WorldWideScience

Sample records for catechols

  1. How Many Drugs Are Catecholics

    Directory of Open Access Journals (Sweden)

    Da-Peng Yang

    2007-04-01

    Full Text Available By examination of the 8659 drugs recorded in the Comprehensive Medicinal Chemistry (CMC database, 78 catecholics (including five pyrogallolics were identified, of which 17 are currently prescribed by FDA. Through analyzing the substitutent patterns, ClogPs and O-H bond dissociation enthalpies(BDEs of the catecholic drugs, some molecular features that may benefit circumventing the toxicity of catecholics were revealed: i strong electron-donating substituents are excluded; ii ClogP 3; iii an energy penalty exists for quinone formation. Besides, the present analyses also suggest that the clinical usage and dosage of currently prescribed catecholic drugs are of importance in designing or screening catecholic antioxidants.

  2. Kinetic study on electrochemical oxidation of catechols in the ...

    Indian Academy of Sciences (India)

    Catechol; cyclic voltammetry; cycloheptylamine; aniline; coupling reaction; digital simulation. 1. Introduction. Catechol as a nature-based molecule has been given the attention for use as drugs. Comprehensive medicinal chemistry (CMC) database introduced 78 catecholic drugs.1 Antioxidative properties of catecholic com-.

  3. PEM Anchorage on Titanium Using Catechol Grafting

    Science.gov (United States)

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  4. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  5. Catechol-O-methyltransferase in vitiligo

    NARCIS (Netherlands)

    Le Poole, I. C.; van den Wijngaard, R. M.; Smit, N. P.; Oosting, J.; Westerhof, W.; Pavel, S.

    1994-01-01

    Catechol-O-methyltransferase (COMT) is involved in the metabolism of neurotransmitters such as epinephrine, norepinephrine and dopamine. For melanocytes, the enzyme is of particular importance in preventing the formation of toxic o-quinones during melanin synthesis. It has been suggested that COMT

  6. Production of catechols : microbiology and technology

    NARCIS (Netherlands)

    Krab-Hüsken, L.

    2002-01-01

    Catechols play an important role in the fine-chemical and flavour industry, as well as in photography, dyeing fur, rubber and plastic production. Many of these compounds cannot easily be synthesised chemically, but some micro-organisms are capable of

  7. Catechol Siderophore Transport by Vibrio cholerae.

    Science.gov (United States)

    Wyckoff, Elizabeth E; Allred, Benjamin E; Raymond, Kenneth N; Payne, Shelley M

    2015-09-01

    Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and acquire essential

  8. Jack of all trades: Versatile catechol crosslinking mechanisms

    NARCIS (Netherlands)

    Yang, J.; Cohen Stuart, M.A.; Kamperman, M.M.G.

    2014-01-01

    Catechols play an important role in many natural systems. They are known to readily interact with both organic (e.g., amino acids) and inorganic (e.g., metal ions, metal oxides) compounds, thereby providing a powerful system for protein curing. Catechol crosslinked protein networks, such as

  9. Biodegradation of catechols by micro-organisms - A short review ...

    African Journals Online (AJOL)

    Many aromatic hydrocarbons and catechols are known to be toxic and carcinogenic for humans, and their contamination of soils and aquifers is of great environmental concern. Soil microorganisms, like Pseudomonas spp. and Mycobacterium, were found to be capable of transforming and degrading toxic catechols to easily ...

  10. Catechol-Cation Synergy in Wet Adhesive Materials

    Science.gov (United States)

    Maier, Gregory Peter

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is impaired by high salt, pH, and hydration. However, mussels have evolved effective strategies for wet adhesion despite these impediments. Inspection of mussel foot proteins (Mfps) provides insights into adhesive adaptations. Catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues are present in high mole percent in the interfacial Mfps. The siderophore cyclic trichrysobactin also contains high mole percent of catechol and lysine and serves as a simplified mimic of Mfps. This work is focused on use of Mfp-mimetic siderophores and synthetic siderophore analogs as model systems for dissecting the chemical and physical interactions that enable wet adhesion. Variation in number and identity of functional groups appended to the synthetic siderophore analogs allows identification of the specific contributions of those functional groups to wet adhesion. Both catechol and amine functional groups are critical to strong wet adhesion. The primary amine of lysine and catechol cooperatively displace interfacial hydration and bind to the underlying substrate. Variation in the amine identity as well as the amine to catechol ratio within siderophore analogs also has a significant impact on wet adhesive performance. Catechol undergoes a pH-dependent autoxidation in which higher pH leads to faster oxidation by dioxygen. This oxidation abolishes all adhesion of Mfps to mica by pH 7.5, yet many applications of synthetic wet adhesives require adhesion at physiological or oceanic pH. A better understanding of catechol redox chemistry is critical to the design of wet adhesives. To this end, the pH-dependent autoxidation of catechol and substituted catechols was investigated and results are consistent with a mechanism in which O2 oxidizes both the mono-deprotonated and di-deprotonated catechol. A linear Hammett correlation for the pH-independent second order rate constants for catechol

  11. Energetic and electronic computation of the two-hydrogen atom donation process in catecholic and non-catecholic anthocyanidins.

    Science.gov (United States)

    Ali, Hussein M; Ali, Isra H

    2018-03-15

    Antioxidant activity of anthocyanidins is greatly affected by the 3-hydroxyl group and/or a catecholic moiety. The two-hydrogen atom donation process is frequently used to explain the high antioxidant activity of polyphenolic compounds leading to the formation of stable diketones e.g. 1,2-quinones. Thermodynamic parameters, HOMO and spin density were computed to identify the favoured path, either through the 3-hydroxyl group or through the catecholic moiety in a series of catecholic and non-catecholic 3-oxy- (and deoxy)-anthocyanidins. DFT calculations showed that the donation process in non-catecholic anthocyanidins depended on the substituents on ring B. Anthocyanidins with 3',5'-diOMe groups showed donation through 3,4'-OH or, otherwise, through 3,5-OH groups. Catecholic 3-oxyanthocyanidins, on the other hand, showed donation through the 3,4'-OH path rather than the catecholic path (4',3'-path). The 3,4'-path was favoured by the formation of planar 3-radicals in the first step and the stabilization of 4'-radicals in the second step by H-bonding with the 3'-OH group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Catechol-Based Hydrogel for Chemical Information Processing

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2017-07-01

    Full Text Available Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins to neurotransmission (e.g., dopamine, and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine. It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.

  13. Phenolphthalein metabolite inhibits catechol-O-methyltransferase-mediated metabolism of catechol estrogens: a possible mechanism for carcinogenicity.

    Science.gov (United States)

    Garner, C E; Matthews, H B; Burka, L T

    2000-01-15

    Phenolphthalein (PT), used in over-the-counter laxatives, has recently been identified as a multisite carcinogen in rodents, but the molecular species responsible for the carcinogenicity is not known. A catechol metabolite of PT, hydroxyphenolphthalein (PT-CAT), was recently identified and may be the molecular species responsible for at least part of the toxicity/carcinogenicity of PT. We hypothesize that PT-CAT inhibits the enzyme catechol-O-methyltransferase (COMT) and therefore potentiates genotoxicity by either PT-CAT itself or the endogenous catechol estrogens (CEs) in susceptible tissues. The present studies were conducted to determine the effects of PT treatment and PT-CAT itself on the COMT-mediated metabolism of 4- and 2-hydroxyestradiol both in vitro and in vivo. Female mice were treated with PT (50 mg/kg/d) for 21 days and then euthanized. PT-CAT concentration in urine reached plateau levels by 7 days of exposure. An O-methylated metabolite of PT-CAT was detected in feces. In vitro experiments demonstrated that PT treatment resulted in an increase in free CEs, which are normally cleared by COMT and a concurrent decrease in the capacity of hepatic catechol clearance by COMT. In vitro, PT-CAT was a substrate of COMT, with kinetic properties within the range measured with endogenous substrates. PT-CAT was an extremely potent mixed-type inhibitor of the O-methylation of the catechol estrogens, with 90-300 nM IC50s. The above data, when taken together, suggest that chronic administration of PT may enhance metabolic redox cycling of both PT-CAT and the catechol estrogens and this, in turn, may contribute to PT-induced tumorigenesis.

  14. Kinetic study on electrochemical oxidation of catechols in the ...

    Indian Academy of Sciences (India)

    Kinetic study on electrochemical oxidation of catechols in the presence of cycloheptylamine and aniline: Experiments and digital simulation. DAVOOD NEMATOLLAHIa,∗, FATEMEH GHASEMIa, SADEGH KHAZALPOURa and. FAHIMEH VARMAGHANIb,c. aFaculty of Chemistry, Bu-Ali Sina University, 65178-38683, ...

  15. Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli

    2017-01-01

    Full Text Available Introduction: Catechol is a common intermediate compound in aromatic degradation process. Some microorganisms have this potentiality to degrade aromatic hydrocarbons by catechol dioxygenases to less toxic compounds with ability of entering the tricarboxylic acid cycle. In the present study, the catechol oxygenase activity was measured for 12 crude oil degrader bacteria. Materials and methods: Catechol oxygenase activity of two enzymes includes catechol 1, 2 dioxygenase and catechol 2, 3 dioxygenase were determined using spectrophotometer at 260 nm and 375 nm, respectively. Results: The highest enzyme activity for catechol 1, 2 dioxygenase by Bacillus cereus UKMP-6G was (0.07 U/mL and about catechol 2, 3 dioxygenase was 0.031 U/mL by Rhodococcus ruber UKMP-5M during the first minute of incubation. Catechol 1, 2 dioxygenase and catechol 2, 3 dioxygenase followed the ortho and meta pathway, respectively. Discussion and conclusion: The enzyme assay results showed that among 12 examined bacteria, only R. ruber UKMP-5M has the ability to use meta pathway for degradation and produce 2-hydroxymuconic acid. The other isolates use ortho pathway and create cis, cis-muconic acid.

  16. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.

    Science.gov (United States)

    Solem, Even; Tuczek, Felix; Decker, Heinz

    2016-02-18

    Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers.

    Science.gov (United States)

    Sun, Yue; Li, Xiao-Tao; Xu, Chao; Chen, Jin-Long; Li, Ai-Min; Zhang, Quan-Xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  18. Kinetics and mechanism of the redox reaction between catechol and ...

    African Journals Online (AJOL)

    The kinetics of the reduction of [Co(Ox)3]3- with catechol has been studied in aqueous acid (HClO4) medium at I = 1.00moldm-3(NaClO4) and T=26.3±0.1°C. Two moles of oxidant were consumed by one mole of reductant. The reaction is second order overall, first order in both oxidant and reductant and shows a first order ...

  19. Ultrathin monomolecular films and robust assemblies based on cyclic catechols

    Czech Academy of Sciences Publication Activity Database

    Zieger, M. M.; Pop-Georgievski, Ognen; de los Santos Pereira, Andres; Verveniotis, E.; Preuss, C. M.; Zorn, M.; Reck, B.; Goldmann, A. S.; Rodriguez-Emmenegger, Cesar; Barner-Kowollik, C.

    2017-01-01

    Roč. 33, č. 3 (2017), s. 670-679 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GJ15-09368Y Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : cyclic catechols * ultrathin films * macromolecules monolayers Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.833, year: 2016

  20. Purification and Characterization of Streptomyces griseus Catechol O-Methyltransferase

    Science.gov (United States)

    Dhar, Kajari; Rosazza, John P. N.

    2000-01-01

    A soluble (100,000 × g supernatant) methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-l-methionine to catechols was present in cell extracts of Streptomyces griseus. A simple, general, and rapid catechol-based assay method was devised for enzyme purification and characterization. The enzyme was purified 141-fold by precipitation with ammonium sulfate and successive chromatography over columns of DEAE-cellulose, DEAE-Sepharose, and Sephacryl S-200. The purified cytoplasmic enzyme required 10 mM magnesium for maximal activity and was catalytically optimal at pH 7.5 and 35°C. The methyltransferase had an apparent molecular mass of 36 kDa for both the native and denatured protein, with a pI of 4.4. Novel N-terminal and internal amino acid sequences were determined as DFVLDNEGNPLENNGGYXYI and RPDFXLEPPYTGPXKARIIRYFY, respectively. For this enzyme, the Km for 6,7-dihydroxycoumarin was 500 ± 21.5 μM, and that for S-adenosyl-l-methionine was 600 ± 32.5 μM. Catechol, caffeic acid, and 4-nitrocatechol were methyltransferase substrates. Homocysteine was a competitive inhibitor of S-adenosyl-l-methionine, with a Ki of 224 ± 20.6 μM. Sinefungin and S-adenosylhomocysteine inhibited methylation, and the enzyme was inactivated by Hg2+, p-chloromercuribenzoic acid, and N-ethylmaleimide. PMID:11055938

  1. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  2. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-01-01

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  3. Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri.

    Science.gov (United States)

    Te Poele, Evelien M; Valk, Vincent; Devlamynck, Tim; van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2017-06-01

    Previously, we have shown that the glucansucrase GtfA-ΔN enzyme of Lactobacillus reuteri 121, incubated with sucrose, efficiently glucosylated catechol and we structurally characterized catechol glucosides with up to five glucosyl units attached (te Poele et al. in Bioconjug Chem 27:937-946, 2016). In the present study, we observed that upon prolonged incubation of GtfA-ΔN with 50 mM catechol and 1000 mM sucrose, all catechol had become completely glucosylated and then started to reappear. Following depletion of sucrose, this glucansucrase GtfA-ΔN used both α-D-Glcp-catechol and α-D-Glcp-(1→4)-α-D-Glcp-catechol as donor substrates and transferred a glucose unit to other catechol glycoside molecules or to sugar oligomers. In the absence of sucrose, GtfA-ΔN used α-D-Glcp-catechol both as donor and acceptor substrate to synthesize catechol glucosides with 2 to 10 glucose units attached and formed gluco-oligosaccharides up to a degree of polymerization of 4. Also two other glucansucrases tested, Gtf180-ΔN from L. reuteri 180 and GtfML1-ΔN from L. reuteri ML1, used α-D-Glcp-catechol and di-glucosyl-catechol as donor/acceptor substrate to synthesize both catechol glucosides and gluco-oligosaccharides. With sucrose as donor substrate, the three glucansucrase enzymes also efficiently glucosylated the phenolic compounds pyrogallol, resorcinol, and ethyl gallate; also these mono-glucosides were used as donor/acceptor substrates.

  4. Identification of Catechol as a New Marker for Detecting Propolis Adulteration

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2014-07-01

    Full Text Available Adulteration of propolis with poplar extract is a serious issue in the bee products market. The aim of this study was to identify marker compounds in adulterated propolis, and examine the transformation of chemical components from poplar buds to propolis. The chemical profiles of poplar extracts and propolis were compared, and a new marker compound, catechol, was isolated and identified from the extracts of poplar buds. The polyphenol oxidase, catechol oxidase, responsible for catalyzing oxidation of catechol was detected in poplar buds and propolis. The results indicate catechol can be used as a marker to detect propolis adulterated with poplar extract.

  5. Catechol End-Functionalized Polylactide by Organocatalyzed Ring-Opening Polymerization

    Directory of Open Access Journals (Sweden)

    Naroa Sadaba

    2018-02-01

    Full Text Available There is a great interest in incorporating catechol moieties into polymers in a controlled manner due to their interesting properties, such as the promotion of adhesion, redox activity or bioactivity. One possibility is to incorporate the catechol as end-group in a polymer chain using a functional initiator by means of controlled polymerization strategies. Nevertheless, the instability of catechol moieties under oxygen and basic pH requires tedious protection and deprotection steps to perform the polymerization in a controlled fashion. In the present work, we explore the organocatalyzed synthesis of catechol end-functional, semi-telechelic polylactide (PLLA using non-protected dopamine, catechol molecule containing a primary amine, as initiator. NMR and SEC-IR results showed that in the presence of a weak organic base such as triethylamine, the ring-opening polymerization (ROP of lactide takes place in a controlled manner without need of protecting the cathechol units. To further confirm the end-group fidelity the catechol containing PLLA was characterized by Cyclic Voltammetry and MALDI-TOF confirming the absence of side reaction during the polymerization. In order to exploit the potential of catechol moieties, catechol end-group of PLLA was oxidized to quinone and further reacted with aliphatic amines. In addition, we also confirmed the ability of catechol functionalized PLLA to reduce metal ions to metal nanoparticles to obtain well distributed silver nanoparticles. It is expected that this new route of preparing catechol-PLLA polymers without protection will increase the accessibility of catechol containing biodegradable polymers by ROP.

  6. Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri

    NARCIS (Netherlands)

    te Poele, Evelien M; Valk, Vincent; Devlamynck, Tim; van Leeuwen, Sander S; Dijkhuizen, Lubbert

    Previously, we have shown that the glucansucrase GtfA-ΔN enzyme of Lactobacillus reuteri 121, incubated with sucrose, efficiently glucosylated catechol and we structurally characterized catechol glucosides with up to five glucosyl units attached (te Poele et al. in Bioconjug Chem 27:937-946, 2016).

  7. Hypnotizability and Catechol-O-Methyltransferase (COMT polymorphysms in Italians

    Directory of Open Access Journals (Sweden)

    Silvano ePresciuttini

    2014-01-01

    Full Text Available Higher brain dopamine content depending on lower activity of Catechol-O-Methyltransferase (COMT in subjects with high hypnotisability scores (highs has been considered responsible for their attentional characteristics. However, the results of the previous genetic studies on association between hypnotisability and the Catechol-O-Methyltransferase (COMT single nucleotide polymorphism (SNP rs4680 (Val158Met were inconsistent. Here, we used a selective genotyping approach to re-evaluate the association between hypnotisability and COMT in the context of a two-SNP haplotype analysis, considering not only the Val158Met polymorphism, but also the closely located rs4818 SNP. An Italian sample of 53 highs, 49 low hypnotizable subjects (lows and 57 controls, were genotyped for a segment of 805 bp of the COMT gene, including Val158Met and the closely located rs4818 SNP. Our selective genotyping approach had 97.1% power to detect the previously reported strongest association at the significance level of 5%. We found no evidence of association at the SNP, haplotype and diplotype levels. Thus, our results challenge the dopamine-based theory of hypnosis and indirectly support recent neuropsychological and neurophysiological findings reporting the lack of any association between hypnotisability and focused attention abilities.

  8. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  9. Inhibition of serine beta-lactamases by vanadate-catechol complexes.

    Science.gov (United States)

    Adediran, S A; Pratt, R F

    2008-09-09

    All three classes of serine beta-lactamases are inhibited at micromolar levels by 1:1 complexes of catechols with vanadate. Vanadate reacts with catechols at submillimolar concentrations in aqueous buffer at neutral pH in several steps, initially forming 1:1, 1:2, and, possibly, 1:3 complexes. Formation of these complexes is followed by the slower reduction of vanadate (V (V)) to vanadyl (V (IV)) and oxidation of the catechol. Vanadyl-catechol complexes, however, do not inhibit the beta-lactamases. Rate and equilibrium constants of formation of the 1:1 and 1:2 complexes of vanadate with catechol itself and with 2,3-dihydroxynaphthalene were measured by stopped-flow spectrophotometry. Typical examples of all three classes of serine beta-lactamases (the class A TEM-2, class C P99, and class D OXA-1 enzymes) were competitively inhibited by the 1:1 vanadate-catechol complexes. The inhibition was modestly enhanced by hydrophobic substituents on the catechol. The 1:1 vanadate complexes are considerably better inhibitors of the P99 beta-lactamase than 1:1 complexes of catechol with boric acid and are likely to contain penta- or hexacoordinated vanadium rather than tetracooordinated. Molecular modeling showed that a pentacoordinated 1:1 vanadate-catechol complex readily fits into the class C beta-lactamase active site with coordination to the nucleophilic serine hydroxyl oxygen. Such complexes may resemble the pentacoordinated transition states of phosphyl transfer, a reaction also catalyzed by beta-lactamases.

  10. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells.

    Science.gov (United States)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Surface Functionalization of Metal-Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance.

    Science.gov (United States)

    Castells-Gil, Javier; Novio, Fernando; Padial, Natalia M; Tatay, Sergio; Ruíz-Molina, Daniel; Martí-Gastaldo, Carlos

    2017-12-27

    Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal-organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

  12. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement

    Science.gov (United States)

    Maier, Greg P.; Rapp, Michael V.; Waite, J. Herbert; Israelachvili, Jacob N.; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (Ead ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a “one-two punch,” whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  13. Electrochemical Investigation of Catechol at Poly(niacinamide) Modified Carbon Paste Electrode: A Voltammetric Study

    OpenAIRE

    Teradale, A. B.; Lamani, S. D.; Swamy, B. E. Kumara; Ganesh, P. S.; Das, S. N.

    2016-01-01

    A polymeric thin film modified electrode, that is, poly(niacinamide) modified carbon paste electrode (MCPE), was developed for the electrochemical determination of catechol (CC) by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE), the poly(niacinamide) MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS) of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide) modified ca...

  14. Removing Dissolved Silica from Waste Water with Catechol and Active Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale Sciences Dept.; Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Energy Program; Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geosciences Dept.; Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Physical Chemical and Nano Sciences Center

    2017-01-01

    Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.

  15. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  16. Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2017-11-01

    Full Text Available In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol (PEG–catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation and cross-linking conditions (pH, oxidant concentration, etc. have been studied in order to optimize the curing kinetics and final cross-linking degree of the system. However, reported systems still show limited mechanical stability, as expected from a PEG network, and this fact limits their potential application to load bearing tissues. Here, we describe mechanically reinforced PEG–catechol adhesives showing excellent and tunable cohesive properties and adhesive performance to tissue in the presence of blood. We used collagen/PEG mixtures, eventually filled with hydroxyapatite nanoparticles. The composite hydrogels show far better mechanical performance than the individual components. It is noteworthy that the adhesion strength measured on skin covered with blood was >40 kPa, largely surpassing (>6 fold the performance of cyanoacrylate, fibrin, and PEG–catechol systems. Moreover, the mechanical and interfacial properties could be easily tuned by slight changes in the composition of the glue to adapt them to the particular properties of the tissue. The reported adhesive compositions can tune and improve cohesive and adhesive properties of PEG–catechol-based tissue glues for load-bearing surgery applications.

  17. Underwater Contact Behavior of Alginate and Catechol-Conjugated Alginate Hydrogel Beads.

    Science.gov (United States)

    Cholewinski, Aleksander; Yang, Fut K; Zhao, Boxin

    2017-08-29

    Modifying hydrogels with catechol functionality is a promising approach for improving their mechanical and interfacial properties in water, particularly in biological environments. However, the effects of this modification on hydrogels' contact behavior with soft tissues are not well-studied due to the complexity of hydrogels and lack of suitable techniques to probe this behavior. In addition, modification can alter the mechanical properties of hydrogels, resulting in consequences for adhesive strength as well. In this work, we report an investigation of the contact behavior of alginate hydrogels with and without conjugation of catechol functionality, aiming to elucidate the role of catechol modification on wet adhesion of alginates to a model tissue-like material, gelatin. To directly characterize this soft-on-soft contact, which has commonly been a challenge, we developed an indentation-based contact adhesion measurement using alginate hydrogel beads as the testing probe. We found that <3% conjugation of catechol can significantly improve the adhesion of alginate to gelatin by half an order of magnitude, with this adhesion depending heavily on contact time and pH. In contrast, the reduced elastic modulus from modification resulted in lower adhesive strength on rigid substrates. These findings provide valuable insight into the effects of catechol modification of hydrogels, especially in their interaction with tissue-like soft substrates, as well as a simple method for the direct measurement of time- and pH-dependent hydrogel adhesion behavior underwater.

  18. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation.

    Science.gov (United States)

    Dauvilliers, Yves; Tafti, Mehdi; Landolt, Hans Peter

    2015-08-01

    Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants. Copyright © 2014 Elsevier Ltd. All

  19. Catechol-O-methyltransferase, Cognition and Alzheimer's Disease.

    Science.gov (United States)

    Perkovic, Matea Nikolac; Strac, Dubravka Svob; Tudor, Lucija; Konjevod, Marcela; Erjavec, Gordana Nedic; Pivac, Nela

    2018-03-14

    Cognition is a complex trait representing a set of all mental abilities and processes related to knowledge. Although diverse brain regions are involved, most cognitive processes appear to engage cortical regions. The activity of dopaminergic neurons in prefrontal cortex represents a biological substrate underlying cognitive functions. Alzheimer's Disease (AD) is the most frequent dementia associated with cognitive impairments. Cognitive impairment in AD starts slowly with discrete deterioration in memory, language, thinking and reasoning, but it progresses into more severe and debilitating cognitive dysfunction. Cognitive function is affected by the complex interactions between various genetic, epigenetic, developmental and environmental factors. One of the most studied genes, associated with cognitive disturbances, is the gene coding for Catechol-O-methyltransferase (COMT), the enzyme with major role in dopamine metabolism and modulation of different brain functions. Therefore, COMT is studied as a target for many neuropsychiatric disorders, including dementias and AD. The COMT Val158/108Met functional polymorphism affects significantly the enzyme activity and consequently cognitive performance associated with altered dopamine function. The association of COMT Val158/108Met polymorphism with some cognitive domains and psychosis in AD was reported in some but not in all studies. Besides COMT Val158/108Met polymorphism, other risk genotypes or haplotypes should be evaluated to determine the association of COMT with cognitive decline in AD. Better understanding of the role of COMT in cognitive processes in AD, as well as integration of neurobiological, genetic, genomic and epigenetic data, might help in developing new potential therapies of cognitive impairments and psychotic symptoms, characteristic features of AD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to catechol in long term.

    Science.gov (United States)

    Yu, Chun-Hong; Cui, Ning-Xuan; Wang, Yan; Wang, Ying; Liu, Wen-Juan; Gong, Meng; Zhao, Xiao; Rong, Long; Yi, Zong-Chun

    2017-09-01

    Catechol is one of phenolic metabolites of benzene that is a general occupational hazard and a ubiquitous environmental air pollutant. Catechol also occurs naturally in fruits, vegetables and cigarettes. Previous studies have revealed that 72h exposure to catechol improved hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. In present study, K562 cells were treated with 0, 10 or 20μM catechol for 1-4weeks, hemin-induced hemoglobin synthesis increased in a concentration- and time-dependent manner and the enhanced hemoglobin synthesis was relatively stable. The mRNA expression of α-, β- and γ-globin genes, erythroid heme synthesis enzymes PBGD and ALAS2, transcription factor GATA-1 and NF-E2 showed a significant increase in K562 cells exposed to 20μM catechol for 3w, and catechol enhanced hemin-induced mRNA expression of these genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to catechol changed DNA methylation levels at several CpG sites in several erythroid-specific genes and their far upstream of regulatory elements. These results demonstrated that long-term exposure to low concentration of catechol enhanced the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role by up-regulating erythroid specific genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol

    Directory of Open Access Journals (Sweden)

    Tiwary Bhupendra N

    2010-06-01

    Full Text Available Abstract Background Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes. Results We have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC and 3-methylcatechol (3-MC at pilot scale. Amongst the screened strains, two strains viz. Pseudomonas putida strain (F1 and recombinant Escherichia coli expression clone (pDTG602 harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to ~90-95% with time and high yields of 3-NC (10 mM and 3-MC (12 mM were obtained. Conclusion The biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms P. putida (F1 and recombinant E. coli expression clone (pDTG602 may be useful for industrial application.

  2. Electrochemical behavior of hydroquinone and catechol at a silsesquioxane-modified carbon paste electrode

    OpenAIRE

    Silva,Paulo S. da; Gasparini,Bianca C.; Magosso,Hérica A.; Spinelli,Almir

    2013-01-01

    A carbon paste electrode modified with 3-n-propyl-4-picolinium chloride silsesquioxane polymer was tested as a sensor for dihydroxybenzene isomers. The sensor showed excellent performance for simultaneous electroanalytical determination of hydroquinone and catechol. The calibration curves obtained were linear in the concentration range of 10.0 to 450.0 µmol L¹ for hydroquinone (r = 0.998) and 10.0 to 300.0 µmol L-1 for catechol (r = 0.997). The visual limit of detection was 10.0 µmol L-1 for ...

  3. Xylem occlusion in Bouvardia flowers : evidence for a role of peroxidase and catechol oxidase

    NARCIS (Netherlands)

    Vaslier, N.; Doorn, van W.G.

    2003-01-01

    During vase life, Bouvardia flowers show rapid leaf wilting, especially if they are stored dry prior to placement in water. Wilting is due to a blockage in the basal stem end. We investigated the possible role of peroxidase and catechol oxidase in the blockage in cv. van Zijverden flowers, which

  4. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Science.gov (United States)

    Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis

    2007-01-01

    Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula × P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce...

  5. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis

    Czech Academy of Sciences Publication Activity Database

    Veselý, Martin; Knoppová, Monika; Nešvera, Jan; Pátek, Miroslav

    2007-01-01

    Roč. 76, - (2007), s. 159-168 ISSN 0175-7598 R&D Projects: GA ČR GA526/04/0542 Institutional research plan: CEZ:AV0Z50200510 Keywords : rhodococcus erythropolis * catrabc operon * catechol degradation Subject RIV: EE - Microbiology, Virology Impact factor: 2.475, year: 2007

  6. The influence of catechol structure on the suicide-inactivation of tyrosinase.

    Science.gov (United States)

    Ramsden, Christopher A; Stratford, Michael R L; Riley, Patrick A

    2009-09-07

    3,6-Difluorocatechol, which cannot act as a monooxygenase tyrosinase substrate, is an oxidase substrate, and, in contrast to other catechols, oxidation does not lead to suicide-inactivation, providing experimental evidence for an inactivation mechanism involving reductive elimination of Cu(0) from the active site.

  7. Two Genomic Regions Involved in Catechol Siderophore Production by Erwinia carotovora

    Science.gov (United States)

    Bull, Carolee T.; Ishimaru, Carol A.; Loper, Joyce E.

    1994-01-01

    Two regions involved in catechol biosynthesis (cbs) of Erwinia carotovora W3C105 were cloned by functional complementation of Escherichia coli mutants that were deficient in the biosynthesis of the catechol siderophore enterobactin (ent). A 4.3-kb region of genomic DNA of E. carotovora complemented the entB402 mutation of E. coli. A second genomic region of 12.8 kb complemented entD, entC147, entE405, and entA403 mutations of E. coli. Although functions encoded by catechol biosynthesis genes (cbsA, cbsB, cbsC, cbsD, and cbsE) of E. carotovora were interchangeable with those encoded by corresponding enterobactin biosynthesis genes (entA, entB, entC, entD, and entE), only cbsE hybridized to its functional counterpart (entE) in E. coli. The cbsEA region of E. carotovora W3C105 hybridized to genomic DNA of 21 diverse strains of E. carotovora but did not hybridize to that of a chrysobactin-producing strain of Erwinia chrysanthemi. Strains of E. carotovora fell into nine groups on the basis of sizes of restriction fragments that hybridized to the cbsEA region, indicating that catechol biosynthesis genes were highly polymorphic among strains of E. carotovora. PMID:16349193

  8. Reaction Pathways in Catechol/Primary Amine Mixtures: A Window on Crosslinking Chemistry.

    Directory of Open Access Journals (Sweden)

    Juan Yang

    Full Text Available Catechol chemistry is used as a crosslinking tool abundantly in both natural organisms (e.g. mussels, sandcastle worms and synthetic systems to achieve the desired mechanical properties. Despite this abundance and success, the crosslinking chemistry is still poorly understood. In this study, to simplify the system, yet to capture the essential chemistry, model compounds 4-methyl catechol and propylamine are used. The reaction of 4-methyl catechol (2 mM with propylamine (6 mM is carried out in the presence of NaIO4 (2 mM in 10 mM Na2CO3 aqueous solution. A variety of spectroscopic/spectrometric and chromatographic methods such as 1H NMR, LC-MS, and UV-VIS are used to track the reaction and identify the products/intermediates. It is found that the crosslinking chemistry of a catechol and an amine is both fast and complicated. Within five minutes, more than 60 products are formed. These products encompass 19 different masses ranging from molecular weight of 179 to 704. By combining time-dependent data, it is inferred that the dominant reaction pathways: the majority is formed via aryloxyl-phenol coupling and Michael-type addition, whereas a small fraction of products is formed via Schiff base reactions.

  9. Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) synthesised from catechol.

    Science.gov (United States)

    Heather, Erin; Shimmon, Ronald; McDonagh, Andrew M

    2015-03-01

    This work examines the organic impurity profile of 3,4-methylenedioxymethamphetamine (MDMA) that has been synthesised from catechol (1,2-dihydroxybenzene), a common chemical reagent available in industrial quantities. The synthesis of MDMA from catechol proceeded via the common MDMA precursor safrole. Methylenation of catechol yielded 1,3-benzodioxole, which was brominated and then reacted with magnesium allyl bromide to form safrole. Eight organic impurities were identified in the synthetic safrole. Safrole was then converted to 3,4-methylenedioxyphenyl-2-propanone (MDP2P) using two synthetic methods: Wacker oxidation (Route 1) and an isomerisation/peracid oxidation/acid dehydration method (Route 2). MDMA was then synthesised by reductive amination of MDP2P. Thirteen organic impurities were identified in MDMA synthesised via Route 1 and eleven organic impurities were identified in MDMA synthesised via Route 2. Overall, organic impurities in MDMA prepared from catechol indicated that synthetic safrole was used in the synthesis. The impurities also indicated which of the two synthetic routes was utilised. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Individualization and Stabilization of Zinc Oxide Nanorods by Covalent Functionalization with Positively Charged Catechol Derivatives.

    Science.gov (United States)

    Burger, Alexandra; Srikantharajah, Rubitha; Peukert, Wolfgang; Hirsch, Andreas

    2017-12-06

    We present the formation of individualized and stabilized zinc oxide (ZnO) nanorods by functionalization with positively charged catechol derivatives by means of ligand exchange reactions. The electrosteric stabilization of ZnO nanorods was studied using two catechol derivatives, introducing either three (1) or six (2) pH independent positive charges per molecule and sterically demanding groups onto the surface. ZnO nanorods providing initially acetate (Ac) or 2-[2-(2-methoxyethoxy)-ethoxy]acetic acid (TODA) ligands on their surface were used. The ligand exchange was performed by using mono and mixed functionalization approaches, utilizing either exclusively the positively charged catechols or mixtures of the latter with small commercially available catechol derivatives, namely 4-methylcatechol (Me-cat), 4-tert-butylcatechol (tBu-cat), and dopamine hydrochloride (Dop). Using a combination of various analytical methods such as zeta potential, dynamic light scattering (DLS), UV/Vis, and scanning electron microscopy (SEM) measurements we found that the initial surfactants on the nanorods surface, the number of positive charges per molecule, the steric demand, and the added amount of the catechol derivative strongly influence the colloidal behavior of the nanorods. Stable suspensions containing individualized ZnO nanorods were successfully formed upon functionalization of ZnO-TODA nanorods with 30 monolayers (MLs) of the higher charged catechol (2), as well as using mixtures of 20/10 and 18/10 MLs of 2/Dop. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorption Properties of Ionic Species on Cross-linked Chitosans Modified with Catechol and Salicylic Acid Moieties

    OpenAIRE

    Oshita, Koji; Takayanagi, Toshio; Oshima, Mitsuko; Motomizu, Shoji

    2008-01-01

    Catechol-type chitosan resin and salicylic acid-type chitosan resin were easily synthesized for use in estimating the adsorption behavior of 34 elements at pH 1 - 7 in aquatic media. The catechol-type chitosan resin could adsorb Cu(II) at pH 3 - 7, In(III) at pH 4 - 6, Pb(II) and lanthanoids at pH 5 - 7, and U(VI) at pH 4 - 7 more effectively than the salicylic acid-type chitosan resin and the cross-linked chitosan resin (base material). Adsorption ability was in the order: catechol-type chit...

  12. Application of an easily water-compatible hypercrosslinked polymeric adsorbent for efficient removal of catechol and resorcinol in aqueous solution.

    Science.gov (United States)

    Huang, Jianhan; Huang, Kelong; Yan, Cheng

    2009-08-15

    An easily water-compatible hypercrosslinked resin HJ-1 was developed for adsorbing catechol and resorcinol in aqueous solution in this study. Its adsorption performances for catechol and resorcinol were investigated in aqueous solution by using the commercial Amberlite XAD-4 as a reference. The adsorption dynamic curves were measured and the adsorption obeyed the pseudo-second-order rate equation of Boyer and Hsu. The adsorption isotherms were scaled and Freundlich isotherm model characterized the adsorption better. The adsorption thermodynamic parameters were calculated and the adsorption was an exothermic, favorable, and more ordered process. The fact that the adsorption capacity of catechol was larger than resorcinol and the adsorption enthalpy of catechol was more negative than resorcinol can be explained in terms of the solubility and the polarity of two adsorbates.

  13. Surface charge-transfer complex formation of catechol on titanium(IV) oxide and the application to bio-sensing.

    Science.gov (United States)

    Murata, Yusuke; Hori, Hiroshige; Taga, Atsushi; Tada, Hiroaki

    2015-11-15

    Adsorption properties of 2-hydroxyphenol (catechol) on TiO2 particles has been studied at 298K. The adsorption proceeds from the aqueous solution with the Langmuir type behavior. Diffuse reflectance infrared spectra of the catechol-adsorbed TiO2 suggested that catechol is adsorbed on TiO2 solution via the chelation to the surface Ti ions. The adsorption induces a strong absorption in the whole visible region, of which intensity increases with an increase in the adsorption amount. Photoelectrochemical experiments and molecular orbital calculations indicate that the absorption stems from the charge-transfer (CT) transition from the HOMO of catechol to the conduction band of TiO2. Time courses for the adsorption of catechol on mesoporous TiO2 nanocrystalline film-coated glass was traced by measuring the change in the absorbance of the CT band, and analyzed on the basis of the Langmuir model. This study would present a new simple technique for sensing of important biomolecules bearing the catechol moiety. Copyright © 2015. Published by Elsevier Inc.

  14. Simultaneous Determination of Hydroquinone and Catechol by Poly (L-methionine Coated Hydroxyl Multiwalled Carbon Nanotube Film

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2014-07-01

    Full Text Available A simply and high selectively electrochemical method has been developed for the simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with the poly L-methionine/multiwall carbon nanotubes, which significantly increased the reversible electrochemical reaction. The electrochemical behavior of catechol and hydroquinone at the modified electrode was studied by cyclic voltammetry and differential pulse voltammetry. The presence of hydroxyl MWCNTs in the composite film enhances the surface coverage concentration of poly L- methionine/multiwall carbon nanotubes. The results suggest that pH=6 is the optimum acidity condition for the selective and simultaneous determination of catechol and hydroquinone. Under the optimized condition, the response peak currents of the modified electrodes were linear over ranges of 8.0´10-7~2.0´10-4 mol/L (R2=0.997 for hydroquinone and 8.0´10-7~2.0´10-4, R2=0.997 for catechol. The sensor also exhibited good sensitivity with the detection limit of 8.0´10-8 mol/L and 1.0´10- 7 mol/L for hydroquinone and catechol, respectively. This study provides a new kind of composite modified electrode for electrochemical sensors with good selectivity and strong anti- interference. It has been applied to simultaneous determination of hydroquinone and catechol in water sample with simplicity and high selectivity.

  15. Crystal structures of rat catechol-O-methyltransferase complexed with coumarine-based inhibitor.

    Science.gov (United States)

    Tsuji, Eiichi; Okazaki, Kosuke; Takeda, Kei

    2009-01-16

    In human, catechol-O-methyltransferase (COMT: E.C. 2.1.1.6) is responsible for metabolism of catechol neurotransmitter and xenobiotics. The main clinical interest in COMT results from the possibility of using COMT inhibitors as adjuncts in the therapy of Parkinson's disease (PD) with l-DOPA. COMT is therefore a target for inhibitor development aiming at PD treatment and has been submitted to extensive structure-based drug design. Recently reported inhibitors have nitrocatechol structure that may inhibit oxidative phosphorylation and uncouple mitochondrial energy production. This work reports the first crystallographic study of Rat COMT complexed with non-nitrocatechol inhibitor. Analysis of the structural differences among the previously reported inhibitor complexes, coumarine-based inhibitor (4-phenyl-7, 8-dihydroxycoumarine: 4PCM) bound structure provides the explanation for inhibitor binding and can be used for future inhibitor design.

  16. Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite.

    Science.gov (United States)

    Shakir, K; Ghoneimy, H F; Elkafrawy, A F; Beheir, Sh G; Refaat, M

    2008-02-11

    Organophilic-bentonite, produced by exchange of cetyltrimethylammonium cation for metal cations on the bentonite, was exploited as adsorbent for removal of catechol from aqueous solutions using batch technique. The dependence of removal on various physico-chemical parameters, such as contact time (1-250 min), concentration (0.8-15.3 mmol L(-1)), temperature (30, 40, 50+/-1 degrees C) and pH (5-12) of the adsorptive solution were investigated. Obtained results show that catechol could be removed efficiently ( approximately 100%) at pH values > or =9.9. The uptake process follows first-order rate kinetics and the equilibrium data fit well into the Langmuir and Freundlich adsorption isotherms over a wide range of concentration (1-10 mmol L(-1)). The magnitude of change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) were determined.

  17. Crystallization and preliminary X-ray diffraction studies of a catechol-O-methyltransferase/inhibitor complex

    International Nuclear Information System (INIS)

    Rodrigues, M. L.; Bonifácio, M. J.; Soares-da-Silva, P.; Carrondo, M. A.; Archer, M.

    2004-01-01

    Catechol-O-methyltransferase has been co-crystallized with a novel inhibitor, which has potential therapeutic application in the Parkinson’s disease therapy. Inhibitors of the enzyme catechol-O-methyltransferase (COMT) are used as co-adjuvants in the therapy of Parkinson’s disease. A recombinant form of the soluble cytosolic COMT from rat has been co-crystallized with a new potent inhibitor, BIA 8-176 [(3,4-dihydroxy-2-nitrophenyl)phenylmethanone], by the vapour-diffusion method using PEG 6K as precipitant. Crystals diffract to 1.6 Å resolution on a synchrotron-radiation source and belong to the monoclinic space group P2 1 , with unit-cell parameters a = 52.77, b = 79.63, c = 61.54 Å, β = 91.14°

  18. Crystallization and preliminary X-ray diffraction studies of a catechol-O-methyltransferase/inhibitor complex

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M. L. [Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. República, Apt. 127, 2781-901 Oeiras (Portugal); Bonifácio, M. J.; Soares-da-Silva, P. [Department of Research and Development, BIAL, 4785 S. Mamede do Coronado (Portugal); Carrondo, M. A.; Archer, M., E-mail: archer@itqb.unl.pt [Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. República, Apt. 127, 2781-901 Oeiras (Portugal)

    2005-01-01

    Catechol-O-methyltransferase has been co-crystallized with a novel inhibitor, which has potential therapeutic application in the Parkinson’s disease therapy. Inhibitors of the enzyme catechol-O-methyltransferase (COMT) are used as co-adjuvants in the therapy of Parkinson’s disease. A recombinant form of the soluble cytosolic COMT from rat has been co-crystallized with a new potent inhibitor, BIA 8-176 [(3,4-dihydroxy-2-nitrophenyl)phenylmethanone], by the vapour-diffusion method using PEG 6K as precipitant. Crystals diffract to 1.6 Å resolution on a synchrotron-radiation source and belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 52.77, b = 79.63, c = 61.54 Å, β = 91.14°.

  19. Clean and Green Synthesis of New Benzothiazole Derivatives via Electrochemical Oxidation of Catechol Derivatives

    Directory of Open Access Journals (Sweden)

    Mansour Arab Chamjangali

    2016-06-01

    Full Text Available Electrochemical oxidation of the catechols 1a and 1b is studied in the presence of 6-methyl-2-thouracil (3b and 6-propyl-2-thiouracil (3a as nucleophiles in a phosphate buffer (0.15 mol L−1, pH = 6.8/DMF (95:5 solution using cyclic voltammetry and controlled-potential coulometry. The results obtained indicate that the quinones derived from the catechols participate in 1,4-Michael-addition reactions with the nucleophiles to form the corresponding new benzothiazole compounds. In this work, we derive a variety of products with good yields using controlled potential at graphite electrodes in an undivided cell. This work is licensed under a Creative Commons Attribution 4.0 International License.

  20. The Role of Catechol-O-Methyltransferase (COMT Gene in the Etiopathogenesis of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ceren Acar

    2014-09-01

    Full Text Available Genetic factors in the risk of developing schizophrenia is of great importance. With the help of the advances in the field of genetics in recent years by using linkage analysis several genes have been identified that may be a risk factor in schizophrenia. Several association studies have been performed in many different populations on the candidate susceptibility genes that were defined in previous studies. However, these studies give controversial results in different countries with different populations, and there are problems in obtaining replicable results. In this review we aimed to focus on the genetic basis of schizophrenia and the relationship between schizophrenia and catechol-O-methyltransferase (COMT gene. COMT encodes an enzyme molecule which has an important function in dopamine pathways. It has great importance in catecholamine metabolism and pharmacology and genetic mechanism of catechol metabolism variations and their clinical consequences. COMT transfers the methyl group from S-adenosyl-methionine to the hydroxyl group of catechol nucleus (such as dopamine, norepinephrine or catechol estrogen. Genetic variations found in COMT gene are associated with a broad spectrum of clinical phenotype including psychiatric disorders or estrogen related cancers. Several groups have performed studies on the relationship between schizophrenia and COMT. The most commonly studied polymorphism in COMT gene is rs4680 and it causes a valine methionine conversion at codon 158. The association studies on this polymorphism in different populations gave both positive and negative results. Schizoprenia is a complex disease caused by the interaction of environmental and genetic factors, while interpreting the genetic data, this fact and the possibility of the presence of different gene products should be taken into account. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(3.000: 217-226

  1. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Energy Technology Data Exchange (ETDEWEB)

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  2. Magnetic catechol-chitosan with bioinspired adhesive surface: preparation and immobilization of ω-transaminase.

    Directory of Open Access Journals (Sweden)

    Kefeng Ni

    Full Text Available The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS-iron oxide nanoparticles (IONPs composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

  3. Catechol Biosensor Based on Gold Nanoparticle Modified Tetrabutylammoniumtetrafluoroborate Doped Polythiophene Films

    Directory of Open Access Journals (Sweden)

    Suman SINGH

    2010-11-01

    Full Text Available Tetra butyl ammonium tetra fluoroborate (TBATFB doped polythiophene films have been polymerized galvano-statically which were then modified with soium citrate capped gold nanoparticles (AuNPs using dip coating method. Catechol biosensor was fabricated using laccase enzyme. ITO/Pth and ITO/Pth/AuNPs/Lac bioelectrodes were characterized using scanning electron microscopy (SEM, UV-Visible spectroscopy and electrochemical techniques. Absorbance for ITO/Pth/AuNPs/Lac bioelectrodes was monitored at 410 nm as a function of catechol concentration and pH. Cyclic voltammetric studies of ITO/Pth electrodes showed quasi-reversible behavior when recorded in sodium acetate buffer, which later turned into reversible behavior on modification with gold nanoparticles. ITO/Pth/AuNPs/Lac bioelectrodes showed maximum oxidation potential for enzymatic reaction of catechol at -0.2 V, with linear range upto 0.8 mM and regression coefficient (R2 of 0.988. Sensitivity and Km values were found to be 3.7 x 10-5 mA/mM and 0.22 mM respectively, with response time of about 6-8 s.

  4. Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2016-04-01

    Full Text Available Carbon xerogel-zinc oxide (CXZnO composites were synthesized by a simple method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed with laccase (Lac and Nafion to obtain a mixture solution, which was further modified on an electrode surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA·mM−1, a low detection limit (2.17 µM, and a wide linear range (6.91–453 µM. Moreover, the biosensor also displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully used in the trace detection of catechol existing in lake water environments.

  5. Serotonin-Induced Hypersensitivity via Inhibition of Catechol O-Methyltransferase Activity

    Science.gov (United States)

    2012-01-01

    The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (Ki = 44 μM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for β2- and β3-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions. PMID:22500608

  6. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan; Levina, A

    2001-01-01

    ) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4...... in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions...... of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N...

  7. Adsorptive removal of aniline by granular activated carbon from aqueous solutions with catechol and resorcinol.

    Science.gov (United States)

    Suresh, S; Srivastava, V C; Mishrab, I M

    2012-01-01

    In the present paper, the removal of aniline by adsorption process onto granular activated carbon (GAC) is reported from aqueous solutions containing catechol and resorcinol separately. The Taguchi experimental design was applied to study the effect of such parameters as the initial component concentrations (C(0,i)) of two solutes (aniline and catechol or aniline and resorcinol) in the solution, temperature (T), adsorbent dosage (m) and contact time (t). The L27 orthogonal array consisting of five parameters each with three levels was used to determine the total amount of solutes adsorbed on GAC (q(tot), mmol/g) and the signal-to-noise ratio. The analysis of variance (ANOVA) was used to determine the optimum conditions. Under these conditions, the ANOVA shows that m is the most important parameter in the adsorption process. The most favourable levels of process parameters were T = 303 K, m = 10 g/l and t = 660 min for both the systems, qtot values in the confirmation experiments carried out at optimum conditions were 0.73 and 0.95 mmol/g for aniline-catechol and aniline-resorcinol systems, respectively.

  8. Plasma Catechols in Familial Dysautonomia: A Long-term Follow-up Study

    Science.gov (United States)

    Holmes, Courtney; Axelrod, Felicia B.

    2017-01-01

    This study tested whether familial dysautonomia (FD) involves progressive loss of noradrenergic nerves. Plasma levels of catechols, including dihydroxyphenylglycol (DHPG), norepinephrine (NE), dopamine (DA), and DOPA, were measured in 7 adult patients with FD and 50 healthy control subjects. FD patients were re-tested after a mean follow-up period of 13 years. Compared to controls, FD patients had low plasma levels of DHPG (P < 0.001), high DOPA and DA levels (P = 0.01, P = 0.0002), and high NE:DHPG (P < 0.0001), DA:NE (P = 0.0003), and DOPA:DHPG (P < 0.0001) ratios. At follow-up there were no changes in plasma levels of individual catechols; however, there were further increases in DOPA:DHPG ratios (mean 24 ± 7%, P = 0.01). In FD, plasma catechol profiles are sufficiently stable, at least over a decade, to be used as a biomarker of disease involvement. An increasing DOPA:DHPG ratio suggests slight but consistent, progressive loss of noradrenergic neurons. PMID:18357519

  9. Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non-catechol-type flavonoids.

    Science.gov (United States)

    Hanaki, Mizuho; Murakami, Kazuma; Akagi, Ken-ichi; Irie, Kazuhiro

    2016-01-15

    The prevention of 42-mer amyloid β-protein (Aβ42) aggregation is promising for the treatment of Alzheimer's disease. We previously described the site-specific inhibitory mechanism for Aβ42 aggregation by a catechol-type flavonoid, (+)-taxifolin, targeting Lys16,28 after its autoxidation. In contrast, non-catechol-type flavonoids (morin, datiscetin, and kaempferol) inhibited Aβ42 aggregation without targeting Lys16,28 with almost similar potencies to that of (+)-taxifolin. We herein provided structural insights into their mechanisms for inhibiting Aβ42 aggregation. Physicochemical analyses revealed that their inhibition did not require autoxidation. The (1)H-(15)N SOFAST-HMQC NMR of Aβ42 in the presence of morin and datiscetin revealed the significant perturbation of chemical shifts of His13,14 and Gln15, which were close to the intermolecular β-sheet region, Gln15-Ala21. His13,14 also played a role in radical formation at Tyr10, thereby inducing the oxidation of Met35, which has been implicated in Aβ42 aggregation. These results suggest the direct interaction of morin and datiscetin with the Aβ42 monomer. Although only kaempferol was oxidatively-degraded during incubation, its degradation products as well as kaempferol itself suppressed Aβ42 aggregation. However, neither kaempferol nor its decomposed products perturbed the chemical shifts of the Aβ42 monomer. Aggregation experiments using 1,1,1,3,3,3-hexafluoro-2-propanol-treated Aβ42 demonstrated that kaempferol and its degradation products inhibited the elongation rather than nucleation phase, implying that they interacted with small aggregates of Aβ42, but not with the monomer. In contrast, morin and datiscetin inhibited both phases. The position and number of hydroxyl groups on the B-ring of non-catechol-type flavonoids could be important for their inhibitory potencies and mechanisms against Aβ42 aggregation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Benzene and dopamine catechol quinones could initiate cancer or neurogenic disease.

    Science.gov (United States)

    Zahid, Muhammad; Saeed, Muhammad; Rogan, Eleanor G; Cavalieri, Ercole L

    2010-01-15

    Catechol quinones of estrogens react with DNA by 1,4-Michael addition to form depurinating N3Ade and N7Gua adducts. Loss of these adducts from DNA creates apurinic sites that can generate mutations leading to cancer initiation. We compared the reactions of the catechol quinones of the leukemogenic benzene (CAT-Q) and N-acetyldopamine (NADA-Q) with 2'-deoxyguanosine (dG) or DNA. NADA was used to prevent intramolecular cyclization of dopamine quinone. Reaction of CAT-Q or NADA-Q with dG at pH 4 afforded CAT-4-N7dG or NADA-6-N7dG, which lost deoxyribose with a half-life of 3 h to form CAT-4-N7Gua or 4 h to form NADA-6-N7Gua. When CAT-Q or NADA-Q was reacted with DNA, N3Ade adducts were formed and lost from DNA instantaneously, whereas N7Gua adducts were lost over several hours. The maximum yield of adducts in the reaction of CAT-Q or NADA-Q with DNA at pH 4 to 7 was at pH 4. When tyrosinase-activated CAT or NADA was reacted with DNA at pH 5 to 8, adduct levels were much higher (10- to 15-fold), and the highest yield was at pH 5. Reaction of catechol quinones of natural and synthetic estrogens, benzene, naphthalene, and dopamine with DNA to form depurinating adducts is a common feature that may lead to initiation of cancer or neurodegenerative disease. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation

    Directory of Open Access Journals (Sweden)

    Zhengao Wang

    2018-03-01

    Full Text Available To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.

  12. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates.

    Science.gov (United States)

    Ye, Mingming; Jiang, Rui; Zhao, Jin; Zhang, Juntao; Yuan, Xubo; Yuan, Xiaoyan

    2015-12-01

    Adhesives with catechol moieties have been widely investigated in recent years. However, actually how much catechol groups for these mussel bio-inspired adhesives, especially in their natural form under physiological condition, is appropriate to bond with organic substrates has not been studied intensively. This study blends ε-polylysine (PL), featuring laterally grafted catechols under physiological conditions (pH 7.4), with oxidized dextran to form a hydrogel in situ via the Schiff base without introducing small cytotoxic molecules as crosslinking agents. It finds that the amount of catechol groups imposes an obvious influence on gelation time, swelling behavior, and hydrogel morphology. Both the storage modulus and adhesion strength are found to increase first and decrease afterwards with an increase of pendent catechol content. Furthermore, catechol hydrogen interactions and the decrease in the crosslink density derived from the decrease of amino groups on PL are simultaneously found to affect the storage modulus. Meanwhile, multiple hydrogen-bonding interactions of catechol with amino, hydroxyl, and carboxyl groups, which are in abundance on the surface of tissue, are mainly found to provide an adhesive force. The study finds that with more catechol, there is a greater chance that the cohesive force will weaken, making the entire adhesion strength of the hydrogel decrease. Using a cytotoxicity test, the nontoxicity of the hydrogel towards the growth of L929 cells is proven, indicating that hydrogels have potential applications in soft tissue repair under natural physiological conditions.

  13. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s

    DEFF Research Database (Denmark)

    Pattison, David I; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur in the pres......Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur...

  14. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan; Levina, A

    2001-01-01

    of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N...... in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions......-acetyl-Tyr with tyrosinase, respectively) were correlated with the DNA cleaving abilities of the products of these reactions. The reaction of Cr(VI) with enzymatically generated 1 produced significant amounts of H(2)O(2) and caused significant DNA damage, but the N-acetyl-DOPA did not. The extent of in vitro DNA damage...

  15. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  16. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone.

    Science.gov (United States)

    Livingstone, Ruth A; Thompson, James O F; Iljina, Marija; Donaldson, Ross J; Sussman, Benjamin J; Paterson, Martin J; Townsend, Dave

    2012-11-14

    Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S(1) (ππ*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S(1) potential surface. In catechol, the overall S(1) state lifetime was observed to be 12.1 ps, which is 1-2 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S(1) state and the close lying S(2) (πσ*) state, which is dissociative along the O-H stretching coordinate. Further evidence of this S(1)/S(2) interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.

  17. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    Science.gov (United States)

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  18. Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex.

    Science.gov (United States)

    Park, Ilhwan; Tabelin, Carlito Baltazar; Magaribuchi, Kagehiro; Seno, Kensuke; Ito, Mayumi; Hiroyoshi, Naoki

    2018-02-15

    Arsenopyrite is the most common arsenic-bearing sulfide mineral in nature, and its weathering contributes to acid mine drainage (AMD) formation and the release of toxic arsenic (As). To mitigate this problem, carrier-microencapsulation (CME) using titanium (Ti)-catechol complex (i.e., Ti-based CME) was investigated to passivate arsenopyrite by forming a protective coating. Ti 4+ ion dissolved in sulfuric acid and catechol were used to successfully synthesize Ti(IV) tris-catecholate complex, [Ti(Cat) 3 ] 2- , which was stable in the pH range of 5-12. Electrochemical studies on the redox properties of this complex indicate that its oxidative decomposition was a one-step, irreversible process. The leaching of As from arsenopyrite was suppressed by CME treatment using the synthesized Ti-catechol complex. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicate that this suppression was primarily due to the formation of an anatase (β-TiO 2 )-containing coating. Based on these results, a detailed 4-step mechanism to explain the decomposition of [Ti(Cat) 3 ] 2- and formation of TiO 2 coating in Ti-based CME is proposed: (1) adsorption, (2) partial oxidation-intermediate formation, (3) non electrochemical dissociation, and (4) hydrolysis-precipitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-03-01

    Full Text Available The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO can be combined together for catechol treatment in industrial applications.

  20. Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process.

    Science.gov (United States)

    Wang, Qingqing; Cui, Jing; Li, Guohui; Zhang, Jinning; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2014-03-19

    The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO) composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD) removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO) can be combined together for catechol treatment in industrial applications.

  1. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    Science.gov (United States)

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  2. Caffeoyltartronic acid from catnip (Nepeta cataria): A precursor for catechol in lubber grasshopper (Romalea guttata) defensive secretions.

    Science.gov (United States)

    Snook, M E; Blum, M S; Whitman, D W; Arrendale, R F; Costello, C E; Harwood, J S

    1993-09-01

    Adults of the lubber grasshopper (Romalea guttata) secrete increased amounts of catechol from their defensive glands when fed diets containing only catnip leaves (Nepeta cataria). Model compound bioassays showed that these insects were able to sequester and biomagnify simple phenols, such as catechol and hydroquinone, in their defense gland secretions. Excessive catechol secretions from caffeic acid-fortified diets indicated metabolic pathways exist to perform efficiently more complex biochemical conversions. Reverse-phase HPLC of methanol extracts of catnip revealed only one major caffeoyl-polyphenol as a possible precursor for the observed elevated catechol secretions, when this plant is fed to lubbers. The compound was shown to be caffeoyltartronic acid (CTA). During analysis of CTA by probe-MS or gas chromatography (of its silylated derivative), CTA decomposed by loss of carbon dioxide to form caffeoylglycolic acid (CGA), making identification by these methods ambiguous. Only fast atom bombardment mass spectrometry (FAB-MS, negative mode) gave a true molecular weight. Groundivy (Glecoma hederacea), a relative of catnip, was also shown to contain CTA. The mung bean (Phaseolus radiatus=Vigna radiata), a species totally unrelated to catnip, is the only other reported plant source of CTA. Catnip leaves were found to contain about twice as much CTA as mung bean leaves.

  3. Electronic structure and optical spectra of catechol on TiO2 nanoparticles from real time TD-DFT simulations.

    Science.gov (United States)

    Sánchez-de-Armas, R; San-Miguel, M A; Oviedo, J; Márquez, A; Sanz, J F

    2011-01-28

    The electronic structure and the optical response of free catechol, [Ti(cat)(3)](2-) complex, and catechol bound to TiO(2) nanoclusters have been analysed using time dependent density functional theory (TD-DFT) performing calculations both in real time and frequency domains. Both approaches lead to similar results providing the basis sets and functionals are similar. For all cases, the simulated spectra agree well with the experimental ones. For the adsorption systems, the spectra show a band at 4.7 eV associated to intramolecular catechol π→π* transitions, and low energy bands corresponding to transitions from catechol to the cluster with a tail that is red-shifted when the coupling between the dye and the cluster is more effective. Thus, dissociative adsorption modes provide longer tails than the molecular mode. Although the bidentate complex is more stable than the monodentate, the energy difference between both is smaller when the cluster size increases. Small cluster models reproduce the main features of the optical response, however, the (TiO(2))(15) cluster constitutes the minimal size to provide a complete picture. In this case, the conventional TD-DFT (frequency domain) calculations are highly demanding computationally, while real time TD-DFT is more efficient and the calculations become affordable.

  4. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Rainbow trout liver microsomes were used to study the rate of ring-hydroxylation of phenol (PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultroviolet (UV) and elect...

  5. Crystal structures of human 108V and 108M catechol O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W. (UWASH)

    2008-08-01

    Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT bound with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond

  6. Neuronal effects of 4-t-Butylcatechol: A model for catechol-containing antioxidants

    International Nuclear Information System (INIS)

    Lo, Y.-C.; Liu Yuxin; Lin, Y.-C.; Shih, Y.-T.; Liu, C.-M.; Burka, Leo T.

    2008-01-01

    Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBC on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 μM had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91 Phox , iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 μM) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 μM) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression

  7. Biomimetic PDMS-hydroxyurethane terminated with catecholic moieties for chemical grafting on transition metal oxide-based surfaces

    Science.gov (United States)

    de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.

    2018-01-01

    The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile

  8. Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis.

    Science.gov (United States)

    Lih, Eugene; Choi, Seul Gi; Ahn, Dong June; Joung, Yoon Ki; Han, Dong Keun

    2016-01-01

    Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1 H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses.

  9. Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source.

    Science.gov (United States)

    Moussavi, Gholamreza; Jafari, Seyed Javad; Yaghmaeian, Kamyar

    2015-08-01

    The performance of CRBR in denitrification with catechol carbon source is presented. The influence of inlet nitrate concentration, hydraulic retention time (HRT), media filling ratio and rotational speed of media on the performance of CRBR was investigated. The bioreactor could denitrify over 95% of the nitrate at an inlet concentration up to 1000 mg NO3(-)/L and a short HRT as low as 18 h. The optimum media filling ratio at which the maximum denitrification was achieved in the CRBR was 30% and the contribution of media at this condition was around 36%. The optimum ratio of media filling at which the maximum denitrification was 20 rpm and the contribution of rotational speed under this condition was around 17%. According to the findings, the CRBR is a high rate bioreactor and thus serves as an appropriate technology for denitrification of wastewaters containing a high concentration of nitrate and toxic organic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Synthesis and metal binding properties of salicylate-, catecholate-, and hydroxypyridinonate-functionalized dendrimers.

    Science.gov (United States)

    Cohen, S M; Petoud, S; Raymond, K N

    2001-01-05

    The synthesis, characterization, and metal-binding studies of chelate-functionalized dendrimers is reported. Salicylate, catecholate, and hydroxypyridinonate bidentate chelators have been coupled to the surface of both poly(propyleneimine) (Astramol) and poly(amidoamine) (Starburst, PAMAM) dendrimers up to the fifth generation (64 endgroups). A general method has been developed for the facile and high quality chromatographic purification of poly(propyleneimine) and poly(amidoamine) dendrimer derivatives. One- and two-dimensional (TOCSY) 1H NMR experiments and electrospray ionization mass spectrometry (ESI-MS) have confirmed the exhaustive coupling of these chelators to the primary amine functionalities of the dendrimers. Spectrophotometric titrations were used to investigate the metal binding ability of these macrochelates. Spectral analysis shows that ferric iron binding to these ligands is localized to the chelating endgroups. The ability of these dendritic polymers to bind large numbers of metal ions may lead to applications as metal sequestering agents for waste remediation technologies.

  11. Conversion of trypsin to a copper enzyme: tyrosinase/catechol oxidase by chemical modification.

    Science.gov (United States)

    Okutucu, Burcu; Zeytunluoglu, Ali; Zihnioglu, Figen

    2010-01-01

    New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance. The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu(+2)) introduced p-aminobenzamidine (pABA- Cu(+2): guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu(+2) preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (K(cat), K(m), K(cat)/K(m)), optimum pH and temperature of the trypsin-pABA-Cu(+2) complex was also investigated.

  12. Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

    OpenAIRE

    Nahid Ghasemi; Mohammad Goodarzi; Morteza Khosravi

    2009-01-01

    Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol ...

  13. Catechol-O-methyltransferase Val 108/158 Met polymorphism and breast cancer risk: a case control study in Syria.

    Science.gov (United States)

    Lajin, Bassam; Hamzeh, Abdul Rezzak; Ghabreau, Lina; Mohamed, Ali; Al Moustafa, Ala-Eddin; Alachkar, Amal

    2013-01-01

    Catechol-O-methyltransferase (COMT) inactivates catechol estrogens by methylation and thus may play a protective role against mutations induced by estrogen metabolites. In this study we investigated the relationship between the Vall58Met polymorphism in the COMT gene and breast cancer risk in a population-based case control study in Syria. We examined 135 breast cancer patients and 107 healthy controls in North Syria to determine the association between the functional genetic Val158Met polymorphism in the COMT gene and female breast cancer risk. There was no significant overall association between the COMT genotype and individual susceptibility to breast cancer. Our data suggest that there may be no overall association between the COMT genotype and breast cancer.

  14. Affect-Modulated Startle: Interactive Influence of Catechol-O-Methyltransferase Val158Met Genotype and Childhood Trauma

    OpenAIRE

    Klauke, Benedikt; Winter, Bernward; Gajewska, Agnes; Zwanzger, Peter; Reif, Andreas; Herrmann, Martin J.; Dlugos, Andrea; Warrings, Bodo; Jacob, Christian; Mühlberger, Andreas; Arolt, Volker; Pauli, Paul; Deckert, Jürgen; Domschke, Katharina

    2016-01-01

    The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system – partly conferred by catechol-O-methyltransferase (COMT) gene variation – for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample...

  15. Pharmacogenetics of Modafinil after sleep loss: Catechol-O-methyltransferase genotype modulates waking functions but not recovery sleep

    OpenAIRE

    Bodenmann, S; Xu, S; Luhmann, U; Arand, M; Berger, W; Jung, H; Landolt, H P

    2009-01-01

    Sleep loss impairs waking functions and is homeostatically compensated in recovery sleep. The mechanisms underlying the consequences of prolonged wakefulness are unknown. The stimulant modafinil may promote primarily dopaminergic neurotransmission. Catechol-O-methyltransferase (COMT) catalyzes the breakdown of cerebral dopamine. A functional Val158Met polymorphism reduces COMT activity, and Val/Val homozygous individuals presumably have lower dopaminergic signaling in the prefrontal cortex th...

  16. Electrocatalytic oxidation of dihydronicotineamide adenine dinucleotide on gold electrode modified with catechol-terminated alkanethiol self-assembly

    International Nuclear Information System (INIS)

    Nakano, Koji; Ohkubo, Kimihiko; Taira, Hiroaki; Takagi, Makoto; Imato, Toshihiko

    2008-01-01

    Synthesis of a mercaptoundecaneamide derivative having a terminus of catechol is described. FT-IR spectroscopic characterization showed that the new molecular entry simply undergoes molecular self-assembly on Au substrate surfaces promoting intra- and intermolecular hydrogen bonds to form well-packed monolayers. Cyclic voltammetric (CV) measurements on the monolayer-modified Au electrode revealed that the surface adlayer possesses specific electrochemical activity due to the reversible catechol/o-quinone redox reaction having characteristics of a surface process and also pH-dependence in its formal potential (59 mV per pH). Detailed analysis of CVs gave fundamental electrochemical parameters including the electroactive surface coverage (0.20-0.24 nmol cm -2 ), the transfer coefficients (0.24 in oxidation and 0.81 in reduction), and also the electron transfer rate constant (1.10-2.76 s -1 ). These data were almost consistent to those seen in literature. We have also found that the catechol monolayer modified electrode exhibits an electrocatalytic function in NADH oxidation. That is, the faradaic current appeared reinforcingly at around the same potential where catechol function is oxidized in the monolayer and increased with an increase in the NADH concentration from 1 to 5 mM, and then reached to a plateau indicating a catalyzed reaction pathway. Detailed analyses revealed that the present system could be characterized by its weak stability of the intermediate compound formed and prompt reaction rate compared with the previously reported chemically modified electrode (CME) systems. We think this type of achievement should be important for the basics of biosensors that rely on dehydrogenase enzymes

  17. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    Science.gov (United States)

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    DEFF Research Database (Denmark)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun

    2010-01-01

    R-[(11)C]-SKF 82957 is a high-affinity and potent dopamine D(1) receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, f......, facilitating the use of R-[(11)C]-SKF 82957 to image the high-affinity state of the dopamine D(1) receptor with PET....

  20. Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor.

    Science.gov (United States)

    Gray, David L; Allen, John A; Mente, Scot; O'Connor, Rebecca E; DeMarco, George J; Efremov, Ivan; Tierney, Patrick; Volfson, Dmitri; Davoren, Jennifer; Guilmette, Edward; Salafia, Michelle; Kozak, Rouba; Ehlers, Michael D

    2018-02-14

    Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of β-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of β-arrestin to D1Rs.

  1. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    Science.gov (United States)

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-06-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M-1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten \\left( K_{M}^{app} \\right) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.

  2. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    International Nuclear Information System (INIS)

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Wang, Xiaojun; Li, Qiang; Chen, Jing

    2014-01-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M −1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis–Menten kinetics and the apparent Michaelis–Menten (K M app ) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor. (papers)

  3. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix.

    Science.gov (United States)

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-06-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M -1 with a detection limit of 0.31 μ M and a linear detection range from 0.39 μ M to 8.98 μ M for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten [Formula: see text] was 6.28 μ M. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.

  4. Construction of mussel-inspired coating via the direct reaction of catechol and polyethyleneimine for efficient heparin immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yujie [School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Luo, Rifang, E-mail: lrifang@126.com [School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Shen, Fangyu; Tang, Linlin [School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); The Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-02-15

    Highlights: • Catechol (CA) and PEI copolymerization was a mimetic and dopamine-like coating method. • CA/PEI film provided amine groups and was effective in heparin immobilization. • CA/PEI coating could inhibit smooth muscle cell proliferation. • CA/PEI coating did not show any significant cytotoxicity to endothelial cell. - Abstract: Dopamine could self-polymerize to form the coating on various substrates and the co-existence of catechols and amines was crucial in performing such polymerization process. In this work, a mimetic approach of coating formation was carried out based on the co-polymerization of catechol (CA) and polyethyleneimine (PEI). Mussel-inspired CA/PEI coating was deposited on 316L stainless steel (SS). Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the successful coating formation. QCM measurement showed good affinity of heparin immobilization on CA/PEI coating surface ascribed to the amine groups. Herein, vascular cell-material interactions like endothelial cells (ECs) and smooth muscle cells (SMCs) were also investigated. Interestingly, CA/PEI and heparin modified coatings presented no cytotoxicity to ECs, however to a certain extent, decreased SMCs proliferation. Moreover, heparin-binding surface presented significant anti-platelet adhesion and activation properties. These results effectively suggested that the mussel-inspired CA/PEI coating might be promising when served as a platform for biomolecule immobilization.

  5. Molecularly designed layer-by-layer (LbL) films to detect catechol using information visualization methods.

    Science.gov (United States)

    Aoki, Pedro H B; Alessio, Priscila; Furini, Leonardo N; Constantino, Carlos J L; Neves, Tácito T A T; Paulovich, Fernando V; de Oliveira, Maria Cristina F; Oliveira, Osvaldo N

    2013-06-18

    The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10(-12) M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing.

  6. Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available Water-soluble phenol and phenolic compounds were generally removed via advanced oxidation processes. A novel semiconductor catalyst, CT, was the first-time employed in the present study to degrade phenol and catechol. The phenolic compounds (initial concentration of 88 mg L−1 were completely mineralized by the CT catalytic nanoparticles (1% within 15 days, under acidic condition and with the presence of mild UV radiation (15 w, the emitted wavelength is 254 nm and the light intensity <26 μw/cm2. Under the same reaction condition, 1% TiO2 (mixture of rutile and anatase, nanopowder, <100 nm and H2O2 had lower removal efficiency (phenol: <42%; catechol: <60%, whereas the control (without addition of catalysts/H2O2 only showed <12% removal. The processes of phenol/catechol removal by CT followed pseudo-zero-order kinetics. The aromatic structures absorbed the UV energy and passed to an excited state, which the CT worked on. The pollutants were adsorbed on the CT’s surface and oxidized via charge-transfer and hydroxyl radical generation by CT. Given low initial concentrations, a circumstance encountered in wastewater polishing, the current set-up should be an efficient and less energy- and chemical-consumptive treatment method.

  7. Self-assembly of graphitic carbon nitride nanosheets–carbon nanotube composite for electrochemical simultaneous determination of catechol and hydroquinone

    International Nuclear Information System (INIS)

    Zhang, Hanqiang; Huang, Yihong; Hu, Shirong; Huang, Qitong; Wei, Chan; Zhang, Wuxiang; Yang, Weize; Dong, Peihui; Hao, Aiyou

    2015-01-01

    Graphical abstract: Schematic diagram of hydrothermal synthesis graphitic carbon nitride nanosheets-carbon nanotube composite and theirs application for electrochemical sensing catechol and hydroquinone. - Highlights: • Self-assembly of graphitic carbon nitride nanosheets-carbon nanotube composite. • CNNS-CNT show more stronger conductivity than CNNS and CNT. • CNNS-CNT has been performed for detection of catechol and hydroquinone. • The probe was applied to detect practical samples with satisfactory results. - Abstract: In this paper, three-dimensional (3D) graphitic carbon nitride nanosheets-carbon nanotube (CNNS-CNT) composite was synthesized via hydrothermal reaction of 2D CNNS and 1D CNT-COOH by π-π stacking and electrostatic interactions. This CNNS-CNT composite was characterized by transmission electron microscope, scanning electron microscope, x-ray diffraction and fourier-transform infrared. In addition, the CNNS-CNT composite displayed excellent conductivity comparing with CNNS and CNT-COOH monomer. This composite was applied for electrochemical simultaneous determination of catechol (CC) and hydroquinone (HQ) with good sensitivity, wide linear range and low detection limit. In addition, this CNNS-CNT composite modified electrode was also applied to detect practical samples with satisfactory results

  8. Bio-inspired catechol chemistry for electrophoretic nanotechnology of oxide films.

    Science.gov (United States)

    Wang, Y; Zhitomirsky, I

    2012-08-15

    Bio-inspired chemical approach has been developed for the surface modification and electrophoretic deposition of manganese dioxide and zirconia nanoparticles, prepared by chemical precipitation methods. Caffeic acid, trans-cinnamic acid, p-coumaric acid, and 2,4-dihydroxycinnamic acid were investigated for the surface modification of the nanoparticles. The influence of the structure of the organic molecules on their adsorption on the oxide nanoparticles has been investigated. The mechanism of caffeic acid adsorption was similar to that of natural catecholic amino acid, L-3,4-dihydroxyphenylalanine. The use of caffeic acid allowed for agglomerate-free synthesis, efficient dispersion, charging, electrophoretic deposition and co-deposition of manganese dioxide and zirconia nanoparticles. The deposition yield data, coupled with the results of thermogravimetric analysis, X-ray diffraction analysis, and Fourier transform infrared spectroscopy, showed that surface chemistry, rather than the crystal structure, determined the adsorption behavior. Electron microscopy and energy dispersive spectroscopy investigations showed the formation of nanostructured oxide films and composites. The deposit composition can be varied. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Analysis of Oxidative Stress Status, Catalase and Catechol-O-Methyltransferase Polymorphisms in Egyptian Vitiligo Patients

    Science.gov (United States)

    Mehaney, Dina A.; Darwish, Hebatallah A.; Hegazy, Rehab A.; Nooh, Mohammed M.; Tawdy, Amira M.; Gawdat, Heba I.; El-Sawalhi, Maha M.

    2014-01-01

    Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT) and catechol-O-Methyltransferase (COMT) gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC) and malondialdehyde (MDA) levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population. PMID:24915010

  10. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  11. Simultaneous Determination of Hydroquinone, Catechol and Resorcinol at Graphene Doped Carbon Ionic Liquid Electrode

    Directory of Open Access Journals (Sweden)

    Li Ma

    2012-01-01

    Full Text Available A new composite electrode has been prepared with doping graphene into the paste consisting graphite and ionic liquid, n-octyl-pyridinum hexafluorophosphate (OPFP. This electrode shows an excellent electrochemical activity for the redox of hydroquinone (HQ, catechol (CC, and resorcinol (RS. In comparison with bare paste electrode, the redox peaks of three isomers of dihydroxybenzene can be obviously, simultaneously observed at graphene doping paste electrode. Under the optimized condition, the simultaneous determination of HQ, CC, and RS in their ternary mixture can be carried out with a differential pulse voltammetric technique. The peak currents are linear to the concentration of HQ, CC, and RS in the range form 1×10−5 to 4×10−4, 1×10−5 to 3×10−4, and 1×10−6 to 1.7×10−4 mol L−1, respectively. The limits of detection are 1.8×10−6 mol L−1 for HQ, 7.4×10−7 mol L−1 for CC, and 3.6×10−7 M for RS, respectively.

  12. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Kathryn T Hall

    Full Text Available Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT, an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS. The three treatment arms from this study were: no-treatment ("waitlist", placebo treatment alone ("limited" and, placebo treatment "augmented" with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035. The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response.

  13. Analysis of oxidative stress status, catalase and catechol-O-methyltransferase polymorphisms in Egyptian vitiligo patients.

    Directory of Open Access Journals (Sweden)

    Dina A Mehaney

    Full Text Available Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT and catechol-O-Methyltransferase (COMT gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC and malondialdehyde (MDA levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population.

  14. Resorcinol-, catechol- and saligenin-based bronchodilating β2-agonists as inhibitors of human cholinesterase activity.

    Science.gov (United States)

    Bosak, Anita; Knežević, Anamarija; Gazić Smilović, Ivana; Šinko, Goran; Kovarik, Zrinka

    2017-12-01

    We investigated the influence of bronchodilating β2-agonists on the activity of human acetylcholinesterase (AChE) and usual, atypical and fluoride-resistant butyrylcholinesterase (BChE). We determined the inhibition potency of racemate and enantiomers of fenoterol as a resorcinol derivative, isoetharine and epinephrine as catechol derivatives and salbutamol and salmeterol as saligenin derivatives. All of the tested compounds reversibly inhibited cholinesterases with K i constants ranging from 9.4 μM to 6.4 mM and had the highest inhibition potency towards usual BChE, but generally none of the cholinesterases displayed any stereoselectivity. Kinetic and docking results revealed that the inhibition potency of the studied compounds could be related to the size of the hydroxyaminoethyl chain on the benzene ring. The additional π-π interaction of salmeterol's benzene ring and Trp286 and hydrogen bond with His447 probably enhanced inhibition by salmeterol which was singled out as the most potent inhibitor of all the cholinesterases.

  15. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome.

    Science.gov (United States)

    Hall, Kathryn T; Lembo, Anthony J; Kirsch, Irving; Ziogas, Dimitrios C; Douaiher, Jeffrey; Jensen, Karin B; Conboy, Lisa A; Kelley, John M; Kokkotou, Efi; Kaptchuk, Ted J

    2012-01-01

    Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT), an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS). The three treatment arms from this study were: no-treatment ("waitlist"), placebo treatment alone ("limited") and, placebo treatment "augmented" with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS) after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035). The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response.

  16. Room-temperature phosphorescent discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots.

    Science.gov (United States)

    Wang, He-Fang; Wu, Ye-Yu; Yan, Xiu-Ping

    2013-02-05

    A room-temperature phosphorescence (RTP) strategy was developed for direct, additive-free discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots (STPP-Mn-ZnS QDs). The RTP response of STPP-Mn-ZnS QDs to the three isomers was pH-dependent, and the greatest difference in the RTP response to the isomers was observed at pH 8.0: catechol enhanced the RTP intensity of the QDs, while resorcinol and hydroquinone had little effect on the RTP intensity of the QDs. The enhanced RTP intensity of 1 μM catechol was not affected by the coexistence of 30 μM resorcinol and 50 μM hydroquinone at pH 8.0. The detection limit of this RTP method was 53 nM catechol, and the precision was 3.2% (relative standard deviation) for five replicate detections of 1 μM catechol. The discrimination mechanism was ascribed to the weak bonded ligand of STPP-Mn-ZnS QDs and the different interaction between the three isomers and STPP-Mn-ZnS QDs. The strong binding of catechol to Zn resulted in the extraction of Zn from the surface of STPP-Mn-ZnS QDs and the generation of holes that were trapped by Mn(2+) to form Mn(3+). Catechol also promoted the reduction of Mn(3+) into Mn(2+) excited state, thus ultimately inducing the enhanced RTP response of STPP-Mn-ZnS QDs.

  17. Improvement of Interfacial Adhesion by Bio-Inspired Catechol-Functionalized Soy Protein with Versatile Reactivity: Preparation of Fully Utilizable Soy-Based Film

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    2017-03-01

    Full Text Available The development of materials based on renewable resources with enhanced mechanical and physicochemical properties is hampered by the abundance of hydrophilic groups because of their structural instability. Bio-inspired from the strong adhesion ability of mussel proteins, renewable and robust soy-based composite films were fabricated from two soybean-derived industrial materials: soluble soybean polysaccharide (SSPS and catechol-functionalized soy protein isolate (SPI-CH. The conjugation of SPI with multiple catechol moieties as a versatile adhesive component for SSPS matrix efficiently improved the interfacial adhesion between each segment of biopolymer. The biomimetic adherent catechol moieties were successfully bonded in the polymeric network based on catechol crosslinking chemistry through simple oxidative coupling and/or coordinative interaction. A combination of H-bonding, strong adhesion between the SPI-CH conjugation and SSPS matrix resulted in remarkable enhancements for mechanical properties. It was found that the tensile strength and Young’s modulus was improved from 2.80 and 17.24 MPa of unmodified SP film to 4.04 and 97.22 MPa of modified one, respectively. More importantly, the resultant films exhibited favorable water resistance and gas (water vapor barrier performances. The results suggested that the promising way improved the phase adhesion of graft copolymers using catechol-functionalized polymers as versatile adhesive components.

  18. Genetic Polymorphisms of Catechol-O-Methyltransferase: Association with Temporomandibular Disorders and Postoperative Pain.

    Science.gov (United States)

    Mladenovic, Irena; Supic, Gordana; Kozomara, Ruzica; Dodic, Slobodan; Ivkovic, Nedeljka; Milicevic, Bojana; Simic, Ivana; Magic, Zvonko

    2016-01-01

    To evaluate the association between catechol-O-methyltransferase (COMT) gene polymorphisms and temporomandibular disorders (TMD), TMD pain, psychosocial impairment related to TMD, and postoperative pain. A total of 90 patients with a diagnosis of painful TMD and 92 matched controls were investigated for the presence of TMD, TMD pain, and psychosocial variables by the Research Diagnostic Criteria for TMD. In a prospective cohort study of 40 subjects who underwent extraction of at least one fully impacted mandibular third molar, subjects had 6 months post-surgery follow-up of postoperative pain. DNA extracted from peripheral blood was genotyped for three COMT polymorphisms (rs4680, rs6269, and rs165774) by real-time TaqMan method. The association between COMT polymorphisms and clinical variables was determined by calculating odds ratios (OR) and their 95% confidence intervals (CI). Homozygous AA genotype and heterozygous variant A allele carriers (genotype AG/AA) for rs165774 polymorphism were associated with increased risk of TMD compared to wild type (wt) GG genotype (OR = 9.448, P = .006; OR = 2.088, P = .017, respectively). In addition, AA genotype was associated with increased risk of arthralgia (OR = 4.448, P = .011), myofascial pain (OR = 3.543, P = .035), and chronic TMD pain (OR = 6.173, P = .006), compared to wt genotype. AA genotype for rs6269 polymorphism was related to less postoperative chronic TMD pain (P = .025) and lower postoperative acute pain at the extraction site (P = .030). No associations with depression and somatization were observed. AA genotype of rs165774 could be a significant risk factor for the development of TMD and TMD pain, while AA genotype of rs6269 presents less postoperative chronic TMD pain and acute pain at a dental extraction site.

  19. Haplotypes of catechol-O-methyltransferase modulate intelligence-related brain white matter integrity.

    Science.gov (United States)

    Liu, Bing; Li, Jun; Yu, Chunshui; Li, Yonghui; Liu, Yong; Song, Ming; Fan, Ming; Li, Kuncheng; Jiang, Tianzi

    2010-03-01

    Twin studies have indicated a common genetic origin for intelligence and for variations in brain morphology. Our previous diffusion tensor imaging studies found an association between intelligence and white matter integrity of specific brain regions or tracts. However, specific genetic determinants of the white matter integrity of these brain regions and tracts are still unclear. In this study, we assess whether and how catechol-O-methyltransferase (COMT) gene polymorphisms affect brain white matter integrity. We genotyped twelve single nucleotide polymorphisms (SNPs) within the COMT gene and performed haplotype analyses on data from 79 healthy subjects. Our subjects had the same three major COMT haplotypes (termed the HPS, APS and LPS haplotypes) as previous studies have reported as regulating significantly different levels of enzymatic activity and dopamine. We used the mean fractional anisotropy (FA) values from four regions and five tracts of interest to assess the effect of COMT polymorphisms, including the well-studied val158met SNP and the three main haplotypes that we had identified, on intelligence-related white matter integrity. We identified an association between the mean FA values of two regions in the bilateral prefrontal lobes and the COMT haplotypes, rather than between them and val158met. The haplotype-FA value associations modulated nonlinearly and fit an inverted U-model. Our findings suggest that COMT haplotypes can nonlinearly modulate the intelligence-related white matter integrity of the prefrontal lobes by more significantly influencing prefrontal dopamine variations than does val158met. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Influence of catechol-O-methyltransferase (COMT) gene polymorphisms in pain sensibility of Brazilian fibromialgia patients.

    Science.gov (United States)

    Barbosa, Flávia Regina; Matsuda, Josie Budag; Mazucato, Mendelson; de Castro França, Suzelei; Zingaretti, Sônia Marli; da Silva, Lucienir Maria; Martinez-Rossi, Nilce Maria; Júnior, Milton Faria; Marins, Mozart; Fachin, Ana Lúcia

    2012-02-01

    Fibromyalgia syndrome (FS) is a rheumatic syndrome affecting to 2-3% of individuals of productive age, mainly women. Neuroendocrine and genetic factors may play a significant role in development of the disease which is characterized by diffuse chronic pain and presence of tender points. Several studies have suggested an association between FS, especially pain sensitivity, and polymorphism of the catechol-O-methyltransferase (COMT) gene. The aim of the present study was to characterize the SNPs rs4680 and rs4818 of the COMT gene and assess its influence in pain sensitivity of patients with fibromyalgia screened by the Fibromyalgia Impact Questionnaire (FIQ). DNA was extracted from peripheral blood of 112 patients with fibromyalgia and 110 healthy individuals and was used as template in PCR for amplification of a 185-bp fragment of the COMT gene. The amplified fragment was sequenced for analyses of the SNPs rs4680 and rs4818. The frequency of mutant genotype AA of SNP rs6860 was 77.67% in patients with FS and 28.18% for the control group. For the SNP rs4818, the frequency of mutant genotype CC was 73.21 and 39.09% for patients with FS and controls, respectively. Moreover, the FIQ score was higher in patients with the homozygous mutant genotype for SNPs rs4680 (87.92 points) and rs4818 (86.14 points). These results suggest that SNPs rs4680 and rs4818 of the COMT gene may be associated with fibromyalgia and pain sensitivity in FS Brazilian patients.

  1. Determination of catechin in green tea using a catechol oxidase biomimetic sensor

    International Nuclear Information System (INIS)

    Fernandes, Suellen C.; Osorio, Renata El-Hage M. de Barros; Anjos, Ademir dos; Neves, Ademir; Micke, Gustavo Amadeu; Vieira, Iolanda C.

    2008-01-01

    A catechol oxidase biomimetic sensor, based on a novel copper(II) complex, was developed for the determination of catechin in green tea and the results were compared with those obtained by capillary electrophoresis. The dinuclear copper(II) complex, [Cu 2 (HL)(μ-CH 3 COO)](ClO 4 ), containing the ligand N,N-[bis-(2-pyridylmethyl)]-N',N'-[(2-hydroxybenzyl)(2-hydroxy-3,5-di-tert - butylbenzyl)]-1,3-propanediamine-2-ol (H 3 L), was synthesized and characterized by IR, 1 H NMR and elemental analysis. The best conditions for the optimization of the biomimetic sensor were established by square wave voltammetry. The best performance for this sensor was obtained in 75:15:10% (m/m/m) of the graphite powder:nujol:copper(II) complex, 0.05 mol L -1 phosphate buffer solution (pH 7.5) and frequency, pulse amplitude, scan increment at 30 Hz, 80 mV, 3.3 mV, respectively. The analytical curve was linear in the concentration range 4.95 x 10 -6 to 3.27 x 10 -5 mol L -1 (r = 0.9993) with a detection limit of 2.8 x 10 -7 mol L -1 . This biomimetic sensor demonstrated long-term stability (9 months; 800 determinations) and reproducibility with a relative standard deviation of 3.5%. The recovery of catechin from green tea samples ranged from 93.8 to 106.9% and the determination, compared with that obtained using capillary electrophoresis, was found to be acceptable at the 95% confidence level. (author)

  2. Colloidal stability of iron oxide nanocrystals coated with a PEG-based tetra-catechol surfactant.

    Science.gov (United States)

    Mondini, Sara; Drago, Carmelo; Ferretti, Anna M; Puglisi, Alessandra; Ponti, Alessandro

    2013-03-15

    Long-term colloidal stability of magnetic iron oxide nanoparticles (NPs) is an important goal that has not yet been fully achieved. To make an advance in our understanding of the colloidal stability of iron oxide NPs in aqueous media, we prepared NPs comprising a monodisperse (13 nm) iron oxide core coated with a PEG-based (PEG: polyethyleneglycol) surfactant. This consists of a methoxy-terminated PEG chain (MW = 5000 Da) bearing four catechol groups via a diethylenetriamine linker. The surfactant was grafted onto the nanocrystals by ligand exchange monitored by infrared spectroscopy. The colloidal stability of these nanoparticles was probed by monitoring the time evolution of the Z-average intensity-weighted radius R(h) and volume-weighted size distribution P(v) obtained from analysis of dynamic light scattering data. The nanoparticles showed no sign of aggregation for four months in deionized water at room temperature and also when subjected to thermal cycling between 25 and 75 °C. In 0.01 M PBS (phosphate buffered saline), aggregation (if any) is slow and partial; after 66 h, about 50% of NPs have not aggregated. Aggregation is more effective in 0.15 M NH(4)AcO buffer, where isolated particles are not observed after 66 h, and especially in acidic NH(4)AcO/AcOH buffer, where aggregation is complete within 1 h and precipitation is observed. The differing stability of the NPs in the above aqueous media is closely related to their ζ potential.

  3. Computation of the binding affinities of catechol-O-methyltransferase inhibitors: multisubstate relative free energy calculations.

    Science.gov (United States)

    Palma, P Nuno; Bonifácio, Maria João; Loureiro, Ana Isabel; Soares-da-Silva, Patrício

    2012-04-05

    Alchemical free energy simulations are amongst the most accurate techniques for the computation of the free energy changes associated with noncovalent protein-ligand interactions. A procedure is presented to estimate the relative binding free energies of several ligands to the same protein target where multiple, low-energy configurational substates might coexist, as opposed to one unique structure. The contributions of all individual substates were estimated, explicitly, with the free energy perturbation method, and combined in a rigorous fashion to compute the overall relative binding free energies and dissociation constants. It is shown that, unless the most stable bound forms are known a priori, inaccurate results may be obtained if the contributions of multiple substates are ignored. The method was applied to study the complex formed between human catechol-O-methyltransferase and BIA 9-1067, a newly developed tight-binding inhibitor that is currently under clinical evaluation for the therapy of Parkinson's disease. Our results reveal an exceptionally high-binding affinity (K(d) in subpicomolar range) and provide insightful clues on the interactions and mechanism of inhibition. The inhibitor is, itself, a slowly reacting substrate of the target enzyme and is released from the complex in the form of O-methylated product. By comparing the experimental catalytic rate (k(cat)) and the estimated dissociation rate (k(off)) constants of the enzyme-inhibitor complex, one can conclude that the observed inhibition potency (K(i)) is primarily dependent on the catalytic rate constant of the inhibitor's O-methylation, rather than the rate constant of dissociation of the complex. Copyright © 2012 Wiley Periodicals, Inc.

  4. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Md. Uzzal Hossain

    2015-01-01

    Full Text Available Cyclic voltammetry (CV and differential pulse voltammetry (DPV were performed with a glassy carbon electrode (GCE modified with polyglutamic acid (PGA on the three dihydroxybenzene isomers, catechol (CT, hydroquinone (HQ, and resorcinol (RS. At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  5. Application of the nanogold-4,4'-bis(methanethiol)biphenyl modified gold electrode to the determination of tyrosinase-catechol reaction kinetics in acetonitrile.

    Science.gov (United States)

    Nakamura, Toshio; Ren, Jujie; Zhu, Kai-mei; Kawara, Shinshi; Jin, Baokang

    2006-09-01

    The reactivity of tyrosinase adsorbed on nanogold bound with 4,4'-bis(methanethiol)biphenyl monolayer self-assembled on a gold disk with catechol in a dipolar aprotic solvent, acetonitrile (AN), was studied by cyclic voltammetric and amperometric methods. Tyrosinase exhibited characteristics of a Michaelis-Menten kinetic mechanism. The tyrosinase attached to the nanogold continued to react with substrates in AN even when the water content was lower than 0.01 w/w%. The apparent Michaelis-Menten constant K(m) of tyrosinase for catechol is 5.5 +/- 0.4 mM (n = 5).

  6. Effects of CBMIDA [catechol-3, 6-bis(methyleiminodiacetic acid)] on removal of plutonium in rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Iida, Haruzo; Hseih Yuyuan; Chen Wenzhi.

    1992-01-01

    Effects of CBMIDA [catechol-3, 6-bis(methyleiminodiacetic acid)] on injected 239 Pu were examined in rats; in our previous studies, CBMIDA had almost the same toxicity as those of DTPA and EDTA. Rats were injected intravenously with 239 Pu (1.85 x 10 4 Bq/kg) and divided into four groups of five rats each. Three groups were each injected intraperitoneally with a daily dose of 150 μmol/kg of CBMIDA, Ca-DTPA or Zn-DTPA for 2 weeks, beginning at about 1 h after plutonium injection. Rats were sacrificed 14 days later and the femur and liver were removed. All excreta were collected at 24-h intervals during the experimental period. Plutonium contents of the femur, liver, faces and urine treated by a wet ashing method were measured by a liquid scintillation spectrometry. The plutonium contents in the skeleton of administered dose were 11.5% for CBMIDA group, 19.0% for Ca-DTPA group, and 26.9% for Zn-DTPA group, whereas that was 63.9% for the control; those in the liver were 0.62% for CBMIDA group, 0.35% for Ca-DTPA group and 0.54% for Zn-DTPA group, whereas that was 7.74% for the control. The date obtained indicate that CBMIDA is superior to Ca-DTPA and Zn-DTPA on removing plutonium from bone, and also has almost the same effectiveness on removing it from liver as those of both Ca-DTPA and Zn-DTPA. The higher effectiveness of CBMIDA on removal of plutonium from the skeleton might be, besides the stronger chelating action, due to the inhibition of plutonium deposition into bone, judging from the results of our previous study wherein the effects of CBMIDA on bone metabolism were examined in beagle dogs. In conclusion, taking together the results obtained in this study and those from our previous studies on the toxicity, it was demonstrated that CBMIDA could be utilized, as a new chelating agent, to remove plutonium from human body. (author)

  7. The Nitrite-Scavenging Properties of Catechol, Resorcinol, and Hydroquinone: A Comparative Study on Their Nitration and Nitrosation Reactions.

    Science.gov (United States)

    Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang

    2016-10-14

    The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO 2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C 2 and C 4 (or C 6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO 2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products. © 2016 Institute of Food Technologists®.

  8. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    Science.gov (United States)

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  9. Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals.

    Science.gov (United States)

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-04-15

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was 1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035-2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals.

  10. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31

    NARCIS (Netherlands)

    Mars, Astrid E.; Kingma, Jaap; Kaschabek, Stefan R.; Reineke, Walter; Janssen, Dick B.

    Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth, A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol

  11. Determination of catechol O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection

    NARCIS (Netherlands)

    Smit, N. P.; Pavel, S.; Kammeyer, A.; Westerhof, W.

    1990-01-01

    A new sensitive method for the determination of catechol O-methyltransferase activity has been developed. The method is based on the O-methylation of the indolic intermediates of melanin metabolism. The substrate, 5,6-dihydroxyindole-2-carboxylic acid, is converted by the enzyme to two O-methylated

  12. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s

    DEFF Research Database (Denmark)

    Pattison, David I; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    , including semiquinone radicals, quinones, and metal ion-DOPA complexes have also been implicated in some cases. Non-radical reactions of DOPA with suitable nucleophiles (e.g. thiol groups) can also result in modification of the target, with this process being particularly prevalent with proteins......Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur...... in the presence of molecular O(2) and redox-active metal ions (e.g. Fe(3+), Cu(2+), Cr(6+)), which are known to increase the rate of DOPA oxidation. The majority of oxidative damage appears to be mediated by reactive oxygen species (ROS) such as superoxide and HO(.) radicals, though other DOPA oxidation products...

  13. Catechol conjugation with hemolymph proteins and their incorporation into the cuticle of the American cockroach, Periplaneta americana

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.D.; Kimbrough, T.D.; Mills, R.R. [Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 (United States)

    1999-01-01

    Newly ecdysed American cockroaches, Periplaneta americana (six to last instar)were injected with radioactive dopamine. In addition, the reinjection of radiolabeled protein of any size resulted in the incorporation of the label into the newly sclerotized cuticle. Hemolymph proteins were synthesized in vivo using [{sup 14}C]leucine and subsequently double labeled in vivo with [{sup 3}H]dopamine. After sclerotization (7 h post-ecdysis) the cuticle was extirpated, hydrolyzed and counted. An identical ratio of {sup 14}C to {sup 3}H was found in cuticle extracts as in the double-labeled hemolymph proteins, suggesting that the phenol-bound protein was incorporated in the cuticle unchanged. It appears that the catechol bound to the proteins exists as a {beta}-glucoside. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Increase of catechol-O-methyltransferase activity in rat brain microglia after intrastriatal infusion of fluorocitrate, a glial toxin.

    Science.gov (United States)

    Reenilä, I; Tuomainen, P; Soinila, S; Männistö, P T

    1997-07-25

    Striatal catechol-O-methyltransferase (COMT), monoamine oxidase B (MAO-B; an astroglial enzyme), alkaline phosphodiesterase I (PDE; a microglia/macrophage marker) and tyrosine hydroxylase (TH; catecholaminergic neuron marker) activities were analyzed biochemically 1-3 days after infusion of fluorocitrate, an astrocyte damaging agent. Astrocytes, microglia and neurons were stained immunohistochemically with specific antibodies (against glial fibrillary acidic protein, OX-42 and TH, respectively) and with COMT antiserum. Three days after fluorocitrate infusion the activity of MAO-B was reduced, whereas COMT and PDE activities were increased. The elevation of COMT immunoreactivity co-localized to microglial cells, but not to astrocytes. In conclusion, this is the first report indicating that microglia contains COMT activity which may be increased in pathological conditions.

  15. Reversible swelling-shrinking behavior of hydrogen-bonded free-standing thin film stabilized by catechol reaction.

    Science.gov (United States)

    Sun, Jiaxing; Su, Chao; Zhang, Xuejian; Yin, Wenjing; Xu, Jian; Yang, Shuguang

    2015-05-12

    Dopamine-modified poly(acrylic acid) (PAA-dopa) and poly(vinylpyrrolidone) (PVPON) was layer-by-layer (LbL) assembled to prepare thin film based on hydrogen bonding. The carboxylic group of acrylic acid and the phenolic hydroxyl group of dopamine can both act as hydrogen bond donors. The critical assembly and the critical disintegration pH values of PVPON/PAA-dopa film are enhanced compared with PVPON/PAA film. The hydrogen-bonded PVPON/PAA-dopa thin film can be cross-linked via catechol chemistry of dopamine. After cross-linking, the film can be exfoliated from the substrate in alkaline solution to get a free-standing film. Moreover, by tuning the pH value, deprotonation and protonation of PAA will make the hydrogen bond in the film break and reconstruct, which induces that the free-standing film has a reversible swelling-shrinking behavior.

  16. Associations differ by sex for catechol-O-methyltransferase genotypes and bladder cancer risk in South Egypt✰

    Science.gov (United States)

    Wolpert, Beverly J.; Amr, Sania; Saleh, Doa’a A.; Ezzat, Sameera; Gouda, Iman; Loay, Iman; Hifnawy, Tamer; Abdel-Hamid, Mohamed; Mikhail, Nabiel N.; Zhan, Min; Zheng, Yun-Ling; Squibb, Katherine; Abdel-Aziz, Mohamed A.; Zaghloul, Mohamed S.; Khaled, Hussein; Loffredo, Christopher A.

    2011-01-01

    Objectives To examine associations between urinary bladder cancer risk and polymorphisms of the gene encoding the catechol estrogen-metabolizing enzyme, catechol-O-methyltransferase (COMT), among Egyptian women and men. Materials and methods We used questionnaire and genotype data from a case-control study in Egypt. This analysis focused on South Egypt cases with confirmed urothelial (UC) or squamous cell (SCC) carcinoma of the bladder, and controls frequency-matched on sex, 5-year age-group, and residence governorate. Real-time PCR on blood specimen DNA was used to determine COMT genotypes encoding for Val/Val, Val/Met, and Met/Met, the enzyme forms associated with high, intermediate, or low activity, respectively. Results The study sample, which included 255 women and 666 men, consisted of 394 cases with histologically confirmed UC (225) or SCC (n=169), and 527 controls. The odds of having either type of bladder cancer was lower among men with genotypes encoding Val/Met or Met/Met than among those with the genotype encoding Val/Val, even after adjustment for other factors, such as smoking and schistosomiasis history [adjusted odds ratio (AOR): 0.64; 95% confidence interval (CI): 0.43, 0.96]; however, the association was statistically significant for SCC (AOR 0.57; 95% CI: 0. 34, 0.96) but marginal for UC (AOR: 0.64; 95% CI: 0.39, 1.02). No significant associations were detected between bladder cancer risk and COMT genotypes among postmenopausal women. Conclusions These findings suggest that, even after controlling for established risk factors, the involvement of COMT genotypes in bladder cancer risk differs among men compared to women in South Egypt. PMID:21397529

  17. Associations differ by sex for catechol-O-methyltransferase genotypes and bladder cancer risk in South Egypt.

    Science.gov (United States)

    Wolpert, Beverly J; Amr, Sania; Saleh, Doa'a A; Ezzat, Sameera; Gouda, Iman; Loay, Iman; Hifnawy, Tamer; Abdel-Hamid, Mohamed; Mikhail, Nabiel N; Zhan, Min; Zheng, Yun-Ling; Squibb, Katherine; Abdel-Aziz, Mohamed A; Zaghloul, Mohamed S; Khaled, Hussein; Loffredo, Christopher A

    2012-01-01

    To examine associations between urinary bladder cancer risk and polymorphisms of the gene encoding the catechol estrogen-metabolizing enzyme, catechol-O-methyltransferase (COMT), among Egyptian women and men. We used questionnaire and genotype data from a case-control study in Egypt. This analysis focused on South Egypt cases with confirmed urothelial (UC) or squamous cell (SCC) carcinoma of the bladder, and controls frequency-matched on sex, 5-year age-group, and residence governorate. Real-time PCR on blood specimen DNA was used to determine COMT genotypes encoding for Val/Val, Val/Met, and Met/Met, the enzyme forms associated with high, intermediate, or low activity, respectively. The study sample, which included 255 women and 666 men, consisted of 394 cases with histologically confirmed UC (225) or SCC (n = 169), and 527 controls. The odds of having either type of bladder cancer were lower among men with genotypes encoding Val/Met or Met/Met than among those with the genotype encoding Val/Val, even after adjustment for other factors, such as smoking and schistosomiasis history [adjusted odds ratio (AOR): 0.64; 95% confidence interval (CI): 0.43, 0.96]; however, the association was statistically significant for SCC (AOR 0.57; 95% CI: 0.34, 0.96) but marginal for UC (AOR: 0.64; 95% CI: 0.39, 1.02). No significant associations were detected between bladder cancer risk and COMT genotypes among postmenopausal women. These findings suggest that even after controlling for established risk factors, the involvement of COMT genotypes in bladder cancer risk differs among men compared with women in South Egypt. Published by Elsevier Inc.

  18. Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum

    Science.gov (United States)

    Silva, A.S.; Jacques, R.J.S.; Andreazza, R.; Bento, F.M.; Roesch, L.F.W.; Camargo, F.A.O.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAH) are carcinogenic compounds which contaminate water and soil, and the enzymes can be used for bioremediation of these environments. This study aimed to evaluate some environmental conditions that affect the production and activity of the catechol 1,2-dioxygenase (C12O) by Mycobacterium fortuitum in the cell free and immobilized extract in sodium alginate. The bacterium was grown in mineral medium and LB broth containing 250 mg L−1 of anthracene (PAH). The optimum conditions of pH (4.0–9.0), temperature (5–70 °C), reaction time (10–90 min) and the effect of ions in the enzyme activity were determined. The Mycobacterium cultivated in LB shown higher growth and the C12O activity was two-fold higher to that in the mineral medium. To both extracts the highest enzyme activity was at pH 8.0, however, the immobilized extract promoted the increase in the C12O activity in a pH range between 4.0 and 8.5. The immobilized extract increased the enzymatic activity time and showed the highest C12O activity at 45 °C, 20 °C higher than the greatest temperature in the cell free extract. The enzyme activity in both extracts was stimulated by Fe3+, Hg2+ and Mn2+ and inhibited by NH4+ and Cu2+, but the immobilization protected the enzyme against the deleterious effects of K+ and Mg2+ in tested concentrations. The catechol 1,2-dioxygenase of Mycobacterium fortuitum in the immobilized extract has greater stability to the variations of pH, temperature and reaction time, and show higher activity in presence of ions, comparing to the cell free extract. PMID:24159319

  19. Cytotoxicity of catechol towards human glioblastoma cells via superoxide and reactive quinones generation Citotoxicidade do catecol para células de glioblastoma humano via geração de superóxido e quinonas reativas

    OpenAIRE

    Marco Roberto Guimarães Pereira; Elineusa Silva de Oliveira; Flávio Augusto Guerreiro Aragão de Villar; Maria Socorro Grangeiro; Júlia Fonseca; Ana Rita Silva; Maria de Fátima Dias Costa; Sílvia Lima Costa; Ramon dos Santos El-Bachá

    2004-01-01

    It is known that the exposure to benzene in the petroleum industry causes lympho-haematopoietic cancer among workers. However, there is little data concerning the toxicity of benzene to the central nervous system. Benzene easily penetrates the brain where it is metabolized to catechol. Since catechol autoxidizes in physiological phosphate buffer, we hypothesized that it could be toxic towards glial cells due to the generation of reactive oxygen species and quinones. In this work we studied th...

  20. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation.

    Science.gov (United States)

    Li, Hao; Pan, Bo; Liao, Shaohua; Zhang, Di; Xing, Baoshan

    2014-05-01

    Iron is rich in soils, and is recently reported to form stable complexes with organic free radicals, generating environmentally persistent free radicals (EPFRs). The observation may challenge the common viewpoint that iron is an effective catalyst to facilitate the degradation of various organic chemicals. But no study was specifically designed to investigate the possible inhibited degradation of organic chemicals because of the formation of EPFRs in dry environment. We observed that catechol degradation under UV irradiation was decreased over 20% in silica particles coated with 1% hematite in comparison to uncoated silica particles. Stabilized semiquinone or quinine and phenol radicals were involved in HMT-silica system. EPFR formation was thus the reason for the reduced catechol degradation on HMT-silica surface under UV irradiation at ambient temperature. EPFRs should be incorporated in the studies of organic contaminants geochemical behavior, and will be a new input in their environmental fate modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Huang, Zhiyuan [Chemical Sciences & amp, Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Cui, Yuexing [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Liu, Jian [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Krzyaniak, Matthew D. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Noh, Hyunho [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Wasielewski, Michael R. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Delferro, Massimiliano [Chemical Sciences & amp, Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

    2017-12-19

    Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. This work unveils the importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.

  2. Protective Role of Maternal P.VAL158MET Catechol-O-methyltransferase Polymorphism against Early-Onset Preeclampsia and its Complications

    Directory of Open Access Journals (Sweden)

    Krnjeta Tijana

    2016-09-01

    Full Text Available Background: Up until now there have been contradictory data about the association between p.Val158Met catechol-O-methyltransferase (COMT polymorphism and risk of preeclampsia (PE. The goal of this study was to assess the potential correlation between p.Val158Met COMT polymorphism and risk of early-onset PE, risk of a severe form of early-onset PE, as well as risk of small-for-gestationalage (SGA complicating PE.

  3. An artificial neural network for membrane-bound catechol-O-methyltransferase biosynthesis with Pichia pastoris methanol-induced cultures.

    Science.gov (United States)

    Pedro, Augusto Q; Martins, Luís M; Dias, João M L; Bonifácio, Maria J; Queiroz, João A; Passarinha, Luís A

    2015-08-07

    Membrane proteins are important drug targets in many human diseases and gathering structural information regarding these proteins encourages the pharmaceutical industry to develop new molecules using structure-based drug design studies. Specifically, membrane-bound catechol-O-methyltransferase (MBCOMT) is an integral membrane protein that catalyzes the methylation of catechol substrates and has been linked to several diseases such as Parkinson's disease and Schizophrenia. Thereby, improvements in the clinical outcome of the therapy to these diseases may come from structure-based drug design where reaching MBCOMT samples in milligram quantities are crucial for acquiring structural information regarding this target protein. Therefore, the main aim of this work was to optimize the temperature, dimethylsulfoxide (DMSO) concentration and the methanol flow-rate for the biosynthesis of recombinant MBCOMT by Pichia pastoris bioreactor methanol-induced cultures using artificial neural networks (ANN). The optimization trials intended to evaluate MBCOMT expression by P. pastoris bioreactor cultures led to the development of a first standard strategy for MBCOMT bioreactor biosynthesis with a batch growth on glycerol until the dissolved oxygen spike, 3 h of glycerol feeding and 12 h of methanol induction. The ANN modeling of the aforementioned fermentation parameters predicted a maximum MBCOMT specific activity of 384.8 nmol/h/mg of protein at 30°C, 2.9 mL/L/H methanol constant flow-rate and with the addition of 6% (v/v) DMSO with almost 90% of healthy cells at the end of the induction phase. These results allowed an improvement of MBCOMT specific activity of 6.4-fold in comparison to that from the small-scale biosynthesis in baffled shake-flasks. The ANN model was able to describe the effects of temperature, DMSO concentration and methanol flow-rate on MBCOMT specific activity, as shown by the good fitness between predicted and observed values. This experimental procedure

  4. Potential link between genetic polymorphisms of catechol-O-methyltransferase and dopamine receptors and treatment efficacy of risperidone on schizophrenia

    Directory of Open Access Journals (Sweden)

    Han JY

    2017-12-01

    Full Text Available Jiyang Han,1 Yan Li,2 Xumei Wang1 1Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; 2Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, Liaoning, China Objective: The current study aimed to explore the association of single nucleotide polymorphisms (SNPs within catechol-O-methyltransferase (COMT and dopamine receptors with schizophrenia and genetic association with risperidone treatment response.Methods: A total of 690 schizophrenic patients (case group were selected and 430 healthy people were included as the controls. All patients received risperidone treatment continuously for 8 weeks. Next, peripheral venous blood samples were collected and were subjected to polymerase chain reaction-restriction fragment length polymorphism to amplify and genotype the SNPs within COMT and dopamine receptors. Then, correlation analysis was conducted between Positive and Negative Syndrome Scale improvement rates and SNPs within COMT and the dopamine receptor gene.Results: The allele of DRD1 rs11749676 (A emerged as a key element in reducing schizophrenia risk with statistical significance (P<0.001. Remarkably, alleles of COMT rs165774 (G, DRD2 rs6277 (T, and DRD3 rs6280 (C were associated with raised predisposition to schizophrenia (all P<0.001. Regarding DRD1 rs11746641, DRD1 rs11749676, DRD2 rs6277, and DRD3 rs6280, the case group exhibited a lesser frequency of heterozygotes in comparison with wild homozygotes genotype (all P<0.001. SNPs (COMT rs4680, DRD2 rs6275, DRD2 rs1801028, and DRD2 rs6277 were remarkably associated with improvement rates of PANSS total scores (P<0.05. SNPs (COMT rs165599 and DRD2 rs1801028 were significantly associated with risperidone efficacy on negative symptoms (P<0.05.Conclusion: COMT SNPs and dopamine receptor SNPs were correlated with prevalence of schizophrenia and risperidone treatment efficacy of

  5. [Preparation of OMC-Au/L-Lysine/Au modified glassy carbon electrode and the study on its detection response to hydroquinone and catechol].

    Science.gov (United States)

    Zhou, Yao-Yu; Tang, Lin; Li, Zhen; Liu, Yuan-Yuan; Yang, Gui-De; Wu, Meng-Shi; Lei, Xiao-Xia; Zheng, Guang-Ming

    2013-03-01

    Ordered mesoporous carbon-Au nanoparticles (OMC-Au) nanocomposites were synthesized by a one-step chemical reduction route, and an OMC-Au/L-Lysine/Au composite film-modified glassy carbon electrode (GCE) was constructed. The microstructure of OMC and OMC-Au/L-Lysine/Au composite films were characterized by SEM, and the preparation process of OMC-Au/L-Lysine/Au modified glassy carbon electrode was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic oxidation of hydroquinone and catechol on the modified electrode was discussed by differential pulse voltammetry in this study, and a sensor for separate determination of hydroquinone and catechol based on OMC-Au/L-Lysine/Au modified glassy carbon electrode was developed. Under the optimal conditions, the cathodic peak current was linearly related to hydroquinone concentration over ranges from 1.0 x 10(-6) mol x L(-1) to 8.0 x 10(-4) mol x L(-1) with a detection limit of 3.0 x 10(-7) mol x L(-1), and linearly related to catechol concentration from 1.0 x 10(-7) mol x L(-1) to 8.0 x 10(-5) mol x L(-1) with a detection limit of 8.0 x 10(-7) mol x L(-1).

  6. The Use of Screen-Printed Electrodes in a Proof of Concept Electrochemical Estimation of Homocysteine and Glutathione in the Presence of Cysteine Using Catechol

    Science.gov (United States)

    Lee, Patricia T.; Lowinsohn, Denise; Compton, Richard G.

    2014-01-01

    Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 μA·μM−1 and 0.0019 μA·μM−1 and limit of detections are ca. 1.2 μM and 0.11 μM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications. PMID:24926695

  7. The Use of Screen-Printed Electrodes in a Proof of Concept Electrochemical Estimation of Homocysteine and Glutathione in the Presence of Cysteine Using Catechol

    Directory of Open Access Journals (Sweden)

    Patricia T. Lee

    2014-06-01

    Full Text Available Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 µA·µM−1 and 0.0019 µA·µM−1 and limit of detections are ca. 1.2 µM and 0.11 µM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications.

  8. Association between the Catechol-O-Methyltransferase (COMT) Val158Met Polymorphism and Manual Aiming Control in Healthy Subjects

    Science.gov (United States)

    Lage, Guilherme M.; Miranda, Débora M.; Romano-Silva, Marco A.; Campos, Simone B.; Albuquerque, Maicon R.; Corrêa, Humberto; Malloy-Diniz, Leandro F.

    2014-01-01

    Background Prefrontal dopamine is catabolized by the catechol-O-methyltransferase (COMT) enzyme. Current evidence suggests that the val/met single nucleotide polymorphism in the COMT gene can predict the efficiency of executive cognition in humans. Individuals carrying the val allele perform more poorly because less synaptic dopamine is available. Methodology/Principal Findings We investigated the influence of the COMT polymorphism on motor performance in a task that requires different executive functions. We administered a manual aiming motor task that was performed under four different conditions of execution by 111 healthy participants. Participants were grouped according to genotype (met/met, met/val, val/val), and the motor performance among groups was compared. Overall, the results indicate that met/met carriers presented lower levels of peak velocity during the movement trajectory than the val carriers, but met/met carriers displayed higher accuracy than the val carriers. Conclusions/Significance This study found a significant association between the COMT polymorphism and manual aiming control. Few studies have investigated the genetics of motor control, and these findings indicate that individual differences in motor control require further investigation using genetic studies. PMID:24956262

  9. Pharmacogenetics of modafinil after sleep loss: catechol-O-methyltransferase genotype modulates waking functions but not recovery sleep.

    Science.gov (United States)

    Bodenmann, S; Xu, S; Luhmann, U F O; Arand, M; Berger, W; Jung, H H; Landolt, H P

    2009-03-01

    Sleep loss impairs waking functions and is homeostatically compensated in recovery sleep. The mechanisms underlying the consequences of prolonged wakefulness are unknown. The stimulant modafinil may promote primarily dopaminergic neurotransmission. Catechol-O-methyltransferase (COMT) catalyzes the breakdown of cerebral dopamine. A functional Val158Met polymorphism reduces COMT activity, and Val/Val homozygous individuals presumably have lower dopaminergic signaling in the prefrontal cortex than do Met/Met homozygotes. We quantified the contribution of this polymorphism to the effects of sleep deprivation and modafinil on subjective state, cognitive performance, and recovery sleep in healthy volunteers. Two-time 100 mg modafinil potently improved vigor and well-being, and maintained baseline performance with respect to executive functioning and vigilant attention throughout sleep deprivation in Val/Val genotype subjects but was hardly effective in subjects with the Met/Met genotype. Neither modafinil nor the Val158Met polymorphism affected distinct markers of sleep homeostasis in recovery sleep. In conclusion, dopaminergic mechanisms contribute to impaired waking functions after sleep loss.

  10. Are There Benefits in Adding Catechol-O Methyltransferase Inhibitors in the Pharmacotherapy of Parkinson's Disease Patients? A Systematic Review.

    Science.gov (United States)

    Katsaiti, Irene; Nixon, John

    2018-03-26

    A qualified consensus suggests that a combination of levodopa with a peripherally acting dopa decarboxylase inhibitor continues to present the gold standard treatment of Parkinson's disease (PD). However, as the disease progresses the therapeutic window of levodopa becomes narrowed. Pharmacological strategies for motor fluctuations are focused on providing less pulsatile and more continuous dopaminergic stimulation. Peripheral catechol-O-methyltransferase (COMT) inhibition improves the bioavailability of levodopa and results in a prolonged response. The primary aim of this study was to investigate the efficacy and safety of the two available COMT inhibitors; entacapone and tolcapone and the recently introduced opicapone. Electronic databases were systematically searched for original studies published within the last 37 years. In addition, lists of identified studies, reviews and their references were examined. Twelve studies fulfilled the inclusion criteria. 3701 patients with PD were included in this systematic review. Adjuvant treatment of PD patients experiencing motor fluctuations with entacapone resulted in improvement of motor function and was well tolerated. Therefore, entacapone presented an acceptable benefit to risk ratio. Tolcapone appeared to result in a greater therapeutic effect. However, this was not consistent across all motor variables and studies, and thus would not support its use, given the current onerous monitoring that is required. Opicapone was not associated with adverse reactions in a phase III trial but did not present a greater efficacy than entacapone, and thus further studies are required in order to illustrate its cost effectiveness.

  11. Membrane-bound catechol-O-methyl transferase in cortical neurons and glial cells is intracellularly oriented

    Directory of Open Access Journals (Sweden)

    Björn H Schott

    2010-10-01

    Full Text Available Catechol-O-methyl transferase (COMT is involved in the inactivation of dopamine in brain regions in which the dopamine transporter (DAT1 is sparsely expressed. The membrane-bound isoform of COMT (MB-COMT is the predominantly expressed form in the mammalian central nervous system (CNS. It has been a matter of debate whether in neural cells of the CNS the enzymatic domain of MB-COMT is oriented towards the cytoplasmic or the extracellular compartment. Here we used live immunocytochemistry on cultured neocortical neurons and glial cells to investigate the expression and membrane orientation of native COMT and of transfected MB-COMT fused to green fluorescent protein (GFP. After live staining, COMT immunoreactivity was reliably detected in both neurons and glial cells after permeabilization, but not on unpermeabilized cells. Similarly, autofluorescence of COMT-GFP fusion protein and antibody fluorescence showed overlap only in permeabilized neurons. Our data provide converging evidence for an intracellular membrane orientation of MB-COMT in neurons and glial cells, suggesting the presence of a DAT1-independent postsynaptic uptake mechanism for dopamine, prior to its degradation via COMT.

  12. The catechol-O-methyltransferase inhibitor, tolcapone, increases the bioavailability of unmethylated (-)-epigallocatechin-3-gallate in mice.

    Science.gov (United States)

    Forester, Sarah C; Lambert, Joshua D

    2015-08-01

    (-)-Epigallocatechin-3-gallate (EGCG), has been shown to inhibit cancer in vivo . EGCG, however, is rapidly methylated by catechol- O -methyl transferase (COMT), which reduces its cancer preventive efficacy. Tolcapone (TOL), is a clinically-used COMT inhibitor. Here, we examined the effect of TOL on the bioavailability of EGCG in male CF-1 mice. Plasma and tissue levels of EGCG and its methyl metabolites were determined following intragastric administration of EGCG (100 mg/kg), TOL (30 mg/kg), or the combination. In mice treated with EGCG, unmethylated plasma EGCG accounted for 63.4 % of the total. Co-administration of TOL increased this fraction to 87.9 %. In the urine, unmethylated EGCG accounted for 29.2 % of the total, whereas treatment with EGCG plus TOL increased this to 81.8 %. Similar effects were observed in the major organs examined. TOL effectively inhibited the methylation of EGCG in vivo . Future studies should examine the cancer preventive effects of the combination.

  13. The catechol-O-methyltransferase inhibitor, tolcapone, increases the bioavailability of unmethylated (−)-epigallocatechin-3-gallate in mice*

    Science.gov (United States)

    Forester, Sarah C.; Lambert, Joshua D.

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), has been shown to inhibit cancer in vivo. EGCG, however, is rapidly methylated by catechol-O-methyl transferase (COMT), which reduces its cancer preventive efficacy. Tolcapone (TOL), is a clinically-used COMT inhibitor. Here, we examined the effect of TOL on the bioavailability of EGCG in male CF-1 mice. Plasma and tissue levels of EGCG and its methyl metabolites were determined following intragastric administration of EGCG (100 mg/kg), TOL (30 mg/kg), or the combination. In mice treated with EGCG, unmethylated plasma EGCG accounted for 63.4 % of the total. Co-administration of TOL increased this fraction to 87.9 %. In the urine, unmethylated EGCG accounted for 29.2 % of the total, whereas treatment with EGCG plus TOL increased this to 81.8 %. Similar effects were observed in the major organs examined. TOL effectively inhibited the methylation of EGCG in vivo. Future studies should examine the cancer preventive effects of the combination. PMID:26213577

  14. Catechol-o-methyltransferase gene polymorphism modifies the effect of coffee intake on incidence of acute coronary events.

    Directory of Open Access Journals (Sweden)

    Pertti Happonen

    Full Text Available BACKGROUND: The role of coffee intake as a risk factor for coronary heart disease (CHD has been debated for decades. We examined whether the relationship between coffee intake and incidence of CHD events is dependent on the metabolism of circulating catecholamines, as determined by functional polymorphism of the catechol-O-methyltransferase (COMT gene. METHODOLOGY/PRINCIPAL FINDINGS: In a cohort of 773 men who were 42 to 60 years old and free of symptomatic CHD at baseline in 1984-89, 78 participants experienced an acute coronary event during an average follow-up of 13 years. In logistic regression adjusting for age, smoking, family history of CHD, vitamin C deficiency, blood pressure, plasma cholesterol concentration, and diabetes, the odds ratio (90% confidence interval comparing heavy coffee drinkers with the low activity COMT genotype with those with the high activity or heterozygotic genotypes was 3.2 (1.2-8.4. Urinary adrenaline excretion increased with increasing coffee intake, being over two-fold in heavy drinkers compared with nondrinkers (p = 0.008 for trend. CONCLUSIONS/SIGNIFICANCE: Heavy coffee consumption increases the incidence of acute coronary events in men with low but not high COMT activity. Further studies are required to determine to which extent circulating catecholamines mediate the relationship between coffee intake and CHD.

  15. Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration.

    Science.gov (United States)

    Aragó, Miriam; Ariño, Cristina; Dago, Àngela; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-11-01

    Catechol (CC), resorcinol (RC) and hydroquinone (HQ) are dihydroxybenzene isomers that usually coexist in different samples and can be determined using voltammetric techniques taking profit of their fast response, high sensitivity and selectivity, cheap instrumentation, simple and timesaving operation modes. However, a strong overlapping of CC and HQ signals is observed hindering their accurate analysis. In the present work, the combination of differential pulse voltammetry with graphene screen-printed electrodes (allowing detection limits of 2.7, 1.7 and 2.4µmolL(-1) for HQ, CC and RC respectively) and the data analysis by partial least squares calibration (giving root mean square errors of prediction, RMSEP values, of 2.6, 4.1 and 2.3 for HQ, CC and RC respectively) has been proposed as a powerful tool for the quantification of mixtures of these dihydroxybenzene isomers. The commercial availability of the screen-printed devices and the low cost and simplicity of the analysis suggest that the proposed method can be a valuable alternative to chromatographic and electrophoretic methods for the considered species. The method has been applied to the analysis of these isomers in spiked tap water. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structure-based evaluation of C5 derivatives in the catechol diether series targeting HIV-1 reverse transcriptase.

    Science.gov (United States)

    Frey, Kathleen M; Gray, William T; Spasov, Krasimir A; Bollini, Mariela; Gallardo-Macias, Ricardo; Jorgensen, William L; Anderson, Karen S

    2014-05-01

    Using a computationally driven approach, a class of inhibitors with picomolar potency known as the catechol diethers were developed targeting the non-nucleoside-binding pocket of HIV-1 reverse transcriptase. Computational studies suggested that halogen-bonding interactions between the C5 substituent of the inhibitor and backbone carbonyl of conserved residue Pro95 might be important. While the recently reported crystal structures of the reverse transcriptase complexes confirmed the interactions with the non-nucleoside-binding pocket, they revealed the lack of a halogen-bonding interaction with Pro95. To understand the effects of substituents at the C5 position, we determined additional crystal structures with 5-Br and 5-H derivatives. Using comparative structural analysis, we identified several conformations of the ethoxy uracil dependent on the strength of a van der Waals interaction with the Cγ of Pro95 and the C5 substitution. The 5-Cl and 5-F derivatives position the ethoxy uracil to make more hydrogen bonds, whereas the larger 5-Br and smaller 5-H position the ethoxy uracil to make fewer hydrogen bonds. EC50 values correlate with the trends observed in the crystal structures. The influence of C5 substitutions on the ethoxy uracil conformation may have strategic value, as future derivatives can possibly be modulated to gain additional hydrogen-bonding interactions with resistant variants of reverse transcriptase. © 2013 John Wiley & Sons A/S.

  17. Catechol-O-methyltransferase Val158met polymorphism interacts with early experience to predict executive functions in early childhood.

    Science.gov (United States)

    Blair, Clancy; Sulik, Michael; Willoughby, Michael; Mills-Koonce, Roger; Petrill, Stephen; Bartlett, Christopher; Greenberg, Mark

    2015-11-01

    Numerous studies demonstrate that the Methionine variant of the catechol-O-methyltransferase Val158Met polymorphism, which confers less efficient catabolism of catecholamines, is associated with increased focal activation of prefrontal cortex (PFC) and higher levels of executive function abilities. By and large, however, studies of COMT Val158Met have been conducted with adult samples and do not account for the context in which development is occurring. Effects of early adversity on stress response physiology and the inverted U shape relating catecholamine levels to neural activity in PFC indicate the need to take into account early experience when considering relations between genes such as COMT and executive cognitive ability. Consistent with this neurobiology, we find in a prospective longitudinal sample of children and families (N = 1292) that COMT Val158Met interacts with early experience to predict executive function abilities in early childhood. Specifically, the Valine variant of the COMT Val158Met polymorphism, which confers more rather than less efficient catabolism of catecholamines is associated with higher executive function abilities at child ages 48 and 60 months and with faster growth of executive function for children experiencing early adversity, as indexed by cumulative risk factors in the home at child ages 7, 15, 24, and 36 months. Findings indicate the importance of the early environment for the relation between catecholamine genes and developmental outcomes and demonstrate that the genetic moderation of environmental risk is detectable in early childhood. © 2015 Wiley Periodicals, Inc.

  18. Association between the catechol-o-methyltransferase val158met polymorphism with susceptibility and severity of carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Erkol İnal E

    2015-12-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy of the upper extremity. In this study, we aimed to clarify the relationships between the catechol-O-methyltransferase (COMT gene Val158Met (rs4680 polymorphism and development, functional and clinical status of CTS. Ninety-five women with electro diagnostically confirmed CTS and 95 healthy controls were enrolled in the study. The functional and clinical status of the patients was measured by the Turkish version of the Boston Questionnaire and intensity of pain related to the past 2 weeks was evaluated on a visual analog scale (VAS. The Val158Met polymorphism was determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP, method. We divided patients according to the genotypes of the Val158Met polymorphism as Val/Val, Val/Met and Met/Met. There were not any significant differences in terms of Val158Met polymorphisms between patients and healthy controls (p >0.05. We also did not find any relationships between the Val158Met polymorphism and CTS (p >0.05. In conclusion, although we did not find any relationships between CTS and the Val158Met polymorphism, we could not generalize this result to the general population. Future studies are warranted to conclude precise associations.

  19. No association between catechol-O-methyltransferase (COMT) genotype and attention deficit hyperactivity disorder (ADHD) in Japanese children.

    Science.gov (United States)

    Yatsuga, Chiho; Toyohisa, Daiki; Fujisawa, Takashi X; Nishitani, Shota; Shinohara, Kazuyuki; Matsuura, Naomi; Ikeda, Shinobu; Muramatsu, Masaaki; Hamada, Akinobu; Tomoda, Akemi

    2014-08-01

    This study ascertained the association between attention deficit/hyperactivity disorder (ADHD) in Japanese children and a polymorphism of catechol-O-methyltransferase (COMT), a dopamine-control gene. The secondary aim of the study was the evaluation of a putative association between methylphenidate (MPH) effect/adverse effects and the COMT genotype. To ascertain the distribution of the Val158Met variant of COMT, 50 children meeting ADHD inclusion criteria were compared with 32 healthy children. Clinical improvement and the occurrence of adverse effects were measured before and 3 months after MPH administration in children with ADHD, and analyzed for genotype association. Wechsler Intelligence Scale for Children-Third Edition (WISC-III), age, MPH dose were included as co-variables. The occurrence of the COMT Val/Val genotype was significantly higher in children with ADHD (χ(2)(1)=7.13, pADHD rating scale scores, after correcting for the interaction between disorder and COMT genotype. Furthermore, no significant difference in MPH effect/adverse effects was observed in association with the COMT genotype in the ADHD group. These results showed a lack of association between the COMT Val/Val genotype and ADHD in Japan. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Genetic contribution of catechol-O-methyltransferase polymorphism (Val158Met) in children with chronic tension-type headache.

    Science.gov (United States)

    Fernández-de-las-Peñas, César; Ambite-Quesada, Silvia; Rivas-Martínez, Inés; Ortega-Santiago, Ricardo; de-la-Llave-Rincón, Ana Isabel; Fernández-Mayoralas, Daniel M; Pareja, Juan A

    2011-10-01

    Our aim was to investigate the relationship between Val158Met polymorphisms, headache, and pressure hypersensitivity in children with chronic tension-type headache (CTTH). A case-control study with blinded assessor was conducted. Seventy children with CTTH associated with pericranial tenderness and 70 healthy children participated. After amplifying Val158Met polymorphism by polymerase chain reactions, we assessed genotype frequencies and allele distributions. We classified children according to their Val158Met polymorphism: Val/Val, Val/Met, Met/Met. Pressure pain thresholds (PPT) were bilaterally assessed over the temporalis, upper trapezius, second metacarpal, and tibialis anterior muscles. The distribution of Val158Met genotypes was not significantly different (p = 0.335), between children with CTTH and healthy children, and between boys and girls (p = 0.872). Children with CTTH with the Met/Met genotype showed a longer headache history compared with those with Met/Val (p = 0.001) or Val/Val (p = 0.002) genotype. Children with CTTH with Met/Met genotype showed lower PPT over upper trapezius and temporalis muscles than children with CTTH with Met/Val or Val/Val genotype (p < 0.01). The Val158Met catechol-O-methyltransferase (COMT) polymorphism does not appear to be involved in predisposition to suffer from CTTH in children; nevertheless, this genetic factor may be involved in the phenotypic expression, as pressure hypersensitivity was greater in those CTTH children with the Met/Met genotype.

  1. Association of the functional V158M catechol-O-methyl-transferase polymorphism with panic disorder in women.

    Science.gov (United States)

    Domschke, Katharina; Freitag, Christine M; Kuhlenbäumer, Gregor; Schirmacher, Anja; Sand, Philipp; Nyhuis, Peter; Jacob, Christian; Fritze, Jürgen; Franke, Petra; Rietschel, Marcella; Garritsen, Henk S; Fimmers, Rolf; Nöthen, Markus M; Lesch, Klaus-Peter; Stögbauer, Florian; Deckert, Jürgen

    2004-06-01

    Panic disorder is an anxiety disorder with an estimated heritability of up to 48%. Pharmacological and genetic studies suggest that genes coding for proteins involved in the catecholaminergic system might be relevant for the pathogenesis of the disease. In the present study, we genotyped a single nucleotide polymorphism (472G/A=V158M) in the coding region of the catechol-O-methyl-transferase (COMT) gene in 115 patients with panic disorder and age- and sex-matched controls. Association analysis revealed a significant excess of the more active COMT allele (472G=V158) in patients with panic disorder (p=0.04), particularly in female patients (p=0.01), but not in male patients (p=1.0). The assessment of a possible interaction of the COMT polymorphism with a previously reported functional 30-bp VNTR in the monoamine oxidase A promoter (MAOALPR) in female patients did not yield significant results. Our data support a role of the 472G/A (V158M) COMT polymorphism or a nearby locus in the pathogenesis of panic disorder in women.

  2. Simultaneous electroanalytical determination of hydroquinone and catechol in the presence of resorcinol at an SiO2/C electrode spin-coated with a thin film of Nb2O5.

    Science.gov (United States)

    Canevari, Thiago C; Arenas, Leliz T; Landers, Richard; Custodio, Rogério; Gushikem, Yoshitaka

    2013-01-07

    This paper describes the development, characterization and application of an Nb(2)O(5) film formed on the surface of a carbon ceramic material, SiO(2)/C, obtained by a sol-gel method, using the spin-coating technique. The working electrode using this material will be designated as SiCNb. Hydroquinone and catechol can be oxidized at this electrode in the presence of resorcinol, allowing their simultaneous detection. The electrochemical properties of the resulting electrode were investigated using cyclic and differential pulse voltammetry techniques. Well-defined and separated oxidation peaks were observed by differential pulse voltammetry in Tris-HCl buffer solution at pH 7 containing 1 mol L(-1) KCl in the supporting electrolyte solution. The SiCNb electrode exhibited high sensitivity in the simultaneous determination of hydroquinone and catechol in the presence of resorcinol, with the limits of detection for hydroquinone and catechol being 1.6 μmol L(-1) and 0.8 μmol L(-1), respectively. Theoretical calculations were performed to determine the ionization energies of hydroquinone, catechol and resorcinol; the results were used to explain the simultaneous determination of species by differential pulse voltammetry. The presence of resorcinol did not produce any interference in the simultaneous detection of hydroquinone and catechol on the surface of the modified electrode.

  3. Catechol-o-methyltransferase expression and 2-methoxyestradiol affect microtubule dynamics and modify steroid receptor signaling in leiomyoma cells.

    Directory of Open Access Journals (Sweden)

    Salama A Salama

    Full Text Available CONTEXT: Development of optimal medicinal treatments of uterine leiomyomas represents a significant challenge. 2-Methoxyestradiol (2ME is an endogenous estrogen metabolite formed by sequential action of CYP450s and catechol-O-methyltransferase (COMT. Our previous study demonstrated that 2ME is a potent antiproliferative, proapoptotic, antiangiogenic, and collagen synthesis inhibitor in human leiomyomas cells (huLM. OBJECTIVES: Our objectives were to investigate whether COMT expression, by the virtue of 2ME formation, affects the growth of huLM, and to explore the cellular and molecular mechanisms whereby COMT expression or treatment with 2ME affect these cells. RESULTS: Our data demonstrated that E(2-induced proliferation was less pronounced in cells over-expressing COMT or treated with 2ME (500 nM. This effect on cell proliferation was associated with microtubules stabilization and diminution of estrogen receptor alpha (ERalpha and progesterone receptor (PR transcriptional activities, due to shifts in their subcellular localization and sequestration in the cytoplasm. In addition, COMT over expression or treatment with 2ME reduced the expression of hypoxia-inducible factor -1alpha (HIF-1 alpha and the basal level as well as TNF-alpha-induced aromatase (CYP19 expression. CONCLUSIONS: COMT over expression or treatment with 2ME stabilize microtubules, ameliorates E(2-induced proliferation, inhibits ERalpha and PR signaling, and reduces HIF-1 alpha and CYP19 expression in human uterine leiomyoma cells. Thus, microtubules are a candidate target for treatment of uterine leiomyomas. In addition, the naturally occurring microtubule-targeting agent 2ME represents a potential new therapeutic for uterine leiomyomas.

  4. Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957

    International Nuclear Information System (INIS)

    Palner, Mikael; McCormick, Patrick; Parkes, Jun; Knudsen, Gitte M.; Wilson, Alan A.

    2010-01-01

    Introduction: R-[ 11 C]-SKF 82957 is a high-affinity and potent dopamine D 1 receptor agonist radioligand, which gives rise to a brain-penetrant lipophilic metabolite. In this study, we demonstrate that systemic administration of catechol-O-methyl transferase (COMT) inhibitors blocks this metabolic pathway, facilitating the use of R-[ 11 C]-SKF 82957 to image the high-affinity state of the dopamine D 1 receptor with PET. Methods: R-[ 11 C]SKF 82957 was administered to untreated and COMT inhibitor-treated conscious rats, and the radioactive metabolites present in the brain and plasma were quantified by HPLC. Under optimal conditions, cerebral uptake and dopamine D 1 binding of R-[ 11 C]SKF 82957 were measured ex vivo. In addition, pharmacological challenges with the receptor antagonist SCH 23390, amphetamine, the dopamine reuptake inhibitor RTI-32 and the dopamine hydroxylase inhibitor α-methyl-p-tyrosine were performed to study the specificity and sensitivity of R-[ 11 C]-SKF 82957 dopamine D 1 binding in COMT-inhibited animals. Results: Treatment with the COMT inhibitor tolcapone was associated with a dose-dependent (EC 90 5.3±4.3 mg/kg) reduction in the lipophilic metabolite. Tolcapone treatment (20 mg/kg) also resulted in a significant increase in the striatum/cerebellum ratio of R-[ 11 C]SKF 82957, from 15 (controls) to 24. Treatment with the dopamine D 1 antagonist SCH 23390 reduced the striatal binding to the levels of the cerebellum, demonstrating a high specificity and selectivity of R-[ 11 C]SKF 82957 binding. Conclusions: Pre-treatment with the COMT inhibitor tolcapone inhibits formation of an interfering metabolite of R-[ 11 C]SKF 82957. Under such conditions, R-[ 11 C]SKF 82957 demonstrates high potential as the first agonist radiotracer for imaging the dopamine D 1 receptor by PET.

  5. Catechol-O-methyltransferase Val158 Met genotype, parenting practices and adolescent alcohol use: testing the differential susceptibility hypothesis.

    Science.gov (United States)

    Laucht, Manfred; Blomeyer, Dorothea; Buchmann, Arlette F; Treutlein, Jens; Schmidt, Martin H; Esser, Günter; Jennen-Steinmetz, Christine; Rietschel, Marcella; Zimmermann, Ulrich S; Banaschewski, Tobias

    2012-04-01

      Recently, first evidence has been reported for a gene-parenting interaction (G × E) with regard to adolescent alcohol use. The present investigation set out to extend this research using the catechol-O-methyltransferase (COMT) Val(158) Met polymorphism as a genetic susceptibility factor. Moreover, the current study examined whether a potential G×E would be consistent with one of two models of gene-environment interplay (genetic vulnerability vs. differential susceptibility).   Data were collected as part of an ongoing epidemiological cohort study following the outcome of early risk factors from birth into adulthood. Two hundred and eighty-five participants (130 males, 155 females) were genotyped for the COMT Val(158) Met polymorphism and were administered an alcohol interview, providing measures of current frequency and amount of drinking at ages 15 and 19 years. Information on three dimensions of perceived parenting behavior was obtained from the 15-year-olds.   Adolescents homozygous for the Met allele showed higher drinking activity at age 19 years when their parents had engaged in less supervision or were less involved, while their drinking activity was reduced under conditions of favorable parenting. No such relationship was found in individuals carrying the Val allele.   The present findings correspond with the pattern of results predicted by the differential susceptibility hypothesis, suggesting that environmental variation would have a greater impact in individuals carrying a genetic susceptibility such that, in this group, exposure to negative environmental conditions would result in more adverse outcomes and the experience of favorable conditions would lead to more positive outcomes. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  6. Modulation of catechol estrogen synthesis by rat liver microsomes: effects of treatment with growth hormone or testosterone

    International Nuclear Information System (INIS)

    Quail, J.A.; Jellinck, P.H.

    1987-01-01

    The ability of GH from various mammalian species, administered to normal mature male rats by constant infusion, to decrease the hepatic 2-hydroxylation of estradiol (E2) to female levels, as measured by the release of 3 H 2 O from [2-3H]E2, was determined. Rat and human GH (hGH) showed the highest activity while ovine GH was inactive. PRL (0.6 IU/h X kg) administered together with hGH (0.02 IU/h X kg) did not antagonize the feminizing action of GH. Infusion of hGH into male rats decreased the affinity of estradiol 2-hydroxylase for its steroid substrate and altered the linear Lineweaver-Burk plot towards a nonlinear hyperbolic plot characteristic of the female. The apparent Michaelis-Menten constant (Km) for the reaction was 1.69 microM for males and 2.75 microM for testosterone-treated ovariectomized females. An equal mixture of liver microsomes from male and female rats gave kinetic values similar to those observed with males alone. Neonatal imprinting with androgen did not alter the magnitude of the response of female rats to treatment with testosterone and/or GH at maturity and the androgen effect could only be shown in ovariectomized animals. The results with rats of different endocrine status were corroborated by the kinetic data and by the pattern of metabolites obtained with [4- 14 C]E2 when examined by TLC and autoradiography. The hormonal control of estradiol 2-hydroxylase, the key enzyme in catechol estrogen formation, and the contribution of sex-specific multiple forms of the enzyme to this reaction are discussed

  7. Affect-modulated startle: interactive influence of catechol-O-methyltransferase Val158Met genotype and childhood trauma.

    Directory of Open Access Journals (Sweden)

    Benedikt Klauke

    Full Text Available The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system--partly conferred by catechol-O-methyltransferase (COMT gene variation--for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design and childhood maltreatment (CTQ as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.

  8. Catechol-O-methyltransferase (COMT) genotype moderates the effects of childhood trauma on cognition and symptoms in schizophrenia.

    Science.gov (United States)

    Green, Melissa J; Chia, T-Yunn; Cairns, Murray J; Wu, Jingqin; Tooney, Paul A; Scott, Rodney J; Carr, Vaughan J

    2014-02-01

    The interaction of genetic and environmental factors may affect the course and development of psychotic disorders. We examined whether the effects of childhood trauma on cognition and symptoms in schizophrenia were moderated by the Catechol-O-methyltransferase (COMT) Val(158)Met polymorphism, a common genetic variant known to affect cognition and prefrontal dopamine levels. Participants were 429 schizophrenia/schizoaffective cases from the Australian Schizophrenia Research Bank (ASRB). Cognitive performance was assessed using the Repeatable Battery for Assessment of Neuropsychological Status (RBANS), Controlled Oral Word Association Test (COWAT), Letter Number Sequencing (LNS) test, and the Wechsler Test of Adult Reading (WTAR). Hierarchical regression was used to test the main effects and additive interaction effects of genotype and childhood trauma in the domains of physical abuse, emotional abuse, and emotional neglect, on cognition and symptom profiles of clinical cases. Consistent with previous findings, COMT Val homozygotes performed worse on cognitive measures in the absence of childhood adversity. In addition, a significant interaction between COMT genotype and physical abuse was associated with better executive function in Val homozygotes, relative to those of the same genotype with no history of abuse. Finally, the severity of positive symptoms was greater in Met carriers who had experienced physical abuse, and the severity of negative symptoms in Met carriers was greater in the presence of emotional neglect. These results suggest that the possible epigenetic modulation of the expression of the COMT Val(158)Met polymorphism and consequent effects on cognition and symptoms in schizophrenia, with worse outcomes associated with adverse childhood experiences in Met carriers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  10. Catechol O-methyltransferase (COMT) functional haplotype is associated with recurrence of affective symptoms: A prospective birth cohort study.

    Science.gov (United States)

    Koike, Shinsuke; Gaysina, Darya; Jones, Peter B; Wong, Andrew; Richards, Marcus

    2018-03-15

    Catechol-O-methyltransferase (COMT) polymorphisms play an essential role in dopamine availability in the brain. However, there has been no study investigating whether a functional four-SNP (rs6269-rs4633-rs4818-rs4680) haplotype is associated with affective symptoms over the life course. We tested this using 2093 members of the Medical Research Council National Survey of Health and Development (MRC NSHD), who had been followed up since birth in 1946, and had data for COMT genotypes, adolescent emotional problems (age 13-15) and at least one measure of adult affective symptoms at ages 36, 43, 53, or 60-64 years. First, differences in the levels of affective symptoms by the functional haplotype using SNPs rs6269, rs4818, and rs4680 were tested in a structural equation model framework. Second, interactions between affective symptoms by COMT haplotype were tested under an additive model. Finally, a quadratic regressor (haplotype 2 ) was used in a curvilinear model, to test for a possible inverted-U trend in affective symptoms according to COMT-related dopamine availability. Women had a significant interaction between COMT haplotypes and adolescent emotional problem on affective symptoms at age 53. Post hoc analysis showed a significant positive association between adolescent emotional problems and affective symptoms at age 53 years in the middle dopamine availability group (valA/valB or met/met; β = .11, p = .007). For men, no significant interactions were observed. Combination of the COMT functional haplotype model and inverted-U model may shed light on the effect of dopaminergic regulation on the trajectory of affective symptoms over the life course. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Psychological distress in fibromyalgia patients: a role for catechol-O-methyl-transferase Val158met polymorphism.

    Science.gov (United States)

    Desmeules, Jules; Piguet, Valérie; Besson, Marie; Chabert, Jocelyne; Rapiti, Elisabetta; Rebsamen, Michela; Rossier, Michel F; Curtin, François; Dayer, Pierre; Cedraschi, Christine

    2012-03-01

    Fibromyalgia (FM) has been related to biochemical alterations, central pain sensitization and psychological distress. Among genetic and environmental hypotheses, a role was suggested for catechol-O-methyl-transferase (COMT), a modulator in the metabolism of monoaminergic neurotransmitters. This study compared the COMT Val158Met enzyme polymorphism (rs4680) of 198 FM patients to 99 pain-free controls. Psychological and functional aspects were assessed through investigating anxiety, depression, catastrophizing, perceived health, and functional status. The distribution of the COMT Val158Met polymorphism was similar in FM and controls. Out of 198 patients, 137 were able to stop medication before evaluation. In these patients, the COMT Val158Met genotype was associated with specific psychological profiles. The Met/Met subgroup scored systematically worse on all psychological and functional variables. All variables displayed a "genotype-trend effect" with the Met/Met and Val/Val subgroups at the two ends of the scores. Genotypes distribution in the 61 patients unable to stop medication was significantly different from that of patients able to stop medication and controls (p = .002 and p = .018, respectively) with an increase in the proportion of the Met/Met genotype associated to the lowest COMT activity. These results suggest a possible role of COMT Val158Met polymorphism in the psychological distress observed in FM. The association of COMT genotype with psychological distress may be of importance as identifying subgroups is a challenge in the diagnosis and treatment of fibromyalgia patients. This association may contribute to open new perspectives into the understanding of the pathophysiology of fibromyalgia and stress-related genes.

  12. The Role of Human Aldo-Keto Reductases (AKRs in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH-catechols and PAH o-Quinones

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2012-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAH are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quiniones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  13. Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: Isotherm, kinetic and thermodynamics

    Directory of Open Access Journals (Sweden)

    Riddhish R. Bhatt

    2015-05-01

    Full Text Available Terpolymeric resin has been synthesized by condensing salicylic acid with catechol employing formaldehyde as a cross linking agent at 80 ± 5 °C using DMF as a solvent. The resin was characterized by elemental analysis, FTIR, XRD and thermal analysis (TGA, DTA and DTG. The morphology of the resin was studied by optical photographs and scanning electron micrographs (SEM at different magnifications. The physico-chemical properties have been studied. The uptake behavior of various metal ions viz. Ni(II, Cu(II, Zn(II, Cd(II and Pb(II towards synthesized resin has been studied depending on contact time, pH and temperature. The selectivity order found is: Cu(II > Zn(II > Pb(II > Ni(II > Cd(II. The sorption data obtained at optimized conditions were analyzed by six two parameter isotherm models like Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R, Halsey and Harkins–Jura. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R isotherms were found better to describe the sorption data with high correlation for the adsorption with a low SSE value for all the metals under study. The adsorption capacities of the SFC resin for removal of Ni(II, Cu(II, Zn(II, Cd(II and Pb(II were determined with the Langmuir equation and found to be 0.815, 1.104, 1.215, 0.498, and 0.931 mmol/g respectively. The adsorption process follows first order kinetics and specific rate constant Kr was obtained by the application of Lagergren equation. Thermodynamic parameters viz. ΔGads, ΔSads and ΔHads have also been calculated for the metal-resin systems. The external diffusion rate constant (Ks and intra-particle diffusion rate constant (Kid were calculated by Spahn–Schlunder and Weber–Morris models respectively. Desorption studies were done using various desorbing agents viz. de-ionized water, boiled water, various concentrations of HCl, ammonia, thiourea, citric acid and tartaric acid.

  14. Effect of an allophanic soil on humification reactions between catechol and glycine: Spectroscopic investigations of reaction products

    Science.gov (United States)

    Fukushima, Masami; Miura, Akitaka; Sasaki, Masahide; Izumo, Kenji

    2009-01-01

    Adduction of amino acids to phenols is a possible humification reaction pathway [F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reaction, second ed., Wiley, New York, 1994, pp. 188-211; M.C. Wang, P.M. Huang, Sci. Total Environ. 62 (1987) 435; M.C. Wang, P.M. Huang, Soil Sci. Soc. Am. J. 55 (1991) 1156; M.C. Wang, P.M. Huang, Geoderma 112 (2003) 31; M.C. Wang, P.M. Huang, Geoderma 124 (2005) 415]. To elucidate the reaction kinetics and products of abiotic humification, the effects of an allophanic soil on the adduction of amino acids to phenols were investigated using catechol (CT) and glycine (Gly) as a model phenol and amino acid, respectively. An aqueous solution containing CT and Gly (pH 7.0) in the presence of allophanic soil was incubated for 2 weeks, and the kinetics of the humification reactions were monitored by analysis of absorptivity at 600 nm ( E600). A mixture of CT and Gly in the absence of allophanic soil was used as a control. The E600 value increased markedly in the presence of allophanic soil. In addition, unreacted CT was detected in the control reaction mixture, but not in the allophane-containing reaction mixture. Under the sterilized conditions, absorbance at 600 nm for the control reaction mixture was significantly smaller than that for the allophanic soil-containing reaction mixture, which indicates there was no microbial participation during incubation. These results indicate that the allophanic soil effectively facilitated humification reactions between CT and Gly. The reaction mixtures were acidified and humic-like acid (HLA) was isolated as a precipitate. The elemental composition, acidic functional group contents, molecular weight, FT-IR, solid-state CP-MAS 13C NMR, and 1H NMR spectra of the purified HLAs were analyzed. The results of these analyses indicate that the nitrogen atom of Gly binds to the aromatic carbon of CT in the HLA products.

  15. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: virgin olive oil, wine, and catechol-methylathion.

    Science.gov (United States)

    De la Torre, Rafael; Corella, Dolores; Castañer, Olga; Martínez-González, Miguel A; Salas-Salvador, Jordi; Vila, Joan; Estruch, Ramón; Sorli, José V; Arós, Fernando; Fiol, Miquel; Ros, Emili; Serra-Majem, Lluís; Pintó, Xavier; Gómez-Gracia, Enrique; Lapetra, José; Ruiz-Canela, Miguel; Basora, José; Asensio, Eva Maria; Covas, Maria Isabel; Fitó, Montserrat

    2017-06-01

    Background: Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Hydroxytyrosol-related foods have been shown to protect against cardiovascular disease (CVD). Objective: We investigated the associations between hydroxytyrosol and its biological metabolite, 3- O -methyl-hydroxytyrosol, also known as homovanillyl alcohol (HVAL), with CVD and total mortality. Design: We included 1851 men and women with a mean ± SD age of 66.8 ± 6 y at high risk of CVD from prospective cohort data. The primary endpoint was a composite of myocardial infarction, stroke, and death from cardiovascular causes; the secondary endpoint was all-cause mortality. Twenty-four-hour urinary hydroxytyrosol and HVAL and catechol- O -methyltransferase ( COMT ) rs4680 genotypes were measured. Results: After multivariable adjustment, all biomarkers were associated, as a continuous variable, with lower CVD risk, but only HVAL showed a strong inverse association (HR: 0.44; 95% CI: 0.25, 0.80) for the comparison between quintiles. Only HVAL, as a continuous variable, was associated with total mortality (HR: 0.81; 95% CI: 0.70, 0.95). Individuals in the highest quintile of HVAL compared with the lowest had 9.2 (95% CI: 3.5, 20.8) and 6.3 (95% CI: 2.3, 12.1) additional years of life or years free of CVD, respectively, after 65 y. Individuals with the rs4680GG genotype had the highest HVAL concentrations ( P = 0.05). There was no association between COMT genotypes and events or interaction between COMT genotypes and HVAL concentrations. Conclusions: We report, for the first time to our knowledge, an independent association between high urinary HVAL concentrations and a lower risk of CVD and total mortality in elderly individuals. VOO and wine consumption and a high metabolic COMT capacity for methylation are key factors for high HVAL concentrations. The association that stems from our results reinforces the benefits of 2 key components of the Mediterranean diet (wine and

  16. Protective effect of chelating agents of catechols amino carboxylic acid on radiation injury induced by radiothorium in mice: prompt administration

    International Nuclear Information System (INIS)

    Chen Honghong; Hu Yuxing; Wang Yinghua; Jin Meiying; Luo Meishu; Sun Meizhen

    2003-01-01

    Objective: To study decorporation and antioxidation efficacy of chelating agents (9501 and 7601) of the substituted catechols amino carboxylic acid for radiothorium in vivo. Methods: The experiment was first designed to find out the dose and time of radiation injury by incorporated 234 Th-citrate in ICR mice. The malondialdehyde (MDA) production serving as an index of 234 Th-induced lipid peroxidation in bone marrow, serum and liver of mice was assayed and the numbers of bone marrow nucleated cells (NBMNC) were counted. The pathological changes of bone marrow and liver tissue were observed. The chelating agents were promptly administered im to mice for three consecutive days after ip injection of 0.6 MBq 234 Th-citrate. The animals were sacrificed 4 days later and the 234 Th retention in the whole body, liver and skeleton and the above indexes were determined. Results: The mice showed significantly internal radiation injury of bone marrow and liver at 4th to 8th after ip injection of 0.6 MBq 234 Th-citrate. The prompt administration of 9501,7601 and DTPA decreased the whole body radioactivity by 81%, 86% and 72%, respectively, as compared with those of the control group. The sum of retention of 234 Th in liver and skeleton was reduced to 22%, 21% and 58% of controls, respectively. The removal efficacy of 9501 and 7601 was better than that of DTPA. The NBMNC, contents of MDA in bone marrow and the structure of bone marrow and liver tissue didn't show any abnormality in 9501 and 7601 groups. DTPA appeared to have a lower protective effectiveness on radiation injury of bone marrow. VitE had no decorporation activity and didn't alleviate radiotoxicity. The combined use of DTPA and VitE showed both decorporation effect of DTPA and antioxidation effect of VitE. Conclusion: The prompt administration of 9501 and 7601 has remarkable protective effects on internal radiation injury, which resulting from decorporation activity and conceal their antioxidation

  17. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder

    DEFF Research Database (Denmark)

    Miskowiak, K. W.; Kjærstad, H. L.; Støttrup, M. M.

    2017-01-01

    OBJECTIVES: Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyl......OBJECTIVES: Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol......-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working...... memory in BD. METHODS: Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test...

  18. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells.

    Science.gov (United States)

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-02-20

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells ( NF-κB ) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  19. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2017-02-01

    Full Text Available Chlorogenic acid (CHA and caffeic acid (CA are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK. Additionally, upstream of IKK, protein kinase D (PKD was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  20. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion.

    Science.gov (United States)

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Hairston, Jenaqua; Bortolato, Marco

    2015-12-01

    The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity. © 2015 British Neuropathological Society.

  1. Protective activity of the Uncaria tomentosa extracts on human erythrocytes in oxidative stress induced by 2,4-dichlorophenol (2,4-DCP) and catechol.

    Science.gov (United States)

    Bors, Milena; Bukowska, Bożena; Pilarski, Radosław; Gulewicz, Krzysztof; Oszmiański, Jan; Michałowicz, Jaromir; Koter-Michalak, Maria

    2011-09-01

    The purpose of this study was to evaluate the effect of the ethanolic and aqueous extracts of Uncaria tomentosa on human erythrocytes and additionally the assessment of protective effect of these extracts on hemolysis induction, hemoglobin oxidation, and changes in the level of reactive oxygen species (ROS) and lipid peroxidation, which were provoked by selected xenobiotics, i.e. 2,4-dichlorophenol (2,4-DCP) and catechol. All tested extracts, even at a very high concentration of 500 μg/ml were not toxic to the erythrocytes because they did not cause lipid peroxidation, increase methemoglobin and ROS levels nor provoked hemolysis. The results of this study also revealed protective effect of extracts of U. tomentosa. The extracts studied depleted the extent of hemoglobin oxidation and lipid peroxidation as well as decreased the level of ROS and hemolysis, which was provoked by 2,4-DCP. No protective activity of the extracts against catechol action, which is a precursor of semiquinones in cell was found. A difference in the effect of the extracts studied was observed. Ethanol-based extracts revealed more pronounced ability to inhibit oxidation processes in human erythrocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Preparation, Investigation and the Study of the Effect of Mn(II Complex of Catechol and 2-Aminopyridine on Seed Germination

    Directory of Open Access Journals (Sweden)

    F. I. El-Moshaty

    2011-01-01

    Full Text Available The formation of mixed ligand complex of Mn(II with catechol (L1 and 2-aminopyridine (L2 was determined by elemental analyses (C, H and N, molar conductance measurement, thermogravimetric analysis, infrared, electronic and electron paramagnetic resonance spectroscopies. The elemental analysis data show the formation of 1:1:1 [M: L1: L2] complex. The molar conductance measurement shows a non-electrolyte nature. The thermogravimetric analysis data of the complex display the existence of hydrated and coordinated water molecules. The infrared spectral data exhibit the coordination sites that are through -OH,-C=N and –NH2 groups. The electronic spectral data display the electronic transitions of the ligands and suggest an octahedral structure for the complex. The electron paramagnetic resonance spectrum of the complex reveals the existence of paramagnetic phenomena and supports its geometrical structure. Seed germination and root length of grass were also assayed under the effect of MnCl2.4H2O, catechol, 2-aminopyridine and its complex. Mn(II salt was the most effective on germination than its complex which possess the high test effect on root length, while the ligands are the least active of all.

  3. Determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine: evidence for a catechol-O-methyltransferase inhibitor in uraemia

    International Nuclear Information System (INIS)

    Demassieux, S.; Corneille, L.; Lachance, S.; Carriere, S.

    1981-01-01

    A sensitive, accurate and reproducible method has been developed for the determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine. The assay involves the enzymatic conversion of these compounds to their radio-labelled O-methylated derivatives using catechol-O-methyltransferase and S-adenosyl-L-[methyl- 3 H]methionine. Recoveries of 75 +- 5% for dopamine, 70 +- 5% for adrenaline and 65 +- 5% for noradrenaline were obtained. The sensitivities were 0.5 pg for adrenaline and noradrenaline and 5-7 pg for dopamine and dihydroxyphenylalanine. Measurements of conjugated catecholamines were performed after mild acid hydrolysis for 20 min at 95 0 C. During this procedure no degradation of the catecholamines was observed. This assay led to the discovery of a dialyzable factor in the plasma of chronic uraemic patients which inhibits catechol-O-methyltransferase activity in vitro. The mean 22% inhibition observed for unhydrolyzed plasma increased to 42% after hydrolysis. The identity of this inhibitor which exists as an inactive conjugated form, probably a sulphate ester, and its implication in physiopathological disorders remain to be established. (Auth.)

  4. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability

    Science.gov (United States)

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L.

    2014-01-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed. PMID:25101258

  5. The Flexible Mind Is Associated with the Catechol-O-Methyltransferase (COMT) Val[superscript 158]Met Polymorphism: Evidence for a Role of Dopamine in the Control of Task-Switching

    Science.gov (United States)

    Colzato, Lorenza S.; Waszak, Florian; Nieuwenhuis, Sander; Posthuma, Danielle; Hommel, Bernhard

    2010-01-01

    Genetic variability related to the catechol-O-methyltransferase (COMT) gene Val[superscript 128]Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions. Recent evidence suggests that the Val[superscript 128]Met genotype may differentially affect cognitive stability and flexibility, in such a way…

  6. Cytotoxicity of catechol towards human glioblastoma cells via superoxide and reactive quinones generation Citotoxicidade do catecol para células de glioblastoma humano via geração de superóxido e quinonas reativas

    Directory of Open Access Journals (Sweden)

    Marco Roberto Guimarães Pereira

    2004-08-01

    Full Text Available It is known that the exposure to benzene in the petroleum industry causes lympho-haematopoietic cancer among workers. However, there is little data concerning the toxicity of benzene to the central nervous system. Benzene easily penetrates the brain where it is metabolized to catechol. Since catechol autoxidizes in physiological phosphate buffer, we hypothesized that it could be toxic towards glial cells due to the generation of reactive oxygen species and quinones. In this work we studied the cytotoxic properties of catechol towards human glioblastoma cells. We found that catechol was toxic towards these cells after 72 hours and this toxicity was related to the formation of quinones. Catechol at 230µM killed 50% of cells. The catechol-induced cytotoxicity was prevented by the addition of 100U superoxide dismutase, which also inhibited the formation of quinones. These data suggest that catechol induces cytotoxicity via the extracellular generation of superoxide and quinones.Sabe-se que a exposição de trabalhadores ao benzeno na indústria petrolífera é uma causa de câncer do sistema linfo-hematopoiético. Pouco se sabe, contudo, a respeito da toxicidade do benzeno no sistema nervoso central. O benzeno penetra facilmente no cérebro, onde é metabolizado a catecol. Como o catecol se auto-oxida em tampão fosfato no pH fisiológico, supôs-se que esse composto poderia ser tóxico para células gliais por gerar espécies reativas do oxigênio e quinonas. Nesse trabalho estudou-se a citotoxicidade do catecol para células de glioblastoma humano. O catecol foi tóxico após 72 horas e essa toxicidade relacionou-se com a formação de quinonas. O catecol a 230mM matou metade das células em cultura. A toxicidade do catecol e a produção de quinonas foram inibidas por 100U de superóxido dismutase. Esses dados sugerem que a toxicidade induzida pelo catecol deve-se à produção extracelular de superóxido e quinonas reativas.

  7. Effects of garlic on cellular doubling time and DNA strand breaks caused by UV light and BPL, enhanced with catechol and TPA

    International Nuclear Information System (INIS)

    Baturay, N.Z.; Gayle, F.; Liu, S.; Kreidinger, C.

    1995-01-01

    3T3 cell cultures were exposed to UV light and Beta-Propiolactone. Neoplastic cell transformation (TF) was demonstrated after concurrent addition of catechol, or repeated addition of TPA. Addition of garlic to all fluences/concentrations of the carcinogen/cocarcinogen/promoter groups reduced the number of transformed foci/dish by at least 40%. Since the cell cycle is prolonged following exposure to carcinogens, it is likely the cell requires a longer time to repair this damage. The doubling time (DT) was extended from 12 to 36 hrs. when cells were exposed to BPL and from 12 o 28 hrs. when cells were exposed to 3.0J/M2/sec. If an anticarcinogenic compound is also added, it is reasonable to assume that the cell cycle may be further elongated. The cell cycle, denoted by DT was lengthened from 12 to 47 hrs and from 12 to 86 hrs for BPL and UVC, respectively. The extensions occurred in a dope dependent manner. The concentrations of the cocarcinogen and promoter remained constant throughout the experiment. When strand breaks were determined at the same dose sequences, by alkaline elution, more repair was seen with garlic where the lowest and middle doses of BPL were used and almost no decrease in % DNA eluted was seen with UVC exposed cells. With catechol, there was a two-fold decrease in % DNA eluted at the lowest and middle fluences. When TPA was added, all three fluences of UVC showed more than a threefold decrease in % DNA eluted. BPS with both TPA and catechol, again showed a reduction in strand breaks only low and middle doses. Both a direct-acting alkylating agent, BPL, and a physical carcinogen, UVC, were homogeneously affected, in terms of doubling time, but not when strand break repair was examined. A separate mechanism may be responsible for repair, and the mechanism associated with combinations of physical carcinogen enhancing agents combined with some non-carcinogens may be more profoundly affected by some natural products

  8. The Role of the Catechol-o-methyltransferase (COMT) Gene Val158Met in Aggressive Behavior, A Review of Genetic Studies

    Science.gov (United States)

    Qayyum, Arqam; Zai, Clement C.; Hirata, Yuko; Tiwari, Arun K.; Cheema, Sheraz; Nowrouzi, Behdin; Beitchman, Joseph H.; Kennedy, James L.

    2015-01-01

    Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior. PMID:26630958

  9. Meta-analysis reveals a lack of association between a common catechol-O-methyltransferase (COMT) polymorphism val¹⁵⁸met and fibromyalgia.

    Science.gov (United States)

    Zhang, Lei; Zhu, Junwei; Chen, Yong; Zhao, Jianning

    2014-01-01

    This study is to evaluate the association between the catechol-O-methyltransferase (COMT) gene val(158)met polymorphism and FM risk. We performed a meta-analysis of 8 case-control studies that included 589 FM cases and 527 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95% confidence intervals (CIs). Overall, this meta-analysis showed that the COMT gene val(158)met polymorphism was not associated with FM risk in all genetic models, i.e., allele (met vs. val: OR=1.46, 95% CI=0.80-2.66, P heterpgeneitysubgroup analyses by ethnicity and HWE. No publication bias was found in the present study. This meta-analysis suggests that the COMT gene val(158)met polymorphism is not associated with FM risk. Further large and well-designed studies are needed to confirm this association.

  10. Catechol 2,3-dioxygenase and other meta-cleavage catabolic pathway genes in the 'anaerobic' termite gut spirochete Treponema primitia.

    Science.gov (United States)

    Lucey, Kaitlyn S; Leadbetter, Jared R

    2014-03-01

    Microorganisms have evolved a spectacular diversity of metabolisms, some of which allow them to overcome environmental constraints, utilize abundant but inaccessible resources and drive nutrient cycling in various ecosystems. The termite hindgut microbial community is optimized to metabolize wood, and in recent years, the in situ physiological and ecological functions of community members have been researched. Spirochetes are abundant in the termite gut, and herein, putative aromatic meta-cleavage pathway genes typical of aerobic pseudomonads were located in genomes of homoacetogenic termite hindgut 'anaerobes', Treponema primitia str. ZAS-1 and ZAS-2. Phylogenetic analyses suggest the T. primitia catechol 2,3-dioxygenase and several other essential meta-pathway genes were acquired from an α-proteobacterium in the distant past to augment several genes T. primitia acquired from anaerobic firmicutes that do not directly catabolize aromatics but can contribute to the final pathway steps. Further, transcripts for each meta-pathway gene were expressed in strictly anaerobic cultures of T. primitia str. ZAS-2 indicative of constitutive pathway expression. Also, the addition of catechol + O(2) to T. primitia liquid cultures resulted in the transient accumulation of trace amounts of the yellow ring cleavage product, hydroxymuconic semialdehyde. This is the first evidence of aromatic ring cleavage in the phylum (division) Spirochetes. Results also support a possible role for T. primitia in termite hindgut O(2) /lignin aromatic monomer metabolism. Potential O(2) -dependent yet nonrespiratory microbial metabolisms have heretofore been overlooked and warrant further investigation. These metabolisms could describe the degradation of plant-derived and other aromatics in microoxic environments and contribute significantly to carbon turnover. © 2013 John Wiley & Sons Ltd.

  11. Protective effects of chelating agents of catechols amino carboxylic acid type on radiation injury induced by radiothorium in mice II. delayed administration

    International Nuclear Information System (INIS)

    Chen Honghong; Hu Yuxing; Wang Yinghua; Jin Meiying; Luo Meichu; Sun Meizhen

    2003-01-01

    Objective: To explore antioxidation efficacy of chelating agents (9501, 7601) of catechols amino carboxylic acid type for radiothorium in vivo and relationship between their antioxidation and decorporation effects. To verify whether 9501 and 7601 could improve the protective effects for internal radiation injury. Methods: The chelating agents were administered intramuscularly to ICR mice 3 days after intraperitoneal injection of 0.6 MBq 234 Th-citrate for three consecutive days and the animals were sacrificed eight days later. The 234 Th radioactivity in the whole body and its retention in the liver and skeleton were determined. The malondialdehyde (MDA) production as an index of 234 Th-induced lipid peroxidation in bone marrow and liver was assayed and the numbers of bone marrow nucleated cells (NBMNC) were counted. The pathological changes of bone marrow and liver tissue were observed. Results: When 9501 and 7601 and DTPA were postponed to administer to 234 Th-incorporated mice, the whole body radioactivity was only decreased by 15%-16% and the retention of 234 Th in the liver, and skeleton was reduced to 77%-79% and 72%-75% as compared with the control group, respectively. They showed the similar removal effectiveness which was significantly lower than that when administered promptly. However, 9501 and 7601 could inhibit 234 Th-induced lipid peroxidation, causing significant reduction of MDA content in bone marrow and liver, and markedly ameliorate histopathological changes of bone marrow and liver tissue in 234 Th-treated mice. DTPA appeared to have a lower effectiveness. VitE hadn't decorporation activity and slightly alleviated internal radiation injury. Conclusion: The chelating agents 9501 and 7601 of catechols amino carboxylic acid type have double functions of more effective decorporation and antioxidation and can improve the curative effects. They are worth further investigation

  12. Positron emission tomography in drug evaluation: Influence of three different catechol-O-methyltransferase inhibitors on metabolism of [NCA] 6-[{sup 18}F]fluoro-l-dopa in Rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, I.; Psylla, M.; Reddy, G.N.; Antonini, A.; Vontobel, P.; Reist, H.W.; Zollinger, A.; Nickles, R.J.; Beer, H.-F.; Schubiger, P.A.; Leenders, K.L

    1995-10-01

    We compared the influence of three different catechol-O-methyltransferase (COMT) inhibitors (CGP 28014, OR-611 and Ro 40-7592) on the metabolism of no-carrier-added (NCA) 6-[{sup 18}F]fluoro-l-dopa (6-FDOPA) in one Rhesus monkey. All three COMT inhibitors improved 6-FDOPA availability in plasma, increased the specific uptake in the brain and thus improved 6-FDOPA uptake measurements using positron emission tomography (PET). Best results were obtained with Ro 40-7592.

  13. A Novel Sensitive Method to Measure Catechol-O-Methyltransferase Activity Unravels the Presence of This Activity in Extracellular Vesicles Released by Rat Hepatocytes.

    Science.gov (United States)

    Casal, Enriqueta; Palomo, Laura; Cabrera, Diana; Falcon-Perez, Juan M

    2016-01-01

    There is a clear need for drug treatments to be selected according to the characteristics of an individual patient, in order to improve efficacy and reduce the number and severity of adverse drug reactions. One of the main enzymes to take into account in pharmacogenomics is catechol O-methyltransferase (COMT), which catalyzes the transfer of a methyl group from S -adenosylmethionine to catechols and catecholamines, like the neurotransmitters dopamine, epinephrine, and norepinephrine. Although, most of this enzyme is associated to intracellular vesicles, recently it has also been detected in extracellular vesicles secreted by hepatocytes and in serum circulating vesicles. COMT has implications in many neurological and psychiatric disorders like Parkinson's disease, chronic fatigue, pain response, schizophrenia, and bipolar disorders. Remarkably, genetic variations of COMT affect its activity and are associated to various human disorders from psychiatric diseases to estrogen-induced cancers. Consequently, the establishment of new methods to evaluate COMT activity is an important aspect to investigate the biology of this drug-metabolizing enzyme. Herein, we have developed a sensitive and selective method to determine COMT activity. We first optimized the activity in rat liver incubated with two different substrates; norepinephrine and dopamine. The enzymatically formed products (normetanephrine and 3-methoxytyramine, respectively) were extracted by solid-phase extraction using weak cation exchange cartridges, chromatographically separated, and detected and quantified using a mass spectrometer. The range of quantitation for both products was from 0.005 to 25 μg/mL. This methodology offers acceptable recovery for both enzymatic products (≥75%) and good accuracy and precision (≤15%). The lower limit of quantifications were 0.01 and 0.005 μM for 3-methoxytyramine and normetanephrine, respectively. Importantly, this sensitive assay was able to detect the presence of

  14. The genes coding for the conversion of carbazole to catechol are flanked by IS6100 elements in Sphingomonas sp. strain XLDN2-5.

    Directory of Open Access Journals (Sweden)

    Zhonghui Gai

    Full Text Available BACKGROUND: Carbazole is a recalcitrant compound with a dioxin-like structure and possesses mutagenic and toxic activities. Bacteria respond to a xenobiotic by recruiting exogenous genes to establish a pathway to degrade the xenobiotic, which is necessary for their adaptation and survival. Usually, this process is mediated by mobile genetic elements such as plasmids, transposons, and insertion sequences. FINDINGS: The genes encoding the enzymes responsible for the degradation of carbazole to catechol via anthranilate were cloned, sequenced, and characterized from a carbazole-degrading Sphingomonas sp. strain XLDN2-5. The car gene cluster (carRAaBaBbCAc and fdr gene were accompanied on both sides by two copies of IS6100 elements, and organized as IS6100::ISSsp1-ORF1-carRAaBaBbCAc-ORF8-IS6100-fdr-IS6100. Carbazole was converted by carbazole 1,9a-dioxygenase (CARDO, CarAaAcFdr, meta-cleavage enzyme (CarBaBb, and hydrolase (CarC to anthranilate and 2-hydroxypenta-2,4-dienoate. The fdr gene encoded a novel ferredoxin reductase whose absence resulted in lower transformation activity of carbazole by CarAa and CarAc. The ant gene cluster (antRAcAdAbAa which was involved in the conversion of anthranilate to catechol was also sandwiched between two IS6100 elements as IS6100-antRAcAdAbAa-IS6100. Anthranilate 1,2-dioxygenase (ANTDO was composed of a reductase (AntAa, a ferredoxin (AntAb, and a two-subunit terminal oxygenase (AntAcAd. Reverse transcription-PCR results suggested that carAaBaBbCAc gene cluster, fdr, and antRAcAdAbAa gene cluster were induced when strain XLDN2-5 was exposed to carbazole. Expression of both CARDO and ANTDO in Escherichia coli required the presence of the natural reductases for full enzymatic activity. CONCLUSIONS/SIGNIFICANCE: We predict that IS6100 might play an important role in the establishment of carbazole-degrading pathway, which endows the host to adapt to novel compounds in the environment. The organization of the car

  15. A Disposable Amperometric Sensor Based on High-Performance PEDOT:PSS/Ionic Liquid Nanocomposite Thin Film-Modified Screen-Printed Electrode for the Analysis of Catechol in Natural Water Samples.

    Science.gov (United States)

    Krampa, Francis D; Aniweh, Yaw; Awandare, Gordon A; Kanyong, Prosper

    2017-07-26

    A conducting polymer-based composite material of poly(3,4-ethylenedioxythiophene) (PEDOT): poly(4-styrenesulfonate) (PSS) doped with different percentages of a room temperature ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF₄]), was prepared and a very small amount of the composite (2.0 µL) was drop-coated on the working area of a screen-printed carbon electrode (SPCE). The SPCE, modified with PEDOT:PSS/IL composite thin-film, was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), profilometry and sessile contact angle measurements. The prepared PEDOT:PSS/IL composite thin-film exhibited a nano-porous microstructure and was found to be highly stable and conductive with enhanced electrocatalytic properties towards catechol, a priority pollutant. The linear working range for catechol was found to be 0.1 µM-330.0 µM with a sensitivity of 18.2 mA·mM·cm -2 and a calculated limit of detection (based on 3× the baseline noise) of 23.7 µM. When the PEDOT:PSS/IL/SPCE sensor was used in conjunction with amperometry in stirred solution for the analysis of natural water samples, the precision values obtained on spiked samples (20.0 µM catechol added) ( n = 3) were 0.18% and 0.32%, respectively, with recovery values that were well over 99.0%.

  16. A Disposable Amperometric Sensor Based on High-Performance PEDOT:PSS/Ionic Liquid Nanocomposite Thin Film-Modified Screen-Printed Electrode for the Analysis of Catechol in Natural Water Samples

    Directory of Open Access Journals (Sweden)

    Francis D. Krampa

    2017-07-01

    Full Text Available A conducting polymer-based composite material of poly(3,4-ethylenedioxythiophene (PEDOT: poly(4-styrenesulfonate (PSS doped with different percentages of a room temperature ionic liquid (IL, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4], was prepared and a very small amount of the composite (2.0 µL was drop-coated on the working area of a screen-printed carbon electrode (SPCE. The SPCE, modified with PEDOT:PSS/IL composite thin-film, was characterized by cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, scanning electron microscopy (SEM, profilometry and sessile contact angle measurements. The prepared PEDOT:PSS/IL composite thin-film exhibited a nano-porous microstructure and was found to be highly stable and conductive with enhanced electrocatalytic properties towards catechol, a priority pollutant. The linear working range for catechol was found to be 0.1 µM–330.0 µM with a sensitivity of 18.2 mA·mM·cm−2 and a calculated limit of detection (based on 3× the baseline noise of 23.7 µM. When the PEDOT:PSS/IL/SPCE sensor was used in conjunction with amperometry in stirred solution for the analysis of natural water samples, the precision values obtained on spiked samples (20.0 µM catechol added (n = 3 were 0.18% and 0.32%, respectively, with recovery values that were well over 99.0%.

  17. The effects of catechol-O-methyl-transferase polymorphism Val158Met on functional connectivity in healthy young females: a resting EEG study.

    Science.gov (United States)

    Lee, Tien-Wen; Yu, Younger W-Y; Hong, Chen-Jee; Tsai, Shih-Jen; Wu, Hung-Chi; Chen, Tai-Jui

    2011-03-04

    The catechol-O-methyl-transferase (COMT) gene has been linked to a wide spectrum of human phenotypes, including cognition, affective response, pain sensitivity, anxiety and psychosis. This study examined the modulatory effects of COMT Val158Met on neural interactions, indicated by connectivity strengths. Blood samples and resting state eyes-closed EEG signals were collected in 254 healthy young females. The COMT Val158Met polymorphism was decoded into 3 groups: Val/Val, Val/Met and Met/Met. The values of mutual information of 20 frontal-related channel pairs across delta, theta, alpha and beta frequencies were analyzed based on the time-frequency mutual information method. Our one-way ANOVA analyses revealed that the significant connection-frequency pairs were relatively left lateralized (PF7-T3 and F7-C3 at delta frequency, and F3-F4, F7-T3, F7-C3, F7-P3, F3-C3, F3-F7 and F4-F8 at theta frequency. The F-test at F7-T3 and F7-C3 theta surpassed the statistical threshold of PVal/Met>Met/Met. Our analyses complemented previous literature regarding neural modulation by the COMT Val158Met polymorphism. The implication to the pathogenesis in schizophrenia was also discussed. Further studies are needed to clarify whether there is gender difference on this gene-brain interaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Enrichment of antioxidants from soy sauce using macroporous resin and identification of 4-ethylguaiacol, catechol, daidzein, and 4-ethylphenol as key small molecule antioxidants in soy sauce.

    Science.gov (United States)

    Li, Huipin; Lin, Lianzhu; Feng, Yunzi; Zhao, Mouming; Li, Xiuting; Zhu, Qiyuan; Xiao, Zuobing

    2018-02-01

    The adsorption and desorption characteristics of seven macroporous resins on the antioxidants in soy sauce were investigated. SP-207 and SP-825 resins possessing good adsorption and desorption capacities were studied further. The pseudo-second-order kinetics and Langmuir isotherm models were demonstrated to be appropriate to describe the whole exothermic and physical adsorption processes of antioxidants onto resins. The 60% ethanol eluted fraction from soy sauce purified by SP-825 resin column possessed the strongest antioxidant activity. The antioxidant activities and contents of typical soy isoflavones, furanones, pyranones, and phenolic acids in soy sauce were determined. These compounds contributed to 50.02% of the total antioxidant activity of the SP-60% fraction. The key small molecule antioxidant compounds in soy sauce were identified as 4-ethylguaiacol, catechol, daidzein, and 4-ethylphenol by the antioxidants omission experiments. Additionally, the purified active fraction with high contents of antioxidants from soy sauce could be applied as bioactive ingredient in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigating the genetic basis of theory of mind (ToM): the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Xia, Haiwei; Wu, Nan; Su, Yanjie

    2012-01-01

    The ability to deduce other persons' mental states and emotions which has been termed 'theory of mind (ToM)' is highly heritable. First molecular genetic studies focused on some dopamine-related genes, while the genetic basis underlying different components of ToM (affective ToM and cognitive ToM) remain unknown. The current study tested 7 candidate polymorphisms (rs4680, rs4633, rs2020917, rs2239393, rs737865, rs174699 and rs59938883) on the catechol-O-methyltransferase (COMT) gene. We investigated how these polymorphisms relate to different components of ToM. 101 adults participated in our study; all were genetically unrelated, non-clinical and healthy Chinese subjects. Different ToM tasks were applied to detect their theory of mind ability. The results showed that the COMT gene rs2020917 and rs737865 SNPs were associated with cognitive ToM performance, while the COMT gene rs5993883 SNP was related to affective ToM, in which a significant gender-genotype interaction was found (p = 0.039). Our results highlighted the contribution of DA-related COMT gene on ToM performance. Moreover, we found out that the different SNP at the same gene relates to the discriminative aspect of ToM. Our research provides some preliminary evidence to the genetic basis of theory of mind which still awaits further studies.

  20. Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells: Metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT).

    Science.gov (United States)

    Poór, Miklós; Zrínyi, Zita; Kőszegi, Tamás

    2016-10-01

    Dietary flavonoids are abundant in the Plant Kingdom and they are extensively studied because of their manifold pharmacological activities. Recent studies highlighted that cell cycle arrest plays a key role in their antiproliferative effect in different tumor cells. However, structure-activity relationship of flavonoids is poorly characterized. In our study the influence of 18 flavonoid aglycones (as well as two metabolites) on cell cycle distribution was investigated. Since flavonoids are extensively metabolized by liver cells, HepG2 tumor cell line was applied, considering the potential metabolic activation/inactivation of flavonoids. Our major observations are the followings: (1) Among the tested compounds diosmetin, fisetin, apigenin, lutelin, and quercetin provoked spectacular extent of G2/M phase cell cycle arrest. (2) Inhibition of catechol-O-methyltransferase enzyme by entacapone decreased the antiproliferative effects of fisetin and quercetin. (3) Geraldol and isorhamnetin (3'-O-methylated metabolites of fisetin and quercetin, respectively) demonstrated significantly higher antiproliferative effect on HepG2 cells compared to the parent compounds. Based on these results, O-methylated flavonoid metabolites or their chemically modified derivatives may be suitable candidates of tumor therapy in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Effect of catechol-O-methyltransferase Val158Met polymorphism on resting-state brain default mode network after acupuncture stimulation.

    Science.gov (United States)

    Yang, Xuejuan; Gong, Jie; Jin, Lingmin; Liu, Lin; Sun, Jinbo; Qin, Wei

    2017-06-13

    The effects of acupuncture can be characterized by clear individual differences. Several revealing studies suggest an underlying role of inherited genetic factor in interindividual variability in response to acupuncture treatment. It remains unclear, however, if the modulation of acupuncture on resting brain function is influenced by genetic factors. Catechol-o-methyltransferase (COMT) Val158Met polymorphism has been shown to regulate the resting brain network, especially in the default mode network (DMN), which is a target area that responds to acupuncture stimulation. Therefore, the present study investigated the effect of COMT Val158Met polymorphism on the modulation of acupuncture in DMN connectivity in healthy Chinese young adults. Using mixed-design ANOVA analysis, we found a significant interactive effect between acupuncture and the COMT gene. For subjects carrying the Val/Met genotype, acupuncture induced decreased DMN connectivity with the left middle frontal gyrus during the post-acupuncture stage compared with the pre-acupuncture stage, which was not observed in Val/Val homozygous subjects. These results demonstrated that during sustained periods after acupuncture stimulation, the brain network is likely under genetic control, and COMT might be a candidate gene that regulates the resting DMN response to acupuncture stimulation.

  2. The impact of the Catechol-O-methyltransferase Val158Met polymorphism on survival in the general population – the HUNT study

    Directory of Open Access Journals (Sweden)

    Skorpen Frank

    2007-06-01

    Full Text Available Abstract Background The catechol-O-methyltransferase (COMT gene contains a functional polymorphism, Val158Met which has been related to common diseases like cancer, psychiatric illness and myocardial infarction. Whether the Val158Met polymorphism is associated with survival has not been evaluated in the general population. The aim of this prospective study was to evaluate the impact of codon 158 COMT gene polymorphism on survival in a population-based cohort. Methods The sample comprised 2979 non-diabetic individuals who participated in the Nord-Trøndelag Health Study (HUNT in the period 1995–97. The subjects were followed up with respect to mortality throughout year 2004. Results 212 men and 183 women died during the follow up. No association between codon 158 COMT gene polymorphism and survival was found. The unadjusted relative risk of death by non-ischemic heart diseases with Met/Met or Met/Val genotypes was 3.27 (95% confidence interval, 1.19–9.00 compared to Val/Val genotype. When we adjusted for age, gender, smoking, coffee intake and body mass index the relative risk decreased to 2.89 (95% confidence interval, 1.04–8.00. Conclusion During 10 year of follow-up, the Val158Met polymorphism had no impact on survival in a general population. Difference in mortality rates from non-ischemic heart diseases may be incidental and should be evaluated in other studies.

  3. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.

    Science.gov (United States)

    Kline, R H; Exposto, F G; O'Buckley, S C; Westlund, K N; Nackley, A G

    2015-04-02

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. [Effect of Electroacupuncture on Expression of Catechol-O-methyltransferase in the Inferior Colliculus and Auditory Cortex in Age-related Hearing Loss Guinea Pigs].

    Science.gov (United States)

    Liu, Shu-Yun; Deng, Li-Qiang; Yang, Ye; Yin, Ze-Deng

    2017-04-25

    To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group( n =10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group( P guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.

  5. The activity of ascorbic acid and catechol oxidase, the rate of photosynthesis and respiration as related to plant organs, stage of development and copper supply

    Directory of Open Access Journals (Sweden)

    St. Łyszcz

    2015-06-01

    Full Text Available Some experiments were performed to investigate the physiological role of copper in oat and sunflower and to recognize some effects of copper deficiency. Oat and sunflower plants were grown in pots on a peat soil under copper deficiency conditions (–Cu or with the optimal copper supply (+Cu. In plants the following measurements were carried out: 1 the activity of ascorbic acid oxidase (AAO and of catechol oxidase (PPO in different plant organs and at different stages of plant development, 2 the activity and the rate of photosynthesis, 3 the activity of RuDP-carboxylase, 4 the intensity of plant respiration. The activity of AAO and of PPO, and also the rate and the activity of photosynthesis were significantly lower under conditions of copper deficiency. The activity of both discussed oxidases depended on: 1 the plant species, 2 plant organs, 3 stage of plant development. Copper deficiency caused decrease of the respiration intensity of sunflower leaves but it increased to some extent the respiration of oat tops. Obtained results are consistent with the earlier suggestion of the authors that the PPO activity in sunflower leaves could be a sensitive indicator of copper supply of the plants, farther experiments are in progress.

  6. Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Wu, Liang; Zhang, Xiaohua; Chen, Jinhua [Hunan Univ., Changsha (China)

    2014-01-15

    The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 μM, 0.7-440 μM and 3.0-365 μM, respectively, and the detection limits (S/N = 3) are 0.03 μM, 0.11 μM and 0.38 μM, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

  7. Relationships between the catechol substrate binding site and amphetamine, cocaine, and mazindol binding sites in a kinetic model of the striatal transporter of dopamine in vitro.

    Science.gov (United States)

    Wayment, H; Meiergerd, S M; Schenk, J O

    1998-05-01

    Experiments were conducted to determine how (-)-cocaine and S(+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m-tyramine and S(+)-amphetamine caused release of dopamine from intracellular stores at concentrations > or = 12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m-tyramine and S(+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S(+)-Amphetamine and m-tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (-)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site (K(int) = 583 nM). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (-)-cocaine suggest that the (-)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (-)-cocaine binding may be developed to block (-)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.

  8. Association between Catechol-O-Methyltransferase Val158Met (158G/A) Polymorphism and Suicide Susceptibility: A Meta-analysis.

    Science.gov (United States)

    Sadeghiyeh, Tahereh; Hosseini Biouki, Fatemeh; Mazaheri, Mahta; Zare-Shehneh, Masoud; Neamatzadeh, Hossein; Poursharif, Zahra

    2017-06-24

    Common functional Val158Met polymorphism in the Catechol-O-methyltransferase (COMT) gene may have an impact on an individual's susceptibility to suicide, but individually published results are inconclusive. Therefore, we performed this meta-analysis to provide a more precise estimation of the association between COMT 158G/A (COMT Val158Met) polymorphism and suicide susceptibility. A cross-sectional study. This systematic review and meta-analysis is a comprehensive literature search of PubMed, Scopus, Web of Science and Google Scholar databases was conducted on case-control studies published up to Mar 2017. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. We identified 14 eligible case-control studies, including 2353 suicide attempters and 2593 controls. The pooled results indicated that COMT 158G/A (COMT Val158Met) polymorphism was not significantly associated with increased overall suicide risk. The same results were revealed based on ethnicity, Hardy-Weinberg equilibrium (HWE) status and genotyping technique. However, there was significant association between COMT Val158Met polymorphism and suicide risk among females under the homozygote (AA vs. GG: OR=1.829, 95% CI=1.158-2.889, P=0.010) and recessive (AA vs. AG +GG: OR = 1.787, 95% CI=1.195, 2.671, P=0.005) models, but not among males. COMT 158G/A (COMT Val158Met) polymorphism was associated with suicide susceptibility only in females.

  9. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lachman, H.M.; Papolos, D.F.; Veit, S. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1996-09-20

    Velo-cardio-facial-syndrome (VCFS) is a common congenital disorder associated with typical facial appearance, cleft palate, cardiac defects, and learning disabilities. The majority of patients have an interstitial deletion on chromosome 22q11. In addition to physical abnormalities, a variety of psychiatric illnesses have been reported in patients with VCFS, including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. The psychiatric manifestations of VCFS could be due to haploinsufficiency of a gene(s) within 22q11. One candidate that has been mapped to this region is catechol-O-methyltransferase (COMT). We recently identified a polymorphism in the COMT gene that leads to a valine{r_arrow}methionine substitution at amino acid 158 of the membrane-bound form of the enzyme. Homozygosity for COMT158{sup met} leads to a 3- to 4-fold reduction in enzymatic activity, compared with homozygotes for COMT158{sup met}. We now report that in a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158{sup met}, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form. 33 refs., 3 tabs.

  10. Opicapone: a short lived and very long acting novel catechol-O-methyltransferase inhibitor following multiple dose administration in healthy subjects

    Science.gov (United States)

    Rocha, José Francisco; Almeida, Luis; Falcão, Amílcar; Palma, P Nuno; Loureiro, Ana I; Pinto, Roberto; Bonifácio, Maria João; Wright, Lyndon C; Nunes, Teresa; Soares-da-Silva, Patrício

    2013-01-01

    Aims The aim of this study was to assess the tolerability, pharmacokinetics and inhibitory effect on erythrocyte soluble catechol-O-methyltransferase (S-COMT) activity following repeated doses of opicapone. Methods This randomized, placebo-controlled, double-blind study enrolled healthy male subjects who received either once daily placebo or opicapone 5, 10, 20 or 30 mg for 8 days. Results Opicapone was well tolerated. Its systemic exposure increased in an approximately dose-proportional manner with an apparent terminal half-life of 1.0 to 1.4 h. Sulphation was the main metabolic pathway. Opicapone metabolites recovered in urine accounted for less than 3% of the amount of opicapone administered suggesting that bile is likely the main route of excretion. Maximum S-COMT inhibition (Emax) ranged from 69.9% to 98.0% following the last dose of opicapone. The opicapone-induced S-COMT inhibition showed a half-life in excess of 100 h, which was dose-independent and much longer than plasma drug exposure. Such a half-life translates into a putative underlying rate constant that is comparable with the estimated dissociation rate constant of the COMT–opicapone complex. Conclusion Despite its short elimination half-life, opicapone markedly and sustainably inhibited erythrocyte S-COMT activity making it suitable for a once daily regimen. PMID:23336248

  11. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    Science.gov (United States)

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and

  12. Catechol-O-methyltransferase Val158Met polymorphism influences anxiety, depression, and disability, but not pressure pain sensitivity, in women with fibromyalgia syndrome.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Ambite-Quesada, Silvia; Gil-Crujera, Antonio; Cigarán-Méndez, Margarita; Peñacoba-Puente, Cecilia

    2012-11-01

    Our aim was to assess the relationship of the Val158Met polymorphism to pain, anxiety, depression, functional ability, and pressure pain sensitivity in women with fibromyalgia (FMS). One hundred (n = 100) women with FMS diagnosed according to the American College of Rheumatology criteria participated. A numerical pain rate scale (0-10) was used to assess the intensity of pain; the Hospital Anxiety and Depression Scale was calculated to determine anxiety and depression; and functional ability was determined with the Fibromyalgia Impact Questionnaire. Further, pressure pain thresholds (PPTs) were bilaterally assessed over C5-C6 zygapophyseal joints, second metacarpal, and tibialis anterior muscles. Finally, after amplifying Val158Met polymorphisms by polymerase chain reaction, catechol-O-methyltransferase (COMT) genotype was divided into Val/Val, Val/Met, or Met/Met genotypes. Women with FMS with the Met/Met genotype exhibited higher disability (F = 11.836; P anxiety (F = 13.385; P anxiety but similar PPTs than those with Val/Met or Val/Val genotypes. This study is important because it strives to understand potential genetic factors that predispose some women with FMS to exhibit a more severe phenotypic expression of the disease. Future studies are needed to elucidate potential relevance of the differences. This study suggests that the Val158Met COMT polymorphism modulated some psychological variables but not pressure pain sensitivity in FMS because women with FMS carrying the Met/Met genotype exhibit higher disability, depression, and anxiety than but similar PPTs to those with Val/Met and Val/Val genotypes. This study provides further evidence of potential genetic factors that predispose women with FMS to exhibit the disease more severely. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Catechol-O-methyltransferase gene variants may associate with negative symptom response and plasma concentrations of prolactin in schizophrenia after amisulpride treatment.

    Science.gov (United States)

    Chen, Chun-Yen; Yeh, Yi-Wei; Kuo, Shin-Chang; Ho, Pei-Shen; Liang, Chih-Sung; Yen, Che-Hung; Lu, Ru-Band; Huang, San-Yuan

    2016-03-01

    Catechol-O-methyltransferase (COMT) enzyme is involved in the pathogenesis of psychotic symptoms and may be associated with a therapeutic response to antipsychotic drugs. The aim of this study was to examine the relationship between COMT variants, plasma prolactin level, and the therapeutic effectiveness of amisulpride treatment in patients with schizophrenia. A 12-week naturalistic study of amisulpride treatment was carried out in 185 Han Chinese patients with schizophrenia. The patients were screened for 14 single-nucleotide polymorphisms of the COMT gene. The Positive and Negative Syndrome Scale (PANSS) was used to assess the improvement of psychopathological symptoms from the baseline to the end point in each subject. For better presentation of time-course changes in response status, a mixed model for repeated-measures (MMRM) analysis of symptom improvement during the 12-week treatment period was conducted. The change in plasma prolactin level after amisulpride treatment was also examined (n=51). No significant differences in the genotype frequencies of the COMT variants investigated were observed between responders and non-responders. Moreover, an MMRM analysis of psychopathological symptom improvement during the 12-week treatment course showed that it depended significantly on COMT variants (rs4680, rs4633, and rs6267), particularly regarding changes in negative symptoms. The increase in plasma prolactin levels observed was influenced by the COMT rs4680 variant and was positively correlated with a reduction in PANSS negative scores. Our results suggest that variation of the COMT gene is associated with treatment response regarding negative symptoms and prolactin changes after amisulpride treatment in patients with schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The val158met polymorphism of human catechol-O-methyltransferase (COMT affects anterior cingulate cortex activation in response to painful laser stimulation

    Directory of Open Access Journals (Sweden)

    Musso Francesco

    2010-05-01

    Full Text Available Abstract Background Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography. The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI, PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD response to painful laser stimulation. Results 57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC, foremost in the mid-cingulate cortex, than carriers of the val158 allele. Conclusion This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.

  15. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits

    International Nuclear Information System (INIS)

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-01-01

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu 3 (BTC) 2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L −1 (R HQ  = 0.9999) for HQ and 0.1–1150 μmol L −1 (R CT  = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L −1 , respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. - Highlights: • Cu-MOF-199/SWCNTs/GCE was facilely fabricated by the electrodeposition on SWCNTs/GCE. • An electrochemical sensor for detecting HQ and CT was constructed based on this modified electrode. • The proposed electrochemical sensor showed an extended linear range and lower detection limits. • The proposed electrochemical sensor had an excellent stability and reproducibility.

  16. Electrochemical Behavior of Catechol and Hydroquinone at Copper Doped Poly (Methyl Red Coated Hydroxyl Multiwalled Carbon Nanotube Film and Their Simultaneous Determination in Water Samples

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2014-09-01

    Full Text Available A glassy carbon electrode modified with copper doped poly (methyl red coated hydroxyl multiwalled carbon nanotube film (Cu-PMR/MWCNTs, was developed to serve as a sensor for simultaneous determination of Hydroquinone (HQ and catechol (CC in this paper. The fabricated electrode showed excellent electrocatalytic behaviors towards the oxidation of HQ and CC with the enhancement of the redox peak current and the decrease of the peak-to-peak separation. Under the optimized condition, the individual determination of HQ or CT in their mixtures was performed, the response peak currents of the modified electrodes were linear over ranges of 8.0´10-7~4.0´10-4 M (R2=0.999 for CT and 5.0´10-7~2.0´10-4 M (R2=0.993 for HQ. The sensor also exhibited good sensitivity with the detection limit of 1.0´10-8 mol/L and 5.0´10-8 mol/L for HQ and CT, respectively. The simultaneous determination of HQ and CC was demonstrated by simultaneously changing their concentrations. The reduction peak currents of HQ and CC increased linearly with the concentration of their own in the range of 8´10-7 and 2.0´10-4 M for HQ and CC, with correlation coefficients of 0.994 and 0.995 (S/N=3, respectively. This study provides a new kind of composite modified electrode for electrochemical sensors with good selectivity and strong anti-interference. It has been applied to simultaneous determination of HQ and CT in water sample with high selectivity.

  17. Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence

    Directory of Open Access Journals (Sweden)

    Timothy eDurazzo

    2012-10-01

    Full Text Available Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF and catechol-o-methyltransferase (COMT are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of these polymorphisms on neurocognition in alcohol dependence is unclear. The goal of this report was to investigate the associations of single nucleotide polymorphisms (SNP in BDNF Val66Met and COMT Val158Met with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. Smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains. COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that observed COMT Met carriers showed better performance on measures of executive skills and general intelligence. Overall, the findings support to the expanding clinical movement to make smoking cessation programs available at the inception of

  18. Rigid 2D networks of copper(II) complexes containing diallylbis(pyridin-3-yl)silane: Insight into anion and media effects on catechol oxidation catalysis

    Science.gov (United States)

    Ryu, Minjoo; Lee, Young-A.; Jung, Ok-Sang

    2018-01-01

    The self-assembly of CuX2 (X- = Cl-, Br-, NO3-, ClO4-, and BF4-) with a new diallylbis(pyridin-3-yl)silane ligand (L) gives rise to the similar 2D coordination networks with composition of Cu(II) and L of 1: 2 irrespective of anions and solvents. The 2D networks of [CuCl2L2]·2H2O, [CuBr2L2]·2H2O, and [Cu(H2O)2L2]·(NO3)2 are packed in a staggered mode while the similar networks of [Cu(BF4)2L2] and [Cu(ClO4)2L2] are arrayed in a eclipsed fashion. These crystals of all 2D networks have been employed as catalysts for 3,5-di-tert-butylcatechol (3,5-DBCat) oxidation, showing the catalytic effects in the order of [CuCl2L2]·2H2O > [CuBr2L2]·2H2O > [Cu(H2O)2L2]·(NO3)2 > [Cu(ClO4)2L2] > [Cu(BF4)2L2] in chloroform and exhibiting the catalytic effects of only [Cu(H2O)2L2]·(NO3)2 in acetone. Thus, the catalytic effect on catechol oxidation is strongly dependent on anions and media.

  19. The divergent impact of catechol-O-methyltransferase (COMT) Val158Met genetic polymorphisms on executive function in adolescents with discrete patterns of childhood adversity.

    Science.gov (United States)

    Zhang, Huihui; Li, Jie; Yang, Bei; Ji, Tao; Long, Zhouting; Xing, Qiquan; Shao, Di; Bai, Huayu; Sun, Jiwei; Cao, Fenglin

    2018-02-01

    Catechol-O-methyltransferase (COMT) Val 158 Met functional polymorphisms play a crucial role in the development of executive function (EF), but their effect may be moderated by environmental factors such as childhood adversity. The present study aimed at testing the divergent impact of the COMT Val 158 Met genotype on EF in non-clinical adolescents with discrete patterns of childhood adversity. A total of 341 participants completed the Childhood Trauma Questionnaire, the self-reported version of the Behavior Rating Inventory of Executive Function, and self-administered questionnaires on familial function. The participants' COMT Val 158 Met genotype was determined. Associations among the variables were explored using latent class analysis and general linear models. We found that Val/Val homozygotes showed significantly worse performance on behavioral shift, relative to Met allele carriers (F=5.921, p=0.015, Partial η 2 =0.018). Moreover, three typical patterns of childhood adversity, namely, low childhood adversity (23.5%), childhood neglect (59.8%), and high childhood adversity (16.7%), were found. Both childhood neglect and high childhood adversity had a negative impact on each aspect of EF and on global EF performance. Importantly, these results provided evidence for significant interaction effects, as adolescents with the Val/Val genotype showed inferior behavioral shift performance than Met carriers (F=6.647, p=0.010, Partial η 2 =0.020) in the presence of high childhood adversity. Furthermore, there were no differences between the genotypes for childhood neglect and low childhood adversity. Overall, this is the first study to show that an interaction between the COMT genotype and childhood adversity affects EF in non-clinical adolescents. These results suggest that the COMT genotype may operate as a susceptibility gene vulnerable to an adverse environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase.

    Science.gov (United States)

    Gasparetti, Chiara; Faccio, Greta; Arvas, Mikko; Buchert, Johanna; Saloheimo, Markku; Kruus, Kristiina

    2010-03-01

    A homology search against public fungal genome sequences was performed to discover novel secreted tyrosinases. The analyzed proteins could be divided in two groups with different lengths (350-400 and 400-600 residues), suggesting the presence of a new class of secreted enzymes lacking the C-terminal domain. Among them, a sequence from Aspergillus oryzae (408 aa, AoCO4) was selected for production and characterization. AoCO4 was expressed in Trichoderma reesei under the strong cbh1 promoter. Expression of AoCO4 in T. reesei resulted in high yields of extracellular enzyme, corresponding to 1.5 g L(-1) production of the enzyme. AoCO4 was purified with a two-step purification procedure, consisting of cation and anion exchange chromatography. The N-terminal analysis of the protein revealed N-terminal processing taking place in the Kex2/furin-type protease cleavage site and removing the first 51 amino acids from the putative N-terminus. AoCO4 activity was tested on various substrates, and the highest activity was found on 4-tert-butylcatechol. Because no activity was detected on L-tyrosine and on L-dopa, AoCO4 was classified as a catechol oxidase. AoCO4 showed the highest activity within an acidic and neutral pH range, having an optimum at pH 5.6. AoCO4 showed good pH stability within a neutral and alkaline pH range and good thermostability up to 60 degrees C. The UV-visible and circular dichroism spectroscopic analysis suggested that the folding of the protein was correct.

  1. Fetal Val108/158Met catechol-O-methyltransferase (COMT) polymorphism and placental COMT activity are associated with the development of preeclampsia.

    Science.gov (United States)

    Pertegal, Miriam; Fenoy, Francisco J; Hernández, Moisés; Mendiola, Jaime; Delgado, Juan L; Bonacasa, Bárbara; Corno, Andrés; López, Bernardo; Bosch, Vicente; Hernández, Isabel

    2016-01-01

    To evaluate the association between fetal and maternal catechol-O-methyltransferase (COMT) Val158Met and methyl tetrahydrofolate reductase (MTHFR) C677T functional polymorphisms and preeclampsia, examining its influence on placental COMT and in maternal 2-methoxyestradiol (2-ME) plasma levels. Prospective case-control study. University hospital. A total of 53 preeclamptic and 72 normal pregnant women. Maternal and cord blood samples and placental tissue samples were obtained. Maternal and fetal COMT and MTHFR polymorphisms were genotyped. Maternal plasma 2-ME and homocysteine levels, and expression and activity of placental COMT were measured. The odds ratio for the risk of preeclampsia for fetal COMT Met/Met was 3.22, and it increased to 8.65 when associated with fetal MTHFR TT. Placental COMT activity and expression were influenced by genotype, but COMT activity in preeclamptic placentas did not differ from control pregnancies. There was no association between any genotypes and maternal 2-ME. Homocysteine levels were higher in women with preeclampsia than in normal pregnancies, and were inversely correlated with 2-ME plasma levels, indicating that its altered metabolism may lower COMT activity in vivo. Fetal Met-Met COMT genotype reduces COMT placental expression and activity in vitro and increases preeclampsia, risk but it does not explain the difference in maternal 2-ME levels between preeclamptic and normal pregnancies. However, the preeclamptic patients had elevated homocysteine levels that correlated inversely with 2-ME, indicating that an altered methionine-homocysteine metabolism may contribute to reduce COMT activity in vivo and explain the decreased levels of 2-ME in preeclamptic women. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Effects of acute dopamine precusor depletion on immediate reward selection bias and working memory depend on catechol-O-methyltransferase genotype.

    Science.gov (United States)

    Kelm, Mary Katherine; Boettiger, Charlotte A

    2013-12-01

    Little agreement exists as to acute dopamine (DA) manipulation effects on intertemporal choice in humans. We previously found that catechol-O-methyltransferase (COMT) Val158Met genotype predicts individual differences in immediate reward selection bias among adults. Moreover, we and others have shown that the relationship between COMT genotype and immediate reward bias is inverted in adolescents. No previous pharmacology studies testing DA manipulation effects on intertemporal choice have accounted for COMT genotype, and many have included participants in the adolescent age range (18-21 years) as adults. Moreover, many studies have included female participants without strict cycle phase control, although recent evidence demonstrates that cyclic estradiol elevations interact with COMT genotype to affect DA-dependent cognition. These factors may have interacted with DA manipulations in past studies, potentially occluding detection of effects. Therefore, we predicted that, among healthy male adults (ages 22-40 years), frontal DA tone, as indexed by COMT genotype, would interact with acute changes in DA signaling to affect intertemporal choice. In a double-blind, placebo-controlled design, we decreased central DA via administration of an amino acid beverage deficient in the DA precursors, phenylalanine and tyrosine, and tested effects on immediate reward bias in a delay-discounting (DD) task and working memory (WM) in an n-back task. We found no main effect of beverage on DD or WM performance but did find significant beverage*genotype effects. These results suggest that the effect of DA manipulations on DD depends on individual differences in frontal DA tone, which may have impeded some past efforts to characterize DA's role in immediate reward bias in humans.

  3. Characterization of an adsorbed humin-like substance on an allophanic soil formed via catalytic polycondensation between catechol and glycine, and its adsorption capability to pentachlorophenol.

    Science.gov (United States)

    Okabe, Ryo; Miura, Akitaka; Fukushima, Masami; Terashima, Motoki; Sasaki, Masahide; Fukuchi, Shigeki; Sato, Tsutomu

    2011-06-01

    An allophanic soil (AS) catalyzed the formation of dark-colored polymers via polycondensation reactions between catechol and glycine. The organic carbon content of the AS was increased from 0.16% to 1.3%, indicating that some of the dark-colored polymers had been adsorbed to the AS. The characteristics of the dark-colored polymers adsorbed on the AS were similar to those of a humin that is not extractable with an aqueous alkaline solution. Such a humin-like substance (HuLS) was separated from the AS by treatment with a mixture of HF and HCl. The HuLS and humic acid-like substance (HaLS), comprising the acid-insoluble fraction in the reaction mixture, were characterized by elemental analysis, size exclusion chromatography, pyrolysis-GC/MS and (13)C NMR. However, the structural features of HaLS and HuLS had many points in common. These results suggest that HuLS-AS can be regarded as an organo-clay complex formed by the strong adsorption of HaLS to the AS. The adsorption of pentachlorophenol (PCP) to AS and HuLS-AS was examined at pH 5.5. At this pH, the zeta potential of the HuLS-AS showed a negative value. It would, therefore, be expected that pentachlorophenolate anions would adsorb with difficulty to HuLS-AS because of electrostatic repulsion. Nevertheless, the adsorption coefficient for PCP to HuLS-AS, as estimated by the Freundlich isotherm, was seven times larger than that for AS. These results show that HuLS, when adsorbed on the AS surface, has the capability to enhance the adsorption of PCP. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder.

    Science.gov (United States)

    Miskowiak, K W; Kjaerstad, H L; Støttrup, M M; Svendsen, A M; Demant, K M; Hoeffding, L K; Werge, T M; Burdick, K E; Domschke, K; Carvalho, A F; Vieta, E; Vinberg, M; Kessing, L V; Siebner, H R; Macoveanu, J

    2017-05-01

    Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working memory in BD. Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory test outside the scanner. During high working memory load (2-back vs 1-back), Val homozygotes displayed decreased activity relative to ValMet individuals, with Met homozygotes displaying intermediate levels of activity in the right dorsolateral prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive impairments in BD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Fast sleep spindle density is associated with rs4680 (Val108/158Met) genotype of catechol-O-methyltransferase (COMT).

    Science.gov (United States)

    Schilling, Claudia; Gappa, Lena; Schredl, Michael; Streit, Fabian; Treutlein, Jens; Frank, Josef; Deuschle, Michael; Meyer-Lindenberg, Andreas; Rietschel, Marcella; Witt, Stephanie H

    2018-03-01

    Sleep spindles are a hallmark of NREM stage 2 sleep. Fast sleep spindles correlate with cognitive functioning and are reduced in schizophrenia. Although spindles are highly genetically determined, distinct genetic mechanisms influencing sleep spindle activity have not been identified so far. Spindles are generated within a thalamocortical network. Dopaminergic neurotransmission modulates activity within this network and importantly depends on activity of catechol-O-methyltransferase (COMT). We aimed at testing whether the common functional rs4680 (Val108/158Met) polymorphism of COMT modulates fast spindle activity in healthy participants. In 150 healthy participants (93 women, 57 men; mean age 30.9 ± 11.6 years) sleep spindle density was analyzed during the second of two nights of polysomnography. We investigated the effect of the COMT Val108/158Met genotype on fast spindle density in whole-night NREM sleep stages N2 and N3. As predicted, higher Val allele dose correlates with reduced fast spindle density. Additional exploratory analysis of the effect of COMT genotype revealed that slow spindle density in heterozygote participants was lower than that of both homozygote groups. Morphological characteristics of fast and slow spindles did not show significant differences between genotypes. COMT genotype had also no significant effect on measures of general sleep quality. This is the first report of a distinct gene effect on sleep spindle density in humans. As variation in the COMT Val108/158Met polymorphism is associated with differential expression of fast spindles in healthy participants, genetically determined dopaminergic neurotransmission may modulate spindle oscillations during NREM sleep. DRKS00008902.

  6. Catechol inhibits FADH2-linked respiration in rat liver mitochondrial fraction Catecol inibe FADH2 ligado à respiração na fração mitochondrial do fígado do rato

    Directory of Open Access Journals (Sweden)

    George Emílio Sampaio Barreto

    2005-01-01

    Full Text Available PURPOSE: The aim of this work was to investigate the hypothesis that catechol inhibits FADH2-linked basal respiration in mitochondria isolated from rat liver homogenates. Moreover, catechol ability to induce peroxidation of biomolecules in liver nuclear fractions was also studied. METHODS: Rat liver homogenates were incubated with 1mM 1,2-dihydroxybenzene (catechol at pH 7.4 for up to 30 minutes. After that, mitochondrial fractions were isolated by differential centrifugation. Basal oxygen uptake was measured using a Clark-type electrode after the addition of 10 mM sodium succinate. Nuclear fractions were incubated in the presence of 1 mM catechol for 17 hours at room temperature and the peroxidation of biomolecules was investigated by the reaction with thiobarbituric acid, which was determined spectrophotometrically at 535 nm. RESULTS: Catechol induced a time-dependent partial inhibition of FADH2-linked basal mitochondrial respiration, however this substance was unable to induce a direct peroxidation of biomolecules in hepatic nuclear fractions. CONCLUSION: Catechol produced an inhibition of basal respiration associated to FADH2 in isolated liver mitochondria that could lead to cytotoxicity, ROS generation and cell death.OBJETIVO: Testar a hipótese do catecol inibir a respiração basal associada ao FADH2 em frações mitocondriais hepáticas de rato. Além disso, estudou-se também a capacidade do catecol de induzir peroxidação de biomoléculas nas frações nucleares. MÉTODOS: Os homogeneizados de fígado de ratos foram incubados com catecol a 1 mM em pH fisiológico. Depois disso, as frações mitocondriais foram isoladas por centrifugação diferencial. O consumo basal de oxigênio foi medido com um eletrodo do tipo Clark após injeção de succinato a 10 mM. Frações nucleares foram incubadas com catecol por 17 horas à temperatura ambiente e a peroxidação de biomoléculas foi investigada pela reação com o ácido tiobarbitúrico e

  7. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  8. In Silico Discovery and In Vitro Validation of Catechol-Containing Sulfonohydrazide Compounds as Potent Inhibitor/span>s of the Diguanylate Cyclase PleD.

    Science.gov (United States)

    Fernicola, Silvia; Paiardini, Alessandro; Giardina, Giorgio; Rampioni, Giordano; Leoni, Livia; Cutruzzolà, Francesca; Rinaldo, Serena

    2016-01-01

    Biofilm formation is responsible for increased antibiotic tolerance in pathogenic bacteria. Cyclic di-GMP (c-di-GMP) is a widely used second-messenger signal that plays a key role in bacterial biofilm formation. c-di-GMP is synthesized by diguanylate cyclases (DGCs), a conserved class of enzymes absent in mammals and hence considered attractive molecular targets for the development of antibiofilm agents. Here, the results of a virtual screening approach aimed at identifying small-molecule inhibitors of the DGC PleD from Caulobacter crescentus are described. A three-dimensional (3D) pharmacophore model, derived from the mode of binding of GTP to the active site of PleD, was exploited to screen the ZINC database of compounds. Seven virtual hits were tested in vitro for their ability to inhibit the activity of purified PleD by using circular dichroism spectroscopy. Two drug-like molecules with a catechol moiety and a sulfonohydrazide scaffold were shown to competitively inhibit PleD at the low-micromolar range (50% inhibitory concentration [IC50] of ∼11 μM). Their predicted binding mode highlighted key structural features presumably responsible for the efficient inhibition of PleD by both hits. These molecules represent the most potent in vitro inhibitors of PleD identified so far and could therefore result in useful leads for the development of novel classes of antimicrobials able to hamper biofilm formation. Biofilm-mediated infections are difficult to eradicate, posing a threatening health issue worldwide. The capability of bacteria to form biofilms is almost universally stimulated by the second messenger c-di-GMP. This evidence has boosted research in the last decade for the development of new antibiofilm strategies interfering with c-di-GMP metabolism. Here, two potent inhibitor/span>s of c-di-GMP synthesis have been identified in silico and characterized in vitro by using the well-characterized DGC enzyme PleD from C. crescentus as a structural template and

  9. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study.

    Science.gov (United States)

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-10-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- control study included 92 SCZ patients and 92 healthy controls (HCs). Genotyping of both variants (COMT Val158Met (G>A) and BDNF Val66Met (G>A)) were conducted using Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Results: The findings revealed that the COMT Val158Met (G>A) polymorphism was not associated with the risk/protective of SCZ in all models (OR=0.630, 95%CI=0.299-1.326, P=0.224, GA vs. GG, OR=1.416, 95%CI=0.719-2.793, P=0.314, AA vs. GG, OR=1.00, 95%CI=0.56-1.79, P=1.00 GA+AA vs. GG, OR=1.667, 95%CI=0.885-3.125, P=0.11, AA vs. GG+GA, OR=1.247, 95%CI=0.825-1.885, P=0.343, A vs. G,). However, BDNF Val66Met (G>A) variant increased the risk of SCZ (OR = 2.008 95%CI = 1.008-4.00, P = 0.047, GA vs. GG, OR = 3.876 95%CI = 1.001-14.925, P = 0.049. AA vs. GG, OR = 2.272. 95%CI = 1.204-4.347, P = 0.011, GA+AA vs. GG, OR = 2.22 95%CI = 1.29-3.82. P = 0.005, A vs. G). Conclusion: The results did not support an association between COMT Val158Met (G>A) variant and risk/protective of SCZ. Moreover, it was found that BDNF Val66Met (G>A) polymorphism may increase the risk of SCZ development. Further studies and different ethnicities are recommended to confirm the findings.

  10. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    Science.gov (United States)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  11. Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway.

    Science.gov (United States)

    Takahashi, Yurika; Shintani, Masaki; Li, Li; Yamane, Hisakazu; Nojiri, Hideaki

    2009-06-01

    We determined the effect of the host on the function and structure of the nearly identical IncP-7 carbazole-degradative plasmids pCAR1.1 and pCAR1.2. We constructed Pseudomonas aeruginosa PAO1(pCAR1.2) and P. fluorescens Pf0-1Km(pCAR1.2) and compared their growth on carbazole- and succinate-containing media with that of P. putida KT2440(pCAR1.1). We also assessed the stability of the genetic structures of the plasmids in each of the three hosts. Pf0-1Km(pCAR1.2) showed dramatically delayed growth when carbazole was supplied as the sole carbon source, while the three strains grew at nearly the same rate on succinate. Among the carbazole-grown Pf0-1Km(pCAR1.2) cells, two types of deficient strains appeared and dominated the population; such dominance was not observed in the other two strains or for succinate-grown Pf0-1Km(pCAR1.2). Genetic analysis showed that the two deficient strains possessed pCAR1.2 derivatives in which the carbazole-degradative car operon was deleted or its regulatory gene, antR, was deleted by homologous recombination between insertion sequences. From genomic information and quantitative reverse transcription-PCR analyses of the genes involved in carbazole mineralization by Pf0-1Km(pCAR1.2), we found that the cat genes on the chromosome of Pf0-1Km, which are necessary for the degradation of catechol (a toxic intermediate in the carbazole catabolic pathway), were not induced in the presence of carbazole. The resulting accumulation of catechol may have enabled the strain that lost its carbazole-degrading ability to have overall higher fitness than the wild-type strain. These results suggest that the functions of the chromosomal genes contributed to the selection of plasmid derivatives with altered structures.

  12. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Δ9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences.

    Science.gov (United States)

    Tunbridge, Elizabeth M; Dunn, Graham; Murray, Robin M; Evans, Nicole; Lister, Rachel; Stumpenhorst, Katharina; Harrison, Paul J; Morrison, Paul D; Freeman, Daniel

    2015-11-01

    Cannabis use can induce cognitive impairments and psychotic experiences. A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val(158)Met) appears to influence the immediate cognitive and psychotic effects of cannabis, or ∆(9)-tetrahydrocannabinol (THC), its primary psychoactive ingredient. This study investigated the moderation of the impact of experimentally administered THC by COMT. Cognitive performance and psychotic experiences were studied in participants without a psychiatric diagnosis, using a between-subjects design (THC vs. placebo). The effect of COMT Val(158)Met genotype on the cognitive and psychotic effects of THC, administered intravenously in a double-blind, placebo-controlled manner to 78 participants who were vulnerable to paranoia, was examined. The results showed interactive effects of genotype and drug group (THC or placebo) on working memory, assayed using the Digit Span Backwards task. Specifically, THC impaired performance in COMT Val/Val, but not Met, carriers. In contrast, the effect of THC on psychotic experiences, measured using the Community Assessment of Psychic Experiences (CAPE) positive dimension, was unaffected by COMT genotype. This study is the largest to date examining the impact of COMT genotype on response to experimentally administered THC, and the first using a purely non-clinical cohort. The data suggest that COMT genotype moderates the cognitive, but not the psychotic, effects of acutely administered THC. © The Author(s) 2015.

  13. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network.

    Science.gov (United States)

    Markett, Sebastian; Montag, Christian; Heeren, Behrend; Saryiska, Rayna; Lachmann, Bernd; Weber, Bernd; Reuter, Martin

    2016-06-01

    Functional connections between brain regions constitute the substrate of the human functional connectome, whose topography has been discussed as an endophenotype for psychiatric disorders. Genetic influences on the entire connectome, however, have been rarely investigated so far. We tested for connectome-wide influences of the val158met (rs4860) polymorphism on the catechol-O-methyltransferase (COMT) gene by applying formal network analysis and eigenvector centrality mapping on the voxel level to resting-state functional magnetic imaging data. This approach finds brain regions that are central in the network by aggregating local and global connectivity patterns, most importantly without the requirement to select regions or networks of interest. The COMT variant linked to high enzyme activity increased network centrality in distributed brain areas that are known to constitute the brain's default mode network. Further results also indicated a COMT influence on areas implicated in the somatomotor network. These findings are in line with the polymorphism's alleged role in cognitive processing and its role in psychotic disorders. The study is the first to demonstrate the influence of a functional and behaviorally relevant genetic variant on connectome-wide functional connectivity and is an important step toward establishing the functional connectome as an endophenotype for psychiatric and behavioral phenotypes.

  14. Structures, magnetochemistry, spectroscopy, theoretical study, and catechol oxidase activity of dinuclear and dimer-of-dinuclear mixed-valence Mn(III)Mn(II) complexes derived from a macrocyclic ligand.

    Science.gov (United States)

    Jana, Arpita; Aliaga-Alcalde, Núria; Ruiz, Eliseo; Mohanta, Sasankasekhar

    2013-07-01

    The work in this paper presents syntheses, characterization, magnetic properties (experimental and density functional theoretical), catecholase activity, and electrospray ionization mass spectroscopic (ESI-MS positive) studies of two mixed-valence dinuclear Mn(III)Mn(II) complexes, [Mn(III)Mn(II)L(μ-O2CMe)(H2O)2](ClO4)2·H2O·MeCN (1) and [Mn(III)Mn(II)L(μ-O2CPh)(MeOH)(ClO4)](ClO4) (2), and a Mn(III)Mn(II)Mn(II)Mn(III) complex, [{Mn(III)Mn(II)L(μ-O2CEt)(EtOH)}2(μ-O2CEt)](ClO4)3 (3), derived from the Robson-type macrocycle H2L, which is the [2 + 2] condensation product of 2,6-diformyl-4-methylphenol and 2,2-dimethyl-1,3-diaminopropane. In 1 and 2 and in two Mn(III)Mn(II) units in 3, the two metal centers are bridged by a bis(μ-phenoxo)-μ-carboxylate moiety. The two Mn(II) centers of the two Mn(III)Mn(II) units in 3 are bridged by a propionate moiety, and therefore this compound is a dimer of two dinuclear units. The coordination geometry of the Mn(III) and Mn(II) centers are Jahn-Teller distorted octahedral and distorted trigonal prism, respectively. Magnetic studies reveal weak ferro- or antiferromagnetic interactions between the Mn(III) and Mn(II) centers in 1 (J = +0.08 cm(-1)), 2 (J = -0.095 cm(-1)), and 3 (J1 = +0.015 cm(-1)). A weak antiferromagnetic interaction (J2 = -0.20 cm(-1)) also exists between the Mn(II) centers in 3. DFT methods properly reproduce the nature of the exchange interactions present in such systems. A magneto-structural correlation based on Mn-O bridging distances has been proposed to explain the different sign of the exchange coupling constants. Utilizing 3,5-di-tert-butyl catechol (3,5-DTBCH2) as the substrate, catecholase activity of all the three complexes has been checked in MeCN and MeOH, revealing that all three are active catalysts with Kcat values lying in the range 7.5-64.7 h(-1). Electrospray ionization mass (ESI-MS positive) spectra of the complexes 1-3 have been recorded in MeCN solutions, and the positive ions have been

  15. The role of catechol-O-methyl transferase Val(108/158)Met polymorphism (rs4680) in the effect of green tea on resting energy expenditure and fat oxidation: a pilot study.

    Science.gov (United States)

    Hursel, Rick; Janssens, Pilou L H R; Bouwman, Freek G; Mariman, Edwin C; Westerterp-Plantenga, Margriet S

    2014-01-01

    Green tea(GT) is able to increase energy expenditure(EE) and fat oxidation(FATox) via inhibition of catechol-O-methyl transferase(COMT) by catechins. However, this does not always appear unanimously because of large inter-individual variability. This may be explained by different alleles of the functional COMT Val108/158Met polymorphism that are associated with COMT enzyme activity; high-activity enzyme, COMT(H)(Val/Val genotype), and low-activity COMT(L)(Met/Met genotype). Fourteen Caucasian subjects (BMI: 22.2±2.3 kg/m2, age: 21.4±2.2 years) of whom 7 with the COMT(H)-genotype and 7 with the COMT(L)-genotype were included in a randomized, cross-over study in which EE and substrate oxidation were measured with a ventilated-hood system after decaffeinated GT and placebo(PL) consumption. At baseline, EE, RQ, FATox and carbohydrate oxidation(CHOox) did not differ between groups. Significant interactions were observed between COMT genotypes and treatment for RQ, FATox and CHOox (penergy expenditure and fat-oxidation upon ingestion of green tea catechins vs, placebo, whereas COMT(L) genotype carriers reacted similarly to GT and PL ingestion. The differences in responses were due to the different responses on PL ingestion, but similar responses to GT ingestion, pointing to different mechanisms. The different alleles of the functional COMT Val108/158Met polymorphism appear to play a role in the inter-individual variability for EE and FATox after GT treatment. Nederlands Trial register NTR1918.

  16. The role of catechol-O-methyl transferase Val(108/158Met polymorphism (rs4680 in the effect of green tea on resting energy expenditure and fat oxidation: a pilot study.

    Directory of Open Access Journals (Sweden)

    Rick Hursel

    Full Text Available INTRODUCTION: Green tea(GT is able to increase energy expenditure(EE and fat oxidation(FATox via inhibition of catechol-O-methyl transferase(COMT by catechins. However, this does not always appear unanimously because of large inter-individual variability. This may be explained by different alleles of the functional COMT Val108/158Met polymorphism that are associated with COMT enzyme activity; high-activity enzyme, COMT(H(Val/Val genotype, and low-activity COMT(L(Met/Met genotype. METHODS: Fourteen Caucasian subjects (BMI: 22.2±2.3 kg/m2, age: 21.4±2.2 years of whom 7 with the COMT(H-genotype and 7 with the COMT(L-genotype were included in a randomized, cross-over study in which EE and substrate oxidation were measured with a ventilated-hood system after decaffeinated GT and placebo(PL consumption. RESULTS: At baseline, EE, RQ, FATox and carbohydrate oxidation(CHOox did not differ between groups. Significant interactions were observed between COMT genotypes and treatment for RQ, FATox and CHOox (p<0.05. After GT vs. PL, EE(GT: 62.2 vs. PL: 35.4 kJ.3.5 hrs; p<0.01, RQ(GT: 0.80 vs. PL: 0.83; p<0.01, FATox(GT: 18.3 vs. PL: 15.3 g/d; p<0.001 and CHOox(GT: 18.5 vs. PL: 24.3 g/d; p<0.001 were significantly different for subjects carrying the COMT(H genotype, but not for subjects carrying the COMT(L genotype (EE, GT: 60.3 vs. PL: 51.7 kJ.3.5 hrs; NS, (RQ, GT: 0.81 vs. PL: 0.81; NS, (FATox, GT: 17.3 vs. PL: 17.0 g/d; NS, (CHOox, GT: 22.1 vs. PL: 21.4 g/d; NS. CONCLUSION: Subjects carrying the COMT(H genotype increased energy expenditure and fat-oxidation upon ingestion of green tea catechins vs, placebo, whereas COMT(L genotype carriers reacted similarly to GT and PL ingestion. The differences in responses were due to the different responses on PL ingestion, but similar responses to GT ingestion, pointing to different mechanisms. The different alleles of the functional COMT Val108/158Met polymorphism appear to play a role in the inter

  17. Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV-Fenton and identification of reactive oxygen species

    DEFF Research Database (Denmark)

    Li, Weiguang; Wang, Yong; Angelidaki, Irini

    2014-01-01

    This laboratory scale batch study examined catechol oxidation by UV-Fenton with commercial nanosized Fe3O4 as catalyst, focusing on influence of initial pH and H2O2 dosage on oxidation efficiency (represented by COD removal) and H2O2 utilization efficiency. In a wide initial pH range (2...... and then increased, which was ascribed to the formation and destruction of some carboxylic acids. During the degradation, formic acid, acetic acid, oxalic acid, and maleic acid were detected. The values of H2O2 utilization efficiency at 240min near 1.30 in reactions with 11.80mM H2O2 under initial pH from 5.0 to 8.......0 indicated this process would consume 23% less H2O2 dosage than the theoretical value for obtaining the same oxidation efficiency. Increasing H2O2 dosage accelerated catechol oxidation rate, but decreased the H2O2 utilization efficiency when H2O2 dosage enhanced from 0.50×δH2O2 (δH2O2: theoretical H2O2...

  18. Catechol oxidase activity of a series of new dinuclear copper(II) complexes with 3,5-DTBC and TCC as substrates: syntheses, X-ray crystal structures, spectroscopic characterization of the adducts and kinetic studies.

    Science.gov (United States)

    Banu, Kazi Sabnam; Chattopadhyay, Tanmay; Banerjee, Arpita; Bhattacharya, Santanu; Suresh, Eringathodi; Nethaji, Munirathinam; Zangrando, Ennio; Das, Debasis

    2008-08-18

    A series of dinuclear copper(II) complexes has been synthesized with the aim to investigate their applicability as potential structure and function models for the active site of catechol oxidase enzyme. They have been characterized by routine physicochemical techniques as well as by X-ray single-crystal structure analysis: [Cu 2(H 2L2 (2))(OH)(H 2O)(NO 3)](NO 3) 3.2H 2O ( 1), [Cu(HL1 (4))(H 2O)(NO 3)] 2(NO 3) 2.2H 2O ( 2), [Cu(L1 (1))(H 2O)(NO 3)] 2 ( 3), [Cu 2(L2 (3))(OH)(H 2O) 2](NO 3) 2, ( 4) and [Cu 2(L2 (1))(N 3) 3] ( 5) [L1 = 2-formyl-4-methyl-6R-iminomethyl-phenolato and L2 = 2,6-bis(R-iminomethyl)-4-methyl-phenolato; for L1 (1) and L2 (1), R = N-propylmorpholine; for L2 (2), R = N-ethylpiperazine; for L2 (3), R = N-ethylpyrrolidine, and for L1 (4), R = N-ethylmorpholine]. Dinuclear 1 and 4 possess two "end-off" compartmental ligands with exogenous mu-hydroxido and endogenous mu-phenoxido groups leading to intermetallic distances of 2.9794(15) and 2.9435(9) A, respectively; 2 and 3 are formed by two tridentate compartmental ligands where the copper centers are connected by endogenous phenoxido bridges with Cu-Cu separations of 3.0213(13) and 3.0152(15) A, respectively; 5 is built by an end-off compartmental ligand having exogenous mu-azido and endogenous mu-phenoxido groups with a Cu-Cu distance of 3.133(2) A (mean of two independent molecules). The catecholase activity of all of the complexes has been investigated in acetonitrile and methanol medium by UV-vis spectrophotometric study using 3,5-di- tert-butylcatechol (3,5-DTBC) and tetrachlorocatechol (TCC) as substrates. In acetonitrile medium, the conversion of 3,5-DTBC to 3,5-di- tert-butylbenzoquinone (3,5-DTBQ) catalyzed by 1- 5 is observed to proceed via the formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically for the first time. In methanol medium no such enzyme-substrate adduct has been detected, and the 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by 1- 5

  19. Polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecol-O-metiltransferase (COMT: fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A and catechol-O-methyltransferase (COMT gene polymorphisms: Triggers of fibromyalgia?

    Directory of Open Access Journals (Sweden)

    Josie Budag Matsuda

    2010-04-01

    fatigue, sleep disorders, anxiety, depression, memory loss, and dizziness. Although the physiological mechanisms that control fibromyalgia have not been precisely established, neuroendocrine, genetic or molecular factors may be involved in fibromyalgia. OBJECTIVE: The aim of the present study was to characterize serotonin receptor (5-HT2A and catecholO-methyltransferase (COMT gene polymorphisms in Brazilian patients with fibromyalgia and to evaluate the participation of these polymorphisms in the etiology of the disease. MATERIAL AND METHODS: Genomic DNA extracted from 102 blood samples (51 patients, 51 controls was used for molecular characterization of the 5-HT2A and COMT gene polymorphisms by PCR-RFLP. RESULTS: Analysis of the 5-HT2A polymorphism revealed a frequency of 25.49% C/C, 49.02% T/C and 25.49% T/T in patients, and of 17.65% C/C, 62.74% T/C and 19.61% T/T in the control group, with no differences between the two groups.Analysis of the COMT polymorphism in patients showed a frequency of 17.65% and 45.10% for genotypes H/H and L/H, respectively. In the control group the frequency was 29.42% for H/H and 60.78% for L/H, also with no differences between the two groups. However, there was a significant difference in the frequency of the L/L genotype between patients (37.25% and controls (9.8%, which permitted differentiation between the two groups. CONCLUSION: The L/L genotype was more frequent among fibromyalgia patients. Though considering a polygenic situation and environmental factors, the molecular study of the rs4680 SNP of the COMT gene may be helpful to the identification of susceptible individuals.

  20. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...

  1. Synthesis of two 14C-labeled catechol-o-methyltransferase inhibitors

    International Nuclear Information System (INIS)

    Karlsson, Carita; Honkanen, Erkki

    1991-01-01

    14 C-labelled 3-(3,4-dihydroxy-5-nitrophenylmethylidene)-2,4-pentanedione and 14 C-labelled E-N,N-diethyl-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)acrylamide have been synthesized from [carbonyl- 14 C]vanillin. (author)

  2. Production of the Catechol Type Siderophore Bacillibactin by the Honey Bee Pathogen Paenibacillus larvae

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Poppinga, Lena; Süssmuth, Roderich D.; Genersch, Elke

    2014-01-01

    The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria. PMID:25237888

  3. Darkening mechanism and kinetics of humification process in catechol-Maillard system.

    Science.gov (United States)

    Zhang, Yingchao; Yue, Dongbei; Ma, Hong

    2015-07-01

    Humic acids, products of humification process, are capable of interacting with contaminants and can be applied to environmental remediation. Browning mechanisms of humification is critical to understand and further control the process. This study aimed to investigate the mechanism of abiotic humification by tracking the fate of the precursors in systems containing glucose, glycine, and various CT concentrations, which were promoted by MnO2. Results show that the N-containing organic molecules significantly contributed in controlling the darkening effect. Increasing CT promoted the formation of Fulvic-like acids (FLAs) and Humic-like acids (HLAs). The entire reaction could be divided into two steps following pseudo-second-order kinetics equation and pseudo-zero-order kinetics equation. Moreover, increasing CT contributed to the increase of the degree of unsaturation in HLAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Breast Cancer Associated Estrogen Receptors: Catechol Estrogen Receptors in ER-Minus Mice

    National Research Council Canada - National Science Library

    Lubahn, Dennis

    1999-01-01

    Our research will lead to a better understanding of the developmental, physiological, and biochemical roles of endogenous and environmental estrogens in breast cancer causation, prognosis and treatment...

  5. Breast Cancer Associated Estrogen Receptors: Catechol Estrogen Receptors in ER-Minus Mice

    National Research Council Canada - National Science Library

    Lubahn, Dennis

    1998-01-01

    Our research will lead to a better understanding of the developmental, physiological, and biochemical roles of endogenous and environmental estrogens in breast cancer causation, prognosis and treatment...

  6. COMPARISON OF REACTION PRODUCTS FROM THE TRANSFORMATION OF CATECHOL CATALYZED BY BIRNESSITE OR TYROSINASE. (R823847)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Fusing catechol-driven surface anchoring with rapid hetero Diels-Alder ligation

    Czech Academy of Sciences Publication Activity Database

    Preuss, C. M.; Zieger, M. M.; Rodriguez-Emmenegger, Cesar; Zydziak, N.; Trouillet, V.; Goldmann, A. S.; Barner-Kowollik, C.

    2014-01-01

    Roč. 3, č. 11 (2014), s. 1169-1173 ISSN 2161-1653 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GBP205/12/G118 Institutional support: RVO:61389013 Keywords : nanoparticles * biosensors * polymer brushes Subject RIV: BO - Biophysics Impact factor: 5.764, year: 2014

  8. The Role of the Catechol-O-Methyltransferase (COMT) Gene in Personality and Related Psychopathological Disorders

    Science.gov (United States)

    Montag, Christian; Jurkiewicz, Magdalena; Reuter, Martin

    2015-01-01

    This review provides a short overview of the most significant biologically oriented theories of human personality. Personality concepts of Eysenck, Gray and McNaughton, Cloninger and Panksepp will be introduced and the focal evidence for the heritability of personality will be summarized. In this context, a synopsis of a large number of COMT genetic association studies (with a focus on the COMT Val158Met polymorphism) in the framework of the introduced biologically oriented personality theories will be given. In line with the theory of a continuum model between healthy anxious behavior and related psychopathological behavior, the role of the COMT gene in anxiety disorders will be discussed. A final outlook considers new research strategies such as genetic imaging and epigenetics for a better understanding of human personality. PMID:22483293

  9. Catechol-o-methyltransferase polymorphism and susceptibility to major depressive disorder modulates psychological stress response

    NARCIS (Netherlands)

    Jabbi, Mbemba; Kema, Ido R.; van der Pompe, Gieta; Meerman, Gerard J. te; Ormel, Johan; den Boer, Johan A.

    Objectives The stress response is related to both physiological and psychological factors and is strongly marked by a neuroendocrine component. Genetic factors are believed to underlie individual differences in the degree of stress resilience and thereby contribute in determining susceptibility to

  10. Valence tautomerism and metal-mediated catechol oxidation for complexes of copper prepared with 9,10-phenanthrenequinone.

    Science.gov (United States)

    Speier, G; Tyeklár, Z; Tóth, P; Speier, E; Tisza, S; Rockenbauer, A; Whalen, A M; Alkire, N; Pierpont, C G

    2001-10-22

    Bis(pyridine)(9,10-phenanthrenequinone)(9,10-phenanthrenediolato)copper(II), Cu(py)(2)(PhenCat)(PhenBQ), has been prepared by treating copper metal with 9,10-phenanthrenequinone in pyridine solution. In dilute solution, both Cu(py)(2)(PhenCat)(PhenBQ) and the related complex Cu(tmeda)(PhenCat)(PhenBQ) lose PhenBQ to form Cu(II)L(2)(PhenCat), where L(2)= tmeda, 2 py. EPR spectra recorded at temperatures between 300 and 77 K reveal the presence of species with radical and metal localized spins together at equilibrium. Equilibria between Cu(II)L(2)(PhenCat) and Cu(I)L(2)(PhenSQ) redox isomers are solvent dependent, with a shift to higher temperature for polar solvents. Both complexes are oxygen sensitive, reacting with dioxygen to give complexes of diphenic acid. Structural characterization on products obtained with tmeda show that dioxygen insertion across the C-C bond within the chelate ring leads to dimeric products with adjacent Cu(II) ions bridged by diphenate ligands. The addition of O(2) to Cu(tmeda)(PhenCat) in acetonitrile solution at 0 degrees C appears to form a peroxo complex, tentatively identified as Cu(tmeda)(O(2))(PhenQ) on the basis of iodometric titration, as the precursor to the diphenate complex.

  11. Mono- and dinuclear manganese(III) complexes showing efficient catechol oxidase activity: syntheses, characterization and spectroscopic studies.

    Science.gov (United States)

    Banu, Kazi Sabnam; Chattopadhyay, Tanmay; Banerjee, Arpita; Mukherjee, Madhuparna; Bhattacharya, Santanu; Patra, Goutam Kumar; Zangrando, Ennio; Das, Debasis

    2009-10-28

    Four side-off compartmental ligands L1-L4 [L1 = N,N'-ethylenebis(3-formyl-5-methyl-salicylaldimine), L2 = N,N'-1-methylethylenebis(3-formyl-5-methylsalicylaldimine), L3 = N,N'-1,1-dimethylethylenebis(3-formyl-5-methylsalicylaldimine) and L4= N,N'-cyclohexenebis(3-formyl-5-methylsalicylaldimine)] having two binding sites, N2O2 and O4, have been chosen to synthesize mononuclear and dinuclear manganese(III) complexes with the aim to study their catecholase activity using 3,5-di-tert-butylcatechol (3,5-DTBC) as substrate in the presence of molecular oxygen. In all cases only mononuclear manganese complexes (1-4) were obtained, with manganese coordination taking place at the N2O2 binding site only, irrespective of the amount of manganese salt used. All these complexes have been characterized by routine physico-chemical techniques. Complex MnL2Cl.4H2O (2) has further been structurally characterized by X-ray single crystal structure analysis. Four dinuclear manganese complexes, 5-8, were obtained after condensing the two pending formyl groups on each ligand (L1-L4) with aniline followed by reaction with MnCl2 to put the second Mn atom onto another N2O2 site. The catalytic activity of all complexes 1-8 has been investigated following the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) with molecular oxygen in two different solvents, methanol and acetonitrile. The study reveals that the catalytic activity is influenced by the solvent and to a significant extent by the backbone of the diamine and the behavior seems to be related mainly to steric rather than electronic factors. Experimental data suggest that a correlation, the lower the E(1/2) value the higher the catalytic activity, can be drawn between E(1/2) and Vmax of the complexes in a particular solvent. The EPR measurements suggest that the catalytic property of the complexes is related to the metal center(s) participation rather than to a radical mechanism.

  12. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus

    NARCIS (Netherlands)

    Olmedo, Patricio; Moreno, Adrián A.; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C.; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to

  13. CYP2D6 and catechol-O-methyltransferase gene polymorphisms in Parkinson patients with levodopa-induced dyskinesias

    NARCIS (Netherlands)

    Ivanova, S.A.; Alifirova, V.M.; Pozhidaev, I.V.; Fedorenko, O.Y.; Osmanova, D.Z.; Tiguntsev, V.V.; Bokhan, N.A.; Zhukova, I.A.; Wilffert, B.; Loonen, A.J.M.

    2016-01-01

    Parkinson's disease (PD), a common neurodegenerative disorder caused by the loss of the dopaminergic input to the basal ganglia, is commonly treated with levodopa (L-DOPA). Use of this drug, however, is severely limited by the development of side effect. Levodopa-induced dyskinesias (LID) are

  14. DIRECT BIOCATALYTIC SYNTHESIS OF FUNCTIONALIZED CATECHOLS: A "GREEN" ALTERNATIVE TO TRADITIONAL METHODS WITH HIGH EFFECTIVE MASS YIELD (EMY). (R826113)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Determination of Catechol Estrogen Adducts by High-Performance Liquid Chromatography: Establishing Biomarkers for the Early Detection of Breast Cancer

    National Research Council Canada - National Science Library

    Stack, Douglas

    2002-01-01

    In order to better understand the role of estrogen metabolism as it relates to breast cancer etiology, a new analytical technique that can measure CE and CE-DNA adducts at low endogenous levels is being developed...

  16. Determination of Catechol Estrogen Adducts by High-Performance Liquid Chromatography: Establishing Biomarkers for the Early Detection of Breast Cancer

    National Research Council Canada - National Science Library

    Stack, Douglas

    2001-01-01

    In order to better understand the role of estrogen metabolism as it relates to breast cancer etiology, a new analytical technique that can measure CE and CE-DNA adducts at low endogenous levels is being developed...

  17. Properties of the Membrane Binding Component of Catechol-O-methyltransferase Revealed by Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Orlowski, A.; St-Pierre, J. F.; Magarkar, A.

    2011-01-01

    that was not included in our model. In numerous independent simulations we observed the formation of a salt bridge between ARC 27 and GLU40. The salt bridge closed the flexible loop that formed in the linker and kept it in the vicinity of the membrane-water interface. All simulations supported this conclusion...... brought about an interesting view that the flexible loop observed in our work can be a common structural element in these types of proteins. In the same spirit we close the article by discussing the role of salt bridges in the formation of three-dimensional structures of membrane proteins that exhibit...

  18. Sustainable production of dimethyl adipate by non-heme iron(III) catalysed oxidative cleavage of catechol

    NARCIS (Netherlands)

    Jastrzebski, Robin; van den Berg, Emily J.; Weckhuysen, Bert M.; Bruijnincx, Pieter C. A.

    2015-01-01

    Adipic acid and its esters are important bulk chemicals whose principal use is in the production of the nylon-6,6 polymer. There is considerable interest in finding novel green routes from sustainable feedstocks towards these important intermediates. Herein, we describe the catalytic oxidative

  19. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations.

    Science.gov (United States)

    Wendt, Franziska; Näther, Christian; Tuczek, Felix

    2016-09-01

    Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-L-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.

  20. Fabricated catecholic films are capable of redox-cycling and H2O2-generation in the absence of enzymes

    Science.gov (United States)

    The redox activity of quinones is integral to their physiological function in the electron transfer pathways of respiration and photosynthesis. Quinones and phenolic radicals are also intermediates in the biosynthesis of macromolecular structures (lignins and melanins) generated by plants and insec...

  1. Catechol pyrazolinones as trypanocidals: fragment-based design, synthesis, and pharmacological evaluation of nanomolar inhibitors of trypanosomal phosphodiesterase b1

    NARCIS (Netherlands)

    Orrling, K.M.; Jansen, C.J.W.; Vu, X.L.; Balmer, V.; Bregy, P.; Shanmugham, A.; England, P.; Bailey, D.; Cos, P.; Maes, L.; Adams, E.; van den Bogaart, E.; Chatelain, E.; Ioset, J.R.; van de Stolpe, A.; Zorg, S.; Veerman, J.; Seebeck, T.; Sterk, G.J.; de Esch, I.J.P.; Leurs, R.

    2012-01-01

    Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. We used homology modeling and docking studies to guide fragment

  2. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus.

    Science.gov (United States)

    Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.

  3. Influence of ancillary ligands on preferential geometry and biomimetic catalytic activity in manganese(III)-catecholate systems: A combined experimental and theoretical study.

    Science.gov (United States)

    Jana, Narayan Ch; Brandão, Paula; Bauzá, Antonio; Frontera, Antonio; Panja, Anangamohan

    2017-11-01

    The present report describes the synthesis and structural characterizations of six new manganese(III) complexes with redox-active tetrachlorocatecholate ligand in the presence of different ancillary ligands (pyridines and imidazole). X-ray crystal structure analysis reveals that the geometry of manganese(III) centres in 1 and 2 is essentially square pyramidal, while it is discrete octahedron in compounds 3-6. These preferential structural diversities in these systems have been critically analysed by theoretical calculations. Remarkably, the characterization of both π⋯π stacking interactions and MnMn bonds in the supramolecular dimeric aggregates in the solid state in 1 and 2 by means of the Bader's theory of "atoms in molecules" (AIM) is quite interesting as that nicely corroborates the experimental fact. All the complexes are active toward the phenoxazinone synthase like activity and the detailed kinetic analysis was performed to get better insight into their catalytic efficiency. Electrochemical property of these complexes as well as different donor property of the ancillary ligands clearly establish that the ease of reduction of the metal centre i.e., the catalytic ability is favoured when the metal centre is bonded to the electron deficient pyridyl systems. EPR spectroscopy and theoretical study are further helpful to get insight into origin of the catalytic activity in these compounds. The present report overall highlights that tuning of the geometry and catalytic activity of manganese(III) complexes with tetrachlorocatecholate ligand can be attained by the introduction of different substitutions in ancillary pyridine ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Exploring the indirect effects of catechol-O-methyltransferase (COMT) genotype on psychotic experiences through cognitive function and anxiety disorders in a large birth cohort of children.

    Science.gov (United States)

    Niarchou, Maria; Zammit, Stanley; Escott-Price, Valentina; Owen, Michael J; van den Bree, Marianne B M

    2014-07-01

    Children reporting psychotic experiences (PEs) are at increased risk of developing psychosis in adulthood. Cognitive deficits and anxiety disorders often precede psychotic disorders and are associated with higher risk of PEs. While the high activity alleles of variants within COMT have been associated with cognitive deficits, and the low activity alleles with higher risk of anxiety disorders, no associations of COMT with PEs have been found. One possible explanation is that the association between COMT and PEs is indirect, through cognitive function and anxiety disorders. We examined whether the association between PEs and COMT (four single nucleotide polymorphisms and three haplotypes) is indirect, through cognition or anxiety disorders. 6,784 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC) were genotyped and completed neurocognitive assessments at ages 8 and 11, as well as semi-structured interviews for anxiety disorders and PEs at ages 10 and 12, respectively. Alleles rs2097603 and rs4680, and two COMT haplotypes, all indexing high activity, were indirectly associated with higher risk of PEs through impaired processing speed, IQ and attention. There was no evidence of a total effect of COMT on PEs, nor for an indirect effect through anxiety disorders. This is the first study to examine indirect effects of COMT on PEs. Evidence of an indirect association suggests a complex developmental pathway underlies the emergence of PEs in children, with possible implications for prevention/intervention strategies. Our findings provide additional support for processing speed and attention as endophenotypes in psychotic disorders. © 2014 Wiley Periodicals, Inc.

  5. Effect of monoamine oxidase A and B and of catechol-O-methyltransferase inhibition on L-DOPA-indnced circling behavior

    NARCIS (Netherlands)

    Heeringa, MJ; dAgostini, F; DeBoer, P; DaPrada, M; Damsma, G

    1997-01-01

    The effect of enzyme-inhibiting adjuvants on L-DOPA + benserazide-induced contralateral turning in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats was studied. Both the number of turns and the duration of turning were examined. Inhibition of MAO-A with 10 mg/kg Ro 41-1049 increased both

  6. An investigation of the chromium oxidation state of a monoanionic chromium tris(catecholate) complex by X-ray absorption and EPR spectroscopies

    DEFF Research Database (Denmark)

    Pattison, D I; Levina, A; Davies, Michael Jonathan

    2001-01-01

    The well-known monoanionic Cr tris(3,5-di-tert-butylcatecholato) complex, [Cr(DTBC)3]-, has been studied by X-ray absorption spectroscopy. The multiple-scattering fit to the XAFS gave good correlation (R = 19.8%) and good values for all of the bond lengths, angles, and Debye-Waller factors. The p...

  7. A one-pot laccase-catalysed synthesis of 5,6-dihydroxylated benzo[b]furans and catechol derivatives, and their anticancer activity

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2013-04-01

    Full Text Available or electrochemical syntheses. The synthesised derivatives were screened against renal (TK10), melanoma (UACC62), breast (MCF7) and cervical (HeLa) cancer cell-lines. GI(sub)50, TGI and LC(sub)50 are reported for the first time. Anticancer screening showed...

  8. Radioenzymatic assay of plasma adrenaline and noradrenaline: evidence for a catechol-O-methyltransferase (COMT) inhibiting factor associated with essential hypertension

    International Nuclear Information System (INIS)

    Hoffmann, J.J.M.L.; Willemsen, J.J.; Thien, Th.; Benraad, Th.J.

    1982-01-01

    During the evaluation of a modified radioenzymatic determination of plasma adrenaline and noradrenaline, it has been found that there exists a highly significant (p 0 C, but only in plasma from patients with essential hypertension. Plasma from normotensive persons exhibits a complete lack of correlation between these factors. The consequences of the hypertension-associated COMT-inhibiting factor for the assays' specifications are discussed and data are presented for comparison with a recently-described uremia-associated COMT-inhibitor (Demassieux et al, Clin Chim Acta 115, 377-391; 1981). (Auth.)

  9. VOLUME 9 (2004)

    African Journals Online (AJOL)

    denise

    2004). Kinetics And Mechanism Of The Redox Reaction Between Catechol And ... Kinetics. All kinetics measurements were made under pseudo-first order conditions with the catechol in at least 100-fold excess at 605nm and constant ionic.

  10. Synthesis and evaluation of aminoborates derived from boric acid and diols for protecting wood against fungal and thermal degradation

    Science.gov (United States)

    George C. Chen

    2008-01-01

    N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...

  11. Synthesis and evaluation of borates derived from boric acid and diols for the protection of wood against fungal decay and thermal degradation

    Science.gov (United States)

    George C. Chen

    2004-01-01

    N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Complexes 1 and 2 react with dioxygen at ambient condition to form the corresponding hydroxo- or oxo-bridged dinuclear cobalt(III) or iron(III) complexes. On the other hand, the iron(III)-catecholate complex (3) activate dioxygen to undergo oxidative C-C bond cleavage of catechol. The selective formation of extradiol ...

  13. Functionalization of a heteroditopic cryptand: Exocyclic coordination ...

    Indian Academy of Sciences (India)

    Administrator

    Catecholate ligands with first-row transition metal ions as well as many heavier transition and post-transition metal ions have received enormous attention in recent years. Fe(III) forms a tris-catecholate complex with the highest formation constant (logKf » 52) of any iron chelate ever determined. A heteroditopic cryptand is ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Catechol 1,2-dioxygenase (CTD) and protocatechuate 3,4-dioxygenase (PCD) are bacterial non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of molecular oxygen via a mechanism involving a high-spin ferric centre. The iron(III) complexes of tripodal ...

  15. Iron and cobalt complexes of 4, 4, 9, 9-tetramethyl-5, 8 ...

    Indian Academy of Sciences (India)

    Complexes 1 and 2 react with dioxygen at ambient condition to form the corresponding hydroxo- or oxo-bridged dinuclear cobalt(III) or iron(III) complexes. On the other hand, the iron(III)-catecholate complex (3) activate dioxygen to undergo oxidative C-C bond cleavage of catechol. The selective formation of extradiol ...

  16. Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6.

    Science.gov (United States)

    Li, Shanshan; Zhao, Huabing; Li, Yaxiao; Niu, Shumin; Cai, Baoli

    2012-09-01

    Pseudomonas putida strain ND6 is an efficient naphthalene-degrading bacterium. The complete genome of strain ND6 was sequenced and annotated. The genes encoding the enzymes involved in catechol degradation by the ortho-cleavage pathway were found in the chromosomal sequence, which indicated that strain ND6 is able to metabolize naphthalene by the catechol meta- and ortho-cleavage pathways.

  17. Iron (III) complexes of certain tetradentate phenolate ligands as ...

    Indian Academy of Sciences (India)

    Catechol 1,2-dioxygenase (CTD) and protocatechuate 3,4-dioxygenase (PCD) are bacterial non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of molecular oxygen via a mechanism involving a high-spin ferric centre. The iron(III) complexes of tripodal ...

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Electrochemical oxidation of some catechol derivatives (1a-e) have been studied in water/acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlledpotential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation of catechol ...

  19. Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe3O4 Nanoparticles

    NARCIS (Netherlands)

    Goldmann, Anja S.; Schoedel, Christine; Walther, Andreas; Yuan, Jiayin; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.

    2010-01-01

    The functionalization of magnetite (Fe3O4) nanoparticles with dopamine-derived clickable biomimetic anchors is reported. Herein, an alkyne-modified catechol-derivative is employed as the anchor, as i) the catechol-functional anchor groups possess irreversible covalent binding affinity to Fe3O4

  20. Tris(catecholato)silicates of nickel: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    Administrator

    With regard to the constitutional and structural issues of nickel catecholates, many contradictory reports have appeared in literature. Only in 1998 ... slow but definite colour change in the solid state at room temperature. By probing this, we find that through a ligand exchange process, the catechol moiety of the hypervalent.

  1. Multivalent anchoring and cross-linking of mussel-inspired antifouling surface coatings.

    Science.gov (United States)

    Wei, Qiang; Becherer, Tobias; Mutihac, Radu-Cristian; Noeske, Paul-Ludwig Michael; Paulus, Florian; Haag, Rainer; Grunwald, Ingo

    2014-08-11

    In this work, we combine nature's amazing bioadhesive catechol with the excellent bioinert synthetic macromolecule hyperbranched polyglycerol (hPG) to prepare antifouling surfaces. hPG can be functionalized by different amounts of catechol groups for multivalent anchoring and cross-linking because of its highly branched architecture. The catecholic hPGs can be immobilized on various surfaces including metal oxides, noble metals, ceramics, and polymers via simple incubation procedures. The effect of the catechol amount on the immobilization, surface morphology, stability, and antifouling performance of the coatings was studied. Both anchoring and cross-linking interactions provided by catechols can enhance the stability of the coatings. When the catechol groups on the hPG are underrepresented, the tethering of the coating is not effective; while an overrepresentation of catechol groups leads to protein adsorption and cell adhesion. Thus, only a well-balanced amount of catechols as optimized and described in this work can supply the coatings with both good stability and antifouling ability.

  2. Presidential Green Chemistry Challenge: 1998 Academic Award (Draths and Frost)

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1998 award winners, Dr. Karen M. Draths and Professor John W. Frost, used benign, genetically engineered microbes and sugars (instead of benzene) to synthesize adipic acid and catechol.

  3. Polyphenol oxidase-based luminescent enzyme hydrogel

    Indian Academy of Sciences (India)

    shaped composite-basedluminescent enzyme hydrogel network as immobilized scaffold for oxido-reductase efficiency on phenolic substrates includingphenol, resorcinol, catechol and quinol was synthesized and characterized through ...

  4. Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae.

    Science.gov (United States)

    Allred, Benjamin E; Correnti, Colin; Clifton, Matthew C; Strong, Roland K; Raymond, Kenneth N

    2013-09-20

    The human protein siderocalin (Scn) inhibits bacterial iron acquisition by binding catechol siderophores. Several pathogenic bacteria respond by making stealth siderophores that are not recognized by Scn. Fluvibactin and vibriobactin, respectively of Vibrio fluvialis and Vibrio cholerae , include an oxazoline adjacent to a catechol. This chelating unit binds iron either in a catecholate or a phenolate-oxazoline coordination mode. The latter has been suggested to make vibriobactin a stealth siderophore without directly identifying the coordination mode in relation to Scn binding. We use Scn binding assays with the two siderophores and two oxazoline-substituted analogs and the crystal structure of Fe-fluvibactin:Scn to show that the oxazoline does not prevent Scn binding; hence, vibriobactin is not a stealth siderophore. We show that the phenolate-oxazoline coordination mode is present at physiological pH and is not bound by Scn. However, Scn binding shifts the coordination to the catecholate mode and thereby inactivates this siderophore.

  5. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    Science.gov (United States)

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  6. PET Imaging of Estrogen Metabolism in Breast Cancer

    National Research Council Canada - National Science Library

    Ding, Yu-Shin

    2000-01-01

    .... Catecholestrogens are broken down by an enzyme called catechol-O- methyltransferase (COMT). COMT is known to be elevated in malignant breast tumors, and abnormal COMT genetics have recently been found in individuals with breast cancer...

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    shaped composite-basedluminescent enzyme hydrogel network as immobilized scaffold for oxido-reductase efficiency on phenolic substrates includingphenol, resorcinol, catechol and quinol was synthesized and characterized through ...

  8. A study of catalytic behaviour of aromatic additives on the photo ...

    Indian Academy of Sciences (India)

    Administrator

    red using photo–. Fenton reaction. The progress of the reaction has been monitored spectrophotometrically. The effect of various organic additives e.g. hydroquinone, resorcinol and catechol on the rate of photodegradation has been observed.

  9. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries.

    Science.gov (United States)

    Ryou, Myung-Hyun; Kim, Jangbae; Lee, Inhwa; Kim, Sunjin; Jeong, You Kyeong; Hong, Seonki; Ryu, Ji Hyun; Kim, Taek-Soo; Park, Jung-Ki; Lee, Haeshin; Choi, Jang Wook

    2013-03-20

    Conjugation of mussel-inspired catechol groups to various polymer backbones results in materials suitable as silicon anode binders. The unique wetness-resistant adhesion provided by the catechol groups allows the silicon nanoparticle electrodes to maintain their structure throughout the repeated volume expansion and shrinkage during lithiation cycling, thus facilitating substantially improved specific capacities and cycle lives of lithium-ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Steroid hormones in murine schistosomiasis mansoni

    OpenAIRE

    Oliveira, K.C.; Cardoso, R.; Dos Santos, A.C.; Alves, H.; Richter, J.; Botelho, M.C.

    2017-01-01

    Schistosomiasis is a neglected tropical disease, endemic in 76 countries, that afflicts more than 240 million people. The impact of schistosomiasis on infertility may be underestimated according to recent literature. Extracts of Schistosoma (S.) haematobium include estrogen-like metabolites termed catechol-estrogens that down regulate estrogen receptors alpha and beta in estrogen responsive cells. In addition, schistosome derived catechol-estrogens induce genotoxicity that result in estrogen-...

  11. Schistosoma mansoni infection associated infertility

    OpenAIRE

    Botelho, Mónica

    2016-01-01

    Schistosomiasis is a neglected tropical disease, endemic in 76 countries, that afflicts more than 240 million people. The impact of schistosomiasis on infertility may be underestimated according to recent literature. Extracts of Schistosoma haematobium include estrogen-like metabolites termed catechol-estrogens that down regulate estrogen receptors alpha and beta in estrogen responsive cells. In addition, schistosome derived catechol-estrogens induce genotoxicity that result in estrogen-DNA a...

  12. Physiological and biochemical responses of halophyte Kalidium ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... Peroxidase (POD) activity was determined by methyl catechol reaction. Fresh leaf tissue (2.5 g) with 4 ml phosphate buffer (50. mM, pH 5.5) was ground into homogenate on ice bath, then centrifugated in 3000 rpm at 4°C for 10 min to get crude extract of. POD. 1 ml of methyl catechol (50 mM) was brought to ...

  13. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Science.gov (United States)

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  14. Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability

    International Nuclear Information System (INIS)

    Kong, Deyang; Xia, Qing; Liu, Guoqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Covalent coupling to natural humic constituents comprises an important transformation pathway for anilinic pollutants in the environment. We systematically investigated the reactions of chlorine substituted anilines with catechol and syringic acid in horseradish peroxidase (HRP) catalyzed systems. It was demonstrated that although nucleophilic addition was the mechanism of covalent bonding to both catechol and syringic acid, chloroanilines coupled to the 2 humic constituents via slightly different pathways. 1,4-addition and 1,2-addition are involved to catechol and syringic acid, respectively. 1,4-addition showed empirical 2nd order kinetics and this pathway seemed to be more permanent than 1,2-addition. Stability experiments demonstrated that cross-coupling products with syringic acid could be easily released in acidic conditions. However, cross-coupling with catechol was relatively stable at similar conditions. Thus, the environmental behavior and bioavailability of the coupling products should be carefully assessed. -- Highlights: •Chloroanilines covalently coupled to humic constituents in HRP catalyzed processes, which facilitated their transformation. •MS technique was employed to analyze the coupling products and therefore elucidate the reaction pathways. •Chloroanilines couple to catechol and syringic acid via 1,4- and 1,2-nucleophilic addition pathways, respectively. •Cross-coupling products formed via 1,4-nucleophilic addition pathway were more stable than those via 1,2-addition pathway. -- Bound residues of chloroanilines formed via 1,2- and 1,4-nucleophilic addition pathways showed different stability

  15. Influence of RANEY Nickel on the Formation of Intermediates in the Degradation of Lignin

    Directory of Open Access Journals (Sweden)

    Daniel Forchheim

    2012-01-01

    Full Text Available Lignin forms an important part of lignocellulosic biomass and is an abundantly available residue. It is a potential renewable source of phenol. Liquefaction of enzymatic hydrolysis lignin as well as catalytical hydrodeoxygenation of the main intermediates in the degradation of lignin, that is, catechol and guaiacol, was studied. The cleavage of the ether bonds, which are abundant in the molecular structure of lignin, can be realised in near-critical water (573 to 673 K, 20 to 30 MPa. Hydrothermal treatment in this context provides high selectivity in respect to hydroxybenzenes, especially catechol. RANEY Nickel was found to be an adequate catalyst for hydrodeoxygenation. Although it does not influence the cleavage of ether bonds, RANEY Nickel favours the production of phenol from both lignin and catechol. The main product from hydrodeoxygenation of guaiacol with RANEY Nickel was cyclohexanol. Reaction mechanism and kinetics of the degradation of guaiacol were explored.

  16. The role of film composition and nanostructuration on the polyphenol sensor performance

    Directory of Open Access Journals (Sweden)

    Cibely Silva Martin

    2016-12-01

    Full Text Available The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the composition and nanostructuration of the films on the impedance and voltammetric-based sensor performance to catechol detection. The films here studied were composed by a perylene derivative (PTCD-NH2 and a metallic phthalocyanine (FePc, using Langmuir-Blodgett (LB and physical vapor deposition (PVD techniques. The deposition technique and intrinsic properties of compounds showed influence on electrical and electrocatalytic responses. The PVD PTCD-NH2 shows the best sensor performance to the detection of catechol. Quantification of catechol contents in mate tea samples was also evaluated, and the results showed good agreement compared with Folin-Ciocalteu standard method for polyphenol detection.

  17. Covalent chemical functionalization enhances the biodegradation of graphene oxide

    Science.gov (United States)

    Kurapati, Rajendra; Bonachera, Fanny; Russier, Julie; Rajukrishnan Sureshbabu, Adukamparai; Ménard-Moyon, Cécilia; Kostarelos, Kostas; Bianco, Alberto

    2018-01-01

    Biodegradation of the graphene-based materials is an emerging issue due to their estimated widespread usage in different industries. Indeed, a few concerns have been raised about their biopersistence. Here, we propose the design of surface-functionalized graphene oxide (GO) with the capacity to degrade more effectively compared to unmodified GO using horseradish peroxidase (HRP). For this purpose, we have functionalized the surface of GO with two well-known substrates of HRP namely coumarin and catechol. The biodegradation of all conjugates has been followed by Raman, dynamic light scattering and electron microscopy. Molecular docking and gel electrophoresis have been carried out to gain more insights into the interaction between GO conjugates and HRP. Our studies have revealed better binding when GO is functionalized with coumarin or catechol compared to control GOs. All results prove that GO functionalized with coumarin and catechol moieties display a faster and more efficient biodegradation over GO.

  18. ESR spectra of the olive phenolics oleuropein and keracyanin in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.R. [Monash University, Clayton, VIC (Australia). Anatomy Department; Troup, G.J.; Hutton, D.R. [Monash University, Clayton, VIC (Australia). Physics Department; Hewitt, D.J. [Monash University, Clayton, VIC (Australia). Chemistry Department; Romani, A.; Mulinacci, N.; Vincieri, F.F. [Universita degli Studi, Firenze (Italy). Dipartimento di Scienze Farmaceutiche

    1998-12-31

    Full text: Olives and extra virgin olive oil, are known to be very rich in antioxidants, most of which are phenolics, such as oleuropein, a derivative of catechol: the `catechol` ring is separated, and effectively isolated electrically from the other (6-sided) ring. The main anthocyanin in olives in keracyanin (cyanidin-3-0-rutinoside). Solid samples of these two phenolics, and of catechol, were examined by ESR using a Varian E-12 spectrometer (x-band: {approx}9.1 GHz) at room temperature. All three samples gave single unstructured lines of {approx} 10g. width with g-vales close to 2. The presence of these free radical signal shows the antioxidant action of these phenolics, even in the solid state. We believe this is first observation of free radicals in olive phenolics

  19. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

    Directory of Open Access Journals (Sweden)

    Seonki Hong

    2014-06-01

    Full Text Available Quinone tanning is a well-characterized biochemical process found in invertebrates, which produce diverse materials from extremely hard tissues to soft water-resistant adhesives. Herein, we report new types of catecholamine PEG derivatives, PEG-NH-catechols that can utilize an expanded spectrum of catecholamine chemistry. The PEGs enable simultaneous participation of amine and catechol in quinone tanning crosslinking. The intermolecular reaction between PEG-NH-catechols forms a dramatic nano-scale junction resulting in enhancement of gelation kinetics and mechanical properties of PEG hydrogels compared to results obtained by using PEGs in the absence of amine groups. Therefore, the study provides new insight into designing new crosslinking chemistry for controlling nano-scale chemical reactions that can broaden unique properties of bulk hydrogels.

  1. Urinary estrogen metabolites and self-reported infertility in women infected with Schistosoma haematobium.

    Directory of Open Access Journals (Sweden)

    Júlio Santos

    Full Text Available BACKGROUND: Schistosomiasis is a neglected tropical disease, endemic in 76 countries, that afflicts more than 240 million people. The impact of schistosomiasis on infertility may be underestimated according to recent literature. Extracts of Schistosoma haematobium include estrogen-like metabolites termed catechol-estrogens that down regulate estrogen receptors alpha and beta in estrogen responsive cells. In addition, schistosome derived catechol-estrogens induce genotoxicity that result in estrogen-DNA adducts. These catechol estrogens and the catechol-estrogen-DNA adducts can be isolated from sera of people infected with S. haematobium. The aim of this study was to study infertility in females infected with S. haematobium and its association with the presence of schistosome-derived catechol-estrogens. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional study was undertaken of female residents of a region in Bengo province, Angola, endemic for schistosomiasis haematobia. Ninety-three women and girls, aged from two (parents interviewed to 94 years were interviewed on present and previous urinary, urogenital and gynecological symptoms and complaints. Urine was collected from the participants for egg-based parasitological assessment of schistosome infection, and for liquid chromatography diode array detection electron spray ionization mass spectrometry (LC/UV-DAD/ESI-MSn to investigate estrogen metabolites in the urine. Novel estrogen-like metabolites, potentially of schistosome origin, were detected in the urine of participants who were positive for eggs of S. haematobium, but not detected in urines negative for S. haematobium eggs. The catechol-estrogens/ DNA adducts were significantly associated with schistosomiasis (OR 3.35; 95% CI 2.32-4.84; P≤0.001. In addition, presence of these metabolites was positively associated with infertility (OR 4.33; 95% CI 1.13-16.70; P≤0.05. CONCLUSIONS/SIGNIFICANCE: Estrogen metabolites occur widely in diverse

  2. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India.

    Science.gov (United States)

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  3. Sugar-Responsive Pseudopolyrotaxane Composed of Phenylboronic Acid-Modified Polyethylene Glycol and γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Tomohiro Seki

    2015-03-01

    Full Text Available We have designed a sugar-responsive pseudopolyrotaxane (PPRX by combining phenylboronic acid-modified polyethylene glycol (PBA–PEG and γ-cyclodextrin. Phenylboronic acid (PBA was used as a sugar-recognition motif in the PPRX because PBA reacts with a diol portion of the sugar molecule and forms a cyclic ester. When D-fructose or D-glucose was added to a suspension of PPRX, PPRX disintegrated, depending on the concentration of the sugars. Interestingly, catechol does not show a response although catechol has a high affinity for PBA. We analyzed the response mechanism of PPRX by considering equilibria.

  4. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    Mussel-inspired hydrogels have drawn considerable attention. They can be based on either covalent crosslinking through catechol oxidation chemistry or on coordination chemistry through reversible catecholato–metal bonds, which incorporates self-healing properties.1-6 For practical applications......-healing abilities even at high pH but that can be stiffened at will by dialing in the required degree of covalent crosslinking. This dial-in method thus harnesses two aspects of catechol-type chemistries to yield double network hydrogels in a straightforward and highly controllable manner....

  5. SUBJECT INDEX

    Indian Academy of Sciences (India)

    donor) as an inorganic analogue of carboxylate group: A journey to a new domain of coordination chemistry. 475. Catalytic activity. Tuning size and catalytic activity of nano-clusters of cobalt oxide. 179. Catechol oxidase. Activation of peroxyl and molecular oxygen using bis-benzimidazole diamide copper (II) compounds.

  6. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation : Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site

    NARCIS (Netherlands)

    Hendrickx, B; Junca, H; Vosahlova, J; Lindner, A; Ruegg, [No Value; Bucheli-Witschel, M; Faber, F; Egli, T; Mau, M; Schlomann, M; Brennerova, M; Brenner, [No Value; Pieper, DH; Top, EM; Dejonghe, W; Bastiaens, L; Springael, D

    Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for metacleavage of the aromatic ring. The new primer sets

  7. Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species.

    Science.gov (United States)

    Liu, Huan; Qu, Xue; Kim, Eunkyoung; Lei, Miao; Dai, Kai; Tan, Xiaoli; Xu, Miao; Li, Jinyang; Liu, Yangping; Shi, Xiaowen; Li, Peng; Payne, Gregory F; Liu, Changsheng

    2018-04-01

    Open wounds and burns are prone to infection and there remains considerable interest in developing safe and effective mechanisms to confer antimicrobial activities to wound dressings. We report a biomimetic wound dressing for the in situ and sustained generation of reactive oxygen species (ROS). Specifically, we fabricate a catechol-modified chitosan film that mimics features of the melanin capsule generated during an insect immune response to infection. We use an electrochemical reverse engineering approach to demonstrate that this catechol-chitosan film possesses redox-activities and can be repeatedly oxidized and reduced. In vitro tests demonstrate that this film catalyzes the transfer of electrons from physiological reductant ascorbate to O 2 for sustained ROS generation, and confers ascorbate-dependent antimicrobial activities. In vivo antimicrobial experiment with a rat subcutaneous model indicates the catechol-chitosan film at reduced state inhibits the bacterial growth and alleviates the infection of the incisions. Open wound healing tests with a mouse model indicate that the catechol-chitosan film suppresses the bacterial population at the wound site, induces less inflammation and promotes wound healing. We envision this biomimetic approach for the sustained, localized and in situ generation of ROS could provide new opportunities for wound management by protecting against pathogen infection and potentially even enlisting ROS-mediated wound healing mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Influence of axial and peripheral ligands on the electronic structure of titanium phthalocyanines

    DEFF Research Database (Denmark)

    Pickup, David F.; García Lastra, Juan Maria; Rogero, Celia

    2013-01-01

    To discover how molecular changes affect the electronic structure of dye molecules for solar cells, we have investigated four titanium phthalocyanines customized by axial and peripheral ligands (monodentate oxo versus bidentate catechol and tert-butyl versus tert-butylphenoxy, respectively). X...

  9. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    ECEC, ECECE and ECECECE for oxidation of 1a–e in the presence of 3. Keywords. 1-Methylindole; catechol; Michael addition reaction; cyclic voltammetry; electrochemical oxidation. 1. Introduction. Indole is a powerful antioxidant and it appears to be especially effective against breast and cervical cancer because of its ...

  10. Mononuclear non-heme iron(III)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  11. Catecholato complexes of cobalt and nickel with 1, 4-disubstituted-1 ...

    Indian Academy of Sciences (India)

    ... indicates square-planar environment of metals. Chemical one-electron oxidation of nickel complexes proceeds through catecholate ligand and leads to o-semiquinonato adducts. EPR spectral parameters indicate preservation of square-planar configuration after oxidation. Complexes (DAB)M(Cat) (M = Ni, Co) undergo ...

  12. Ashutosh Ghosh

    Indian Academy of Sciences (India)

    Moreover, some of these compounds, consisting of CuII2DyIII, Cu2TbIII etc. are found to behave like Single Molecule Magnets, and the shapes of the molecule are found to have a considerable effect on the SMM behaviours. The catalytic oxidase activities, e.g., catechol-oxidase- and phenoxazinone-synthase- like activities ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups · Afsar Ali Deepak Bansal Nagendra K Kaushik Neha Kaushik Neha Kaushik Eun Ha Choi Rajeev Gupta · More Details Abstract Fulltext PDF. Several pyridine-amide compounds ...

  14. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury

    NARCIS (Netherlands)

    E.A. Winkler (Ethan A.); J.K. Yue (John); T.W. McAllister (Thomas W.); N.R. Temkin (Nancy); S.S. Oh (Sam S.); E.G. Burchard (Esteban); D. Hu (Donglei); A.R. Ferguson (Adam); H.F. Lingsma (Hester); J.F. Burke (John F.); M.D. Sorani (Marco); J. Rosand (Jonathan); E.L. Yuh (Esther); J. Barber (Jason); P.E. Tarapore (Phiroz E.); R.C. Gardner (Raquel C.); S. Sharma (Sourabh); G.G. Satris (Gabriela G.); C. Eng (Celeste); A.M. Puccio (Ava); K.K.W. Wang (Kevin K. W.); P. Mukherjee (Pratik); A.B. Valadka (Alex); D. Okonkwo (David); R. Diaz-Arrastia (Ramon); G. Manley (Geoffrey)

    2016-01-01

    textabstractMild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits

  15. Accumulation of rare earth elements by siderophore-forming ...

    Indian Academy of Sciences (India)

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth ...

  16. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Directory of Open Access Journals (Sweden)

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  17. Influence of COMT val158met Genotype on the Depressed Brain during Emotional Processing and Working Memory

    NARCIS (Netherlands)

    Opmeer, Esther M.; Kortekaas, Rudie; van Tol, Marie-Jose; van der Wee, Nic J. A.; Woudstra, Saskia; van Buchem, Mark A.; Penninx, Brenda W.; Veltman, Dick J.; Aleman, Andre

    2013-01-01

    Major depressive disorder (MDD) has been associated with abnormal prefrontal-limbic interactions and altered catecholaminergic neurotransmission. The val158met polymorphism on the catechol-O-methyltransferase (COMT) gene has been shown to influence prefrontal cortex (PFC) activation during both

  18. Associations between genetic risk, functional brain network organization and neuroticism

    NARCIS (Netherlands)

    Servaas, Michelle N.; Geerligs, Linda; Bastiaansen, Jojanneke A.; Renken, Remco J.; Marsman, Jan-Bernard C.; Nolte, Ilja M.; Ormel, Johan; Aleman, Andre; Riese, Harriette

    2017-01-01

    Neuroticism and genetic variation in the serotonin-transporter (SLC6A4) and catechol-O-methyltransferase (COMT) gene are risk factors for psychopathology. Alterations in the functional integration and segregation of neural circuits have recently been found in individuals scoring higher on

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In the presence of catechol (H2cat) and benzohydroxamic acid (H2bha), oxovanadium (IV) complexes, [VO (acac)(ONN)] gave mixed-chelate oxovanadium(V) complexes [VO(cat)(ONN)] and [VO(bha)(ONN)] respectively. These complexes are not very stable in solution and slowly convert to the corresponding dioxo species ...

  20. 26 - 31 Bello paid

    African Journals Online (AJOL)

    DR. AMIN

    (Psidium guajava) and bush mango (Irvingia gabonnensis) fruits were studied. Catechol at concentration of 20 mM was used as a ... MATERIALS AND METHODS. Extraction of PPO. Fruits were sliced horizontally into ... suspension was centrifuged at 10000rpm for 30 minutes at 40C, and the homogenate contained the.

  1. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    Abstract. Electrochemical oxidation of some catechol derivatives (1a–e) have been studied in water/ acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlled- potential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation ...

  2. Electrochemical Oxidation of Phenol using a Flow-through Micro ...

    African Journals Online (AJOL)

    The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxideand lead. The electrodes were made by using the principles of curing and formation of lead oxide material that ...

  3. supp32.doc

    Indian Academy of Sciences (India)

    Synthesis, Characterization and Self–Assembly of Co3+ Complexes Appended with Phenol and Catechol Groups. AFSAR ALI, DEEPAK BANSAL and RAJEEV GUPTA*. Department of Chemistry, University Of Delhi, Delhi-110007, India. Figure S1. Absorption spectra of protected complexes 1P-3P in DMF. Figure S2.

  4. Cyclodextrin-facilitated bioconversion of 17 beta-estradiol by a phenoloxidase from Mucuna pruriens cell cultures

    NARCIS (Netherlands)

    Woerdenbag, H.J.; Pras, N.; Frijlink, H.W.; Lerk, C.F.; Malingré, T.M.

    1990-01-01

    After complexation with beta-cyclodextrin, the phenolic steroid 17 beta-estradiol could be ortho-hydroxylated into a catechol, mainly 4-hydroxyestradiol, by a phenoloxidase from in vitro grown cells of Mucuna pruriens. By complexation with beta-cyclodextrin the solubility of the steroid increased

  5. The interaction between cannabis use and the Val158Met polymorphism of the COMT gene in psychosis: A transdiagnostic meta - analysis

    NARCIS (Netherlands)

    Vaessen, Thomas Stephanus Johannes; de Jong, Lea; Schäfer, Annika Theresia; Damen, Thomas; Uittenboogaard, Aniek; Krolinski, Pauline; Nwosu, Chinyere Vicky; Pinckaers, Florentina Maria Egidius; Rotee, Iris Leah Marije; Smeets, Antonius Petrus Wilhelmus; Ermiş, Ayşegül; Kennedy, James L.; Nieman, Dorien H.; Tiwari, Arun; van Os, Jim; Drukker, Marjan

    2018-01-01

    Neither environmental nor genetic factors are sufficient to predict the transdiagnostic expression of psychosis. Therefore, analysis of gene-environment interactions may be productive. A meta-analysis was performed using papers investigating the interaction between cannabis use and catechol-O-methyl

  6. Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus.

    Science.gov (United States)

    Oliva, Jose M; Ballesteros, Ignacio; Negro, M José; Manzanares, Paloma; Cabañas, Araceli; Ballesteros, Mercedes

    2004-01-01

    The inhibitory effects of various lignocellulose degradation products on glucose fermentation by the thermotolerant yeast Kluyveromyces marxianus were studied in batch cultures. The toxicity of the aromatic alcohol catechol and two aromatic aldehydes (4-hydroxybenzaldehyde and vanillin) was investigated in binary combinations. The aldehyde furfural that usually is present in relatively high concentration in hydrolyzates from pentose degradation was also tested. Experiments were conducted by combining agents at concentrations that individually caused 25% inhibition of growth. Compared to the relative toxicity of the individual compounds, combinations of furfural with catechol and 4-hydroxybenzaldehyde were additive (50% inhibition of growth). The other binary combinations assayed (catechol with 4-hydroxybenzaldehyde, and vanillin with catechol, furfural, or 4-hydroxybenzaldehyde) showed synergistic effect on toxicity and caused a 60-90% decrease in cell mass production. The presence of aldehydes in the fermentation medium strongly inhibited cell growth and ethanol production. Kluyveromyces marxianus reduces aldehydes to their corresponding alcohols to mitigate the toxicity of these compounds. The total reduction of aldehydes was needed to start ethanol production. Vanillin, in binary combination, was dramatically toxic and was the only compound for which inhibition could not be overcome by yeast strain assimilation, causing a 90% reduction in both cell growth and fermentation.

  7. Mononuclear non-heme iron (III) complexes of linear and tripodal ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  8. Persistent pain after mastectomy with reconstruction.

    LENUS (Irish Health Repository)

    Hickey, Oonagh T

    2011-09-01

    To determine the prevalence of persistent postsurgical pain (PPSP) and its influence on functional status, and to examine associations between PPSP and single nucleotide polymorphisms of the catechol-O-methyltransferase (COMT) gene and the guanosine triphosphate cyclohydrolase 1 (GCH1) gene following mastectomy and reconstruction.

  9. Plutonium decorporation by mixed ligand chelates. Final report, June 2, 1976--April 15, 1977

    International Nuclear Information System (INIS)

    Schubert, J.

    1977-04-01

    The effects of mixed ligand chelates on the removal of 239 Pu and 234 Th from the tissues of mice were investigated. The primary ligands, L 1 , used were mainly EDTA and DTPA, while the secondary ligands, L 2 , were of the bidentate type, as, for example, catechol, salicylic acid, and benzohydroxamic acid. A suitably chosen mixed ligand system binds Pu or Th at physiological pH's about 10 11 to 10 15 times greater than EDTA or DTPA. An ultrafiltration screening procedure was employed in which soluble Pu or Th salts were injected into mice, the livers were removed several days later and homogenized in the presence of different concentrations of the single and mixed chelants. Similarly, in vivo studies were carried out in which mice were treated 4 hours post Pu (monomeric) injection (I.P.) with a single injection (I.P.) of the chelant systems. Results to date show that the mixed chelant systems are roughly 10 times more effective than EDTA or DTPA alone. Thus, under conditions where DTPA alone (5 x 10 -5 M) removed 1.1 percent of Pu or Th, DTPA + equimolar catechol removed 13.5 percent and 15 percent respectively. Catechol alone had no significant effect. In an in vivo decorporation experiment, a single injection of DTPA plus catechol reduced the liver burden from 45 percent to 2.3 percent and the skeleton from 22 percent to 5.5 percent

  10. Download this PDF file

    African Journals Online (AJOL)

    —TI'IRTBUTYL CATECHOL (3,5—DTBC). AND 2,6—DI—TERTBUTYL PHENOL ..... R.R. Durand Jr., C.S. Bencosme, J.P. Collman and F.C. Anson, J. Am. Chem. Soc., 105, 2710 (1983). (3.14. Chang, H.Y. Lui and i. Abdalmuhdi, J. Am. Chem.

  11. Activation of peroxyl and molecular oxygen using bis-benzimidazole ...

    Indian Academy of Sciences (India)

    ... corresponding quinones, in oxygen-saturated solvents. Yields of 84% have been observed with 34-fold catalyst turnover, with di--butylcatechol. The activity of these copper (II) - bis-benzmidazolediamide compounds is reminiscent of the functioning of copper centres in galactose oxidase, tyrosinase and catechol oxidase ...

  12. The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism.

    NARCIS (Netherlands)

    Klebe, S.; Golmard, J.L.; Nalls, M.A.; Saad, M.; Singleton, A.B.; Bras, J.M.; Hardy, J.; Simon Sanchez, J.; Heutink, P.; Kuhlenbäumer, G.; Charfi, R.; Klein, C.; Hagenah, J.; Gasser, T.; Wurster, I.; Lesage, S.; Lorenz, D.; Deuschl, G.; Durif, F.; Pollak, P.; Damier, P.; Tison, F.; Durr, A.; Amouyel, P.; Lambert, J.C.; Tzourio, C.; Maubaret, C.; Charbonnier-Beaupel, F.; Tahiri, K.; Vidailhet, M.; Martinez, M.; Brice, A.; Corvol, J.C.

    2013-01-01

    The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met

  13. The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism

    NARCIS (Netherlands)

    Klebe, S.; Golmard, J.L.; Nalls, M.A.; Saad, M.; Singleton, A.B.; Bras, J.M.; Hardy, J.; Simon-Sanchez, J.; Heutink, P.; Kuhlenbaumer, G.; Charfi, R.; Klein, C.; Hagenah, J.; Gasser, T.; Wurster, I.; Lesage, S.; Lorenz, D.; Deuschl, G.; Durif, F.; Pollak, P.; Damier, P.; Tison, F.; Durr, A.; Amouyel, P.; Lambert, J.C.; Tzourio, C.; Maubaret, C.; Charbonnier-Beaupel, F.; Tahiri, K.; Vidailhet, M.; Martinez, M.; Brice, A.; Corvol, J.C.; Bloem, B.R.; Post, B.; Scheffer, H.; Warrenburg, B.P.C. van de; et al.,

    2013-01-01

    The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met

  14. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Science.gov (United States)

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  15. Synthesis, characterization and self-assembly of Co 3 complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups. Afsar Ali Deepak Bansal Rajeev Gupt. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1535-1546 ...

  16. Determination of dopaminergic prodrugs by high-performance liquid chromatography followed by post-column ion-pair extraction

    NARCIS (Netherlands)

    Haas, M; Moolenaar, Frits; Kluppel, A.C A; Dijkstra, D.; Meijer, D.K F; de Zeeuw, D

    1997-01-01

    One possibility to optimize the therapeutic application of dopaminergic compounds with a catechol function is the reversible protection of this moiety using a prodrug approach. Important features in this respect are a proper chemical stability in the gastrointestinal tract, an adequate release rate

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The present study describes the photochemical degradation of phenol-red using photo-Fenton reaction. The progress of the reaction has been monitored spectrophotometrically. The effect of various organic additives e.g. hydroquinone, resorcinol and catechol on the rate of photodegradation has been observed. The effect ...

  18. Synthesis of (R)-(-)-2-fluoronorapomorphine - A precursor for the synthesis of (R)-(-)-2-fluoro-N-[C]propylnorapomorphine for evaluation as a dopamine D agonist ligand for PET investigations

    DEFF Research Database (Denmark)

    Søndergaard, Kåre; Kristensen, Jesper Langgaard; Gillings, Nic

    2005-01-01

    of the triflate to the corresponding N-substituted benzophenone imine. After acidic hydrolysis the resulting aniline was transformed into the 2-fluoro compound via the Balz-Schiemann reaction. Hydrogenolysis of the N-benzyl group followed by deprotection of the catechol moiety using BBr provided 2...

  19. Polymorphisms in Dopamine System Genes Are Associated with Individual Differences in Attention in Infancy

    Science.gov (United States)

    Holmboe, Karla; Nemoda, Zsofia; Fearon, R. M. Pasco; Csibra, Gergely; Sasvari-Szekely, Maria; Johnson, Mark H.

    2010-01-01

    Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase ("COMT") and the…

  20. Detection of meta - and ortho -cleavage dioxygenases in bacterial ...

    African Journals Online (AJOL)

    In contrast, isolates S-5, Sea-8, W-6, W-15 and Pla-1 showed activity with the enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol-2,3-dioxygenase. On the basis of our previous and present analysis, the investigated isolates are considered to have a good potential for application ...

  1. CONTINUOUS PRODUCTION OF THE PHARMACEUTICAL 7,8-DIHYDROXY N-DI-N-PROPYL 2-AMINOTETRALIN USING A PHENOLOXIDASE FROM CELL-CULTURES OF MUCUNA-PRURIENS

    NARCIS (Netherlands)

    PRAS, N; BATTERMAN, S; DIJKSTRA, D; HORN, AS; MALINGRE, TM

    1990-01-01

    Alginate-entrapped cells of Mucuna pruriens as well as the phenoloxidase isolated from the cell cultures, are able to ortho-hydroxylate several mono-, bi- and tri-cyclic monophenols. In this study, 7,8-dihydroxy N-di-n-propyl 2-aminotetralin, a catechol of pharmaceutical interest and difficult to

  2. Consequences of quercetin methylation for its covalent glutathione and DNA adduct formation

    NARCIS (Netherlands)

    Woude, van der H.; Boersma, M.G.; Alink, G.M.; Vervoort, J.J.M.; Rietjens, I.M.C.M.

    2006-01-01

    This study investigates the pro-oxidant activity of 3¿- and 4¿-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3¿- and 4¿-O-methylquercetin with

  3. Cognitive impairment in elderly women

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Bagger, Yu Z; Tankó, László B

    2006-01-01

    a modified version of the Blessed test. Participants were also subjected to a general clinical examination and they were interviewed to collect information on lifestyle practices and comorbid disorders. Genotypes for the apolipoprotein E (APOE) epsilon4, catechol-O-methyltransferase (COMT) Val/Met, and brain...

  4. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase.

    NARCIS (Netherlands)

    Douglas, T.E.L.; Messersmith, P.B.; Chasan, S.; Mikos, A.G.; Mulder, E.L.W. de; Dickson, G.; Schaubroeck, D.; Balcaen, L.; Vanhaecke, F.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2012-01-01

    Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups,

  5. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    Science.gov (United States)

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  6. Autotoxicity of chard and its allelopathic potentiality on germination ...

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... Plants used were sampled in 2006, and then plant extracts were obtained after they were ground and .... dark condition at room temperature until use. .... Caffeine. 16.683. -. Catechol. 16.725. -. P-Hydroxybenzoic acid. 16.832. 16.907. 37.188. Caffeic acid. 18.016. -. Vanillic acid. 18.037. 18.080. 13.625.

  7. HPLC profile, in vitro alpha-amylase, alpha-glucosidase inhibitory ...

    African Journals Online (AJOL)

    High Performance Liquid Chromatography profile revealed Resorcinol/Catechol to be one of the phenolics detected and may be responsible for GSEALE's inhibition of α-amylase and α-glucosidase and antioxidant properties. This shows that GS can probably be used for antidiabetic purpose due to significant antioxidant ...

  8. Synthesis, complexation chemistry and a case of self-recognition of chiral phosphite ligands

    NARCIS (Netherlands)

    Dros, AC; Meetsma, A; Kellogg, RM

    1999-01-01

    Reaction of (R)-(-)-1-phenyl-2,2,3-trimethylbutane-1,3-diol with PCl3 affords trans-(S)-2-chloro-4,4,5,5-tetramethyl-6-(R)-phenyl-1,3,2-dioxaphosphorinane, which couples smoothly with catechol, resorcinol, 2,2-dimethyl-1,3-propanediol and fluorenedimethanol to form the corresponding diphosphites. By

  9. Syntheses, characterization, and anti-cancer activities of pyridine ...

    Indian Academy of Sciences (India)

    Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. AFSAR ALIa, DEEPAK BANSALa, NAGENDRA K KAUSHIKb, NEHA KAUSHIKb,. EUN HA CHOIb and RAJEEV GUPTAa,∗. aDepartment of Chemistry, University of Delhi, Delhi 110 ...

  10. SINET: Ethiopian Journal of Science - Vol 35, No 1 (2012)

    African Journals Online (AJOL)

    SOLID STATE PHOTOELECTROCHEMICAL CELL BASED ON DYE SENSITIZED TiO2 AND POLYMER ELECTROLYTE COMPLEXED WITH I3¯/I¯ · EMAIL FREE ... SIMULTANEOUS DETERMINATION OF HYDROQUINONE AND CATECHOL AT POLY(P-ASA)/MWNTS COMPOSITE FILM MODIFIED GLASSY CARBON ...

  11. Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5.

    Science.gov (United States)

    Liu, Yongsheng; Zhang, Jie; Zhang, Zhongze

    2004-06-01

    A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.

  12. Development of a Laccase biosensor for determination of phenolic micropollutants in surface waters

    CSIR Research Space (South Africa)

    De Souza Gil, E

    2014-01-01

    Full Text Available .25 mV, scan rate from 5 to 25 mV (sups-1) and potential pulse amplitude from 10 to 60 mV on the differential pulse voltammetric response was investigated. A linear correlation of r² = 0.9946 was obtained for the phenol content (catechol...

  13. Influence of Axial and Peripheral Ligands on the Electronic Structure of Titanium Phthalocyanines

    NARCIS (Netherlands)

    Pickup, David F.; Zegkinoglou, Ioannis; Ballesteros, Beatriz; Ganivet, Carolina R.; Garcia-Lastra, J. M.; Cook, Peter L.; Johnson, Phillip S.; Rogero, Celia; de Groot, Frank|info:eu-repo/dai/nl/08747610X; Rubio, Angel; de la Torre, Gema; Enrique Ortega, J.; Himpsel, F. J.

    2013-01-01

    To discover how molecular changes affect the electronic structure of dye molecules for solar cells, we have investigated four titanium phthalocyanines customized by axial and peripheral ligands (monodentate oxo versus bidentate catechol and tert-butyl versus tert-butylphenoxy, respectively). X-ray

  14. Chemical Leukoderma Associated with Vicks VapoRub®

    Science.gov (United States)

    Zirwas, Matthew J.

    2008-01-01

    Chemical leukoderma is seen in a variety of clinical settings. We present a case of leukoderma associated with the phenolic derivative thymol found in a common over-the-counter medication for nasal congestion. The proposed mechanism for this type of leukoderma is presented along with other sources of phenolic and catecholic derivatives. Treatment is also briefly reviewed. PMID:21212846

  15. Chemical Leukoderma Associated with Vicks VapoRub®

    OpenAIRE

    Boyse, Kathryn E.; Zirwas, Matthew J.

    2008-01-01

    Chemical leukoderma is seen in a variety of clinical settings. We present a case of leukoderma associated with the phenolic derivative thymol found in a common over-the-counter medication for nasal congestion. The proposed mechanism for this type of leukoderma is presented along with other sources of phenolic and catecholic derivatives. Treatment is also briefly reviewed.

  16. Chemical Leukoderma Associated with Vicks VapoRub.

    Science.gov (United States)

    Boyse, Kathryn E; Zirwas, Matthew J

    2008-11-01

    Chemical leukoderma is seen in a variety of clinical settings. We present a case of leukoderma associated with the phenolic derivative thymol found in a common over-the-counter medication for nasal congestion. The proposed mechanism for this type of leukoderma is presented along with other sources of phenolic and catecholic derivatives. Treatment is also briefly reviewed.

  17. Productivity and biochemical properties of green tea in response to ...

    Indian Academy of Sciences (India)

    The expression of three homologues of the expansin genes, which regulate plant cell growth, and the CsCHS gene encoding a tea chalcone synthase, which critically regulates the biosynthesis of catechols, were induced in germinal leaves of tea plants following treatment with HpaG1–94 or HpaGXooc. Higher levels of ...

  18. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  19. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  20. Electroenzymatic Reactions With Oxygen on Laccase-Modified Electrodes in Anhydrous (Pure) Organic Solvent

    DEFF Research Database (Denmark)

    Yarapolov, A.; Shleev, S.; Zaitseva, E.

    2007-01-01

    glassy carbon and graphite electrodes with adsorbed laccase. The influence of the time for drying the laccase solution at the electrode surface on the electroreduction of oxygen was studied. Investigating the electroenzymatic oxidation reaction of catechol and hydroquinone in DMSO reveals the formation...

  1. Fulltext PDF

    Indian Academy of Sciences (India)

    of Tl) was shaken until the suspension colour became bright yellow. The light suspension of di-thallium cat- echolate was carefully decanted to another evacuated ampoule. Thallium amalgam was carefully washed sev- eral times by THF until the solution became colour- less. (Attention! Di-thallium catecholate is extremely.

  2. Tris(catecholato)silicates of nickel: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    Administrator

    Catecholato complexes of transition metals have evoked interest for long and have also been the subject of recent studies due to their importance as useful model compounds for the study of microbial uptake and transport of iron. With regard to the constitutional and structural issues of nickel catecholates, many ...

  3. Formaldehyde condensation products of model phenols for conifer bark tannins

    Science.gov (United States)

    Richard W. Hemingway; Gerald W. McGraw

    1978-01-01

    Gel permeation chromatography of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechins, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  4. 4-Oxalocrotonate tautomerase, its homologue YwhB, and active vinylpyruvate hydratase : Synthesis and evaluation of 2-fluoro substrate analogues

    NARCIS (Netherlands)

    Johnson, William H; Wang, Susan C; Stanley, Thanuja M; Czerwinski, Robert M; Almrud, Jeffrey J; Poelarends, Gerrit J; Murzin, Alexey G; Whitman, Christian P

    2004-01-01

    A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in

  5. Identification and genetic characterization of phenol- degrading ...

    African Journals Online (AJOL)

    SAURABH

    2013-02-20

    Feb 20, 2013 ... compared with LmPH gene of Pseudomonas sp.CF600. Reversed phase high performance liquid chromatography showed that the isolate can degrade phenol through catechol ortho fission pathway. In this paper, we reported about the new strain of Acinetobacter sp. capable of degrading phenol (9.5 mM.

  6. Toward engineering E. coli with an autoregulatory system for lignin valorization.

    Science.gov (United States)

    Wu, Weihua; Liu, Fang; Singh, Seema

    2018-03-20

    Efficient lignin valorization could add more than 10-fold the value gained from burning it for energy and is critical for economic viability of future biorefineries. However, lignin-derived aromatics from biomass pretreatment are known to be potent fermentation inhibitors in microbial production of fuels and other value-added chemicals. In addition, isopropyl-β-d-1-thiogalactopyranoside and other inducers are routinely added into fermentation broth to induce the expression of pathway enzymes, which further adds to the overall process cost. An autoregulatory system that can diminish the aromatics' toxicity as well as be substrate-inducible can be the key for successful integration of lignin valorization into future lignocellulosic biorefineries. Toward that goal, in this study an autoregulatory system is demonstrated that alleviates the toxicity issue and eliminates the cost of an external inducer. Specifically, this system is composed of a catechol biosynthesis pathway coexpressed with an active aromatic transporter CouP under induction by a vanillin self-inducible promoter, ADH7, to effectively convert the lignin-derived aromatics into value-added chemicals using Escherichia coli as a host. The constructed autoregulatory system can efficiently transport vanillin across the cell membrane and convert it to catechol. Compared with the system without CouP expression, the expression of catechol biosynthesis pathway with transporter CouP significantly improved the catechol yields about 30% and 40% under promoter pTrc and ADH7, respectively. This study demonstrated an aromatic-induced autoregulatory system that enabled conversion of lignin-derived aromatics into catechol without the addition of any costly, external inducers, providing a promising and economically viable route for lignin valorization. Copyright © 2018 the Author(s). Published by PNAS.

  7. Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate.

    Directory of Open Access Journals (Sweden)

    Merike Jõesaar

    Full Text Available Phenol- and naphthalene-degrading indigenous Pseudomonas pseudoalcaligenes strain C70 has great potential for the bioremediation of polluted areas. It harbours two chromosomally located catechol meta pathways, one of which is structurally and phylogenetically very similar to the Pseudomonas sp. CF600 dmp operon and the other to the P. stutzeri AN10 nah lower operon. The key enzymes of the catechol meta pathway, catechol 2,3-dioxygenase (C23O from strain C70, PheB and NahH, have an amino acid identity of 85%. The metabolic and regulatory phenotypes of the wild-type and the mutant strain C70ΔpheB lacking pheB were evaluated. qRT-PCR data showed that in C70, the expression of pheB- and nahH-encoded C23O was induced by phenol and salicylate, respectively. We demonstrate that strain C70 is more effective in the degradation of phenol and salicylate, especially at higher substrate concentrations, when these compounds are present as a mixture; i.e., when both pathways are expressed. Moreover, NahH is able to substitute for the deleted PheB in phenol degradation when salicylate is also present in the growth medium. The appearance of a yellow intermediate 2-hydroxymuconic semialdehyde was followed by the accumulation of catechol in salicylate-containing growth medium, and lower expression levels and specific activities of the C23O of the sal operon were detected. However, the excretion of the toxic intermediate catechol to the growth medium was avoided when the growth medium was supplemented with phenol, seemingly due to the contribution of the second meta pathway encoded by the phe genes.

  8. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet.

    Directory of Open Access Journals (Sweden)

    Donald R Senger

    Full Text Available The Nrf2 (NFE2L2 cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables. However, natural co-factors that are potent and widely available from dietary sources have not been identified previously. The objectives of this study were to investigate support of the Nrf2 cell defense pathway by the alkyl catechols: 4-methylcatechol, 4-vinylcatechol, and 4-ethylcatechol. These small electrochemicals are naturally available from numerous sources but have not received attention. Findings reported here illustrate that these compounds are indeed potent co-factors for activation of the Nrf2 pathway both in vitro and in vivo. Each strongly supports expression of Nrf2 target genes in a variety of human cell types; and, in addition, 4-ethylcatechol is orally active in mice. Furthermore, findings reported here identify important and previously unrecognized sources of these compounds, arising from biotransformation of common plant compounds by lactobacilli that express phenolic acid decarboxylase. Thus, for example, Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus collinoides, which are consumed from a diet rich in traditionally fermented foods and beverages, convert common phenolic acids found in fruits and vegetables to 4-vinylcatechol and/or 4-ethylcatechol. In addition, all of the alkyl catechols are found in wood smoke that was used widely for food preservation. Thus, the potentially numerous sources of alkyl catechols in traditional foods suggest that these co-factors were common in ancient diets. However, with radical changes in food preservation, alkyl catechols have been lost from modern foods. The

  9. Thermodynamics of Molybdate Binding to Humic Acid

    Science.gov (United States)

    Thalhammer, K.; Gilbert, B.

    2016-12-01

    Molybdenum is an essential nutrient for diazotrophic bacteria that use nitrogenase I to fix atmospheric nitrogen in soils into bioavailable forms such as ammonia. This metalloid is released during rock weathering processes and at neutral pH it exists primarily as the soluble oxyanion molybdate, MoO42-. It has been established that molybdate mobility and bioavailability in soils is influenced by sorption to mineral surfaces and complexation by natural organic matter (NOM). The molybdate ion is readily bound by ortho dihydroxybenzene molecules such as catechol and catechol groups in siderophores. Humic acids (HA) found in NOM contain abundant phenolic groups and extended X-ray absorption fine structure (EXAFS) spectroscopy demonstrated that molybdate is bound by catechol-containing molecules in soil organic matter1. However, to our knowledge no quantitative determination of the affinity of molybdate to HA has been reported. We studied the interactions of molybdate with Suwannee River HA using ultraviolet-visible (UV-vis) absorption spectroscopy and isothermal titration calorimetry (ITC) to determine the conditional equilibrium constant for complexation at neutral pH. We further used ITC to investigate the thermodynamic contributions to complexation and the interaction kinetics. Addition of molybdate to HA caused the formation of complexes with UV-vis absorption spectra in good agreement with molybdate-catechol species indicating catechol groups to be the primary ligands in HA. ITC data revealed that binding enthalpies and kinetics were strongly influenced by ionic strength, suggesting a role for macromolecular reorganization driven by metalloid addition. 1. Wichard et al., Nature Geoscience 2, 625 - 629 (2009).

  10. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    Directory of Open Access Journals (Sweden)

    Jha Prashant

    2009-08-01

    Full Text Available Abstract Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI, U(V, U(IV, U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG, and U-2-Keto-3-doxyoctanoate (KDO with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI to U(IV is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V- and U(IV-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI and U(IV rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids.

  11. Formation of Dihydroxybenzenes in Cigarette Smoke. Part 1. Contribution from Chlorogenic Acid and Rutin

    Directory of Open Access Journals (Sweden)

    Davis MF

    2014-12-01

    Full Text Available Catechol and alkylcatechols are known co-carcinogens present in cigarette smoke. Hydroquinone, although nongenotoxic, can form a metabolite with nephrotoxic properties and is a potential human carcinogen. The formation of dihydroxybenzenes during smoking originates with the pyrolysis of several precursors from tobacco. These include cellulose, chlorogenic acid, rutin, etc. The present study attempts to quantitate the contribution of chlorogenic acid and rutin to the formation of dihydroxybenzenes and of some alkyldihydroxybenzenes. Also it estimates the contribution to the formation of dihydroxybenzenes from other potential precursors including glucose, fructose, sucrose, cellulose, pectin, starch, and lignin. The study was done in three parts: 1. pyrolytic evaluation of the amount of dihydroxybenzenes in smoke generated from isolated potential precursors; 2. analysis of smoke from cigarettes made from a variety of tobaccos (14 single grades and two blended cigarettes, followed by correlations of dihydroxybenzenes yield with the tobacco content of various suspected precursors; 3. addition of chlorogenic acid or rutin to several tobaccos followed by the smoking of the spiked cigarettes and measurement of dihydroxybenzenes yield increase. The study shows that for a variety of singlegrade cigarettes and for two blended cigarettes (one being the 2R4F Kentucky reference, the contribution of chlorogenic acid and of rutin to the formation of catechol and hydroquinone in smoke depends on the blend. For the 2R4F cigarette, the contribution from chlorogenic acid is 8.7% for catechol, and 7.7% for hydroquinone (for ISO smoking protocol. For the same cigarette, the contribution from rutin is 3.7% for catechol and 5.1% for hydroquinone. The results of the study are in agreement with a previously reported finding indicating that chlorogenic acid contributes about 13% to the catechol formation in smoke for the 1R1 Kentucky reference cigarette. The study

  12. The corrosion inhibition of iron and aluminum by various naturally occurring biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    McCafferty, E.; Hansen, D.C. [Naval Research Lab., Washington, DC (United States)

    1995-12-31

    Biological polymers that exhibit a strong affinity for metal surfaces are increasingly becoming the focus of research toward the development of environmentally friendly corrosion inhibitors. This paper deals with the use of various naturally occurring organic molecules as corrosion inhibitors for iron or aluminum. Among the organic molecules considered are catecholate and hydroxamate siderophores isolated from bacteria, the adhesive protein from the blue mussel Mytilus edulis L, and caffeic acid and chlorogenic acid. FTIR analysis, anodic polarization curves, and AC impedance measurements were used to determine the adsorption and effectiveness of the various organic molecules as corrosion inhibitors. Parabactin, a catecholate siderophore, was effective in inhibiting both the corrosion of iron in hydrochloric acid and the pitting of aluminum in 0.1 M sodium chloride. The adhesive protein from the blue mussel was also effective in inhibiting the pitting of aluminum.

  13. The effect of various naturally occurring metal-binding compounds on the electrochemical behavior of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.C.; McCafferty, E. [Naval Research lab., Washington, DC (United States)

    1996-01-01

    Naturally occurring biological molecules are of considerable interest as possible corrosion inhibitors because of increased attention on the development of environmentally compatible, nonpolluting corrosion inhibitors. A hydroxamate yeast siderophore (rhodotorulic acid), a catecholate bacterial siderophore (parabactin), an adhesive protein from the blue mussel Mytilus edulis, and two metal-binding compounds isolated from the tomato and sunflower roots, namely, chlorogenic and caffeic acid, respectively, were adsorbed from solution onto pure aluminum (99.9995%) and their effect on the critical pitting potential and polarization resistance in deaerated 0.1 M NaCl was measured. These measurements were made using anodic polarization and ac impedance spectroscopy. The catechol-containing siderophore has an inhibitive effect on the critical pitting potential of aluminum in 0.1 M NaCl and increases the polarization resistance of the metal over time. The adhesive protein from the blue mussel is also effective in inhibiting the pitting of aluminum.

  14. Predicting and Understanding the Enzymatic Inhibition of Human Peroxiredoxin 5 by 4-Substituted Pyrocatechols by Combining Funnel Metadynamics, Solution NMR, and Steady-State Kinetics.

    Science.gov (United States)

    Chow, Melissa L; Troussicot, Laura; Martin, Marie; Doumèche, Bastien; Guillière, Florence; Lancelin, Jean-Marc

    2016-06-21

    Funnel metadynamics is a kind of computational simulation used to enhance the sampling of protein-ligand binding events in solution. By characterization of the binding interaction events, an estimated absolute binding free energy can be calculated. Nuclear magnetic resonance and funnel metadynamics were used to evaluate the binding of pyrocatechol derivatives (catechol, 4-methylcatechol, and 4-tert-butylcatechol) to human peroxiredoxin 5. Human peroxiredoxins are peroxidases involved in cellular peroxide homeostasis. Recently, overexpressed or suppressed peroxiredoxin levels have been linked to various diseases. Here, the catechol derivatives were found to be inhibitors against human peroxiredoxin 5 through a partial mixed type noncompetitive mechanism. Funnel metadynamics provided a microscopic model for interpreting the inhibition mechanism. Correlations were observed between the inhibition constants and the absolute binding free energy. Overall, this study showcases the fact that funnel metadynamics simulations can be employed as a preliminary approach to gain an in-depth understanding of potential enzyme inhibitors.

  15. A high-pressure NMR probe for aqueous geochemistry.

    Science.gov (United States)

    Pautler, Brent G; Colla, Christopher A; Johnson, Rene L; Klavins, Peter; Harley, Stephen J; Ohlin, C André; Sverjensky, Dimitri A; Walton, Jeffrey H; Casey, William H

    2014-09-08

    A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 μL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  17. Genetic Influences of OPRM1, OPRD1 and COMT on Morphine Analgesia in a Multi-Modal, Multi-Tissue Human Experimental Pain Model

    DEFF Research Database (Denmark)

    Nielsen, Lecia Møller; Christrup, Lona Louring; Sato, Hiroe

    2017-01-01

    Human studies on experimentally induced pain are of value to elucidate the genetic influence on morphine analgesia under controlled conditions. The aim of this study was to investigate if genetic variants of mu, kappa and delta opioid receptor genes (OPRM1, OPRK1 and OPRD1) and catechol-O-methylt......Human studies on experimentally induced pain are of value to elucidate the genetic influence on morphine analgesia under controlled conditions. The aim of this study was to investigate if genetic variants of mu, kappa and delta opioid receptor genes (OPRM1, OPRK1 and OPRD1) and catechol...... (mechanical, electrical and thermal) and cold pressor test (immersion of the hand into ice water). Sixteen genetic polymorphisms of four candidate genes were explored. Variability in morphine analgesia to contact heat stimulation was associated with COMT rs4680 (P=0.04), and rectal thermal stimulation...

  18. Association between Gene Polymorphisms and Pain Sensitivity Assessed in a Multi-Modal Multi-Tissue Human Experimental Model - An Explorative Study

    DEFF Research Database (Denmark)

    Nielsen, Lecia Møller; Olesen, Anne Estrup; Sato, Hiroe

    2016-01-01

    The genetic influence on sensitivity to noxious stimuli (pain sensitivity) remains controversial and needs further investigation. In the present study, the possible influence of polymorphisms in three opioid receptor (OPRM, OPRD and OPRK) genes and the catechol-O-methyltransferase (COMT) gene...... on pain sensitivity in healthy participants was investigated. Catechol-O-methyltransferase has an indirect effect on the mu opioid receptor by changing its activity through an altered endogenous ligand effect. Blood samples for genetic analysis were withdrawn in a multi-modal and multi-tissue experimental......, electrical and thermal visceral stimulations. A cold pressor test was also conducted. DNA was available from 38 of 40 participants. Compared to non-carriers of the COMT rs4680A allele, carriers reported higher bone pressure pain tolerance threshold (i.e. less pain) by up to 23.8% (p

  19. Mussel-Inspired Materials: Self-Healing through Coordination Chemistry.

    Science.gov (United States)

    Krogsgaard, Marie; Nue, Vicki; Birkedal, Henrik

    2016-01-18

    Improved understanding of the underwater attachment strategy of the blue mussels and other marine organisms has inspired researchers to find new routes to advanced materials. Mussels use polyphenols, such as the catechol-containing amino acid 3,4-dihydroxyphenylalanine (DOPA), to attach to surfaces. Catechols and their analogues can undergo both oxidative covalent cross-linking under alkaline conditions and take part in coordination chemistry. The former has resulted in the widespread use of polydopamine and related materials. The latter is emerging as a tool to make self-healing materials due to the reversible nature of coordination bonds. We review how mussel-inspired materials have been made with a focus on the less developed use of metal coordination and illustrate how this chemistry can be widely to make self-healing materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of a Pyroprobe-Deuterium NMR System: Deuterium Tracing and Mechanistic Study of Upgrading Process for Lignin Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Haoxi; Jarvis, Mark W.; Nimlos, Mark R.; Gjersing, Erica L.; Sturgeon, Matthew R.; Foust, Thomas D.; Ragauskas, Arthur J.; Biddy, Mary J.

    2016-04-21

    In this study, a pyroprobe-deuterium (2H) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, p-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcyclopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and p-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the 2H NMR analysis for the deuterium-traced ring opening of catechol on Ir/..gamma..-Al2O3 is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. Benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products.

  1. New natural product -an efficient antimicrobial applications of new newly synthesized pyrimidine derivatives by the electrochemical oxidation of hydroxyl phenol in the presence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol as nucleophile.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhammad, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah; Khan, Zia Ullah

    2018-05-01

    Some new pyrimidine derivatives have been synthesised by electrochemical oxidation of catechol (1a) in the existence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol (3) as a nucleophile in aqueous solution using Cyclic Voltammetric and Controlled Potential Coulometry. The catechol has been oxidised to o-quinone through electrochemical method and participative in Michael addition reaction, leading to the development of some new pyrimidine derivatives. The products were achieved in good yield with high pureness. The mechanism of the reaction has been conformed from the Cyclic Voltammetric data and Controlled Potential Coulometry. After purification, the compounds were characterised using modern techniques. The synthesised materials were screened for antimicrobial actions using Gram positive and Gram negative strain of bacteria. These new synthesised pyrimidine derivatives showed very good antimicrobial activity.

  2. New pathway for the biodegradation of indole in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, A.; Vaidyanathan, C.S. (Indiana Institute of Science, Bangalore (India))

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  3. Ultrastructural and Histochemical Characterization of the Zebra Mussel Adhesive Apparatus

    Science.gov (United States)

    Farsad, Nikrooz

    Since their accidental introduction into the Great Lakes in mid- to late-1980s, the freshwater zebra mussels, Dreissena polymorpha, have colonized most lakes and waterways across eastern North America. Their rapid spread is partly attributed to their ability to tenaciously attach to hard substrates via an adhesive apparatus called the byssus, resulting in serious environmental and economic impacts. A detailed ultrastructural study of the byssus revealed a 10 nm adhesive layer at the attachment interface. Distributions of the main adhesive amino acid, 3,4-dihydroxyphenylalanine (DOPA), and its oxidizing (cross-linking) enzyme, catechol oxidase, were determined histochemically. It was found that, upon aging, DOPA levels remained high in the portion of the byssus closest to the interface, consistent with an adhesive role. In contrast, reduced levels of DOPA corresponded well with high levels of catechol oxidase in the load-bearing component of the byssus, presumably forming cross-links and increasing the cohesive strength.

  4. Effects of LB broth, naphthalene concentration, and acetone on the naphthalene degradation activities by Pseudomonas putida G7.

    Science.gov (United States)

    Chang, Su-Yun; Liu, Xue-Gong; Ren, Bi-Qiong; Liu, Bo; Zhang, Kai; Zhang, Honggui; Wan, Yao

    2015-01-01

    Luria-Bertani broth and acetone were usually used in naphthalene degradation experiments as nutrient and solvent. However, their effect on the degradation was seldom mentioned. In this work, we investigated the effect of LB, naphthalene concentration, and acetone on the degradation of naphthalene by Pseudomonas putida G7, which is useful for the degradation of naphthalene on future field remediation. By adding LB, the naphthalene degradation efficiencies and naphthalene dioxygenase were both decreased by 98%, while the catechol dioxygenase was decreased by 90%. Degradation of naphthalene was also inhibited when naphthalene concentration was 56 ppm and higher, which was accompanied with the accumulation of orange-colored metabolism products. However, acetone can stimulate the degradation of naphthalene, and the stimulation was more obvious when naphthalene concentration was lower than 2000 ppm. By assaying the enzyme activities of naphthalene dioxygenase and catechol dioxygenase, it was thought that the degradation efficiency was depending on the more sensitive enzymes on the complicated conditions.

  5. Modified xylE and xylTE reporter genes for use in Streptomyces: analysis of the effect of xylT.

    Science.gov (United States)

    González-Cerón, G; Licona, P; Servín-González, L

    2001-03-15

    The reporter gene xylE (encoding catechol 2,3-dioxygenase) has been modified for a more rational use in Streptomyces. Two reporter fragments, one containing xylE, and the other containing also the upstream gene xylT (which encodes a soluble ferredoxin), have been constructed to allow precise fusion of regulatory regions to the reporter genes. Identical fusions of these xylE and xylTE reporter fragments to the Streptomyces dagA and tipA promoters, in low and high copy number plasmids, show that the levels of xylE mRNA and catechol 2,3-dioxygenase activities are significantly higher when xylT is present.

  6. Design of Ion-Exchange Resins Through EDTA and DTPA Modified Ligands

    Directory of Open Access Journals (Sweden)

    2014-07-01

    Catechol, resorcinol, and their admixtures with EDTA and DTPA moieties were converted into polymeric resins by alkaline polycondensation with formaldehyde. The resins were characterized by FTIR spectroscopy, elemental analysis, ion-exchange capacity, and distribution coefficient (D for heavy metal and radionuclide such as Cs and Sr. 137Cs and 90Sr constitutes a major source of heat in nuclear waste streams and in regards to recent nuclear event their remediation in complex solution – sea water - represent an important issue.

  7. Biosorbents for Removing Hazardous Metals and Metalloids ?

    OpenAIRE

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor ...

  8. Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Gil; Chan, Albert H.; Spasov, Krasimir A.; Anderson, Karen S.; Jorgensen, William L.

    2016-12-08

    Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1–10 nM potencies toward wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for 4a and 4f illustrate the alternatives.

  9. Iron and cobalt complexes of 4,4,9,9-tetramethyl-5,8-diazadodecane ...

    Indian Academy of Sciences (India)

    and a biomimetic iron(III)-catecholate complex [FeIII(HL)(DBC)] (3) of a dioxime ligand (H2L = 4,4,9,9- tetramethyl-5,8-diazadodecane-2,11-dione dioxime and DBCH2 = 3,5-di-tert-butylcatechol) were synthesized and characterized. X-ray single-crystal structures of both the dinuclear complexes exhibit an out-of-plane oxi-.

  10. Effect of O-methylated and glucuronosylated flavonoids from Tamarix gallica on α-glucosidase inhibitory activity: structure-activity relationship and synergistic potential.

    Science.gov (United States)

    Ben Hmidene, Asma; Smaoui, Abderrazak; Abdelly, Chedly; Isoda, Hiroko; Shigemori, Hideyuki

    2017-03-01

    O-Methylated and glucuronosylated flavonoids were isolated from Tamarix gallica as α-glucosidase inhibitors. Structure-activity relationship of these flavonoids suggests that catechol moiety and glucuronic acid at C-3 are factors in the increase in α-glucosidase inhibitory activity. Furthermore, rhamnetin, tamarixetin, rhamnazin, KGlcA, KGlcA-Me, QGlcA, and QGlcA-Me exhibit synergistic potential when applied with a very low concentration of acarbose to α-glucosidase from rat intestine.

  11. COMT and ANKK1-Taq-Ia Genetic Polymorphisms Influence Visual Working Memory

    OpenAIRE

    Berryhill, Marian E.; Wiener, Martin; Stephens, Jaclyn A.; Lohoff, Falk W.; Coslett, H. Branch

    2013-01-01

    Complex cognitive tasks such as visual working memory (WM) involve networks of interacting brain regions. Several neurotransmitters, including an appropriate dopamine concentration, are important for WM performance. A number of gene polymorphisms are associated with individual differences in cognitive task performance. COMT, for example, encodes catechol-o-methyl transferase the enzyme primarily responsible for catabolizing dopamine in the prefrontal cortex. Striatal dopamine function, linked...

  12. Synthesis and Characterization of New ‎Condensation Polymers Based on New ‎Aromatic di-ethers

    Directory of Open Access Journals (Sweden)

    Saadon Abdulla Aowda

    2017-11-01

    Full Text Available This research includes synthesis and identification of new polymers that are expected having industrial applications in paint ships and dyes. These polymers were prepared from cheap and available materials such as glycerol and catechol, hydroquinone and resorcinol and using cheap catalyst in good yields.       The resulting compounds were identified by FT-IR, 1H-NMR, 13C-NMR, CHN, and DSC techniques. Some physical properties of these compounds were studied

  13. Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

    Science.gov (United States)

    Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2018-03-01

    Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.

  14. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation

    Czech Academy of Sciences Publication Activity Database

    Brennerová, Mária; Josefiová, Jiřina; Brenner, Vladimír; Pieper, D. H.; Junca, H.

    2009-01-01

    Roč. 11, č. 9 (2009), s. 2216-2227 ISSN 1462-2912 R&D Projects: GA MŠk 1M06011; GA MŠk 2B06156 Institutional research plan: CEZ:AV0Z50200510 Keywords : DIOXYGENASE GENE DIVERSITY * CATECHOL 2,3-DIOXYGENASE * AROMATIC-COMPOUNDS Subject RIV: EE - Microbiology, Virology Impact factor: 4.909, year: 2009

  15. Assay of labile estrogen o-quinones, potent carcinogenic molecular species, by high performance liquid chromatography-electrospray ionization tandem mass spectrometry with phenazine derivatization.

    Science.gov (United States)

    Yamashita, Kouwa; Masuda, Akina; Hoshino, Yuka; Komatsu, Sachiko; Numazawa, Mitsuteru

    2010-04-01

    A sensitive and selective assay method for labile estrogen o-quinones, estrone (E(1))-2,3-quinone (Q), E(1)-3,4-Q, estradiol (E(2))-2,3-Q and E(2)-3,4-Q, based on the use of phenazine (Phz) derivatization with o-phenylenediamine and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was described. The Phz derivatives of four estrogen o-quinones were purified by solid phase extraction and analyzed by HPLC-ESI-MS/MS. The protonated molecule was observed as a base peak for all Phz derivatives in their ESI-mass spectra (positive mode). In multiple reaction monitoring, the transition from [M+H]+ to m/z 231 was chosen for quantification. Calibration curves for the o-quinones were obtained using standard catechol estrogens after sodium metaperiodate treatment and Phz derivatization. Using this method, these four estrogen o-quinones were analyzed with the limit of quantification of 5 ng/ml in acetonitrile (MeCN)-blank matrix (1:4, v/v), respectively, on a basis of the weight of catechol estrogens. Assay accuracy and precision for four estrogen o-quinones were 89.6-113.0% and 3.1-12.6% (5, 125 and 2000 ng/ml in MeCN-blank matrix). Applications of this method enabled to determine the catalytic activities on hydroxylation and subsequent oxidation of E(1) and E(2) of Mushroom tyrosinase and rat liver microsomal fraction. It was confirmed by this method that tyrosinase exhibited 2- and 4-hydroxylation and further oxidation activities for catechols in the ring-A of estrogens. Whereas rat liver microsomal fraction possessed only 2- and 4-hydroxylation activities, and further oxidation activity for catechol estrogens was low. 2010 Elsevier Ltd. All rights reserved.

  16. Environment-Mediated Drug Resistance in Neuroblastoma

    Science.gov (United States)

    2013-10-01

    neuroblastoma. Five specimens were classified as positive for tumor involvement in themarrow (as assessed by the presence of tyrosine hydroxylase –positive cells ...presence of tyrosine hydroxylase – positive tumor cells (black arrow; bar, 50 mm). Right, the data represent the mean percentage (SD) of positive...H, et al. Tyrosine hydroxylase indicates cell differentiation of catechol- amine biosynthesis in neuroendocrine tumors. J Endocrinol Invest 1994;17

  17. Dioxygenases of Chlorobiphenyl-Degrading Species Rhodococcus wratislaviensis G10 and Chlorophenol-Degrading Species Rhodococcus opacus 1CP Induced in Benzoate-Grown Cells and Genes Potentially Involved in These Processes.

    Science.gov (United States)

    Solyanikova, I P; Borzova, O V; Emelyanova, E V; Shumkova, E S; Prisyazhnaya, N V; Plotnikova, E G; Golovleva, L A

    2016-09-01

    Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding α- and β-subunits of protocatechuate 3,4-dioxygenase and to two genes of the R. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.

  18. Synthesis of a Series of Caffeic Acid Phenethyl Amide (CAPA) Fluorinated Derivatives: Comparison of Cytoprotective Effects to Caffeic Acid Phenethyl Ester (CAPE)

    Science.gov (United States)

    2010-06-11

    Synthesis of a series of caffeic acid phenethyl amide (CAPA) fluorinated derivatives: Comparison of cytoprotective effects to caffeic acid phenethyl...to induce genes with the downstream effect of counter- acting oxidative stress.5,6 Caffeic acid phenethyl ester (CAPE), a plant polyphenolic con... synthesis and investigation of catechol ring-fluorinated derivatives of CAPE with regard to cytoprotective ability against oxidative stress in vitro.14

  19. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    OpenAIRE

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydro...

  20. Phenolic Compounds, Phytate, Citric Acid and the In-vitro Iron ...

    African Journals Online (AJOL)

    The catechol and resorcinol phenolics ranged from 1.58 to 3.51 and 1.41 to 5.37 mg catechin equivalent/g respectively and were relatively higher than galloyls that range from 0.10 to 1.52 mg tannic acid equivalent/g). Phytate ranged from 8.46 to 13.18 mg/g, total iron from 3.58 to 7.55 mg/100g and in vitro accessible iron ...

  1. Chromatographic studies of gamma radiolysis products of phenols in methanolic solution

    International Nuclear Information System (INIS)

    Cordeiro, P.J.M.

    1989-10-01

    The radiolytic effects on phenolic compounds (catechol, resorcinol, hydroquinone and pyrogallol), under different doses of gamma irradiation, were studied. The results shown that the radiolytic effects are independent of the irradiation doses with almost all compounds formed from the solvent radiolysis. Analysis of the resulting products were carried out by High Performance Liquid Chromatography and Capillary Gas Chromatography. The quantification of these compounds was made by mass spectrometry. (author)

  2. Structure and possible mechanism of the CcbJ methyltransferase from Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Bauer, J.; Ondrovičová, G.; Najmanová, Lucie; Pevala, V.; Kameník, Zdeněk; Koštan, J.; Janata, Jiří; Kutejová, Eva

    2014-01-01

    Roč. 70, APR 2014 (2014), s. 943-957 ISSN 0907-4449 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : CATECHOL-O-METHYLTRANSFERASE * SN2-LIKE TRANSITION-STATE * CRYSTAL- STRUCTURE S Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  3. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680.

    Science.gov (United States)

    Lee, Nahum; Kim, Eun Jung; Kim, Byung-Gee

    2012-10-19

    Secreted tyrosinase from melanin-forming Streptomyces avermitilis MA4680 was involved in both ortho-hydroxylation and further oxidation of trans-resveratrol, leading to the formation of melanin. This finding was confirmed by constructing deletion mutants of melC(2) and melD(2) encoding extracellular and intracellular tyrosinase, respectively; the melC2 deletion mutant did not produce piceatannol as well as melanin, whereas the melD2 deletion mutant oxidized resveratrol and synthesized melanin with the same yields, suggesting that MelC2 is responsible for ortho-hydroxylation of resveratrol. Extracellular tyrosinase (MelC2) efficiently converted trans-resveratrol into piceatannol in the presence of either tyrosinase inhibitors or reducing agents such as catechol, NADH, and ascorbic acid. Reducing agents slow down the dioxygenase reaction of tyrosinase. In the presence of catechol, the regio-specific hydroxylation of trans-resveratrol was successfully performed by whole cell biotransformation, and further oxidation of trans-resveratrol was efficiently blocked. The yield of this ortho-hydroxylation of trans-resveratrol was dependent upon inhibitor concentration. Using 1.8 mg of wild-type Streptomyces avermitilis cells, the conversion yield of 100 μM trans-resveratrol to piceatannol was 78% in 3 h in the presence of 1 mM catechol, indicating 14 μM piceatannol h(-1) DCW mg(-1) specific productivity, which was a 14-fold increase in conversion yield compared to that without catechol, which is a remarkably higher reaction rate than that of P450 bioconversion. This method could be generally applied to biocatalysis of various dioxygenases.

  4. Determination of plasma adrenaline and noradrenaline levels with the Cat-a-Kit

    International Nuclear Information System (INIS)

    Nel, P.B.; Du Preez, S.E.

    1980-01-01

    A method for the determination of catecholamines (Cat-a-Kit; Upjohn Diagnostics) is discussed. It depends upon the enzymatic conversion of the catecholamines to their ring o-methylated analogues in the presence of s-adenosyl-L-methionine-methyl- 14 C and catechol-o-methyltransferase. Values obtained from the blood plasma of 16 tetraplegic and 11 healthy volunteers are reported. The advantages and disadvantages of the Cat-a-Kit are discussed

  5. Biological and Health Effects of Exposure to Kerosene-Based Jet Fuels and Performance Additives

    Science.gov (United States)

    2003-01-01

    bacterial strains can initiate the metabolism of PAHs to compounds with toxicity potential. For example, Pseudomonas putida can, through naphthalene 1,2...deoxygenase, initiate a metabolic cascade with possible end products of salicylate, then catechol. Pseudomonas and a number of other hydrocarbon-degrading...4. Metal deactivator 5. Antioxidant Performance additives JP-8 + 100 ɘ.5% 1. Thermal stability package, including performance additives 1–5

  6. Predicted formation constants using the unified theory of metal ion complexation

    International Nuclear Information System (INIS)

    Brown, P.L.; Wanner, H.

    1987-01-01

    Formation constants are listed for standard conditions, i.e., 298.15K (25 0 C), 10 5 Pa, and zero ionic strength for a number of species containing selected elements (Am, Cs, Np, Pa, Pb, Pd, Pu, Ra, Sn, Sr, Tc, Th, U) and ligands (hydroxide, fluoride, chloride, bromide, iodide, iodate, sulphate, ammonia, nitrate, hydrogen phosphate, dihydrogen phosphate, carbonate, bicarbonate, oxalate, formate, thiocyanate, acetate, benzoate, catecholate, ethylenediamine, glycinate, glycollate and phenolate) that have been considered important for nuclear technology. 16 refs

  7. The electronic and solvatochromic properties of [Co(L)(bipyridine)2]+ (L = o-catecholato, o-benzenedithiolato) species: a combined experimental and computational study.

    Science.gov (United States)

    Cioncoloni, Giacomo; Senn, Hans M; Sproules, Stephen; Wilson, Claire; Symes, Mark D

    2016-10-04

    Complexes of Co(iii) containing mixed chelating diimine and o-quinone ligand sets are of fundamental interest on account of their fascinating magnetic and electronic properties. Whilst complexes of this type containing one diimine and two o-quinone ligands have been studied extensively, those with the reverse stoichiometry (two diimines and one o-quinone) are much rarer. Herein, we describe a ready route to the synthesis of the complex [Co III (o-catecholate) (2,2'-bipyridine) 2 ] + (1), and also report the synthesis of [Co III (o-catecholate)(5,5'-dimethyl-2,2'-bipyridine) 2 ] + (2) and [Co III (o-benezenedithiolate)(5,5'-dimethyl-2,2'-bipyridine) 2 ] + (3) for the first time. Spectroscopic studies show that complex 2 displays intriguing solvatochromic behaviour as a function of solvent hydrogen bond donation ability, a property of this type of complex which has hitherto not been reported. Time-dependent density function theory (TD-DFT) shows that this effect arises as a result of hydrogen bonding between the solvent and the oxygen atoms of the catecholate ligand. In contrast, the sulfur atoms in the benzenedithiolate analogue 3 are much weaker acceptors of hydrogen bonds from the solvent, meaning that complex 3 is only very weakly solvatochromic. Finally, we show that complex 2 has some potential as a molecular probe that can report on the composition of mixed solvent systems as a function of its absorbance spectrum.

  8. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    Science.gov (United States)

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  9. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  10. Dihydroxybenzene/benzoquinone-containing polymers: organic redox polymers

    Energy Technology Data Exchange (ETDEWEB)

    Moulay, S. [Universite de Blida, Lab. de Chimie-Physique Macromoleculaire, Institut de Chimie Industrielle (Algeria)

    2000-08-01

    Polymers containing hydroquinone, catechol or their corresponding benzoquinones are a special class of redox polymers. Three pathways of their syntheses are possible: condensation polymerization of suitable monomers, addition polymerization of vinyl monomers containing redox moiety, and chemical attachment of redox unit onto pre-made polymeric matrix. A range of functionalized matrices have been employed such as polyethers, polyesters, polycarbonates, polyurethanes, polyamides and others. Protection of their phenolic functionality has conducted to chemically interesting redox polymer precursors. The presence of a redox moiety coupled with the extant functionalization of the polymer matrix makes the materials very valuable, of wide properties and consequently of vast applicability. For instance, in the oil field, some polymers such as carboxy-methyl-cellulose (CMC) are often applied as to bring about a viscosity improvement and therefore to facilitate the oil drilling. In this regard, Patel evaluated sulfo-alkylated polymeric catechol, namely sulfo-methylated and sulfo-ethylated resins. Indeed, polymeric catechol chemically modified as such exhibited a marked ability to control the viscosity, the gel strength, as well as the filtrate loss of aqueous oil drilling fluids.

  11. Phenoloxidase activity of Helix aspersa maxima (garden snail, gastropod) hemocyanin.

    Science.gov (United States)

    Raynova, Yuliana; Doumanova, Lyuba; Idakieva, Krassimira Nikolova

    2013-12-01

    The oxygen-transporting protein, hemocyanin (Hc), of the garden snail Helix aspersa maxima (HaH) was isolated and kinetically characterized. Kinetic parameters of the reaction of catalytic oxidation of catechol to quinone, catalyzed by native HaH were determined: the V max value amounted to 22 nmol min(-1) mg(-1), k cat to 1.1 min(-1). Data were compared to those reported for other molluscan Hcs and phenoloxidases (POs). The o-diphenoloxidase activity of the native HaH is about five times higher than the activity determined for the Hcs of the terrestrial snail Helix pomatia and of the marine snail Rapana thomasiana (k cat values of 0.22 and 0.25 min(-1), respectively). The K m values obtained for molluscan Hcs from different species are comparable to those for true POs, but the low catalytic efficiency of Hcs is probably related to inaccessibility of the active sites to potential substrates. Upon treatment of HaH with subtilisin DY, the enzyme activity against substrate catechol was considerably increased. The relatively high proteolytically induced o-diPO activity of HaH allowed using it for preparation of a biosensor for detection of catechol.

  12. Factorial Design Evaluation of Some Experimental Factors for Phenols Oxidation using Crude Extracts from Jackfruit (Artocarpus integrifolia

    Directory of Open Access Journals (Sweden)

    Cestari Antonio R.

    2002-01-01

    Full Text Available This study presents some additional information on the alternative utilization of Jackfruit crude extracts in selective phenol oxidation reactions, using catechol and the o-, m- e p- cresols and pyrogallol substracts. The effects of pH, concentration of phosphate buffer and kinds of natural phenol extractors are evaluated. By using the conventional univariate procedure, the best enzymatic activities were obtained with the catechol substract, phosphate buffer (pH 5.0 at a concentration 0.10 mol L-1, and the commercial polymer Polyclar SB-100â as natural phenol extractor. Using a full 2³ factorial design the best catalytic results were obtained by employing phosphate buffer at pH 5.0 and it 0.050 mol L-1. However, the kind of phenol extractor was not statistically important. The best results for selective catechol oxidation were obtained by using the multivariate technique. In this way, the multivariate methodology is indicated to increase the performance of the crude extract in the selective oxidation reactions.

  13. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  14. Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.

    Science.gov (United States)

    Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph

    2018-04-01

    Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Actinide-specific complexing agents: their structural and solution chemistry

    International Nuclear Information System (INIS)

    Raymond, K.N.; Freeman, G.E.; Kappel, M.J.

    1983-07-01

    The synthesis of a series of tetracatecholate ligands designed to be specific for Pu(IV) and other actinide(IV) ions has been achieved. Although these compounds are very effective as in vivo plutonium removal agents, potentiometric and voltammetric data indicate that at neutral pH full complexation of the Pu(IV) ion by all four catecholate groups does not occur. Spectroscopic results indicate that the tetracatecholates, 3,4,3-LICAMS and 3,4,3-LICAMC, complex Am(III). The Am(IV)/(III)-catecholate couple (where catecholate = 3,4,3-LICAMS or 3,4,3-LICAMC) is not observed, but may not be observable due to the large currents associated with ligand oxidation. However, within the potential range where ligand oxidation does not occur, these experiments indicate that the reduction potential of free Am(IV)/(III) is probably greater than or equal to + 2.6 V vs NHE or higher. Proof of the complexation of americium in the trivalent oxidation state by 3,4,3-LICAMS and 3,4,3-LICAMC elimates the possibility of tetracatholates stabilizing Am(IV) in vivo

  16. The aryl ether bond reactions with H-donor solvents: guaiacol and tetralin in the presence of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, A.I.; Thring, R.W.; Overend, R.P. [Universite de Sherbrooke, Sherbrooke, PQ (Canada). Dept. de Genie Chimique

    1996-03-01

    The effect of homogenous catalysis by Fe and Ru, on the conversion of guaiacol in tetralin to catechol and phenol has been investigated as a model for the behaviour of the aryl-oxy linkage that is found in wood, peat and younger coals. In the absence of catalyst and at low ratios of guaiacol to tetralin, the primary product is catechol. Kinetic analysis has confirmed that the rate constant for this primary and rate determining step is given by an Arrhenius pre-exponential factor of 10{sup 13.8} s{sup -1} with an activation energy of 215 kJ mol{sup -1}. The activation energy found is in good agreement with those of other investigators and lies between the values proposed for homolytic fission ({gt} 240 kJ mol{sup -1}) and for a concerted or pericyclic reaction (188 kJ mol{sup -1}). In the presence of catalysts the rate is not changed; however, the yield of a secondary product phenol is increased with both Fe and Ru. Separate experiments confirmed that the selectivity of catechol to phenol conversion was markedly increased in the presence of these catalysts. There is strong evidence for the formation of catecholato-iron complexes and this suggests that in pyrolysis and liquefaction of biomass and young coals there may well be a role of homogeneous catalysts in directing the product slate towards useful intermediate chemicals such as phenols. 14 refs., 9 figs., 4 tabs.

  17. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process.

    Science.gov (United States)

    Solyanikova, Inna P; Emelyanova, Elena V; Borzova, Oksana V; Golovleva, Ludmila A

    2016-01-01

    The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.

  18. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT).

    Science.gov (United States)

    Bajaj, Abhay; Mayilraj, Shanmugam; Mudiam, Mohana Krishna Reddy; Patel, Devendra Kumar; Manickam, Natesan

    2014-09-01

    A 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degrading bacterium strain IITR03 producing trehalolipid was isolated and characterized from a pesticides contaminated soil. The strain IITR03 was identified as a member of the genus Rhodococcus based on polyphasic studies. Under aqueous culture conditions, the strain IITR03 degraded 282 μM of DDT and could also utilize 10mM concentration each of 4-chlorobenzoic acid, 3-chlorobenzoic acid and benzoic acid as sole carbon and energy source. The catechol 1,2-dioxygenase enzyme activity resulted in conversion of catechol to form cis,cis-muconic acid. Cloning and sequencing of partial nucleotide sequence of catechol 1,2-dioxygenase gene (cat) from strain IITR03 revealed its similarity to catA gene present in Rhodococcus sp. strain Lin-2 (97% identity) and Rhodococcus strain AN22 (96% identity) degrading benzoate and aniline, respectively. The results suggest that the strain IITR03 could be useful for field bioremediation studies of DDT-residues and chlorinated aromatic compounds present in contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing

    2009-01-01

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t 90% ) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 μM and the linear detect range is about from 4.0 μM to 87.98 μM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K M app ) is estimated using the Lineweaver-Burk equation and the K M app value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  20. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.

    Science.gov (United States)

    Ramsden, Christopher A; Riley, Patrick A

    2014-04-15

    Tyrosinase is an enzyme widely distributed in the biosphere. It is one of a group of proteins with a strongly conserved bicopper active centre able to bind molecular oxygen. Tyrosinase manifests two catalytic properties; monooxygenase and oxidase activity. These actions reflect the oxidation states of the active centre. Tyrosinase has four possible oxidation states and the details of their interaction are shown to give rise to the unusual kinetic behaviour of the enzyme. The resting state of the enzyme is met-tyrosinase [Cu(II)2] and activation, associated with a 'lag period', involves reduction to deoxy-tyrosinase [Cu(I)2] which is capable of binding dioxygen to form oxy-tyrosinase [Cu(II)2·O2]. Initially the conversion of met- to deoxy-tyrosinase is brought about by a catechol that is indirectly formed from an ortho-quinone product of tyrosinase action. The primary function of the enzyme is monooxygenation of phenols to ortho-quinones by oxy-tyrosinase. Inactivation of the enzyme results from monooxygenase processing of catechols which can lead to reductive elimination of one of the active-site copper ions and conversion of oxy-tyrosinase to the inactive deact-tyrosinase [Cu(II)Cu(0)]. This review describes the tyrosinase pathways and the role of each oxidation state in the enzyme's oxidative transformations of phenols and catechols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of phenols and carboxylic acids on photochromism of 1-alkyl-2-(arylazo)imidazoles

    International Nuclear Information System (INIS)

    Gayen, Pallab; Sinha, Chittaranjan

    2012-01-01

    Light irradiated trans-to-cis isomerization of 1-alkyl-2-(arylazo)imidazole in the presence of phenol, catechol, benzoic acid and salicylic acid (called co-factors) has been studied in this work. The rate of trans→cis photoisomerization is decreased in the presence of co-factor in the medium and is dependent on the concentration of active quotient about photochrome. The decrease in rate follows catechol>benzoic acid>phenol>salicylic acid. This trend is due to the effects of dissociation ability of –O–H/–COOH, intermolecular association of the molecules etc. The reverse change, cis-to-trans, is very slow in light irradiation and has been carried out by a thermal process in the dark. The quantum yield of isomerization follows the same sequence of effects of co-factors. - Highlights: ► Photoisomerisation of 1-alkyl-2-(arylazo)imidazoles, trans-to-cis, is described in this work. ► The process is sensitive to the environment of the photochrome and the solution. ► The rate of photoisomerization decreases as catechol>benzoic acid>phenol>salicylic acid. ► The reverse isomerization, cis-to-trans is very slow with light and has been carried out with heat. ► The activation energy is less than these values when carried out in fresh solution only.

  2. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    International Nuclear Information System (INIS)

    Sun, Qianhui; Li, Hongqi; Xian, Chunying; Yang, Yihang; Song, Yanxi; Cong, Peihong

    2015-01-01

    Graphical abstract: - Highlights: • Copolymers containing catechol and trifluoromethyl groups were prepared. • The copolymers could adhere to surfaces of glass, plastics and metals. • The polymer films showed excellent resistance to water, salt, base and acid. • The polymer films displayed good antifouling property. - Abstract: Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α′-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings

  3. Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.

    Science.gov (United States)

    Bravo, Karent; Osorio, Edison

    2016-04-15

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Isolation of Renewable Phenolics by Adsorption on Ultrastable Hydrophobic MIL-140 Metal-Organic Frameworks.

    Science.gov (United States)

    Van de Voorde, Ben; Damasceno Borges, Daiane; Vermoortele, Frederik; Wouters, Robin; Bozbiyik, Belgin; Denayer, Joeri; Taulelle, Francis; Martineau, Charlotte; Serre, Christian; Maurin, Guillaume; De Vos, Dirk

    2015-09-21

    The isolation and separation of phenolic compounds from aqueous backgrounds is challenging and will gain in importance as we become more dependent on phenolics from lignocellulose-derived bio-oil to meet our needs for aromatic compounds. Herein, we show that highly stable and hydrophobic Zr metal-organic frameworks of the MIL-140 type are effective adsorbent materials for the separation of different phenolics and far outperform other classes of porous solids (silica, zeolites, carbons). The mechanism of the hydroquinone-catechol separation on MIL-140C was studied in detail by combining experimental results with computational techniques. Although the differences in adsorption enthalpy between catechol and hydroquinone are negligible, the selective uptake of catechol in MIL-140C is explained by its dense π-π stacking in the pores. The interplay of enthalpic and entropic effects allowed separation of a complex, five-compound phenol mixture through breakthrough over a MIL-140C column. Unlike many other metal-organic frameworks, MIL-140C is remarkably stable and maintained structure, porosity and performance after five adsorption-desorption cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  6. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors.

    Science.gov (United States)

    García-Hernández, Celia; García-Cabezón, Cristina; Martín-Pedrosa, Fernando; De Saja, José Antonio; Rodríguez-Méndez, María Luz

    2016-01-01

    The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc 2 ). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc 2 , which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10 -4 to 4.0 × 10 -6 mol·L -1 with a limit of detection on the scale of μmol·L -1 . The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10 -7 mol·L -1 to be attained.

  7. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Hoang-Linh Nguyen

    2016-03-01

    Full Text Available Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.

  8. A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection

    Science.gov (United States)

    Aguila, Sergio A.; Shimomoto, David; Ipinza, Franscisco; Bedolla-Valdez, Zaira I.; Romo-Herrera, José; Contreras, Oscar E.; Farías, Mario H.; Alonso-Núñez, Gabriel

    2015-10-01

    The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CNx-MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CNx-MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL-1. With Lac/CNx-MWCNT at concentrations of 6.4 mmol L-1 activity was 9326 U mL-1, while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L-1 was 9 234 U mL-1. The Lac/CNx-MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CNx-MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10-8 mol L-1 by measuring the electric current responses.

  9. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata.

    Science.gov (United States)

    Kazłowska, Katarzyna; Hsu, Todd; Hou, Chia-Chung; Yang, Wen-Chin; Tsai, Guo-Jane

    2010-03-02

    Porphyra dentata, a red edible seaweed, has long been used worldwide in folk medicine for the treatment of inflammatory diseases such as hypersensitivity, lymphadenitis, bronchitis. To clarify the anti-inflammatory role of Porphyra dentata crude extract and its identified phenolic compounds by investigating their effect on the nitric oxide (NO)/inducible nitric oxide synthase (iNOS) transcription pathway in macrophage RAW 264.7 cells. Porphyra dentata crude extract was prepared with methanol. High performance liquid chromatography (HPLC) hyphenated to electrospray ionization mass spectrometry (ESI-MS) and UV detection were utilized to analyze the extract fingerprints. Nitrite measurement, iNOS promoter activity and nuclear factor-kappaB (NF-kappaB) enhancer activity were used to assess the anti-inflammatory effect in lipopolysaccharide (LPS) challenged mouse RAW 264.7 cell line. Phenolic compounds (catechol, rutin and hesperidin) were identified in the crude extract of Porphyra dentata. The crude extract and the phenolic compounds inhibited the production of NO in LPS-stimulated RAW 264.7 cells. Catechol was a more potent suppressor of the up-regulation of iNOS promoter and NF-kappaB enhancer than rutin and yet, hesperidin alone failed to inhibit either activity. Our results indicate that catechol and rutin, but not hesperidin, are primary bioactive phenolic compounds in the crude extract to suppress NO production in LPS-stimulated macrophages via NF-kappaB-dependent iNOS gene transcription. The data also explain the anti-inflammatory use and possible mechanism of Porphyra dentata in iNOS implicated diseases. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huiqing; Li, Xiaojing [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhao, Yuancong, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li, Jingan; Chen, Jiang [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Max Bergmann Center of Biomaterials Dresden, Leibniz of Polymer Research Dresden, 01069 Dresden (Germany); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-08-30

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  11. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

    Directory of Open Access Journals (Sweden)

    Celia García-Hernández

    2016-12-01

    Full Text Available The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs, copper phthalocyanine (PEDOT/PSS/CuPc or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2. Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained.

  12. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    International Nuclear Information System (INIS)

    Lee, E.W.; Johnson, J.T.; Garner, C.D.

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [ 3 H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 μM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [ 3 H]thymidine triphosphate into DNA up to 24 μM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase α, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase α, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause

  13. A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection

    International Nuclear Information System (INIS)

    Aguila, Sergio A; Shimomoto, David; Ipinza, Franscisco; Bedolla-Valdez, Zaira I; Romo-Herrera, José; Contreras, Oscar E; Farías, Mario H; Alonso-Núñez, Gabriel

    2015-01-01

    The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CN x -MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CN x -MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CN x -MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL −1 . With Lac/CN x -MWCNT at concentrations of 6.4 mmol L −1 activity was 9326 U mL −1 , while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L −1 was 9 234 U mL −1 . The Lac/CN x -MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CN x -MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10 −8 mol L −1 by measuring the electric current responses. (paper)

  14. Copigmentation effect of phenolic compounds on red currant juice anthocyanins during storage

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Copigmentation has been suggested as a main colour stabilising mechanism in plants protecting the coloured flavylium cation from the nucleophilic attack by the water molecule. In this study influence of phenolic compounds addition (catechol, 4-methyl catechol, (+-catechin and gallic acid on stability of red currant juice anthocyanins (copigment:pigment molar ratio 50:1 and 100:1 during 30 days of storage at 4 °C was investigated. Stability of anthocyanins was evaluated through determination of anthocyanins, total colour difference (ΔE*, kinetic parameters and anthocyanin retention. The initial anthocyanin content of red currant juice was 44.34 mg/100 g. During storage degradation of anthocyanins occurred. After storage anthocyanin content of red currant juice was 38.87 mg/100 mL. However, in samples with addition of phenolic compounds degradation was less pronounced due to formation of pigment-copigment complex (i.e. copigmentation. Anthocyanin content in samples with addition of phenolic compounds ranged from 39.2 to 43.83 mg/100 mL, depending on phenolic compound, its concentration and storage time. The lowest degradation was observed when gallic acid was added. Monitoring only λmax of absorption spectrum of juices, one can get incomplete picture of colour stability of red currant juice. It was important to monitor total colour change (ΔE* with CIELAB colour system since all parameters are taken into account. The lowest ΔE*, after 30 days of storage, had samples with addition of catechol and (+-catechin (0.83 and 0.86, respectively, while the highest values had samples with addition of gallic acid (1.26.

  15. Gene expression of 17beta-estradiol-metabolizing isozymes: comparison of normal human mammary gland to normal human liver and to cultured human breast adenocarcinoma cells.

    Science.gov (United States)

    Lehmann, Leane; Wagner, Jörg

    2008-01-01

    Metabolic activation of 17beta-estradiol (E2) to catechols and quinones together with lack of deactivation constitute risk factors in human breast carcinogenesis. E2-catchols are generated by cytochrome P450-dependent monooxygenases (CYPs). Deactivation of E2, E2-catechols, and E2-quinones is mediated by UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), catechol-O-methyltransferase (COMT), glutathione-S-transferase (GST), and NADPH-quinone-oxidoreductase (QR) isozymes, respectively. The aim of the present study was to quantify mRNA levels of E2-metabolizing isozymes expressed in MCF-7 cells cultured in the presence/absence of steroids by reverse transcription/competitive PCR in relation to the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase and compare them with expression levels in normal human mammary gland (MG) and liver tissue. CYP1A1, 1B1, SULT1A1, 1A2, membrane-bound and soluble COMT, GSTT1, QR1, and UGT2B7 were detected in both tissues and MCF-7 cells; however, most enzymes were expressed at least tenfold higher in liver. Yet, CYP1B1 was expressed as high in breast as in liver and UGTs were not detected in MCF-7 cells cultured with steroids. MCF-7 cells cultured steroid-free additionally expressed CYP1A2 as well as UGT1A4, 1A8, and 1A9. Normal human liver but not MG expressed CYP1A2, 3A4, UGT1A1, 1A3, 1A4, 1A9, and SULT2A1. UGT1A8 was only detected in MCF7 cells but was not found in human liver. Thus, our study provides a comprehensive overview of expression levels of E2-metabolizing enzymes in a popular in vitro model and in human tissues, which will contribute to the interpretation of in vitro studies concerning the activation/deactivation of E2.

  16. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-08-31

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t{sub 90%}) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 {mu}M and the linear detect range is about from 4.0 {mu}M to 87.98 {mu}M for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K{sub M}{sup app}) is estimated using the Lineweaver-Burk equation and the K{sub M}{sup app} value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  17. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor.

    Science.gov (United States)

    Mazloum-Ardakani, Mohammad; Hosseinzadeh, Laleh; Taleat, Zahra

    2015-12-15

    Bimetallic Ag@Pt core-shell nanoparticles supported on reduced graphene oxide nanosheets (Ag@Pt-GRs) was synthesized and used as novel desirable sensor platform and electrocatalyst for catechol as probe in aptasensor. Gold screen-printed electrodes modified with Ag@Pt-GRs and applied to advance enzyme-free and label-free electrochemical aptasensor for detection of protein biomarker tumor necrosis factor-alpha (TNF-α). The morphology of the Ag@Pt-GRs could be characterized by transmission electron microscopy, X-ray diffraction and UV-vis spectra. The results showed that these nanocomposite exhibited attractive electrocatalytic activity and also yielded large surface area, which improve the amount of immobilized TNF-α aptamer. Due to the excellent electrocatalytic activity of Ag@Pt-GRs towards the oxidation of catechol, determination of TNF-α antigen was based on its obstruction to the electrocatalytic oxidation of catechol by Ag@Pt-GRs after binding to the surface of electrode through interaction with the aptamer. The calibration curve was obtained by differential pulse voltammetry and square wave voltammetry. Under optimum conditions, the results demonstrated that this electrochemical aptasensor possessed a dynamic range from 0.0 pg/mL to 60 pg/mL with a low detection limit of 2.07 pg/mL for TNF-α. The analytical usefulness of the aptasensor was finally demonstrated analyzing serum samples. The simple fabrication method, high sensitivity, specificity, good reproducibility and stability as well as acceptable accuracy for TNF-α detection in human serum samples are the main advantages of this aptasensor, which might have broad applications in protein diagnostics and bioassay. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator.

    Science.gov (United States)

    Jornil, Jakob; Jensen, Klaus Gjervig; Larsen, Frank; Linnet, Kristian

    2010-03-01

    We identify here for the first time the low-affinity cytochrome P450 (P450) isoforms that metabolize paroxetine, using cDNA-expressed human P450s measuring substrate depletion and paroxetine-catechol (product) formation by liquid chromatography-tandem mass spectrometry. CYP1A2, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 were identified as paroxetine-catechol-forming P450 isoforms, and CYP2C19 and CYP2D6 were identified as metabolizing P450 isoforms by substrate depletion. Michaelis-Menten constants K(m) and V(max) were determined by product formation and substrate depletion. Using selective inhibitory studies and a relative activity factor approach for pooled and single-donor human liver microsomes, we confirmed involvement of the identified P450 isoforms for paroxetine-catechol formation at 1 and 20 muM paroxetine. In addition, we used the population-based simulator Simcyp to estimate the importance of the identified paroxetine-metabolizing P450 isoforms for human metabolism, taking mechanism-based inhibition into account. The amount of active hepatic CYP2D6 and CYP3A4 (not inactivated by mechanism-based inhibition) was also estimated by Simcyp. For extensive and poor metabolizers of CYP2D6, Simcyp-estimated pharmacokinetic profiles were in good agreement with those reported in published in vivo studies. Considering the kinetic parameters, inhibition results, relative activity factor calculations, and Simcyp simulations, CYP2D6 (high affinity) and CYP3A4 (low affinity) are most likely to be the major contributors to paroxetine metabolism in humans. For some individuals CYP1A2 could be of importance for paroxetine metabolism, whereas the importance of CYP2C19 and CYP3A5 is probably limited.

  19. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Izabela Wysocka

    2018-01-01

    Full Text Available The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD analysis, Brunauer-Emmett-Teller (BET method, X-ray photoelectron spectroscopy (XPS, scanning transmission electron microscopy (STEM, Mott-Schottky analysis and photoluminescence spectroscopy (PL. Phenol oxidation pathways of magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles proceeded by generation of reactive oxygen species, which oxidized phenol to benzoquinone, hydroquinone and catechol. Benzoquinone and maleic acid were products, which were determined in the hydroquinone oxidation pathway. The highest mineralization rate was observed for Pd-TiO2/SiO2@Fe3O4 and Cu-TiO2/SiO2@Fe3O4 photocatalysts, which produced the highest concentration of catechol during photocatalytic reaction. For Pt-TiO2/SiO2@Fe3O4 nanocomposite, a lack of catechol after 60 min of irradiation resulted in low mineralization rate (CO2 formation. It is proposed that the enhanced photocatalytic activity of palladium and copper-modified photocatalysts is related to an increase in the amount of adsorption sites and efficient charge carrier separation, whereas the keto-enol tautomeric equilibrium retards the rate of phenol photomineralization on Au-TiO2/SiO2@Fe3O4. The magnetization hysteresis loop indicated that the obtained hybrid photocatalyst showed magnetic properties and therefore could be easily separated after treatment process.

  20. The Effect of Cigarette Design on the Content of Phenols in Mainstream Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Dagnon S

    2014-12-01

    Full Text Available The influence of cigarette design on the content of phenols in mainstream tobacco smoke was studied. The most abundant phenols - catechol, hydroquinone, phenol, o-, m-, and p-cresol, and resorcinol - were determined by HPLC with fluorescence detection. Hydroquinone and catechol made the most significant contribution to the total content of phenols with maximum values of 135.0 µg/cig and 95.7 µg/cig, respectively. The highest total content of phenols (330.9 µg/cig was measured in the smoke of a Virginia tobacco cigarette. The total content of phenols (µg/cig in cigarette mainstream smoke decreased linearly with increased filter ventilation, R2 = 0.9536. The results obtained indicate that filtration and ventilation can strongly influence the mainstream tobacco smoke content of phenol and its less polar derivatives, o-, m-, and p-cresol, which were reduced by up to 85%. Hydroquinone and catechol are less affected and only cigarettes with the special “recessed charcoal filter system” and cigarettes with filter ventilation over 50% showed significant reductions. On a per mg ‘tar’ basis the largest contributor to phenols in cigarette mainstream smoke was the selection of the tobacco type. The use of any standard commercial filter on an unfiltered cigarette can substantially reduce the yield of phenols in cigarette mainstream smoke. The use of special filters (e.g., the “recessed charcoal filter system” or high levels of cigarette ventilation does not reduce the amount of phenols in tobacco smoke considerably when normalized on a per mg ‘tar’ basis.

  1. {sup 11}B-NMR spectroscopic study on the interaction of epinephrine and p-BPA

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, K.; Yoshino, K. [Shinshu Univ., Department of Chemistry, Matsumoto, Nagano (Japan)

    2000-10-01

    It is studied that p-BPA (p-bronophenylalanine) which formed complex with catechol functional group has interaction with epinephrine by {sup 11}B-NMR. Two {sup 11}B-NMR resonance signals were observed at pH 7.0. The signal at 29.6 ppm is assigned to p-BPA and at 10.8 ppm is assigned to that of complex. We can determine complex formation constants (logK') in various pH. (author)

  2. Iron acquisition mechanisms of Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Møller, Jeannette Dan; Ellis, A.E.; Barnes, A.C.

    2005-01-01

    strains and was lacking from negative strains. While a weak catechol reaction was detectable in CAS+ culture supernatants, the CAS reaction was, to some extent, heat sensitive, questioning whether the positive reaction was caused only by siderophores. The ability to grow in vitro under iron......-restricted conditions did not correlate with the CAS reactivity, as growth of both CAS+ and CAS- strains was similarly impaired under iron restriction induced by 2,2 dipyridyl. Suppressed growth under these conditions was restored by addition of FeCl3, haemoglobin and transferrin for both CAS+ and CAS- strains...

  3. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  4. Foamable compositions and formations treatment

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, R.L.

    1981-11-17

    Thermally stable foamable gelled compositions are disclosed suitable for postprimary oil recovery e.g., steam- or gas-foamed systems comprising water, a surfactant, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gel compositions can additionally contain gel stabilizers such as sulfomethylated quebracho (Smq) and chemical buffering agents such as sodium bicarbonate.

  5. Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms

    Science.gov (United States)

    Yilmaz, M. Deniz; Xue, Min; Ambrogio, Michael W.; Buyukcakir, Onur; Wu, Yilei; Frasconi, Marco; Chen, Xinqi; Nassar, Majed S.; Stoddart, J. Fraser; Zink, Jeffrey I.

    2014-12-01

    A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation. Acidification also induces the release of cargo molecules. Further investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release.A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs' nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation

  6. Cloning and Partial Characterization of an Aniline Metabolic Pathway (Preprint)

    Science.gov (United States)

    1995-08-03

    formation of 2 dioxygenases and a suite of meta cleavage enzymes. The size of the fragment containing the operon is 20.66 kilo base pairs and is of...dehydrogenase or a hydrolase to TCA cycle intermediates. Studies are presently underway to subclone the pathway and to fully characterize the operon ...and expresses catechol 2,3 dioxygenase from the lactose promoter. Plasmid pSMT4 contains a 20.66 kb fragment from P. sp. CIT1 and 4 ( confers the

  7. Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline.

    Science.gov (United States)

    Kahng, H Y; Kukor, J J; Oh, K H

    2000-09-15

    We have characterized a novel microorganism, strain HY99, which is capable of aerobic and anaerobic degradation of aniline. Strain HY99 was found to aerobically metabolize aniline via catechol and 2-hydroxymuconic semialdehyde intermediates, and to transform aniline via p-aminobenzoate in anaerobic environments. Physiological and biochemical tests revealed that strain HY99 was most similar to Delftia acidovorans, but unlike D. acidovorans, strain HY99 was able to metabolize aniline under anaerobic conditions linked with nitrate reduction. Phylogenetic analysis based on 16S rDNA sequencing also revealed that strain HY99 was closely related to D. acidovorans, with 96% overall similarity.

  8. Library of biphenyl privileged substructures using a safety-catch linker approach

    DEFF Research Database (Denmark)

    Severinsen, Rune; Bourne, Gregory T; Tran, Tran T

    2008-01-01

    A biphenyl privileged structure library containing three attachment points were synthesized using a catechol-based safety-catch linker strategy. The method requires the attachment of a bromo-acid to the linker, followed by a Pd-catalyzed Suzuki cross-coupling reaction. Further derivatization......, activation of the linker with strong acid and aminolysis afforded the respective products in high purity and good overall yield. To show the versatility of the synthesis, a 199-member library was generated. The library samples both conformational and chemical diversity about a well-known privileged...

  9. Chemical and nutritional study leaves radish, Raphanus sativus L., as food for human consumption

    OpenAIRE

    Huamán Malla, J.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Guerrero Aquino, M.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Tomás Chota, G.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Bravo Ayala, M.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Aguirre Medrano, R.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú; Carhuancho Acevedo, H.; Laboratorio de Productos Naturales, Departamento de Química Orgánica Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú

    2014-01-01

    The presente work has been carried out with the leaves of tha rabanito Rsphanus Sativus L. The presence of tannins ot the catechol and coumarín was determined by qualitative analysis. The quantitative analysis showed the presence of minerals macronutrients: calcium, phosphorus,potasium,sodium and magnesíum; micronutrientes: iron; and traces of copper, aluminum manganese, boron, barium,chromium and zinc. The analysís ot vitamins determined the content on fresh sample of vitaminan A, 81 and C. ...

  10. A kinetic study of the suicide inactivation of an enzyme measured through coupling reactions. Application to the suicide inactivation of tyrosinase.

    Science.gov (United States)

    Escribano, J; Tudela, J; Garcia-Carmona, F; Garcia-Canovas, F

    1989-01-01

    A systematic procedure for the kinetic study of reaction mechanisms with enzyme inactivation induced by a suicide substrate in the presence or in the absence of an auxiliary substrate, when the enzyme activity is measured through coupling reactions, enzymically catalysed or not, was developed and analysed by using the transient-phase approach. The methodology is established to determine the parameters and kinetic constants corresponding to the enzyme suicide inactivation and the coupling reactions. This approach is illustrated by a study of the suicide inactivation of tyrosinase by catechol in the presence of L-proline. Treatment of the experimental data was carried out by non-linear regression. PMID:2508631

  11. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  12. Tourette Syndrome and Klippel-Feil Anomaly in a Child with Chromosome 22q11 Duplication

    Directory of Open Access Journals (Sweden)

    Raymond A. Clarke

    2009-01-01

    Full Text Available This is the first case description of the association of Klippel-Feil Syndrome (KFS, Tourette Syndrome (TS, Motor Stereotypies, and Obsessive Compulsive Behavior, with chromosome 22q11.2 Duplication Syndrome (22q11DupS. Neuropsychiatric symptoms in persons with 22q11.2 deletion, including obsessive compulsiveness, anxiety, hyperactivity, and one prior case report of TS, have been attributed to low copy number effects on Catechol-O-Methyltransferase (COMT. However, the present unique case of 22q11DupS and TS suggests a more complex relationship involving another gene(s at or near this locus.

  13. Tourette syndrome and klippel-feil anomaly in a child with chromosome 22q11 duplication.

    Science.gov (United States)

    Clarke, Raymond A; Fang, Zhi Ming; Diwan, Ashish D; Gilbert, Donald L

    2009-01-01

    This is the first case description of the association of Klippel-Feil Syndrome (KFS), Tourette Syndrome (TS), Motor Stereotypies, and Obsessive Compulsive Behavior, with chromosome 22q11.2 Duplication Syndrome (22q11DupS). Neuropsychiatric symptoms in persons with 22q11.2 deletion, including obsessive compulsiveness, anxiety, hyperactivity, and one prior case report of TS, have been attributed to low copy number effects on Catechol-O-Methyltransferase (COMT). However, the present unique case of 22q11DupS and TS suggests a more complex relationship, either for low- or high-COMT activity, or for other genes at this locus.

  14. Chemical leucoderma: Indian scenario, prognosis, and treatment

    Directory of Open Access Journals (Sweden)

    Bajaj A

    2010-01-01

    Full Text Available Chemical leucoderma is an industrial disorder in developed countries and the common causative chemicals are phenols and catechols. Due to stringent controls and preventive measures the incidence has come down. In the recent past various chemicals in consumer products have also been documented to produce depigmentation.In India due to lax quality control measures chemical leucoderma due to consumer items is not uncommon.The various consumer items documented to cause contact depigmentation are sticker bindis,rain shoes,plastic chappals,hair dye/ black henna( kali mehndi, alta, wallets and even mobile plastic covers.

  15. Selective hydroboration of catalyzed olephynes by new cationic complex of Rh(I) heterogeniated over zeolites; Hidroboracion selective de olefinas catalizada por nuevos complejos cationicos de Rh(I) heterogeneizador sobre zeolitas

    Energy Technology Data Exchange (ETDEWEB)

    Corma, A.; Dios, M.I.; Iglesias, M.; Sanchez, F. [Instituto de Quimica Organica, CSIC, Madrid (Spain)

    1995-12-01

    The synthesis and characterization of new cationic Rh(I) complexes with NN-ligands (1a,1b) and NP-ligands (2a-2b) are reported. The complexes bearing the triethoxysilil group were covalently bonded to a modified USY zeolite to give heterogeniated catalysts. The reaction of 1-decene, cyclohexene and styrene with catechol borane in presence of 1% mol of new prepared homogeneous and heterogenized Rh catalysts proceed regiselectively to give, after oxidation, 1-decanol, cyclohexanol and 1-phenylethanol respectively in excellent yields, whilts the more bulky 1-methylstyrene did not react at the same operations conditions. 11 refs.

  16. Siderophoregenic Acinetobacter calcoaceticus Isolated From Wheat Rhizosphere With Strong PGPR Activity

    Directory of Open Access Journals (Sweden)

    Chaudhari Bhushan, L.

    2009-01-01

    Full Text Available Thirty-two bacterial isolates were obtained from wheat rhizosphere in black cotton soils of North Maharashtra region and subsequently tested for in-vitro siderophore production. Wheat isolate SCW1, being a strong siderophore producer, was selected, identified and confirmed as Acinetobacter calcoaceticus. The strain produced catechol type of siderophores during exponential phase which was influenced by iron content of medium. Seed bacterization with siderophoregenic A. calcoaceticus improved plant growth in pot and field studies. Such PGPR activity was attributed to the ability of strain to solubilise phosphates and produce IAA. Siderophore mediated antagonism was observed against common phytopathogens viz., Aspergillus flavus, A. niger, Colletotrichum capsicum and Fusarium oxysporum.

  17. Comparison of molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics-three-dimensional reference interaction site model (MM-3D-RISM) method to calculate the binding free energy of protein-ligand complexes: Effect of metal ion and advance statistical test

    Science.gov (United States)

    Pandey, Preeti; Srivastava, Rakesh; Bandyopadhyay, Pradipta

    2018-03-01

    The relative performance of MM-PBSA and MM-3D-RISM methods to estimate the binding free energy of protein-ligand complexes is investigated by applying these to three proteins (Dihydrofolate Reductase, Catechol-O-methyltransferase, and Stromelysin-1) differing in the number of metal ions they contain. None of the computational methods could distinguish all the ligands based on their calculated binding free energies (as compared to experimental values). The difference between the two comes from both polar and non-polar part of solvation. For charged ligand case, MM-PBSA and MM-3D-RISM give a qualitatively different result for the polar part of solvation.

  18. [A role of the autonomic nervous system in cerebro-cardiac disorders].

    Science.gov (United States)

    Basantsova, N Yu; Tibekina, L M; Shishkin, A N

    The authors consider anatomical/physiological characteristics and a role of different autonomic CNS regions, including insula cortex, amygdala complex, anterior cingulate cortex, ventral medial prefrontal cortex, hypothalamus and epiphysis, involved in the regulation of cardiovascular activity. The damage of these structures, e.g., due to the acute disturbance of cerebral blood circulation, led to arrhythmia, including fatal arrhythmia, in previously intact myocardium; systolic and diastolic dysfunction, ischemic changes considered in the frames of cerebro-cardial syndrome. On the cellular level, the disturbance of autonomic regulation resulted in catechol amine excitotoxicity, oxidative stress and free radical myocardium injury.

  19. Degradação de benzeno, tolueno e xilenos em águas contaminadas por gasolina, utilizando-se processos foto-Fenton Degradation of benzene, toluene and xilenes in gasoline-contaminated waters by photo-Fenton processes

    Directory of Open Access Journals (Sweden)

    Elaine Regina Lopes Tiburtius

    2009-01-01

    Full Text Available In this work the potentiality of photo-Fenton processes were investigated toward the degradation of aromatic hydrocarbons (BTXs from water contaminated with gasoline. The main results demonstrated that BTXs can be quickly degraded by photo-Fenton process assisted by solar or artificial UV-A radiation, degradation that leads to generation of characteristic phenolic transient species (ie. phenol, hydroquinone and catechol. In the treatment of contaminated water by photo-Fenton processes assisted by solar light, complete BTXs removal was observed in reaction times of about 5 min. Mineralization of about 90% was also observed by applying a multiple H2O2 addition system.

  20. Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent

    CSIR Research Space (South Africa)

    Lalloo, R

    2010-01-01

    Full Text Available -109. 17 18 Brunt, J. and Austin, B. (2005) Use of a probiotic to control Latococcosis and streptococcosis in 19 rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 28, 693-701. 20 21 Chart, H. and Trust, T.J. (1983) Acquisition of iron... controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, 22 Walbaum). J Appl Microbiol 103, 1699-706. 23 Mode of action B. cereus 18 1 Park, R.Y., Choi, M.H., Sun, H.Y. and Shin, S.H. (2005) Production of catechol-siderophore and 2...

  1. Amperometric biosensor for the determination of phenols using a crude extract of sweet potato

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Vieira, I. da; Fatibello-Filho, O. [Universidade Federal de Sa Carlos (Brazil)

    1997-03-01

    An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.5 x 10{sup -4} mol L{sup -1} and 2.0 x 10{sup -5} -4.5 x 10{sup -4} mol L{sup -1}, respectively. The response time was about 3-5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.

  2. Production of muconic acid in plants.

    Science.gov (United States)

    Eudes, Aymerick; Berthomieu, Roland; Hao, Zhangying; Zhao, Nanxia; Benites, Veronica Teixeira; Baidoo, Edward E K; Loqué, Dominique

    2018-03-01

    Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of alternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous hosts for engineered metabolic pathways towards the manufacturing of chemicals. In this work, we engineered Arabidopsis to demonstrate that plants can serve as green factories for the bio-manufacturing of MA. In particular, dual expression of plastid-targeted bacterial salicylate hydroxylase (NahG) and catechol 1,2-dioxygenase (CatA) resulted in the conversion of the endogenous salicylic acid (SA) pool into MA via catechol. Sequential increase of SA derived from the shikimate pathway was achieved by expressing plastid-targeted versions of bacterial salicylate synthase (Irp9) and feedback-resistant 3-deoxy-D-arabino-heptulosonate synthase (AroG). Introducing this SA over-producing strategy into engineered plants that co-express NahG and CatA resulted in a 50-fold increase in MA titers. Considering that MA was easily recovered from senesced plant biomass after harvest, we envision the phytoproduction of MA as a beneficial option to add value to bioenergy crops. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Enzymatic oxidative transformation of phenols by Trametes trogii laccases.

    Science.gov (United States)

    Chakroun, Hanen; Bouaziz, Mohamed; Dhouib, Abdelhafidh; Sayadi, Sami

    2012-09-01

    The removal of toxic phenolic compounds from industrial wastewater is an important issue to be addressed. Their presence in water and soil has become a great environmental concern, and effective methods for their removal need to be addressed. The feasibility of applying laccases for the degradation of phenolic compounds has received increasing attention. In the present work, the transformation of five phenolic compounds (catechol, hydroxytyrosol, tyrosol, guaiacol and p-coumaric acid), the main constituents of a typical wastewater derived from an olive oil factory, by Trametes trogii laccases was studied at concentrations ranging between 0.2 and 1.6 mM. High-performance liquid chromatography analysis showed high degradation rates of phenolic compounds by T trogii laccases. Independently of the used concentration, a complete transformation of guaiacol, p-coumaric acid, hydroxytyrosol and tyrosol occurred after 1 h of incubation. The transformation of catechol depends on its initial concentration. The liquid chromatography-mass spectrometry analysis showed that laccases catalysed transformation of p-coumaric acid and tyrosol, resulting in the formation of phenolic dimers. No reduction of enzyme activity has been observed during the oxidation of all phenolic compounds. These results suggest that the studied laccases were capable of efficiently removing phenolic compounds, as well as catalysing the production of novel phenolic dimers.

  4. Advantages of the Biomimetic Nanostructured Films as an Immobilization Method vs. the Carbon Paste Classical Method

    Directory of Open Access Journals (Sweden)

    Maria Luz Rodríguez-Méndez

    2012-11-01

    Full Text Available Tyrosinase-based biosensors containing a phthalocyanine as electron mediator have been prepared by two different methods. In the first approach, the enzyme and the electron mediator have been immobilized in carbon paste electrodes. In the second method, they have been introduced in an arachidic acid Langmuir-Blodgett nanostructured film that provides a biomimetic environment. The sensing properties of non-nanostructured and nanostructured biosensors towards catechol, catechin and phenol have been analyzed and compared. The enzyme retains the biocatalytic properties in both matrixes. However, the nanostructured biomimetic films show higher values of maximum reaction rates and lowest apparent Michaelis-Menten constants. In both types of sensors, the sensitivity follows the decreasing order catechol > catechin > phenol. The detection limits observed are in the range of 1.8–5.4 μM for Langmuir-Blodgett biosensors and 8.19–8.57 μM for carbon paste biosensors. In summary, it has been demonstrated that the Langmuir-Blodgett films provide a biomimetic environment and nanostructured biosensors show better performances in terms of kinetic, detection limit and stability.

  5. Evaluation of treatment for dry eye with 2-hydroxyestradiol using a dry eye rat model.

    Science.gov (United States)

    Higuchi, Akihiro; Oonishi, Erina; Kawakita, Tetsuya; Tsubota, Kazuo

    2016-01-01

    2-hydroxy estradiol (2-OHE2) is a catechol derivative of 17β -Estradiol (E2) and it is synthesized from E2 catalyzed by cytochrome P4501A1. Previous studies reported that 2-OHE2 is a physiologic antioxidant in lipoproteins, liver microsomes, and the brain. Catechol derivatives show an anti-inflammatory effect through the inhibition of prostaglandin endoperoxide synthase (PGS) activity. Corneal erosion caused by dry eye is related to an increase in oxidative stress and inflammation in ocular surface cells. We investigated the therapeutic effects of 2-OHE2 on corneal damage caused by dry eye. Steroidal radical scavenging activity was confirmed through the electron spin resonance (ESR) method. PGS activity was measured using the COX Fluorescent Activity Assay Kit. To evaluate the effect of 2-OHE2 on the treatment for dry eye, 2-OHE2 was applied as an eye drop experiment using dry eye model rats. 2-OHE2 scavenged tyrosyl radical and possibly suppressed oxidative stress in corneal epithelial cells. In addition, 2-OHE2 inhibited PGS activity, and 2-OHE2 is probably a competitive inhibitor of PGS. Corneal PGS activity was upregulated in the dry eye group. Therefore, 2-OHE2 eye drops improved corneal erosion in dry eye model rats. 2-OHE2 is a candidate for the treatment of dry eye through the suppression of inflammation and oxidative stress in the cornea.

  6. Birnessite-induced binding of phenolic monomers to soil humic substances and nature of the bound residues.

    Science.gov (United States)

    Li, Chengliang; Zhang, Bin; Ertunc, Tanya; Schaeffer, Andreas; Ji, Rong

    2012-08-21

    The nature of the abiotic birnessite (δ-MnO(2))-catalyzed transformation products of phenolic compounds in the presence of soil organic matter is crucial for understanding the fate and stability of ubiquitous phenolic carbon in the environment. (14)C-radioactive and (13)C-stable-isotope tracers were used to study the mineralization and transformation by δ-MnO(2) of two typical humus and lignin phenolic monomers--catechol and p-coumaric acid--in the presence and absence of agricultural and forest soil humic acids (HAs) at pH 5-8. Mineralization decreased with increasing solution pH, and catechol was markedly more mineralized than p-coumaric acid. In the presence of HAs, the mineralization was strongly reduced, and considerable amounts of phenolic residues were bound to the HAs, independent of the solution pH. The HA-bound residues were homogeneously distributed within the humic molecules, and most still contained the unchanged aromatic ring as revealed by (13)C NMR analysis, indicating that the residues were probably bound via ester or ether bonds. The study provides important information on δ-MnO(2) stimulation of phenolic carbon binding to humic substances and the molecular distribution and chemical structure of the bound residues, which is essential for understanding the environmental fates of both naturally occurring and anthropogenic phenolic compounds.

  7. Electrochemical Investigation of the Interaction between Catecholamines and ATP.

    Science.gov (United States)

    Taleat, Zahra; Estévez-Herrera, Judith; Machado, José D; Dunevall, Johan; Ewing, Andrew G; Borges, Ricardo

    2018-02-06

    The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.

  8. Immobilization of Tyrosinase on (3-Aminopropyltriethoxysilane-Functionalized Carbon Felt-Based Flow-Through Detectors for Electrochemical Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    2017-07-01

    Full Text Available Tyrosinase (TYR was covalently immobilized onto amino-functionalized carbon felt (CF surface via glutaraldehyde (GA. Prior to the TYR-immobilization, primary amino group was introduced to the CF surface by treatment with 3-aminopropyltriethoxysilane (APTES. The resulting TYR-immobilized CF was used as a working electrode unit of an electrochemical flow-through detector for mono- and di-phenolic compounds (i.e., catechol, p-cresol, phenol and p-chlorophenol. Additionally, flow injection peaks based on electroreduction of the enzymatically produced o-quinone species were detected at −0.05 V vs. Ag/AgCl. The resulting TYR/GA/APTES/CF biosensor responded well to all compounds tested with limits of detection range from 7.5 to 35 nmol−1 (based on three times S/N ratio. Moreover, such modified electrode exhibits good stability and reproducibility for catechol. No serious degradation of the peak current was found over 30 consecutive injections.

  9. Potential Use of Apple Polyphenol Oxidase for Bioremediation of Phenolic Contaminants

    Directory of Open Access Journals (Sweden)

    Anita Šalić

    2018-04-01

    Full Text Available Phenolic compounds, such as catechol, are released into the environment from a variety of industrial sources and they present a serious ecosystem burden. This work examined the possibility of using partially purified apple polyphenol oxidase (PPO for bioremediation of phenolic contaminants. In order to optimize process conditions, the optimal pH and temperature for PPO activity were determined, while PPO affinity toward various phenols, as well as the effect of some salts and organic solvents which can be found in wastewaters, was used to confirm applicability of PPO in wastewater treatment. It was found that partially purified apple PPO shows maximal activity at pH 6.8 and 25 °C, but exhibits more than 85 % of its maximal activity in pH range from 5 to 8, and more than 90 % of activity in temperature range from 10 to 50 °C. PPO showed high affinity for various diphenols, but lack of affinity toward monophenols. Sodium tetraborate decahydrate moderately inhibited PPO activity, while exposure of PPO to the presence of organic solvents (φ = 5 % caused 40 % loss in its activity. Catechol oxidation by PPO performed for just 5 min in a batch reactor at optimal process conditions resulted in 25 % conversion. Based on obtained data, it seems that partially purified apple PPO has reasonable potential in wastewater treatment.

  10. EPR studies of chromium(V) intermediates generated via reduction of chromium(VI) by DOPA and related catecholamines

    DEFF Research Database (Denmark)

    Pattison, D I; Lay, P A; Davies, Michael Jonathan

    2000-01-01

    previously but have been reassigned as octahedral Cr(V) species with mixed catechol-derived ligands, [CrV(semiquinone)2(catecholate)]+. Experiments with excess K2Cr2O7 show complex behavior with the catecholamines and TBC. Several weak Cr(V) signals are detected after mixing, and the spectra evolve over time....... These species are of interest in relation to the potential role of oxidized proteins and amino acids in Cr-induced cancers. With excess organic ligand, all of the substrates yield Cr species with signals at g(iso) approximately 1.972 (Aiso(53Cr) > 23.9 x 10(-4) cm(-1)). These are similar to signals reported...... to yield relatively stable substrate-dependent signals at g(iso) approximately 1.980. These signals have been attributed to [Cr(O)L2](L = diolato) species, in which the Cr is coordinated to two cyclized catecholamine ligands and an oxo ligand. Isotopic labeling studies with DOPA (ring or side chain...

  11. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death.

    Science.gov (United States)

    Tu, Zhi-Shan; Wang, Qi; Sun, Dan-Dan; Dai, Fang; Zhou, Bo

    2017-07-07

    Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent Nrf2 activator and cancer chemopreventive agent. In this study, we synthesized a series of curcumin analogs by introducing the geminal dimethyl substituents on the active methylene group to find more potent Nrf2 activators and cytoprotectors against oxidative death. The geminally dimethylated and catechol-type curcumin analog (compound 3) was identified as a promising lead molecule in terms of its increased stability and cytoprotective activity against the tert-butyl hydroperoxide (t-BHP)-induced death of HepG2 cells. Mechanism studies indicate that its cytoprotective effects are mediated by activating the Nrf2 signaling pathway in the Michael acceptor- and catechol-dependent manners. Additionally, we verified by using copper and iron ion chelators that the two metal ion-mediated oxidations of compound 3 to its corresponding electrophilic o-quinone, contribute significantly to its Nrf2-dependent cytoprotection. This work provides an example of successfully designing natural curcumin-directed Nrf2 activators by a stability-increasing and proelectrophilic strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Layer-by-Layer Thin Film of Iron Phthalocyanine as a Simple and Fast Sensor for Polyphenol Determination in Tea Samples.

    Science.gov (United States)

    Maximino, Mateus Dassie; Martin, Cibely Silva; Paulovich, Fernando Vieira; Alessio, Priscila

    2016-10-01

    Polyphenols have attracted attention due to their antioxidant capacity and beneficial effects to health. Therefore, fast, inexpensive, and efficient methods to discriminate and to quantify polyphenols are of interest for food industry. In this paper, Layer-by-Layer films of poly(allylamine hydrochloride) and iron tetrasulfonated phthalocyanine were employed as sensor for determination of polyphenols in green tea (camellia sinensis), and green and roasted mate teas (ilex paraguariensis). The polyphenol sensor was tested in catechol standard solution by differential pulse voltammetry (DPV), reaching a limit of detection of 1.76 × 10 -7 mol/L. The determination of polyphenols in the tea samples was obtained by analytical curve and catechol standard addition using electrochemical techniques. Projection techniques (information visualization) were applied to the DPV results of the tea samples and a pattern of separation following the phenolic content was obtained. The results support the application of the sensor in fast classification of beverages according to their polyphenol content. © 2016 Institute of Food Technologists®.

  13. Antioxidant and ion-induced gelation functions of pectins enabled by polyphenol conjugation.

    Science.gov (United States)

    Ahn, Soohwan; Halake, Kantappa; Lee, Jonghwi

    2017-08-01

    The development of antioxidant polymers through the chemical conjugation of natural polyphenols onto polysaccharides has important applications in biomedical, pharmaceutical, food, and cosmetic fields. Due to their labile characteristics, the covalent conjugation of polyphenols while retaining antioxidant properties has been a challenging task. Herein, four structurally different polyphenols, three with and one without a catechol group, were conjugated onto pectin macromolecules via a simple and efficient preparation method involving epichlorohydrin chemistry. The conjugation reactions were confirmed by FT-IR and UV-vis characterization, and the free radical scavenging assay confirmed that the polyphenols maintained their antioxidant activity after the reaction. The conventional structure-antioxidant property relationship can be applied to the assay results, and hesperidin without a catechol group showed the lowest antioxidant capability. The coordination of multivalent metal ions with polyphenols enabled ionic crosslinking and the moduli of hydrogels depend on the type of polyphenols and their molecular interactions with metal ions. The simplicity of preparation and the resulting unique properties could make the pectin conjugates useful in a wide range of application areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. ``Green'' functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging

    Science.gov (United States)

    Jiang, Wen; Lai, Kuilin; Liu, Kexia; Xia, Rui; Gao, Fabao; Wu, Yao; Gu, Zhongwei

    2014-01-01

    Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake.Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake. Electronic supplementary information (ESI) available: Additional information and figures (Fig. S1-S7), including experimental sections, characterization of the products, protein corona analysis, cytotoxicity and cellular uptake quantification. See DOI: 10.1039/c3nr05003c

  15. Pyrolysis g.c.-m.s. of a series of degraded woods and coalified logs that increase in rank from peat to subbituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Lerch, H. E.; Kotra, R.K.; Verheyen, T.V.

    1988-01-01

    Xylem tissue from degraded wood and coalified logs or stems was examined by pyrolysis g.c.-m.s. to improve understanding of the coalification process. The pyrolysis data, when combined with solid-state 13C n.m.r. data for the same samples, show several stages of evolution during coalification. The first stage, microbial degradation in peat, involves the selective degradation of cellulosic components and preservation of lignin-like components. As coalification increases, the lignin structural units undergo a series of defunctionalization reactions. The first of these involve loss of methoxyl groups, with replacement by phenolic hydroxyls such that catechol-like structures are produced. As the xylem tissue is converted to subbituminous coal, the persistence of phenols and methylated phenols in pyrolysis g.c.-m.s. data of subbituminous coal suggests that the catechol-like structures are being converted to phenol-like structures. The ability to discern detailed changes in the chemical structural composition of a genetically and histologically related series of samples provides an ideal method for developing models of coal structure, especially that of low-rank coal. ?? 1988.

  16. Serotonin and dopamine as neurotransmitters in mytilus: block of serotonin receptors by an organic mercurial.

    Science.gov (United States)

    Twarog, B M; Muneoka, Y; Ledgere, M

    1977-05-01

    The effects of mersalyl, bromo-LSD (BOL) and methysergide (UML) on the relaxation of catch by certain indole and catechol derivatives were studied in the anterior byssus retractor muscle of Mytilus. Mersalyl antagonized relaxation in response to serotonin whereas BOL and UML were less effective. Two other indole derivatives, ergotamine and gramine, were also blocked by mersalyl; BOL and UML antagonized relaxation in response to dopamine more effectively than did mersalyl. Two other catechols, epinephrine and norepinephrine, were also blocked more effectively by BOL and UML than by mersaly. Relaxation in response to neural stimulation was blocked more effectively by mersalyl than by BOL. The blocking action of mersalyl on neural relaxation reversed very poorly after washing the drug, but complete reversal was induced by brief exposure to dithiothreitol. It is concluded that the evidence supports an hypothesis that the transmitter released by relaxing nerves is serotonin. It is suggested that mersalyl blocks serotonin by combining with a sulfhydryl group at or near the site on the receptor to which the indole nitrogen attaches.

  17. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  18. Vapor-Phase Hydrodeoxygenation of Guaiacol to Aromatics over Pt/HBeta: Identification of the Role of Acid Sites and Metal Sites on the Reaction Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Peng, Bo [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Zhu, Xinli [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China

    2018-02-05

    Hydrodeoxygenation of guaiacol, a phenolic compound derived from lignin fraction of biomass, over a Pt/HBeta catalyst at 350 °C and atmospheric pressure produces benzene, toluene, xylenes, and C9+ aromatics with yield of 42%, 29%, 12%, and 5%, respectively. Reaction pathways for conversion of two functional groups (hydroxyl and methoxyl) over the bifunctional catalyst were studied. Both guaiacol and intermediate products (catechol and cyclopentanone) were fed onto zeolite HBeta and Pt/SiO2 to identify the individual role of acid site and metal site. Acid sites (mainly Brønsted acid site, BAS) catalyze transalkylation and dehydroxylation reactions in sequence, producing phenol, cresols and xylenols as the major products at high conversion. Pt sites catalyze demethylation reaction resulting in catechol as the primary product, which can either be deoxygenated to phenol followed by phenol to benzene, or decarbonylated to cyclopentanone and further to butane. The close proximity of Pt and BAS in bifunctional Pt/HBeta enables both transalkylation and deoxygenation reactions with inhibited demethylation and decarbonylation reactions, producing aromatics as major final products with a total yield > 85%. Both activity and stability of bifunctional Pt/HBeta during hydrodeoxygenation of guaiacol is improved compared to HBeta and Pt/SiO2. The addition of water to the feed further improves the activity and stability via hydrolysis of O-CH3 bond of guaiacol on BAS and removing coke around Pt.

  19. Adhesive Bioactive Coatings Inspired by Sea Life.

    Science.gov (United States)

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  20. Uncaria tomentosa extracts protect human erythrocyte catalase against damage induced by 2,4-D-Na and its metabolites.

    Science.gov (United States)

    Bukowska, Bożena; Bors, Milena; Gulewicz, Krzysztof; Koter-Michalak, Maria

    2012-06-01

    The effect of ethanolic and aqueous extracts from leaves and bark of Uncaria tomentosa was studied, with particular attention to catalase activity (CAT - EC. 1.11.1.6). We observed that all tested extracts, at a concentration of 250 μg/mL were not toxic to erythrocyte catalase because they did not decreased its activity. Additionally, we investigated the protective effect of extracts on changes in CAT activity in the erythrocytes incubated with sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and its metabolites i.e., 2,4-dichlorophenol (2,4-DCP) and catechol. Previous investigations showed that these chemicals decreased activity of erythrocyte catalase (Bukowska et al., 2000; Bukowska and Kowalska, 2004). The erythrocytes were divided into two portions. The first portion was incubated for 1 and 5h at 37°C with 2,4-D-Na, 2,4-DCP and catechol, and second portion was preincubated with extracts for 10 min and then incubated with xenobiotics for 1 and 5h. CAT activity was measured in the first and second portion of the erythrocytes. We found a protective effect of the extracts from U. tomentosa on the activity of catalase incubated with xenobiotics studied. Probably, phenolic compounds contained in U. tomentosa scavenged free radicals, and therefore protected active center (containing -SH groups) of catalase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.

    Science.gov (United States)

    Do, Hyunsu; Kang, Eungsu; Yang, Byeongseon; Cha, Hyung Joon; Choi, Yoo Seong

    2017-12-08

    Tyrosinase efficiently catalyzes the ortho-hydroxylation of monophenols and the oxidation of diphenols without any additional cofactors. Although it is of significant interest for the biosynthesis of catechol derivatives, the rapid catechol oxidase activity and inactivation of tyrosinase have hampered its practical utilization as a monophenol monooxygenase. Here, we prepared a functional tyrosinase that exhibited a distinguished monophenolase/diphenolase activity ratio (V max mono/ V max di = 3.83) and enhanced catalytic efficiency against L -tyrosine (k cat  = 3.33 ± 0.18 s -1 , K m  = 2.12 ± 0.14 mM at 20 °C and pH 6.0). This enzyme was still highly active in ice water (>80%), and its activity was well conserved below 30 °C. In vitro DOPA modification, with a remarkably high yield as a monophenol monooxygenase, was achieved by the enzyme taking advantage of these biocatalytic properties. These results demonstrate the strong potential for this enzyme's use as a monophenol monooxygenase in biomedical and industrial applications.

  2. The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri.

    Science.gov (United States)

    Zhou, Zhi; Ni, Duojiao; Wang, Mengqiang; Wang, Lingling; Wang, Leilei; Shi, Xiaowei; Yue, Feng; Liu, Rui; Song, Linsheng

    2012-08-01

    Tyrosinase (TYR), also known as monophenol monooxygenase, is a ubiquitous binuclear copper-containing enzyme which catalyzes the hydroxylation of phenols to catechols and the oxidation of catechols to quinones. In the present study, the cDNA of a tyrosinase (CfTYR) was identified from scallop Chlamys farreri, which encoded a polypeptide of 486 amino acids. The CfTYR mRNA transcripts were expressed in all the tested tissues, including haemocytes, adductor muscle, kidney, hepatopancreas, gill, gonad and mantle, with the highest level in mantle. The expression level of CfTYR mRNA in haemocytes decreased significantly during 3-6 h after LPS stimulation, and reached the lowest level at 6 h (0.05-fold, P 0.05), and reached the highest level at 24 h (2.91-fold, P tyrosinase in scallop C. farreri with the copper-dependence phenoloxidase activity, and it could be induced after immune stimulation and mediate immune response for the elimination of invasive pathogens in scallop. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation

    Science.gov (United States)

    Citek, Cooper; Lyons, Christopher T.; Wasinger, Erik C.; Stack, T. Daniel P.

    2012-04-01

    The enzyme tyrosinase contains two CuI centres, trigonally coordinated by imidazole nitrogens of six conserved histidine residues. The enzyme activates O2 to form a µ-η2:η2-peroxo-dicopper(II) core, which hydroxylates tyrosine to a catechol in the first committed step of melanin biosynthesis. Here, we report a family of synthetic peroxo complexes, with spectroscopic and chemical features consistent with those of oxygenated tyrosinase, formed through the self-assembly of monodentate imidazole ligands, CuI and O2 at -125 °C. An extensively studied complex reproduces the enzymatic electrophilic oxidation of exogenous phenolic substrates to catechols in good stoichiometric yields. The self-assembly and subsequent reactivity support the intrinsic stability of the Cu2O2 core with imidazole ligation, in the absence of a polypeptide framework, and the innate capacity to effect hydroxylation of phenolic substrates. These observations suggest that a foundational role of the protein matrix is to facilitate expression of properties native to the core by bearing the entropic costs of assembly and precluding undesired oxidative degradation pathways.

  4. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.

    Science.gov (United States)

    Olivares, Concepcion; Solano, Francisco

    2009-12-01

    Tyrosinases are widely distributed in nature. They are copper-containing oxidases belonging to the type 3 copper protein family, together with catechol oxidases and haemocyanins. Tyrosinases are essential enzymes in melanin biosynthesis and therefore responsible for pigmentation of skin and hair in mammals, where two more enzymes, the tyrosinase-related proteins (Tyrps), participate in the pathway. The structure and catalytic mechanism of mammalian tyrosinases have been extensively studied but they are not completely understood because of the lack of information on the tertiary structure. The availability of crystallographic data of one plant catechol oxidase and one bacterial tyrosinase has improved the model of the three-dimensional structure of the active site of the enzyme. Furthermore, sequence comparison of tyrosinase and the Tyrps reveals that the three orthologue proteins share many key structural features, because of their common origin from an ancestral gene, although the specific residues responsible for their different catalytic capabilities have not been identified yet. This review summarizes our current knowledge of tyrosinase and Tyrps structure and function and describes the catalytic mechanism of tyrosinase and Dct/Tyrp2, which are better characterized.

  5. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.

    Science.gov (United States)

    Hernández-Romero, Diana; Sanchez-Amat, Antonio; Solano, Francisco

    2006-01-01

    The sequencing of the genome of Ralstonia solanacearum[Salanoubat M, Genin S, Artiguenave F, et al. (2002) Nature 415, 497-502] revealed several genes that putatively code for polyphenol oxidases (PPOs). This soil-borne pathogenic bacterium withers a wide range of plants. We detected the expression of two PPO genes (accession numbers NP_518458 and NP_519622) with high similarity to tyrosinases, both containing the six conserved histidines required to bind the pair of type-3 copper ions at the active site. Generation of null mutants in those genes by homologous recombination mutagenesis and protein purification allowed us to correlate each gene with its enzymatic activity. In contrast with all tyrosinases so far studied, the enzyme NP_518458 shows higher monophenolase than o-diphenolase activity and its initial activity does not depend on the presence of l-dopa cofactor. On the other hand, protein NP_519622 is an enzyme with a clear preference to oxidize o-diphenols and only residual monophenolase activity, behaving as a catechol oxidase. These catalytic characteristics are discussed in relation to two other characteristics apart from the six conserved histidines. One is the putative presence of a seventh histidine which interacts with the carboxy group on the substrate and controls the preference for carboxylated and decarboxylated substrates. The second is the size of the residue isosteric with the aromatic F261 reported in sweet potato catechol oxidase which acts as a gate to control accessibility to CuA at the active site.

  6. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  7. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    Science.gov (United States)

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo.

  8. A comparison of amperometric screen-printed, carbon electrodes and their application to the analysis of phenolic compounds present in beers.

    Science.gov (United States)

    Cummings, E A; Linquette-Mailley, S; Mailley, P; Cosnier, S; Eggins, B R; McAdams, E T

    2001-12-13

    In this paper a comparison between three commercially-available, screen-printable graphite inks for the construction of phenolic biosensors is made. The enzyme tyrosinase was immobilised within a polymer matrix and the substrate catechol was used to characterise the bio-electroanalytical response of each electrode. Biosensors fabricated from Gwent graphite inks exhibited the greatest sensitivity (5740 mA mol cm(-2)) compared to Dupont and Acheson graphite-based inks. This difference in sensitivity was attributed to a combination of a larger electroactive surface area, and thus a greater number of immobilised enzyme molecules. However, the dynamic range was considerably smaller (0.025-14 muM) indicating that the enzyme molecules were easily accessible to the substrate catechol. The surface properties of the biosensors were characterised using ac impedance, which indicated that the presence of the polymer on the electrode surface not only increased the charge-transfer kinetics of the three biosensors, but also increased the surface roughness of biosensors fabricated from Gwent inks. On the basis of these results Gwent graphite-based inks were used for analysis of phenolic compounds in lager beers by flow-injection analysis. The biosensor displayed favourable response characteristics, but cannot differentiate between the various phenolic compounds present in the samples. Nevertheless, the biosensor maybe suitable for indicating the phenolic status of beer or brew samples compared to time-consuming traditional methods, e.g. colorimetric or chromatographic methods.

  9. Bioconversion of Biomass-Derived Phenols Catalyzed by Myceliophthora thermophila Laccase

    Directory of Open Access Journals (Sweden)

    Anastasia Zerva

    2016-04-01

    Full Text Available Biomass-derived phenols have recently arisen as an attractive alternative for building blocks to be used in synthetic applications, due to their widespread availability as an abundant renewable resource. In the present paper, commercial laccase from the thermophilic fungus Myceliophthora thermophila was used to bioconvert phenol monomers, namely catechol, pyrogallol and gallic acid in water. The resulting products from catechol and gallic acid were polymers that were partially characterized in respect to their optical and thermal properties, and their average molecular weight was estimated via solution viscosity measurements and GPC. FT-IR and 1H-NMR data suggest that phenol monomers are connected with ether or C–C bonds depending on the starting monomer, while the achieved molecular weight of polycatechol is found higher than the corresponding poly(gallic acid. On the other hand, under the same condition, pyrogallol was dimerized in a pure red crystalline compound and its structure was confirmed by 1H-NMR as purpurogallin. The herein studied green synthesis of enzymatically synthesized phenol polymers or biological active compounds could be exploited as an alternative synthetic route targeting a variety of applications.

  10. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    Science.gov (United States)

    Wilson, Melissa K; Abergel, Rebecca J; Raymond, Kenneth N; Arceneaux, Jean E L; Byers, B Rowe

    2006-09-15

    Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.

  11. Anthranilate degradation by a cold-adapted Pseudomonas sp.

    Science.gov (United States)

    Kim, Dockyu; Yoo, Miyoun; Kim, Eungbin; Hong, Soon Gyu

    2015-03-01

    An alpine soil bacterium Pseudomonas sp. strain PAMC 25931 was characterized as eurypsychrophilic (both psychrophilic and mesotolerant) with a broad temperature range of 5-30 °C both for anthranilate (2-aminobenzoate) degradation and concomitant cell growth. Two degradative gene clusters (antABC and catBCA) were detected from a fosmid clone in the PAMC 25931 genomic library; each cluster was confirmed to be specifically induced by anthranilate. When expressed in Escherichia coli, the recombinant AntABC (anthranilate 1,2-dioxygenase, AntDO) converted anthranilate into catechol, exhibiting strict specificity toward anthranilate. Recombinant CatA (catechol 1,2-dioxygenase, C12O) from the organism was active over a broad temperature range (5-37 °C). However, CatA rapidly lost the enzyme activity when incubated at above 25 °C. For example, 1 h-preincubation at 37 °C resulted in 100% loss of enzyme activity, while a counterpart from mesophilic Pseudomonas putida mt-2 did not show any negative effect on the initial enzyme activity. These results suggest that CatA is a new cold-adapted thermolabile enzyme, which might be a product through the adaptation process of PAMC 25931 to naturally cold environments and contribute to its ability to grow on anthranilate there. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrochemical synthesis of novel {pi}-extended phenoxazine derivatives of porphyrincatecholes

    Energy Technology Data Exchange (ETDEWEB)

    Osati, Samira; Davarani, Saied Saeed Hosseiny [Department of Chemistry, Faculty of Science, Shahid Beheshti University, G.C, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Safari, Nasser, E-mail: n-safari@cc.sbu.ac.ir [Department of Chemistry, Faculty of Science, Shahid Beheshti University, G.C, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Banitaba, Mohammad Hossein [Department of Chemistry, Faculty of Science, Shahid Beheshti University, G.C, Evin, 1983963113 Tehran (Iran, Islamic Republic of)

    2011-10-30

    Three new functionalized phenoxazine-catechol porphyrins 7a-c have been synthesized by a green one-pot method and structurally characterized by spectroscopic analysis. The electro-oxidation of 5,10,15,20-tetrakis(2,3-dihydroxyphenyl) porphyrins(1a-c) with four catechol units in the presence of 2-aminophenol 8 as bidentate nucleophile has been done and phenoxazine rings have been formed by intermolecular and intramolecular Michael addition reactions. Spectroscopic characterization and voltammetry results have allowed us to propose four independent ECEC mechanisms for the electrochemical oxidation pathway. The functionalization of the porphyrins affected their photophysical properties. Expansion of the UV-vis spectrum range and the decrease of the fluorescence intensity of the products would support the energy transfer between the porphyrin core excited states to the four substitutions as the electron acceptor subunits. SEM images indicate that this method produces regularly shaped manganese porphyrin nano-particles 7c that possess a cubic nano structure.

  13. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lu Limin; Zhang Li [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Zhang Xiaobing, E-mail: xbzhang@hnu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Huan Shuangyan; Shen Guoli; Yu Ruqin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2010-04-30

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 {mu}M, with a high sensitivity of 2.11 x 10{sup 3} {mu}A mM{sup -1} cm{sup -2}, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 {mu}M for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  14. Theoretical Study on Reaction Pathways Leading to CO and CO2in the Pyrolysis of Resorcinol.

    Science.gov (United States)

    Furutani, Yuki; Kudo, Shinji; Hayashi, Jun-Ichiro; Norinaga, Koyo

    2017-01-26

    Possible pathways for the pyrolysis of resorcinol with the formation of CO and CO 2 as final products were proposed and evaluated using ab initio calculations. Our experimental study revealed that large quantities of CO 2 are generated in the pyrolysis of 1,3-dihydroxybenzene (resorcinol), while the pyrolysis of the dihydroxybenzene isomers 1,2-dihydroxybenzene (catechol) and 1,4-dihydroxybenzene (hydroquinone) produces little CO 2 . The fate of oxygen atoms in catechol and hydroquinone was essentially the formation of CO. In the proposed pathways, the triplet ground state m-benzoquinone was generated initially from simultaneous cleavage of the two O-H bonds in resorcinol. Subsequently, the direct cleavage of a C-C bond of the m-benzoquinone diradical yields 2-oxidanylcyclopenta-2,4-dien-1-yl-methanone, which can be converted via two channels: release of CO from the aldehyde radical group and combination of the ketone radical and carbon atom in the aldehyde radical group to form the 6-oxabicyclo[3.2.0]hepta-2,4-dien-7-one, resulting in the release of CO 2 . Potential energy surfaces along the proposed reaction pathways were calculated employing the CBS-QB3 method, and the rate constants at the high-pressure limit were also evaluated based on transition-state theory to assess the feasibility of the proposed reaction pathways.

  15. Nigerian foodstuffs with prostate cancer chemopreventive polyphenols

    Science.gov (United States)

    2011-01-01

    Dietary polyphenols are antioxidants that can scavenge biological free radicals, and chemoprevent diseases with biological oxidation as their main etiological factor. In this paper, we review our laboratory data vis-ὰ-vis available literature on prostate cancer chemopreventive substances in Nigerian foodstuffs. Dacryodes edulis fruit, Moringa oleifera and Syzygium aromaticum contained prostate active polyphenols like ellagic acid, gallate, methylgallate, catechol, kaempferol quercetin and their derivatives. Also Canarium schweinfurthii Engl oil contained ten phenolic compounds and lignans, namely; catechol, p-hydroxybenzaldehyde, dihydroxyphenylacetic acid, tyrosol, p-hydroxybenzoic acid, dihydroxybenzoic acid, vanillic acid, phloretic acid, pinoresinol, secoisolariciresinol. In addition, tomatoes (Lycopersicon esculentum Mill) which contains the powerful antioxidant and anti-prostate cancer agent, lycopene; cabbage (Brassica oleracea) containing indole-3-carbinol; citrus fruits containing pectin; Soursop (Annona muricata) containing annonaceous acetogenins; soya beans (Glycine max) containing isoflavones; chilli pepper (Capsicum annuum) containing capsaicin, and green tea (Camellia sinensis) containing (-) epigallocatechin gallate (EGCG), (-) epicatechin, (-) epicatechin-3-gallate and (-) epigallocatechin -3-gallate which are widely reported to posses prostate cancer chemopreventive compounds are also grown in Nigeria and other African countries. Thus, the high incidence of prostate cancer among males of African extraction can be dramatically reduced, and the age of onset drastically increased, if the population at risk consumes the right kinds of foods in the right proportion, beginning early in life, especially as prostate cancer has a latency period of about 50 years. PMID:21992488

  16. Marine Bioinspired Underwater Contact Adhesion.

    Science.gov (United States)

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  17. Enhanced electrochemical performance of in situ reduced graphene oxide–polyaniline nanotubes hybrid nanocomposites using redox-additive aqueous electrolyte

    Science.gov (United States)

    Devi, Madhabi; Kumar, A.

    2018-02-01

    Reduced graphene oxide (RGO)–polyaniline nanotubes (PAniNTs) nanocomposites have been synthesized by in situ reduction of GO. The morphology and structure of the nanocomposites are characterized by HRTEM, XRD and micro-Raman spectroscopy. The electrical and electrochemical performances of the nanocomposites are investigated for different RGO concentrations by conductivity measurements, cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. Highest gravimetric specific capacitance of 448.71 F g‑1 is obtained for 40 wt.% of RGO-PAniNTs nanocomposite as compared to 194.92 F g‑1 for pure PAniNTs in 1 M KCl electrolyte. To further improve the electrochemical performance of the nanocomposite electrode, KI is used as redox-additive with 1 M KCl electrolyte. Highest gravimetric specific capacitance of 876.43 F g‑1 and an improved cyclic stability of 91% as compared to 79% without KI after 5000 cycles is achieved for an optimized 0.1 M KI concentration. This is attributed to the presence of different ionic species of I‑ ions that give rise to a number of possible redox reactions improving the pseudocapacitance of the electrode. This improved capacitive performance is compared with that of catechol redox-additive in 1 M KCl electrolyte, and that of KI and catechol redox-additives added to 1 M H2SO4 electrolyte.

  18. Production of theabrownins using a crude fungal enzyme concentrate.

    Science.gov (United States)

    Wang, Qiuping; Gong, Jiashun; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2016-08-10

    Theabrownins were produced from infusions of sun-dried green tea leaves using a crude enzyme concentrate of Aspergillus tubingensis TISTR 3647. This fungus had been isolated from a solid state fermentation of Pu-erh type tea. The crude enzyme concentrate contained activities of peroxidase, catechol oxidase and laccase. The enzyme concentrate effectively oxidized the phenolic compounds in green tea infusion to theabrownins. A theabrownins concentration of 56.0g/L was obtained in 44h. The reaction mixture contained the green tea infusion and crude enzyme concentrate in the volume ratio of 1: 0.205. The tea infusion had been produced using 200g of tea leaves per liter of distilled water. The reaction was carried out in a stirred bioreactor at 37°C with an aeration rate of 1 vvm, an agitation speed of 250rpm and a controlled pH of 7.0. Peroxidase, catechol oxidase, and laccase acted synergistically to convert the phenolic compounds in green tea infusion to theabrownins. Previously, theabrownins had been produced from green tea infusions only by using live fungal cultures. Production using the microorganism-free enzyme concentrate was comparable to production using the fungus A. tubingensis TISTR 3647. The proposed novel production process using the fungal crude enzymes and green tea infusion, offers a more controlled, reproducible and highly productive option for commercial production of theabrownins. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Characteristics of petroleum-contaminated groundwater during natural attenuation: a case study in northeast China.

    Science.gov (United States)

    Qian, Hong; Zhang, Yuling; Wang, Jiali; Si, Chaoqun; Chen, Zaixing

    2018-01-13

    The objective of this study was to investigate a petroleum-contaminated groundwater site in northeast China. We determined the physicochemical properties of groundwater that contained total petroleum hydrocarbons (TPH) with a view to developing a scientifically robust strategy for controlling and remediating pollution of groundwater already contaminated with petroleum. Samples were collected at regular intervals and were analyzed for dissolved oxygen (DO), iron (Fe 3+ ), sulfate (SO 4 2- ), electrical conductivity (Eh), pH, hydrogen carbonate (HCO 3 - ), and enzyme activities of catalase (CAT), peroxidase (HRP), catechol 1,2-dioxygenase (C12O), and catechol 2,3-dioxygenase (C23O). We used factor analysis in SPSS to determine the main environmental characteristics of the groundwater samples. The results confirmed that the study site was slightly contaminated and that TPH levels were decreasing slightly. Some of the physicochemical variables showed regular fluctuations; DO, Fe 3+ , and SO 4 2- contents decreased gradually, while the concentrations of one of the microbial degradation products, HCO 3 - , increased. Microorganism enzyme activities decreased gradually. The microbiological community deteriorated noticeably during the natural attenuation process, so microbiological degradation of pollutants receded gradually. The HCO 3 - content increased and the pH and Eh decreased gradually. The groundwater environment tended to be reducing.

  20. Dielectric properties of a BaTiO3 ceramic prepared by using the freeze drying method

    International Nuclear Information System (INIS)

    Al-Shakarchi, Emad K.

    2010-01-01

    A modified catecholate process has been developed to synthesize high-purity barium titanate by using a freeze drying method to produce ultra-fine powders from a barium titanium catechol complex, Ba[Ti(C 6 H 4 O 2 ) 3 ]. The complex prepared from TiCl 4 , C 6 H 4 (OH) 2 and BaCO 3 . The freeze drying of the complex Ba[Ti(C 6 H 4 O 2 ) 3 ] under a primary vacuum at a freezing temperature of -50 .deg. C for a long time 24 hrs is necessary to transfer the complex Ba[Ti(C 6 H 4 O 2 ) 3 ] from a liquid phase to a solid phase. A subsequent calcination of the complex for 12 hrs at a temperature of 700 .deg. C was very important to remove the acetates from the mixture. Finally, a sintering process was required for the pellets so that high density samples could be investigated. The dielectric properties, the structural phase, and the particle size of the sintered pellets have investigated as functions of frequency and temperature in order to determine the critical temperature for the phase transition. X-ray diffraction was used to investigate the structural properties and the particle size. The tetragonal phase of BaTiO 3 with the lattice constants a = b = 3.9734 A, and c = 4.012 A was successfully obtained.