is presented and discussed. The fundamental importance of considering 3D coupling effects in the determination of the performance of morphing aerofoils is shown. (paper)

  7. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    OpenAIRE

    Nanying Shentu; Guohua Qiu; Qing Li; Renyuan Tong; Nankai Shentu; Yanjie Wang

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and meas...

  8. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    Science.gov (United States)

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation. PMID:26234364

  9. Development of deep silicon plasma etching for 3D integration technology

    OpenAIRE

    Golishnikov А. А.; Putrya M.G.

    2014-01-01

    Plasma etch process for thought-silicon via (TSV) formation is one of the most important technological operations in the field of metal connections creation between stacked circuits in 3D assemble technology. TSV formation strongly depends on parameters such as Si-wafer thickness, aspect ratio, type of metallization material, etc. The authors investigate deep silicon plasma etch process for formation of TSV with controllable profile. The influence of process parameters on plasma etch rate, si...

  10. Interaction in 3D virtual worlds: an integrated approach of emerging technologies in handball

    OpenAIRE

    Lopes, António; Sequeira, Pedro; Morgado, Leonel; Madeira, António; Ildefonso, João; Bruno, Pires; Márcio, Cardoso; José, Dinis

    2011-01-01

    Lifelong learning is a concept that is associated with changes in society as we know it. The new technologies of information and communication have contributed to the creation and development of various tools in the training, education and research in several areas. 3D virtual worlds are alternate realities in which people can interact with each other or elements present in it. In the field of education is recognized primarily by its potential ability to simulate complex situat...

  11. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  12. 3D-centered media linking and semantic enrichment through integrated searching, browsing, viewing and annotating

    OpenAIRE

    Pena Serna, Sebastian; Scopigno, Roberto; Doerr, Martin; Theodoridou, Maria; Georgis, Christos; Ponchio, Federico; Stork, Andre

    2011-01-01

    The digitally documented world heritage is archived in databases or repositories, where collections of metadata, images, multimedia objects or nowadays even digital 3D artifacts can be stored and queried. Modeling and linking all this information is complex and involves refined categorizations and relations, which are usually accessed by either simplistic or overwhelmingly complex interfaces. Hence, finding the right level of abstraction for a general interface is very challenging. This becom...

  13. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  14. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization

    Directory of Open Access Journals (Sweden)

    Guoliang Chen

    2015-09-01

    Full Text Available Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.

  15. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    Science.gov (United States)

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-01-01

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314

  16. Integration of nano-scale components and supports in micromachined 3D silicon structures

    International Nuclear Information System (INIS)

    We have developed a process for the three-dimensional (3D) machining of p-type silicon on a micro- and nano-scale using high-energy ion beam irradiation with one or more energies and fluences, followed by electrochemical anodization in hydrofluoric acid. We present a study of the dependence of our fabricated structures on irradiating ion energies, fluences, geometries and wafer resistivity. All these factors determine whether the micro- and nano-scale features are properly connected to the supports in the 3D silicon structures. If wrongly chosen, any of these factors may cause a breakage at the connection through localized over-etching. Under optimum irradiation and anodization conditions, free-standing patterned membranes can be fabricated with feature dimensions of 100 nm over areas of many square millimeters. This investigation is based on silicon structures but is relevant to any electro-assisted etching process for 3D fabrication, paving the way for achieving free-standing silicon photonics, mechanical resonators and micro-/nano-electromechanical systems. (paper)

  17. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  18. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    Science.gov (United States)

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks. PMID:26842949

  19. Integrated Flexible Dynamic Maneuver Loads Models based on Aerodynamic Influence Coefficients of a 3D Panel Method

    OpenAIRE

    Kier, Thiemo

    2015-01-01

    The integration of loads analysis models using so called aerodynamic influence coefficients (AICs) is described. These AICs relate a change of normal velocity at panel control points to a change in panel pressure distribution, allowing to consider aeroelastic effects in a straight forward manner. The aerodynamic method employed for aeroelastic applications is typically the Vortex or Doublet Lattice Method, discretizing mean lifting surfaces. In this paper, the AICs are obtained by a 3D panel ...

  20. Monolithic Integrations of Slanted Silicon Nanostructures on 3D Microstructures and Their Application to Surface Enhanced Raman Spectroscopy

    OpenAIRE

    Xu, Zhida; Liu, Logan

    2014-01-01

    We demonstrated fabrication of black silicon with slanted nanocone array on both planar and 3D micro and meso scale structures produced by a high-throughput lithography-free oblique-angle plasma etching process. Nanocones with gradual change in height were created on the same piece of silicon. The relation between the slanted angle of nanocones and incident angle of directional plasma is experimentally investigated. In order to demonstrate the monolithic integration of nanostructures on micro...

  1. Optimal additive Schwarz methods for the $hp$-BEM: the hypersingular integral operator in 3D on locally refined meshes

    OpenAIRE

    Führer, Thomas; Melenk, Jens Markus; Praetorius, Dirk; Rieder, Alexander

    2014-01-01

    We propose and analyze an overlapping Schwarz preconditioner for the $p$ and $hp$ boundary element method for the hypersingular integral equation in 3D. We consider surface triangulations consisting of triangles. The condition number is bounded uniformly in the mesh size $h$ and the polynomial order $p$. The preconditioner handles adaptively refined meshes and is based on a local multilevel preconditioner for the lowest order space. Numerical experiments on different geometries illustrate its...

  2. Integration Of 3D Geographic Information System (GIS) For Effective Waste Management Practice

    International Nuclear Information System (INIS)

    Soil remediation in response to the presence of residual radioactivity resulting from past MED/AEC activities is currently in progress under the Formerly Utilized Sites Remedial Action Program near the St. Louis, MO airport. During GY05, approximately 92,000 cubic meters (120,000 cubic yards) of radioactive soil was excavated, packaged and transported via rail for disposal at U.S. Ecology or Envirocare of Utah, LLC. To facilitate the management of excavation/transportation/disposal activities, a 3D GIS was developed for the site that was used to estimate the in-situ radionuclide activities, activities in excavation block areas, and shipping activities using a sum-of ratio (SOR) method for combining various radionuclide compounds into applicable transportation and disposal SOR values. The 3D GIS was developed starting with the SOR values for the approximately 900 samples from 90 borings. These values were processed into a three-dimensional (3D) point grid using kriging with nominal grid spacing of 1.5 by 1.5 meter horizontal by 0.3 meter vertical. The final grid, clipped to the area and soil interval above the planned base of excavation, consisted of 210,000 individual points. Standard GIS volumetric and spatial join procedures were used to calculate the volume of soil represented by each grid point, the base of excavation, depth below ground surface, elevation, surface elevation and SOR values for each point in the final grid. To create the maps needed for management, the point grid results were spatially joined to each excavation area in 0.9 meter (3 foot) depth intervals and the average SOR and total volumes were calculations. The final maps were color-coded for easy identification of areas above the specific transportation or disposal criteria. (authors)

  3. Integrated assembly of 3D graphene networks for construction of all-in-one supercapacitor electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    Supercapacitors are a kind of efficient and safe energy storage and conversion devices. The development of new - generation supercapacitors that can be used in portable electronic devices and in next - generation vehicles is increasingly demanded. This crucially depends on the discovery of more...... efficient and cost - effective n ovel materials. Because of their ultrahigh specific surface areas and excellent conductivity , t hree - dimensional (3D) graphene materials hold great promises for supercapacitors. However, the assembly of graphene building blocks into the supercapacitor electrodes with low...

  4. Accuracy Amelioration of an Integrated Real-Time 3D Image Sensor

    OpenAIRE

    Ayoub, Jad; Romain, Olivier; Granado, Bertrand; Mhanna, Yasser

    2008-01-01

    In this paper we investigate an active vision technique implemented in an embedded system for 3D shapes reconstruction. The main objective of the work is to have a balance in the accuracy of all components in the system where the size and autonomy of such an embedded sensor are hard constraints. This is achieved through the improvement of the pre-processing algorithms by reducing the time needed to compute the spots centers. In addition, lens distortion of the camera is included in the model ...

  5. Semi-Analytic Integration of Hypersingular Galerkin BIEs for 3D Potential Problems

    Energy Technology Data Exchange (ETDEWEB)

    Nintcheu Fata, Sylvain [ORNL; Gray, Leonard J [ORNL

    2009-01-01

    An accurate and efficient semi-analytic integration technique is developed for three-dimensional hypersingular boundary integral equations of potential theory. Investigated in the context of a Galerkin approach, surface integrals are defined as limits to the boundary and linear surface elements are employed to approximate the geometry and field variables on the boundary. In the inner integration procedure, all singular and non-singular integrals over a triangular boundary element are expressed exactly as analytic formulae over the edges of the integration triangle. In the outer integration scheme, closed-form expressions are obtained for the coincident case, wherein the divergent terms are identified explicitly and are shown to cancel with corresponding terms from the edge-adjacent case. The remaining surface integrals, containing only weak singularities, are carried out successfully by use of standard numerical cubatures. Sample problems are included to illustrate the performance and validity of the proposed algorithm.

  6. Testing and characterization of a new pixel front-end IC in 3D integration technology for upgraded LHC

    International Nuclear Information System (INIS)

    ATLAS is one of the four main particle detectors located on the LHC ring at CERN. The upcoming upgrades (Insertable B-Layer ∝2014 and High Luminosity LHC ∝2020) assume luminosity ramp-up up to 1035 cm-2s-1 and as a result higher particle multiplicity. This in turn makes complicated the usage of the current pixel detector Front End (FE) FE-I3 since its architecture is not tuned for the higher hit rates and becomes inefficient. A new FE with an architecture adapted to higher occupancies is therefore needed. In parallel to the new FE-I4 designed in 130 nm CMOS technology, a similar IC is being developed in a so-called 3D technology. This technology gives the possibility to split the IC into several active parts (tiers) and combine them using Through Silicon Via and bonding techniques into one package. Such kind of integration leads to a smaller pixel size and allows choosing for each tier a suitable technology. It is widely believed that 3D integration is the future for chip design in general and particularly for HEP applications. As 3D integration is new for the HEP community, special attention should be brought to the prototype IC testing and characterization. In this talk, a description of the new FETC4 architecture as well as first test results is presented.

  7. Research on joint parameter inversion for an integrated underground displacement 3D measuring sensor.

    Science.gov (United States)

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0~30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  8. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2015-04-01

    Full Text Available Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  9. A Three-Dimensional (3D) Environment to Maintain the Integrity of Mouse Testicular Can Cause the Occurrence of Meiosis

    Institute of Scientific and Technical Information of China (English)

    CHU Zhi-li; LIU Chao; BAI Yao-fu; ZHU Hai-jing; HU Yue; HUA Jin-lian

    2013-01-01

    Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three-dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.

  10. Pipe3D, a pipeline to analyse integral field spectroscopy data: II. Analysis sequence and CALIFA dataproducts

    CERN Document Server

    Sánchez, S F; Sánchez-Blázquez, P; García-Benito, R; Ibarra-Mede, H J; González, J J; Rosales-Ortega, F F; Sánchez-Menguiano, L; Ascasibar, Y; Bitsakis, T; Law, D; Cano-Díaz, M; López-Cobá, C; Marino, R A; de Paz, A Gil; López-Sánchez, A R; Barrera-Ballesteros, J; Galbany, L; Mast, D; Abril-Melgarejo, V; Roman-Lopes, A

    2016-01-01

    We present Pipe3D, an analysis pipeline based on the FIT3D fitting tool, devel- oped to explore the properties of the stellar populations and ionized gas of Integral Field Spectroscopy data. Pipe3D was created to provide with coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). Along this article we describe the different steps involved in the analysis of the data, illustrating them by showing the dataproducts derived for NGC 2916, observed by CALIFA and P-MaNGA. As a practical use of the pipeline we present the complete set of dataproducts derived for the 200 datacubes that comprises the V500 setup of the CALIFA Data Release 2 (DR2), making them freely available through the network (ftp://ftp.caha.es/CALIFA/dataproducts/DR2/Pipe3D). Finally, we explore the hypothesis that the properties of the stellar populations and ionized...

  11. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  12. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    Science.gov (United States)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  13. Summation integrals for a Green function in a 3-D inhomogeneous anisotropic medium

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2014-01-01

    Roč. 24, č. 1 (2014), s. 131-158. ISSN 2336-3827 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : Gaussian beam summation integrals * Maslov-Chapman integrals * target surface * dynamic ray tracing Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  14. An integrated 3D design, modeling and analysis resource for SSC detector systems

    International Nuclear Information System (INIS)

    Integrated computer aided engineering and design (CAE/CAD) is having a significant impact on the way design, modeling and analysis is performed, from system concept exploration and definition through final design and integration. Experience with integrated CAE/CAD in high technology projects of scale and scope similar to SSC detectors leads them to propose an integrated computer-based design, modeling and analysis resource aimed specifically at SSC detector system development. The resource architecture emphasizes value-added contact with data and efficient design, modeling and analysis of components, sub-systems or systems with fidelity appropriate to the task. They begin with a general examination of the design, modeling and analysis cycle in high technology projects, emphasizing the transition from the classical islands of automation to the integrated CAE/CAD-based approach. They follow this with a discussion of lessons learned from various attempts to design and implement integrated CAE/CAD systems in scientific and engineering organizations. They then consider the requirements for design, modeling and analysis during SSC detector development, and describe an appropriate resource architecture. They close with a report on the status of the resource and present some results that are indicative of its performance. 10 refs., 7 figs

  15. Development of deep silicon plasma etching for 3D integration technology

    Directory of Open Access Journals (Sweden)

    Golishnikov А. А.

    2014-02-01

    Full Text Available Plasma etch process for thought-silicon via (TSV formation is one of the most important technological operations in the field of metal connections creation between stacked circuits in 3D assemble technology. TSV formation strongly depends on parameters such as Si-wafer thickness, aspect ratio, type of metallization material, etc. The authors investigate deep silicon plasma etch process for formation of TSV with controllable profile. The influence of process parameters on plasma etch rate, silicon etch selectivity to photoresist and the structure profile are researched in this paper. Technology with etch and passivation steps alternation was used as a method of deep silicon plasma etching. Experimental tool «Platrane-100» with high-density plasma reactor based on high-frequency ion source with transformer coupled plasma was used for deep silicon plasma etching. As actuation gases for deep silicon etching were chosen the following gases: SF6 was used for the etch stage and CHF3 was applied on the polymerization stage. As a result of research, the deep plasma etch process has been developed with the following parameters: silicon etch rate 6 µm/min, selectivity to photoresist 60 and structure profile 90±2°. This process provides formation of TSV 370 µm deep and about 120 µm in diameter.

  16. HALLEY: A 3D Orbital Integration and Visualization Software Package for Undergraduate Applications

    Science.gov (United States)

    Williams, Darren M.; Palma, C.; Williams, H. R.

    2010-01-01

    Almost no one outside the astronomical community understands gravity and orbital motion. This is at odds with the seemingly boundless public enthusiasm for space exploration and interest in the origin of the Solar System. Although programs for calculating the orbits of planets and spacecraft are now available to anyone with a computer, most programs available on the internet do require some expertise and are not well suited for K-12 or lower-level undergraduate applications. We are developing an astronomy software package known as Halley that can be used for both pedagogical and research-grade simulations; and that can both accurately compute the orbits of planets and spacecraft, and generate three-dimensional stills and movies of the orbital motion. Halley is designed using IDL (Interactive Display Language) software and powered using the IDL Virtual Machine, a program that allows users to freely share and run IDL code on any computer. The software is an improvement over comparable programs available on the internet that either lack 3D display capability, or that cannot compute the orbits of hypothetical, user-generated systems. In addition to these advantages, Halley will be designed with students and teachers in mind, and will be uniquely tied to both undergraduate and K-12 education. We anticipate that Halley will broadly improve the introduction and teaching of astronomy and science to people at all stages of education.

  17. Integration of functional and morphological MR data for preoperative 3D visualisation of tumours. Cervical carcinoma

    International Nuclear Information System (INIS)

    Purpose: The goal of this exemplary study was to integrate morphological and functional MRI to establish computer-based, preoperative therapy planning for tumors, instancing cervical carcinoma. Results: Segmentation of organs and vessels as well as tissue differentiation yielded a morphological visualisation of anatomical structures that were overlaid with pharmacokinetic parameters derived from dynamic MRI, subsequently. Thereby, three-dimensional, arbitrary views on the functional data were displayed. Conclusions: Image analysis and visualisation of the acquired MR data establishes both a morphologic and functional evaluation of suspect lesions and adjacent organs. By integrating morphologic and functional MRI additional information can be gathered that possibly impinge on preoperative planning. (orig./AJ)

  18. Accurate and efficient Nyström volume integral equation method for the Maxwell equations for multiple 3-D scatterers

    Science.gov (United States)

    Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung

    2016-09-01

    In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.

  19. The Integration of GPR, GIS, and GPS for 3D Soil Morphologic Models

    Science.gov (United States)

    Tischler, M.; Collins, M. E.

    2005-05-01

    Ground-Penetrating Radar (GPR) has become a useful and efficient instrument for gathering information about subsurface diagnostic horizons in Florida soils. Geographic Information Systems (GIS) are a popular and valuable tool for spatial data analysis of real world features in a digital environment. Ground-Penetrating Radar can be linked to GIS by using Global Positioning Systems (GPS). By combining GPR, GPS, and GIS technologies, a more detailed geophysical survey can be completed for an area of interest by integratinghydrologic, pedologic, and geologic data. Thus, the objectives of this research were to identify subsurface soil layers using GPR and their geographic position with a highly accurate GPS; to develop a procedure to import GPR data into a popular software package, such as ArcGIS, and; to create 3D subsurface models based on the imported GPR data. The site for this study was the Plant Science Research and Education Center in Marion County, Florida. The soils are characterized by Recent-Pleistocene-age sand over the clayey, marine deposited Plio-Miocene-age Hawthorn Formation which drapes the Eocene-age Ocala Limestone. Consequently, soils in the research area vary from deep quartz sands (Typic Quartzipsamments) to shallow outcrops of the Hawthorn Formation (Arenic Hapludalfs). A GPR survey was performed on a 160 m x 320 m grid to gather data for processing. Four subsurface models estimating the depth to argillic horizon were created using a variety of specialized GPR data filters and geostatistical data analyses. The models were compared with ground-truth points that measured the depth to argillic horizon to validate each model and calculate error metrics. These models may assist research station personnel to determine best management practices (including experimental plot placement, irrigation management, fertilizer treatment, and pesticide applications). In addition, the developed methodology exploits the potential of combining GPR and GIS.

  20. Integrated 3D Reservoir/Fault Property Modelling Aided Well Planning and Improved Hydrocarbon Recovery in a Niger Delta Field

    International Nuclear Information System (INIS)

    The large and varied portfolio of assets managed by oil companies requires quick decision-making and the deployment of best in class technologies in asset management. Timely decision making and the application of the best technologies in reservoir management are however sometimes in conflict due to large time requirements of the latter.Optimizing the location of development wells is critical to account for variable fluid contact movements and pressure interference effects between wells, which can be significant because of the high permeability (Darcy range) of Niger Delta reservoirs. With relatively high drilling costs, the optimization of well locations necessitates a good realistic static and dynamic 3D reservoir description, especially in the recovery of remaining oil and oil rim type of reservoirs.A detailed 3D reservoir model with fault properties was constructed for a Niger delta producing field. This involved the integration of high quality 3D seismic, core, petrophysics, reservoir engineering, production and structural geology data to construct a realistic 3D reservoir/fault property model for the field. The key parameters considered during the construction of the internal architecture of the model were the vertical and horizontal reservoir heterogeneities-this controls the fluid flow within the reservoir. In the production realm, the fault thickness and fault permeabilities are factors that control the impedance of fluid flow across the fault-fault transmissibility. These key internal and external reservoir/structural variables were explicitly modeled in a 3D modeling software to produce different realizations and manage the uncertainties.The resulting 3D reservoir/fault property model was upscaled for simulation purpose such that grid blocks along the fault planes have realistic transmissibility multipliers of 0 to 1 attached to them. The model was also used in the well planner to optimize the positioning of a high angle deviated well that penetrated

  1. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D.

    Science.gov (United States)

    Rhodes, Christopher P; Long, Jeffrey W; Pettigrew, Katherine A; Stroud, Rhonda M; Rolison, Debra R

    2011-04-01

    We describe fabrication of three-dimensional (3D) multifunctional nanoarchitectures in which the three critical components of a battery--cathode, separator/electrolyte, and anode--are internally assembled as tricontinuous nanoscopic phases. The architecture is initiated using sol-gel chemistry and processing to erect a 3D self-wired nanoparticulate scaffold of manganese oxide (>200 m(2) g(-1)) with a continuous, open, and mesoporous void volume. The integrated 3D system is generated by exhaustive coverage of the oxide network by an ultrathin, conformal layer of insulating polymer that forms via self-limiting electrodeposition of poly(phenylene oxide). The remaining interconnected void volume is then wired with RuO(2) nanowebs using subambient thermal decomposition of RuO(4). Transmission electron microscopy demonstrates that the three nanoscopic charge-transfer functional components--manganese oxide, polymer separator/cation conductor, and RuO(2)--exhibit the stratified, tricontinuous design of the phase-by-phase construction. This architecture contains all three components required for a solid-state energy storage device within a void volume sized at tens of nanometres such that nanometre-thick distances are established between the opposing electrodes. We have now demonstrated the ability to assemble multifunctional energy-storage nanoarchitectures on the nanoscale and in three dimensions. PMID:21327256

  2. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: II. Analysis sequence and CALIFA dataproducts

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; García-Benito, R.; Ibarra-Mede, H. J.; González, J. J.; Rosales-Ortega, F. F.; Sánchez-Menguiano, L.; Ascasibar, Y.; Bitsakis, T.; Law, D.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; López-Sánchez, A. R.; Barrera-Ballesteros, J.; Galbany, L.; Mast, D.; Abril-Melgarejo, V.; Roman-Lopes, A.

    2016-04-01

    We present Pipe3D, an analysis pipeline based on the FIT3D fitting tool, developed to explore the properties of the stellar populations and ionized gas of integral field spectroscopy (IFS) data. Pipe3D was created to provide coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). In this article we describe the different steps involved in the analysis of the data, illustrating them by showing the dataproducts derived for NGC 2916, observed by CALIFA and P-MaNGA. As a practical example of the pipeline we present the complete set of dataproducts derived for the 200 datacubes that comprises the V500 setup of the CALIFA Data Release 2 (DR2), making them freely available through the network. Finally, we explore the hypothesis that the properties of the stellar populations and ionized gas of galaxies at the effective radius are representative of the overall average ones, finding that this is indeed the case.

  3. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    Science.gov (United States)

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks. PMID:24705800

  4. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes

    NARCIS (Netherlands)

    Rosenauer, M.; Buchegger, W.; Finoulst, I.; Verhaert, P.D.E.M.; Vellekoop, M.

    2010-01-01

    In this study, the design, realization and measurement results of a novel optofluidic system capable of performing absorbance-based flow cytometric analysis is presented. This miniaturized laboratory platform, fabricated using SU-8 on a silicon substrate, comprises integrated polymer-based waveguide

  5. Principles of 5D modeling, full integration of 3D space, time and scale

    NARCIS (Netherlands)

    Van Oosterom, P.; Stoter, J.

    2012-01-01

    This paper proposes an approach for data modelling in five dimensions. Apart from three dimensions for geometrical representation and a fourth dimension for time, we identify scale as fifth dimensional characteristic. Considering scale as an extra dimension of geographic information, fully integrate

  6. Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining

    CERN Document Server

    Song, Jiangxin; Tang, Jialei; Qiao, Lingling; Cheng, Ya

    2014-01-01

    We report on fabrication of a microtoroid resonator of a high-quality factor (i. e., Q-factor of ~3.24x10^6 measured under the critical coupling condition) using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber taper to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21x10^5 as measured in air.

  7. Convergence Problems of Integral Modeling of 3D Electrostatic Fields with Singularities

    Czech Academy of Sciences Publication Activity Database

    Hamar, R.; Doležel, Ivo

    Pilsen : University of West Bohemia in Pilsen, 2007, s. 1-5. ISBN 978-80-7043-564-9. [AMTEE 2007. Pilsen (CZ), 10.09.2007-12.09.2007] R&D Projects: GA ČR(CZ) GA102/05/0629 Institutional research plan: CEZ:AV0Z20570509 Keywords : electrostatic field * integral equation * surface charge Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://faraday.fel.zcu.cz/amtee/

  8. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters

    OpenAIRE

    Francesco Giordano; Gaia Mattei; Claudio Parente; Francesco Peluso; Raffaele Santamaria

    2015-01-01

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system...

  9. Full 3-D stratigraphic inversion with a priori information: a powerful way to optimize data integration

    Energy Technology Data Exchange (ETDEWEB)

    Grizon, L.; Leger, M.; Dequirez, P.Y.; Dumont, F.; Richard, V.

    1998-12-31

    Integration between seismic and geological data is crucial to ensure that a reservoir study is accurate and reliable. To reach this goal, there is used a post-stack stratigraphic inversion with a priori information. The global cost-function combines two types of constraints. One is relevant to seismic amplitudes, and the other to an a priori impedance model. This paper presents this flexible and interpretative inversion to determine acoustic impedances constrained by seismic data, log data and geologic information. 5 refs., 8 figs.

  10. Transient 3d contact problems—NTS method: mixed methods and conserving integration

    Science.gov (United States)

    Hesch, Christian; Betsch, Peter

    2011-10-01

    The present work deals with a new formulation for transient large deformation contact problems. It is well known, that one-step implicit time integration schemes for highly non-linear systems fail to conserve the total energy of the system. To deal with this drawback, a mixed method is newly proposed in conjunction with the concept of a discrete gradient. In particular, we reformulate the well known and widely-used node-to-segment methods and establish an energy-momentum scheme. The advocated approach ensures robustness and enhanced numerical stability, demonstrated in several three-dimensional applications of the proposed algorithm.

  11. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    Science.gov (United States)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  12. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters

    Directory of Open Access Journals (Sweden)

    Francesco Giordano

    2015-12-01

    Full Text Available This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy.

  13. 3-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Rasmussen, Morten Fischer; Bagge, Jan Peter;

    2015-01-01

    This paper demonstrates the fabrication, characterization, and experimental imaging results of a 62+62 element λ/2-pitch row-column-addressed capacitive micromachined ultrasonic transducer (CMUT) array with integrated apodization. A new fabrication process was used to manufacture a 26.3 mm by 26......Pa, and the sensitivity was 0.299 ± 0.090 V/Pa. The nearest neighbor crosstalk level was -23.9 ± 3.7 dB, while the transmit-to-receive-elements crosstalk level was -40.2 ± 3.5 dB. Imaging of a 0.3-mm-diameter steel wire using synthetic transmit focusing with 62 single-element emissions demonstrated axial and lateral...... FWHMs of 0.71 mm and 1.79 mm (f-number: 1.4), respectively, compared with simulated axial and lateral FWHMs of 0.69 mm and 1.76 mm. The dominant ghost echo was reduced by 15.8 dB in measurements using the integrated apodization compared with the disabled configuration. The effect was reproduced...

  14. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-01-01

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy. PMID:26729117

  15. High-temperature compatible 3D-integration processes for a vacuum-sealed CNT-based NEMS

    Science.gov (United States)

    Gueye, R.; Lee, S. W.; Akiyama, T.; Briand, D.; Roman, C.; Hierold, C.; de Rooij, N. F.

    2013-03-01

    A System-in-Package (SiP) concept for the 3D-integration of a Single Wall Carbon Nanotube (SWCNT) resonator with its CMOS driving electronics is presented. The key element of this advanced SiP is the monolithic 3D-integration of the MEMS with the CMOS electronics using Through Silicon Vias (TSVs) on an SOI wafer. This SiP includes: A glass cap vacuum-sealed to the main wafer using an eutectic bonding process: a low leak rate of 2.7 10-9 mbar•l/s was obtained; Platinum-TSVs, compatible with the SWCNT growth and release process; The TSVs were developed in a "via first" process and characterized at high-temperature — up to 850 °C. An ohmic contact between the Pt-metallization and the SOI silicon device layer was obtained; The driving CMOS electronic device is assembled to the MEMS using an Au stud bump technology. Keywords: System-in-Package (SiP), vacuum packaging, eutectic bonding, "via-first" TSVs, high-temperature platinum interconnects, ohmic contacts, Au-stud bumps assembly, CMOS electronics.

  16. Classification of Informal Settlements Through the Integration of 2d and 3d Features Extracted from Uav Data

    Science.gov (United States)

    Gevaert, C. M.; Persello, C.; Sliuzas, R.; Vosselman, G.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features leads to higher classification accuracies.

  17. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    Science.gov (United States)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  18. Integral identities for a semi-infinite interfacial crack in 2D and 3D elasticity

    CERN Document Server

    Piccolroaz, Andrea

    2011-01-01

    The paper is concerned with the problem of a semi-infinite crack at the interface between two dissimilar elastic half-spaces, loaded by a general asymmetrical system of forces distributed along the crack faces. On the basis of the weight function approach and the fundamental reciprocal identity (Betti formula), we formulate the elasticity problem in terms of singular integral equations relating the applied loading and the resulting crack opening. Such formulation is fundamental in the theory of elasticity and extensively used to solve several problems in linear elastic fracture mechanics (for instance various classic crack problems in homogeneous and heterogeneous media). This formulation is also crucial in important recent multiphysics applications, where the elastic problem is coupled with other concurrent physical phenomena. A paradigmatic example is hydraulic fracturing, where the elasticity equations are coupled with fluid dynamics.

  19. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at

  20. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    Science.gov (United States)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  1. Functional morphology and integration of corvid skulls – a 3D geometric morphometric approach

    Directory of Open Access Journals (Sweden)

    Gunz Philipp

    2009-01-01

    Full Text Available Abstract Background Sympatric corvid species have evolved differences in nesting, habitat choice, diet and foraging. Differences in the frequency with which corvid species use their repertoire of feeding techniques is expected to covary with bill-shape and with the frontal binocular field. Species that frequently probe are expected to have a relatively longer bill and more sidewise oriented orbits in contrast to species that frequently peck. We tested this prediction by analyzing computed tomography scans of skulls of six corvid species by means of three-dimensional geometric morphometrics. We (1 explored patterns of major variation using principal component analysis, (2 compared within and between species relationships of size and shape and (3 quantitatively compared patterns of morphological integration between bill and cranium by means of partial least squares (singular warp analysis. Results Major shape variation occurs at the bill, in the orientation of orbits, in the position of the foramen magnum and in the angle between bill and cranium. The first principal component correlated positively with centroid-size, but within-species allometric relationships differed markedly. Major covariation between the bill and cranium lies in the difference in orbit orientation relative to bill-length and in the angle between bill and cranium. Conclusion Corvid species show pronounced differences in skull shape, which covary with foraging mode. Increasing bill-length, bill-curvature and sidewise orientation of the eyes is associated with an increase in the observed frequency in probing (vice versa in pecking. Hence, the frequency of probing, bill-length, bill-curvature and sidewise orientation of the eyes is progressively increased from jackdaw, to Eurasian jay, to black-billed magpie, to hooded crow, to rook and to common raven (when feeding on carcasses is considered as probing. Our results on the morphological integration suggest that most of the

  2. 3D transient eddy current fields using the u-v integral-eigenvalue formulation

    International Nuclear Information System (INIS)

    The three-dimensional eddy current transient field problem is formulated using the u-v method. This method breaks the vector Helmholtz equation into two scalar Helmholtz equations. Null field integral equations and the appropriate boundary conditions are used to set up an identification matrix which is independent of null field point locations. Embedded in the identification matrix are the unknown eigenvalues of the problem representing its impulse response in time. These eigenvalues are found by equating the determinant of the identification matrix to zero. When the initial transient forcing function is Fourier decomposed into its spatial harmonics, each Fourier component can be associated with a unique eigenvalue by this technique. The true transient solution comes through a convolution of the impulse response, so obtained with the particular external field decay governing the problem at hand. The technique is applied to the FELIX (fusion electromagnetic induction experiments) medium cylinder experiment; computed results are compared with data. A pseudoanalytic confirmation of the eigenvalues so obtained is formulated to validate the procedure

  3. IRIS Earthquake Browser with Integration to the GEON IDV for 3-D Visualization of Hypocenters.

    Science.gov (United States)

    Weertman, B. R.

    2007-12-01

    We present a new generation of web based earthquake query tool - the IRIS Earthquake Browser (IEB). The IEB combines the DMC's large set of earthquake catalogs (provided by USGS/NEIC, ISC and the ANF) with the popular Google Maps web interface. With the IEB you can quickly and easily find earthquakes in any region of the globe. Using Google's detailed satellite images, earthquakes can be easily co-located with natural geographic features such as volcanoes as well as man made features such as commercial mines. A set of controls allow earthquakes to be filtered by time, magnitude, and depth range as well as catalog name, contributor name and magnitude type. Displayed events can be easily exported in NetCDF format into the GEON Integrated Data Viewer (IDV) where hypocenters may be visualized in three dimensions. Looking "under the hood", the IEB is based on AJAX technology and utilizes REST style web services hosted at the IRIS DMC. The IEB is part of a broader effort at the DMC aimed at making our data holdings available via web services. The IEB is useful both educationally and as a research tool.

  4. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    Science.gov (United States)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  5. How integrating 3D LiDAR data in the dike surveillance protocol: The French case

    Science.gov (United States)

    Bretar, F.; Mériaux, P.; Fauchard, C.

    2012-04-01

    carried out. A LiDAR system is able to acquire data on a dike structure of up to 80 km per day, which makes the use of this technique also valuable in case of emergency situations. It provides additional valuable products like precious information on dike slopes and crest or their near environment (river banks, etc.). Moreover, in case of vegetation, LiDAR data makes possible to study hidden structures or defaults from images like the erosion of riverbanks under forestry vegetation. The possibility of studying the vegetation is also of high importance: the development of woody vegetation near or onto the dike is a major risk factor. Surface singularities are often signs of disorder or suspected disorder in the dike itself: for example a subsidence or a sinkhole on a ridge may result from internal erosion collapse. Finally, high resolution topographic data contribute to build specific geomechanical model of the dike that, after incorporating data provided by geophysical and geotechnical surveys, are integrated in the calculations of the structure stability. Integrating the regular use of LiDAR data in the dike surveillance protocol is not yet operational in France. However, the high number of French stakeholders at the national level (on average, there is one stakeholder for only 8-9km of dike !) and the real added value of LiDAR data makes a spatial data infrastructure valuable (webservices for processing the data, consulting and filling the database on the field when performing the local diagnosis)

  6. Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration

    International Nuclear Information System (INIS)

    This paper presents different low-temperature and high-throughput LIGA-like processes for the batch fabrication of metal micro systems that use long nano- or microwires perpendicularly rising from a substrate. First, circuit paths and seed layers are fabricated applying standard UV lithography and PVD. Second, three lithography techniques are used, namely ion track lithography, enhanced UV lithography and aligned x-ray lithography, to structure 20–400 µm thick polymer films. Ion track lithography is only used to fabricate extremely high aspect ratio cylindrical pores with 0.1–1 µm diameter and 20–100 µm length. The aligned UV and x-ray lithographies are employed to structure templates for various micro system components. Third, these polymer templates are filled using low-temperature electroplating processes transferring the polymer openings into metal structures. Finally, the polymer is dry etched to release all metal structures. These structures are applicable in future accelerometers and gas flow sensors. Using five configurations to define five different functional structures, we demonstrate fabrication processes applying the three different types of lithography. The main aspects concern the combination of both standard lithography techniques and especially developed lithography techniques. Furthermore, these aspects comprise the use of structures created by lithography for high aspect ratio polymer templates and multilayer electroplating with varying aspect ratios. The growth in place of nanowire arrays and micropillars along with surrounding structures is the key feature for low-temperature large-scale micro-nano integration technology without harmful transfer technologies. (paper)

  7. Progress on a New Integrated 3-D UCG Simulator and its Initial Application

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J; Camp, D W; Buscheck, T A; White, J A; Burton, G C; Wagoner, J L; Chen, M

    2011-09-22

    A comprehensive simulator is being developed for underground coal gasification (UCG), with the capability to support site selection, design, hazard analyses, operations, and monitoring (Nitao et al., 2010). UCG is computationally challenging because it involves tightly-coupled multi-physical/chemical processes, with vastly different timescales. This new capability will predict cavity growth, product gas composition and rate, and the interaction with the host environment, accounting for site characteristics, injection gas composition and rate, and associated water-well extraction rates. Progress on the new simulator includes completion and system integration of a wall model, a rock spalling model, a cavity boundary tracking model, a one-dimensional cavity gas reactive transport model, a rudimentary rubble heat, mass, and reaction model, and coupling with a pre-existing hydrology simulator. An existing geomechanical simulator was enhanced to model cavity collapse and overburden subsidence. A commercial computational fluid dynamics (CFD) code is being evaluated to model cavity gas flow and combustion in two and three dimensions. Although the simulator is midway in its development, it was applied to modeling the Hoe Creek III field test (Stephens, 1981) conducted in the 1970s, in order to evaluate and demonstrate the simulator's basic capabilities, gain experience, and guide future development. Furthermore, it is consistent with our philosophy of incremental, spiral software development, which helps in identifying and resolving potential problems early in the process. The simulation accounts for two coal seams, two injection points, and air and oxygen phases. Approximate extent and shape of cavity growth showed reasonable agreement with interpreted field data. Product gas composition and carbon consumed could not be simultaneously matched for a given set of parameter values due to the rudimentary rubble model currently used, although they can be matched using

  8. 3DMADMAC|SPECTRAL: Hardware and Software Solution for Integrated Digitization of 3D Shape, Multispectral Color and BRDF for Cultural Heritage Documentation

    Directory of Open Access Journals (Sweden)

    Robert Sitnik

    2011-12-01

    Full Text Available In this article a new 3D measurement system along with the study on 3D printing technology is presented from the perspective of quality of reproduction. In the first part of the paper the 3DMADMAC|SPECTRAL system which integrates 3D shape with additional color and angular reflectance measurement capabilities is presented (see Figure 1. The shape measurement system is based on structured light projection with the use of a DLP projector. The 3D shape measurement method is based on sinusoidal fringes and Gray codes projection. Color is being measured using multispectral images with a set of interference filters to separate spectral channels. Additionally the set up includes an array of compact light sources for measuring angular reflectance based on image analysis and 3D data processing. All three components of the integrated system use the same greyscale camera as a detector. The purpose of the system is to obtain complete information about shape, color and reflectance characteristic of mea sured surface, especially for cultural heritage objects - in order to create high quality 3D documentation. In the second part of the paper the 3D printing technology will be tested on real measured cultural heritage objects. Tests allow to assess measurement and color accuracy of reproduction by selected 3D printing technology and shed some light on how current 3D printing technology can be applied into cultural heritage.

  9. Methodology for thermal budget reduction of SPER down to 450 °C for 3D sequential integration

    Science.gov (United States)

    Luce, F. P.; Pasini, L.; Sklénard, B.; Mathieu, B.; Licitra, C.; Batude, P.; Mazen, F.

    2016-03-01

    3D sequential integration enables the full use of the third dimension thanks to its unique contact density far above the possibilities of 3D packaging solutions. However, as the transistors are sequentially stacked over each other, the thermal budget allowed for the fabrication of the top transistor is limited by the maximal temperature accepted by the already made bottom one. It was previously described that a thermal budget of T > 500 °C is enough to degrade the bottom transistors performance. So the technological challenge is to develop low temperature routines for the fabrication of the top devices. For that, different processes have to be adapted, mainly the dopant activation step, where the T > 1000 °C spike annealing must be replaced. In this contribution, we present the feasibility to dope by solid phase epitaxial regrowth (SPER) at 450 °C thin Si films (22 nm) containing high dopant concentration of 5 × 1020 at/cm3. For n- and p-type dopants, the 450 °C SPER rendered low sheet resistance values, as low as the ones obtained with the high temperature activation method.

  10. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.; Torheim, O.; Hu-Guo, C. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Degerli, Y. [CEA Saclay, IRFU/SEDI, 91191 Gif-sur-Yvette Cedex (France); Hu, Y., E-mail: yann.hu@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2013-03-11

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13μm CMOS technology. The functionalities of this chip have been verified through experimental characterization.

  11. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Science.gov (United States)

    Miller-Corbett, Cynthia

    2016-01-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  12. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    International Nuclear Information System (INIS)

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13μm CMOS technology. The functionalities of this chip have been verified through experimental characterization

  13. Compilation of an integrated 3D soil and agrogeological database for the hydrophysical characterization of the unsaturated zone

    Science.gov (United States)

    Bakacsi, Zsófia; Kuti, László; Pásztor, László; Vatai, József; Szabó, József; Müller, Tamás.

    2010-05-01

    Describing the water movement in the unsaturated zone, numerous soil hydraulic data as input parameter are required concerning the water retention curve and the hydraulic conductivity function as the main hydraulic properties. The direct measurements of the hydraulic parameters are quite difficult and time-consuming; the estimation of them can be an alternative especially for large areas. The most commonly used basis of the estimation is the particle-size distribution (PSD) data or texture class. The aim of our work was to compile an integrated and harmonized 3D pedo- and agrogeological database with the physical properties and stratification of the formations to the depth of the permanent groundwater level, which describes the unsaturated zone in a 690 km2 pilot area. Since the existing pedo- and agrogeological databases are not able to serve separately these 3D model requirements, their integration was necessary. Due to its appropriate spatial and thematic resolution and data processing status, the Digital Kreybig Soil Information System (DKSIS) was chosen as pedological data source of the 3D model. The DKSIS has been compiled in the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, based on the 1:25,000 scale, national soil mapping program in Hungary. The survey sheets indicate the location of the observation sites. Due to the lack of measured PSD data, the field estimation of the textural classes, and the so-called "capillary rise of water" were used for the definition of the texture classes. The measured water uptake is supposed to have good relation with the textural class of the sample. During the data processing the inconsistent fields vs. capillary data pairs were excluded. In the DKSIS 649 polygons cover the pilot area, 484 soil profiles are occurring and characteristically each profile has two or three horizons. The agrogeological dataset is maintained by the Hungarian Geological Institute and derives

  14. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    Science.gov (United States)

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes. PMID:26820240

  15. Near-infrared spectroscopy integrated catheter for characterization of myocardial tissues: preliminary demonstrations to radiofrequency ablation therapy for atrial fibrillation.

    Science.gov (United States)

    Singh-Moon, Rajinder P; Marboe, Charles C; Hendon, Christine P

    2015-07-01

    Effects of radiofrequency ablation (RFA) treatment of atrial fibrillation can be limited by the ability to characterize the tissue in contact. Parameters obtained by conventional catheters, such as impedance and temperature can be insufficient in providing physiological information pertaining to effective treatment. In this report, we present a near-infrared spectroscopy (NIRS)-integrated catheter capable of extracting tissue optical properties. Validation experiments were first performed in tissue phantoms with known optical properties. We then apply the technique for characterization of myocardial tissues in swine and human hearts, ex vivo. Additionally, we demonstrate the recovery of critical parameters relevant to RFA therapy including contact verification, and lesion transmurality. These findings support the application of NIRS for improved guidance in RFA therapeutic interventions. PMID:26203376

  16. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    Science.gov (United States)

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF. PMID:26258358

  17. 3-D nonlinear force-free field reconstruction of solar active region 11158 by direct boundary integral equation

    CERN Document Server

    Wang, Rui; Tan, Baolin

    2013-01-01

    A 3-D coronal magnetic field is reconstructed for NOAA 11158 on Feb 14, 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented. This is about 1000 times faster than the original DBIE used on solar NLFFF modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures from different views three-dimensionally by SDO/AIA and STEREO A/B spacecraft simultaneously for the first time. They show very good agreement so that the topological configurations of the magnetic fields can be analyzed, thus its role in the flare process of the active region can be better understood. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the present averaged misalignment angles are at the same order as the state-of-the-art results obtained with reconstructed coronal loops as prescribed conditions and better than other NLFFF methods. It is found that the o...

  18. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    Directory of Open Access Journals (Sweden)

    Geoffrey Fucile

    Full Text Available Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org.

  19. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    Science.gov (United States)

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-05-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing.

  20. Integration of atomic layer deposition CeO2 thin films with functional complex oxides and 3D patterns

    International Nuclear Information System (INIS)

    We present a low-temperature, < 300 °C, ex-situ integration of atomic layer deposition (ALD) ultrathin CeO2 layers (3 to 5 unit cells) with chemical solution deposited La0.7Sr0.3MnO3 (LSMO) functional complex oxides for multilayer growth without jeopardizing the morphology, microstructure and physical properties of the functional oxide layer. We have also extended this procedure to pulsed laser deposited YBa2Cu3O7 (YBCO) thin films. Scanning force microscopy, X-ray diffraction, aberration corrected scanning transmission electron microscopy and macroscopic magnetic measurements were used to evaluate the quality of the perovskite films before and after the ALD process. By means of microcontact printing and ALD we have prepared CeO2 patterns using an ozone-robust photoresist that will avoid the use of hazardous lithography processes directly on the device components. These bilayers, CeO2/LSMO and CeO2/YBCO, are foreseen to have special interest for resistive switching phenomena in resistive random-access memory. - Highlights: • Integration of atomic layer deposition (ALD) CeO2 layers on functional complex oxides • Resistive switching is identified in CeO2/La0.7Sr0.3MnO3 and CeO2/YBa2Cu3O7 bilayers. • Study of the robustness of organic polymers for area-selective ALD • Combination of ALD and micro-contact printing to obtain 3D patterns of CeO2

  1. 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT).

    Science.gov (United States)

    Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula

    2016-05-01

    This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool. PMID:26496803

  2. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    Energy Technology Data Exchange (ETDEWEB)

    Weigell, Philipp

    2013-01-15

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb{sup -1}, the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 10{sup 35} cm{sup -2}s{sup -1} as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 10{sup 16} n{sub eq}/cm{sup 2}. A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering

  3. 3D Numerical Optimization Modelling of Ivancich landslides (Assisi, Italy) via integration of remote sensing and in situ observations.

    Science.gov (United States)

    Castaldo, Raffaele; De Novellis, Vincenzo; Lollino, Piernicola; Manunta, Michele; Tizzani, Pietro

    2015-04-01

    The new challenge that the research in slopes instabilities phenomena is going to tackle is the effective integration and joint exploitation of remote sensing measurements with in situ data and observations to study and understand the sub-surface interactions, the triggering causes, and, in general, the long term behaviour of the investigated landslide phenomenon. In this context, a very promising approach is represented by Finite Element (FE) techniques, which allow us to consider the intrinsic complexity of the mass movement phenomena and to effectively benefit from multi source observations and data. In this context, we perform a three dimensional (3D) numerical model of the Ivancich (Assisi, Central Italy) instability phenomenon. In particular, we apply an inverse FE method based on a Genetic Algorithm optimization procedure, benefitting from advanced DInSAR measurements, retrieved through the full resolution Small Baseline Subset (SBAS) technique, and an inclinometric array distribution. To this purpose we consider the SAR images acquired from descending orbit by the COSMO-SkyMed (CSK) X-band radar constellation, from December 2009 to February 2012. Moreover the optimization input dataset is completed by an array of eleven inclinometer measurements, from 1999 to 2006, distributed along the unstable mass. The landslide body is formed of debris material sliding on a arenaceous marl substratum, with a thin shear band detected using borehole and inclinometric data, at depth ranging from 20 to 60 m. Specifically, we consider the active role of this shear band in the control of the landslide evolution process. A large field monitoring dataset of the landslide process, including at-depth piezometric and geological borehole observations, were available. The integration of these datasets allows us to develop a 3D structural geological model of the considered slope. To investigate the dynamic evolution of a landslide, various physical approaches can be considered

  4. Investigation of properties of novel silicon pixel assemblies employing thin n-in-p sensors and 3D-integration

    International Nuclear Information System (INIS)

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300 fb-1, the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running - especially if the luminosity is raised to about 5 x 1035 cm-2s-1 as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost effective pixel assemblies with a minimal material budget, a larger active area fraction as compared to the current detectors, and a higher granularity. Furthermore, the assemblies must be able to withstand received fluences up to 2 . 1016 neq/cm2. A new pixel assembly concept answering the challenges posed by the high instantaneous luminosities is investigated in this thesis. It employs five novel technologies, namely n-in-p pixel sensors, thin pixel sensors, slim edges with or without implanted sensor sides, and 3D-integration incorporating a new interconnection technology, named Solid Liquid InterDiffusion (SLID) as well as Inter-Chip-Vias (ICVs). n-in-p sensors are cost-effective, since they only need patterned processing on one side. Their performance before and after irradiation is investigated and compared to results obtained with currently used n-in-n sensors. Reducing the thickness of the sensors lowers the amount of multiple scattering within the tracking system and leads to higher

  5. 3D WEB VISUALIZATION OF ENVIRONMENTAL INFORMATION – INTEGRATION OF HETEROGENEOUS DATA SOURCES WHEN PROVIDING NAVIGATION AND INTERACTION

    Directory of Open Access Journals (Sweden)

    L. Herman

    2015-08-01

    Full Text Available 3D information is essential for a number of applications used daily in various domains such as crisis management, energy management, urban planning, and cultural heritage, as well as pollution and noise mapping, etc. This paper is devoted to the issue of 3D modelling from the levels of buildings to cities. The theoretical sections comprise an analysis of cartographic principles for the 3D visualization of spatial data as well as a review of technologies and data formats used in the visualization of 3D models. Emphasis was placed on the verification of available web technologies; for example, X3DOM library was chosen for the implementation of a proof-of-concept web application. The created web application displays a 3D model of the city district of Nový Lískovec in Brno, the Czech Republic. The developed 3D visualization shows a terrain model, 3D buildings, noise pollution, and other related information. Attention was paid to the areas important for handling heterogeneous input data, the design of interactive functionality, and navigation assistants. The advantages, limitations, and future development of the proposed concept are discussed in the conclusions.

  6. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    Science.gov (United States)

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-01

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. PMID:26626828

  7. Integration of the 3D kinetics code QUABOX/CUBBOX in the GRS analysis simulator-ATLAS based on ATHLET

    International Nuclear Information System (INIS)

    The paper describes the successfully performed verification tests with the ATLAS simulator environment and the coupled QUABOX/CUBBOX-ATHLET code system with enhanced option of switching from point kinetics (PK) to 3D calculations. (authors)

  8. Integral imaging-based large-scale full-color 3-D display of holographic data by using a commercial LCD panel.

    Science.gov (United States)

    Dong, Xiao-Bin; Ai, Ling-Yu; Kim, Eun-Soo

    2016-02-22

    We propose a new type of integral imaging-based large-scale full-color three-dimensional (3-D) display of holographic data based on direct ray-optical conversion of holographic data into elemental images (EIs). In the proposed system, a 3-D scene is modeled as a collection of depth-sliced object images (DOIs), and three-color hologram patterns for that scene are generated by interfering each color DOI with a reference beam, and summing them all based on Fresnel convolution integrals. From these hologram patterns, full-color DOIs are reconstructed, and converted into EIs using a ray mapping-based direct pickup process. These EIs are then optically reconstructed to be a full-color 3-D scene with perspectives on the depth-priority integral imaging (DPII)-based 3-D display system employing a large-scale LCD panel. Experiments with a test video confirm the feasibility of the proposed system in the practical application fields of large-scale holographic 3-D displays. PMID:26907021

  9. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  10. Integration of a 3D Variational data assimilation scheme with a coastal area morphodynamic model of Morecambe Bay

    OpenAIRE

    Thornhill, Gill D.; Mason, David C.; Sarah L. Dance; Amos S. Lawless; Nichols, Nancy K.; Forbes, Heather R.

    2012-01-01

    This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter requir...

  11. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs.

    Science.gov (United States)

    Burns, Jhr; Delparte, D; Gates, R D; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  12. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    Science.gov (United States)

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  13. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    CERN Document Server

    Aruntinov, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Wermes, N; Breugnon, P; Chantepie, B; Clemens, J.C; Fei, R; Fougeron, D; Godiot, S; Pangaud, P; Rozanov, A; Garcia-Sciveres, M; Mekkaoui, A

    2013-01-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  14. TECNOLOGIE INTEGRATE PER LA GESTIONE E VISUALIZZAZIONE DEL PAESAGGIO 3D: IL CASO STUDIO DELLA NECROPOLI DELLA BANDITACCIA.

    Directory of Open Access Journals (Sweden)

    Lucia Marsicano

    2015-08-01

    Full Text Available The project aims to create a 3D model of the Necropolis of Banditaccia in Cerveteri. The site, UNESCO heritage since 2004 , covers an area of 400 hectares. Starting from 2D data, provided by the CNR , it was possible to realize the model . Aim of the work was the return in 3D of the plateau of the necropolis and the creation of a container, metrically correct, in which is possible to place models resulting from laser scanners, photogrammetry and modeling of archaeological items.

  15. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    Science.gov (United States)

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best represented the…

  16. From geological complexity to hydrogeological understanding using an integrated 3D conceptual modelling approach : insights from the Cotswolds, UK

    OpenAIRE

    Bricker, S. H.; A. J. M. Barron; A. G. Hughes; Jackson, C; Peach, D.

    2014-01-01

    Adequate hydrogeological conceptualisation of structurally complex fractured aquifers requires the support of detailed geological mapping and three dimensional understanding. With a geological framework in place uncertainties in hydrological understanding and irregularities in hydraulic observations may be rationalised. Using the Cotswold of southern England, which are underlain by the ooidal limestone-dominated Middle Jurassic Inferior Oolite and Great Oolite groups, 3D modell...

  17. 3D based integrated support concept for improving safety and cost-efficiency of nuclear decommissioning projects

    International Nuclear Information System (INIS)

    New concepts enabled by emerging computing technologies based on 3D simulation, virtual (VR) and augmented reality (AR), advanced user interfaces (UI), mobile and wearable computing devices, and geographical information systems have great potential for improving nuclear decommissioning strategies. Such techniques offer very effective new opportunities for improving early characterisation and strategical decision making, knowledge management, on-site management of radiological waste, and regulatory compliance. In addition, such methods allow for an effective training of foreseen decommissioning workers to begin during operation and transition phase without disturbance to normal operation of the plant. Improved plant information systems enabled by 3D simulation, advanced user interface, and mobile computing technologies, offer better ways for acquiring and managing the radiological and other plant information that are required for informed decision making in the early planning phase of decommissioning activities. User friendly, realistic management and visualisation of available radiological information, and results of radiological data analyses, allows decision makers to have a better understanding of the radiological conditions expected when decontamination and dismantling work starts, without high need for physical presence in the environment. Such functionalities, combined with capabilities for easy evaluation of possible decommissioning (decontamination, dismantling) options allow decision makers to make informed decisions, and enable a seamless communication (common language) within a multidisciplinary decommissioning planning team. Support systems, enabled by modern information technologies are expected to improve information and knowledge management in decommissioning projects, especially during transition from the operation phase. Traditionally, inefficient transfer of knowledge from the design and operation phase, results in suboptimal work strategies and

  18. Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea

    Science.gov (United States)

    Capet, Arthur; Meysman, Filip J. R.; Akoumianaki, Ioanna; Soetaert, Karline; Grégoire, Marilaure

    2016-05-01

    Three-dimensional (3D) ecosystem models of shelf environments should properly account for the biogeochemical cycling within the sea floor. However, a full and explicit representation of sediment biogeochemistry into 3D ocean models is computationally demanding. Here, we describe a simplified approach to include benthic processes in 3D ocean models, which includes a parameterization of the different pathways for organic matter mineralization and allows for organic matter remobilization by bottom currents and waves. This efficient approach enables decadal simulations that resolve the inertial contribution of the sea floor to the biogeochemical cycling in shelf environments. The model was implemented to analyze the benthic-pelagic coupling in the northwestern shelf of the Black Sea. Three distinct biogeochemical provinces were identified on the basis of fluxes and rates associated with benthic-pelagic coupling. Our model simulations suitably capture the seasonal variability of in situ flux data as well as their regional variation, which stresses the importance of incorporating temporally varying sediment biogeochemistry and resuspension/redeposition cycles in shelf ecosystem models.

  19. Capabilities of technology utilization and technology integration : Impact of 3D technologies on product development process and performance

    OpenAIRE

    Takeda, Yoko; Aoshima, Yaichi; Nobeoka, Kentaro

    2010-01-01

    Multi-functional technologies widely influence on organization and often require organizational technology integration capabilities to achieve the total effectiveness. Technology integration capability here implies not only utilizing technologies in the present setting of organizational environment but also reforming organizational process and structure towards total optimization. This paper aims to exam technology integration capabilities among Japanese and Chinese firms through questionnair...

  20. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    Science.gov (United States)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  1. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.

    Science.gov (United States)

    Ge, Lei; Wang, Shoumei; Song, Xianrang; Ge, Shenguang; Yu, Jinghua

    2012-09-01

    A novel 3D microfluidic paper-based immunodevice, integrated with blood plasma separation from whole blood samples, automation of rinse steps, and multiplexed CL detections, was developed for the first time based on the principle of origami (denoted as origami-based device). This 3D origami-based device, comprised of one test pad surrounded by four folding tabs, could be patterned and fabricated by wax-printing on paper in bulk. In this work, a sandwich-type chemiluminescence (CL) immunoassay was introduced into this 3D origami-based immunodevice, which could separate the operational procedures into several steps including (i) folding pads above/below and (ii) addition of reagent/buffer under a specific sequence. The CL behavior, blood plasma separation, washing protocol, and incubation time were investigated in this work. The developed 3D origami-based CL immunodevice, combined with a typical luminuol-H(2)O(2) CL system and catalyzed by Ag nanoparticles, showed excellent analytical performance for the simultaneous detection of four tumor markers. The whole blood samples were assayed and the results obtained were in agreement with the reference values from the parallel single-analyte test. This paper-based microfluidic origami CL detection system provides a new strategy for a low-cost, sensitive, simultaneous multiplex immunoassay and point-of-care diagnostics. PMID:22763468

  2. Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters.

    Science.gov (United States)

    Carpenter, Thomas M; Rashid, M Wasequr; Ghovanloo, Maysam; Cowell, David M J; Freear, Steven; Degertekin, F Levent

    2016-08-01

    In real-time catheter-based 3-D ultrasound imaging applications, gathering data from the transducer arrays is difficult, as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications, such as intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper, an alternative approach using analog time-division multiplexing (TDM) is presented, which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described, which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4- to 11-MHz range. A TDM integrated circuit (IC) with an 8:1 multiplexer is interfaced with a fast analog-to-digital converter (ADC) through a microcoaxial catheter cable bundle, and processed with a field-programmable gate array register-transfer level simulation. Input signals to the TDM IC are recovered with -40-dB crosstalk between the channels on the same microcoax, showing the feasibility of this system for ultrasound imaging applications. PMID:27116738

  3. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping

    KAUST Repository

    Li, Ming

    2012-10-18

    This article presents a dielectrophoresis (DEP)-based microfluidic device with the three-dimensional (3D) microelectrode configuration for concentrating and separating particles in a continuous throughflow. The 3D electrode structure, where microelectrode array are patterned on both the top and bottom surfaces of the microchannel, is composed of three units: focusing, aligning and trapping. As particles flowing through the microfluidic channel, they are firstly focused and aligned by the funnel-shaped and parallel electrode array, respectively, before being captured at the trapping unit due to negative DEP force. For a mixture of two particle populations of different sizes or dielectric properties, with a careful selection of suspending medium and applied field, the population exhibits stronger negative DEP manipulated by the microelectrode array and, therefore, separated from the other population which is easily carried away toward the outlet due to hydrodynamic force. The functionality of the proposed microdevice was verified by concentrating different-sized polystyrene (PS) microparticles and yeast cells dynamically flowing in the microchannel. Moreover, separation based on size and dielectric properties was achieved by sorting PS microparticles, and isolating 5 μm PS particles from yeast cells, respectively. The performance of the proposed micro-concentrator and separator was also studied, including the threshold voltage at which particles begin to be trapped, variation of cell-trapping efficiency with respect to the applied voltage and flow rate, and the efficiency of separation experiments. The proposed microdevice has various advantages, including multi-functionality, improved manipulation efficiency and throughput, easy fabrication and operation, etc., which shows a great potential for biological, chemical and medical applications. © 2012 Springer-Verlag Berlin Heidelberg.

  4. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    Science.gov (United States)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  5. Heart dose reduction in breast cancer treatment with simultaneous integrated boost. Comparison of treatment planning and dosimetry for a novel hybrid technique and 3D-CRT

    International Nuclear Information System (INIS)

    The present study compares in silico treatment plans of clinically established three-dimensional conformal radiotherapy (3D-CRT) with a hybrid technique consisting of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) during normally fractionated radiation of mammary carcinomas with simultaneous integrated boost on the basis of dose-volume histogram (DVH) parameters. Radiation treatment planning was performed with a hybrid and a 3D-CRT treatment plan for 20 patients. Hybrid plans were implemented with two tangential IMRT fields and a VMAT field in the angular range of the tangents. Verification of the plan was performed with a manufacturer-independent measurement system consisting of a detector array and rotation unit. The mean values of the heart dose for the entire patient collective were 3.6 ± 2.5 Gy for 3D-CRT and 2.9 ± 2.1 Gy for the hybrid technique (p < 0.01). For the left side (n = 10), the mean values for the left anterior descending artery were 21.8 ± 7.4 Gy for 3D-CRT and 17.6 ± 7.4 Gy for the hybrid technique (p < 0.01). The mean values of the ipsilateral lung were 11.9 ± 1.6 Gy for 3D-CRT and 10.5 ± 1.3 Gy for the hybrid technique (p < 0.01). Calculated dose distributions in the hybrid arm were in good accordance with measured dose (on average 95.6 ± 0.5 % for γ < 1 and 3 %/3 mm). The difference of the mean treatment time per fraction was 7 s in favor of 3D-CRT. Compared with the established 3D-CRT technique, the hybrid technique allows for a decrease in dose, particularly of the mean heart and lung dose with comparable target volume acquisition and without disadvantageous low-dose load of contralateral structures. Uncomplicated implementation of the hybrid technique was demonstrated in this context. The hybrid technique combines the advantages of tangential IMRT with the superior sparing of organs at risk by VMAT. (orig.)

  6. Research and application on integration modeling of 3D bodies in coal mine with blended data model based on TIN and ARTP

    Institute of Scientific and Technical Information of China (English)

    HAN Zuo-zhen; HAN Rui-dong; MAO Shan-jun; HAN Jing-min

    2007-01-01

    Data modeling is the foundation of three-dimensional visualization technology.First the paper proposed the 3D integrated data model of stratum, laneway and drill on the basic of TIN and ARTP, and designed the relevant conceptual and logical model from the view of data model, and described the data structure of geometric elements of the model by adopting the object-oriented modeling idea. And then studied the key modeling technology of stratum, laneway and drill, introduced the ARTP modeling process of stratum,laneway and drill and studied the 3D geometric modeling process of different section laneways. At last, the paper realized the three-dimensional visualization system professionally coalmine-oriented, using SQL Server as background database, Visual C++6.0 and OpenGL as foreground development tools.

  7. Feasibility study of P2P-type system architecture with 3D medical image data support for medical integrated network systems

    International Nuclear Information System (INIS)

    We are investigating an integrated medical network system with an electronic letter of introduction function and a 3D image support function operating in the Internet environment. However, the problems with current C/S (client/server)-type systems are inadequate security countermeasures and insufficient transmission availability. In this report, we propose a medical information cooperation system architecture that employs a P2P (peer-to-peer)-type communication method rather than a C/S-type method, which helps to prevent a reduction in processing speed when large amounts of data (such as 3D images) are transferred. In addition, a virtual clinic was created and a feasibility study was conducted to evaluate the P2P-type system. The results showed that efficiency was improved by about 77% in real-time transmission, suggesting that this system may be suitable for practical application. (author)

  8. Multi-sourced, 3D geometric characterization of volcanogenic karst features: Integrating lidar, sonar, and geophysical datasets (Invited)

    Science.gov (United States)

    Sharp, J. M.; Gary, M. O.; Reyes, R.; Halihan, T.; Fairfield, N.; Stone, W. C.

    2009-12-01

    Karstic aquifers can form very complex hydrogeological systems and 3-D mapping has been difficult, but Lidar, phased array sonar, and improved earth resistivity techniques show promise in this and in linking metadata to models. Zacatón, perhaps the Earth’s deepest cenote, has a sub-aquatic void space exceeding 7.5 x 106 cubic m3. It is the focus of this study which has created detailed 3D maps of the system. These maps include data from above and beneath the the water table and within the rock matrix to document the extent of the immense karst features and to interpret the geologic processes that formed them. Phase 1 used high resolution (20 mm) Lidar scanning of surficial features of four large cenotes. Scan locations, selected to achieve full feature coverage once registered, were established atop surface benchmarks with UTM coordinates established using GPS and Total Stations. The combined datasets form a geo-registered mesh of surface features down to water level in the cenotes. Phase 2 conducted subsurface imaging using Earth Resistivity Imaging (ERI) geophysics. ERI identified void spaces isolated from open flow conduits. A unique travertine morphology exists in which some cenotes are dry or contain shallow lakes with flat travertine floors; some water-filled cenotes have flat floors without the cone of collapse material; and some have collapse cones. We hypothesize that the floors may have large water-filled voids beneath them. Three separate flat travertine caps were imaged: 1) La Pilita, which is partially open, exposing cap structure over a deep water-filled shaft; 2) Poza Seca, which is dry and vegetated; and 3) Tule, which contains a shallow (cenote Verde. La Pilita ERI, verified by SCUBA, documented the existence of large water-filled void zones ERI at Poza Seca showed a thin cap overlying a conductive zone extending to at least 25 m depth beneath the cap with no lower boundary of this zone evident. Verde ERI indicate a deep water-filled cavity

  9. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  10. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  11. Integrated Voltage—Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer

    Directory of Open Access Journals (Sweden)

    Yuenyong Nilsiam

    2015-11-01

    Full Text Available To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap 3-D printers requires a low-cost sensor and data logger system to measure current (I and voltage (V of the gas metal arc welders (GMAW. This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s computer. To test this custom current and voltage monitoring device this study reports on its use on an upgraded all metal RepRap during the printing of aluminum alloy (ER1100, ER4043, ER4943, ER4047, and ER5356. The voltage and current data were analyzed on a per alloy basis and also layer-by-layer in order to evaluate the device’s efficacy as a monitoring device for 3-D printing and the results of the integrated design are discussed.

  12. Sleep as spatiotemporal integration of biological processes that evolved to periodically reinforce neurodynamic and metabolic homeostasis: The 2m3d paradigm of sleep.

    Science.gov (United States)

    Mader, Edward Claro; Mader, Annie Cielo Llave

    2016-08-15

    Sleep continues to perplex scientists and researchers. Despite decades of sleep research, we still lack a clear understanding of the biological functions and evolution of sleep. In this review, we will examine sleep from a functional and phylogenetic perspective and describe some important conceptual gaps in understanding sleep. Classical theories of the biology and evolution of sleep emphasize sensory activation, energy balance, and metabolic homeostasis. Advances in electrophysiology, functional neuroimaging, and neuroplasticity allow us to view sleep within the framework of neural dynamics. With this paradigm shift, we have come to realize the importance of neurodynamic homeostasis in shaping the biology of sleep. Evidently, animals sleep to achieve neurodynamic and metabolic homeostasis. We are not aware of any framework for understanding sleep where neurodynamic, metabolic, homeostatic, chronophasic, and afferent variables are all taken into account. This motivated us to propose the two-mode three-drive (2m3d) paradigm of sleep. In the 2m3d paradigm, local neurodynamic/metabolic (N/M) processes switch between two modes-m0 and m1-in response to three drives-afferent, chronophasic, and homeostatic. The spatiotemporal integration of local m0/m1 operations gives rise to the global states of sleep and wakefulness. As a framework of evolution, the 2m3d paradigm allows us to view sleep as a robust adaptive strategy that evolved so animals can periodically reinforce neurodynamic and metabolic homeostasis while remaining sensitive to their internal and external environment. PMID:27423566

  13. Heart dose reduction in breast cancer treatment with simultaneous integrated boost. Comparison of treatment planning and dosimetry for a novel hybrid technique and 3D-CRT

    Energy Technology Data Exchange (ETDEWEB)

    Joest, Vincent; Kretschmer, Matthias; Sabatino, Marcello; Wuerschmidt, Florian; Dahle, Joerg; Lorenzen, Joern [Radiological Alliance, Hamburg (Germany); Ueberle, Friedrich [University of Applied Sciences, Faculty Life Sciences, Hamburg (Germany)

    2015-09-15

    The present study compares in silico treatment plans of clinically established three-dimensional conformal radiotherapy (3D-CRT) with a hybrid technique consisting of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) during normally fractionated radiation of mammary carcinomas with simultaneous integrated boost on the basis of dose-volume histogram (DVH) parameters. Radiation treatment planning was performed with a hybrid and a 3D-CRT treatment plan for 20 patients. Hybrid plans were implemented with two tangential IMRT fields and a VMAT field in the angular range of the tangents. Verification of the plan was performed with a manufacturer-independent measurement system consisting of a detector array and rotation unit. The mean values of the heart dose for the entire patient collective were 3.6 ± 2.5 Gy for 3D-CRT and 2.9 ± 2.1 Gy for the hybrid technique (p < 0.01). For the left side (n = 10), the mean values for the left anterior descending artery were 21.8 ± 7.4 Gy for 3D-CRT and 17.6 ± 7.4 Gy for the hybrid technique (p < 0.01). The mean values of the ipsilateral lung were 11.9 ± 1.6 Gy for 3D-CRT and 10.5 ± 1.3 Gy for the hybrid technique (p < 0.01). Calculated dose distributions in the hybrid arm were in good accordance with measured dose (on average 95.6 ± 0.5 % for γ < 1 and 3 %/3 mm). The difference of the mean treatment time per fraction was 7 s in favor of 3D-CRT. Compared with the established 3D-CRT technique, the hybrid technique allows for a decrease in dose, particularly of the mean heart and lung dose with comparable target volume acquisition and without disadvantageous low-dose load of contralateral structures. Uncomplicated implementation of the hybrid technique was demonstrated in this context. The hybrid technique combines the advantages of tangential IMRT with the superior sparing of organs at risk by VMAT. (orig.) [German] Die vorliegende Studie vergleicht ''in silico

  14. 3-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Christiansen, Thomas Lehrmann; Thomsen, Erik Vilain;

    2015-01-01

    –column-addressed arrays is an apparent ghost effect in the point spread function caused by edge waves. This paper investigates the origin of the edge waves and the effect of introducing an integrated apodization to reduce the ghost echoes. The performance of a λ/2-pitch 5-MHz 128 + 128 row–column-addressed array...... ghost echo intensity of a scatterer at (x,y, z) = (8, 3, 30) mm was decreased by 43 dB by integrating roll-off apodization into the array. The main lobe was unaffected by the apodization. Simulations of a 3-mm-diameter anechoic blood vessel at 30 mm depth showed that applying the transducer...

  15. Preconditioning techniques for constrained vector potential integral equations, with application to 3-D magnetoquasistatic analysis of electronic packages

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, M.; Phillips, J.R. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1994-12-31

    In this paper techniques are presented for preconditioning equations generated by discretizing constrained vector integral equations associated with magnetoquasistatic analysis. Standard preconditioning approaches often fail on these problems. The authors present a specialized preconditioning technique and prove convergence bounds independent of the constraint equations and electromagnetic excitation frequency. Computational results from analyzing several electronic packaging examples are given to demonstrate that the new preconditioning approach can sometimes reduce the number of GMRES iterations by more than an order of magnitude.

  16. A fully integrated 28nm Bluetooth low-energy transmitter with 36% system efficiency at 3dBm

    OpenAIRE

    Kuo, Feng-Wei; Babaie, Masoud; Chen, Ron; Staszewski, Robert Bogdan; et al

    2015-01-01

    We propose a new transmitter (TX) architecture for ultra-low power radios. An all-digital PLL employs a digitally controlled oscillator with switching current sources to reduce supply voltage and power without sacrificing its phase noise and startup margins. It also reduces 1/f noise allowing the ADPLL, after settling, to reduce its sampling rate or shut it off entirely during direct DCO data modulation. The switching power amplifier integrates its matching network while operating in class-E/...

  17. Integrated 3D control concept for active driver assistance; Integriertes drei-dimensionales Fuehrungskonzept als aktive Fahrerassistenz

    Energy Technology Data Exchange (ETDEWEB)

    Greul, R.; Bertram, T. [Univ. Duisburg (Germany); Seemann, M.

    2002-07-01

    The integration of by-wire systems into motor vehicles offers great potential for improvement in active and passive safety. Assistance systems that improve safety can be simply adapted through the application in electronics of safety relevant vehicle functions. Another aspect is the possibility of networking individual electronic components and to improve performance in comparison to original individual systems through the coordination of the modules. This method is used in the research presented here to develop an integrated control concept. Modules for vehicle condition recognition and autonomous vehicle dynamics control were also developed. Autonomous control is applied in the areas of steering, braking and damping. As components of the electronic network, the modules are overseen by a supervisory unit - the integrations controller. Simulation results and the application of individual components and their integration based on this description of the modules required and their application is also presented here. (orig.) [German] Der Einzug von By-wire Systemen in das Kraftfahrzeug verspricht ein grosses Potenzial fuer die Erhoehung der aktiven und passiven Sicherheit. Durch die elektronische Umsetzung von sicherheitsrelevanten Fahrzeugfunktionen koennen sicherheitssteigernde Assistenzsysteme einfach adaptiert werden. Ein anderer Aspekt ist die Moeglichkeit einzelne Elektronikkomponenten zu vernetzen und durch die Koordination der Module eine Leistungsverbesserung gegenueber der Einzelkomponente zu erreichen. Dieser Umstand wird genutzt, um im Rahmen des Beitrages eine Integrationsregelung vorzustellen. Dabei werden Module fuer die Bereiche Fahrzustandsbeurteilung und autonome Fahrdynamikregelung entwickelt. Autonome Regelungen kommen in den Bereichen Lenken, Bremsen und Daempfen zur Anwendung. Als Komponenten des elektronischen Netzwerkes werden diese Module durch eine uebergeordnete Instanz ueberwacht, dem Modul der Integrationsregelung. Ausgehend von einer

  18. Data Integration Acquired from Micro-Uav and Terrestrial Laser Scanner for the 3d Mapping of Jesuit Ruins of São Miguel das Missões

    Science.gov (United States)

    Reiss, M. L. L.; da Rocha, R. S.; Ferraz, R. S.; Cruz, V. C.; Morador, L. Q.; Yamawaki, M. K.; Rodrigues, E. L. S.; Cole, J. O.; Mezzomo, W.

    2016-06-01

    The Jesuit Missions the Guaranis were one of the great examples of cultural, social, and scientific of the eighteenth century, which had its decline from successive wars that followed the exchange of territories domain occupied by Portugal and Spain with the Madrid Treaty of January 13, 1750. One of the great examples of this development is materialized in the ruins of 30 churches and villages that remain in a territory that now comprises part of Brazil, Argentina and Paraguay. These Churches, São Miguel das Missões is among the Brazilian ruins, the best preserved. The ruins of São Miguel das Missões were declared a UNESCO World Cultural Heritage in 1983 and the Institute of National Historical Heritage (IPHAN) is the Brazilian Federal agency that manages and maintains this heritage. In order to produce a geographic database to assist the IPHAN in the management of the Ruins of São Miguel das Missões it was proposed a three-dimensional mapping of these ruins never performed in this location before. The proposal is integrated data acquired from multiple sensors: two micro-UAV, an Asctec Falcon 8 (rotary wing) and a Sensefly e-Bee (fixed wing); photos from terrestrial cameras; two terrestrial LIDAR sensors, one Faro Focus 3D S-120 and Optec 3D-HD ILRIS. With this abundance of sensors has been possible to perform comparisons and integration of the acquired data, and produce a 3D reconstruction of the church with high completeness and accuracy (better than 25 mm), as can be seen in the presentation of this work.

  19. Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links.

    Science.gov (United States)

    Kim, Hyunseok; Farrell, Alan C; Senanayake, Pradeep; Lee, Wook-Jae; Huffaker, Diana L

    2016-03-01

    Monolithically integrated III-V semiconductors on a silicon-on-insulator (SOI) platform can be used as a building block for energy-efficient on-chip optical links. Epitaxial growth of III-V semiconductors on silicon, however, has been challenged by the large mismatches in lattice constants and thermal expansion coefficients between epitaxial layers and silicon substrates. Here, we demonstrate for the first time the monolithic integration of InGaAs nanowires on the SOI platform and its feasibility for photonics and optoelectronic applications. InGaAs nanowires are grown not only on a planar SOI layer but also on a 3D structured SOI layer by catalyst-free metal-organic chemical vapor deposition. The precise positioning of nanowires on 3D structures, including waveguides and gratings, reveals the versatility and practicality of the proposed platform. Photoluminescence measurements exhibit that the composition of ternary InGaAs nanowires grown on the SOI layer has wide tunability covering all telecommunication wavelengths from 1.2 to 1.8 μm. We also show that the emission from an optically pumped single nanowire is effectively coupled and transmitted through an SOI waveguide, explicitly showing that this work lays the foundation for a new platform toward energy-efficient optical links. PMID:26901448

  20. Photogrammetric 2D/3D restitution of architectural elements and the integration of virtual models with his photographed real environment, using CAD, freeware software and conventional cameras

    Directory of Open Access Journals (Sweden)

    Pedro Cabezos-Bernal

    2013-10-01

    Full Text Available This article shows a working method using CAD and free software to do the calibration process for a conventional digital camera to correct the distortion produced by the lens. It will continue with the 3D restitution of the main geometric elements of the projection, and finally, the spatial geometric reconstruction of the elements of interest appearing in the photo, without needing of topographical support. It will be also shown a method to make the integration of the three-dimensional model on the photograph of the environment in which the building will be constructed, so that, if it’s seen from the appropriate point of view, it will be perfectly integrated in the place of photography where it really should be, which is extremely useful when showing an architectural project.

  1. Dynamical analysis of a PWR internals using super-elements in an integrated 3-D model model. Part 1: model description and static tests

    International Nuclear Information System (INIS)

    An integrated 3-D model of a research PWR reactor core support internals structures was developed for its dynamic analyses. The static tests for the validation of the model are presented. There are about 90 super-elements with, approximately, 85000 degrees of freedom (DoF), 8200 masters DoF, 12000 elements with about 8400 thin shell elements. A DEC VAX computer 11/785 model and the ANSYS program were used. If impacts occurs the spectral seismic analysis will be changed to a non-linear one with direct integration of the displacement pulse derived from the seismic accelerogram. This last will be obtained from the seismic acceleration response spectra. (author)

  2. Deep reflection structure imaged by the 2008 3D seismic reflection Survey at the RIDGE- 2000 East Pacific Rise Integrated Studies Site

    Science.gov (United States)

    Nedimović, M. R.; Carbotte, S. M.; Mutter, J. C.; Canales, P. J.; Carton, H.; Aghaei, O.; Marjanović, M.; Newman, K. R.; Hu, M.; Stowe, L.

    2008-12-01

    The first multi-source and multi-streamer 3D seismic reflection experiment carried out using academic resources was done aboard the R/V Marcus G. Langseth in Summer 2008 during cruise MGL0812. The targeted area was the RIDGE-2000 Integrated Studies Site at the East Pacific Rise. Our primary 3D survey grid extends from about 9° 57'N to 9° 42'N, with a smaller grid just to the south covering approximately from 9° 40'N to 9° 37.5'N. Additionally, about 1 and 0.5 km wide across-ridge-axis swaths of data were collected at 9° 36'N and 9°30'N respectively, as well as an along-ridge-axis swath about 1 km wide and extending from 10° 05'N to 9° 40'N. We here focus on a preliminary analysis of the reflection structure imaged within the lower crust and uppermost mantle. Moho reflection arrivals are imaged through much of the investigated area. The character of Moho reflection events varies from simple, single reflection wavelet to more complex arrivals indicating spatial changes in structure within the Moho transition zone. Particularly strong Moho reflections are observed in the southern half of the main 3D grid. In places, Moho reflection event appears to extend across the ridge axis potentially suggesting "zero-age" Moho development. Weak Moho arrivals are found at the north end of the main 3D box and within the smaller box to the south. Most notable place lacking Moho reflections is the Lamont seamount area where Moho is not observed on either side of the ridge axis, although the area lacking Moho reflections is wider on the western ridge flank. Further south, along the across-ridge-axis swaths, Moho reflections again become more pronounced. A suit of what mostly appear to be reflection events is recognized between the AMC and Moho. Many of them do not appear to be multiples, and their origin is not well understood. Possible origins for these events include: lower boundary of the AMC, S-converted waves, and lower crustal melt lenses. Along sections of the two 3D

  3. Reduced 30% scanning time 3D multiplexer integrated circuit applied to large array format 20KHZ frequency inkjet print heads

    CERN Document Server

    Liou, J -C

    2008-01-01

    Enhancement of the number and array density of nozzles within an inkjet head chip is one of the keys to raise the printing speed and printing resolutions. However, traditional 2D architecture of driving circuits can not meet the requirement for high scanning speed and low data accessing points when nozzle numbers greater than 1000. This paper proposes a novel architecture of high-selection-speed three-dimensional data registration for inkjet applications. With the configuration of three-dimensional data registration, the number of data accessing points as well as the scanning lines can be greatly reduced for large array inkjet printheads with nozzles numbering more than 1000. This IC (Integrated Circuit) architecture involves three-dimensional multiplexing with the provision of a gating transistor for each ink firing resistor, where ink firing resistors are triggered only by the selection of their associated gating transistors. Three signals: selection (S), address (A), and power supply (P), are employed toge...

  4. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James E. O' Brien

    2008-10-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  5. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  6. Three-dimensional (3D) coseismic deformation map produced by the 2014 South Napa Earthquake estimated and modeled by SAR and GPS data integration

    Science.gov (United States)

    Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna

    2016-04-01

    In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing

  7. STING Millennium Suite: integrated software for extensive analyses of 3d structures of proteins and their complexes

    Directory of Open Access Journals (Sweden)

    Yamagishi Michel EB

    2004-08-01

    Full Text Available Abstract Background The integration of many aspects of protein/DNA structure analysis is an important requirement for software products in general area of structural bioinformatics. In fact, there are too few software packages on the internet which can be described as successful in this respect. We might say that what is still missing is publicly available, web based software for interactive analysis of the sequence/structure/function of proteins and their complexes with DNA and ligands. Some of existing software packages do have certain level of integration and do offer analysis of several structure related parameters, however not to the extent generally demanded by a user. Results We are reporting here about new Sting Millennium Suite (SMS version which is fully accessible (including for local files at client end, web based software for molecular structure and sequence/structure/function analysis. The new SMS client version is now operational also on Linux boxes and it works with non-public pdb formatted files (structures not deposited at the RCSB/PDB, eliminating earlier requirement for the registration if SMS components were to be used with user's local files. At the same time the new SMS offers some important additions and improvements such as link to ProTherm as well as significant re-engineering of SMS component ConSSeq. Also, we have added 3 new SMS mirror sites to existing network of global SMS servers: Argentina, Japan and Spain. Conclusion SMS is already established software package and many key data base and software servers worldwide, do offer either a link to, or host the SMS. SMS (Sting Millennium Suite is web-based publicly available software developed to aid researches in their quest for translating information about the structures of macromolecules into knowledge. SMS allows to a user to interactively analyze molecular structures, cross-referencing visualized information with a correlated one, available across the internet. SMS

  8. Individual heterojunctions of 3D germanium crystals on silicon CMOS for monolithically integrated X-ray detector

    International Nuclear Information System (INIS)

    Monolithic integration of absorber layer and readout electronics is expected to greatly improve spatial resolution and sensitivity of X-ray imaging detectors. It requires, however, heteroepitaxial growth of thick, lattice, and thermally mismatched absorber layers on a Si substrate. Wafer bowing and layer cracks induced by temperature changes have so far appeared to be insurmountable obstacles in the way of realizing such a device. Here we present first results on a detector concept which does not suffer from such shortcomings. The absorber consists of closely spaced, tall Ge crystals, typically a few microns in width, each forming a heterojunction diode with the Si substrate. Electrical measurements on such diodes reveal reverse dark currents of the order of 1 mA/cm2, low enough for detector fabrication. We present a preliminary version of such a detector, where the pixel size is determined by the CMOS circuits rather than individual Ge crystals. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Investigation of Properties of Novel Silicon Pixel Assemblies Employing Thin n-in-p Sensors and 3D-Integration

    CERN Document Server

    Weigell, Philipp

    Until the end of the 2020 decade the LHC programme will be defining the high energy frontier of particle physics. During this time, three upgrade steps of the accelerator are currently planned to further increase the luminosity and energy reach. In the course of these upgrades the specifications of several parts of the current LHC detectors will be exceeded. Especially, the innermost tracking detectors are challenged by the increasing track densities and the radiation damage. This thesis focuses on the implications for the ATLAS experiment. Here, around 2021/2, after having collected an integrated luminosity of around 300/fb¹ , the silicon and gas detector components of the inner tracker will reach the end of their lifetime and will need to be replaced to ensure sufficient performance for continued running|especially if the luminosity is raised to about 5x10^35/(cm²s¹ ) as currently planned. An all silicon inner detector is foreseen to be installed. This upgrade demands cost-effective pixel assemblies with...

  10. The GLOBE 3D Genome Platform - towards a novel system-biological paper tool to integrate the huge complexity of genome organization and function.

    Science.gov (United States)

    Knoch, Tobias A; Lesnussa, Michael; Kepper, Nick; Eussen, Hubert B; Grosveld, Frank G

    2009-01-01

    Genomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the general sequential, three-dimensional and regulatory organization. Here, we present the GLOBE 3D Genome Platform a completely novel grid based virtual "paper" tool and in fact the first system-biological genome browser integrating the holistic complexity of genomes in a single easy comprehensible platform: Based on a detailed study of biophysical and IT requirements, every architectural level from sequence to morphology of one or several genomes can be approached in a real and in a symbolic representation simultaneously and navigated by continuous scale-free zooming within a unique three-dimensional OpenGL and grid driven environment. In principle an unlimited number of multi-dimensional data sets can be visualized, customized in terms of arrangement, shape, colour, and texture etc. as well as accessed and annotated individually or in groups using internal or external data bases/facilities. Any information can be searched and correlated by importing or calculating simple relations in real-time using grid resources. A general correlation and application platform for more complex correlative analysis and a front-end for system-biological simulations both using again the huge capabilities of grid infrastructures is currently under development. Hence, the GLOBE 3D Genome Platform is an example of a grid based approach towards a virtual desktop for genomic work combining the three fundamental distributed resources: i) visual data representation, ii) data access and management, and iii) data analysis and creation. Thus, the GLOBE 3D Genome Platform is the novel system-biology oriented information system urgently needed to access, present, annotate, and to simulate the holistic genome

  11. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  12. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

    Science.gov (United States)

    Yuan, Shuang; Wang, Sai; Li, Lin; Zhu, Yun-hai; Zhang, Xin-bo; Yan, Jun-min

    2016-04-13

    Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface. PMID:26986821

  13. Integrated Computational Tools for Identification of CCR5 Antagonists as Potential HIV-1 Entry Inhibitors: Homology Modeling, Virtual Screening, Molecular Dynamics Simulations and 3D QSAR Analysis

    Directory of Open Access Journals (Sweden)

    Suri Moonsamy

    2014-04-01

    Full Text Available Using integrated in-silico computational techniques, including homology modeling, structure-based and pharmacophore-based virtual screening, molecular dynamic simulations, per-residue energy decomposition analysis and atom-based 3D-QSAR analysis, we proposed ten novel compounds as potential CCR5-dependent HIV-1 entry inhibitors. Via validated docking calculations, binding free energies revealed that novel leads demonstrated better binding affinities with CCR5 compared to maraviroc, an FDA-approved HIV-1 entry inhibitor and in clinical use. Per-residue interaction energy decomposition analysis on the averaged MD structure showed that hydrophobic active residues Trp86, Tyr89 and Tyr108 contributed the most to inhibitor binding. The validated 3D-QSAR model showed a high cross-validated rcv2 value of 0.84 using three principal components and non-cross-validated r2 value of 0.941. It was also revealed that almost all compounds in the test set and training set yielded a good predicted value. Information gained from this study could shed light on the activity of a new series of lead compounds as potential HIV entry inhibitors and serve as a powerful tool in the drug design and development machinery.

  14. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  15. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  16. Volume-Rendering-Based Interactive 3D Measurement for Quantitative Analysis of 3D Medical Images

    OpenAIRE

    Yakang Dai; Jian Zheng; Yuetao Yang; Duojie Kuai; Xiaodong Yang

    2013-01-01

    3D medical images are widely used to assist diagnosis and surgical planning in clinical applications, where quantitative measurement of interesting objects in the image is of great importance. Volume rendering is widely used for qualitative visualization of 3D medical images. In this paper, we introduce a volume-rendering-based interactive 3D measurement framework for quantitative analysis of 3D medical images. In the framework, 3D widgets and volume clipping are integrated with volume render...

  17. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. Real-time multipoint gastrointestinal 19-fluorine catheter tracking

    OpenAIRE

    Hahn, Tobias; Kozerke, Sebastian; Schwizer, Werner; Fried, Michael; Boesiger, Peter; Steingoetter, Andreas

    2014-01-01

    PURPOSE: To develop MR based real-time gastrointestinal 19-Fluorine (19F) catheter tracking and visualization allowing for real-time detection and feedback of 3D catheter shape and movement as well as catheter-driven adjustments of 1H imaging geometry parameters. METHODS: Data were acquired on a 3T clinical system using 3D Golden Angle radial sampling. Two gastrointestinal catheters incorporating four fiducial 19F markers (65 or 50 µL marker volume) were tracked while being pulled through ...

  19. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison

    International Nuclear Information System (INIS)

    Biological brain tumor imaging using O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach. The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets. In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy. After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques. In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost

  20. FAT3D- An OECD/NEA benchmark on thermal fatigue in fluid mixing areas - CSNI integrity and ageing working group

    International Nuclear Information System (INIS)

    Thermal cycling is a widespread and recurring problem in nuclear power plants worldwide. Several incidents with leakage of primary water inside the containment challenged the integrity of nuclear power plants although no release outside of containment occurred. Thermal cycling was not taken into account at the design stage. Regulatory bodies, utilities and researchers have to address it for their operating plants. Thermal fatigue in a fluid mixing area is a well-known phenomenon that has already been studied in the past. Generally, this phenomenon is linked to turbulent mixing of two fluids at two different temperatures and creates 'elephant skin' type damage at the inner surface of the component and some cracks, which remain relatively small, compared to the thickness of the structure. However, this kind of fatigue damage can create cracks that propagate through the entire wall thickness. Some experts consider that 3D thermo-mechanical loading is a major factor influencing crack propagation through the thickness. This factor is linked to the complex thermal hydraulic loading and has an impact on the stress distribution in the structure and the damage or crack propagation estimates. For this reason an R and D program, based on a test and numerical interpretations, was launched by IRSN and conducted by CEA to quantify experimentally the influence of the 3D aspects on crack initiation and propagation. The main objective was to work on a configuration with a 3D thermal load easy enough to reproduce using numerical simulations, so that accurate mechanical studies could be carried out and assessment methodologies be validated or modified. Under the auspices of the OECD/NEA Committee for the Safety of Nuclear Installations (CSNI) and its Working Group on Integrity of Components and Structures (IAGE), a benchmark was launched in 2002. Seven organisations from four countries contributed to this effort aiming at comparing different approaches used for mechanical assessment

  1. Full-3D waveform tomography of Southern California crustal structure by using earthquake recordings and ambient noise Green's functions based on adjoint and scattering-integral methods

    Science.gov (United States)

    Lee, E.; Chen, P.; Jordan, T. H.; Maechling, P. J.; Denolle, M.; Beroza, G. C.

    2013-12-01

    We apply a unified methodology for seismic waveform analysis and inversions to Southern California. To automate the waveform selection processes, we developed a semi-automatic seismic waveform analysis algorithm for full-wave earthquake source parameters and tomographic inversions. The algorithm is based on continuous wavelet transforms, a topological watershed method, and a set of user-adjustable criteria to select usable waveform windows for full-wave inversions. The algorithm takes advantages of time-frequency representations of seismograms and is able to separate seismic phases in both time and frequency domains. The selected wave packet pairs between observed and synthetic waveforms are then used for extracting frequency-dependent phase and amplitude misfit measurements, which are used in our seismic source and structural inversions. Our full-wave waveform tomography uses the 3D SCEC Community Velocity Model Version 4.0 as initial model, a staggered-grid finite-difference code to simulate seismic wave propagations. The sensitivity (Fréchet) kernels are calculated based on the scattering integral and adjoint methods to iteratively improve the model. We use both earthquake recordings and ambient noise Green's functions, stacking of station-to-station correlations of ambient seismic noise, in our full-3D waveform tomographic inversions. To reduce errors of earthquake sources, the epicenters and source parameters of earthquakes used in our tomographic inversion are inverted by our full-wave CMT inversion method. Our current model shows many features that relate to the geological structures at shallow depth and contrasting velocity values across faults. The velocity perturbations could up to 45% with respect to the initial model in some regions and relate to some structures that do not exist in the initial model, such as southern Great Valley. The earthquake waveform misfits reduce over 70% and the ambient noise Green's function group velocity delay time variance

  2. Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

    KAUST Repository

    Limongi, Tania

    2014-12-12

    Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

  3. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    Science.gov (United States)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  4. 3D Reconstruction in Spiral Multislice CT Scans

    Directory of Open Access Journals (Sweden)

    M. Ghafouri

    2005-08-01

    Full Text Available Introduction & Background: The rapid development of spiral (helical computed tomography (CT has resulted in exciting new applications for CT. One of these applications, three-dimensional (3D CT with volume ren-dering, is now a major area of clinical and academic interest. One of the greatest advantages of spiral CT with 3D volume rendering is that it provides all the necessary information in a single radiologic study (and there-fore at the lowest possible price in cases that previously required two or more studies. Three-dimensional vol-ume rendering generates clinically accurate and immediately available images from the full CT data set with-out extensive editing. It allows the radiologist and clinician to address specific questions concerning patient care by interactively exploring different aspects of the data set. Three-dimensional images integrate a series of axial CT sections into a form that is often easier to interpret than the sections themselves and can be made to appear similar to other more familiar images such as catheter angiograms. The data are organized into a 3D matrix of volume elements (voxels. The screen of the computer monitor is a 2D-surface composed of discrete picture elements (pixels. Presenting what is stored in memory (ie, floating within the monitor on a 2D-screen is a challenge, but it is the very problem that 3D reconstruc-tion software has creatively solved. Voxel selection is usually accomplished by projecting lines (rays through the data set that correspond to the pixel matrix of the desired 2D image. Differences in the images produced with various 3D rendering techniques are the result of variations in how voxels are selected and weighted. In this article, I compare 3D volume rendering of spiral CT data with other rendering techniques (shaded surface display, maximum intensity projection and present a brief history of 3D volume rendering and discuss the im-plementation of this promising technology in terms of

  5. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm

  6. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  7. MediGuide-impact on catheter ablation techniques and workflow.

    Science.gov (United States)

    Pillarisetti, Jayasree; Kanmanthareddy, Arun; Reddy, Yeruva Madhu; Lakkireddy, Dhanunjaya

    2014-09-01

    Since the introduction of percutaneous intervention in modern medical science, specifically cardiovascular medicine fluoroscopy has remained the gold standard for navigation inside the cardiac structures. As the complexity of the procedures continue to increase with advances in interventional electrophysiology, the procedural times and fluoroscopy times have proportionately increased and the risks of radiation exposure both to the patients as well as the operator continue to rise. 3D electroanatomic mapping systems have to some extent complemented fluoroscopic imaging in improving catheter navigation and forming a solid platform for exploring the electroanatomic details of the target substrate. The 3D mapping systems are still limited as they continue to be static representations of a dynamic heart without being completely integrated with fluoroscopy. The field needed a technological solution that could add a dynamic positioning system that can be successfully incorporated into fluoroscopic imaging as well as electroanatomic imaging modalities. MediGuide is one such innovative technology that exploits the geo-positioning system principles. It employs a transmitter mounted on the X-ray panel that emits an electromagnetic field within which sensor-equipped diagnostic and ablation catheters are tracked within prerecorded fluoroscopic images. MediGuide is also integrated with NavX mapping system and helps in developing better 3D images by field scaling-a process that reduces field distortions that occur from impedance mapping alone. In this review, we discuss about the principle of MediGuide technology, the catheter ablation techniques, and the workflow in the EP lab for different procedures. PMID:24928484

  8. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  9. Crowded Field 3D Spectroscopy

    CERN Document Server

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  10. Assessment of the Structural Integrity of a Prototypical Instrumented IFMIF High Flux Test Module Rig by Fully 3D X-Ray Microtomography

    International Nuclear Information System (INIS)

    An inspection procedure to asses the mechanical integrity of IFMIF (International Fusion Materials Irradiation Facility) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray micro-tomography is the only known tool that could meet these requirements. In the High Flux Test Module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules which wear electric heaters and thermocouples are housed in rigs. To assure a well defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactures at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two micro-tomography facilities, our compact, high magnification installation at NILPRP and two high-end industrial tomography facilities with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a microfocus X-ray source (U=220 kV and I=300 μA) the geometry resolution was about 30-50 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements should be sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. Space resolution could be further improved if one

  11. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  12. 3D Integral Field Observations of Ten Galactic Winds - I. Extended phase (>10 Myr) of mass/energy injection before the wind blows

    CERN Document Server

    Sharp, R G

    2010-01-01

    We present 3D spectroscopic observations of a sample of 10 nearby galaxies with the AAOmega-SPIRAL integral field spectrograph on the 3.9m AAT, the largest survey of its kind to date. The double-beam spectrograph provides spatial maps in a range of spectral diagnostics: [OIII] 5007, H-beta, Mg-b, NaD, [OI] 6300, H-alpha, [NII] 6583, [SII] 6717, 6731. All of the objects in our survey show extensive wind-driven filamentation along the minor axis, in addition to large-scale disk rotation. Our sample can be divided into either starburst galaxies or active galactic nuclei (AGN), although some objects appear to be a combination of these. The total ionizing photon budget available to both classes of galaxies is sufficient to ionise all of the wind-blown filamentation out to large radius. We find however that while AGN photoionisation always dominates in the wind filaments, this is not the case in starburst galaxies where shock ionisation dominates. This clearly indicates that after the onset of star formation, there...

  13. Progress Toward an Integration of Process-Structure-Property-Performance Models for "Three-Dimensional (3-D) Printing" of Titanium Alloys

    Science.gov (United States)

    Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.

    2014-07-01

    Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.

  14. Integrated Methodologies for the 3D Survey and the Structural Monitoring of Industrial Archaeology: The Case of the Casalecchio di Reno Sluice, Italy

    Directory of Open Access Journals (Sweden)

    Gabriele Bitelli

    2011-01-01

    Full Text Available The paper presents an example of integrated surveying and monitoring activities for the control of an ancient structure, the Casalecchio di Reno sluice, located near Bologna, Italy. Several geomatic techniques were applied (classical topography, high-precision spirit levelling, terrestrial laser scanning, digital close-range photogrammetry, and thermal imagery. All these measurements were put together in a unique reference system and used in order to study the stability and the movements of the structure over the period of time observed. Moreover, the metrical investigations allowed the creation of a 3D model of the structure, and the comparison between two situations, before and after the serious damages suffered by the sluice during the winter season 2008-2009. Along with the detailed investigations performed on individual portions of the structure, an analysis of the whole sluice, carried out at a regional scale, was done via the use of aerial photogrammetry, using both recently acquired images and historical photogrammetric coverage. The measurements were carried out as part of a major consolidation and restoration activity, carried out by the “Consorzio della Chiusa di Casalecchio e del Canale di Reno”.

  15. Advanced 3-D analysis, client-server systems, and cloud computing-Integration of cardiovascular imaging data into clinical workflows of transcatheter aortic valve replacement.

    Science.gov (United States)

    Schoenhagen, Paul; Zimmermann, Mathis; Falkner, Juergen

    2013-06-01

    Degenerative aortic stenosis is highly prevalent in the aging populations of industrialized countries and is associated with poor prognosis. Surgical valve replacement has been the only established treatment with documented improvement of long-term outcome. However, many of the older patients with aortic stenosis (AS) are high-risk or ineligible for surgery. For these patients, transcatheter aortic valve replacement (TAVR) has emerged as a treatment alternative. The TAVR procedure is characterized by a lack of visualization of the operative field. Therefore, pre- and intra-procedural imaging is critical for patient selection, pre-procedural planning, and intra-operative decision-making. Incremental to conventional angiography and 2-D echocardiography, multidetector computed tomography (CT) has assumed an important role before TAVR. The analysis of 3-D CT data requires extensive post-processing during direct interaction with the dataset, using advance analysis software. Organization and storage of the data according to complex clinical workflows and sharing of image information have become a critical part of these novel treatment approaches. Optimally, the data are integrated into a comprehensive image data file accessible to multiple groups of practitioners across the hospital. This creates new challenges for data management requiring a complex IT infrastructure, spanning across multiple locations, but is increasingly achieved with client-server solutions and private cloud technology. This article describes the challenges and opportunities created by the increased amount of patient-specific imaging data in the context of TAVR. PMID:24282750

  16. Effects of surface treatment on the bonding quality of wafer-level Cu-to-Cu thermo-compression bonding for 3D integration

    International Nuclear Information System (INIS)

    Various surface treatments are applied for surface oxide removal prior to wafer-level Cu-to-Cu thermo-compression bonding and the bonding quality is systematically analyzed in this work. Three methods are investigated: self-assembled monolayer (SAM) passivation, forming gas annealing and acetic acid wet cleaning. The surface conditions are carefully examined including roughness, contact angle and x-ray photoelectron spectroscopy (XPS) scan. The wafer pairs are bonded at 250 °C under a bonding force of 5500 N for a duration of 1 h in a vacuum environment. The bonding medium consists of a Cu (300 nm) bonding layer and a Ti (50 nm) barrier layer. The bonding quality investigation consists of two parts: hermeticity based on helium leak test and mechanical strength using four-point bending method. Although all samples under test with different surface treatment methods present an excellent hermetic seal and a robust mechanical support, the measurement results show that samples bonded after SAM passivation exhibit the best hermeticity and bonding strength for 3D integration application. (paper)

  17. High-κ Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-03-15

    This work systematically investigated a high-κ Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (∼11.93 J/m{sup 2}) and a lower helium leak rate (∼6.84 × 10{sup −10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  18. Using Integrated 2D and 3D Resistivity Imaging Methods for Illustrating the Mud-Fluid Conduits of the Wushanting Mud Volcanoes in Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Ping-Yu Chang

    2011-01-01

    Full Text Available We conducted 2D and 3D looped resistivity surveys in the Wushanting Natural Landscape Preservation Area (WNLPA in order to understand the relationships of the mud-fluid conduits in the mud volcano system. 2D resistivity surveys were conducted along seven networked lines. Two separate C-shape looped electrode arrays surrounding the volcano craters were used in the study. First, the two 3D looped measurements were inverted separately. Yet the inverted 3D images of the mud-volcano system were inconsistent with the landscape features suggesting that artifacts perhaps appeared in the images. The 3D looped data were then combined with the 2D data for creating a global resistivity model of WNLPA. The resulting 3D image is consistent with the observed landscape features. With the resistivity model of WNLPA, we further tried to estimate the distribution of water content. The results suggest that the 3D resistivity image has the potential to resolve the dual porosity structures in the mudstone area. Last, we used a simplified WNLPA model for forward simulation in order to verify the field measurement results. We have concluded that the artifacts in the 3D looped images are in fact shadow effects from conductive objects out of the electrode loops, and that inverted images of combined 2D and 3D data provide detailed regional conductive structures in the WNLPA site.

  19. Fabrication of Three Dimensional Tissue Engineering Polydimethylsiloxane ( PDMS) Microporous Scaffolds Integrated in a Bioreactor Using a 3D Printed Water Dissolvable Sacrificial Mould

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Mantis, Ioannis; Chetan, Aradhya Mallikarjunaiah;

    2015-01-01

    We present a new scalable and general approach for manufacturing structured pores/channels in 3D polymer based scaffolds. The method involves 3D printing of a sacrificial polyvinyl alcohol (PVA) mould whose geometrical features are designed according to the required vascular channel network...

  20. Derivation of 3-D surface deformation from an integration of InSAR and GNSS measurements based on Akaike's Bayesian Information Criterion

    Science.gov (United States)

    Luo, Haipeng; Liu, Yang; Chen, Ting; Xu, Caijun; Wen, Yangmao

    2016-01-01

    We present a new method to derive 3-D surface deformation from an integration of interferometric synthetic aperture radar (InSAR) images and Global Navigation Satellite System (GNSS) observations based on Akaike's Bayesian Information Criterion (ABIC), considering relationship between deformations of neighbouring locations. This method avoids interpolated errors by excluding the interpolation of GNSS into the same spatial resolution as InSAR images and harnesses the data sets and the prior smooth constraints of surface deformation objectively and simultaneously by using ABIC, which were inherently unresolved in previous studies. In particular, we define surface roughness measuring smoothing degree to evaluate the performance of the prior constraints and deduce the formula of the covariance for the estimation errors to estimate the uncertainty of modelled solution. We validate this method using synthetic tests and the 2008 Mw 7.9 Wenchuan earthquake. We find that the optimal weights associated with ABIC minimum are generally at trade-off locations that balance contributions from InSAR, GNSS data sets and the prior constraints. We use this method to evaluate the influence of the interpolated errors from the Ordinary Kriging algorithm on the derivation of surface deformation. Tests show that the interpolated errors may contribute to biasing very large weights imposed on Kriged GNSS data, suggesting that fixing the relative weights is required in this case. We also make a comparison with SISTEM method, indicating that our method allows obtaining better estimations even with sparse GNSS observations. In addition, this method can be generalized to provide a solution for situations where some types of data sets are lacking and can be exploited further to account for data sets such as the integration of displacements along radar lines and offsets along satellite tracks.

  1. Robotic catheter cardiac ablation combining ultrasound guidance and force control

    OpenAIRE

    Kesner, Samuel Benjamin; Howe, Robert D.

    2014-01-01

    Cardiac catheters allow physicians to access the inside of the heart and perform therapeutic interventions without stopping the heart or opening the chest. However, conventional manual and actuated cardiac catheters are currently unable to precisely track and manipulate the intracardiac tissue structures because of the fast tissue motion and potential for applying damaging forces. This paper addresses these challenges by proposing and implementing a robotic catheter system that uses 3D ultras...

  2. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  3. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  4. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  5. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach

    Science.gov (United States)

    Awad, Ibrahim; Ladani, Leila

    2015-12-01

    Carbon nanotube (CNT)/copper (Cu) composite material is proposed to replace Cu-based through-silicon vias (TSVs) in micro-electronic packages. The proposed material is believed to offer extraordinary mechanical and electrical properties and the presence of CNTs in Cu is believed to overcome issues associated with miniaturization of Cu interconnects, such as electromigration. This study introduces a multi-scale modeling of the proposed TSV in order to evaluate its mechanical integrity under mechanical and thermo-mechanical loading conditions. Molecular dynamics (MD) simulation was used to determine CNT/Cu interface adhesion properties. A cohesive zone model (CZM) was found to be most appropriate to model the interface adhesion, and CZM parameters at the nanoscale were determined using MD simulation. CZM parameters were then used in the finite element analysis in order to understand the mechanical and thermo-mechanical behavior of composite TSV at micro-scale. From the results, CNT/Cu separation does not take place prior to plastic deformation of Cu in bending, and separation does not take place when standard thermal cycling is applied. Further investigation is recommended in order to alleviate the increased plastic deformation in Cu at the CNT/Cu interface in both loading conditions.

  6. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach.

    Science.gov (United States)

    Awad, Ibrahim; Ladani, Leila

    2015-12-01

    Carbon nanotube (CNT)/copper (Cu) composite material is proposed to replace Cu-based through-silicon vias (TSVs) in micro-electronic packages. The proposed material is believed to offer extraordinary mechanical and electrical properties and the presence of CNTs in Cu is believed to overcome issues associated with miniaturization of Cu interconnects, such as electromigration. This study introduces a multi-scale modeling of the proposed TSV in order to evaluate its mechanical integrity under mechanical and thermo-mechanical loading conditions. Molecular dynamics (MD) simulation was used to determine CNT/Cu interface adhesion properties. A cohesive zone model (CZM) was found to be most appropriate to model the interface adhesion, and CZM parameters at the nanoscale were determined using MD simulation. CZM parameters were then used in the finite element analysis in order to understand the mechanical and thermo-mechanical behavior of composite TSV at micro-scale. From the results, CNT/Cu separation does not take place prior to plastic deformation of Cu in bending, and separation does not take place when standard thermal cycling is applied. Further investigation is recommended in order to alleviate the increased plastic deformation in Cu at the CNT/Cu interface in both loading conditions. PMID:26559788

  7. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  8. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  9. Presurgical evaluation of hemifacial spasm and spasmodic torticollis caused by a neurovascular conflict from AICA with 3T MRI integrated by 3D drive and 3D TOF image fusion: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Concetta Alafaci

    2014-01-01

    Full Text Available Background: Hemifacial spasm (HS and spasmodic torticollis (ST are well-known disorders that are caused by a neurovascular conflict. HS is characterized by irregular, involuntary muscle contractions on one side of the face due to spasms of orbicularis oris and orbicularis oculi muscles, and is usually caused by vascular compression of the VII cranial nerve. ST is an extremely painful chronic movement disorder causing the neck to involuntary turn to the side, upward and/or downward. HS is usually idiopathic but it is rarely caused by a neurovascular conflict with the XI cranial nerve. Case Description: We present a case of a 36-year-old woman with a 2-year history of left hemifacial spasm and spasmodic torticollis. Pre-surgical magnetic resonance imaging MRI examination was performed with 3TMRI integrated by 3Ddrive and 3DTOF image fusion. Surgery was performed through a left suboccipital retrosigmoid craniectomy. The intraoperative findings documented a transfixing artery penetrating the facial nerve and a dominant left anteroinferior cerebellar artery (AICA in contact with the anterior surface of the pons and lower cranial nerves. Microvascular decompression (MVD was performed. Postoperative course showed the regression of her symptoms. Conclusions : Transfixing arteries are rarely reported as a cause of neurovascular conflicts. The authors review the literature concerning multiple neurovascular conflicts.

  10. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  11. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  13. 3D Dental Scanner

    OpenAIRE

    Kotek, L.

    2015-01-01

    This paper is about 3D scan of plaster dental casts. The main aim of the work is a hardware and software proposition of 3D scan system for scanning of dental casts. There were used camera, projector and rotate table for this scanning system. Surface triangulation was used, taking benefits of projections of structured light on object, which is being scanned. The rotate table is controlled by PC. The camera, projector and rotate table are synchronized by PC. Controlling of stepper motor is prov...

  14. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  15. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  16. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  17. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  18. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  19. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes.

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite, Jennifer E; Bhakta, Snehasis; Kadimisetty, Karteek; Gillette, Kelsey M; Chen, Eric; Rusling, James F

    2015-01-01

    A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 μm × 800 μm square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 μL min(-1). PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 μM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods. PMID:25901660

  20. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    Science.gov (United States)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.

  1. Kinematic Analysis of Fold-Thrust-Belt Using Integrated Analogue Sandbox Modeling and 3D Palinspatic Reconstructions in Babar-Selaru Area, Banda Sea Region, Indonesia

    Science.gov (United States)

    Sapiie, Benyamin; Hadiana, Meli; Kurniawan, Ade; Daniel, Dicky; Danio, Harya; Fujimoto, Masamichi; Ohara, Michio; Alam Perdana, Lisnanda; Saputra, Afif

    2016-04-01

    Kinematic analysis of Babar-Selaru fold-thrust-belt is challenging and often difficult particularly in conducting seismic interpretation due to complex structural geometries. Resolving such as issue, in this study we proposed to use integrated seismic interpretation, analogue sandbox modeling and 3D palinspatic reconstructions. This paper is presented results of detail kinematic analysis for understanding tectonic evolution as well as mechanism of fold-thrust-belt in relation to their hydrocarbon prospect. Babar-Selaru Area is located within the collisional boundary between Australian continental margin and Banda Arc region of Indonesia. The area is characterized by complex deformation zone of fold-thrust-belt, involving Mesozoic and Tertiary sedimentary sequences of Australian continental margin. The age of deformation is ranging from 8-5 Ma. Seismic interpretations show two styles of faults developed in the area, which are thrust and normal faults system. The last deformation observed in the Babar Selaru area is controlled by south verging imbricated thin-skinned thrust fault system, with the staircase style of fault detachment. Although, both structural styles occurred in separated locations, they are formed not only in the same time but also related in time and space. Total extension is ranging from 1-3 % where average shortening is in the order of 35-38%. Sandbox modeling is an effective way to study and understand the style, pattern and geometry of the deformed sedimentary sequences in the study area. Based on comparison of five settings experiments (mainly different geological boundary condition) with more than 50 different modeling; deformation is particularly controlled by types and thickness of lithology package and detachment geometry. These two parameters were quite sensitive in generating different deformation style and pattern in Babar-Selaru fold-thrust-belt. Therefore, choosing the right combination of stratigraphy model and material setting are

  2. Dynamical analysis of a PWR internals using super-elements in an integrated 3-D model model. Part 2: dynamical tests and seismic analysis

    International Nuclear Information System (INIS)

    The results of the test analysis (frequencies) for the isolated super-elements and for the developed 3-D model of the internals core support structures of a PWR research reactor are presented. Once certified of the model effectiveness for this type of analysis the seismic spectral analysis was performed. From the results can be seen that the structures are rigid for this load, isolated or together with the other in the 3-D model, and there are no impacts among them during the earthquake (OBE). (author)

  3. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders

    International Nuclear Information System (INIS)

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fill-factors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geiger-mode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor. -- Highlights: •GAPD pixel detectors present a low detection efficiency due to a reduced fill-factor. •3D-ICs are proposed as a solution to increase the fill-factor of GAPD detectors. •The maximum achievable fill-factor by a GAPD detector in a 3D-IC process is analyzed. •Fill-factors between 66% and 96% can be obtained with different array architectures. •The array is operated in a time-gated mode to reduce the expected sensor noise

  4. 3D animace

    OpenAIRE

    Klusoň, Jindřich

    2010-01-01

    Computer animation has a growing importance and application in the world. With expansion of technologies increases quality of the final animation as well as number of 3D animation software. This thesis is currently mapped animation software for creating animation in film, television industry and video games which are advisable users requirements. Of them were selected according to criteria the best - Autodesk Maya 2011. This animation software is unique with tools for creating special effects...

  5. A geostatistical approach to integrating data from multiple and diverse sources: An application to the integration of well data, geological information, 3d/4d geophysical and reservoir-dynamics data in a north-sea reservoir

    Science.gov (United States)

    Caers, Jef; Castro, Scarlet

    Modeling the subsurface is an inherently difficult task due to limited access and lack of direct observation of the complex medium under investigation. Nevertheless, practical engineering questions often call for a full 3D modeling of subsurface heterogeneity, whether the task is to maximize production of an oil reservoir or to optimize storage of water during dry seasons in an aquifer storage and recovery process. While the goal of modeling and the nature of fluid flow may be different between the field of petroleum and hydrogeology, each deals with a similar heterogeneous medium and faces similar questions in model building. Modeling aquifers or reservoirs requires integrating diverse sources of information into a single model (e.g., Deutsch, 2003, Caers, 2005). One faces many challenges in doing so, most related to the issue of scale, since the unit grid cell size of the model is different from the scale of information provided by each source of information. Each such source informs the aquifer or reservoir at a different scale of observation. Secondly, models contain several geological building blocks, such as a structural model (fault/horizons), 3D distribution of facies types, petrophysical properties (porosity and permeability) per facies, fluid distributions and fluid properties, etc.; each building block needs to be constrained to the available data.

  6. Central venous catheters and catheter locks in children with cancer

    DEFF Research Database (Denmark)

    Handrup, Mette Møller; Møller, Jens Kjølseth; Schrøder, Henrik

    2013-01-01

    To determine if the catheter lock taurolidine can reduce the number of catheter-related bloodstream infections (CRBSI) in pediatric cancer patients with tunneled central venous catheters (CVC).......To determine if the catheter lock taurolidine can reduce the number of catheter-related bloodstream infections (CRBSI) in pediatric cancer patients with tunneled central venous catheters (CVC)....

  7. Suprapubic catheter care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000145.htm Suprapubic catheter care To use the sharing features on this page, please enable JavaScript. A suprapubic catheter (tube) drains urine from your bladder. It is ...

  8. Central venous catheter - flushing

    Science.gov (United States)

    ... of your catheter and what company made it. Write this information down and keep it handy. To flush your catheter, you will need: Clean paper towels Saline syringes (clear), and maybe heparin syringes ( ...

  9. Integrated Tsunami Database: simulation and identification of seismic tsunami sources, 3D visualization and post-disaster assessment on the shore

    Science.gov (United States)

    Krivorot'ko, Olga; Kabanikhin, Sergey; Marinin, Igor; Karas, Adel; Khidasheli, David

    2013-04-01

    One of the most important problems of tsunami investigation is the problem of seismic tsunami source reconstruction. Non-profit organization WAPMERR (http://wapmerr.org) has provided a historical database of alleged tsunami sources around the world that obtained with the help of information about seaquakes. WAPMERR also has a database of observations of the tsunami waves in coastal areas. The main idea of presentation consists of determining of the tsunami source parameters using seismic data and observations of the tsunami waves on the shore, and the expansion and refinement of the database of presupposed tsunami sources for operative and accurate prediction of hazards and assessment of risks and consequences. Also we present 3D visualization of real-time tsunami wave propagation and loss assessment, characterizing the nature of the building stock in cities at risk, and monitoring by satellite images using modern GIS technology ITRIS (Integrated Tsunami Research and Information System) developed by WAPMERR and Informap Ltd. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. The most suitable physical models related to simulation of tsunamis are based on shallow water equations. We consider the initial-boundary value problem in Ω := {(x,y) ?R2 : x ?(0,Lx ), y ?(0,Ly ), Lx,Ly > 0} for the well-known linear shallow water equations in the Cartesian coordinate system in terms of the liquid flow components in dimensional form Here ?(x,y,t) defines the free water surface vertical displacement, i.e. amplitude of a tsunami wave, q(x,y) is the initial amplitude of a tsunami wave. The lateral boundary is assumed to be a non-reflecting boundary of the domain, that is, it allows the free passage of the propagating waves. Assume that the free surface oscillation data at points (xm, ym) are given as a measured output data from tsunami records: fm(t) := ? (xm, ym,t), (xm

  10. 3D integration of Geiger-mode avalanche photodiodes aimed to very high fill-factor pixels for future linear colliders 

    CERN Document Server

    Vilella, E; Dieguez, A

    2013-01-01

    This paper presents an analysis of the maximum achievable fill-factor by a pixel detector of Geiger-mode avalanche photodiodes with the Chartered 130 nm/Tezzaron 3D process. The analysis shows that fillfactors between 66% and 96% can be obtained with different array architectures and a time-gated readout circuit of minimum area. The maximum fill-factor is achieved when the two-layer vertical stack is used to overlap the non-sensitive areas of one layer with the sensitive areas of the other one. Moreover, different sensor areas are used to further increase the fill-factor. A chip containing a pixel detector of the Geigermode avalanche photodiodes and aimed to future linear colliders has been designed with the Chartered 130 nm/Tezzaron 3D process to increase the fill-factor.

  11. From Dynamic Live Cell Imaging to 3D Ultrastructure: Novel Integrated Methods for High Pressure Freezing and Correlative Light-Electron Microscopy.

    OpenAIRE

    Spiegelhalter, Coralie; Tosch, Valérie; Hentsch, Didier; Koch, Marc; Kessler, Pascal; Schwab, Yannick; Laporte, Jocelyn

    2010-01-01

    BACKGROUND: In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM). METHODOLOGY: To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coo...

  12. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    OpenAIRE

    Burns, JHR; Delparte, D; Gates, RD; M. Takabayashi

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogra...

  13. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  14. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  15. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  16. Non-destructive Determination of Residual Stress for the Evaluation of Reliability of 3D-integrated Contact Structures in Silicon

    OpenAIRE

    Zschenderlein, Uwe

    2014-01-01

    Die Arbeit behandelt die zerstörungsfreie Eigenspannungsbestimmung in Silizium von 3D-integrierten Mikrosystemen am Beispiel Wolfram gefüllter TSVs. Dafür wurden die Verfahren der röntgenographischen Spannungsanalyse und der Raman-Spektroskopie genutzt. Interpretiert und verglichen wurden die Ergebnisse mit FE-Simulationen. Als Proben standen Querschliffe eines Doppelchip-Systems zur Verfügung, in denen der obere Chip Wolfram-TSVs enthielt. Beide Chips wurden mit dem Kupfer-Zinn-SLID-Verfahre...

  17. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    Science.gov (United States)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other

  18. An integrated multidisciplinary re-evaluation of the geothermal system at Valles Caldera, New Mexico, using an immersive three-dimensional (3D) visualization environment

    Science.gov (United States)

    Fowler, A.; Bennett, S. E.; Wildgoose, M.; Cantwell, C.; Elliott, A. J.

    2012-12-01

    We describe an approach to explore the spatial relationships of a geothermal resource by examining diverse geological, geophysical, and geochemical data sets using the immersive 3-dimensional (3D) visualization capabilities of the UC Davis Keck Center for Active Visualization in the Earth Sciences (KeckCAVES). The KeckCAVES is a facility where stereoscopic images are projected onto four, surfaces (three walls and a floor), which the user perceives as a seamless 3D image of the data. The user can manipulate and interact with the data, allowing a more intuitive interpretation of data set relationships than is possible with traditional 2-dimensional techniques. We incorporate multiple data sets of the geothermal system at Valles Caldera, New Mexico: topography, lithology, faults, temperature, alteration mineralogy, and magnetotellurics. With the ability to rapidly and intuitively observe data relationships, we are able to efficiently and rapidly draw conclusions about the subsurface architecture of the Valles Caldera geothermal system. We identify two high-temperature anomalies, one that corresponds with normal faults along the western caldera ring fracture, and one that with the resurgent dome. A cold-temperature anomaly identified adjacent to the resurgent dome high-temperature anomaly appears to relate to a fault controlled graben valley that acts as a recharge zone, likely funneling cold meteoric water into the subsurface along normal faults observed on published maps and cross sections. These high-temperature anomalies broadly correspond to subsurface regions where previous magnetotelluric studies have identified low apparent resistivity. Existing hot springs in the Sulfur Springs area correspond to the only location where our modeled 100°C isotherm intersects the ground surface. Correlation between the first occurrence of key alteration minerals (pyrite, chlorite, epidote) in previously drilled boreholes and our temperature model vary, with chlorite showing a

  19. From dynamic live cell imaging to 3D ultrastructure: novel integrated methods for high pressure freezing and correlative light-electron microscopy.

    Directory of Open Access Journals (Sweden)

    Coralie Spiegelhalter

    Full Text Available BACKGROUND: In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM to electron microscopy (EM. METHODOLOGY: To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1 phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1 expression. CONCLUSION: Accessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM.

  20. Molecular modelling on small molecular CDK2 inhibitors: an integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling.

    Science.gov (United States)

    Yuan, H; Liu, H; Tai, W; Wang, F; Zhang, Y; Yao, S; Ran, T; Lu, S; Ke, Z; Xiong, X; Xu, J; Chen, Y; Lu, T

    2013-10-01

    Cyclin-dependent kinase 2 (CDK2) has been identified as an important target for developing novel anticancer agents. Molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) and pharmacophore modelling were combined with the ultimate goal of studying the structure-activity relationship of CDK2 inhibitors. The comparative molecular similarity indices analysis (CoMSIA) model constructed based on a set of 3-aminopyrazole derivatives as CDK2 inhibitors gave statistically significant results (q (2) = 0.700; r (2) = 0.982). A HypoGen pharmacophore model, constructed using diverse CDK2 inhibitors, also showed significant statistics ([Formula: see text]Cost = 61.483; RMSD = 0.53; Correlation coefficient = 0.98). The small residues and error values between the estimated and experimental activities of the training and test set compounds proved their strong capability of activity prediction. The structural insights obtained from these two models were consistent with each other. The pharmacophore model summarized the important pharmacophoric features required for protein-ligand binding. The 3D contour maps in combination with the comprehensive pharmacophoric features helped to better interpret the structure-activity relationship. The results will be beneficial for the discovery and design of novel CDK2 inhibitors. The simplicity of this approach provides expansion to its applicability in optimizing other classes of small molecular CDK2 inhibitors. PMID:23941641

  1. Integrated 3D geology modeling constrained by facies and horizontal well data for Block M of the Orinoco heavy oil belt

    Energy Technology Data Exchange (ETDEWEB)

    Longxin, M.; Baojun, X.; Shancheng, Z.; Guoqing, H. [CNPC America Ltd., Caracas (Venezuela)

    2008-10-15

    Horizontal well drilling with cold production were used to develop most of heavy oil fields in Venezuela's Orinoco heavy oil belt. This study interpreted the horizontal well logs of Block M of the Orinoco heavy oil belt in an effort to improve production from this highly porous and permeable reservoir. The reservoir is comprised primarily of non-consolidated sandstones. A porosity calculation formula for the horizontal well without porosity logs was established based on the study of horizontal well logging data of block M in the Orinoco heavy oil belt. A high quality 3-D simulation tool was used to separate the block into several different sections. A set of methods were presented in order to identify if the well track was approaching an adjacent formation, to estimate the distance between the well track and the adjacent formation, and to correct the deep resistivity of the horizontal section affected by the adjacent formation. A set of interpretation techniques were established, based on the combination of well logging data, seismic data and the oilfield development performance data. It was concluded that the development of the precise 3D geological model helped to establish a solid foundation for guiding the well position design and the drilling of the horizontal well. It also contributed to the reservoir numerical simulation and the effective development of the oil field. 6 refs., 2 tabs., 14 figs.

  2. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  3. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  4. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  5. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  6. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    Science.gov (United States)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  7. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... and removes the need to integrate custom made electronics into the probe. A downside of row-column addressing 2-D arrays is the creation of secondary temporal lobes, or ghost echoes, in the point spread function. In the second part of the scientific contributions, row-column addressing of 2-D arrays...... was investigated. An analysis of how the ghost echoes can be attenuated was presented.Attenuating the ghost echoes were shown to be achieved by minimizing the first derivative of the apodization function. In the literature, a circular symmetric apodization function was proposed. A new apodization layout...

  8. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  9. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  10. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  11. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  12. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    Energy Technology Data Exchange (ETDEWEB)

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a

  13. 3-D contextual Bayesian classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is made of a pixel and its four nearest neighbours. We will extend these algorithms to 3-D, i.e. we will specify a simultaneous Gaussian distribution for a pixel and its 6 nearest 3......-D neighbours, and generalise the class variable configuration distributions within the 3-D cross given in 2-D algorithms. The new 3-D algorithms are tested on a synthetic 3-D multivariate dataset....

  14. Taming Supersymmetric Defects in 3d-3d Correspondence

    CERN Document Server

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  15. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    , and scout ticket data were integrated with the 3D interpretations to evaluate drilling opportunities resulting in an initial three well drilling program. Thousands of miles of signed bit data exist. Much of this data was processed during a time when software and hardware capabilities were either incapable or cost prohibitive to glean the full potential of the data. In fact in some circles signed bit gained an undeserved reputation for being less than optimum. As a consequence much of the older signed bit data sits on the shelf long forgotten or overlooked. With the high cost of new acquisition and permitting it might behoove other exploration companies to reconsider resurrecting perfectly viable existing volumes and have them reprocessed at a fraction of the cost of new acquisition

  16. 3D stacked chips from emerging processes to heterogeneous systems

    CERN Document Server

    Fettweis, Gerhard

    2016-01-01

    This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size.  The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.   •Provides single-source reference to the latest research in 3D optoelectronic integration: process, devices, and systems; •Explains the use of wireless 3D integration to improve 3D IC reliability and yield; •Describes techniques for monitoring and mitigating thermal behavior in 3D I...

  17. Implantation of Hickman catheters

    International Nuclear Information System (INIS)

    Hickmann catheters are used mainly in patients with hematologic diseases, especially lymphatic and myelotic leukemias, and malignant lymphomas. They facilitate the administration of chemotherapeutics, hyperosmolar solutions and other substances with local toxicity as well as frequent taking of blood samples. Usually Hickmann catheters are placed by surgical cutdown on a jugular vein. In lieu of this surgical placement, we recommend the implantation of Hickman catheters by means of interventional radiology techniques. In a period of 13 months 78 Hickman catheters were placed in 67 patients. 37 catheters (=47%) stayed more than one month, 8 catheters (=10%) stayed 5 to 8 months in the central venous system. 26, respectively 6, of these catheters are until now in situ. Lethal or life threatening complications did not occur. There were no infections at the introduction site of the catheter. The main complications were: Pneumothorax without drainage: 3.2%, pneumothorax with drainage: 3.2%, slipping back of the tip of the catheter: 4.8%, thrombosis of the subclavian vein: 3.2%, fluid in the pleural cavity: 1.6%. In correspondance to the literature the complications of Hickman catheter placement by means of interventional radiology are less serious than by means of surgical cutdown. Further advantages are: General anesthesia can be avoided (less strain on severely ill patients, no problems to wean from assisted ventilation in patients with respiratory insufficiency), the smooth curve of the implanted catheter avoids sharp kinking and occlusion of the lumen, very small skin incisions are sufficient (lesser risk of hematomas in patients with thrombopenia), time and cost are reduced in comparison to surgical placement. (orig.)

  18. Data analysis tools for 3D dosimetry: the use of CERR as a platform to integrate and compare measurements and treatment planning information

    International Nuclear Information System (INIS)

    CERR, the Computational Environment for Radiotherapy Research, is a mature Matlab-based application that allows users to visualize and analyze 3D treatment planning data exported using standard protocols from clinical treatment planning systems. In this presentation we will give an in-depth discussion of the use of CERR as a tool to analyze measurements compared to expected treatment planning systems. Extensions to CERR allow for straightforward import and registration of experimental data with the planning data. These tools allow users to compare the match between measurement and treatment planning calculation in detail, as provided by profile plots and other tools. Custom Matlab scripts can also be developed, providing complete flexibility in analysis methods. In addition, several offshoot tools have been developed by our group to facilitate dosimetric data analysis, including: A film QA tool, developed under a contract for the Radiological Physics Center (RPC), and a Monte Carlo recalculation tool, also developed under the same contract for the RPC. The film QA tool is meant to facilitate the analysis of film that is irradiated in a phantom. The tool provides a simple method for registering pin-marked points on film to corresponding points in a CT-scanned phantom. Similarly, the locations of point dosimeters can be found. Once registered, data can be compared with the expected treatment plan, interpolated from the converted CERR plan. The dose-distance gamma function is available to quantify agreement. We will discuss the ways these tools can be used to support dosimetry research. All the software discussed here is being made available under open-source licensing.

  19. Kinect与Unity3D数据整合技术在体感游戏中的应用研究%Application Research of Somatosensory Game Basesd on Kinect and Unity3D Data Integration Technology

    Institute of Scientific and Technical Information of China (English)

    刘晋钢; 刘卫斌; 刘晋霞

    2014-01-01

    This paper analyzes data integration technology about Kinect and Unity3D. Authors design scheme based on WPF and Unity 3D internal calling mode. System includes screen show module, Unity3D and Kinect interface module and data acquisition module. There are scene settings, rigging, mirroring sports, close-range model, smoothing processing and other functions in Unity3D; and codes implement the device control, rigging algorithm, equipment image acquisition in Kinect. Tested by C # on unmanaged dll's management, it is a good scheme to import Kinect hardware driver program and calling a custom data structures and algorithms to achieve the unity 3D scene. In the unity 3D scene, Kinect somatosensory camera control motion of models to improve the development efficiency of somatosensory game, which has certain social value in development and application of somatosensory game.%通过分析Kinect与Unity3D数据整合关键技术,从WPF与Unity 3D内部调用方式展开系统设计。设计分为Unity3D场景展示模块、Unity3D的接口模块和Kinect的数据获取三模块。其中Unity3D接口模块实现了的场景设置,骨骼绑定、镜像运动、近景模式、平滑处理功能;Kinect数据获取模块通过代码实现设备控制、骨骼绑定算法、设备图像获取。测试证明,通过C#对非托管的dll的管理方式,导入Kinect硬件的驱动程序,调用自定义的数据结构和算法,实现在unity 3D场景中,使用Kinect体感镜头控制场景中的人物模型运动,提高了体感游戏的开发效率,在体感游戏的开发和应用中有一定的社会推广价值。

  20. [Suprapubic catheter insertion].

    Science.gov (United States)

    Neumann, Eva; Schwentner, Christian

    2016-01-01

    The suprapubic catheter enables a percutaneous drainage of urine. The insertion is made superior of the pubic bone through the abdominal wall into the bladder. It allows a permanent drainage of urine bypassing the urethra. The insertion of a suprapubic catheter requires knowledge and expertise. This paper summarizes the basic background and allows to follow the practical application step by step. PMID:26800072

  1. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen' s University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  2. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    International Nuclear Information System (INIS)

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  3. Holographic 3D tracking of microscopic tools

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael;

    2015-01-01

    We originally proposed and experimentally demonstrated the targeted-light delivery capability of so-called Wave-guided Optical Waveguides (WOWs) three years ago. As these WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through their integrated waveguide struc...

  4. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  5. Factorising the 3D Topologically Twisted Index

    CERN Document Server

    Cabo-Bizet, Alejandro

    2016-01-01

    In this work, path integral representations of the 3D topologically twisted index were studied. First, the index can be "factorised" into a couple of "blocks". The "blocks" being the partition functions of a type A semi-topological twisting of 3D N = 2 SYM placed on $\\mathbb{S}_2\\times (0, \\pi)$ and $\\mathbb{S}_2 \\times (\\pi, 2 \\pi)$ respectively. Second, as the path integral of the aforementioned theory over $\\mathbb{S}_2$ times $\\mathbb{S}_1$ with a point excluded. In this way we recover the sum over fluxes from integration over the real path and without sacrificing positive definiteness of the bosonic part of the localising action. We also reproduce the integration over the complex contour by using the localising term with positive definite bosonic part.

  6. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  7. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  8. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  9. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  10. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  11. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  12. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  13. Mobile glasses-free 3D using compact waveguide hologram

    International Nuclear Information System (INIS)

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  14. Using Insight3D to produce a 3D building model

    OpenAIRE

    Natlačen, Daša

    2015-01-01

    The leadership in object 3D modeling was in the past decade taken over by integration of close range photogrammetry and computer vision. Major progress was achieved in the development of software tools, which enable obtaining spatial data from series of images taken from different perspectives. In order to gain new experience, Insight3D application was chosen to be addressed in this master’s thesis out of the rich set of software tools available on the market. The main goal of ...

  15. Metadatenbasierte Kontextualisierung architektonischer 3D-Modelle

    OpenAIRE

    Blümel, Ina

    2013-01-01

    Digitale 3D-Modelle der Architektur haben innerhalb der letzten fünf Jahrzehnte sowohl die analogen, auf Papier basierenden Zeichnungen als auch die physischen Modelle aus ihrer planungs-, ausführungs- und dokumentationsunterstützenden Rolle verdrängt. Als Herausforderungen bei der Integration von 3D-Modellen in digitale Bibliotheken und Archive sind zunächst die meist nur rudimentäre Annotation mit Metadaten seitens der Autoren und die nur implizit in den Modellen vorhandenen Informationen ...

  16. New Efficient Dynamic 3-D Boundary Integral Equation Method and Application to Non-Planar Fault Geometry Dipping in Elastic Half Space

    Science.gov (United States)

    Ando, R.

    2014-12-01

    The boundary integral equation method formulated in the real space and time domain (BIEM-ST) has been used as a powerful tool to analyze the earthquake rupture dynamics on non-planar faults. Generally, BIEM is more accurate than volumetric methods such as the finite difference method and the finite difference method. With the recent development of the high performance computing environment, the earthquake rupture simulation studies have been conducted considering three dimensional realistic fault geometry models. However, the utility of BIEM-ST has been limited due to its heavy computational demanding increased depending on square of time steps (N2), which was needed to evaluate the historic integration. While BIEM can be efficient with the spectral domain formulation, the applications of such a method are limited to planar fault cases. In this study, we propose a new method to reduce the calculation time of BIEM-ST to linear of time step (N) without degrading the accuracy in the 3 dimensional modeling space. We extends the method proposed earlier for the case of the 2 dimensional framework, applying the asymptotic expressions of the elasto-dynamic Green's functions. This method uses the physical nature of the stress Green's function as dividing the causality cone according to the distances from the wave-fronts. The scalability of this method is shown on the parallel computing environment of the distributed memory. We demonstrate the applicability to analyses of subduction earthquake cases, suffering long time from the numerical limitations of previously available BIEMs. We analyze the dynamic rupture processes on dipping reverse faults embed in a three dimensional elastic half space.

  17. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  18. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  19. Modular 3-D Transport model

    Science.gov (United States)

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  20. Auditing urinary catheter care.

    Science.gov (United States)

    Dailly, Sue

    Urinary catheters are the main cause of hospital-acquired urinary tract infections among inpatients. Healthcare staff can reduce the risk of patients developing an infection by ensuring they give evidence-based care and by removing the catheter as soon as it is no longer necessary. An audit conducted in a Hampshire hospital demonstrated there was poor documented evidence that best practice was being carried out. Therefore a urinary catheter assessment and monitoring tool was designed to promote best practice and produce clear evidence that care had been provided. PMID:22375340

  1. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  2. Heterogeneous 3D integration of 17 μm pitch Si/SiGe quantum well bolometer arrays for infrared imaging systems

    International Nuclear Information System (INIS)

    This paper reports on the realization of 17 μm × 17 μm pitch bolometer arrays for uncooled infrared imagers. Microbolometer arrays have been available in primarily defense applications since the mid-1980s and are typically based on deposited thin films on top of CMOS wafers that are surface-machined into sensor pixels. This paper instead focuses on the heterogeneous integration of monocrystalline Si/SiGe quantum-well-based thermistor material in a CMOS-compliant process using adhesive wafer bonding. The high-quality monocrystalline thermistor material opens up for potentially lower noise compared to commercially available uncooled microbolometer arrays together with a competitive temperature coefficient of resistance (TCR). Characterized bolometers had a TCR of −2.9% K−1 in vacuum, measured thermal conductances around 5 × 10−8 W K−1 and thermal time constants between 4.9 and 8.5 ms, depending on the design. Complications in the fabrication of stress-free bolometer legs and low-noise contacts are discussed and analyzed. (paper)

  3. 3D Printed Multimaterial Microfluidic Valve.

    Science.gov (United States)

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  4. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  5. A 3D CAMPUS INFORMATION SYSTEM – INITIAL STUDIES

    OpenAIRE

    Kahraman, I.; I. R. Karas; Alizadehasharfi, B.; Abdul-Rahman, A

    2013-01-01

    This paper discusses the method of developing Campus Information System. The system can handle 3D spatial data within desktop and web environment. The method consists of texturing of building facades for 3D building models and modeling 3D Campus Information System. In this paper, some of these steps are carried out; modelling 3D buildings, toggling these models on the terrain and ortho-photo, integration with a geo-database, transferring to the CityServer3D environment by using CityG...

  6. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    Science.gov (United States)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    Science.gov (United States)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  8. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. PMID:26724184

  9. Miniaturized 3D microscope imaging system

    Science.gov (United States)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  10. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  11. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  12. Coronary Arteries Segmentation Based on the 3D Discrete Wavelet Transform and 3D Neutrosophic Transform

    Directory of Open Access Journals (Sweden)

    Shuo-Tsung Chen

    2015-01-01

    Full Text Available Purpose. Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. Methods. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Results. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Conclusion. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.

  13. 5-axis 3D Printer

    OpenAIRE

    Grutle, Øyvind Kallevik

    2015-01-01

    3D printers have in recent years become extremely popular. Even though 3D printing technology have existed since the late 1980's, it is now considered one of the most significant technological breakthroughs of the twenty-first century. Several different 3D printing processes have been invented during the years. But it is the fused deposition modeling (FDM) which was one of the first invented that is considered the most popular today. Even though the FDM process is the most popular, it still s...

  14. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  15. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  16. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  17. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of Keff, control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  18. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  19. 3D technologies in safeguards applications

    International Nuclear Information System (INIS)

    The Additional Protocol to the Non-Proliferation Treaty foresees improved verification of existing nuclear installations. To be effective new advanced capabilities must be developed and fielded to increase the accuracy of verification and detection of changes in the facilities. New systems need to be portable, simple to use and yet highly accurate and dependable. 3D laser technologies proved to be effective in Design Information Verification (DIV). IAEA has successfully used the system in Rokkasho Reprocessing Plant. The system allowed IAEA to carry out rapid and accurate DIVs far faster and more accurately than had been possible in the past. A typical example from a mockup area at the JRC is presented. A further application of 3D laser technologies is to perform the verification of the facility buildings. Typical plants are located on sites of few square kilometres with tens of buildings, housing process and storage facilities. This requires systems that are capable of measuring and verifying long distances and easy to handle in an outdoor environment. This paper presents an overview of the different 3D technologies and discusses its potential use in safeguards applications: - Design Information Verification. - 3D Surveillance (overcomes the flatten world of classical 2D Surveillance and provides accurate quantitative (i.e., distance) measurements. - Object self authentication (spatial forensics), including the verification of closure welds on containers. - Outdoor verification System or verification of the facility buildings and outdoor perimeters. For the verification of outdoor areas the paper presents a transportable system capable of acquiring on the fly 3D geometric data from a large installation. The proposed system is a scaled based approach combining different sensors and 3D reconstruction techniques depending on the size of the scene/objects to be modelled and accuracy of the final model. The system is mounted on a vehicle and integrates 3D laser

  20. Heterodyne 3D ghost imaging

    Science.gov (United States)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  1. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  2. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif found in rice (O. ... otif and G motif (see S000130) are responsible for sugar ... repression (Toyofuku et al. 1998); GATA; amylase; ...

  3. Geopressure and Trap Integrity Predictions from 3-D Seismic Data: Case Study of the Greater Ughelli Depobelt, Niger Delta Pressions de pores et prévisions de l’intégrité des couvertures à partir de données sismiques 3D : le cas du grand sous-bassin d’Ughelli, Delta du Niger

    Directory of Open Access Journals (Sweden)

    Opara A.I.

    2012-05-01

    Full Text Available The deep drilling campaign in the Niger Delta has demonstrated the need for a detailed geopressure and trap integrity (drilling margin analysis as an integral and required step in prospect appraisal. Pre-drill pore pressure prediction from 3-D seismic data was carried out in the Greater Ughelli depobelt, Niger Delta basin to predict subsurface pressure regimes and further applied in the determination of hydrocarbon column height, reservoir continuity, fault seal and trap integrity. Results revealed that geopressured sedimentary formations are common within the more prolific deeper hydrocarbon reserves in the Niger Delta basin. The depth to top of mild geopressure (0.60 psi/ft ranges from about 10 000 ftss to over 30 000 ftss. The distribution of geopressures shows a well defined trend with depth to top of geopressures increasing towards the central part of the basin. This variation in the depth of top of geopressures in the area is believed to be related to faulting and shale diapirism, with top of geopressures becoming shallow with shale diapirism and deep with sedimentation. Post-depositional faulting is believed to have controlled the configuration of the geopressure surface and has played later roles in modifying the present day depth to top of geopressures. In general, geopressure in this area is often associated with simple rollover structures bounded by growth faults, especially at the hanging walls, while hydrostatic pressures were observed in areas with k-faults and collapsed crested structures. Les campagnes de forages profonds dans le delta du Niger ont démontré la nécessité d’une analyse détaillée des surpressions et de l’intégrité des structures pour évaluer correctement les prospects. La prédiction des pressions interstitielles a pu être réalisée ici avant forage à partir de données sismiques 3-D du grand sous-bassin d’Ughelli, dans le delta du Niger. Ce travail a permis de prévoir les régimes de pression du

  4. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  5. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  6. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  7. AI 3D Cybug Gaming

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  8. Ship 3D Collaborative Design Workflow Research Based on Integrated Platform%基于集成平台的船舶三维协同设计流程研究

    Institute of Scientific and Technical Information of China (English)

    苏绍娟; 刘寅东; 刘晓明

    2011-01-01

    At first, the characteristics of modern ship design and manufacture and the existing limitations with information technology development is analyzed.On the base the need for parallel and collaborative design is put forward.At the same time collaborative design management software Windchill is in-depth studied and application, Integrated platform with 3D design software Solidworks and management software Windchill through middleware software is constructed and its key technologies is aralyzed.3D design workflow combining example of ship design is carried out.The integrated platform can create conditions for further implementation of the design process in parallel, dynamic, realtime control.%分析了现代船舶设计制造的特点及随着信息化的发展而存在的一些局限性,在此基础上分析了进行并行协同设计的必要性.同时对协同设计管理软件windchill进行了深入的研究和应用,通过中间件构建了三维设计软件SolidWorks与windchill的集成平台,并分析了其关键技术.结合船舶设计实例实现了三维协同设计的工作流程,为进一步对设计过程实施并行、动态、实时控制创造了条件.

  9. Faint object 3D spectroscopy with PMAS

    Science.gov (United States)

    Roth, Martin M.; Becker, Thomas; Kelz, Andreas; Bohm, Petra

    2004-09-01

    PMAS is a fiber-coupled lens array type of integral field spectrograph, which was commissioned at the Calar Alto 3.5m Telescope in May 2001. The optical layout of the instrument was chosen such as to provide a large wavelength coverage, and good transmission from 0.35 to 1 μm. One of the major objectives of the PMAS development has been to perform 3D spectrophotometry, taking advantage of the contiguous array of spatial elements over the 2-dimensional field-of-view of the integral field unit. With science results obtained during the first two years of operation, we illustrate that 3D spectroscopy is an ideal tool for faint object spectrophotometry.

  10. 3D Technology for intelligent trackers

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  11. 3D scene modeling from multiple range views

    Science.gov (United States)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  12. Inclined nanoimprinting lithography-based 3D nanofabrication

    International Nuclear Information System (INIS)

    We report a 'top–down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology

  13. 3D Mobile Game Engine Development

    OpenAIRE

    Liu, Danyang

    2012-01-01

    With the rapid development of mobile games, more rich and colorful mobile games are demanded. While during the development of mobile games, a good mobile game engine is a key technology, since it can integrate some important functions in a framework. In my thesis, the objective is to design the framework of 3D mobile game engine. For completing the research, I put forward specific three research questions, and through understanding and learning the knowledge of professional technologies and t...

  14. OCTG Premium Threaded Connection 3D Parametric Finite Element Model

    OpenAIRE

    Ahsan, Nabeel

    2016-01-01

    Full 360 degree 3D finite element models are the most complete representation of Oil Country Tubular Goods (OCTG) premium threaded connections. Full 3D models can represent helical threads and boundary conditions required to simulate make-up and service loading. A methodology is developed to create a 360 degree full 3D parametric finite element model with helical threads as an effective design and analysis tool. The approach is demonstrated with the creation of a metal-to-metal seal integral ...

  15. 3D Vision in a Virtual Reality Robotics Environment

    OpenAIRE

    Schütz, Christian L.; Natonek, Emerico; Baur, Charles; Hügli, Heinz

    2009-01-01

    Virtual reality robotics (VRR) needs sensing feedback from the real environment. To show how advanced 3D vision provides new perspectives to fulfill these needs, this paper presents an architecture and system that integrates hybrid 3D vision and VRR and reports about experiments and results. The first section discusses the advantages of virtual reality in robotics, the potential of a 3D vision system in VRR and the contribution of a knowledge database, robust control and the combination of in...

  16. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  17. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  18. Remote 3D Medical Consultation

    Science.gov (United States)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  19. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  20. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  1. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  2. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  3. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  4. Validation of TRAB-3D

    International Nuclear Information System (INIS)

    TRAB-3D is a reactor dynamics code with three-dimensional neutronics coupled to core and circuit thermal-hydraulics. The code, entirely developed at VTT, can be used in transient and accident analyses of boiling (BWR) and pressurized water (PWR) reactors with rectangular fuel bundle geometry. The validation history of TRAB-3D includes calculation of international benchmark exercises, as well as comparisons with measured data from real plant transients. The most recent validation case is a load rejection test performed at the Olkiluoto 1 nuclear power plant in 1998 in connection with the power uprating project. The fact that there is local power measurement data available from this test makes it a suitable case for three-dimensional core model validation. The agreement between the results of the TRAB-3D calculation and the measurements is very good. (orig.)

  5. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  6. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  7. 3D-grafiikkamoottori mobiililaitteille

    OpenAIRE

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  8. 基于论文-专利整合的3D打印技术研究热点分析%Research Focuses of 3 D Printing Technology Based on Paper-patent Integration

    Institute of Scientific and Technical Information of China (English)

    董坤; 吴红

    2014-01-01

    3D printing technology plays a vital role in constructing China's new industrialization and promoting traditional industries' trans-formation and upgrading. In order to reveal the research focuses of 3D printing technology synthetically, this paper firstly takes the key-words as the entry point to integrate the papers and patents, and making a multidimensional scaling of the high frequency keywords. Then taking time dimension into account, the paper calculate the keywords frequency of the clustering results including information technology, precision machinery, process method and printing materials areas. Finally, it shows the research status and focuses according to the change of keywords frequency, The result shows:the research focuses of 3D printing technology are mainly concentrated in the field of informa-tion technology, and the research of precision machinery, process method, printing materials are all in the phases of continuous rising, which means it renders the trend of diversification.%3D打印技术对我国新型工业化建设和促进传统产业转型升级具有重要作用。为综合全面地揭示3D打印技术的研究热点,研究首先以关键词为切入点将期刊论文与专利文献进行整合,然后对高频关键词进行多维尺度聚类,并引入时间维度对聚类确定的信息技术、精密机械、工艺方法和打印材料4个主题领域的关键词词频进行阶段统计,最后依据领域词频的阶段变化对研究现状及热点进行了分析,分析认为:3D打印技术研究热点主要集中在信息技术领域,其他主题领域的研究也均处于持续上升阶段,呈现出多元化的发展趋势。

  9. 3D Computations and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  10. 3D proton beam micromachining

    International Nuclear Information System (INIS)

    Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)

  11. Vector spherical harmonics application to 3-D tomography problem

    Science.gov (United States)

    Balandin, A. L.

    2007-04-01

    A method of series expansion with the aid of vector spherical harmonics intended for inverting line integrated data is proposed to investigate 3-D vector fields in the spherical plasmas. A set of numerical computations demonstrating the 3-D reconstruction of the model vector fields has been performed to assess the inversion method proposed.

  12. Contrast-enhanced 3D MR angiography of the pulmonary arteries with integrated parallel acquisition technique (iPAT) in patients with chronicthromboembolic pulmonary hypertension CTEPH - sagittal or coronal acquisition?; Kontrastmittelverstaerkte 3D-MRA der Pulmonalarterien mit integrierter paralleler Akquisitionstechnik (iPAT) bei Patienten mit CTEPH - sagittale oder koronare Datenaufnahme?

    Energy Technology Data Exchange (ETDEWEB)

    Oberholzer, K.; Romaneehsen, B.; Kunz, P.; Thelen, M.; Kreitner, K.F. [Klinik fuer Radiologie, Johannes Gutenberg-Univ. Mainz (Germany); Kramm, T. [Klinik fuer Herz-, Thorax- und Gefaesschirurgie, Johannes Gutenberg-Univ. Mainz (Germany)

    2004-04-01

    Purpose: Comparison of two different types of contrast-enhanced 3D-MR angiography (CE-MRA) with integrated parallel acquisition technique (iPAT) in patients with chronic-thromboembolic pulmonary hypertension (CTEPH) and evaluation whether sagittal acquisition with higher resolution and minimized acquisition time is superior to common coronal orientation. Materials and Methods: CE-MRA was performed on 15 patients with CTEPH preoperatively and on 10 patients also postoperatively, while 5 other patients received only a postoperative MRA. All 30 MR studies with one coronal and two sagittal acquisitions were blindly evaluated and compared. The resolution of coronal and sagittal MRA was 1.3 x 0.6 x 1.4 mm{sup 3} and 1.2 x 1.2 x 1.2 mm{sup 3}, and acquisition time 20 and 17 sec (iPAT factor 2, GRAPPA), respectively. Image quality, coverage of the pulmonary arteries, delineation of patent segmental and subsegmental vessels and pathological findings were assessed. A total of 1980 vessels were evaluated. Results: Sagittal 3D-MRA was superior in overall image quality and complete coverage of the vessels compared to coronal MRA, 18% of subsegmental and 4.3% of segmental arteries as well as 1.1% of the lobar vessels were not covered by coronal acquisition. Only 0.5% of sagittal subsegments were missed. The number of depicted patent segmental and subsegmental arteries was higher in sagittal MRA (460 vs 489 and 573 vs. 649, respectively), the total difference of patent vessels was 105. Sagittal MRA revealed more pathological findings in segmental arteries (especially thrombotic material and stenoses). (orig.) [German] Ziel: Vergleich zweier kontrastmittelverstaerkter MR-Angiographie-Techniken der Pulmonalarterien mit integrierter paralleler Akquisitionstechnik (iPAT) bei Patienten mit chronisch-thromboembolischer pulmonaler Hypertonie (CTEPH), Ueberpruefung der Hypothese, dass mit sagittaler Datenaufnahme eine bessere Bildqualitaet und Detailerkennbarkeit durch hoehere Aufloesung

  13. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    International Nuclear Information System (INIS)

    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system. Methods: The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm2 mean detected x-ray fluence at isocenter). Results: During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0±0.8 mm (mean ±one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error (±0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds. The tracking

  14. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  15. 3D Printed Programmable Release Capsules.

    Science.gov (United States)

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients. PMID:26042472

  16. 3D in Photoshop The Ultimate Guide for Creative Professionals

    CERN Document Server

    Gee, Zorana

    2010-01-01

    This is the first book of its kind that shows you everything you need to know to create or integrate 3D into your designs using Photoshop CS5 Extended. If you are completely new to 3D, you'll find the great tips and tricks in 3D in Photoshop invaluable as you get started. There is also a wealth of detailed technical insight for those who want more. Written by the true experts - Adobe's own 3D team - and with contributions from some of the best and brightest digital artists working today, this reference guide will help you to create a comprehensive workflow that suits your specific needs. Along

  17. Basis for Coupled 3-D Neutronics-Thermal-Hydraulics

    OpenAIRE

    Aragonés Beltrán, José María

    2008-01-01

    The purpose of this seminar is first to discuss the basis of the coupling between 3-D Neutron- Kinetics and Thermal-Hydraulics codes, including the control and 3-D variables to interchange, the transform of the 3-D NK and TH core nodalizations, and the schemes for temporal coupling and time-step control. As representative examples of the NK-TH core coupling, we discuss first the integration of a 3-D NK nodal code with a TH subchannel code, for detailed transient core analysis; and second the ...

  18. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  19. 3D Face Appearance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  20. 3D Face Apperance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations