WorldWideScience

Sample records for catchment-scale water management

  1. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  2. Using stochastic dynamic programming to support catchment-scale water resources management in China

    Science.gov (United States)

    Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2013-04-01

    A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in

  3. Using stochastic dynamic programming to support catchment-scale water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2013-01-01

    allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological...... model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation...... contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in simulation mode. The performance of the operation rules based on water value tables was evaluated. The approach was used...

  4. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management

    DEFF Research Database (Denmark)

    Refsgaard, A.; Jacobsen, T.; Jacobsen, Brian H.

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized...... by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling...... basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates...

  5. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied...... in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse effects of specific, localized basin water management...... plans. The paper also includes a land rent modelling approach which can be used to choose the most cost effective measures and the location of these measures. As a forerunner to the use of basin scale models in WFD basin water management plans this project demonstrates potential and limitations...

  6. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...... in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse effects of specific, localized basin water management...

  7. Let's put this in perspective: using dynamic simulation modelling to assess the impacts of farm-scale land management change on catchment-scale water quality

    Science.gov (United States)

    Rivers, Mark; Clarendon, Simon; Coles, Neil

    2013-04-01

    over entire catchments, for example, only reduced P losses by approximately 20%. Most importantly, changes to land use mosaics within the catchments provided great insight into the relative roles within the catchment P system of the various land uses. While dairying uses large amounts of P, the effects that dairy farm management can have at the catchment scale when these farms represent only a small proportion of the landscape are limited. The most important conclusions from the research are that: • While State and regional environmental management and regulatory agencies continue to set optimistic goals for water quality protection, this research shows that these targets are not achievable within current landscape paradigms even after broadscale BMP implementation, and that either these targets must be re-considered or that significant land use change (rather than simply improved management within current systems) must occur to meet the targets. • Catchment-scale effects of P losses at the farm scale are a complex function of P-use efficiency, landscape position and landscape footprint. Simply targetting those landuses perceived to have high nutrient loss rates does not adequately address the problem. • Catchment P management must be considered in a more inclusive and holistic way, and these assessments should be used to inform future planning policies and development plans if environmental goals as well as community expectations about the productive use of agricultural land are to be met.

  8. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    Science.gov (United States)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  9. Catchment-scale groundwater recharge and vegetation water use efficiency

    Science.gov (United States)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  10. Linking on-farm change to catchment response using dynamic simulation modelling: assessing the impacts of farm-scale land management change on catchment-scale phosphorus transport processes and water-quality.

    Science.gov (United States)

    Rivers, M.; Clarendon, S.

    2012-04-01

    Australian Natural Resource Management and Agri-industry Development agencies have recently invested considerable resources into a number of research and development projects that have investigated the actual and potential economic, social and, particularly, environmental impacts of varying farming activities (with a strong focus on dairies) in a "catchment context". These activities have resulted in the development of a much-improved understanding of the likely impacts of changed farm management practices within the farms and regions in which they were investigated, as well as the development of a number of conceptual models which place dairy farming within this broader catchment context. The project discussed in this paper was charged with the objective of transforming these conceptual models of dairy farm nutrient management and transport processes into a more temporally and spatially dynamic model. This could then be loaded with catchment-specific data and used as a "policy support tool" to allow the Australian dairy industry to examine the potential farm and catchment-scale impacts of varying dairy farm management practices within some key dairy farming regions. This paper describes the series of dynamic models and farm management - land use scenarios which were executed to examine these issues. Models were developed, validated and calibrated for the Peel-Harvey catchment in Western Australia and the Gippsland and Latrobe (a sub-catchment of Gippsland) catchments in Victoria. Scenarios which range from simple, on-farm riparian management, through changes in fertiliser application rates, to gross changes in the land use mosaic were examined and described in terms which included changes to phosphorus (P) loss rates at the farm scale, the relative contributions to catchment P loads from dairying and, ultimately, changes to downstream water quality. A comprehensive suite of scenarios and policy options was examined but, in summary, the results indicate that whilst

  11. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)

    Science.gov (United States)

    Shuster, William; Rhea, Lee

    2013-04-01

    stormwater runoff volume management, with potential benefits for management of both separated and combined sewer systems. We also discuss lessons-learned with regard to monitoring design for catchment-scale hydrologic studies.

  12. Improving catchment scale water quality modelling with continuous high resolution monitoring of metals in runoff

    Science.gov (United States)

    Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu

    2017-04-01

    High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.

  13. The role of fine sediment in managing catchment scale flood risk.

    Science.gov (United States)

    Twohig, Sarah; Pattison, Ian

    2016-04-01

    Increases in sediment delivery to river channels from changes in land use and climate must be accounted for by catchment managers. Recent flooding of the Somerset Levels, UK highlighted the impacts of reduced channel capacity as a result of sedimentation. Sediment entering river systems needs to be carefully managed in order to sustainably mitigate flood risk. Geomorphological drivers have previously been neglected when proposing methods to reduce flood risk. Understanding the connections between hydrology, geomorphology and engineering is fundamental to predicating sediment transfer within river catchments and thus successfully implementing sustainable flood management. This study focuses on catchment scale fine sediment delivery, changes to channel capacity and its implications for existing flood defence infrastructure. Furthermore, fine sediment accumulations in river channels have been found to reduce water quality due to the presence of nutrients and heavy metals and degrade spawning and invertebrate habitats. Locating the sources of fine sediment within a catchment will enable catchment managers to target resources effectively at reducing sedimentation in rivers and appraise natural flood alleviation measures. This study investigates whether changes in channel capacity due to sedimentation influence flood risk of the River Eye catchment, Leicestershire. Using a combination of field, laboratory and modelling methods this study 1) identifies the sources of fine sediment within the catchment, using sediment fingerprinting techniques; 2) quantifies the spatial and temporal changes in channel capacity at a reach scale with a history of flooding in Melton Mowbray, and 3) monitors existing flood defences designed to prevent downstream sedimentation to determine the longevity and success of the sustainable flood defence scheme. These results will be used to predict the long term flood risk to the catchment, using a series of hydraulic inundation scenarios.

  14. Approaches for quantifying and managing diffuse phosphorus exports at the farm/small catchment scale.

    Science.gov (United States)

    McDowell, Richard W; Nash, David; George, Anja; Wang, Q J; Duncan, Ruth

    2009-01-01

    Quantifying and managing diffuse P losses from small catchments or at the farm scale requires detailed knowledge of farming practices and their interaction with catchment processes. However, detailed knowledge may not be available and hence modeling is required. This paper demonstrates two approaches to developing tools that assist P losses from New Zealand or Australian dairy farms. The first is largely empirical and separates sources of P within a paddock into soil, fertilizer, dung, and treading impacts (including damage to grazed pasture). This information is combined with expert knowledge of hydrological processes and potential point sources (e.g., stream crossings) to create a deterministic model that can be used to evaluate the most cost and labor efficient method of mitigating P losses. For instance, in one example, 45% of annual P lost was attributed to the application of superphosphate just before a runoff event for which a mitigation strategy could be to use a less water soluble P fertilizer. The second approach uses a combination of interviews, expert knowledge and relationships to develop a Bayesian Network that describes P exports. The knowledge integration process helped stakeholders develop a comprehensive understanding of the problem. The Network, presented in the form of a "cause and effect", diagram provided a simple, visual representation of current knowledge that could be easily applied to individual circumstances and isolate factors having the greatest influence on P loss. Both approaches demonstrate that modeling P losses and mitigation strategies does not have to cover every process or permutation and that a degree of uncertainty can be handled to create a working model of P losses at a farm or small catchment scale.

  15. Elevational Dependence of Catchment-scale Evapotranspiration Partitioning as Revealed by Water Stable Isotopes

    Science.gov (United States)

    Yamanaka, T.; Sato, R.

    2017-12-01

    Transpiration (T) through plants (i.e., green water) does not induce isotopic fractionation, although evaporation (E) from soils and water surfaces do. Therefore, water stable isotopes offer a powerful tool to partition evapotranspiration (ET) components. We attempted to evaluate catchment-scale T/ET for five mountainous catchments in the central Japan, using river water isotopes and isotope maps of precipitation and soil water as well as climatic and radar precipitation maps. The estimated T/ET ranged from 56% to 79% (ET not including interception loss), and negatively correlated with mean elevation of the catchments (r = -0.88). This is due to decreasing transpiration (-82 mm/yr per 100 m) and slightly increasing evaporation (8 mm/yr per 100 m) with increasing elevation. Another estimation scheme using isotope data only showed a positive correlation between elevation and E/P*, where P* is effective precipitation defined by gross precipitation minus interception. Because the forest coverage within the catchments has positive correlation with catchment-mean-elevation, both decrease in transpiration and increase in soil evaporation seem to reflect structural change in forests (e.g., dense to sparse) along elevation and thus temperature gradients. Applying the space-for-time substitution, our results indicates that global warming will increase transpiration (and thus carbon intake) at mid-latitude mountainous landscapes.

  16. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    Science.gov (United States)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  17. Impacts of invading alien plant species on water flows at stand and catchment scales

    Science.gov (United States)

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  18. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  19. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    Science.gov (United States)

    Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-11-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested

  20. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    Science.gov (United States)

    Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested

  1. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    Science.gov (United States)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  2. Changes in catchment-scale water fluxes due to time-variant soil hydraulic properties in a subtropical agricultural watershed

    Science.gov (United States)

    Verrot, Lucile; Geris, Josie; Gao, Lei; Peng, Xinhua; Hallett, Paul

    2017-04-01

    In agricultural landscapes, temporal fluxes in hydraulic properties due to tillage, grazing, crop root growth and cycles of wetting and drying influenced by irrigation, could have large impacts at catchment scale. These effects are particularly evident in tropical climates where long periods of drought are followed by intense rainfall that greatly exceeds the infiltration capacity of the soil. This work explores the impact of the seasonal development of crops and the shifts in time between crop types on soil physical properties and the relative changes in the probability distribution of the water storage and fluxes dynamics. We focussed on an agricultural catchment in south east China where the climatic conditions include periods of droughts and heavy rainfall. Using coupled 1-dimension and semi-distributed catchment modelling combined with basic water balance data and both on-site and literature values for soil and crop properties, we investigated the impact of soil physical changes in the root-zone of the soil over different time scales ranging from daily to annual. Our results also showed that the resulting time-variant spatial patterns in soil water storage and flow had an impact on the integrated catchment runoff response at different times of the year.

  3. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    DEFF Research Database (Denmark)

    Petersen, Mette Fjendbo; Eriksson, Eva; Binning, Philip John

    2012-01-01

    pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along...... impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 – 8.8 g/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most...... at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl chloride). Vinyl chloride concentrations surpassed Danish stream water quality criteria with a factor 10. The largest chemical impact...

  4. Transit times : The link between hydrology and water quality at the catchment scale

    NARCIS (Netherlands)

    Hrachowitz, M.; Benettin, P; van Breukelen, B.M.; Fovet, O; Howden, Nicholas J.K.; Ruiz, L; van der Velde, Y; Wade, AJ

    2016-01-01

    In spite of trying to understand processes in the same spatial domain, the catchment
    hydrology and water quality scientific communities are relatively disconnected
    and so are their respective models. This is emphasized by an inadequate
    representation of transport processes, in both

  5. Impacts of invading alien plant species on water flows at stand and catchment scales

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2015-05-01

    Full Text Available There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand...

  6. Grid-based water quality simulation at catchment scale: Nitrogen model development and evaluation

    Science.gov (United States)

    Yang, Xiaoqiang; Jomaa, Seifeddine; Rode, Michael

    2017-04-01

    Stream water quality has been changed significantly during last few decades due to changes in human impacts. Accurate and flexible water quality models, which can properly reflect the heterogeneity and long term temporal dynamic of catchment functioning, are still needed. To this end, a new grid-based catchment water quality model was developed based on the mesoscale Hydrological Model (mHM) and the HYdrological Prediction of Environment (HYPE) model. The model structure and parameterization scheme were flexibly designed depending on the spatial heterogeneity of study sites and their specific requirements. Based on that, more detailed spatial information can be provided. Moreover, three main improvements on Nitrate sub-model were implemented: i) nitrate transport processes were conducted in physically connected river networks, allowing time-series point-source inputs added in the exact location of sewage treatment plants; ii) additional retention storage of deep groundwater was included for long term nitrate-N simulation; iii) special design for better taking into account crop rotation was implemented. Those new features can extend the model capability and facilitate the understanding of catchment mechanisms and analysis of future scenarios and measures. The newly developed model was fully verified in the Selke catchment (456 km2), central Germany. Long term discharge and water quality data have been collected at three nested gauging stations (1997-2015). The station Meisdorf, above where 72% of area is occupied by forest, represents the discharge and nutrient exports from forest area. Agricultural land dominates the lower part of the catchment (almost 96% of in-between area of the Meisdorf and the outlet station Hausneindorf) with considerable urban areas. Due to the relatively large number of model parameters, sensitivity analysis was firstly conducted. Subsequently, sensitive parameters were calibrated using stepwise and multi-variable approaches, respectively

  7. Using high-resolution water quality monitoring to investigate hysteretic behaviour of nutrients at catchment scale

    Science.gov (United States)

    Lloyd, C.; Freer, J. E.; Johnes, P.; Collins, A.

    2013-12-01

    Changing climate and a growing population are increasing pressures on the world's water bodies. Maintaining food security has resulted in changes in agricultural practices, leading to adverse impacts on water quality. To address this problem robust evidence is needed to determine which on-farm mitigation strategies are likely to be most effective in reducing pollutant impacts. The introduction of in-situ quasi-continuous monitoring of water quality provides the means to improve the characterisation of pollutant behaviour and gain new understanding of hydrological and biogeochemical processes occurring within catchments. Here we use a suite of in-situ monitoring sensors to investigate changes in hysteretic patterns of nutrients in response to different environmental drivers. Observations of hysteretic behaviour can provide insights into the dominant transport pathways of pollutants. Therefore, monitoring changes in nutrient hysteresis can provide a useful tool for detecting catchment change. Such data also improves the quantification of pollutant loads and concentration dynamics. In the UK, the Demonstration Test Catchments (DTC) programme has been established to deliver evidence for improvements in water quality arising specifically from the deployment of measures to mitigate diffuse pollution from agriculture using high resolution in-situ monitoring. This research platform provides an opportunity to compare storm-driven nutrient behaviour between catchments which have differing geologies, and determine how these behaviours evolve on a seasonal and annual basis. The monitoring to date has included a period of drought in WY2011, directly followed by extreme wet conditions in the UK in WY2012 and therefore offers opportunities to assess the effect of differences in antecedent conditions on monitored nutrient response to rainfall events. The study compares the hysteretic behaviour of nutrients, including nitrogen and phosphorus species as well as turbidity from a

  8. Determining which land management practices reduce catchment scale flood risk and where to implement them for optimum effect

    Science.gov (United States)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    workshop, whereby a map of the catchment was laid out and locations where each scenario could feasibly be implemented were drawn on. This was combined with an analysis of historical maps to identify past land covers and a catchment walkover survey to put modelling work in the real world context. The land management scenarios were tested using hydrological and hydraulic models. Landscape scale changes, such as the effects of compaction and afforestation were tested using a catchment scale hydrological mode, CRUM2D. Channel scale changes, such as re-meandering and floodplain storage were tested using the 1D hydraulic model, iSIS, by altering channel cross sections and creating spills between the channel and floodplain. It is expected that the channel modification and floodplain storage scenarios will have the greatest impact on flooding both at the local and catchment scales. The landscape scale changes are more diffuse and therefore their impact is expected to be less significant. Although, early analysis indicates that the spatial location of changes strongly influences their effect on flooding.

  9. Book of Abstracts. International workshop on the terrestrial water cycle: Modeling and data assimilation across catchment scales, workshop

    NARCIS (Netherlands)

    Teuling, A.J.; Leijnse, H.; Troch, P.A.A.; Sheffield, J.; Wood, E.F.

    2004-01-01

    Scope of the International Workshop was bringing together experts in hydrological modeling to discuss new modeling strategies, and the potential of using advanced data assimilation methods to improve parameterization and predictability of distributed and semi-distributed catchment-scale hydrological

  10. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality

    International Nuclear Information System (INIS)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Bierkens, M.F.P.; Broers, H.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO 3 concentration patterns in shallow groundwater and to continuous NO 3 records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO 3 and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management. - Direct measurements of flow route contributions to surface water contaminant loading reveal the crucial role of tile drainage for catchment-scale water and solute transport.

  11. Modelling runoff and soil water content with the DR2-2013© SAGA v1.1 model at catchment scale under Mediterranean conditions (NE Spain)

    Science.gov (United States)

    López-Vicente, Manuel, , Dr.; Palazón, M. Sc. Leticia; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Navas, Ana, , Dr.

    2015-04-01

    (after canopy interception and slope correction) was 85% on average from the total rainfall depth (556 mm yr-1) and the average initial runoff, before overland flow processes, was 320 mm yr-1. The simulated effective runoff (CQeff) ranged from 0 until 29,960 mm yr-1 and the corresponding map showed the typical spatial pattern of overland flow pathways though numerous disruptions appeared along the hillslopes and the main streams due to the presence of LLEs. The total depth of annual runoff corresponds to 37.8% of the total effective rainfall (TER) and 32.0% of the total rainfall depth (TR). The remaining volume of water, the soil water content (Waa) associated with the runoff and rainfall events, meant 62.2% and 52.7% of the TER and TR, respectively. The map of the Waa presented a different spatial pattern where the land uses play a more important role than the processes of cumulative overland flow. Significant variations in the monthly values of CQeff and Waa were described. This study proves the ability of the DR2-2013© SAGA v1.1 model to simulate the hydrological response of the soils at catchment scale.

  12. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    Science.gov (United States)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  13. Land use change impacts on floods at the catchment scale

    NARCIS (Netherlands)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, Vincent; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, John N.; Robinson, Matthew R.; Salinas, J.L.; Santoro, A.; Szolgay, J.; Tron, S.; Akker, van den J.J.H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes

  14. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic

  15. Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale

    NARCIS (Netherlands)

    Notebaert, B.; Verstraeten, G.; Ward, P.J.; Renssen, H.; Van Rompaey, A.

    2011-01-01

    An increasing number of studies have indicated that soil erosion, sediment redistribution and water discharge during the Holocene have varied greatly under influence of environmental changes. In this paper we have used a modeling approach to study the driving forces for soil erosion and sediment

  16. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    Science.gov (United States)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  17. How Much for Water? Economic Assessment and Mapping of Floodplain Water Storage as a Catchment-Scale Ecosystem Service of Wetlands

    Directory of Open Access Journals (Sweden)

    Weronika Chrzanowska

    2013-11-01

    Full Text Available The integration of water management goals in protected wetland areas agriculturally managed in an intensive manner recalls the comparison of apples (ecological values and oranges (economic dimension of agriculture. Sustainable wetland management frequently fails if environmental features are not referred to as ecosystem services and quantified in economic terms. In our hydrological-economical study on floodplain wetlands located in the Lower Basin of the Biebrza Valley, we attempt to quantify the monetary value of water storage in the floodplain during flood phenomena as an important ecosystem service. The unit monetary value of water storage in the catchment of Biebrza Valley was assessed on the basis of small artificial water reservoirs, constructed in recent years and located in the area of research, and reached 0.53 EUR·m−3·year−1. In a GIS-based study on hydrological floodplain processes in the years 1995–2011, we assessed the average annual volume of active water storage in the floodplain which reached 10.36 M m3 year−1, giving a monetary value of EUR 5.49 million per annum. We propose that the methodology presented in our analysis could be applied as water storage subsidies in valuable floodplains, to prevent their deterioration originating from agriculture intensification.

  18. Short period forecasting of catchment-scale precipitation. Part II: a water-balance storm model for short-term rainfall and flood forecasting

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2000-01-01

    Full Text Available A simple two-dimensional rainfall model, based on advection and conservation of mass in a vertical cloud column, is investigated for use in short-term rainfall and flood forecasting at the catchment scale under UK conditions. The model is capable of assimilating weather radar, satellite infra-red and surface weather observations, together with forecasts from a mesoscale numerical weather prediction model, to obtain frequently updated forecasts of rainfall fields. Such data assimilation helps compensate for the simplified model dynamics and, taken together, provides a practical real-time forecasting scheme for catchment scale applications. Various ways are explored for using information from a numerical weather prediction model (16.8 km grid within the higher resolution model (5 km grid. A number of model variants is considered, ranging from simple persistence and advection methods used as a baseline, to different forms of the dynamic rainfall model. Model performance is assessed using data from the Wardon Hill radar in Dorset for two convective events, on 10 June 1993 and 16 July 1995, when thunderstorms occurred over southern Britain. The results show that (i a simple advection-type forecast may be improved upon by using multiscan radar data in place of data from the lowest scan, and (ii advected, steady-state predictions from the dynamic model, using 'inferred updraughts', provides the best performance overall. Updraught velocity is inferred at the forecast origin from the last two radar fields, using the mass-balance equation and associated data and is held constant over the forecast period. This inference model proves superior to the buoyancy parameterisation of updraught employed in the original formulation. A selection of the different rainfall forecasts is used as input to a catchment flow forecasting model, the IH PDM (Probability Distributed Moisture model, to assess their effect on flow forecast accuracy for the 135 km2 Brue catchment

  19. Catchment scale afforestation for mitigating flooding

    Science.gov (United States)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  20. The subcatchment- and catchment-scale hydrology of a boreal headwater peatland complex with sporadic permafrost.

    Science.gov (United States)

    Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.

    2017-12-01

    The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi

  1. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    Science.gov (United States)

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  2. Plot and Catchment Scale Hydrological Impacts of Agricultural Field Boundary Features

    Science.gov (United States)

    Coates, Victoria; Pattison, Ian

    2015-04-01

    Natural flood management aims to reduce downstream flow levels by delaying the movement of water through a catchment and increasing the amount of soil infiltration. Field boundary features such as hedgerows and dry stone walls are common features in the rural landscape. It is hypothesised that there presence could reduce runoff connectivity and change the soil moisture levels by altering the soil structure and porosity. The use of larger agricultural machinery has resulted in the removal of field boundaries and the subsequent increase in field sizes over the 20th Century. This change in the rural landscape is likely to have changed the partitioning of rainfall into runoff and the hydrological pathways throughout the catchment. However, the link between field boundaries and catchment scale flood risk has not yet been proven. We aim to address this need for evidence to support natural flood management by focussing on these widespread features in the rural landscape. Firstly, we quantify the change in the density of field boundaries over the past 120 years for the Skell catchment, Northern England using historical OS maps. The analysis has shown that field size has approximately doubled in the Skell catchment since 1892, due to the removal of field boundaries. Secondly, we assess the effect of field boundaries on local soil characteristics and hydrological processes through plot scale continuous monitoring of the hydrological processes along a 20m transect through the linear boundary features. For the summer period results show that soil moisture levels are lower immediately next to the hedgerow compared to distances greater than 1m from the hedgerow. Finally, we use this data to parameterise and validate a catchment scale hydrological model. The model is then applied to test the impact of a network of field boundaries on river flow extremes at the catchment scale.

  3. Formulations of transport in catchment-scale conceptual models

    Science.gov (United States)

    De Vos, Lotte; Hrachowitz, Markus

    2017-04-01

    Standard conceptual hydrological models can rarely accommodate stream tracer dynamics at the catchment scale. They rely on the generation of runoff through the propagation of a pressure wave and do not account for the actual advective movement of particles. Over the last years different model frameworks have been developed to account for this shortcoming. The difference between the frameworks lies in whether they are based on mixing coefficients or storage age selection functions. Both methods have shown their ability to capture the stream chemistry response. It is however not clear how these distinct approaches compare to each other and to reality. The object of this research is to provide clarification in this matter. To achieve this, the hydrological and stream water chemistry response for a set of contrasting research catchments is modelled, using both the mixing coefficient and the storage age selection approach. The results are analysed using the concept of transit times, where information on the fluxes and states in all model components is used to generate distributions that describe the age structure of water. By comparing the distributions generated by both methods and by evaluating the overall model performances, more insight is gained on how mixing occurs at the catchment scale. This contributes to the understanding of the integrated system dynamics of catchments, which is relevant for the development of good water quality models that accurately describe the integrated response of a hydrological system.

  4. Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model.

    Science.gov (United States)

    Pathak, Devanshi; Whitehead, Paul G; Futter, Martyn N; Sinha, Rajiv

    2018-03-07

    The present study analyzes the water quality characteristics of the Ramganga (a major tributary of the Ganga river) using long-term (1991-2009) monthly data and applies the Integrated Catchment Model of Nitrogen (INCA-N) and Phosphorus (INCA-P) to the catchment. The models were calibrated and validated using discharge (1993-2011), phosphate (1993-2010) and nitrate (2007-2010) concentrations. The model results were assessed based on Pearson's correlation, Nash-Sutcliffe and Percentage bias statistics along with a visual inspection of the outputs. The seasonal variation study shows high nutrient concentrations in the pre-monsoon season compared to the other seasons. High nutrient concentrations in the low flows period pose a serious threat to aquatic life of the river although the concentrations are lowered during high flows because of the dilution effect. The hydrological model is satisfactorily calibrated with R 2 and NS values ranging between 0.6-0.8 and 0.4-0.8, respectively. INCA-N and INCA-P successfully capture the seasonal trend of nutrient concentrations with R 2 >0.5 and PBIAS within ±17% for the monthly averages. Although, high concentrations are detected in the low flows period, around 50% of the nutrient load is transported by the monsoonal high flows. The downstream catchments are characterized by high nutrient transport through high flows where additional nutrient supply from industries and agricultural practices also prevail. The seasonal nitrate (R 2 : 0.88-0.94) and phosphate (R 2 : 0.62-0.95) loads in the catchment are calculated using model results and ratio estimator load calculation technique. On average, around 548tonnes of phosphorus (as phosphate) and 77,051tonnes of nitrogen (as nitrate) are estimated to be exported annually from the Ramganga River to the Ganga. Overall, the model has been able to successfully reproduce the catchment dynamics in terms of seasonal variation and broad-scale spatial variability of nutrient fluxes in the

  5. An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales

    Science.gov (United States)

    David Eiriksson; Michael Whitson; Charles H. Luce; Hans Peter Marshall; John Bradford; Shawn G. Benner; Thomas Black; Hank Hetrick; James P. McNamara

    2013-01-01

    Lateral downslope flow in snow during snowmelt and rain-on-snow (ROS) events is a well-known phenomenon, yet its relevance to water redistribution at hillslope and catchment scales is not well understood. We used dye tracers, geophysical methods, and hydrometric measurements to describe the snow properties that promote lateral flow, assess the relative velocities of...

  6. Can stormwater control measures restore altered urban flow regimes at the catchment scale?

    Science.gov (United States)

    Li, Congying; Fletcher, Tim D.; Duncan, Hugh P.; Burns, Matthew J.

    2017-06-01

    Over the last 20-30 years, there has been an evolution in urban stormwater management towards the use of stormwater control measures (SCMs) at or near the source of the runoff. These approaches aim to protect or restore natural elements of the flow regime. However, evidence of the success of such approaches is to date limited. We reviewed attempts to both model and monitor the catchment-scale hydrological consequences of SCMs. While many catchment-scale studies on the hydrologic effects of SCMs are based on computer simulation, these modeling approaches are limited by many uncertainties. The few existing monitoring studies provide early indications of the potential of SCMs to deliver more natural flow regimes, but many questions remain. There is an urgent need for properly monitored studies that aim to assess the hydrologic effects of SCMs at the catchment scale. In future monitoring studies, these hydrologic effects need to be characterized using appropriate flow metrics at a range of scales (from site scale to catchment scale), and changes to flow metrics by SCMs need to be assessed using robust statistical methods. Such studies will give confidence to stormwater and river managers of the feasibility and benefits of "low impact" approaches to stormwater management.

  7. Green infrastructure and its catchment-scale effects: an emerging science.

    Science.gov (United States)

    Golden, Heather E; Hoghooghi, Nahal

    2018-01-01

    Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts.

  8. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    Science.gov (United States)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  9. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.

    Science.gov (United States)

    Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  10. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, van der Y.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an

  12. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Bierkens, M.F.P.; Broers, H.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an

  13. Spatial patterns and environmental constraints on ecosystem services at a catchment scale.

    Science.gov (United States)

    Emmett, Bridget A; Cooper, David; Smart, Simon; Jackson, Bethanna; Thomas, Amy; Cosby, Bernard; Evans, Chris; Glanville, Helen; McDonald, James E; Malham, Shelagh K; Marshall, Miles; Jarvis, Susan; Rajko-Nenow, Paulina; Webb, Gearoid P; Ward, Sue; Rowe, Ed; Jones, Laurence; Vanbergen, Adam J; Keith, Aidan; Carter, Heather; Pereira, M Glória; Hughes, Steve; Lebron, Inma; Wade, Andrew; Jones, David L

    2016-12-01

    Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1×1km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for

  14. Simulating stream response to floodplain connectivity, reforestation and wetland restoration from reach to catchment scales

    Science.gov (United States)

    Singh, N.; Bomblies, A.; Wemple, B. C.; Ricketts, T.

    2017-12-01

    Natural infrastructure (e.g., floodplains, forests) can offer multiple ecosystem services (ES), including flood resilience and water quality improvement. In order to maintain these ES, state, federal and non-profit organizations may consider various interventions, such as increased floodplain connectivity, reforestation, and wetland restoration to minimize flood peaks and erosion during events. However, the effect of these interventions on hydro-geomorphic responses of streams from reach to catchment scales (>100 km2) are rarely quantified. We used stream geomorphic assessment datasets with a hydraulic model to investigate the influence of above mentioned interventions on stream power (SP), water depth (WD) and channel velocity (VEL) during floods of 2yr and 100yr return periods for three catchments in the Lake Champlain basin, Vermont. To simulate the effect of forests and wetlands, we changed the Manning's coefficient in the model, and to simulate the increased connectivity of the floodplain, we edited the LIDAR data to lower bank elevations. We find that the wetland scenario resulted in the greatest decline in WD and SP, whereas forested scenario exhibited maximum reduction in VEL. The connectivity scenario showed a decline in almost all stream responses, but the magnitude of change was relatively smaller. On average, 35% (2yr) and 50% (100yr) of altered reaches demonstrated improvement over baseline, and 39% (2yr) and 31% (100yr) of altered reaches showed degradation over baseline, across all interventions. We also noted changes in stream response along unaltered reaches (>30%), where we did not make interventions. Overall, these results point to the complexity related to stream interventions and suggest careful evaluation of spatially explicit tradeoffs of these interventions on river-floodplain ecosystem. The proposed approach of simulating and understanding stream's response to interventions, prior to the implementation of restoration activities, may lead to

  15. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    Science.gov (United States)

    Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651

  16. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    Science.gov (United States)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-07-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

  17. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  18. Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland.

    Science.gov (United States)

    Bilotta, G S; Krueger, T; Brazier, R E; Butler, P; Freer, J; Hawkins, J M B; Haygarth, P M; Macleod, C J A; Quinton, J N

    2010-03-01

    This paper quantifies the yields of suspended solids (SS) from a headwater catchment managed as improved temperate grassland, providing the first direct, catchment-scale evidence of the rates of erosion from this land-use in the UK and assessing the threat posed to aquatic ecosystems. High-resolution monitoring of catchment hydrology and the concentrations of SS and volatile organic matter (VOM) were carried out in the first-order channel of the Den Brook headwater catchment in Devon (UK) during the 2006-2007 hydrological season. The widely used 'rating curve' (discharge-concentration) approach was employed to estimate yields of SS, but as demonstrated by previous researchers, this study showed that discharge is a poor predictor of SS concentrations and therefore any yields estimated from this technique are likely to be highly uncertain. Nevertheless, for the purpose of providing estimates of yields that are comparable to previous studies on other land uses/sources, this technique was adopted albeit in an uncertainty-based framework. The findings suggest that contrary to the common perception, grasslands can be erosive landscapes with SS yields from this catchment estimated to be between 0.54 and 1.21 t ha(-1) y(-1). In terms of on-site erosion problems, this rate of erosion does not significantly exceed the commonly used 'tolerable' threshold in the UK ( approximately 1 t ha(-1) y(-1)). In terms of off-site erosion problems, it is argued here that the conventional expression of SS yield as a bulk annual figure has little relevance to the water quality and ecological status of surface waters and therefore an alternative technique (the concentration-frequency curve) is developed within this paper for the specific purpose of assessing the ecological threat posed by the delivery of SS into surface waters. This technique illustrates that concentrations of SS recorded at the catchment outlet frequently exceed the water quality guidelines, such as those of the EU

  19. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... concentrations. Inelastic water demands, fixed water allocation curtailment costs and fixed wastewater treatment costs (before and after use) are estimated for the water users (agriculture, industry and domestic). If the BOD concentration exceeds a given user pollution thresh-old, the user will need to pay...

  20. Modeling ecohydrological impacts of land management and water use in the Silver Creek Basin, Idaho

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Gross, Dayna; Unnasch, Robert

    2014-01-01

    A number of anthropogenic stressors, including land use change and intensive water use, have caused stream habitat deterioration in arid and semiarid climates throughout the western U.S. These often contribute to high stream temperatures, a widespread water quality problem. Stream temperature...... is an important indicator of stream ecosystem health and is affected by catchment-scale climate and hydrological processes, morphology, and riparian vegetation. To properly manage affected systems and achieve ecosystem sustainability, it is important to understand the relative impact of these factors....... In this study, we predict relative impacts of different stressors using an integrated catchment-scale ecohydrological model that simulates hydrological processes, stream temperature, and fish growth. This type of model offers a suitable measure of ecosystem services because it provides information about...

  1. From catchment scale hydrologic processes to numerical models and robust predictions of climate change impacts at regional scales

    Science.gov (United States)

    Wagener, T.

    2017-12-01

    Current societal problems and questions demand that we increasingly build hydrologic models for regional or even continental scale assessment of global change impacts. Such models offer new opportunities for scientific advancement, for example by enabling comparative hydrology or connectivity studies, and for improved support of water management decision, since we might better understand regional impacts on water resources from large scale phenomena such as droughts. On the other hand, we are faced with epistemic uncertainties when we move up in scale. The term epistemic uncertainty describes those uncertainties that are not well determined by historical observations. This lack of determination can be because the future is not like the past (e.g. due to climate change), because the historical data is unreliable (e.g. because it is imperfectly recorded from proxies or missing), or because it is scarce (either because measurements are not available at the right scale or there is no observation network available at all). In this talk I will explore: (1) how we might build a bridge between what we have learned about catchment scale processes and hydrologic model development and evaluation at larger scales. (2) How we can understand the impact of epistemic uncertainty in large scale hydrologic models. And (3) how we might utilize large scale hydrologic predictions to understand climate change impacts, e.g. on infectious disease risk.

  2. Simulation of pesticide dissipation in soil at the catchment scale over 23 years

    Science.gov (United States)

    Queyrel, Wilfried; Florence, Habets; Hélène, Blanchoud; Céline, Schott; Laurine, Nicola

    2014-05-01

    Pesticide applications lead to contamination risks of environmental compartments causing harmful effects on water resource used for drinking water. Pesticide fate modeling is assumed to be a relevant approach to study pesticide dissipation at the catchment scale. Simulations of five herbicides (atrazine, simazine, isoproturon, chlortoluron, metolachor) and one metabolite (DEA) were carried out with the crop model STICS over a 23-year period (1990-2012). The model application was performed using real agricultural practices over a small rural catchment (104 km²) located at 60km east from Paris (France). Model applications were established for two crops: wheat and maize. The objectives of the study were i) to highlight the main processes implied in pesticide fate and transfer at long-term; ii) to assess the influence of dynamics of the remaining mass of pesticide in soil on transfer; iii) to determine the most sensitive parameters related to pesticide losses by leaching over a 23-year period. The simulated data related to crop yield, water transfer, nitrates and pesticide concentrations were first compared to observations over the 23-year period, when measurements were available at the catchment scale. Then, the evaluation of the main processes related to pesticide fate and transfer was performed using long-term simulations at a yearly time step and monthly average variations. Analyses of the monthly average variations were oriented on the impact of pesticide application, water transfer and pesticide transformation on pesticide leaching. The evolution of the remaining mass of pesticide in soil, including the mobile phase (the liquid phase) and non-mobile (adsorbed at equilibrium and non-equilibrium), was studied to evaluate the impact of pesticide stored in soil on the fraction available for leaching. Finally, a sensitivity test was performed to evaluate the more sensitive parameters regarding the remaining mass of pesticide in soil and leaching. The findings of the

  3. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  4. Assessing climate change impacts on river flows and environmental flow requirements at catchment scale

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan; Gül, A.

    2010-01-01

    The fourth assessment report of Intergovernmental Panel on Climate Change (IPCC) suggests studies that increase the spatial resolution to solve the scale mismatch between large-scale climatic models and the catchment scale while addressing climate change impacts on aquatic ecosystems. Impacts occur....... In this Study, the regional impacts of climate change on river flow and environmental flow requirement. which is a negotiated trade-off between water uses, are analysed for a lowland catchment in Denmark through MIKE SHE/MIKE 11 coupling. The Coupled model possesses an important capacity for simulating stream...... flows and groundwater head levels in a dynamic system. Although the simulation results from different global circulation models (GCMs) indicate different responses in flows to the climate change, there are obvious deviations of the river flows and environmental flow potentials computed for all...

  5. Representing macropore flow at the catchment scale: a comparative modeling study

    Science.gov (United States)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  6. Water management

    International Nuclear Information System (INIS)

    Barrada, Y.

    1981-01-01

    The Joint FAO/IAEA Division has been technically responsible for technical assistance projects aimed at improving water management practices in the following developing Member States: Argentina, Bulgaria, Chile, Costa Rica, Egypt, Greece, India, Ivory Coast, Kenya, Lebanon, Morocco, Niger, Nigeria, Pakistan, Peru, Republic of Korea, Romania, Senegal, Sri Lanka, Sudan, Syria, Tanzania, Turkey, Uganda and Zambia. The Division has also contributed to the improvement of the efficiency of water use through the implementation of three 5-year co-ordinated research programmes. Participants from eight to 15 countries have conducted research towards a common goal of improving nuclear techniques in water-use efficiency studies and developing practices to increase the food produced from a unit of irrigation water or rainfall. In many cases this was the first time such techniques have been used in the above countries. It was thus necessary to provide expert assistance to train local counterparts in the safe and efficient use of the equipment. Training courses have also been held in more advanced countries to familiarize young scientists from developing countries with the most modern techniques in soil/water research. Results obtained through the nuclear techniques aided research programmes will, when applied in farmers' fields on irrigated land, lead to increased yields, to reduced losses of nutrients through leaching below the rooting zone, and to conserving soil through avoiding the accumulation of salts close to the soil surface. Under rainfed agriculture, research results would help controlling erosion, conserving water, and ensuring sustained production at acceptable yield levels

  7. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    DEFF Research Database (Denmark)

    Molina Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia

    2014-01-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  8. Co-evolution of Climate, Soil, and Vegetation and their interplay with Hydrological Partitioning at the Catchment Scale

    Science.gov (United States)

    Zapata-Rios, X.; Brooks, P. D.; Troch, P. A. A.; McIntosh, J. C.

    2014-12-01

    Landscape, climate, and vegetation interactions play a fundamental role in controlling the distribution of available water in hillslopes and catchments. In mid-latitudes, terrain aspect can regulate surface and subsurface hydrological processes, which not only affect the partitioning of energy and precipitation on short time scales, but also soil development, vegetation characteristics on long time scales. In Redondo Peak in northern New Mexico, a volcanic resurgent dome, first order streams drain different slopes around the mountain. In this setting, we study three adjacent first order catchments that share similar physical characteristics, but drain different aspects, allowing for an empirical study of how topographically controlled microclimate and soil influence the integrated hydrological and vegetation response. From 2008 to 2012, catchments were compared for the way they partition precipitation and how vegetation responds to variable water fluxes. Meteorological variables were monitored in 5 stations around Redondo Peak and surface runoff was monitored at the catchments' outlets. Hydrological partitioning at the catchment scale was estimated with the Horton Index, defined as the ratio between vaporization and wetting and it represents a measure of catchment-scale vegetation water use. Vegetation response was estimated using remotely sensed vegetation greenness (NDVI) derived from MODIS every 16 days with a spatial resolution of 250 m. Results show that the predominantly north facing catchment has the largest and least variable baseflow and discharge, consistent with greater mineral weathering fluxes and longer water transit times. In addition, vaporization, wetting and Horton Index, as well as NDVI, are smaller in the north facing catchment compared to the south east facing catchments. The predominant terrain aspect controls soil development, which affects the partitioning of precipitation and vegetation response at the catchment scale. These results also

  9. Water management

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Manitoba Hydro's efforts to maximize production efficiency while meeting safety and environmental concerns regarding water management were discussed. The four-step dam safety program was outlined, consisting of inspection, repairs and improvements, flooding studies, and emergency preparedness plans. An oil spill which occurred in 1995 on the Nelson River after a transformer at the Kettle Generating Station failed, was described. A boom was used to contain the oil, and a skimmer unit was used to remove oil and soot from the surface of the water. Manitoba Hydro is also conducting studies to find ways to protect the generating stations from zebra mussels, and precautions are being taken to prevent old lead-based paint from reaching the Winnipeg River. It was noted that the drought which hit northern Manitoba during the spring and summer of 1995 reduced the water supplies to the lowest levels ever recorded at the Churchill River Diversion. 2 figs

  10. Water management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Manitoba Hydro`s efforts to maximize production efficiency while meeting safety and environmental concerns regarding water management were discussed. The four-step dam safety program was outlined, consisting of inspection, repairs and improvements, flooding studies, and emergency preparedness plans. An oil spill which occurred in 1995 on the Nelson River after a transformer at the Kettle Generating Station failed, was described. A boom was used to contain the oil, and a skimmer unit was used to remove oil and soot from the surface of the water. Manitoba Hydro is also conducting studies to find ways to protect the generating stations from zebra mussels, and precautions are being taken to prevent old lead-based paint from reaching the Winnipeg River. It was noted that the drought which hit northern Manitoba during the spring and summer of 1995 reduced the water supplies to the lowest levels ever recorded at the Churchill River Diversion. 2 figs.

  11. Integrated flow and temperature modeling at the catchment scale

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael

    2013-01-01

    Changes in natural stream temperature levels can be detrimental to the health of aquatic ecosystems. Water use and land management directly affect the distribution of diffuse heat sources and thermal loads to streams, while riparian vegetation and geomorphology play a critical role in how thermal......–groundwater dynamics affect stream temperature. A coupled surface water–groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream...... loads are buffered. In many areas, groundwater flow is a significant contribution to river flow, particularly during low flows and therefore has a strong influence on stream temperature levels and dynamics. However, previous stream temperature models do not properly simulate how surface water...

  12. Numerical modeling of suspended sediment tansfers at the catchment scale with TELEMAC

    Science.gov (United States)

    Taccone, Florent; Antoine, Germain; Delestre, Olivier; Goutal, Nicole

    2017-04-01

    Water equations. The numerical scheme developed by Chen and Noelle (2015) appears to be the best compromise between robustness and accuracy. The sediment transport module SISYPHE of TELEMAC-MASCARET is also used for simulating suspended sediment transport and erosion in this configuration. Then, an application to a real, well-documented watershed is performed. With a total area of 86.4 ha, the Laval watershed is located in the Southern French Alps. It takes part of the Draix-Bleone Observatory, on which 30 years of collected data are available. On this site, several rainfall events have been simulated using high performance clusters and parallelized computation methods. The results show a good robustness and accuracy of the chosen numerical schemes for hydraulic and sediment transport. Furthermore, a good agreement with measured data is obtain if an infiltration model is added to the Shallow Water equations. This study gives promising perspectives for simulating sediment transfers at the catchment scale with a physically based approach. G. Chen et S. Noelle: A new hydrostatic reconstruction scheme motivated by the wet-dry front. 2015. G. Kirstetter et al: Modeling rain-driven overland fow: empirical versus analytical friction terms in the shallow water approximation. Journal of Hydrology, 2015.

  13. Creating a catchment scale perspective for river restoration

    Science.gov (United States)

    Benda, L.; Miller, D.; Barquín, J.

    2011-09-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  14. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    Science.gov (United States)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  15. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Science.gov (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.

    2011-01-01

    , they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are represented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs. This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM (Mac-PDM.09 here) as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evapotranspiration estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme (Q5, Q95) monthly runoff, all of which have implications for future water management issues.

  16. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    . However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are represented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs. This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM (Mac-PDM.09 here as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evapotranspiration estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme (Q5, Q95 monthly runoff, all of which have implications for future water management issues.

  17. Short period forecasting of catchment-scale precipitation. Part I: the role of Numerical Weather Prediction

    Directory of Open Access Journals (Sweden)

    M. A. Pedder

    2000-01-01

    Full Text Available A deterministic forecast of surface precipitation involves solving a time-dependent moisture balance equation satisfying conservation of total water substance. A realistic solution needs to take into account feedback between atmospheric dynamics and the diabatic sources of heat energy associated with phase changes, as well as complex microphysical processes controlling the conversion between cloud water (or ice and precipitation. Such processes are taken into account either explicitly or via physical parameterisation schemes in many operational numerical weather prediction models; these can therefore generate precipitation forecasts which are fully consistent with the predicted evolution of the atmospheric state as measured by observations of temperature, wind, pressure and humidity. This paper reviews briefly the atmospheric moisture balance equation and how it may be solved in practice. Solutions are obtained using the Meteorological Office Mesoscale version of its operational Unified Numerical Weather Prediction (NWP model; they verify predicted precipitation rates against catchment-scale values based on observations collected during an Intensive Observation Period (IOP of HYREX. Results highlight some limitations of an operational NWP forecast in providing adequate time and space resolution, and its sensitivity to initial conditions. The large-scale model forecast can, nevertheless, provide important information about the moist dynamical environment which could be incorporated usefully into a higher resolution, ‘storm-resolving’ prediction scheme. Keywords: Precipitation forecasting; moisture budget; numerical weather prediction

  18. Dissolved Organic Matter Transformations: Implications for Catchment-Scale Processes

    Science.gov (United States)

    Robinson, A.; Hernes, P.; Montanez, I.; Eustis, B.

    2006-12-01

    litters studied. In all cases, using lignin source parameters of sorbed material in endmember models would result in significant error without considering sorption. Ac:al ratios of supernatants increased even more suggesting that these are not reliable indicators of diagenetic state in riverine DOM. Λ8 values, in this case, are used to indicate preferential uptake of lignin relative to bulk carbon by different soils. Comparisons between leachate and supernatant after sorption are used to trace evolution of lignin phenolic and DOM compositions as a function of their interactions with soils. For example, sequoia supernatant Λ8 values were consistently lower than that of leachates, indicating preferential uptake of lignin relative to bulk carbon by soils and thus enrichment of DOM in non-lignin components. While some fractionation effects are consistent across all litter and soil types, modeling fractionation factors for accurate lignin biomarker interpretation will require site-specific information. Leaching and sorption will alter significantly the original plant geochemical signal in terms of source and diagenetic information. Considering the importance of soils as OM sources to rivers, these data will be invaluable toward modeling dissolved OM transformations and biomarker compositional variability in sediments. We demonstrate that careful consideration of catchment properties including vegetation type, soils, and hydrology is necessary to fully access their impact on dissolved and particulate OM compositions and fluxes at the catchment scale.

  19. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  20. Using the Iterative Input variable Selection (IIS) algorithm to assess the relevance of ENSO teleconnections patterns on hydro-meteorological processes at the catchment scale

    Science.gov (United States)

    Beltrame, Ludovica; Carbonin, Daniele; Galelli, Stefano; Castelletti, Andrea

    2014-05-01

    Population growth, water scarcity and climate change are three major factors making the understanding of variations in water availability increasingly important. Therefore, reliable medium-to-long range forecasts of streamflows are essential to the development of water management policies. To this purpose, recent modelling efforts have been dedicated to seasonal and inter-annual streamflow forecasts based on the teleconnection between "at-site" hydro-meteorological processes and low frequency climate fluctuations, such as El Niño Southern Oscillation (ENSO). This work proposes a novel procedure for first detecting the impact of ENSO on hydro-meteorological processes at the catchment scale, and then assessing the potential of ENSO indicators for building medium-to-long range statistical streamflow prediction models. Core of this procedure is the adoption of the Iterative Input variable Selection (IIS) algorithm that is employed to find the most relevant forcings of streamflow variability and derive predictive models based on the selected inputs. The procedure is tested on the Columbia (USA) and Williams (Australia) Rivers, where ENSO influence has been well-documented, and then adopted on the unexplored Red River basin (Vietnam). Results show that IIS outcomes on the Columbia and Williams Rivers are consistent with the results of previous studies, and that ENSO indicators can be effectively used to enhance the streamflow forecast models capabilities. The experiments on the Red River basin show that the ENSO influence is less pronounced, inducing little effects on the basin hydro-meteorological processes.

  1. Evaluating the impact of farm scale innovation at catchment scale

    Science.gov (United States)

    van Breda, Phelia; De Clercq, Willem; Vlok, Pieter; Querner, Erik

    2014-05-01

    responsibilities and inadequate procedures of implementing objectives. Planning for development in South Africa needs to take various factors into account. Economic and green economic growth is pursued, while social imbalances are addressed and the environment is protected against unreasonable exploitation. The term Sustainable Development is a neutral concept in the vision of many of the regulating authorities; however, the implementation of sustainability is difficult. This study considers an approach which aligns activities in a specified region to the vision and objectives of the applicable regulatory authorities, as an alternative to achieving objectives strictly through enforcing regulations. It was determined whether objectives of development planning were realistic in terms of water availability. It was established that the position of a farm in the landscape is a determining factor of the impact it has on the catchment area's water supply. For this purpose, hydrological modelling (SWAT and SIMGRO) was done for the Letaba catchment of the Limpopo Province, on two scales to also accommodate small-scale farming communities more accurately. Parallel to the modelling, the National Development Plan (NDP), the National Framework for Sustainable Development (NFSD), the Integrated Sustainable Rural Development Strategy (ISRDS) and the principles of Water Allocation Reform (WAR) were regarded. For regional categorisation, the relevant municipal Integrated Development Plan (IDP), Spatial Development Framework (SDF), Local Economic Development (LED) plan and the applicable Catchment Management Strategy (CMS) were considered. The developed Integrated Evaluation Model combined all the visions and objectives of the mentioned strategic documents to specifically assess the contribution a small-scale farm makes. The evaluation results provided insight into the alignment of activities to the ideals of a region and can be useful when formulating actions to reach a common vision. Small

  2. Technical Note: A comparison of model and empirical measures of catchment-scale effective energy and mass transfer

    Directory of Open Access Journals (Sweden)

    C. Rasmussen

    2013-09-01

    Full Text Available Recent work suggests that a coupled effective energy and mass transfer (EEMT term, which includes the energy associated with effective precipitation and primary production, may serve as a robust prediction parameter of critical zone structure and function. However, the models used to estimate EEMT have been solely based on long-term climatological data with little validation using direct empirical measures of energy, water, and carbon balances. Here we compare catchment-scale EEMT estimates generated using two distinct approaches: (1 EEMT modeled using the established methodology based on estimates of monthly effective precipitation and net primary production derived from climatological data, and (2 empirical catchment-scale EEMT estimated using data from 86 catchments of the Model Parameter Estimation Experiment (MOPEX and MOD17A3 annual net primary production (NPP product derived from Moderate Resolution Imaging Spectroradiometer (MODIS. Results indicated positive and significant linear correspondence (R2 = 0.75; P −2 yr−1. Modeled EEMT values were consistently greater than empirical measures of EEMT. Empirical catchment estimates of the energy associated with effective precipitation (EPPT were calculated using a mass balance approach that accounts for water losses to quick surface runoff not accounted for in the climatologically modeled EPPT. Similarly, local controls on primary production such as solar radiation and nutrient limitation were not explicitly included in the climatologically based estimates of energy associated with primary production (EBIO, whereas these were captured in the remotely sensed MODIS NPP data. These differences likely explain the greater estimate of modeled EEMT relative to the empirical measures. There was significant positive correlation between catchment aridity and the fraction of EEMT partitioned into EBIO (FBIO, with an increase in FBIO as a fraction of the total as aridity increases and percentage of

  3. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  4. Hedge your bets on Flood Risk: How do Hedgerows modify hillslope and catchment scale hydrological response?

    Science.gov (United States)

    Coates, Victoria; Pattison, Ian

    2017-04-01

    A dominant feature in the agricultural landscape in the UK are field boundaries. Two thirds of England has been continuously hedged for over a thousand years although most modern hedges were planted during the Enclosures Acts 1720-1840. However, the use of larger agricultural machinery has resulted in the removal of some field boundaries and the subsequent increase in field sizes over the 20th Century. The multiple benefits of hedgerows in ecology have been extensively studied, but the impact of these widespread features on hydrology and flood risk has seen very little attention. Nature-based solutions are increasingly being seen as a complementary approach to hard engineered flood defences. It is hypothesised that hedgerows play a part in this through modifying hillslope hydrological processes, including (a) changing the spatial distribution of precipitation due to sheltering effects; (b) biological loss of water through transpiration; (c) infiltration increased through improved soil structure at the boundaries; and (d) throughflow effected by modified hydraulic gradients. An extensive monitoring programme of a 20m transect through a hedgerow in the Skell Catchment, Northern England occurred from April 2014 to October 2015. The holistic hydrological cycle was monitored, including precipitation and soil moisture at different distances from the hedgerow, leaf wetness interception, stemflow collars, and throughfall gauges, and transpiration losses from the hedgerow. Results indicate that hedgerows modify precipitation volumes at different distances along the transect, but that relationships are complex, probably related to event specific weather conditions such as wind direction and speed and rainfall intensity. Soil moisture levels are significantly (phedgerow compared to 1, 3 and 10m away from it in all seasons. It has also been shown that hedgerows modify hydrological connectivity at the catchment scale.

  5. Continuous phosphorus measurements reveal catchment-scale transport processes

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.

    2012-01-01

    A small fraction of the nutrients used for agriculture is transported by rivers and artificial drainage networks to downstream waters. In lakes and coastal seas such as the Baltic Sea and the Gulf of Mexico these nutrients cause large-scale algal blooms and hypoxia and thus are a major

  6. Catchment-scale hydrological modeling and data assimilation

    NARCIS (Netherlands)

    Troch, P.A.A.; Paniconi, C.; McLaughlin, D.

    2003-01-01

    This special issue of Advances in Water Resources presents recent progress in the application of DA (data assimilation) for distributed hydrological modeling and in the use of in situ and remote sensing datasets for hydrological analysis and parameter estimation. The papers were presented at the De

  7. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    Science.gov (United States)

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  8. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    Science.gov (United States)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  9. From microbes to water districts: Linking observations across scales to uncover the implications of riparian and channel management on water quality in an irrigated agricultural landscape

    Science.gov (United States)

    Webster, A.; Cadenasso, M. L.

    2016-12-01

    Interactions among runoff, riparian and stream ecosystems, and water quality remain uncertain in many settings, particularly those heavily impacted by human activities. For example, waterways in the irrigated agricultural landscape of California's Central Valley are seasonally disconnected from groundwater tables and are extensively modified by infrastructure and management. These conditions make the impact of riparian and channel management difficult to predict across scales, which hinders efforts to promote best management practices to improve water quality. We seek to link observations across catchment, reach, and patch scales to understand patterns of nitrate and turbidity in waterways draining irrigated cropland. Data was collected on 80 reaches spanning two water management districts. At the catchment scale, water districts implemented waterway and riparian management differently: one water district had a decentralized approach, allowing individual land owners to manage their waterway channels and banks, while the other had a centralized approach, in which land owners defer management to a district-run program. At the reach scale, riparian and waterway vegetation, geomorphic complexity, and flow conditions were quantified. Reach-scale management such as riparian planting projects and channel dredging frequency were also considered. At the patch scale, denitrification potential and organic matter were measured in riparian toe-slope soils and channel sediments, along with associated vegetation and geomorphic features. All factors were tested for their ability to predict water quality using generalized linear mixed effects models and the consistency of predictors within and across scales was evaluated. A hierarchy of predictors emerges: catchment-scale management regimes predict reach-scale geomorphic and vegetation complexity, which in turn predicts sediment denitrification potential - the patch-scale factor most associated with low nitrate. Similarly

  10. [Spatial discharge characteristics and total load control of non-point source pollutants based on the catchment scale].

    Science.gov (United States)

    Wang, Xia-Hui; Lu, Jun; Zhang, Qing-Zhong; Wang, Bo; Yao, Rui-Hua; Zhang, Hui-Yuan; Huang, Feng

    2011-09-01

    Agricultural non-point source pollution is one of the major causes of water quality deterioration. Based on the analysis of the spatial discharge characteristics and intensity of major pollutants from the agricultural pollution source, the establishment of spatial management subzones for controlling agricultural non-point pollution and a design of a plan for total load control of pollutants from each subzone is an important way to improve the efficiency of control measures. In this paper the Four Lake basin in Hubei Province is adopted as the research case region and a systematic research of the control countermeasures of agricultural non-point pollution based on the catchment scale is carried out. The results shows that in the Four Lake basin, the COD, total nitrogen, total phosphorus and ammonia nitrogen load of the water environment are mainly caused by agricultural non-point pollution. These four kinds of non-point source pollutants respectively account for 67.6%, 82.2%, 84.7% and 50.9% of the total pollutant discharge amount in the basin. The analysis of the spatial discharge characteristics of non-point source pollutants in the Four Lake basin shows that the major contributor source regions of non-point source pollutant in the basin are the four counties, including Honghu, Jianli, Qianjiang and Shayang where the aquatic and livestock production are relatively developed. According to the spatial discharge characteristics of the pollutants and the evaluation of the discharge intensity of pollutants, the Four Lake basin is divided into three agricultural non-point pollution management subzones, which including Changhu upstream aquatic and livestock production pollution control subzone, Four-lake trunk canal rural non-point source pollution control subzone and Honghu aquatic production pollution control subzone. Specific pollution control measures are put forward for each subzone. With a comprehensive consideration of the water quality amelioration and the

  11. Evaluation of Nonlinear Methods for Interpolation of Catchment-Scale

    Science.gov (United States)

    Coleman, M. L.; Niemann, J. D.

    2008-12-01

    Soil moisture acts as a key state variable in interactions between the atmosphere and land surface, strongly influencing radiation and precipitation partitioning and thus many components of the hydrologic cycle. Despite its importance as a state variable, measuring soil moisture patterns with adequate spatial resolutions over useful spatial extents remains a significant challenge due to both physical and economic constraints. For this reason, ancillary data, such as topographic attributes, have been employed as process proxies and predictor variables for soil moisture. Most methods that have been used to estimate soil moisture from ancillary variables assume that soil moisture is linearly dependent on these variables. However, unsaturated zone water transport is typically modeled as a nonlinear function of the soil moisture state. While that fact does not necessarily imply nonlinear relationships with the ancillary variables, there is some evidence suggesting nonlinear methods may be more efficient than linear methods for interpolating soil moisture from ancillary data. Therefore, this work investigates the value of nonlinear estimation techniques, namely conditional density estimation, support vector machines, and a spatial artificial neural network, for interpolating soil moisture patterns from sparse measurements and ancillary data. The set of candidate predictor variables in this work includes simple and compound terrain attributes calculated from digital elevation models and, in some cases, soil texture data. The initial task in the interpolation procedure is the selection of the most effective predictor variables. Given the possibility of nonlinear relationships, mutual information is used to quantify relationships between candidate variables and soil moisture and ultimately to select the most efficient ancillary data as predictor variables. After selecting a subset of the potential ancillary data variables for use, the nonlinear estimation techniques are

  12. The application of GEOtop for catchment scale hydrology in Ireland

    Science.gov (United States)

    Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.

    2009-04-01

    GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at

  13. Groundwater Estimation Using Remote Sensing Data on a Catchment Scale in New Zealand

    Science.gov (United States)

    Westerhoff, R.; Mu, Q.

    2014-12-01

    Long-term time series of satellite evapotranspiration (ET) were trialled for their additional value in aquifer characterisation on the catchment scale in New Zealand. In a simple chain-of-events approach yearly natural groundwater recharge was calculated with a 1x1km resolution. The chain consisted of (1) rainfall; (2) runoff due to slope; (3) actual ET; (4) soil permeability and water holding capacity; and (5) hydraulic conductivity of the deeper geology. As ET is a large part of the water balance (in New Zealand on average appr. 50% of rainfall), high resolution and high quality ET data is important for estimating groundwater recharge. Most global satellite data already embed a pseudo-model with coarse, global, input data. An example is ET data from the MODIS MOD16 product: although the spatial footprint of the satellite data is 1x1 km, input data to calculate ET contains global meteorology data. These data do not capture the extreme diversity in the New Zealand climate, where yearly rainfall and ET can change considerably over small distances. However, enough national ground-observed data are available to improve the MOD16 data. We improved monthly MOD16 ET by using the satellite data pattern as an interpolator between approximately 80 ground stations. Simple least squares fitting gave the best result. The added value of satellite data is obvious: the corrected MOD16 ET data have much higher spatial resolution and vegetation cover and growth is taken into account better.We then used national data to estimate 1x1km natural groundwater recharge: the corrected MOD16 PET and AET, in-situ based precipitation models; soil maps; geology maps; and (satellite-based) elevation. Validation with lysimeters and existing sub-catchment model output data looks promising, and further improvement with satellite soil moisture to estimate monthly recharge is underway. This work was done in the SMART Aquifer Characterisation (SAC) programme, a six-year research project funded by the

  14. Water Management in Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available This paper presents the current situation in Polish water resources management. Discussed here are measures taken by the Ministry of Environment to introduce a new water law, as well as reforms of water management in Poland. The state of water resources in Poland are described, and the actions needed to improve this situation, taking into account possible climate changes and their impact on the use of water resources. Critically referred to is the introduction by the Ministry of Environment of charges for water abstraction by hydro power plants, and adverse effects for the energy and water management sectors are discussed.

  15. Total Water Management - Report

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current operations put different stresses on the environment and urban infrastructure. Total Water Management (TWM) is an approac...

  16. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    Science.gov (United States)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  17. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    Science.gov (United States)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  18. Testing hypotheses of velocity and celerity at the catchment scale using ensemble hydrograph separation

    Science.gov (United States)

    Kirchner, James

    2017-04-01

    Making hydrological models more realistic requires both better physical understanding of their underlying processes, and more rigorous tests of the hypotheses that they embody. In the current model-testing paradigm, multiple interdependent hypotheses are combined to generate model predictions, which are then compared with observational time series that reflect multiple interdependent forcings. This approach is problematic in several respects. If the modeled time series does not match the observations, which of the model's many embedded hypotheses is falsified? Conversely, even if the model matches the data, how many of its underlying hypotheses could still be wrong, perhaps in offsetting ways? The essence of the problem is that if model simulations depend on many interacting hypotheses, and if observational data reflect many different environmental forcings, then comparisons of simulations against data will rarely be diagnostic tests of specific hypotheses in the model. For this reason, I have long argued for a different approach to hypothesis testing, in which key signatures of behavior are extracted from both model and data before they are compared (Kirchner et al., 1996; Kirchner, 2006). This approach allows one to isolate the model/data comparison as much as possible from potentially confounding factors in both the model and the data. One key signature of catchment behavior, which has challenged many hydrologic models, is the contrast between the relatively short timescales of hydrologic response to precipitation events, reflecting the celerity of hydraulic potentials, and the much longer timescales of water transport through the landscape, reflecting the velocity of water movement as tracked by passive tracers (Kirchner, 2003). Here I show how both the velocity and celerity of transport at the catchment scale can be quantified from hydrologic and isotopic time series. The conventional formula used for hydrograph separation can be converted into an equivalent

  19. Accounting for multiple functions in environmental life cycle assessment of storm water management solutions

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Rygaard, Martin

    ) systems, which can be quantified using Life Cycle Assessment (LCA). This study aims to define the multiple functions provided by a SWM system at sub-catchment scale, and to assess the environmental impacts arising from fulfilling these functions. The approach is tested using the Nørrebro catchment...... environments by adding green and blue elements, and they change the water balance compared to traditional, underground approaches. Additionally, different implementation and maintenance processes are required. All of these transformations affect the environmental impacts of urban storm water management (SWM...... in Copenhagen, Denmark, where extensive implementation of green infrastructure is planned to mitigate the adverse effects of climate change. This « green » scenario is compared to a traditional « grey » solution, utilizing pipes and basins. The environmental impacts, which are dominated by material production...

  20. The regulation of diffuse pollution in the European Union: science, governance and water resource management

    Directory of Open Access Journals (Sweden)

    Sarah Hendry

    2012-11-01

    Full Text Available Reducing diffuse pollution is a perpetuating problem for environmental regulators. This paper will consider novel ways to regulate its impacts on the aquatic environment, with particular reference to rural landuse. It will look at the relationship between science, policy and law, and the contributions of integrated water resources management and governance at regional, national and river basin scales. Regulatory frameworks for water in the European Union will be explored, along with their implementation nationally in Scotland and at catchment scale in the Tweed river basin. It will conclude that regulation has a role to play, but that it is necessary to take a visionary holistic and integrated approach, nesting regulation within a governance framework that involves all stakeholders and takes full account of developing science and socio-economic drivers to meet environmental objectives.

  1. Catchment-scale determinants of nonindigenous minnow richness in the eastern United States

    Science.gov (United States)

    Peoples, Brandon K.; Midway, Stephen R.; DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Understanding the drivers of biological invasions is critical for preserving aquatic biodiversity. Stream fishes make excellent model taxa for examining mechanisms driving species introduction success because their distributions are naturally limited by catchment boundaries. In this study, we compared the relative importance of catchment-scale abiotic and biotic predictors of native and nonindigenous minnow (Cyprinidae) richness in 170 catchments throughout the eastern United States. We compared historic and contemporary cyprinid distributional data to determine catchment-wise native/nonindigenous status for 152 species. Catchment-scale model predictor variables described natural (elevation, precipitation, flow accumulation) and anthropogenic (developed land cover, number of dams) abiotic features, as well as native congener richness. Native congener richness may represent either biotic resistance via interspecific competition, or trait preadaptation according to Darwin's naturalisation hypothesis. We used generalised linear mixed models to examine evidence supporting the relative roles of abiotic and biotic predictors of cyprinid introduction success. Native congener richness was positively correlated with nonindigenous cyprinid richness and was the most important variable predicting nonindigenous cyprinid richness. Mean elevation had a weak positive effect, and effects of other abiotic factors were insignificant and less important. Our results suggest that at this spatial scale, trait preadaptation may be more important than intrageneric competition for determining richness of nonindigenous fishes.

  2. A catchment-scale irrigation systems model for sugarcane Part 1 ...

    African Journals Online (AJOL)

    In South Africa, the demand for water exceeds available supplies in many catchments. In order to justify existing water requirements and to budget and plan in the context of growing uncertainty regarding water availability, a model to assist in the assessment and management of catchment water supply and demand ...

  3. Nutrient sources in a Mediterranean catchment and their improvement for water quality management

    Science.gov (United States)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    Changes in land-use or management strategies may affect water outflow, sediment and nutrients loads. Thus, there is an increasing demand for quantitative information at the catchment scale that would help decision makers or planners to take appropriate decisions. The characterisation of water status, the description of pollution sources impact, the establishment of monitoring programs and the implementation of river basin management plans require an analysis of the current basin status and estimates of the relative significance of the different sources of pollution. Particularly, in this study the Soil and Water Assessment Tool (SWAT2000) model was considered since it is an integrated hydrological model that simulates both the qualitative as well as quantitative terms of hydrological balances. It is a spatially distributed hydrological model that operates on a daily time step at catchment scale developed by the Agricultural Research Service at the U.S. Department of Agriculture. Its purpose is to simulate water sediment and chemical yields on large river basins and possible impacts of land use, climate changes and watershed management. Integrated hydrological models are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the European Water Directive. Actually, they can help in evaluating current water resources, identify pollution sources, evaluate alternative management policies. More specifically, the analysis has been applied to the Oreto catchment (77 Km2), an agricultural and urbanised catchment located in Sicily (Italy). Residential, commercial, farm and industrial settlements cover almost the entire area. The climate is Mediterranean with hot dry summer and rainy winter season. The hydrological response of this basin is dominated by long dry seasons and following wetting-up periods, during which even large inputs of rainfall may produce little or no response at the basin outlet

  4. Cumulative effects analysis of the water quality risk of herbicides used for site preparation in the Central North Island, New Zealand

    Science.gov (United States)

    Dan Neary; Brenda R. Baillie

    2016-01-01

    Herbicide use varies both spatially and temporally within managed forests. While information exists on the effects of herbicide use on water quality at the site and small catchment scale, little is known about the cumulative effects of herbicide use at the landscape scale. A cumulative effects analysis was conducted in the upper Rangitaiki catchment (118,345...

  5. Quantifying green water flows for improved Integrated Land and Water Resource Management under the National Water Act of South Africa: A review on hydrological research in South Africa.

    Science.gov (United States)

    Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.

    2009-09-01

    The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of

  6. From a microcosm to the catchment scale: studying the fate of organic runoff pollutants in aquatic ecosystems

    Science.gov (United States)

    Böttcher, T.; Schroll, R.

    2009-04-01

    Spray-drift, drainage, erosion and runoff events are the major causes responsible for deportation of agrochemicals as micropollutants to aquatic non-target sites. These processes can lead to the contamination of nearby freshwater ecosystems with considerably high concentrations of xenobiotics. Thus, it is important to unravel the fate of these pollutants and to evaluate their ecological effects. A novel approach to address this goal was established by the development of a microcosm with multiple sampling abilities enabling quantitative assessment of organic volatilisation, mineralization, metabolization and distribution within the aquatic ecosystem. This microcosm system was designed to support modelling approaches of the catchment scale and gain insights into the fate of pesticides simulating a large scale water body. The potential of this microcosm was exemplified for Isoproturon (IPU), a phenylurea derived systemic herbicide, which is frequently found as contaminant in water samples and with the free-floating macrophyte Lemna minor as non-target species, that is common to occur in rural water bodies. During 21 days exposure time, only a small amount of 14C labeled IPU was removed from the aquatic medium. The major portion (about 5%) was accumulated by Lemna minor resulting in a BCF of 15.8. IPU-volatilisation was very low with 0.13% of the initially applied herbicide. Only a minor amount of IPU was completely metabolized, presumably by rhizosphere microorganisms and released as 14CO2. The novel experimental system allowed to quantitatively investigate the fate of IPU and showed a high reproducibility with a mean average 14C-recovery rate of 97.1

  7. Critical Evaluation of the Implementation of Mitigation Options for Phosphorus from Field to Catchment Scales

    DEFF Research Database (Denmark)

    O. Maguire, Rory; Rubæk, Gitte Holton; E. Haggard, Brian

    2009-01-01

    management practices are starting to have an effect on P losses from agriculture, but water quality has only improved slightly. Impairment to the supply of drinking water to the City of Tulsa Oklahoma led to a lawsuit that has greatly affected the management of poultry litter in the supplying watershed......Received for publication December 19, 2007. Nutrient regulations have been developed over the past decades to limit anthropogenic inputs of phosphorus (P) to surface waters. All of the regulations were promulgated in response to decreased water quality, which was at least partially associated...... with agricultural non-point source pollution. Improvements in water quality can take years, so the impacts of these regulations on water quality can not always be seen. Denmark has had nutrient management regulations aimed at achieving mass balance of P for 20 yr, and although great progress has been made...

  8. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    Science.gov (United States)

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  9. Model development of a participatory Bayesian network for coupling ecosystem services into integrated water resources management

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Zeng, Fanjiang; Mao, Donglei; Zhang, Zhiwei

    2017-11-01

    There is an increasing consensus on the importance of coupling ecosystem services (ES) into integrated water resource management (IWRM), due to a wide range of benefits to human from the ES. This paper proposes an ES-based IWRM framework within which a participatory Bayesian network (BN) model is developed to assist with the coupling between ES and IWRM. The framework includes three steps: identifying water-related services of ecosystems; analysis of the tradeoff and synergy among users of water; and ES-based IWRM implementation using the participatory BN model. We present the development, evaluation and application of the participatory BN model with the involvement of four participant groups (stakeholders, water manager, water management experts, and research team) in Qira oasis area, Northwest China. As a typical catchment-scale region, the Qira oasis area is facing severe water competition between the demands of human activities and natural ecosystems. Results demonstrate that the BN model developed provides effective integration of ES into a quantitative IWMR framework via public negotiation and feedback. The network results, sensitivity evaluation, and management scenarios are broadly accepted by the participant groups. The intervention scenarios from the model conclude that any water management measure remains unable to sustain the ecosystem health in water-related ES. Greater cooperation among the stakeholders is highly necessary for dealing with such water conflicts. In particular, a proportion of the agricultural water saved through improving water-use efficiency should be transferred to natural ecosystems via water trade. The BN model developed is appropriate for areas throughout the world in which there is intense competition for water between human activities and ecosystems.

  10. WATER MARKETS AND DECENTRALIZED WATER RESOURCES MANAGEMENT

    OpenAIRE

    Easter, K. William; Hearne, Robert R.

    1994-01-01

    Because of its importance and the perceived inability of private sector sources to meet water demands, many countries have depended on the public sector to provide water services for their populations. Yet this has resulted in many inefficient public water projects and in inadequate supplies of good quality and reliable water. Decentralization of water management, including the use of water markets, cannot solve all of the water problems, but it can improve the efficiency of water allocation....

  11. Energy and Water Management

    Science.gov (United States)

    Valek, Susan E.

    2008-01-01

    Energy efficiency isn't just a good idea; it's a necessity, both for cost reasons and to meet federal regulatory requirements. First, rising energy unit costs continue to erode NASA's mission budget. NASA spent roughly $156M on facility energy in FY 2007. Although that represents less than one per cent of NASA's overall annual budget, the upward trend in energy costs concerns the agency. While NASA reduced consumption 13%, energy unit costs have risen 63%. Energy cost increases counteract the effects of energy conservation, which results in NASA buying less yet spending more. The second factor is federal energy legislation. The National Energy Conservation Policy Act, as amended by the Energy Policy Act of 2005, Executive Order (EO) 13423 (January, 2007), and the Energy Independence and Security Act (December, 2007), mandates energy/water conservation goals for all federal agencies, including NASA. There are also reporting requirements associated with this legislation. The Energy/Water Management Task was created to support NASA Headquarters Environmental Management Division (HO EMD) in meeting these requirements. With assistance from TEERM, HQ EMD compiled and submitted the NASA Annual Report to the Department of Energy FY 2007. The report contains information on how NASA is meeting federally mandated energy and water management goals. TEERM monitored input for timeliness, errors, and conformity to the new energy/water reporting guidelines and helped compile the information into the final report. TEERM also assists NASA Energy/Water Management with proposal and award calls, updates to the energy/water management database, and facilitating communication within the energy/water management community. TEERM is also supporting NASA and the Interagency Working Group (IWG) on Hydrogen and Fuel Cells. Established shortly after the President announced the Hydrogen Fuel Initiative in 2003, this IWG serves as the mechanism for collaboration among the Federal agencies

  12. Controls on topographic dependence and temporal instability in catchment-scale soil moisture patterns

    Science.gov (United States)

    Coleman, Michael L.; Niemann, Jeffrey D.

    2013-03-01

    At the catchment scale, soil moisture patterns have been observed to exhibit different types of dependence on topography. Some catchments have their wettest locations in the valley bottoms, while others have their wettest locations on hillslopes that are oriented away from the sun. Additionally, some catchments have soil moisture patterns that maintain a similar organization at all times (temporal stability), while other catchments have soil moisture patterns that change through time (temporal instability). Although these tendencies are well known, the reasons for their occurrence at a particular catchment are not well understood. In this paper, we investigate conditions under which different types of topographic dependence and different degrees of temporal instability can occur through the use of a new conceptual model. The type of topographic dependence and the degree of instability are quantified by two metrics that are also introduced in the paper, and the effects of soil, vegetation, and climatic parameters on these metrics are then evaluated. The evaluations indicate that saturated horizontal hydraulic conductivity, pore disconnectedness, and a vegetation evapotranspiration efficiency parameter have strong effects on the organization and instability of the soil moisture patterns. In contrast, annual potential evapotranspiration alone has less impact on the organization or its stability.

  13. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.

    Science.gov (United States)

    Schwientek, Marc; Selle, Benny

    2016-02-01

    As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered.

  14. Health at the Sub-catchment Scale: Typhoid and Its Environmental Determinants in Central Division, Fiji.

    Science.gov (United States)

    Jenkins, Aaron Peter; Jupiter, Stacy; Mueller, Ute; Jenney, Adam; Vosaki, Gandercillar; Rosa, Varanisese; Naucukidi, Alanieta; Mulholland, Kim; Strugnell, Richard; Kama, Mike; Horwitz, Pierre

    2016-12-01

    The impact of environmental change on transmission patterns of waterborne enteric diseases is a major public health concern. This study concerns the burden and spatial nature of enteric fever, attributable to Salmonella Typhi infection in the Central Division, Republic of Fiji at a sub-catchment scale over 30-months (2013-2015). Quantitative spatial analysis suggested relationships between environmental conditions of sub-catchments and incidence and recurrence of typhoid fever. Average incidence per inhabited sub-catchment for the Central Division was high at 205.9/100,000, with cases recurring in each calendar year in 26% of sub-catchments. Although the numbers of cases were highest within dense, urban coastal sub-catchments, the incidence was highest in low-density mountainous rural areas. Significant environmental determinants at this scale suggest increased risk of exposure where sediment yields increase following runoff. The study suggests that populations living on large systems that broaden into meandering mid-reaches and floodplains with alluvial deposition are at a greater risk compared to small populations living near small, erosional, high-energy headwaters and small streams unconnected to large hydrological networks. This study suggests that anthropogenic alteration of land cover and hydrology (particularly via fragmentation of riparian forest and connectivity between road and river networks) facilitates increased transmission of typhoid fever and that environmental transmission of typhoid fever is important in Fiji.

  15. Solidarity in water management

    Directory of Open Access Journals (Sweden)

    Andrea Keessen

    2016-12-01

    Full Text Available Adaptation to climate change can be an inclusive and collective, rather than an individual effort. The choice for collective arrangements is tied to a call for solidarity. We distinguish between one-sided (assisting community members in need and two-sided solidarity (furthering a common interest and between voluntary and compulsory solidarity. We assess the strength of solidarity as a basis for adaptation measures in six Dutch water management case studies. Traditionally, Dutch water management is characterized by compulsory two-sided solidarity at the water board level. Since the French times, the state is involved through compulsory national solidarity contributions to avoid societal disruption by major floods. In so far as this furthers a common interest, the contributions qualify as two-sided solidarity, but if it is considered assistance to flood-prone areas, they also qualify as one-sided solidarity. Although the Delta Programme explicitly continues on this path, our case studies show that solidarity continues to play an important role in Dutch water management in the process of adapting to a changing climate, but that an undifferentiated call for solidarity will likely result in debates over who should pay what and why. Such discussions can lead to cancellation or postponement of adaptation measures, which are not considered to be in the common interest or result in an increased reliance on local solidarity.

  16. Geographical Information System, to support the management of water resource in rural basins

    International Nuclear Information System (INIS)

    Correa V, Paula Lizet; Velez U, Jaime Ignacio

    2002-01-01

    The implementation of a GIS support system for the management of water resources at a catchment scale is presented. This system is based upon the hidroSIG java software, which was developed within the Atlas Hidrologico de Colombia project. In the GIS database was included all the information required by the environmental authorities in charge of the water resources management, offering the possibility of displaying, consulting and evaluating different scenarios that could help to make decisions upon the assignation and use of the resource. As a first application of the GIS, a 35 km 2 river basin located in Rionegro Plateau was used. The applied methodology was developed in the following stages: gathering of the available information, processing of the digital topography, study of the dynamics of the climate in the zone, evaluation of the water availability, and evaluation of the demand and water balance. The results obtained show the importance of having continuous and articulated spatial information in a GIS, so permanent update of the information is allowed. It is concluded that the implemented GIS constitutes a valuable tool for planning and management of the hydric resource within a hydrographic basin

  17. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  18. Facing the scaling problem: A multi-methodical approach to simulate soil erosion at hillslope and catchment scale

    Science.gov (United States)

    Schmengler, A. C.; Vlek, P. L. G.

    2012-04-01

    Modelling soil erosion requires a holistic understanding of the sediment dynamics in a complex environment. As most erosion models are scale-dependent and their parameterization is spatially limited, their application often requires special care, particularly in data-scarce environments. This study presents a hierarchical approach to overcome the limitations of a single model by using various quantitative methods and soil erosion models to cope with the issues of scale. At hillslope scale, the physically-based Water Erosion Prediction Project (WEPP)-model is used to simulate soil loss and deposition processes. Model simulations of soil loss vary between 5 to 50 t ha-1 yr-1 dependent on the spatial location on the hillslope and have only limited correspondence with the results of the 137Cs technique. These differences in absolute soil loss values could be either due to internal shortcomings of each approach or to external scale-related uncertainties. Pedo-geomorphological soil investigations along a catena confirm that estimations by the 137Cs technique are more appropriate in reflecting both the spatial extent and magnitude of soil erosion at hillslope scale. In order to account for sediment dynamics at a larger scale, the spatially-distributed WaTEM/SEDEM model is used to simulate soil erosion at catchment scale and to predict sediment delivery rates into a small water reservoir. Predicted sediment yield rates are compared with results gained from a bathymetric survey and sediment core analysis. Results show that specific sediment rates of 0.6 t ha-1 yr-1 by the model are in close agreement with observed sediment yield calculated from stratigraphical changes and downcore variations in 137Cs concentrations. Sediment erosion rates averaged over the entire catchment of 1 to 2 t ha-1 yr-1 are significantly lower than results obtained at hillslope scale confirming an inverse correlation between the magnitude of erosion rates and the spatial scale of the model. The

  19. Modelling the impact of implementing Water Sensitive Urban Design on at a catchment scale

    DEFF Research Database (Denmark)

    Locatelli, Luca; Gabriel, S.; Bockhorn, Britta

    . Different WSUD solutions such as soakaways and basins (‘skybrudsfaskiner’) were applied to these areas, with the WSUDs being dimensioned using simple estimation methods. Results showed that soakaways would require big volumes if events > 0.5 year return period are to be handled. However, smaller temporary...... to a 22 year rain time series and statistical analysis performed. Results show that soakaways, depending on the design criteria, are on average 20-60% full at the beginning of rain events; outflow intensities from soakaways are reduced depending on the soakaway design return period, and the annual...

  20. Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the catchment scale

    Science.gov (United States)

    Matt, Felix N.; Burkhart, John F.; Pietikäinen, Joni-Pekka

    2018-01-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snowmelt by increasing the absorption of shortwave radiation. The consequences are a shortening of the snow duration due to increased snowmelt and, at the catchment scale, a temporal shift in the discharge generation during the spring melt season. In this study, we present a newly developed snow algorithm for application in hydrological models that allows for an additional class of input variable: the deposition mass flux of various species of light absorbing aerosols. To show the sensitivity of different model parameters, we first use the model as a 1-D point model forced with representative synthetic data and investigate the impact of parameters and variables specific to the algorithm determining the effect of LAISI. We then demonstrate the significance of the radiative forcing by simulating the effect of black carbon (BC) deposited on snow of a remote southern Norwegian catchment over a 6-year period, from September 2006 to August 2012. Our simulations suggest a significant impact of BC in snow on the hydrological cycle. Results show an average increase in discharge of 2.5, 9.9, and 21.4 %, depending on the applied model scenario, over a 2-month period during the spring melt season compared to simulations where radiative forcing from LAISI is not considered. The increase in discharge is followed by a decrease in discharge due to a faster decrease in the catchment's snow-covered fraction and a trend towards earlier melt in the scenarios where radiative forcing from LAISI is applied. Using a reasonable estimate of critical model parameters, the model simulates realistic BC mixing ratios in surface snow with a strong annual cycle, showing increasing surface BC mixing ratios during spring melt as a consequence of melt amplification. However, we further identify large uncertainties in the representation of the surface BC mixing ratio during snowmelt and the subsequent

  1. How does precipitation become runoff? Comparison of hydrologic thresholds across hillslope and catchment scales

    Science.gov (United States)

    Ross, C.; Ali, G.; Oswald, C. J.; McMillan, H. K.; Walter, K.

    2017-12-01

    A hydrologic threshold is a critical point in time when runoff behavior rapidly changes, often in response to the activation of specific storage-driven or intensity-driven processes. Hydrologic thresholds can be viewed as characteristic signatures of hydrosystems, which makes them useful for site comparison as long as their presence (or lack thereof) can be evaluated in a standard manner across a range of environments. While several previous studies have successfully identified thresholds at a variety of individual sites, only a limited number have compared dynamics prevailing at the hillslope versus catchment scale, or distinguished the role of storage versus intensity thresholds. The objective of this study was therefore to examine precipitation input thresholds as well as "precipitation minus evapotranspiration" thresholds in environments with contrasted climatic and geographic characteristics. Historical climate and hydrometric datasets were consolidated for one hillslope site located at the Panola Mountain Research Watershed (Southeastern USA) and catchments located in the HJ Andrew's Experimental Forest (Northwestern USA), the Catfish Creek Watershed (Canadian prairies), the Experimental Lakes Area (Canadian boreal ecozone), the Tarrawarra catchment (Australia) and the Mahurangi catchment (New Zealand). Individual precipitation-runoff events were delineated using the newly introduced software HydRun to derive event-specific hydrograph parameters as well surrogate measures of antecedent moisture conditions and evapotranspiration in an automated and consistent manner. Various hydrograph parameters were then plotted against those surrogate measures to detect and evaluate site-specific threshold dynamics. Preliminary results show that a range of threshold shapes (e.g., "hockey stick", heaviside and dirac) were observed across sites. The influence of antecedent precipitation on threshold magnitude and shape also appeared stronger at sites with lower topographic

  2. Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps.

    Science.gov (United States)

    Leitinger, Georg; Ruggenthaler, Romed; Hammerle, Albin; Lavorel, Sandra; Schirpke, Uta; Clement, Jean-Christophe; Lamarque, Pénélope; Obojes, Nikolaus; Tappeiner, Ulrike

    2015-12-01

    This study analyzes the impact of droughts, compared with average climatic conditions, on the supporting ecosystem service water provision in sub-watersheds in managed alpine grasslands in two climatically different regions of the Alps, Lautaret (French Alps) and Stubai (Austrian Alps). Soil moisture was modelled in the range of 0-0.3 m. At both sites, current patterns showed that the mean seasonal soil moisture was (1) near field capacity for grasslands with low management intensity and (2) below field capacity for grasslands with higher land-use intensity. Soil moisture was significantly reduced by drought at both sites, with lower reductions at the drier Lautaret site. At the sub-watershed scale, soil moisture spatial heterogeneity was reduced by drought. Under drought conditions, the evapotranspiration to precipitation ratios at Stubai was slightly higher than those at Lautaret, indicating a dominant 'water spending' strategy of plant communities. Regarding catchment water balance, deep seepage was reduced by drought at Stubai more strongly than at Lautaret. Hence, the observed 'water spending' strategy at Stubai might have negative consequences for downstream water users. Assessing the water provision service for alpine grasslands provided evidence that, under drought conditions, evapotranspiration was influenced not only by abiotic factors but also by the water-use strategy of established vegetation. These results highlight the importance of 'water-use' strategies in existing plant communities as predictors of the impacts of drought on water provision services and related ecosystem services at both the field and catchment scale.

  3. Quantifying catchment water balances and their uncertainties by expert elicitation

    Science.gov (United States)

    Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten

    2017-04-01

    The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure

  4. Water Demand Management, Poverty & Equity

    International Development Research Centre (IDRC) Digital Library (Canada)

    nkhaled

    and sustainable use of existing water resources from a multi-disciplinary and multi-stakeholder ... natural resources, decentralized approaches to water resource management cannot be imposed in a top-down fashion by ... Opportunities for such incremental changes in water management policies will arise unpredictably. A.

  5. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  6. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    Science.gov (United States)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  7. Municipal water resources management: evaluation of water ...

    African Journals Online (AJOL)

    Car wash can be defined as a facility used to clean the exterior and in some cases, the interior of motor vehicles. These facilities are common in Bauchi and other cities in Nigeria. They use water as a major input thereby causing serious challenges to water resources management. Car wash facilities in Bauchi depend on ...

  8. Managing water use

    International Nuclear Information System (INIS)

    Unterberger, G.L.

    1991-01-01

    This article addresses meeting and maintaining water pollution controls while keeping up with the new regulations. The topics discussed in the article include discharge regulations, stormwater discharges, wetlands regulation, water use, water-related programs, and keeping an inventory of water pollution regulations, especially those involving pre-approvals, permits or registrations

  9. Adaptive and integrated water management

    NARCIS (Netherlands)

    Pahl-Wostl, C.; Kabat, P.; Möltgen, J.

    2007-01-01

    Sustainable water management is a key environmental challenge of the 21st century. Developing and implementing innovative management approaches and how to cope with the increasing complexity and uncertainties was the theme of the first International Conference on Adaptive and Integrated Water

  10. Water: Local-Level Management

    International Development Research Centre (IDRC) Digital Library (Canada)

    Field research is examined in three approaches to local water management: small-scale water supply; wastewater treatment and reuse; and watershed management ..... That leaves issues of cost, especially for storage tanks. ..... Local response to the introduction of wastewater treatment and reuse has been largely positive.

  11. Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions

    Science.gov (United States)

    Exbrayat, J.-F.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2013-01-01

    Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the reliability ensemble averaging (REA) philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN) losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilisation scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well-calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members.

  12. Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions

    Directory of Open Access Journals (Sweden)

    J.-F. Exbrayat

    2013-01-01

    Full Text Available Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the reliability ensemble averaging (REA philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilisation scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well-calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members.

  13. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    This monograph is intended to inform interested and capable pesons, who happen not to be specialists in water resources planning, of the issues and alternative strategies related to metropolitan water supply...

  14. Modeling environmental risk and land management trade-offs in the Great Barrier Reef catchment

    OpenAIRE

    Mallawaarachchi, Thilak; Mazur, Kasia; Lawson, Kenton

    2007-01-01

    We develop a catchment scale modeling framework to identify cost-effective strategies for joint onsite abatement and offsite mitigation of land-based pollution from agricultural activities that pose a risk to water quality in the Great Barrier Reef (GBR). An illustrative example of the Barron catchment in north Queensland is used to demonstrate an approach to specify social planner's problem for non-point source pollution management as a cost minimisation model to meet a specified reduction i...

  15. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  16. Water management and remote sensing

    NARCIS (Netherlands)

    Assem, S. van den; Bastiaanssen, W.G.M.; Claassen, T.H.L.; Feddes, R.A.; Menenti, M.; Minderhoud, P.; Nieuwenhuis, G.J.A.; Nieuwkoop, J. van; Stokkom, H.T.C. van; Stokman, N.G.M.; Thunnissen, H.A.M.; Visser, T.N.M.

    1990-01-01

    In modern water management detailed information is required on processes that occur and on the state of water systems, including the way they are influenced by human activities. Remote sensing can contribute significantly to these information. For example, areal patterns of water quality parameters

  17. Mapping floral resources for honey bees in New Zealand at the catchment scale.

    Science.gov (United States)

    Ausseil, A-G E; Dymond, J R; Newstrom, L

    2018-03-12

    Honey bees require nectar and pollen from flowers: nectar for energy and pollen for growth. The demand for nectar and pollen varies during the year, with more pollen needed in spring for colony population growth, and more nectar needed in summer to sustain the maximum colony size and collect surplus nectar stores for winter. Sufficient bee forage is therefore necessary to ensure a healthy bee colony. Land-use changes can reduce the availability of floral resources suitable for bees, thereby increasing the susceptibility of bees to other stressors such as disease and pesticides. In contrast, land-based management decisions to protect or plant bee forage can enhance pollen and nectar supply to bees while meeting other goals such as riparian planting for water-quality improvement. Commercial demand for honey can also put pressure on floral resources through over-crowding of hives. To help understand and manage floral resources for bees, we developed a spatial model for mapping monthly nectar and pollen production from maps of land cover. Based on monthly estimated production data we mapped potential monthly supply of nectar and pollen to a given apiary location in the landscape. This is done by summing the total production within the foraging range of the apiary while subtracting the estimated nectar converted to energy for collection. Ratios of estimated supply over theoretical hive demand may then be used to infer a potential landscape carrying capacity to sustain hives. This model framework is quantitative and spatial, utilising estimated flight energy costs for nectar foraging. It can contribute to management decisions such as where apiaries could be placed in the landscape depending on floral resources and where nectar limited areas may be located. It can contribute to planning areas for bee protection or planting such as in riparian vegetation. This would aid managed bee health, wild pollinator protection and honey production. We demonstrate the methods in a

  18. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    Science.gov (United States)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    used to demonstrate the effect of specific mitigation strategies such as improved treatment of rainwater, reduction of metal products exposed to rain or reduced input from mine drainage. The model can thus be a valuable tool for setting up management plans as required in the Water Framework Directive with a special emphasis on promising mitigation strategies in case of exceedance of target values. 4. References [1] Directive 2000/60/EC of the European Parliament and of the Council (EU Water Framework Directive) [2] Feijtel T.C.J., Boeije G., Matthies M., Young A., Morris G., Gandolfi C., Hansen B., Fox K., Holt M., Koch V., Schröder R., Cassani G., Schowanek D., Rosenblom J. and Niessen H.; Chemosphere 34, 2351-2374, 1997. Acknowledgement - We would like to thank the International Zinc Association (IZA) and the European Copper Insitute (ECI) for financial support.

  19. Optimizing basin-scale coupled water quantity and water quality man-agement with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Engelund Holm, Peter; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-04-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen concentrations. Inelastic water demands, fixed water allocation curtailment costs and fixed wastewater treatment costs (before and after use) are estimated for the water users (agriculture, industry and domestic). If the BOD concentration exceeds a given user pollution thresh-old, the user will need to pay for pre-treatment of the water before use. Similarly, treatment of the return flow can reduce the BOD load to the river. A traditional SDP approach is used to solve one-step-ahead sub-problems for all combinations of discrete reservoir storage, Markov Chain inflow clas-ses and monthly time steps. Pollution concentration nodes are introduced for each user group and untreated return flow from the users contribute to increased BOD concentrations in the river. The pollutant concentrations in each node depend on multiple decision variables (allocation and wastewater treatment) rendering the objective function non-linear. Therefore, the pollution concen-tration decisions are outsourced to a genetic algorithm, which calls a linear program to determine the remainder of the decision

  20. Economics of Water Management

    NARCIS (Netherlands)

    Zhu, X.

    2015-01-01

    Water is a scarce natural resource. It is not only used as an input to economic activity such as irrigation, household and industrial water use, and hydropower generation, but also provides ecosystem services such as the maintenance of wetlands, wildlife support, and river flows for aquatic

  1. Water management in Germany

    International Nuclear Information System (INIS)

    Teuber, W.; Bosenius, U.; Henke, J.

    1994-03-01

    The report was drawn up for the US day on water pollution prevention on 22 March 1994, as a follow-up to the 1992 Rio de Janairo conference on the environment and development, and presented to the International Water Conference in Noordwijk, the Netherlands. It gives a current overview of the foundations and structure, the development, position and points of emphasis for the german water industry. The report illustrates the extent of the success of german measures towards resolving it's water pollution problems, in particular the reduction of contamination. It clarifies the great challenges facing the german water industry in the Nineties, and hence illustrates more long-term goals - which will only be achieved through greater international cooperation. (orig./HP) [de

  2. Technology for Water Treatment (National Water Management)

    Science.gov (United States)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  3. Integrated modelling and the impacts of water management on land use

    International Nuclear Information System (INIS)

    Dorner, W; Spachinger, K; Metzka, R

    2008-01-01

    River systems and the quantity and quality of water depend on the catchment, its structure and land use. In central Europe especially land is a scarce resource. This causes conflicts between different types of land use, but also with the interests of flood protection, nature conservation and the protection of water resources and water bodies in the flood plain and on a catchment scale. ILUP - Integrated Land Use Planning and River Basin Management was a project, funded by the European Union, to address the problems of conflicting interests within a catchment. It addressed the problems of conflicting land use from a hydrological perspective and with regard to the resulting problems of water management. Two test river basins, Vils and Rott, both with a catchment size of about 1000 square kilometres, were considered for the German part of the project. Objective of the project was to identify means of managing land use with regard to water management objectives and adapt planning strategies and methodologies of water management authorities to the new needs of catchment management and planning. Catchment models were derived to simulate hydrological processes, assess the safety of dams and improve the control strategy of detention reservoirs with regard to land use in the lower system. Hydrodynamic models provided the basis to assess flood prone areas, evaluate flood protection measures and analyze the impacts of river training and discharge on morphology. Erosion and transport models were used to assess the impacts of land use on water quality. Maps were compiled from model results to provide a basis for decision making. In test areas new ways of planning and implementation of measures were tested. As a result of model scenarios in combination with the socio economic situation in the catchment new methods of land management and land use management were derived and implemented in model areas. The results of the project show that new ways of managing land use in river

  4. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    .... This involves learning something about the alternative strategies--some ancient and others not yet operational--for increasing water supplies and/or modifying demand so a supply/demand balance is maintained...

  5. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    .... This also requires an awareness of the complex economic, environmental, and social issues that increasingly compound what once was considered a purely technological problem, to be left to water...

  6. Final report on impact of catchment scale processes and climate change on cause-effect and recovery-chains

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Keizer-Vlek, H.E.; Spears, B.; Brucet, S.; Johnson, R.; Feld, C.; Kernan, M.

    2012-01-01

    Catchment wide integrated basin management requires knowledge on cause-effect and recovery chains within water bodies as well as on the interactions between water bodies and categories. In the WISER WP6.4 recovery processes in rivers, lakes and estuarine and coastal waters were evaluated. The major

  7. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    Science.gov (United States)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  8. Groundwater discharge dynamics from point to catchment scale in a lowland stream: Combining hydraulic and tracer methods

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Sebok, Eva; Duque, Carlos

    2015-01-01

    was quantified using differential gauging with an acoustic Doppler current profiler (ADCP). At the catchment scale (26–114 km2), runoff sources during main rain events were investigated by hydrograph separations based on electrical conductivity (EC) and stable isotopes 2H/1H. Clear differences in runoff sources...... events. There were also clear spatial patterns of focused groundwater discharge detected by the DTS and ADCP measurements at the reach scale indicating high spatial variability, where a significant part of groundwater discharge was concentrated in few zones indicating the possibility of concentrated...... nutrient or pollutant transport zones from nearby agricultural fields. VTP measurements confirmed high groundwater fluxes in discharge areas indicated by DTS and ADCP, and this coupling of ADCP, DTS and VTP proposes a novel field methodology to detect areas of concentrated groundwater discharge with higher...

  9. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  10. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  11. Spatial and Temporal Distribution of Soil Moisture at the Catchment Scale Using Remotely-Sensed Energy Fluxes

    Directory of Open Access Journals (Sweden)

    Thomas K. Alexandridis

    2016-01-01

    Full Text Available Despite playing a critical role in the division of precipitation between runoff and infiltration, soil moisture (SM is difficult to estimate at the catchment scale and at frequent time steps, as is required by many hydrological, erosion and flood simulation models. In this work, an integrated methodology is described to estimate SM at the root zone, based on the remotely-sensed evaporative fraction (Λ and ancillary information on soil and meteorology. A time series of Terra MODIS satellite images was used to estimate SM maps with an eight-day time step at a 250-m spatial resolution for three diverse catchments in Europe. The study of the resulting SM maps shows that their spatial variability follows the pattern of land cover types and the main geomorphological features of the catchment, and their temporal pattern follows the distribution of rain events, with the exception of irrigated land. Field surveys provided in situ measurements to validate the SM maps’ accuracy, which proved to be variable according to site and season. In addition, several factors were analyzed in order to explain the variation in the accuracy, and it was shown that the land cover type, the soil texture class, the temporal difference between the datasets’ acquisition and the presence of rain events during the measurements played a significant role, rather than the often referred to scale difference between in situ and satellite observations. Therefore, the proposed methodology can be used operationally to estimate SM maps at the catchment scale, with a 250-m spatial resolution and an eight-day time step.

  12. Climate changes Dutch water management

    NARCIS (Netherlands)

    Schaik, van H.

    2007-01-01

    This booklet starts out describing how our water management strategy has evolved over the centuries from increasingly defensive measures to an adaptive approach. The second part presents smart, areaspecific examples in planning and zoning of water, land and ecosystems for our coast, rivers, cities

  13. Water management of HWP - Hazira

    International Nuclear Information System (INIS)

    Nagar, A.K.

    2008-01-01

    Water is a precious gift of nature to the mankind and it is vital for living beings and industries. It may become a scarce resource, if proper measures are not adopted timely to conserve the same. Water Management with measures taken for water, energy conservation and effluent reduction at HWP - Hazira are described in the present paper. System details of pre-treatment, cooling water, steam, boiler, effluent etc. pertaining to HWP-Hazira are described. Cooling water treatment adopted in HWP-HAZIRA is operating at 3-4 concentration cycles. Treatment is found to be satisfactory as revealed by the absence of scaling or corrosion induced by microbial fouling in coolers, heat exchangers etc. due to observations made during the last ATR. The cooling water treatment adopted and followed by KRIBHCO is also described. KRIBHCO is operating their cooling water system at a cycle of concentration of 7-8 to conserve water and chemicals. (author)

  14. Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain)

    Science.gov (United States)

    Cánovas, C. R.; Macías, F.; Olías, M.; López, R. Pérez; Nieto, J. M.

    2017-07-01

    Fluxes of acidity and contaminants from acid mine drainage (AMD) sources to the receiving surface water bodies were studied in a mining-impacted watershed (Meca River, SW Spain) using a novel methodology based on the joint application of EMMA and MIX codes. The application of EMMA and elemental ratios allowed delimiting the end-members responsible for water quality variations at a catchment scale. The further application of MIX quantified the significant impact of AMD on the river quality; less than 10% of AMD relative contribution is enough to maintain acidic conditions during most of the year. The mixing model also provided information about the element mobility, distinguishing those elements with a quasi-conservative behavior (e.g., Cu, Zn, Al, Co or Ni) from those affected by mineral precipitation/dissolution (e.g., K, Si, Na, Sr, Ca, Fe, Pb, or As). Floods are the main driver of dissolved and, mainly particulate, contaminants in the catchment. Thus, the first rainfall events in November only accounted for 19% of the annual Meca flow but yielded between 26 and 43% of the net acidity and dissolved metal loads (mainly, Fe, As and Pb). Concerning particulate transport, around 332 tons of particulate Fe, 49 tons of Al, 0.79 tons of As and 0.37 tons of Pb were recorded during these first floods. The particulate As concentration can be up to 34 times higher than the dissolved one during floods and between 2 and 4 times higher for Fe, Pb and Cr. This integrated modeling approach could be a promising and useful tool to face future restoration plans in derelict mines worldwide. This approach would allow prioritizing remedial measures, achieving an environmental and cost-effective restoration of degraded areas.

  15. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    Science.gov (United States)

    Molina-Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Jeppesen, Erik

    2014-02-01

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental and recreational purposes. We also checked for the possible synergistic effects of changes in climate and land use on water flow and nutrient exports from the catchment. Simulations showed a noticeable impact of climate change in the river flow regime and consequently the water level of the limno-reservoir, especially during summer, complicating the fulfillment of its purposes. Most of the scenarios also predicted a deterioration of trophic conditions in the limno-reservoir. Fertilization and soil erosion were the main factors affecting nitrate and total phosphorus concentrations. Combined climate and land use change scenarios showed noticeable synergistic effects on nutrients exports, relative to running the scenarios individually. While the impact of fertilization on nitrate export is projected to be reduced with warming in most cases, an additional 13% increase in the total phosphorus export is expected in the worst-case combined scenario compared to the sum of individual scenarios. Our model framework may help water managers to assess and manage how these multiple environmental stressors interact and ultimately affect aquatic ecosystems.

  16. Quantifying catchment-scale mixing and its effect on time-varying travel time distributions

    NARCIS (Netherlands)

    Van Der Velde, Y.; Torfs, P. J J F; Van Der Zee, S. E A T M; Uijlenhoet, R.

    2012-01-01

    Travel time distributions are often used to characterize catchment discharge behavior, catchment vulnerability to pollution and pollutant loads from catchments to downstream waters. However, these distributions vary with time because they are a function of rainfall and evapotranspiration. It is

  17. Green infrastructure and its catchment-scale effects: an emerging science

    Science.gov (United States)

    Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evap...

  18. Efficient Water Management in Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-01-01

    number of the countries that have recently begun to consider the introduction of nuclear power are in water scarce regions, which would certainly limit the possibility for deployment of nuclear power plants, in turn hindering these countries' development and energy security. Thus, there is a large incentive to enhance efforts to introduce innovative water use, water management practices and related technologies. Water management for nuclear power plants is gaining interest in IAEA Member States as an issue of vital importance for the deployment of nuclear power. Recent experience has shown that some nuclear power plants are susceptible to prolonged drought conditions, forcing reactors to be shut down or power to be reduced to a minimal level. In some cases, environmental issues have resulted in regulations that limit the possibility for water withdrawal as well as water discharge. Regarding the most common design for cooling nuclear power plants, this has led to a complicated siting procedure for new plants and expensive retrofits for existing ones. The IAEA has already provided its Member States with reports and documents that address the issue. At the height of nuclear power expansion in the 1970s, the need for guidance in the area resulted in publications such as Thermal Discharges at Nuclear Power Stations - Their Management and Environmental Impact (Technical Reports Series No. 155) and Environmental Effects of Cooling Systems (Technical Reports Series No. 202). Today, amid the so-called nuclear renaissance, it is of vital importance to offer guidance to the Member States on the issues and possibilities that nuclear power water management brings. Management of water at nuclear power plants is an important subject during all phases of the construction, operation and maintenance of any nuclear power plant. Water management addresses the issue of securing water for condenser cooling during operation, for construction (during the flushing phase), and for inventory

  19. Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers?

    Science.gov (United States)

    Chen, Qiuwen; Guo, Xiao; Hua, Guofen; Li, Guoliang; Feng, Ranran; Liu, Xiaoli

    2017-01-01

    The study investigated the degradation behaviors of swine farm tetracyclines (TCs) at a catchment scale and explored whether multi-pond systems could be beneficial to the interception of TCs so as to reduce the pollution risk to receiving rivers. The occurrence and migration of 12 kinds of tetracycline antibiotics, including their degradation products, were studied in four swine farms of the Meijiang River basin in China. The migration paths of the TCs were examined through sampling and analyzing the soil and/or sediment at different points along the swine wastewater outlet, which included sewer, sewage pond, mixed-canal (stream and sewage), farmland (paddy and upland soil) and finally the river. TC concentrations of all collected samples were obtained by solid phase extraction followed by measurement with high-performance liquid chromatography tandem mass spectrometry. The results showed that sediment TC concentrations varied greatly in different swine farms, from mg·kg -1 to μg·kg -1 levels. TCs had different decay patterns along different migration paths, such that TCs decayed exponentially in paddy soil, while linearly in sewer and mixed canal. The concentrations of TCs and their degradation products decreased in the order: sewer sediment > sewage pond sediment > mixed-canal sediment > paddy soil > upland soil, indicating that TCs tend to be more easily intercepted and accumulated in water-sediment systems such as ponds. Therefore, the multi-pond system could be an effective way to prevent TCs from migrating into rivers. These results provided essential information for contamination control of antibiotics in aquatic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  1. A pragmatic approach to modelling soil and water conservation measures with a cathment scale erosion model.

    NARCIS (Netherlands)

    Hessel, R.; Tenge, A.J.M.

    2008-01-01

    To reduce soil erosion, soil and water conservation (SWC) methods are often used. However, no method exists to model beforehand how implementing such measures will affect erosion at catchment scale. A method was developed to simulate the effects of SWC measures with catchment scale erosion models.

  2. Catchments as heterogeneous and multi-species reactors: An integral approach for identifying biogeochemical hot-spots at the catchment scale

    Science.gov (United States)

    Weyer, Christina; Peiffer, Stefan; Schulze, Kerstin; Borken, Werner; Lischeid, Gunnar

    2014-11-01

    From a biogeochemical perspective, catchments can be regarded as reactors that transform the input of various substances via precipitation or deposition as they pass through soils and aquifers towards draining streams. Understanding and modeling the variability of solute concentrations in catchment waters require the identification of the prevailing processes, determining their respective contribution to the observed transformation of substances, and the localization of "hot spots", that is, the most reactive areas of catchments. For this study, we applied a non-linear variant of the Principle Component Analysis, the Isometric Feature Mapping (Isomap), to a data set composed of 1686 soil solution, groundwater and stream water samples and 16 variables (Al, Ca, Cl, Fe, K, Mg, Mn, Na, NH4, NO3, SO4, total S, Si, DOC, electric conductivity and pH values) from the Lehstenbach catchment in Germany. The aim was (i) to assess the contribution of the prevailing biogeochemical processes to the variability of solute concentrations in water samples taken from soils, in groundwater and in stream water in a catchment and (ii) to identify hot spots at the catchment scale with respect to 16 solutes along different flow paths. The first three dimensions of the Isomap analysis explained 48%, 30% and 11%, respectively, i.e. 89% of the variance in the data set. Scores of the first three dimensions could be ascribed to three predominating bundles of biogeochemical processes: (i) redox processes, (ii) acid-induced podzolization, and (iii) weathering processes. In general, the upper 1 m topsoil layer could be considered as hot spots along flow paths from upslope soils and in the wetland, although with varying extents for the different prevailing biogeochemical processes. Nearly 67% and 97% of the variance with respect to redox processes and acid induced podzolization could be traced back to hot spots, respectively, representing less than 2% of the total spatial volume of the catchment

  3. Water sustainable management for buildings Water sustainable management for buildings

    Directory of Open Access Journals (Sweden)

    Juan Arturo Ocaña Ponce

    2013-01-01

    Full Text Available This paper presents a literature review article that deals with how to manage water in build­ings, specifically in facility projects, in ways to save water during the use, maintenance and operation of the building. This work is aimed at architects, builders and developers, and may be helpful for decision-making in the planning and management of efficient water use in buildings.Este trabajo es un artículo de revisión relacionado con el manejo y gestión del recurso agua, particularmente en proyectos de edificaciones, con el fin de propiciar ahorro de agua durante el uso, mantenimiento y operación del inmueble. Este documento está dirigido a arquitectos, constructores y desarrolladores inmobiliarios y puede ser de gran utilidad para la toma de decisiones en la fase de planeación y de gestión del uso eficiente del agua en los edificios.

  4. Entiat Experimental Forest: catchment-scale runoff data before and after a 1970 wildfire.

    Science.gov (United States)

    Richard D. Woodsmith; Kellie B. Vache; Jeffrey J. McDonnell; J. David. Helvey

    2004-01-01

    Effects of wildfire on water quantity and quality are issues of major concern. Much has been learned from previous research, although site specific data from both before and after wildfire are rare. The Entiat Experimental Forest (EEF) in central Washington State provides such a hydrologic record. In August 1970 a severe wildfire occurred following 10 years of stream...

  5. Modelling catchment-scale erosion patterns in the East African Highlands

    NARCIS (Netherlands)

    Vigiak, O.; Okoba, B.O.; Sterk, G.; Groenenberg, S.

    2005-01-01

    Prompt location of areas exposed to high erosion is of the utmost importance for soil and water conservation planning. Erosion models can be useful tools to locate sources of sediment and areas of deposition within a catchment, but the reliability of model predictions of spatial patterns of erosion

  6. Modularised process-based modelling of phosphorus loss at farm and catchment scale

    Directory of Open Access Journals (Sweden)

    M. G. Hutchins

    2002-01-01

    Full Text Available In recent years, a co-ordinated programme of data collection has resulted in the collation of sub-hourly time-series of hydrological, sediment and phosphorus loss data, together with soil analysis, cropping and management information for two small ( Keywords: phosphorus, erosion, process-based modelling, agriculture

  7. Total Water Management: A Watershed Based Approach

    Science.gov (United States)

    In this urbanizing world, municipal water managers need to develop planning and management frameworks to meet challenges such as limiting fresh water supplies, degrading receiving waters, increasing regulatory requirements, flooding, aging infrastructure, rising utility (energy) ...

  8. A catchment scale evaluation of multiple stressor effects in headwater streams

    DEFF Research Database (Denmark)

    Rasmussen, J. J.; McKnight, Ursula S.; Loinaz, Maria Christina

    2013-01-01

    in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchmentscale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical...... and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological...... insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded...

  9. Agricultural non-point source pollution of glyphosate and AMPA at a catchment scale

    Science.gov (United States)

    Okada, Elena; Perez, Debora; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    Information on the actual input of pesticides into the environment is crucial for proper risk assessment and the design of risk reduction measures. The Crespo basin is found within the Balcarce County, located south-east of the Buenos Aires Province. The whole basin has an area of approximately 490 km2 and the river has a length of 65 km. This study focuses on the upper basin of the Crespo stream, covering an area of 226 km2 in which 94.7% of the land is under agricultural production representing a highly productive area, characteristic of the Austral Pampas region. In this study we evaluated the levels of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soils; and the non-point source pollution of surface waters, stream sediments and groundwater, over a period of one year. Stream water samples were taken monthly using propylene bottles, from the center of the bridge. If present, sediment samples from the first 5 cm were collected using cylinder samplers. Groundwater samples were taken from windmills or electric pumps from different farms every two months. At the same time, composite soil samples (at 5 cm depth) were taken from an agricultural plot of each farm. Samples were analyzed for detection and quantification of glyphosate and AMPA using ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS). The limit of detection (LD) in the soil samples was 0.5 μg Kg-1 and the limit of quantification (LQ) was 3 μg Kg-1, both for glyphosate and AMPA. In water samples the LD was 0.1 μg L-1 and the LQ was 0.5 μg L-1. The results showed that the herbicide dispersed into all the studied environmental compartments. Glyphosate and AMPA residues were detected in 34 and 54% of the stream water samples, respectively. Sediment samples had a higher detection frequency (>96%) than water samples, and there was no relationship between the presence in surface water with the detection in sediment samples. The presence in sediment samples

  10. Mechanisms driving the seasonality of catchment scale nitrate export: Evidence for riparian ecohydrologic controls

    Science.gov (United States)

    Duncan, Jonathan M.; Band, Lawrence E.; Groffman, Peter M.; Bernhardt, Emily S.

    2015-06-01

    Considerable variability in the seasonal patterns of stream water nitrate (NO3-) has been observed in forested watersheds throughout the world. While many forested headwater catchments exhibit winter and early spring peaks in NO3- concentrations, several watersheds have peak concentrations during the summer months. Pond Branch, a headwater catchment in Maryland monitored for over 10 years, exhibits recurrent and broad summer peaks in both NO3- concentrations and watershed export. Higher NO3- export from June to September is particularly surprising, given that these summer months typically have the year's lowest discharge. A key challenge is identifying the source(s) of NO3- and the mechanism(s) by which it is transported to the watershed outlet during the summer. In this study, we assessed multiple hypotheses (not mutually exclusive) that could account for the seasonal trend including proximal controls of groundwater-surface water interactions, instream processes, and riparian groundwater-N cycling interactions, as well as two distal controls: geochemical weathering and senescence of riparian vegetation. A combination of long-term weekly and limited duration high-frequency sensor data reveals the importance of riparian ecohydrologic processes during base flow. In this watershed, patterns of seasonal stream water NO3- concentrations and fluxes depend fundamentally on interactions between groundwater dynamics and nitrogen (N) cycling in the riparian zone. Groundwater tables control nitrification-denitrification dynamics as well as hydrologic transport. Our results suggest that in many watersheds, a more sophisticated exploration of NO3- production and NO3- transport mechanisms is required to identify critical points in the landscape and over time that disproportionately drive patterns of watershed NO3- export.

  11. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    Gabrielli, C. P.; McDonnell, J. J.; Jarvis, W. T.

    2012-07-01

    SummaryBedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwater contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil-bedrock interface, indicating that the bedrock aquifer has minimal direct contributions to event-based hillslope runoff. However, the bedrock water table did respond significantly to storm events indicating that there is a direct connection between hillslope processes and the underlying bedrock aquifer. WS10 groundwater dynamics were dominated by fracture flow. A highly fractured and transmissive zone within the upper one meter of bedrock conducted rapid lateral subsurface stormflow and lateral discharge. The interaction of subsurface stormflow with bedrock storage directly influenced the measured hillslope response, solute transport and computed mean residence time. This research reveals bedrock groundwater to be an extremely dynamic component of the hillslope hydrological system and our comparative analysis illustrates the potential range of hydrological and geological controls on runoff generation in headwater catchments.

  12. Understanding hydrological and nitrogen interactions by sensitivity analysis of a catchment-scale nitrogen model

    Science.gov (United States)

    Medici, Chiara; Wade, Andrew; Frances, Felix

    2010-05-01

    Nitrogen is present in both terrestrial and aquatic ecosystems and research is needed to understand its storage, transportation and transformations in river catchments world-wide because of its importance in controlling plant growth and freshwater trophic status (Vitousek et al. 2009; Chu et al. 2008; Schlesinger et al 2006; Ocampo et al. 2006; Green et al., 2004; Arheimer et al., 1996). Numerous mathematical models have been developed to describe the nitrogen dynamics, but there is a substantial gap between the outputs now expected from these models and what modellers are able to provide with scientific justification (McIntyre et al., 2005). In fact, models will always necessarily be simplification of reality; hence simplifying assumptions are sources of uncertainty that must be well understood for an accurate model results interpretation. Therefore, estimating prediction uncertainties in water quality modelling is becoming increasingly appreciated (Dean et al., 2009, Kruger et al., 2007, Rode et al., 2007). In this work the lumped LU4-N model (Medici et al., 2008; Medici et al., EGU2009-7497) is subjected to an extensive regionalised sensitivity analysis (GSA, based on Monte Carlo simulations) in application to the Fuirosos catchment, Catalonia. The main results are: 1) the hydrological model is greatly affected by the maximum static storage water content (Hu_max), which defines the amount of water held in soil that can leave the catchment only by evapotranspiration. Thus, it defines also the amount of water not retained that is free to move and supplies the other model tanks; 2) the use of several objective functions in order to take into account different hydrograph characteristic helped to constrain parameter values; 3) concerning nitrogen, to obtain a sufficient level of behavioural parameter sets for the statistical analysis, not very severe criteria could be adopted; 4) stream water concentrations are sensitive to the shallow aquifer parameters, especially

  13. Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes.

    Science.gov (United States)

    Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P

    2015-09-15

    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Science.gov (United States)

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  15. Thresholds, switches and hysteresis in hydrology from the pedon to the catchment scale: a non-linear systems theory

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.

  16. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.

    Science.gov (United States)

    Greene, S; Taylor, D; McElarney, Y R; Foy, R H; Jordan, P

    2011-05-01

    Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256km(2) lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning

    Science.gov (United States)

    Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.

    2013-06-01

    Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.

  18. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation.

    Science.gov (United States)

    Bernhardt, Emily S; Palmer, Margaret A

    2011-09-01

    River restoration is an increasingly common approach utilized to reverse past degradation of freshwater ecosystems and to mitigate the anticipated damage to freshwaters from future development and resource-extraction activities. While the practice of river restoration has grown exponentially over the last several decades, there has been little empirical evaluation of whether restoration projects individually or cumulatively achieve the legally mandated goals of improving the structure and function of streams and rivers. New efforts to evaluate river restoration projects that use channel reconfiguration as a methodology for improving stream ecosystem structure and function are finding little evidence for measurable ecological improvement. While designed channels may have less-incised banks and greater sinuousity than the degraded streams they replace, these reach-scale efforts do not appear to be effectively mitigating the physical, hydrological, or chemical alterations that are responsible for the loss of sensitive taxa and the declines in water quality that typically motivate restoration efforts. Here we briefly summarize this new literature, including the collection of papers within this Invited Feature, and provide our perspective on the limitations of current restoration.

  19. Testing of a conceptualisation of catchment scale surface soil moisture in a hydrologic model

    Science.gov (United States)

    Komma, J.; Parajka, J.; Naeimi, V.; Blöschl, G.; Wagner, W.

    2009-04-01

    In this study the simulated surface soil moisture of a dual layer conceptual hydrologic model is tested against ERS scatterometer top soil moisture observations. The study catchment at the Kamp river with a size of 1550 km² is located in north-eastern Austria. The hydrologic simulations in this study are based on a well calibrated hydrologic model. The model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. The spatial and temporal resolutions of the model are 1 x 1 km² and 15 minutes. The soil moisture accounting scheme simulates the mean moisture state over the entire vertical soil column. To get additional information about moisture states in a thin surface soil layer from the continuous rainfall-runoff model, the soil moisture accounting scheme is extended by a thin skin soil storage sitting at the top of the main soil reservoir. The skin soil storage is filled by rain and snow melt. The skin soil reservoir and the main soil reservoir are connected by a bidirectional moisture flux which is assumed to be a linear function of the vertical soil moisture gradient. The calibration of the additional dual layer component is based on hydrologic reasoning and the incorporation of measured soil water contents close to the study catchment. The comparison of the simulated surface soil moisture with the ERS scatterometer top soil moisture observations is performed in the period 1993-2005. On average, about 3 scatterometer images per month with a mean spatial coverage of about 82% are available at the Kamp catchment. The correlation between the catchment mean values of the two top soil moisture estimates changes with the season. The differences tend to be smaller due the summer month from July to October. The results indicate a good agreement between the modelled and remote sensed spatial moisture patterns in the study area.

  20. Water demand management in Mediterranean regions

    OpenAIRE

    Giulio Querini; Salvo Creaco

    2005-01-01

    Water sustainability needs a balance between demand and availability: 1) Water demand management: demand may be managed by suppliers and regulations responsible persons, using measures like invoicing, consumptions measurement and users education in water conservation measures; 2) Augmentation of water supply: availibility may be augmented by infrastructural measures, waste water reuse, non-conventional resources and losses reduction. Water Demand Management is about achieving a reduction in t...

  1. Modeling of Regionalized Emissions (MoRE into Water Bodies: An Open-Source River Basin Management System

    Directory of Open Access Journals (Sweden)

    Stephan Fuchs

    2017-03-01

    Full Text Available An accurate budget of substance emissions is fundamental for protecting freshwater resources. In this context, the European Union asks all member states to report an emission inventory of substances for river basins. The river basin management system MoRE (Modeling of Regionalized Emissions was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale. As the reporting tool for the Federal Republic of Germany, MoRE is used to model annual emissions of nutrients, heavy metals, micropollutants like polycyclic aromatic hydrocarbons (PAH, Bis(2-ethylhexylphthalate (DEHP, and certain pharmaceuticals. Observed loads at gauging stations are used to validate the calculated emissions. In addition to its balancing capabilities, MoRE can consider different variants of input data and quantification approaches, in order to improve the robustness of different modeling approaches and to evaluate the quality of different input data. No programming skills are required to set up and run the model. Due to its flexible modeling base, the effect of reduction measures can be assessed. Within strategic planning processes, this is relevant for the allocation of investments or the implementation of specific measures to reduce the overall pollutant emissions into surface water bodies and therefore to meet the requirements of water policy.

  2. Areal changes of lentic water bodies within an agricultural basin of the Argentinean pampas. Disentangling land management from climatic causes.

    Science.gov (United States)

    Booman, Gisel Carolina; Calandroni, Mirta; Laterra, Pedro; Cabria, Fabián; Iribarne, Oscar; Vázquez, Pablo

    2012-12-01

    Wetland loss is a frequent concern for the environmental management of rural landscapes, but poor disentanglement between climatic and land management causes frequently constrains both proper diagnoses and planning. The aim of this study is to address areal changes induced by non-climatic factors on lentic water bodies (LWB) within an agricultural basin of the Argentinean Pampas, and the human activities that might be involved. The LWB of the Mar Chiquita basin (Buenos Aires province, Argentina) were mapped using Landsat images from 1998-2008 and then corrected for precipitation variability by considering the regional hydrological status on each date. LWB areal changes were statistically and spatially analyzed in relation to land use changes, channelization of streams, and drainage of small SWB in the catchment areas. We found that 12 % of the total LWB in the basin had changed (P climatic causes. During the evaluated decade, 30 % of the LWB that changed size had decreased while 70 % showed steady increases in area. The number of altered LWB within watersheds lineally increased or decreased according to the proportion of grasslands replaced by sown pastures, or the proportion of sown pastures replaced by crop fields, respectively. Drainage and channelization do not appear to be related to the alteration of LWB; however some of these hydrologic modifications may predate 1998, and thus earlier effects cannot be discarded. This study shows that large-scale changes in land cover (e.g., grasslands reduction) can cause a noticeable loss of hydrologic regulation at the catchment scale within a decade.

  3. Areal Changes of Lentic Water Bodies Within an Agricultural Basin of the Argentinean Pampas. Disentangling Land Management from Climatic Causes

    Science.gov (United States)

    Booman, Gisel Carolina; Calandroni, Mirta; Laterra, Pedro; Cabria, Fabián; Iribarne, Oscar; Vázquez, Pablo

    2012-12-01

    Wetland loss is a frequent concern for the environmental management of rural landscapes, but poor disentanglement between climatic and land management causes frequently constrains both proper diagnoses and planning. The aim of this study is to address areal changes induced by non-climatic factors on lentic water bodies (LWB) within an agricultural basin of the Argentinean Pampas, and the human activities that might be involved. The LWB of the Mar Chiquita basin (Buenos Aires province, Argentina) were mapped using Landsat images from 1998-2008 and then corrected for precipitation variability by considering the regional hydrological status on each date. LWB areal changes were statistically and spatially analyzed in relation to land use changes, channelization of streams, and drainage of small SWB in the catchment areas. We found that 12 % of the total LWB in the basin had changed ( P changed size had decreased while 70 % showed steady increases in area. The number of altered LWB within watersheds lineally increased or decreased according to the proportion of grasslands replaced by sown pastures, or the proportion of sown pastures replaced by crop fields, respectively. Drainage and channelization do not appear to be related to the alteration of LWB; however some of these hydrologic modifications may predate 1998, and thus earlier effects cannot be discarded. This study shows that large-scale changes in land cover (e.g., grasslands reduction) can cause a noticeable loss of hydrologic regulation at the catchment scale within a decade.

  4. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Water Demand Management. Policy Brief No.2. Fair share: Water Demand Management can help provide fair access to water for the poor. Water Policy. Brief no.2. The Millennium Development Goals identify lack of clean water supply as a key factor in the lives of the poor. Eighty percent of poor people questioned in 20 ...

  5. The application of water poverty mapping in water management

    OpenAIRE

    Jordaan, Dawid Benjamin; Van Der Vyver, Charles

    2012-01-01

    Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance) and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply wat...

  6. Use of 7Be as a sediment tracer: a scope for testing and refining key assumptions related to its adsorption on a catchment scale

    Science.gov (United States)

    Ryken, Nick; Al-Barri, Bashar; Blake, Will; Taylor, Alex; Boeckx, Pascal; Verdoodt, Ann

    2014-05-01

    To date the use of Beryllium-7 (7Be) as a sediment tracer on catchment scale is largely understudied, although several studies applied the ratio 7Be/137Cs or 7Be/210Pbex for sediment source fingerprinting. Several key assumptions, (1) spatially uniform fallout, (2) immediate adsorption upon contact with the soil and (3) irreversible adsorption by the soil, must hold if 7Be is to be used as a sediment tracer. However, recent studies have raised questions about the validity of these assumptions in the changing environments on a catchment scale. In this study three representative soil types of the Mariaborrebeek catchment, a small watershed located in the Flemish Ardennes in Belgium, were collected to assess the adsorption rate of 7Be on the soil surface in this catchment. In a laboratory experiment, soil samples were equilibrated with a stable Be solution of 1 mg l-1 at a soil:solution ratio of 1:10 and the adsorption of Be was measured at different time intervals. Furthermore, different amendments were applied to assess the impact of soil pH, fertilizer and organic matter on the adsorption of Be. Preliminary results confirm a rapid and almost complete Be adsorption and a negative correlation between pH and Be adsorption. The results of this study might lead to the formulation of interpretation guidelines for the use of 7Be to assess short-term soil redistribution and sediment source fingerprinting on catchment scale.

  7. A web platform for integrated surface water - groundwater modeling and data management

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  8. BMPs in urban stormwater management in Denmark and Sweden

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Viklander, M.; Linde, Jens Jørgen

    2002-01-01

    Best Management Practices (BMPs) for control of stormwater runoff include structural elemts (structural BMPs) that can be applied on the local scale (e.g. infiltration), the drainage catchment scale (e.g. ponds and treatment, or wetlands) and the receiving water scale (e.g. retrofitting of river...... reaches), and non-structural BMPs, such as controls of chemicals or building materials, and street sweeping. The available knowledge of stormwater BMPs performance in pollution control is inconsistent and the effect of various BMPs on receiving water quality is either poorly understood, or not known...

  9. Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV on the Chinese Loess Plateau

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2016-12-01

    Full Text Available The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully-affected areas detection is the basic work in this region for gully erosion assessment and monitoring. For the first time, an unmanned aerial vehicle (UAV was applied to extract gully features in this region. Two typical catchments in Changwu and Ansai were selected to represent loess tableland and loess hilly regions, respectively. A high-powered quadrocopter (md4-1000 equipped with a non-metric camera was used for image acquisition. InPho and MapMatrix were applied for semi-automatic workflow including aerial triangulation and model generation. Based on the stereo-imaging and the ground control points, the highly detailed digital elevation models (DEMs and ortho-mosaics were generated. Subsequently, an object-based approach combined with the random forest classifier was designed to detect gully-affected areas. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The overall extraction accuracy in Changwu and Ansai achieved was 84.62% and 86.46%, respectively, which indicated the potential of the proposed workflow for extracting gully features. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

  10. Determining water management training needs through stakeholder ...

    African Journals Online (AJOL)

    South Africa is a water-stressed country and the efficient management of the demand for and frugal use of water is a topic that can no longer be avoided. Community-based natural resource management is an alternative approach to government stewardship of natural resources, and in the instance of water management it is ...

  11. Pump Management Committees and sustainable community water ...

    African Journals Online (AJOL)

    PMCs), technically known as Water and Sanitation Committees (WATSAN) in the water sector, are institutionalized organs for community water management. A survey of twenty-seven (27) of these institutions in six districts across the Upper ...

  12. The role of statutory and local rules in allocating water between ...

    African Journals Online (AJOL)

    keeping the peace' rather than on enforcing the water law. At the larger catchment scale, however, the anonymity between users makes it more difficult to initiate and maintain cooperative arrangements. Keywords: water rights, legitimacy, conflict, ...

  13. The role of pesticide fate modelling in a prevention-led approach to potable water quality management

    Science.gov (United States)

    Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David

    2013-04-01

    Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management

  14. Catchment-scale contaminant transport under changing hydro-climatic conditions in the Aral Sea Drainage Basin, Central Asia

    Science.gov (United States)

    Jarsjö, Jerker; Törnqvist, Rebecka; Su, Ye

    2013-04-01

    Dependable projections of future water availability and quality are essential in the management of water resources. Changes in land use, water use and climate can have large impacts on water and contaminant flows across extensive catchments that may contain different administrative regions where shared water resources must be managed. We consider the extensive Aral Sea Drainage Basin (ASDB) and the Amu Darya River Delta in Central Asia, which are currently under severe water stress due to large-scale irrigation expansion. We interpret data on hydro-climatic conditions, main contaminants of surface water and shallow groundwater systems, location of rivers and canal networks, and groundwater flow directions. The data are used together with climate change projections from general circulation models (GCMs) as input to hydrological and (advective) transport modelling. The main goal is to assess how regional transport pathways and travel times have changed, and are likely to change further, in response to past and projected future hydro-climatic changes. More specifically, the hydrological modelling was based on temperature and precipitation change (ΔT and ΔP) results from 65 GCM projections of 21st century conditions (specifically considering time periods around 2025, 2050, and 2100), relative to reference conditions around 1975 (taken from the reference period 1961-1990). Whereas ΔT is robustly projected to increase with time, the projected magnitude of ΔP differs more among projections for the distant future (2100) than for the near future (2025), with uncertainty remaining even about the direction of change (i.e., positive or negative ΔP). However, mainly due to the projected temperature-driven increases in evapotranspiration, ensemble average results show that the Amu Darya river discharge Q in the downstream ASDB is likely to show a decreasing trend throughout the 21st century. Notably, projected changes in the upstream, mountainous regions have a relatively

  15. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach

    Science.gov (United States)

    Johnes, P. J.

    1996-09-01

    A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley.

  16. Evaluating Water Management Practice for Sustainable Mining

    OpenAIRE

    Xiangfeng Zhang; Lei Gao; Damian Barrett; Yun Chen

    2014-01-01

    To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has pr...

  17. Water brief — Wastewater Reuse for Water Demand Management ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-04

    Jan 4, 2011 ... Water Demand Management (WDM) is a water management approach that aims to promote wateruse efficient, equitable and sustainable practices and policies. WDM is simply defined as 'getting the most of the water that we have', while taking into account the social, political, economic and ecological ...

  18. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  19. Macrophyte growth module for the SWAT model – impact of climate change and management on stream ecology

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Erfurt, Jytte

    To access how multiple stressors affect the water quantity and quality and stream ecology at catchment scale under various management and climate change scenarios, we implemented macrophyte growth modules for the Soil and Water Assessment Tool version 2012 (SWAT). The macrophyte growth module...... originates from the INCA-P model (Wade et al. 2002) with an addition of nitrogen stress. In addition, a benthic sediment layer and interaction of nutrients between sediment layer and water column were implemented. The new modules were validated against macrophyte biomass measurements in several Danish...

  20. Improving Water Demand Management Addressing Socioeconomic ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Efforts to conserve water by improving water demand management policies in the Middle East and North Africa are often slowed or even thwarted by a lack of political consensus and support for water demand management from key powerful stakeholders with vested interest in the status quo. This policy brief based on ...

  1. Enhancing Research Utilization for Integrated Water Management

    NARCIS (Netherlands)

    Wisserhof, J.

    1995-01-01

    Water-related research is often performed at significantly lower levels of integration than policymaking for integrated water management. This may limit its utilization in policymaking. Nevertheless, an analysis of strategic policymaking for water management in The Netherlands shows that policy

  2. Improving Water Demand Management Addressing Socioeconomic ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-20

    Jan 20, 2012 ... Efforts to conserve water by improving water demand management policies in the Middle East and North Africa are often slowed or even thwarted by a lack of political consensus and support for water demand management from key powerful stakeholders with vested interest in the status quo. This policy ...

  3. Improving Water Demand Management by Addressing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC CRDI

    Efforts to conserve water by improving water demand management policies in the Middle East and. North Africa are often slowed or even thwarted by a lack of political consensus and support for water demand management from key powerful stakeholders with vested interest in the status quo. This policy brief based on ...

  4. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our demands for good quality fresh water. It is less a matter of piping and pumps and more a tool for changing the ways we use water and the rates at which we use it. In practice ...

  5. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    until recently. This paper sets the stage with respect to perspective and management options related to implementation of water reuse. Water treatment has to be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use, including...... reuse. The historical distinction between processes used in water treatment for water supply versus processes used in water treatment of used water (wastewater) will fade, because it will all be unit processes and operations in combinations to fit the purpose of water use. Water can be purified to any...

  6. Toward A Science of Sustainable Water Management

    Science.gov (United States)

    Brown, C.

    2016-12-01

    Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. The related challenges of resolving the competition for freshwater among competing uses (so called "nexus" issues) and adapting water resources systems to climate change are prominent examples of the of sustainable water management challenges. In addition, largely untested concepts such as "integrated water resources management" have surfaced as Sustainable Development Goals. In this presentation, we argue that for research to improve water management, and for practice to inspire better research, a new focus is required, one that bridges disciplinary barriers between the water resources research focus on infrastructure planning and management, and the role of human actors, and geophysical sciences community focus on physical processes in the absence of dynamical human response. Examples drawn from climate change adaptation for water resource systems and groundwater management policy provide evidence of initial progress towards a science of sustainable water management that links improved physical understanding of the hydrological cycle with the socioeconomic and ecological understanding of water and societal interactions.

  7. Economic resilience through "One-Water" management

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang

    2013-01-01

    Disruption of water availability leads to food scarcity and loss of economic opportunity. Development of effective water-resource policies and management strategies could provide resiliance to local economies in the face of water disruptions such as drought, flood, and climate change. To accomplish this, a detailed understanding of human water use and natural water resource availability is needed. A hydrologic model is a computer software system that simulates the movement and use of water in a geographic area. It takes into account all components of the water cycle--“One Water”--and helps estimate water budgets for groundwater, surface water, and landscape features. The U.S. Geological Survey MODFLOW One-Water Integrated Hydrologic Model (MODFLOWOWHM) software and scientific methods can provide water managers and political leaders with hydrologic information they need to help ensure water security and economic resilience.

  8. The application of water poverty mapping in water management

    Directory of Open Access Journals (Sweden)

    Charles van der Vyver

    2012-07-01

    Full Text Available Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply water to people (Sullivan et al., 2005. Water resources will steadily decline because of population growth, pollution and expected climate change (Hemson et al., 2008. It has been estimated that the global demand for water doubles approximately every two decades (Meyer, 2007 and that water will even become as expensive as oil in the future (Holland, 2005. “In the year 2000, global water use was twice as high as it was in 1960” (Clarke and King, 2004:19. Unfortunately this trend is expected to continue. The aim of this paper is to describe how water poverty mapping as a process can be used to assist the management of our already scarce water resources. It constructs a water poverty map after which it describes its application at various management levels. The research indicates that the mapping process can be used to obtain more accurate predictions, as well as to form part of the master plan and integrated development plan documents. Keywords: Water management, water poverty mapping Disciplines: Water management, geographical information systems (GIS, poverty studies, decision support

  9. A catchment-scale model to predict spatial and temporal burden of E. coli on pasture from grazing livestock.

    Science.gov (United States)

    Oliver, David M; Bartie, Phil J; Louise Heathwaite, A; Reaney, Sim M; Parnell, Jared A Q; Quilliam, Richard S

    2018-03-01

    Effective management of diffuse microbial water pollution from agriculture requires a fundamental understanding of how spatial patterns of microbial pollutants, e.g. E. coli, vary over time at the landscape scale. The aim of this study was to apply the Visualising Pathogen &Environmental Risk (ViPER) model, developed to predict E. coli burden on agricultural land, in a spatially distributed manner to two contrasting catchments in order to map and understand changes in E. coli burden contributed to land from grazing livestock. The model was applied to the River Ayr and Lunan Water catchments, with significant correlations observed between area of improved grassland and the maximum total E. coli per 1km 2 grid cell (Ayr: r=0.57; pE. coli burden between seasons in both catchments, with summer and autumn predicted to accrue higher E. coli contributions relative to spring and winter (PE. coli loading to land as driven by stocking density and livestock grazing regimes. Resulting risk maps therefore provide the underpinning evidence to inform spatially-targeted decision-making with respect to managing sources of E. coli in agricultural environments. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  11. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  12. Sustainable Water Management & Satellite Remote Sensing

    Science.gov (United States)

    Eutrophication assessment frameworks such as the Australian National Water Quality Management Strategy, Oslo Paris (OSPAR) Commission Common Procedure, Water Framework Directive (WFD) of the European Union, Marine Strategy Framework Directive (MSFD) from the European Commission, ...

  13. Evaluation of Nitrate Fluxes to Groundwater under Agriculture Land Uses across the Loess Plateau - A Catchment Scale Investigation

    Science.gov (United States)

    Turkeltaub, T.; Jia, X.; Binley, A. M.

    2016-12-01

    Nitrate management is required for fulfilling the objective of high agriculture productivity and concurrently reduced groundwater contamination to minimum. Yet, nitrate is considered as a non-point contaminant. Therefore, understanding the temporal and spatial processes controls of nitrate transport in the vadose zone are imperative for protection of groundwater. This study is conducted in the Loess Plateau which located in the north-central of mainland China and characterized with a semi-arid climate. Moreover, it accounts for about 6.6% of the Chinese territory and supports over 8.5% of the Chinese population. This area undergoes high pressure from human activities and requiring optimal management interventions. Integrated modelling frameworks, which include unsaturated and saturated processes, are able to simulate nitrate transport under various scenarios, and provide reasonable prediction for the decision-makers. We used data obtained from soil samples collected across a region of 41 × 104 km2 (243 samples, to 5 m depth) to derive unsaturated flow and transport properties. Particle size distributions, saturated hydraulic conductivity, water content at field capacity (0.33 atm) and saturated water content were also obtained for the shallower layers (0-40 cm). The van Genuchten - Mualem soil parameters describing the retention and the unsaturated hydraulic conductivity curves were estimated with the Rosetta code. The analysis of the soil samples indicated that the silt loam soil type is dominant. Hence, a scaling approach was chosen as an adequate method for estimation of representative retention and hydraulic conductivity curves. Water flow and nitrate leaching were simulated with mechanistic based 1-D model for each agriculture land use within the area. The simulated nitrate losses were compared with results of root zone model simulations. Subsequently, the calculated fluxes were input as upper boundary conditions in the Modflow model to examine the regional

  14. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  15. Managing water pressure for water savings in developing countries ...

    African Journals Online (AJOL)

    Whilst the problem of water losses in WDSs is global in scale, solutions need to be tailored to local circumstances due to the various causes of water loss and the mechanisms available to manage them. This paper investigates the potentials of the available pressure management methodologies and their implementation in ...

  16. Heavy Water Quality Management in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Chul; Lee, Mun; Kim, Hi Gon; Park, Chan Young; Choi, Ho Young; Hur, Soon Ock; Ahn, Guk Hoon

    2008-12-15

    Heavy water quality management in the reflector tank is a very important element to maintain the good thermal neutron flux and to ensure the performance of reflector cooling system. This report is written to provide a guidance for the future by describing the history of the heavy water quality management during HANARO operation. The heavy water quality in the reflector tank has been managed by measuring the electrical conductivity at the inlet and outlet of the ion exchanger and by measuring pH of the heavy water. In this report, the heavy water quality management activities performed in HANARO from 1996 to 2007 ere described including a basic theory of the heavy water quality management, exchanging history of used resin in the reflector cooling system, measurement data of the pH and the electrical conductivity, and operation history of the reflector cooling system.

  17. Evaluating Water Management Practice for Sustainable Mining

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zhang

    2014-02-01

    Full Text Available To move towards sustainable development, the mining industry needs to identify better mine water management practices for reducing raw water use, increasing water use efficiency, and eliminating environmental impacts in a precondition of securing mining production. However, the selection of optimal mine water management practices is technically challenging due to the lack of scientific tools to comprehensively evaluate management options against a set of conflicting criteria. This work has provided a solution to aid the identification of more sustainable mine water management practices. The solution includes a conceptual framework for forming a decision hierarchy; an evaluation method for assessing mine water management practices; and a sensitivity analysis in view of different preferences of stakeholders or managers. The solution is applied to a case study of the evaluation of sustainable water management practices in 16 mines located in the Bowen Basin in Queensland, Australia. The evaluation results illustrate the usefulness of the proposed solution. A sensitivity analysis is performed according to preference weights of stakeholders or managers. Some measures are provided for assessing sensitivity of strategy ranking outcomes if the weight of an indicator changes. Finally, some advice is given to improve the mine water management in some mines.

  18. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey

    2016-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.

  19. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Brown, Christopher; Orozco, Nicole

    2014-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.

  20. Water Availability and Management of Water Resources

    Science.gov (United States)

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  1. Towards sustainable water management in Algeria

    KAUST Repository

    Drouiche, Nadjib

    2012-12-01

    Algeria aspires to protect its water resources and to provide a sustainable answer to water supply and management issues by carrying out a national water plan. This program is in line with all projects the Algerian Government is implementing to improve its water sector performance. The water strategy focuses on desalination for the coastal cities, medium-sized dams to irrigate the inland mountains and high plateau, and ambitious water transfer projects interconnecting Algeria\\'s 65 dams to bring water to water scarce parts of the country. Waste water treatment and water reclamation technologies are also highly sought after. The main objective of the country\\'s water policy consists on providing sufficient potable water for the population supply. This objective is undertaken by increasing the water resources and availability. © 2012 Desalination Publications. All rights reserved.

  2. Water resources management in Rostov region (Russia)

    Science.gov (United States)

    Nazarenko, O.

    2009-04-01

    Proper management of water resources leads to the development of the region. Nowadays there is an urgent problem - water shortage. Many European countries face this problem, Russia is not the excluding. In addition, there is a problem not only of water quantity, but quality as well. Although Rostov region is well provided with fresh water, the water resources are unevenly disturbed within region. Rostov region is heavily populated and receive moderate rainfall. Groundwater has a limited capacity for renewal. At the same time, Rostov region is industrial and agricultural one that is why pressures from agriculture, industry and domestic users affect the quantity of water resources. Both water quality and availability must be integrated in long-term planning and policy implications concerning water management. In Russia there are high standards for water quality. Effectively managed water-supply and resource protection systems generate the indispensable basis for agricultural and industrial production. Throughout the Region, urban and rural development has thrived where water sources have been effectively managed. Rostov region can be divided into three parts: northern districts, central part of the region and southern ones. Main cities in the region have not enough available drinking water. In the region ground water is used for curing and water supplying purpose.

  3. Water Demand Management for Social Justice

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Women and men have different interests in, and derive different benefits from, the availability, use and management of water. Research evidence is supporting the notion that involving women, along with men, in the design and management of water projects enhances the intended results of projects and contributes to the ...

  4. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  5. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  6. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    : water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...... of water. In the former case, the water is lost by evaporation and polluted. In the latter case, the water is not lost but heavily polluted. With increasing scarcity, the value of water and the need for controls increase. In this situation, water reuse becomes an option that has been considered exotic...... until recently. This paper sets the stage with respect to perspective and management options related to implementation of water reuse. Water treatment has to be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use, including...

  7. A system model for water management.

    Science.gov (United States)

    Schenk, Colin; Roquier, Bastien; Soutter, Marc; Mermoud, André

    2009-03-01

    Although generally accepted as a necessary step to improve water management and planning, integrated water resources management (IWRM) methodology does not provide a clear definition of what should be integrated. The various water-related issues that IWRM might encompass are well documented in the literature, but they are generally addressed separately. Therefore, water management lacks a holistic, systems-based description, with a special emphasis on the interrelations between issues. This article presents such a system model for water management, including a graphical representation and textual descriptions of the various water issues, their components, and their interactions. This model is seen as an aide-memoire and a generic reference, providing background knowledge helping to elicit actual system definitions, in possible combination with other participatory systems approaches. The applicability of the model is demonstrated through its application to two test case studies.

  8. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  9. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  10. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    Science.gov (United States)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  11. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  12. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  13. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  14. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken i...

  15. Ecological water management in practice

    NARCIS (Netherlands)

    Deurloo, J.A.; Gardeniers, J.J.P.; Gieske, J.M.J.; Higler, L.W.G.; Provoost, K.J.; Segers, A.J.A.M.; Verdooschot, P.F.M.; Wit, J.A.W. de

    1991-01-01

    A large part of the Netherlands consists of wetlands; the Dutch mted land from water but created also water in reclaimed land. This activity became clearly visible in the polder landscape with its numerous canals, ditches and shallows lakes. Rivers were regulated and also most of the brooks on the

  16. Water supply and management concepts

    Science.gov (United States)

    Leopold, Luna Bergere

    1965-01-01

    If I had to cite one fact about water in the United States which would be not only the most important but also the most informative, the one I would choose would k this: Over 50 percent of all the water presently being used in the United States is used by industry, and nearly all of that is used for cooling.The large amount of attention recently being given to water shortage and the expected rapid increase in demand for water is probably to some extent clouded because there are certain simple facts about water availability and water use which, though readily available, are not generally either known or understood.Probably most people react to information in the public press about present and possible future water shortages with the thought that it is going to be more difficult in the future to supply the ordinary household with water for drinking, washing, and tbe culinary arts. As a matter of fact that may be true to some extent, but it is not the salient aspect.

  17. Water management and sustainable development

    OpenAIRE

    Safer, Karima

    2014-01-01

    «Of course I wish I was in school. I want to learn, I want to read and write... But how mom need me to fetch water» - Benny Bazan, Bolivia; «…the factories consume a lot of water, while we can hardly find enough basic our needs, not to mention what we need to irrigate crops» - Gopal Jojor, India. Voices are united by the same thing: the denial of access to water. It’s what began the United Nations report of human development for the year 2006. The observed increase of the population and incre...

  18. Produced Water Management and Beneficial Use

    International Nuclear Information System (INIS)

    Brown, Terry; Frost, Carol; Hayes, Thomas; Heath, Leo; Johnson, Drew; Lopez, David; Saffer, Demian; Urynowicz, Michael; Wheaton, John; Zoback, Mark

    2007-01-01

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm

  19. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  20. The challenge of water management

    Science.gov (United States)

    Leopold, Luna Bergere

    1960-01-01

    In a sandy, riverside location in Wisconsin my family has a farm, once abandoned by a previous owner because it would not produce much corn. By the time we bought it for a pittance, only a few remnants of white pine remained from the magnificent stands made famous by Paul Bunyan. The variability of the glacial topography had resulted in an interesting mixture of prairie marsh, swamp woodlot, and sandhill.We did not acquire this farm because it had a great potential for growing crops. Rather we were interested in the variety of ecologic and topographic types which, even within the confines of our property, represented a condensed version of many different types of land in the Wisconsin countryside. It has also a very peculiar esthetic and historical interest. Marquette's canoes slipped quietly past our favorite fishing hole on the river. Passenger pigeons had once roosted in our great oaks. The few remaining white pines silhouetted against the sky-glow of evening made one think of the Round River and the Blue Ox.All right, we had acquired this place. What were we to do with it. Its resources were narrowly limited and peculiar. They had little economic value. All the more reason that they should be appraised in order that they be fully utilized and appreciated. So, while we were hammering and sawing the old stable into a useable homestead, we walked, sat, dug, and pruned in every coulee and covert, in every thicket and thatch. By compass and pace we mapped the boundaries, the vegetation, and sketched in the topography with notes on the distribution of soil and the occurrence of water. We counted the various kinds of birds and found there was a reasonable population of woods species, mostly transients. There were no pheasant, no quail, practically no grouse, and in spring only an occasional woodcock.In conjunction with the analysis of what we had to work with we started immediately on the task of development. The techniques were chosen with an eye to specific goals

  1. Water management in the Roman world

    Science.gov (United States)

    Dermody, Brian J.; van Beek, Rens L. P. H.; Meeks, Elijah; Klein Goldewijk, Kees; Bierkens, Marc F. P.; Scheidel, Walter; Wassen, Martin J.; van der Velde, Ype; Dekker, Stefan C.

    2014-05-01

    Climate variability can have extreme impacts on societies in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or redistributing water resources through trade in food. Here, we explore how such water management strategies affected the resilience of the Roman Empire to climate variability in the water-limited region of the Mediterranean. Using the large-scale hydrological model PCR-GLOBWB and estimates of landcover based on the Historical Database of the Global Environment (HYDE) we generate potential agricultural yield maps under variable climate. HYDE maps of population density in conjunction with potential yield estimates are used to develop maps of agricultural surplus and deficit. The surplus and deficit regions are abstracted to nodes on a water redistribution network based on the Stanford Geospatial Network Model of the Roman World (ORBIS). This demand-driven, water redistribution network allows us to quantitatively explore how water management strategies such as irrigation and food trade improved the resilience of the Roman Empire to climate variability.

  2. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  3. Lake Victoria water resources management challenges and ...

    African Journals Online (AJOL)

    ... more sustainable and equitable framework governing management measures capable of meeting the needs of riparian states and ensuring sustainability within the basin is highlighted. Keywords: biodiversity loss; East Africa; eutrophication; heavy metal pollution; international treaties; Nile Basin; shared water resources

  4. Asset Management for Water and Wastewater Utilities

    Science.gov (United States)

    Renewing and replacing the nation's public water infrastructure is an ongoing task. Asset management can help a utility maximize the value of its capital as well as its operations and maintenance dollars.

  5. Water Security - science and management challenges

    Science.gov (United States)

    Wheater, H. S.

    2015-04-01

    This paper briefly reviews the contemporary issues of Water Security, noting that current and prospective pressures represent major challenges for society. It is argued that, given the complex interdependencies and multi-faceted nature of these challenges, new trans-disciplinary science is needed to support the development of science-based policy and management. The effects of human society on land and water are now large and extensive. Hence we conclude that: (a) the management of water involves the management of a complex human-natural system, and (b) potential impacts of the human footprint on land and water systems can influence not only water quantity and quality, but also local and regional climate. We note, however, that research to quantify impacts of human activities is, in many respects, in its infancy. The development of the science base requires a trans-disciplinary place-based focus that must include the natural sciences, social sciences and engineering, and address management challenges at scales that range from local to large river basin scale, and may include trans-boundary issues. Large basin scale studies can provide the focus to address these science and management challenges, including the feedbacks associated with man's impact from land and water management on regional climate systems.

  6. Water Management Strategies against Water Shortage in the Alps (Invited)

    Science.gov (United States)

    de Jong, C.

    2009-12-01

    In the European Alps water has been perceived as ubiquitous and not the subject of management. Climate change and anthropogenic pressures have changed demand and supply relations rapidly and over the last 10 years, water problems have increasingly become apparent over temporal and spatial hotspots. Stakeholders in the Alpine Space have been confronted with water management problems in agriculture, tourism and hydropower to such an extent that they approached scientists to create solution strategies based on adaptation and mitigation. In this context, Alp-Water-Scarce, a European project on Water Management Strategies against Water Scarcity in the Alps was funded by the Alpine Space programme as part of the "European Territorial Cooperation" scheme. It has 17 project partners from Austria Switzerland, France, Italy and Slovenia from local governments, provinces, federal institutes and offices, universities, regional agencies, alpine societies, geological surveys, and chambers of agriculture and forestry. The Lead Partner is the Mountain Institute in Savoy, Rhone-Alpes, France. The main challenges of this project are to create local Early Warning Systems against Water Scarcity in the Alps. This system is based on strengthening existing long-term monitoring and modeling and creating new measuring networks in those countries where they do not yet exist. It is anchored strongly and actively within a Stakeholder Interaction Forum linked across comparative and contrasting regions across the Alps. The Early Warning System is based on the linkage and improvement of field monitoring and assemblage of qualitative and quantitative data derived both from natural water reservoirs as well as from anthropogenic water use in 28 selected pilot regions selected in France, Italy, Austria, Slovenia and Switzerland. The objectives are to improve water management at the short term (annual scale) and long term (using future scenarios) based on modelling and application of climate change

  7. Managing the microbiological risks of drinking water.

    Science.gov (United States)

    Krewski, Daniel; Balbus, John; Butler-Jones, David; Haas, Charles; Isaac-Renton, Judith; Roberts, Kenneth; Sinclair, Martha

    The microbiological contamination of drinking water supplies can have serious health consequences for consumers, and this has been dramatically illustrated in recent years by two disease outbreaks in Canada. In this paper, some factors that can influence the microbiological quality of drinking water and its management are examined. Frameworks have been proposed that help to clarify the main elements of health risk assessment and risk management, and, in accordance with these, risks can be logically characterized, evaluated and controlled. A protocol has been developed for microbiological risk assessment and a risk management framework now guides the development of Canada's national guidelines for drinking-water quality. Monitoring of indicator organisms and the application of adequate water treatment are the primary means recommended in the Canadian guidelines to safeguard health from the presence of water-borne pathogens. Understanding the biological characteristics of microbial pathogens is necessary for assessing their impact on community health and appraising the rationale behind drinking-water testing methods and their limitations. Improvements in health surveillance, monitoring, and risk characterization and application of concepts such as multiple barriers (source-to-tap) and total quality management should contribute to better management of the microbiological quality of drinking water.

  8. Virtual water management in the Roman world

    Science.gov (United States)

    Dermody, B.; Van Beek, L. P.; Meeks, E.; Klein Goldewijk, K.; Bierkens, M. F.; Scheidel, W.; Wassen, M. J.; Van der Velde, Y.; Dekker, S. C.

    2013-12-01

    Climate change can have extreme societal impacts particularly in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or the redistribution of virtual water resources through trade in food. Here, we explore how such water management strategies improve societal resilience by examining virtual water management during the Roman Empire in the water-limited region of the Mediterranean. Climate was prescribed based on previously published reconstructions which show that during the Roman Empire when the Central Mediterranean was wetter, the West and Southeastern Mediterranean became drier and vice-versa. Evidence indicates that these shifts in the climatic seesaw may have occurred relatively rapidly. Using the Global hydrological model PCR GLOBWB and estimates of landcover based on the HYDE dataset we generate potential agricultural yield maps under two extremes of this climatic seesaw. HYDE estimates of population in conjunction with potential yield estimates are used to identify regions of Mediterranean with a yield surplus or deficit. The surplus and deficit regions form nodes on a virtual water redistribution network with transport costs taken from the Stanford Geospatial Network Model of the Roman World (ORBIS). Our demand-driven, virtual water redistribution network allows us to quantitatively explore the importance of water management strategies such as irrigation and food trade for the Romans. By examining virtual water transport cost anomalies between climate scenarios our analysis highlights regions of the Mediterranean that were most vulnerable to climate change during the Roman Period.

  9. Challenges in global ballast water management

    International Nuclear Information System (INIS)

    Endresen, Oyvind; Lee Behrens, Hanna; Brynestad, Sigrid; Bjoern Andersen, Aage; Skjong, Rolf

    2004-01-01

    Ballast water management is a complex issue raising the challenge of merging international regulations, ship's specific configurations along with ecological conservation. This complexity is illustrated in this paper by considering ballast water volume, discharge frequency, ship safety and operational issues aligned with regional characteristics to address ecological risk for selected routes. A re-estimation of ballast water volumes gives a global annual level of 3500 Mton. Global ballast water volume discharged into open sea originating from ballast water exchange operations is estimated to approximately 2800 Mton. Risk based decision support systems coupled to databases for different ports and invasive species characteristics and distributions can allow for differentiated treatment levels while maintaining low risk levels. On certain routes, the risk is estimated to be unacceptable and some kind of ballast water treatment or management should be applied

  10. Safety Management for Water Play Facilities.

    Science.gov (United States)

    Thompson, Claude

    1986-01-01

    Modern aquatic facilities, which include wave pools, water slides, and shallow water activity play pools, have a greater potential for injuries and lawsuits than conventional swimming pools. This article outlines comprehensive safety management for such facilities, including potential accident identification and injury control planning. (MT)

  11. pump management committees and sustainable community water ...

    African Journals Online (AJOL)

    0 provide potable water and improved water sanitation services to rural communities and small towns that contribute to capital cost and pay the full operations, maintenance and repair cost of their facilities, 0. 0 ensure sustainability of the facilities through community ownership and management and services,. 0 maximize ...

  12. Irrigation Water Management Practices in Smallholder Vegetable ...

    African Journals Online (AJOL)

    ... vegetables using small-scale irrigation. Key informants were interviewed and group discussions were conducted with smallholder vegetable farmers. Data were collected on household irrigation knowledge, experiences, skills, irrigation water sources as well as on irrigation water management practices such as methods, ...

  13. Integrated Solution Support System for Water Management

    NARCIS (Netherlands)

    Kassahun, A.; Blind, M.; Krause, A.U.M.; Roosenschoon, O.R.

    2008-01-01

    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework

  14. Water Governance, Stakeholder Engagement, and Sustainable Water Resources Management

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2017-03-01

    Full Text Available Water governance and stakeholder engagement are receiving research attention for their role in formulating and implementing solutions to the world’s critical water challenges. The inspiration for this Special Issue came from our desire to provide a platform for sharing results and informing the global water governance community about the wealth of excellent interdisciplinary and transdisciplinary research and projects being carried out around the world. The 20 peer-reviewed papers collected in this Special Issue have been grouped into three categories: stakeholder engagement, tools for building water management and governance capacity, and perspectives on water management and governance. Following a brief summary of the papers, concluding remarks that reflect on what the papers, taken as a whole, contribute to our understanding are provided.

  15. Joint management of water and electricity in State Water Project

    Science.gov (United States)

    Yang, T.

    2013-12-01

    Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

  16. SMART MANAGEMENT OF THE WATER URBAN CYCLE

    OpenAIRE

    Sánchez Zaplana, Antonio

    2014-01-01

    Aguas Municipalizadas de Alicante, AMAEM, is the company in charge of managing the urban water cycle in Alicante and several neighbour towns: San Vicente, Sant Joan, Petrer, Monforte and El Campello. More specifically, AMAEM provides the water distribution service in all of them, and is responsible for the sewage service in Alicante, Sant Joan and Monforte. The population served amounts to 750,000 inhabitants, supplied by a 2,000 km water distribution network and 700 km of sewage drains. AMAE...

  17. WATER MANAGEMENT AND SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Safer Karima

    2014-11-01

    Full Text Available «Of course I wish I was in school. I want to learn, I want to read and write... But how mom need me to fetch water» - Benny Bazan, Bolivia; «…the factories consume a lot of water, while we can hardly find enough basic our needs, not to mention what we need to irrigate crops» - Gopal Jojor, India. Voices are united by the same thing: the denial of access to water. It’s what began the United Nations report of human development for the year 2006. The observed increase of the population and increasing water pressure to use some form of this article despite the enormous availability and large, underground or surface quantities, but the supply and demand equation is no longer as in the past in spite of the new techniques introduced Kthalih seawater. And has worked to highlight the importance of this element as the most important determinants of sustainable development, which aims to rationality and adulthood and dealing with efforts to achieve growth and meet the needs of the population of housing and economic activities and food and education, without prejudice to the negative form of ecological, and sustainable development is the way only to ensure a good quality of life for residents of the present and the future.

  18. Water Management Policy in California

    DEFF Research Database (Denmark)

    Oh, Christina; Svendsen, Gert Tinggaard

    2015-01-01

    Using Olson’s 1965 logic of collective action and group theory, we argue that the “small group” of the “iron triangle” is able to collectively act to push for command-and-control regulations in Californian water policy. There are individual rent-seeking incentives in the small group because the p...

  19. Water management in 2020 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Asit K. [Third World Centre for Water Management, Atizapan, MEX (Mexico); Tortajada, Cecilia [Water Institute of Aragon, Zaragoza (ES). International Centre for Water and Environment (CIAMA); Izquierdo, Rafael (eds.) [Water Institute of Aragon, Zaragoza (Spain)

    2009-07-01

    Water is intertwined in the daily life of humans in countless ways. The importance of water as a driver for health, food security, and quality of life and as a pillar for economic development is unique. As water affects human lives, the mankind also effects the hydrological cycle, in all dimensions from the local to the global scale. Food production accounts for 90% of water use in developing countries. Hydropower production evokes emotions; yet sustainable energy production is among cornerstones of economic development. The damages caused by floods and droughts are escalating all over the world. The human impacts on ecosystems are increasing as well. Water is largely a political good since a bulk of the mankind lives in river basins shared by two or more nations. These complexities are approached in the book in depth. The analyses include consideration of how developments in seemingly unrelated processes and sectors such as globalisation, free trade, energy, security, information and communication revolutions, health-related issues such as HIV/AIDS, as well as emerging developments in sectors that are linked more conventionally to water, such as population growth, urbanisation, technological development, agriculture, infrastructure, energy, management of water quality and ecosystem health, are likely to affect water management in the future. For the first time, a pragmatic attempt is make to define a realistic framework for water management in 2020 with leading experts from different parts of the world as well as different disciplines. (orig.)

  20. 18 CFR 740.4 - State water management planning program.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false State water management... STATE WATER MANAGEMENT PLANNING PROGRAM § 740.4 State water management planning program. (a) A State... major elements of the State water management program, which should address but not be limited to: (i...

  1. 47. Essen conference on water and waste management. Is our water management fit for the future?

    International Nuclear Information System (INIS)

    Pinnekamp, J.

    2014-01-01

    These congress proceedings cover the following larger topics: Challenges facing the German water economy; value retention and financing of water infrastructure; water quality; Sewage Sludge Ordinance / phosphorus recycling; urban mining; new technologies; wastewater disposal structures of the future; flood management; drinking water (quality issues, clarification methods, maintenance); trace substances; wastewater and energy; and fracking. One lecture has been abstracted individually for this database. [de

  2. Economic Requirements of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Nasser Khiabani

    2017-03-01

    Full Text Available Indicators of water resources status and water consumption in Iran reveal an imbalance between supply and demand. This is compounded by the current unrealistic water price that signals the inefficiency of the water market in Iran. In economics parlance, the most important factors responsible for the low efficiency of water market are inaccurate valuation and failure to define the ownership rights of water. Low prices, low sensitivity of water demand to prices, and the lack of proper inputs as substitutes for water resources have collectively contributed to excessive pressures on the available water resources for domestic, industrial, and agricultural uses. A brief glance reveals that water resources in Iran are merely priced based on cost accounting. This is while study has shown that developed countries adopt approaches to water pricing that not only consider the final cost of water but also take into account such other parameters that are affected by intrinsic value of water including its bequest and existence values. The present paper draws upon the concepts of value, expenses, and pricing of water in an attempt to explore the marketing and pricing of water resources as the two major tools economists employ in the management of these resources. It is the objective of the study to arrive at an accurate definition of ownership rights of water resources to improve upon the present water marketing. In doing so, the more important components of modern pricing strategies adopted by developed nations will also be investigated. Results indicate that the present cost accounting method used in pricing water in Iran will in the long-run lead to the wastage of water resources and that it should, therefore, be given up in favor modern and more realistic policies to avoid such waste of resources.

  3. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  4. Sustainable agricultural water management across climates

    Science.gov (United States)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  5. Sustainable Land Management's potential for climate change adaptation in Mediterranean environments: a regional scale assessment

    Science.gov (United States)

    Eekhout, Joris P. C.; de Vente, Joris

    2017-04-01

    Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts. The projected higher frequency of extreme weather events under climate change will lead to an increase of plant water stress, reservoir inflow and sediment yield. Sustainable Land Management (SLM) practices are increasingly promoted as climate change adaptation strategy and to increase resilience against extreme events. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on catchment-scale impacts on soil and water resources. We applied a spatially distributed hydrological model (SPHY), coupled with an erosion model (MUSLE) to the Segura River catchment (15,978 km2) in SE Spain. We run the model for three periods: one reference (1981-2000) and two future scenarios (2031-2050 and 2081-2100). Climate input data for the future scenarios were based on output from 9 Regional Climate Models and for different emission scenarios (RCP 4.5 and RCP 8.5). Realistic scenarios of SLM practices were developed based on a local stakeholder consultation process. The evaluated SLM scenarios focussed on reduced tillage and organic amendments under tree and cereal crops, covering 24% and 15% of the catchment, respectively. In the reference scenario, implementation of SLM at the field-scale led to an increase of the infiltration capacity of the soil and a reduction of surface runoff up to 29%, eventually reducing catchment-scale reservoir inflow by 6%. This led to a reduction of field-scale sediment yield of more than 50% and a reduced catchment-scale sediment flux to reservoirs of 5%. SLM was able to fully mitigate the effect of climate

  6. FUTURE WATER MANAGEMENT PROBLEMS IN ASIAN MEGACITIES

    Directory of Open Access Journals (Sweden)

    Dieter Prinz

    2015-10-01

    Full Text Available Today, about half of the world population lives in urban areas and in the coming 20 years, urbanization is expected to increase steadily, especially in the Developing World. Based on UN data and projections, about 4 out of the 5 billion world urban population will live in developing countries by 2030. Large cities in the Developing World face the problem of unplanned growth, coupled with the financial and operational inability to offer the public services needed to sustain a decent life in urban environments. Water is one of those essential commodities which is often short in supply and/or of low quality. Additionally, flood poses a threat to urban dwellers during rainy season. The water management challenges in tropical urban areas today and in the decades to come can be characterized by (1 fighting physical shortcomings in water resources, (2 coping with contamination of groundwater, rivers, lakes, and reservoirs by domestic, agricultural or industrial waste and waste water, (3 mitigating environmental impacts of water extraction (such as loss of wetlands, subsidence and seawater intrusion , (4 preventing / mastering flood situations and (5 overcoming administrative and financial strains and operational incapacities. Solutions to the problems of urban water in 20 years time are to be found in supply side and demand side measures. The first group includes (1 optimal use of surface water and groundwater resources, (2 pollution protection, (3 watershed management and (4 more water storage. The second group includes (1 educational training, (2 technological innovation, (3 water conservation and (4 water pricing.

  7. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  8. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  9. Challenges facing water management in China

    International Nuclear Information System (INIS)

    Varis, O.; Vakkilainen, P.

    2000-01-01

    The amount of water per person in northern China is less than half of that in Egypt, a country with very scarce water resources. Clearly, then, China is one of the regions on our planet that is going to have to face severe problems of water supply in the future. Rapid urbanisation and industrialisation growing agricultural output, environmental degradation, climatic instability, a large population density and worsening regional disparities are all factors that will challenge the management and utilisation of China's water resources in the years to come. (orig.)

  10. Water inventory management in condenser pool of boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  11. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  12. Detecting changes in water limitation in the West using integrated ecosystem modeling approaches

    Science.gov (United States)

    Poulter, B.; Hoy, J.; Emmett, K.; Cross, M.; Maneta, M. P.; Al-Chokhachy, R.

    2016-12-01

    Water in the western United States is the critical currency for determining a range of ecosystem services, such as wildlife habitat, carbon sequestration, and timber and water resources for an expanding human population. The current generation of catchment models trades a detailed representation of hydrologic processes for a generalization of vegetation processes and thus ignores many land-surface feedbacks that are driven by physiological responses to atmospheric CO2 and changes in vegetation structure following disturbance and climate change. Here we demonstrate how catchment scale modeling can better couple vegetation dynamics and disturbance processes to reconstruct historic streamflow, stream temperature and vegetation greening for the Greater Yellowstone Ecosystem. Using a new catchment routing model coupled to the LPJ-GUESS dynamic global vegetation model, simulations are made at 1 km spatial resolution using two different climate products. Decreased winter snowpack has led to increasing spring runoff and declines in summertime slow, and increasing the likelihood that stream temperature exceeds thresholds for cold-water fish growth. Since the mid-1980s, vegetation greening is projected by both the model and detected from space-borne normalized difference vegetation index observations. These greening trends are superimposed on a landscape matrix defined by frequent disturbance and intensive land management, making the climate and CO2 fingerprint difficult to discern. Integrating dynamical vegetation models with in-situ and spaceborne measurements to understand and interpret catchment-scale trends in water availability has potential to better disentangle historical climate, CO2, and human drivers and their ecosystem consequences.

  13. Integrated water management: Some international dimensions

    Science.gov (United States)

    Biswas, Asit K.

    1981-05-01

    With the continuing increase in world population, and rising standard of living, more and more water will be necessary to satisfy basic human needs. The global picture with regard to water use and availability is very uneven, and the policy options for major sectoral uses — rural and urban water supply, agricultural requirements and hydro-electric power generation are explored. The social and environmental implications of water development are briefly discussed. Finally, the question of the availability of adequate water to sustain future world population and development to the year 2000 is analysed. It is concluded that the major problem in the area of water-resources development is not one of the Malthusian spectre of impending scarcity, but one of instituting rational management practices.

  14. Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting

    Science.gov (United States)

    Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey; Thomas D. Bullen; Kevin J. McGuire; John P. Gannon

    2017-01-01

    Emerging evidence shows that interactions between soils and subsurface flow paths contribute to spatial variations in stream water chemistry in headwater catchments. However, few have yet attempted to quantify chemical variations in soils at catchment and hillslope scales. Watershed 3 (WS3) at Hubbard Brook Experimental Forest, New Hampshire, USA, was studied in order...

  15. Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale

    Science.gov (United States)

    Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.

  16. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  17. Ten years of Brazilian ballast water management

    Science.gov (United States)

    Castro, Maria Cecilia Trindade; Hall-Spencer, Jason M.; Poggian, Cecília Fonseca; Fileman, Timothy W.

    2018-03-01

    In 2005, Brazil addressed the environmental challenges posed by ballast water through a unilateral regulation, called the Maritime Standard N° 20 (NORMAM-20), applied to all shipping in her waters. This world-leading decision was the culmination of a process that started during the 1990‧s. Here, we summarize how these ballast water regulations were brought in and adopted and present the findings of 10 years of enforcement (2005-2015) in 39 ports along the Brazilian coast. We show that compliance with the Brazilian standard has increased significantly since the regulations were implemented (p < 0.001). After five years of implementation, non-compliance decreased probably reflecting an increase in awareness of the Brazilian Standard and a shift in the shipping industry commitment to minimize and control the spread of invasive species through ballast water. The Brazilian experience shows that very high levels (97%) of compliance with ballast water management regulations can be made to work in a region of global importance to the maritime industry. In the last decade, the rules governing ballast water in Brazil have evolved to address the demands from the maritime community and to provide updates such as imminent requirements for the use of ballast water management systems on board ships. These regulations are rarely cited when ballast water regulations are discussed internationally, yet there is much to learn from the proactive approach taken by Brazil such as what is feasible and enforceable.

  18. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  19. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems.

    Science.gov (United States)

    Brauer, Chris J; Unmack, Peter J; Hammer, Michael P; Adams, Mark; Beheregaray, Luciano B

    2013-01-01

    Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology.

  20. Perspective: The challenge of ecologically sustainable water management

    CSIR Research Space (South Africa)

    Bernhardt, E

    2006-10-01

    Full Text Available Sustainable water resource management is constrained by three pervasive myths; that societal and environmental water demands always compete with one another; that technological solutions can solve all water resource management problems...

  1. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    Science.gov (United States)

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    Science.gov (United States)

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended

  3. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  4. Managing Water supply in Developing Countries

    Science.gov (United States)

    Rogers, P. P.

    2001-05-01

    If the estimates are correct that, in the large urban areas of the developing world 30 percent of the population lack access to safe water supply and 50 percent lack access to adequate sanitation, then we are currently faced with 510 million urban residents without access to domestic water and 850 million without access to sanitation. Looking to the year 2020, we will face an additional 1,900 million in need of water and sanitation services. The provision of water services to these billions of people over the next two decades is one of the greatest challenges facing the nations of the world. In addition to future supplies, major problems exist with the management of existing systems where water losses can account for a significant fraction of the water supplied. The entire governance of the water sector and the management of particular systems raise serious questions about the application of the best technologies and the appropriate economic incentive systems. The paper outlines a few feasible technical and economic solutions.

  5. Integrated urban water management in commercial buildings.

    Science.gov (United States)

    Trowsdale, S; Gabe, J; Vale, R

    2011-01-01

    Monitoring results are presented as an annual water balance from the pioneering Landcare Research green building containing commercial laboratory and office space. The building makes use of harvested roof runoff to flush toilets and urinals and irrigate glasshouse experiments, reducing the demand for city-supplied water and stormwater runoff. Stormwater treatment devices also manage the runoff from the carpark, helping curb stream degradation. Composting toilets and low-flow tap fittings further reduce the water demand. Despite research activities requiring the use of large volumes of water, the demand for city-supplied water is less than has been measured in many other green buildings. In line with the principles of sustainability, the composting toilets produce a useable product from wastes and internalise the wastewater treatment process.

  6. Universal optimization of water quality management strategy

    Science.gov (United States)

    Unami, K.; Kawachi, T.

    Although many optimization models for water quality problems have been developed, methodology for judging the necessity of applying them is scarcely worked out. The universal optimization scheme presented here is to determine a management strategy for controlling water quality in a generic body of water. Dynamics of a water quality index is represented by an ordinary differential equation, and a linear system model is deduced. The H∞ control theory, which summarizes system stabilization and error minimization, is applied to a generalized water quality control problem including the linear system model. A class of H∞ controllers is identified, and a temporal discretization scheme for a controller is proposed. Three application examples demonstrate the conception of universal optimization and the validity of its implementation using an H∞ controller.

  7. Species traits and catchment-scale habitat factors influence the occurrence of freshwater mussel populations and assemblages

    Science.gov (United States)

    Pandolfo, Tamara J.; Kwak, Thomas J.; Cope, W. Gregory; Heise, Ryan J.; Nichols, Robert B.; Pacifici, Krishna

    2016-01-01

    Conservation of freshwater unionid mussels presents unique challenges due to their distinctive life cycle, cryptic occurrence and imperilled status. Relevant ecological information is urgently needed to guide their management and conservation.We adopted a modelling approach, which is a novel application to freshwater mussels to enhance inference on rare species, by borrowing data among species in a hierarchical framework to conduct the most comprehensive occurrence analysis for freshwater mussels to date. We incorporated imperfect detection to more accurately examine effects of biotic and abiotic factors at multiple scales on the occurrence of 14 mussel species and the entire assemblage of the Tar River Basin of North Carolina, U.S.A.The single assemblage estimate of detection probability for all species was 0.42 (95% CI, 0.36–0.47) with no species- or site-specific detection effects identified. We empirically observed 15 mussel species in the basin but estimated total species richness at 21 (95% CI, 16–24) when accounting for imperfect detection.Mean occurrence probability among species ranged from 0.04 (95% CI, 0.01–0.16) for Alasmidonta undulata, an undescribed Lampsilis sp., and Strophitus undulatus to 0.67 (95% CI, 0.42–0.86) for Elliptio icterina. Median occurrence probability among sites was management can benefit an entire assemblage, but species-specific strategies may be necessary for successful conservation. The hierarchical multispecies modelling approach revealed findings that could not be elucidated by other means, and the approach may be applied more broadly to other river basins and regions. Accurate measures of assemblage dynamics, such as occurrence and species richness, are required to create management plans for effective conservation.

  8. Crop Management Strategies for Low Water Availability

    Science.gov (United States)

    The High Plains is a temperate semi-arid region with highly variable rainfall. Extended periods of drought are common. In general, crop management strategies attempt to maximize the total water available to the crop and to maximize transpiration by minimizing soil evaporation. Summer fallow, the pra...

  9. Water Demand Management Policy Brief No

    International Development Research Centre (IDRC) Digital Library (Canada)

    Bob Stanley

    Water demand management (WDM) programs have been widely implemented across the MENA region and elsewhere, with varying degrees of success. The criteria below are intended to help policymakers determine how best to develop institutions with the capacity and capability to design, implement and monitor WDM ...

  10. Nitrate Removal Along a Colorado Montane Headwater Stream: the Role of Bidirectional Hydrologic Exchange at Reach to Catchment Scales

    Science.gov (United States)

    Smull, E. M.; Gooseff, M. N.

    2015-12-01

    Bidirectional hydrologic exchanges between streams and aquifers can influence nutrient concentrations (physical influx/efflux via gaining/losing water), and/or can facilitate biogeochemical cycling (physical and biological processes). Such exchanges therefore act to influence nutrient fate and transport, and have not yet been captured and incorporated into our understanding of stream nutrient retention and export. Along Colorado's Front Range, research in alpine and subalpine catchments has documented consistent increases in nitrate export, likely due to increased nitrogen deposition from industrialization and fertilization in eastern Colorado. The state of montane zone catchments with respect to their ability to cycle nitrate is not as well understood, however, and such ecosystems have complex hydrologic regimes relative to alpine areas. We applied a fully informed hydrologic mass balance model and nitrate mass balance model that include gross gains and gross losses (bidirectional exchanges) along a 1000 m study reach, to better understand physical and biological nitrate removal for a Colorado montane zone catchment, Lower Gordon Gulch. We collected data during five synoptic stream tracer and sampling campaigns along our study reach during the 2014-2015 water year, and installed wells along the north-facing and south-facing riparian corridor to capture changing water tables. Four distinct hydrologic regimes are captured in our results, including two experiments during baseflow, one experiment following snowmelt, one experiment following late-spring rainfall, and one experiment during the start of the seasonal hydrograph recession in mid-summer. Results show a transition from hydrologic sources of nitrate following snowmelt, to biological sources during rainfall, to biological removal during summer, and finally to hydrologic removal during baseflow. Our findings also corroborate earlier work in montane zone streams that shows preferential flow on south

  11. Climate change adaptation in arable land use, and impact on nitrogen load at catchment scale in northern agriculture

    Directory of Open Access Journals (Sweden)

    Katri Rankinen

    2013-10-01

    Full Text Available Prolongation of the growing season due to a warming climate could represent new opportunities for northern agriculture. Climatic and biotic constraints may challenge future crop production. The objective of this study was to speculate how a range of arable land use patterns, resulting from various policy driven choices, could be introduced into a farming system, and how they would affect the risks associated with nutrient leaching. We found that while adaptation to climate change must include consideration of crop choices, there are conflicts associated with allocations and rotations for various market and policy situations. The expected increase in nutrient loading in the simulations caused by climate change was moderate. The increase can partly be compensated for by changes in farmland use, more in the shorter term than in the longer term to mid-century. In the future, adaptation at cropping system level is potentially an efficient way to manage nutrient load risks.

  12. Water management at Ranger Uranium Mine

    International Nuclear Information System (INIS)

    Carron, K.J.

    1989-01-01

    The water management system at the Ranger Uranium Mine is described. Any water that may have come into contact with material containing more than 0.02% uranium must be retained within the Restricted Release zone (RRZ) from which no water may be released except under specified conditions and with the written approval of the Northern Territory supervising authority. The RRS contains the tailings dam, the mine pit and retention ponds 2 and 3. Outside the RR2, retention ponds 1 and 4 act as silt traps, allowing sediment to settle out prior to water discharge. The Office of Supervising Scientist has developed receiving waters quality standards for Magela Creek which are given in a table. There have now been established sufficient regulatory criteria to allow the release of waste water directly to Magela Creek without compromising the environment. Consideration of releases has been confined to the comparatively good quality run-off waters in the RRZ and no release of the more contaminated process and tailings water stream is contemplated

  13. Water demand management research: A psychological perspective

    Science.gov (United States)

    Russell, Sally; Fielding, Kelly

    2010-05-01

    The availability of fresh water for human consumption is a critical global issue and one that will be exacerbated by the impacts of climate change. Water demand management has an important role to play in reducing the vulnerability of freshwater supplies to climate change impacts. In this paper, we argue that the field of psychology and environmental psychology in particular can make a vital contribution in understanding further the drivers of residential water demand. A growing body of literature in environmental psychology has examined the determinants of water conservation behavior, and this research has many potential applications for water demand policy. In this paper we offer a review of current psychological research that examines the five broad causes of residential water conservation behaviors: attitudes, beliefs, habits or routines, personal capabilities, and contextual factors. We assess how psychologists have studied water conservation behavior to date, identify shortcomings, and indicate how this research can be used to further promote residential water conservation and to inform evidence-based policy and practice.

  14. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  15. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  16. Russia in the World Water Management

    Science.gov (United States)

    Bibikova, Tatiana; Koronkevich, Nikolay; Barabanova, Elena; Zaytseva, Irina

    2014-05-01

    resources, including surface and ground waters, for the territory and the population; precipitation; indicators of anthropogenic impact, such as population, water withdrawals, sewage waters, irrevocable consumption of water, data on flow regulation by reservoirs; the state of natural waters was estimated by comparison of the average long-term values of water resources with characteristics of anthropogenic impact, and economic efficiency of water use - by water and gross domestic product comparison. The objective of this paper was to give a general idea of the position of Russia in the world water management in the period of time. Further work on this subject is aimed at clarifying the indicators of water resources, human impact on them and the effectiveness of their use. Particular attention will be paid to the assessment of the impact of economic activity in the catchment on rivers and reservoirs. Such kind of assessment is necessary for achieving sustainable water supply in the near and distant future, raising living standards and preserving the environment. References: Koronkevich N.I., Zaytseva I.S., 2003. Anthropogenic Influences on Water Resources of Russia and Neighboring Countries at the end of XXth Century. Moscow, Nauka. Bibikova T., 2011 Comparative Analysis of Anthropogenic Impact on Water Resources in Russia, Belarus, and Ukraine in the Post-Soviet Period. Water Res. Vol. 38 No. 5, 549-556.

  17. promoting integrated water resources management in south west

    African Journals Online (AJOL)

    eobe

    Keywords: Integrated Water Resources Management, Capacity Building, Water Sector Organizations, Nigeria. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. The objective of sustainable water resources development is to make sure that adequate supply of water of good quality and quantity are maintained for.

  18. Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Andreu, Joaquín; Paredes-Arquiola, Javier; Solera, Abel; Pedro-Monzonís, María

    2014-11-01

    An increase in water demands, exacerbated by climate change and the tightening of environmental requirements, leads to a reduction in available water resources for economic uses. This situation poses challenges for water resource planning and management. Water accounting has emerged as an appropriate tool to improve transparency and control in water management. There are multiple water accounting approaches, but they generally involve a very exhaustive list of accounted concepts. According to our findings in this research, one of the best water accounting methodologies is the Australian Water Accounting Standard. However, its implementation for integrated water resource planning and management purposes calls into questioning the amount of information and level of detail necessary for the users of water accounts. In this paper, we present a different method of applying the Australian Water Accounting Standard in relation to water resource management, which improves its utility. In order to compare the original approach and that proposed here, we present and discuss an application to the Júcar Water Resource System, in eastern Spain.

  19. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  20. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  1. Water Management in the Republic of Macedonia. Reports and announcements

    International Nuclear Information System (INIS)

    2001-01-01

    The book includes the following Topics: (1) Restructuring of the water management in Republic of Macedonia, with the subtitles: Organizational-legal aspects; Economics of the water management activities; Technical-technological aspects. (2) Water resources management, with the subtitles: Planning; Utilization; Water protection. (3) Experiences from other countries. Papers relevant to INIS are indexed separately

  2. Variations in concentrations and fluxes of dissolved inorganic nutrients related to catchment scale human interventions in Pamba River, Kerala, India

    Science.gov (United States)

    David, S. E.; Jennerjahn, T. C.; Chattopadhyay, S.

    2012-12-01

    River basins are geo-hydrological units. Water flowing out of the basin bears the imprint of natural factors such as geology, soil, vegetation and rainfall along with anthropogenic factors including the type and degree of human intervention within the basin. Pamba, a small mountainous river in the SW coast of India with a population density of ~1,400 persons km-2 was studied for its varying land use and human interventions as the global database are biased towards temperate regions while little is know about the smaller catchments from tropical regions. Land use comprised of dense forest in the highland region together with forest plantation and the human impacted Sabarimala temple- the second largest pilgrim, settlement with mixed tree crop (smt) in the midland and lowland paddy cultivated region. 50-60 million devotees visiting Sabarimala during November to January every year associated with the ritual bathing, discharge of human wastes emanating from the influx of millions of pilgrims due to inadequate number of sanitary latrines and the lack of facilities for sewage collection and treatment caused several ecological variations during pilgrim season. In order to asses the effect of land use and pilgrims in combination with seasonal variations in hydrology we investigated the seasonal and spatial variations in physicochemical and nutrient concentrations. Samples were collected from March 2010 to February 2012 during premonsoon (January-May), SW(June to September) and NE monsoon(October to December), from sites varying in land use. Nutrient budgets (load and yield) were calculated to quantify the inputs from various land use segments. Spatio-temporal variations in the physicochemical and dissolved nutrient concentrations were observed along the course of the river. Upstream forest region had highest dissolved oxygen(DO) and pH together with lowest dissolved inorganic nitrogen(DIN) values indicating almost pristine conditions. DIN in the temple region had the

  3. BMPs in urban stormwater management in Denmark and Sweden

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Viklander, M.; Linde, Jens Jørgen

    2002-01-01

    Best Management Practices (BMPs) for control of stormwater runoff include structural elemts (structural BMPs) that can be applied on the local scale (e.g. infiltration), the drainage catchment scale (e.g. ponds and treatment, or wetlands) and the receiving water scale (e.g. retrofitting of river...... reaches), and non-structural BMPs, such as controls of chemicals or building materials, and street sweeping. The available knowledge of stormwater BMPs performance in pollution control is inconsistent and the effect of various BMPs on receiving water quality is either poorly understood, or not known....... A review of recent experiences with selected stormwater BMPs in Denmark and Sweden is presented and discussed with respect to the current issues related to legislation and the forces driving future development in stormwater management....

  4. Towards an integrated water management - Comparing German and Dutch water law from a spatial planning perspective

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2015-01-01

    Water management increasingly deals with spatial aspects; spatial planning interferes and depends in various ways on water management. Particularly in urban areas, this interference calls for an integrated water management. As a result, water management and spatial planning meet. Laws frame the

  5. Managing Water in a Changing World

    Directory of Open Access Journals (Sweden)

    Claudio Cassardo

    2011-06-01

    Full Text Available Water, being a primary element in the diet and a necessary resource for the agriculture, can be considered a basic need for humans. In addition, also industrial practices need a growing amount of water. Since human population is continuously growing at a rate that, in the last two centuries, approximates well the exponential, water demand is increasing. However, the water resources on the Earth are finite. For this reason, even disregarding the potential threats due to the climate change, this situation appears as one of the biggest challenges of the current era. Actually, several small-scale regions already face water sustainability problems, and the scarcity of water resources is expected to spread to wider areas in the near future, if the actual trends of development and population growth do not change. The situation is exacerbated as the climate is already changing, due to the anthropogenic emissions of greenhouse gases in the atmosphere, and its rate is expected to increase by the end of this century. The effects of these changes will increase the natural variability of the climate, exacerbating the extreme climatic phenomena (drought and flood events and increasing the difficulty of managing water resources, especially in the most vulnerable regions.

  6. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  7. Tapping Alternatives: The Benefits of Managing Urban Water Demands.

    Science.gov (United States)

    Dziegielewski, Benedykt; Baumann, Duane D.

    1992-01-01

    Presents the California plan for water demand management. Water conservation techniques are used to balance demand with supply. Discusses the implementation process: (1) water-use and service area analysis; (2) water-use forecasts; (3) benefit-cost analysis; (4) and development of a long-term water management plan. (17 references) (MCO)

  8. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  9. Fresno/Clovis water management plan

    International Nuclear Information System (INIS)

    Burmeister, W.E.; Peterson, D.

    1993-01-01

    The Fresno/Clovis Metropolitan Area (FCMA) has historically relied solely on untreated undisinfected groundwater as a source of potable water to serve its 500,000 people. Contamination was discovered in some wells in the late 1970s, and cones of depression in areas of heavy pumping have caused contaminants to spread within the basin. Recent data indicate that at least 44 of the 352 public water agency wells in the FCMA have already been deactivated because of groundwater quality degradation. Major plumes of groundwater contamination occur throughout the study area. Most of the agricultural contaminants in the FCMA groundwater are the consequence of routine pesticide application over thousands of acres of surrounding farmland. Commercial and industrial contaminants are primarily due to poor storage and handling practices, careless or improper disposal, and leaking underground tanks. Recent and anticipated water quality regulations will probably require some form of wellhead treatment at every public water agency well in the FCMA. Such treatment may consist of disinfection, corrosion control, and the removal of radionuclides and organic chemicals. Many of the well sites are not sized, located, or configured to accommodate wellhead treatment. Potable water distribution systems in the FCMA were constructed based on dispersed wells and a local distribution network of relatively small water mains. A technical advisory committee (TAC) was formed in 1984 to promote a cooperative water planning effort. The TAC is composed of the five major water agencies in the metropolitan area: the Cities of Fresno and Clovis, Fresno County, the Fresno Metropolitan Flood Control District (FMFCD), and the Fresno Irrigation District (FID). The TAC prepared the work plan and, in August of 1991, selected CH2M HILL to develop the Fresno/Clovis Water Resources Management Plan

  10. Water Management of Noninsulating and Insulating Sheathings

    Energy Technology Data Exchange (ETDEWEB)

    Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-04-01

    There is an increasing market in liquid (or fluid) applied water management barriers for residential applications that could be used in place of tapes and other self-adhering membranes if applied correctly, especially around penetrations in the enclosure. This report discusses current best practices, recommends ways in which the best practices can be improved, and looks at some current laboratory testing and testing standards.

  11. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  12. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  13. CALCULATION: PRECIPITATION CHARACTERISITICS FOR STORM WATER MANAGEMENT

    International Nuclear Information System (INIS)

    D. Ambos

    2000-01-01

    This Calculation is intended to satisfy engineering requirements for maximum 60-minute precipitation amounts for 50 and 100-year return periods at and near Yucca Mountain. This data requirement is documented in the ''Interface Control Document for Support Operations to Surface Facilities Operations Functional and Organizational Interfaces'' (CRWMS M and O 1998a). These developed data will supplement the information on 0.1 hour to 6-hour (in 0.1-hour increments) probable maximum precipitation (PMP) presented in the report, ''Precipitation Design Criteria for Storm Water Management'' (CRWMS M and O 1998b). The Reference Information Base (RIB) item, Precipitation ''Characteristics for Storm Water Management'' (M09902RIB00045 .OOO), was developed based on CRWMS M and O (1998b) and will be supplemented (via revision) with the information developed in this Calculation. The ''Development Plan for the Calculation: Precipitation Characteristics for Storm Water Management'' (CRWMS M and O 2000) was prepared in accordance with AP-2.l3Q, ''Technical Product Development Planning''. This calculation was developed in accordance with AP-3.12Q, Rev. O/ICN 2

  14. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  15. Managing the water crisis: A youth perspective

    Science.gov (United States)

    Simataa, Faith

    2017-04-01

    The youth are identified as a key group to include in effective engagement and decision-making for water security and sustainable development. An increase in severe droughts in Namibia has highlighted its destructive impacts and led to a growing concern about the societal exposure of communities. Acknowledging the benefit of access to safe drinking water to humanity, in reality a disproportionate burden of protecting environmental benefits such as clean water is borne by the poor and vulnerable sections of the society. As a result, a key consideration highlighted in the Hyogo and Sendai Frameworks is the inclusion of gender & age perspectives, and vulnerable groups in planning for disaster risk reduction. Therefore, the paper argues that empowering the youth with knowledge and skills capability in disaster risk issues becomes essential for a sustainable management approach, and a potential 'rescue' mechanism from the web of poverty. The paper also illustrates that there is indeed weak adherence to good governance and that the government needs to improve structures for youth coordination to ensure water stewardship. Realizing this gap in knowledge, innovation and education to build a culture of resilience at all levels of society, the paper offers a perspective on the role of youth in the development agenda of Namibia and how they can influence decision-making processes in addressing water insecurity in the country. Keywords: Empowerment, Namibia, Water insecurity, Youth

  16. Climate Change and Classic Maya Water Management

    Directory of Open Access Journals (Sweden)

    Vernon L. Scarborough

    2011-04-01

    Full Text Available The critical importance of water is undeniable. It is particularly vital in semitropical regions with noticeable wet and dry seasons, such as the southern Maya lowlands. Not enough rain results in decreasing water supply and quality, failed crops, and famine. Too much water results in flooding, destruction, poor water quality, and famine. We show not only how Classic Maya (ca. A.D. 250–950 society dealt with the annual seasonal extremes, but also how kings and farmers responded differently in the face of a series of droughts in the Terminal Classic period (ca. A.D. 800–950. Maya farmers are still around today; kings, however, disappeared over 1,000 years ago. There is a lesson here on how people and water managers responded to long-term climate change, something our own society faces at present. The basis for royal power rested in what kings provided their subjects materially—that is, water during annual drought via massive artificial reservoirs, and spiritually—that is, public ceremonies, games, festivals, feasts, and other integrative activities. In the face of rulers losing their powers due to drought, people left. Without their labor, support and services, the foundation of royal power crumbled; it was too inflexible and little suited to adapting to change.

  17. An open source simulator for water management

    Science.gov (United States)

    Knox, Stephen; Meier, Philipp; Selby, Philip; Mohammed, Khaled; Khadem, Majed; Padula, Silvia; Harou, Julien; Rosenberg, David; Rheinheimer, David

    2015-04-01

    Descriptive modelling of water resource systems requires the representation of different aspects in one model: the physical system including hydrological inputs and engineered infrastructure, and human management, including social, economic and institutional behaviours and constraints. Although most water resource systems share some characteristics such as the ability to represent them as a network of nodes and links, geographical, institutional and other differences mean that invariably each water system functions in a unique way. A diverse group is developing an open source simulation framework which will allow model developers to build generalised water management models that are customised to the institutional, physical and economical components they are seeking to model. The framework will allow the simulation of complex individual and institutional behaviour required for the assessment of real-world resource systems. It supports the spatial and hierarchical structures commonly found in water resource systems. The individual infrastructures can be operated by different actors while policies are defined at a regional level by one or more institutional actors. The framework enables building multi-agent system simulators in which developers can define their own agent types and add their own decision making code. Developers using the framework have two main tasks: (i) Extend the core classes to represent the aspects of their particular system, and (ii) write model structure files. Both are done in Python. For task one, users must either write new decision making code for each class or link to an existing code base to provide functionality to each of these extension classes. The model structure file links these extension classes in a standardised way to the network topology. The framework will be open-source and written in Python and is to be available directly for download through standard installer packages. Many water management model developers are unfamiliar

  18. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  19. Managing new resources in Arctic marine waters

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Fernandez, Linda; Kaiser, Brooks

    Along with the Arctic’s icy barriers melting which allows species to move northwards, new invasion corridors also arise with the opening of new shipping routes. The Snow Crab in the North West Atlantic is suspected to be a stowaway transferred via ballast water from the North Pacific. It was iden......Along with the Arctic’s icy barriers melting which allows species to move northwards, new invasion corridors also arise with the opening of new shipping routes. The Snow Crab in the North West Atlantic is suspected to be a stowaway transferred via ballast water from the North Pacific....... It was identified two decades ago in the southeastern Barents Sea and has been expanding its geographical range and abundance, thus allowing the opening of a new fishery in international waters. The high commercial value of the fishery has led to a proliferation of articles discussing the regulatory regime...... fishery straddling Arctic waters which lends towards different productivity under different management and we delineate acceptable risk levels in order build up a bioeconomic framework that pinpoints the underlying trade-offs. We also address the difficulties of managing the resource under uncertainty...

  20. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    Science.gov (United States)

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  1. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    Science.gov (United States)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p moisture data in 2015.

  2. Linking integrated water resources management and integrated coastal zone management.

    Science.gov (United States)

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents.

  3. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  4. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  5. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  6. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Integrated Water Resource Management Plan, Yakima... Environmental Impact Statement (EIS) on the Integrated Water Resource Management Plan, Yakima River Basin Water... Integrated Water Resource Management Plan that will be analyzed in the Programmatic EIS include, but are not...

  7. A perspective on nonstationarity and water management

    Science.gov (United States)

    Hirsch, R.M.

    2011-01-01

    This essay offers some perspectives on climate-related nonstationarity and water resources. Hydrologists must not lose sight of the many sources of nonstationarity, recognizing that many of them may be of much greater magnitude than those that may arise from climate change. It is paradoxical that statistical and deterministic approaches give us better insights about changes in mean conditions than about the tails of probability distributions, and yet the tails are very important to water management. Another paradox is that it is difficult to distinguish between long-term hydrologic persistence and trend. Using very long hydrologic records is helpful in mitigating this problem, but does not guarantee success. Empirical approaches, using long-term hydrologic records, should be an important part of the portfolio of research being applied to understand the hydrologic response to climate change. An example presented here shows very mixed results for trends in the size of the annual floods, with some strong clusters of positive trends and a strong cluster of negative trends. The potential for nonstationarity highlights the importance of the continuity of hydrologic records, the need for repeated analysis of the data as the time series grow, and the need for a well-trained cadre of scientists and engineers, ready to interpret the data and use those analyses to help adjust the management of our water resources.

  8. Decision Support for Water Resource Management: Integration of Water Control and Water Quality Data

    National Research Council Canada - National Science Library

    Kennedy, R

    2000-01-01

    ... management as a means to enhance stewardship and protect the Nation's water resources. Because of this, new approaches to decision support that integrate across political, technological, social, economic, and physical considerations are needed...

  9. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  10. Key challenges facing water resource management in South Africa

    CSIR Research Space (South Africa)

    Ashton, P

    2008-11-01

    Full Text Available The paper discusses geographic reality; water availability and water security as well as the challenges and opportunities facing water resource managers and the importance of good governance...

  11. Managing urban wastewater for maximising water resource utilisation

    CSIR Research Space (South Africa)

    Tredoux, G

    1999-10-01

    Full Text Available The Atlantis Water Resource Management Scheme uses artificial recharge of urban storm water and treated wastewater to augment the natural groundwater resource. The key to the success of the scheme is the fractionation of the storm water...

  12. Water management at a malted barley brewery | Van der Merwe ...

    African Journals Online (AJOL)

    In order to manage and reduce water usage at brewery sites, it is essential that comprehensive water balances be available on which to base informed decisions. During 2001 a water management investigation was completed at a South African brewery to develop a suitable water balance for the plant. Literature studies ...

  13. New direction for environmental water management.

    Science.gov (United States)

    Tomita, Akio; Nakura, Yoshio; Ishikawa, Takuya

    2016-01-30

    Japan experienced severe environmental problems including water pollution and damages to aquatic organisms and fishery industry through and after the high economic growth period in the 1960s. One of the countermeasures to address these problems was the Total Pollutant Load Control System (TPLCS), which has been implemented with the aim of reducing the total amount of pollutant loads, specifically targeting Chemical Oxygen Demand (COD), total nitrogen and total phosphorus. The TPLCS has significantly improved the quality of the coastal sea water. However, while the accumulated pollutant loads from the past industrialization have still remained, new environmental concerns have arisen. Our new environmental policies are thus to deal with conservation of biological diversity and other related marine environmental issues. Japan has entered a new phase of environmental management, setting the new direction and framework toward a beautiful, bio-diverse, bustling-with-people and bountiful sea. Copyright © 2015. Published by Elsevier Ltd.

  14. Geoarchaeology of water management at Great Zimbabwe

    DEFF Research Database (Denmark)

    Sulas, Federica; Pikirayi, Innocent; Sagiya, Munyaradzi Elton

    In Africa, research on water management in urban contexts has often focussed rainfall, and the occurrence floods and droughts, whereas small-scale catchment systems and soil moisture regimes have received far less attention. This paper sets out to re-address the issue by examining the occurrence......, distribution and use of multiple water resources at the ancient urban landscape of Great Zimbabwe. Here, the rise and demise of the urban site have been linked to changing rainfall in the 1st mill. AD. Accordingly, rainfall shortages and consequent droughts eventually leading to the decline and abandonment...... of Great Zimbabwe at around 1550 AD. However, new research findings suggest a different scenario. Combining geoarchaeolological investigations, soil micromorphology and geochemistry with the study of historical sources and ethnographic records, new datasets indicate prolonged availability and diversified...

  15. Nuclear explosives in water-resource management

    International Nuclear Information System (INIS)

    Piper, Arthur M.

    1970-01-01

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished

  16. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  17. Management optimization in Thermal complex through water reuse

    International Nuclear Information System (INIS)

    De Souza, S.; Manganelli, A.; Bertolotto, J.; Leys, P.; Garcia, B.

    2004-01-01

    Water reuse involves the concept of the exploitation of a previously used water, for a new, beneficial purpose. Actually, in Uruguay, thermal water is just utilised for balneological purposes, in this paper is proposed the water reuse taking the excess of used swimming pool water, and using it for heating and greenhouse irrigation, and australian lobster breeding. An important aspect of sustainable thermal water management is the protection of the exploted thermal water resources, so water reuse plays an important role in water resource, and ecosystem management, because it reduces the volume discharged and also reduces the risk of thermal pollution [es

  18. Social Learning and Water Resources Management

    Directory of Open Access Journals (Sweden)

    Claudia Pahl-Wostl

    2007-12-01

    Full Text Available Natural resources management in general, and water resources management in particular, are currently undergoing a major paradigm shift. Management practices have largely been developed and implemented by experts using technical means based on designing systems that can be predicted and controlled. In recent years, stakeholder involvement has gained increasing importance. Collaborative governance is considered to be more appropriate for integrated and adaptive management regimes needed to cope with the complexity of social-ecological systems. The paper presents a concept for social learning and collaborative governance developed in the European project HarmoniCOP (Harmonizing COllaborative Planning. The concept is rooted in the more interpretive strands of the social sciences emphasizing the context dependence of knowledge. The role of frames and boundary management in processes of learning at different levels and time scales is investigated. The foundation of social learning as investigated in the HarmoniCOP project is multiparty collaboration processes that are perceived to be the nuclei of learning processes. Such processes take place in networks or "communities of practice" and are influenced by the governance structure in which they are embedded. Requirements for social learning include institutional settings that guarantee some degree of stability and certainty without being rigid and inflexible. Our analyses, which are based on conceptual considerations and empirical insights, suggest that the development of such institutional settings involves continued processes of social learning. In these processes, stakeholders at different scales are connected in flexible networks that allow them to develop the capacity and trust they need to collaborate in a wide range of formal and informal relationships ranging from formal legal structures and contracts to informal, voluntary agreements.

  19. Water management planning guideline for waterpower

    International Nuclear Information System (INIS)

    2002-05-01

    Hydroelectric power has been used in Ontario for over 150 years, providing the impetus to economic development in the province. Currently, 83 hydroelectric utilities own the more than 200 hydro power facilities in Ontario, accounting for approximately 26 per cent of the total electrical generating capacity in the province. Flood control and the creation of recreational opportunities were added benefits derived from the construction of hydroelectric dams. The three ways of operating hydroelectric facilities are: run-of-the-river which involves minimal forebay storage, peaking which involves the operation of the dam for specific periods of high energy demand, and intermediate. The Ontario government plans to open the electricity market to competition, guided by four principles: (1) protecting consumers and offering more choice, (2) ensuring a strong business climate with a reliable supply of electricity, (3) protecting the environment, and (4) encouraging new ways of doing business and new sources of power. To address issues that arise from the operation of hydroelectric facilities, dam owners and hydroelectric facilities operators are required to develop Water Management Plans, outlining how the facility will be operated to balance environmental, social and economic objectives. The present document was developed to define goals and principles concerning planning, the scope of Water Management Plans, the criteria and the general planning process to be adopted for the preparation of the Plans. 1 tab., 4 figs

  20. Applications of NST in water resources management

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2006-01-01

    At first instance, Nuclear Science and Technology (NST) appears to have no relation to water resource management. Its dark side, the sole purpose of which is weaponry, has for a long time overshadowed its bright side, which has plenty of peaceful applications in the main socio-economic development sectors: power generation, agriculture, health and medicine, industry, manufacturing and environment. Historically, the medical sector is one of the early beneficiaries of the applications of NST. The same is true for Malaysia when the first x-ray machine was installed in 1897 at Taiping Hospital, Perak. In the environment sector, the use of little or no chemical in nuclear processes contributes to a cleaner environment. Nuclear power plants for example do not emit polluting gases and do not harm to the ozone layer. At the end of 2004, there are more than 440 nuclear power reactors operating in more than 30 countries fulfilling 17% of the world electricity demand, and it is growing. While nuclear power is yet to arrive in Malaysia the uses of NST in other areas are increasing. The application of radiotracer techniques in water resource management, in the environment, as well as in industry is an example. (Author)

  1. The (Return to Infrastructure for Water Management?

    Directory of Open Access Journals (Sweden)

    Britt Crow-Miller

    2017-06-01

    Full Text Available This paper introduces the papers in this special issue and uses them as evidence through which to examine four questions. First: are we witnessing a widespread (return to big infrastructure projects for water management? The evidence suggests that large-scale infrastructure development has remained largely unswayed by the 'ecological turn', or the promotion of demand management or 'soft path' thinking, despite a drop in investments observed at the turn of the 20th century. Second: do these new projects have different justifications from those of the past? The papers in this issue provide evidence that the need to justify capital-intensive infrastructure in the face of commitments to sustainability, while borrowing from the conventional grammar of project justifications, has generated a few innovative tropes and rhetorical devices. Third: what does a (return (or enduring commitment to big infrastructure tells us about the governance and wider politics of large-scale infrastructure problems? Some of the traditional interest groups are well represented in the stories told here – the corporations that demand water or compete to build pipes and dams; the large-scale irrigators that rely on water to expand their production; the engineers and consultants who seek money, prestige, career advancement or even satisfaction from 'controlling' nature; the politicians who can extract 'rents' from all this activity. Even so, the history of each particular project involves many contingencies – of the society’s history, of previous rounds of infrastructure and of capital availability. Fourth: have there been changes in the scale at which water is managed within countries? In general, it seems there has been an increase in the scale of projects, generally involving a shift in power away from regional and up to multi-regional agencies of governance, such as the central state. Sometimes these shifts in scale and power have no effect on the salience of local

  2. Innovation & Collaboration Are Keys to Campus Water Management

    Science.gov (United States)

    Thaler-Carter, Ruth E.

    2013-01-01

    Water, water everywhere--managing and conserving water resources is a major factor at campuses worldwide. Doing so is a challenge, since water is one of the most-used and ubiquitous resources in any environment. Water is often taken for granted and not measured by the people who use it the most, yet it might have the greatest potential for helping…

  3. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  4. Water use of grasslands, agroforestry systems and indigenous forests

    African Journals Online (AJOL)

    At a stand scale, measurements of the different components of evapotranspiration have allowed the partitioning of beneficial (transpiration) and non-beneficial (evaporation) fluxes. At a catchment scale measurements have quantified the proportional allocation of water to the different components of the water balance.

  5. Integration for sustainable catchment management.

    Science.gov (United States)

    Macleod, Christopher J A; Scholefield, David; Haygarth, Philip M

    2007-02-15

    Sustainable catchment management requires increased levels of integration between groups of natural and social scientists, land and water users, land and water managers, planners and policy makers across spatial scales. Multiple policy drivers, covering urban and rural communities and their relationships with land and water use, have resulted in the need for an integrated decision making framework that operates from the strategic national scale to the local catchment scale. Large gaps in integration between policies are resulting in uncertain outcomes of conflicting and competing policy measures. The need for further integration is illustrated by little or no reductions in nitrate and phosphate levels in surface and ground waters in England and Wales. There is a requirement for natural scientists to consider the socio-economic setting and implications of their research. Moreover, catchment system level science requires natural and social scientists to work more closely, to provide robust analysis of the state of the environment that fully considers the bio-physical, social, political and economic settings. The combined use of spatial technologies, scenarios, indicators and multicriteria analysis are increasingly being used to enable improved integration for sustainable catchment management.

  6. 40 CFR 35.2023 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  7. Importance of Integrated Watershed Management on Water Quality

    OpenAIRE

    BABUR, Emre; KARA, Ömer

    2018-01-01

    Themanagement and planning of water resources recently become important andincreasingly complex. While the most of the developed countries managed theirwater source with sustainable plans to water production, our country has newlystarted the work within its watershed management principles. Due to excessivepopulation growth the environmental problems blow out after industrialization,land degradation, wrong agricultural and forestry applications. Thesemisapplications negatively affect water res...

  8. Climate Adaptive Water Management Plans for Cities in South Asia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    They will also: -produce scientific, peer-reviewed publications on the governance of urban water systems -conduct an economic analysis of climate adaptive water management options -propose strategies for gender sensitive approaches to urban water management They will share the results with local communities, ...

  9. The flood risk management plan: towards spatial water governance

    NARCIS (Netherlands)

    Hartmann, T.; Driessen, P.

    2017-01-01

    The flood risk management plan challenges both water engineers and spatial planners. It calls for a new mode of governance for flood risk management. This contribution analyses how this mode of governance distinguishes from prevalent approaches. Spatial planning and water management in Europe are

  10. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  11. WATER MANAGEMENT STRATEGIES UNDER DEFICIT IRRIGATION

    Directory of Open Access Journals (Sweden)

    Antonino Capra

    2008-12-01

    Full Text Available Deficit irrigation (DI is an optimization strategy whereby net returns are maximized by reducing the amount of irrigation water; crops are deliberated allowed to sustain some degree of water deficit and yield reduction. Although the DI strategy dates back to the 1970s, this technique is not usually adopted as a practical alternative to full irrigation by either academics or practitioners. Furthermore, there is a certain amount of confusion regarding its concept. In fact, a review of recent literature dealing with DI has shown that only a few papers use the concept of DI in its complete sense (e.g. both the agronomic and economic aspects. A number of papers only deal with the physiological and agronomical aspects of DI or concern techniques such as Regulated Deficit Irrigation (RDI and Partial Root Drying (PRD. The paper includes two main parts: i a review of the principal water management strategies under deficit conditions (e.g. conventional DI, RDI and PRD; and ii a description of a recent experimental research conducted by the authors in Sicily (Italy that integrates agronomic, engineering and economic aspects of DI at farm level. Most of the literature reviewed here showed, in general, quite positive effects from DI application, mostly evidenced when the economics of DI is included in the research approach. With regard to the agronomic effects, total fresh mass and total production is generally reduced under DI, whereas the effects on dry matter and product quality are positive, mainly in crops for which excessive soil water availability can cause significant reductions in fruit size, colour or composition (grapes, tomatoes, mangos, etc.. The experimental trial on a lettuce crop in Sicily, during 2005 and 2006, shows that the highest mean marketable yield of lettuce (55.3 t ha-1 in 2005 and 51.9 t ha-1 in 2006 was recorded in plots which received 100% of ET0-PM (reference evapotranspiration by the Penman- Monteith method applied water. In

  12. Climatic and physiographic controls on catchment-scale nitrate loss at different spatial scales: insights from a top-down model development approach

    Science.gov (United States)

    Shafii, Mahyar; Basu, Nandita; Schiff, Sherry; Van Cappellen, Philippe

    2017-04-01

    Dramatic increase in nitrogen circulating in the biosphere due to anthropogenic activities has resulted in impairment of water quality in groundwater and surface water causing eutrophication in coastal regions. Understanding the fate and transport of nitrogen from landscape to coastal areas requires exploring the drivers of nitrogen processes in both time and space, as well as the identification of appropriate flow pathways. Conceptual models can be used as diagnostic tools to provide insights into such controls. However, diagnostic evaluation of coupled hydrological-biogeochemical models is challenging. This research proposes a top-down methodology utilizing hydrochemical signatures to develop conceptual models for simulating the integrated streamflow and nitrate responses while taking into account dominant controls on nitrate variability (e.g., climate, soil water content, etc.). Our main objective is to seek appropriate model complexity that sufficiently reproduces multiple hydrological and nitrate signatures. Having developed a suitable conceptual model for a given watershed, we employ it in sensitivity studies to demonstrate the dominant process controls that contribute to the nitrate response at scales of interest. We apply the proposed approach to nitrate simulation in a range of small to large sub-watersheds in the Grand River Watershed (GRW) located in Ontario. Such multi-basin modeling experiment will enable us to address process scaling and investigate the consequences of lumping processes in terms of models' predictive capability. The proposed methodology can be applied to the development of large-scale models that can help decision-making associated with nutrients management at regional scale.

  13. Does Integrated Water Resources Management Support Institutional Change? The Case of Water Policy Reform in Israel

    Directory of Open Access Journals (Sweden)

    Itay Fischhendler

    2010-03-01

    Full Text Available Many international efforts have been made to encourage integrated water resources management through recommendations from both the academic and the aid and development sectors. Recently, it has been argued that integrated water resources management can help foster better adaptation of management and policy responses to emerging water crises. Nevertheless, few empirical studies have assessed how this type of management works in practice and what an integrated water management system implies for institutional adaptation and change. Our assessment of the Israeli water sector provides one view of how they can be shaped by an integrated structure in the water sector. Our analysis of recent efforts to adapt Israel's water management system to new conditions and uncertainties reveals that the interconnectedness of the system and the consensus decision-making process, led by a dominant actor who coordinates and sets the policy agenda, tends to increase the complexity of negotiations. In addition, the physical integration of water management leads to sunk costs of large-scale physical infrastructure. Both these factors create a path dependency that empowers players who receive benefits from maintaining the existing system. This impedes institutional reform of the water management system and suggests that integrated water resources management creates policy and management continuity that may only be amenable to incremental changes. In contrast, real adaptation that requires reversibility and the ability to change management strategies in response to new information or monitoring of specific management outcomes.

  14. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    Agadaga

    2012-09-17

    academicjournals.org/AJEST .... de store and use water for dry season, buying water, and in severe cases migrating to nearby District .... community to participate and contribute in decisions regarding use and management of those ...

  15. Water Information Management & Analysis System (WIMAS) v 4.0

    Data.gov (United States)

    Kansas Data Access and Support Center — The Water Information Management and Analysis System (WIMAS) is an ArcView based GIS application that allows users to query Kansas water right data maintained by the...

  16. Water management and reuse opportunities in a thermal power ...

    African Journals Online (AJOL)

    The Rehab power plant located in the Northern part of Jordan is presented as a case study of industrial water management. This power plant consumes boiler feed water in the amount of 200 m3/d of the fresh ground water available from nearby wells and it produces 193 m3/d of wastewater. Fifty seven water samples were ...

  17. Targeting of Watershed Management Practices for Water Quality Protection

    Science.gov (United States)

    Ensuring a clean and adequate water supply implies conservative use of water and protecting water resources from pollution. Sediment, nutrient, and pesticide losses in runoff are major pollutants of surface waters in the Midwest. This publication addresses the targeting of best management practices ...

  18. Integrated Rural-Urban Water Management for Climate Based ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This research project will enable two mid-sized Indian cities and their catchments to transition toward an integrated climate-proof approach to water management, providing greater water security to residents. Lack of water security in India Cities across South Asia face extreme water insecurity due to a changing climate and ...

  19. 2012 Southwest Florida Water Management District (SWFWMD) Lidar: Lake Manatee

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geographic Information System (GIS). Southwest Florida Water Management District (SWFWMD) regularly uses digital topographic information to support regulatory, land...

  20. Seeking a consensus: water management principles from the monotheistic scriptures

    KAUST Repository

    Lefers, Ryan

    2015-03-13

    Religious and cultural values related to water use and management are important motivation for many people of the world. Although much has been written related to water management and use in Islam, fewer authors have attempted to evaluate water management through the lens of other religions. The common thread of monotheism, specifically worship of the one God of Abraham, binds together the world\\'s largest two religions (Islam and Christianity). Judaism also falls within this monotheistic group and is especially important in the context of Middle Eastern water management. As agriculture consumes approximately 70% of all fresh water used in the world today, proper management of water within its context is of critical and global importance. This paper presents an effort to build consensus from a monotheistic scripture-based perspective related to water management in agriculture. If greater dialog and agreement about water management can be attained within and among monotheists, complex issues related to transboundary water management, reuse and conservation could be resolved with less conflict, creating a shared overall management vision.

  1. Industrial water demand management and cleaner production ...

    African Journals Online (AJOL)

    Processes and systems using water today are being subjected to increasingly stringent environmental regulations on effluents and there is growing demand for fresh water. In Morocco, consumption of water by industries is estimated in 1994 at 1 billion m3, the drinking water constitutes 4%. Water used in the food and drink ...

  2. Management of water balance in mining areas – WaterSmart: Final Report

    OpenAIRE

    Krogerus, Kirsti; Pasanen, Antti

    2016-01-01

    Although mining companies have long been conscious of water related risks, they still face environmental management challenges. Several recent environmental incidents in Finnish mines have raised questions regarding mine site environmental and water management practices. This has increased public awareness of mining threats to the environment and resulted in stricter permits and longer permitting procedures. Water balance modelling aids in predictive water management and reduces risks caused ...

  3. A REVIEW ON FEASIBILITY OF MAGNETIC WATER TECHNOLOGY IN WATER RESOURCES MANAGEMENT

    OpenAIRE

    Ali Yadollahpour1, Samaneh Rashidi

    2017-01-01

    Background and Objective: Magnetic or magnetized water technology (MWT) has been recently introduced as promising approach for water resources management in agricultural, environmental, and industrial processes. Despite controversial findings of the recent studies, MWT seems one of the future technologies for efficient water management. This study aims to review the feasibility and perspectives of MWT in water resources management. Method: The databases of Web of Sciences (1980–2016), EMBASE ...

  4. Estimating ecological water stress caused by anthropogenic uses in the US Great Lakes region

    Science.gov (United States)

    Alian, S.; Mayer, A. S.; Maclean, A.; Watkins, D. W., Jr.; Gyawali, R.; Mirchi, A.

    2016-12-01

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g., agriculture, power utilities, manufacturing, etc.), withdrawal sources, and extent of return flow (i.e., return of water to river system) at different spatial and temporal scales in order to characterize potentially harmful streamflow disturbances, and to inform water management. Herein, GIS technology is used to characterize and map ecological water stress in the Great Lakes region by compiling and analyzing water withdrawal data for different use categories. An integrative geospatial method is developed to quantify catchment scale streamflow disturbance as the sum of flow depletion and return flow, and propagate it along the stream network in order to calculate water stress index as function of consumptive use and impacted streamflow. Results for the Kalamazoo River Watershed, Michigan, illustrate that although average annual and July water stress is generally relatively low, protective management actions may be necessary in a significant number of catchments, especially in urban catchments with very high water stress. Water stress is significantly higher under low flow conditions, indicating the need to adjust withdrawals to reduce adverse resource impacts on sensitive streams.

  5. Managing Forests for Water Quality: Streamside Management Zones

    OpenAIRE

    Daniels, Barbara

    2012-01-01

    Throughout Utah, forestlands act as collectors of pure water. Much of Utah’s water supply originates in high elevation forested watersheds. These forests play a vital role in purifying and maintaining clean water for streams, lakes and groundwater.

  6. Managing the Financial Risks of Water Scarcity

    Science.gov (United States)

    Characklis, Greg; Foster, Ben; Kern, Jordan; Meyer, Eliot; Zeff, Harrison

    2015-04-01

    of financial losses experienced by such entities as water utilities, hydropower producers and inland shipping firms as a result of water scarcity, all of which suggest a growing role for financial instruments in managing environmental risk.

  7. Integrated water resources management as a new approach to water security

    OpenAIRE

    Graefe, Olivier

    2017-01-01

    Access to safe water is a worldwide problem facing three quarters of a billion people every day. The problem of access to water is not primarily due to an overall scarcity of water, but rather the unequal geographical and seasonal distribution of the water resources. The key issue at stake here is, how to make water available. The new approach presented by international institutions for improving water access is Integrated Water Resource Management. This chapter questions this new approa...

  8. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  9. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    Science.gov (United States)

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    Science.gov (United States)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  11. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  12. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  13. Water availability and management for food security

    Science.gov (United States)

    Food security is directly linked to water security for food production. Water availability for crop production will be dependent upon precipitation or irrigation, soil water holding capacity, and crop water demand. The linkages among these components in rainfed agricultural systems shows the impact ...

  14. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  15. Water Demand Management ― Making the most of the water we ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Water demand management ― WDM ― can be hard to define. More an issue of policy than of technology, it is about managing and moderating our demands for good quality fresh water. It is less a matter of piping and pumps and more a tool for changing the ways we use water and the rates at which we ...

  16. From Flood Control to Water Management: A Journey of Bangladesh towards Integrated Water Resources Management

    Directory of Open Access Journals (Sweden)

    Animesh K. Gain

    2017-01-01

    Full Text Available Integrated Water Resources Management (IWRM is considered as a practical approach in solving water-related problems, which are socio-ecologically complex in nature. Bangladesh has also embraced the IWRM approach against its earlier attempt to flood control. In this paper, we evaluate the current status of IWRM in Bangladesh through the lens of policy shifts, institutional transitions and project transformations using seven key dimensions of IWRM. Looking at IWRM from such perspectives is lacking in current literature. A thorough review of policy shifts suggests that all the key dimensions of IWRM are “highly reflected” in the current policy documents. The dimension of “integrated management” is “highly reflected” in both institutional transition and project-level transformation. Most other dimensions are also recognised at both institutional and project levels. However, such reflections gradually weaken as we move from policies to institutions to projects. Despite catchment being considered as a spatial unit of water management at both institutional and project levels, transboundary basin planning is yet to be accomplished. The participation of local people is highly promoted in various recent projects. However, equity and social issues have received less attention at project level, although it has significant potential for supporting some of the key determinants of adaptive capacity. Thus, the IWRM dimensions are in general reflected in recent policies, institutional reforms and project formulation in Bangladesh. However, to solve the complex water-problems, basin scale management through transboundary cooperation and equity and social issues need to be implemented at institutional and project levels.

  17. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples...... water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses...... a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD...

  18. Water footprint assessment to inform water management and policy ...

    African Journals Online (AJOL)

    One method to inform decisions with respect to sustainable, efficient and equitable water allocation and use is water footprint assessment (WFA). This paper presents a preliminary WFA of South Africa (SA) based on data for the period 1996–2005. Crop production was found to contribute about 75% of the total water ...

  19. Assessing Water and Carbon Footprints for Green Water Resource Management

    Science.gov (United States)

    This slide presentation will focus on the following points: (1) Water footprint and carbon footprint are two criteria evaluating the greenness in urban development, (2) Two cases are examined and presented: water footprints in energy productions and carbon footprints in water ...

  20. Water footprint assessment to inform water management and policy ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... While SA is a net virtual water importer, the virtual water trade analysis revealed that a large share of ... Energy released the long-awaited position paper on the South ..... The average water footprint of national consumption in SA for the period 1996–2005 (million m3/yr) (Source: Mekonnen and. Hoekstra ...

  1. Managing Water Scarcity: Why Water Conservation Matters to Business

    Science.gov (United States)

    Spiwak, Stephen M.

    2013-01-01

    The issue of water scarcity has often hit the headlines in the past several years. Some states have gone to court over water rights and access even as others have agonized over scarce supplies. University presidents and their staff of directors understand that the days of unlimited, inexpensive water are almost over. While it remains inexpensive…

  2. Diffuse pollution (pesticides and nitrate) at catchment scale on two constrasted sites: mass balances and characterization of the temporal variability of groundwater quality.

    Science.gov (United States)

    Baran, N.; Gutierrez, A.

    2009-04-01

    Enhanced monitoring of groundwater quality over several years has revealed a nitrate and /or pesticide contamination of aquifers in North America and Europe (Gilliom et al., 2006; Ifen, 2004). In many countries (France, United Kingdom, Denmark, Switzerland), drinking water is partly or dominantly supplied by groundwater. Assessing the extent of nitrate or pesticide contamination in aquifer and understanding the transport of the solutes to groundwater is, therefore, of major importance for the management of groundwater resources. Besides, the objective set by the European Water Framework Directive (WFD - 2000/60/EC, OJEC 2000) is for "all groundwater bodies to achieve the good quantitative and chemical status … at the latest by 2015". The Directive demands that European Union Member States not only characterize their levels of groundwater contamination, but also that they study the evolutionary trends of their pollutant concentrations. Monitoring groundwater quality for nitrate and pesticide is thus particularly relevant as well as the characterization of the transfer of solutes to and in groundwater is essential for effective water resource management. Several countries have approached the stage of characterization of their groundwater bodies either by using data derived from various measurement networks, as in France or by establishing specific sampling and analysis protocols (NAQUA network in Switzerland; NAWQA network in the United States). Pesticide monitoring networks, where they exist, are often less than 10 years old with a fairly low measurement frequency (1 to 4 analyses per year). Chemical status and trend interpretations are thus difficult and limited. Characterizing an entire groundwater body from observations limited in time and space remains a challenge. Little published data exists concerning intensive monitoring over several years, whether at the catchment outlet or at observation points spread over a basin, that would allow these

  3. Model of urban water management towards water sensitive city: a literature review

    Science.gov (United States)

    Maftuhah, D. I.; Anityasari, M.; Sholihah, M.

    2018-04-01

    Nowadays, many cities are facing with complex issues such as climate change, social, economic, culture, and environmental problems, especially urban water. In other words, the city has to struggle with the challenge to make sure its sustainability in all aspects. This research focuses on how to ensure the city sustainability and resilience on urban water management. Many research were not only conducted in urban water management, but also in sustainability itself. Moreover, water sustainability shifts from urban water management into water sensitive city. This transition needs comprehensive aspects such as social, institutional dynamics, technical innovation, and local contents. Some literatures about model of urban water management and the transition towards water sensitivity had been reviewed in this study. This study proposed discussion about model of urban water management and the transition towards water sensitive city. Research findings suggest that there are many different models developed in urban water management, but they are not comprehensive yet and only few studies discuss about the transition towards water sensitive and resilience city. The drawbacks of previous research can identify and fulfill the gap of this study. Therefore, the paper contributes a general framework for the urban water management modelling studies.

  4. No Solutions: Resisting Certainty in Water Supply Management

    Science.gov (United States)

    Cockerill, K.; Armstrong, M.; Richter, J.; Okie, J. G.

    2017-12-01

    Although most scholars and water managers implicitly understand that managing water resources is an ongoing need, both popular and academic literature routinely use the words `solution' and `solve' in discussing water management concerns. The word `solution' reflects a quest for certainty, stability, permanence. A focus on `solving' creates a simplistic expectation that some person or institution is responsible for implementing a solution and that once `solved' the issue no longer requires attention. The reality, however, is water management is a wicked problem, meaning it is amorphous, involves multiple definitions, is embedded in complex systems, and hence is intractable. By definition, wicked problems defy solution. Our interdisciplinary project integrates research from across a broad spectrum of biological, physical, and social sciences. We find that framing a problem in terms of `solving' affects how people think, feel, behave toward the problem. Further, our work suggests that the prevalence of solution- based language has simultaneously generated expectations that science / scientists can predict and control biophysical systems and that science is not to be trusted because it has failed to deliver on previous promises to permanently `solve' events like floods or droughts. Hydrologic systems, are, of course highly uncertain. Hence, reiterating a simplistic insistence on `solving' water management concerns may result in decreased public attention to or support for more complex policy discussions that could provide long-term management strategies. Using the language of `solutions' with expectations of certainty sets hydrologic researchers and water managers up to fail. Managing water is a social responsibility and it will require consistent attention in the future, just as it has throughout human history. Scientists have a key role to play in explaining how various hydrologic systems function, but they should not be expected to `solve' pressing water management

  5. Water quality objectives as a management tool for sustainability

    OpenAIRE

    Everard, Mark

    1994-01-01

    The aim of this paper is to explore the potential role that quality objectives, particularly when backed by statutory force, may play in the sustainable management of river water quality. Economic valuation techniques are discussed, as well as the theory of "critical natural capital". A brief history of water quality legislation includes the implementation of the National Water Council classification in 1979, and the statutory water quality objectives introduced under the Water Resources Act ...

  6. Precision agriculture and soil and water management in cranberry production

    Science.gov (United States)

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  7. Integrated Water Management Approaches for Sustainable Food Production

    NARCIS (Netherlands)

    Fraiture, de C.M.S.; Fayrap, A.; Unver, O.; Ragab, R.

    2014-01-01

    With a growing and increasingly wealthy and urban population, it is likely that the role of agricultural water management in ensuring food security will become more important. Pressure on water resources is high. Adverse environmental impacts as a result of sometimes poor management of irrigation

  8. Improved integrated water management for agriculture in Upper ...

    African Journals Online (AJOL)

    During the study, the various stakeholders interviewed consisted of farmers and organisations such as governmental, non-governmental and research institutions with influence on water management. A typology of water management intervention in the study area was constructed. Resource flow, indicating the influence of ...

  9. Assessing framing of uncertainties in water management practice

    NARCIS (Netherlands)

    Isendahl, N.; Dewulf, A.; Brugnach, M.; Francois, G.; Möllenkamp, S.; Pahl-Wostl, C.

    2009-01-01

    Dealing with uncertainties in water management is an important issue and is one which will only increase in light of global changes, particularly climate change. So far, uncertainties in water management have mostly been assessed from a scientific point of view, and in quantitative terms. In this

  10. Conquering complexity - Dealing with uncertainty and ambiguity in water management

    NARCIS (Netherlands)

    Hommes, Saskia

    2008-01-01

    Water management problems are embedded in a natural and social system that is characterized by complexity. Knowledge uncertainty and the existence of divergent actors’ perceptions contribute to this complexity. Consequently, dealing with water management issues is not just a knowledge uncertainty

  11. Water resource co-management and sustainable regional development

    NARCIS (Netherlands)

    Boer, C.L.; Bressers, Johannes T.A.

    2013-01-01

    Purpose – Given the importance of multi-stakeholder processes in managing water resources, this paper aims to shed light on various project management strategies being used in The Netherlands to increase the effectiveness and efficiency of implementing multifunctional water projects.

  12. Water Demand Management for Social Justice | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-18

    Jan 18, 2012 ... Women and men have different interests in, and derive different benefits from, the availability, use and management of water. Research evidence is supporting the notion that involving women, along with men, in the design and management of water projects enhances the intended results of projects and ...

  13. Management of Water Demand in Africa and the Middle East ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Management of Water Demand in Africa and the Middle East: Current Practices and Future Needs. Book cover Management of Water Demand in Africa and the Middle East: Current Practices and. Directeur(s) : David B. Brooks, Eglal Rached, and Maurice Saade. Maison(s) d'édition : IDRC. 1 janvier 1997. ISBN : Out of print.

  14. Water Management in Africa and the Middle East : Challenges and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1996-01-01

    Water Management in Africa and the Middle East : Challenges and Opportunities. Book cover Water Management in Africa and the Middle East : Challenges and Opportunities. Editor(s):. Eglal Rached, Eva Rathgeber et David B. Brooks. Publisher(s):. CRDI. January 1, 1996. ISBN: Épuisé. 295 pages. e-ISBN: 1552502899.

  15. Management of Water Demand in Africa and the Middle East ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Management of Water Demand in Africa and the Middle East : Current Practices and Future Needs. Couverture du livre Management of Water Demand in Africa and the Middle East : Current Practices. Directeur(s) : David B. Brooks, Eglal Rached et Maurice Saade. Maison(s) d'édition : CRDI. 1 janvier 1997. ISBN : Épuisé.

  16. Management of Water Demand in Africa and the Middle East ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1997-01-01

    Management of Water Demand in Africa and the Middle East : Current Practices and Future Needs. Couverture du livre Management of Water Demand in Africa and the Middle East : Current Practices. Editor(s):. David B. Brooks, Eglal Rached et Maurice Saade. Publisher(s):. CRDI. January 1, 1997. ISBN: Épuisé. 78 pages.

  17. Managing Water Demand : Policies, Practices and Lessons from the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 août 2005 ... Managing Water Demand : Policies, Practices and Lessons from the Middle East and North Africa Forums. Couverture du livre Managing Water Demand : Policies, Practices, and Lessons from the Middle. Auteur(s) : Ellysar Baroudy, Abderrafii Abid Lahlou, et Bayoumi Attia. Maison(s) d'édition :.

  18. Anticipatory Water Management: Using ensemble weather forecasts for critical events

    NARCIS (Netherlands)

    Van Andel, S.J.

    2009-01-01

    Day-to-day water management is challenged by meteorological extremes, causing floods and droughts. Often operational water managers are informed too late about these upcoming events to be able to respond and mitigate their effects, such as by taking flood control measures or even requiring

  19. Water Demand Management for Social Justice — Women, like men ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Women and men have different interests in, and derive different benefits from, the availability, use and management of water. Research evidence is supporting the notion that involving women, along with men, in the design and management of water projects enhances the intended results of projects and ...

  20. Urban stormwater – greywater management system for sustainable urban water management at sub-watershed level

    Directory of Open Access Journals (Sweden)

    Arora Amarpreet Singh

    2017-01-01

    Full Text Available Urban water management involves urban water supply (import, treatment and distribution of water, urban wastewater management (collection, treatment and disposal of urban sewage and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water, and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  1. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  2. Numerical modeling as a tool for sustainable water management

    Science.gov (United States)

    Zacharias, I.; Dimitriou, E.; Koussouris, Th.

    2003-04-01

    Combining environmental preservation and economic prosperity is a primary objective of most developmental activities nowadays. Sustainable Water Resources Management can contribute in achieving this objective, especially in wetland areas that often undergo significant stresses due to irrational water exploitation schemes. Applying numerical modeling for designing sustainable water management scenarios is a common practice during the last decade but it is also under controversy by many scientists and environmental managers. The particular scientific effort attempted to develop and assess a methodology for the formation of water management plans in lake catchments by combining GIS applications, remote-sensing techniques and physically-based hydrologic modeling. The advantages and disadvantages of the specific methodology and particularly of the numerical modeling utilization in the water management forming process have been examined through a case study application in Trichonis lake catchment, W. Greece. At this area, significant wetlands with the endangered Calcareous fens habitat are encountered and presented significant degradation during the last 30 years. The results indicated that the particular methodology provided water management scenarios that fulfilled both the environmental and anthropogenic demands without compromising the replenishment potential of the local water resources. Numerical modeling operated efficiently, accelerated the water management formation process and offered scenarios that can be easily applicable and amendable by the local Water Authorities.

  3. Tensions in water management: Dutch tradition and European policy.

    Science.gov (United States)

    Ravesteijn, W; Kroesen, O

    2007-01-01

    Present-day worldwide water problems require new management tools and sustainable system innovations. At Delft University of Technology research is being carried out into water resources and management development aimed at forming such tools and innovations, focused on Integrated River Basin Management (IRBM). One of the case-studies deals with Dutch water management and technology in the context of European IRBM in the form of the 2000 Water Frame Directive. The Netherlands experience many water problems and European IRBM could bring help by offering a framework for both international cooperation and technological innovations. To work as an adequate management tool European IRBM should be tailored to the Dutch water tradition, which recently culminated in Integrated Water Management. Both approaches are in some respects contradicting. Europe pursues, for example, centralized control; while the Dutch have their strongly water boards based decentralized administration. The tensions between both approaches require mutual adaptation, for which the concept of subsidiarity might offer points of departure. This paper describes the first results of the case-research into Dutch water management and technology in the context of Europe as well as the backgrounds and the set-up of the research as a whole.

  4. GIS and Game Theory for Water Resource Management

    Science.gov (United States)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  5. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... Management Plans (Criteria). For the purpose of this announcement, Water Management Plans (Plans) are...

  6. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... reservoir state variables. Linearity and convexity reduce the computation time, but are not required to solve the problem. Cost-effective management can be found across traditionally separate disciplines, and this method thereby represents the type of integrated assessments needed in the context...... of the growing demand for water to irrigation, industrial and domestic uses. As a response, the Chinese authorities have launched the 2011 No. 1 Central Policy Document, which set targets related to water scarcity and water quality and marks the first step towards sustainable management of the Chinese water...

  7. Water resource management : a strategy for Nova Scotia

    International Nuclear Information System (INIS)

    Theakston, J.

    1998-01-01

    Since 1995, the Nova Scotia Department of the Environment has been the lead agency responsible for water resource management in the province. The agency's mandate has been to establish a water resource management strategy and to report periodically to the people of the province on the state of the environment, including air, water and waste resource management. One of the Department's goals is to ensure that surface and groundwater resources are being adequately protected. This paper summarizes issues related to dams and how they will be addressed. The Department allocates water through approvals and regulates use and alteration of watercourses. The construction of a dam and water withdrawal for municipal, industrial, hydroelectric or other purposes requires an approval. The major concerns with these activities are flows to sustain downstream habitat, competing demand for water, public safety, and water quality impacts. The main water management actions established under the water strategy involve: (1) geo-referencing water resource use and allocation, (2) protecting water quality, (3) integrating management of natural resources, and (4) promoting partnership in stewardship

  8. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    Science.gov (United States)

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  9. Simulation/optimization applications and software for optimal ground-water and conjunctive water management

    OpenAIRE

    Peralta, R. C.

    2001-01-01

    Diverse water management simulation/optimization (S/O) experiences promoted the development of many S/O modeling approaches and models. Several of these are being incorporated within the Simulation/Optimization Modeling System (SOMOS). Non-modeler water scientists or engineers can apply one SOMOS module to optimize field-scale groundwater and conjunctive water management. Experienced groundwater modelers can apply other modules to optimally manage complex heterogeneous aquifer and stream-aqui...

  10. Water resource management and the poor

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Schoengold, K.; Zilberman, D.

    2008-01-01

    Water allocations as well as water quality and health concerns are often due to inadequate policies and institutions, which pose major challenges for policy reform. The necessary ingredients of such reform include four elements: rules to improve the decision-making process about water projects,

  11. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    The Tanzanian economy is highly dependent on water resources. Nearly half of. Tanzania's GDP comes from the agriculture and livestock sectors (Salami et al., 2010), which are highly dependent on water resources. However, these water resources are currently vulnerable to climate change and variability. In recent years ...

  12. Alternative technologies for water quality management

    Science.gov (United States)

    Mandla A. Tshabalala

    2002-01-01

    Cranberry growers are concerned about the quality of water discharged from cranberry bogs into receiving surface waters. These water discharges may contain traces of pesticides arising from herbicide, insecticide or fungicide applications. They may also contain excess phosphorus from fertilizer application. Some cranberry farms have holding ponds to reduce the amount...

  13. Using Demand Side Management to Adapt to Water Scarcity and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Using Demand Side Management to Adapt to Water Scarcity and Climate Change in the Saiss Basin (Morocco). The Saiss is a sub-basin of the Sebou basin in Northern Morocco. Due to decreased precipitation and increased water demand, the surface waters of the Saiss basin have been greatly reduced. At the current ...

  14. Water Management in Africa and the Middle East: Challenges and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... of large-scale projects for irrigation and drinking water supply. Finally, they identify means to affect closer cooperation between governments and communities, and to bring more attention to water conservation, without which strategies to manage water in Africa and the Middle East will be neither sustainable nor equitable.

  15. Multi-criteria decision making for water resource management: a ...

    African Journals Online (AJOL)

    2010-01-04

    Jan 4, 2010 ... tions of water supply and demand, not only to reach a comprehensive assessment of the water budget in the Gediz Basin, but also to evaluate the impacts of proposed management alternatives under different conditions. The Water Evaluation and. Planning (WEAP) software is used as a simulation and ...

  16. Workshops capacity building for agricultural water demand management; final report

    NARCIS (Netherlands)

    Vehmeijer, P.W.; Wolters, W.

    2004-01-01

    Agricultural Water Demand Management (AWDM) is at the core of the Water for Food Programme launched as a result of a pledge by the Netherlands' Minister for Agriculture at the 2nd World Water Forum in March 2000, The Hague. One of the projects that was started after the March 2000 pledge was

  17. Marine water-quality management in South- Africa

    CSIR Research Space (South Africa)

    Taljaard, Susan

    1995-01-01

    Full Text Available In South Africa the ultimate goal in water quality management is to keep the water resources suitable for all ''beneficial uses''. Beneficial uses provide a basis for the derivation of water quality guidelines, which, for South Africa, are defined...

  18. Non-Revenue Water Management in Palestine

    OpenAIRE

    Samah Jawad Jabari

    2017-01-01

    Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In thi...

  19. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  20. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... adopted as the most accurate for assessment of real water losses. The MNF is the lowest flow supplied to a hydraulically isolated supply zone (Fig. 1). During the night, most commonly between. 02:00 and 04:00, water use is at its lowest and pressures in the network are at the highest levels, meaning that a ...

  1. Water resources and water management in the Bahurutshe heartland

    African Journals Online (AJOL)

    With this study a brief descriptive survey, covering the period from 1972 to the present, of the water resources in the Lehurutshe district, formerly part of Bophuthatswana and now part of the Zeerust district of the North-West Province, is given. Both surface water bodies (rivers, catchments, drainage systems, wetlands, pans, ...

  2. Water resources and water management in the Bahurutshe heartland

    African Journals Online (AJOL)

    2004-12-03

    Dec 3, 2004 ... (aquifers, dolomitic eyes, springs and boreholes) of Lehurutshe are discussed in terms of the quantity and quality of their water yields. Water provision and .... people not needed for labour in the urban and rural areas of. 'White' South Africa. A mas- sive programme of relocation of Black people to the home-.

  3. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  4. Does tree harvesting in streamside management zones adversely affect stream turbidity? - preliminary observations from an Australian case study

    Science.gov (United States)

    Daniel G. Neary; Philip J. Smethurst; Brenda R. Baillie; Kevin C. Petrone; William E. Cotching; Craig C. Baillie

    2010-01-01

    In Australia, farmers and natural resource managers are striving to enhance environmental outcomes at farm and catchment scales by planting streamside management zones (SMZs) on farms with trees and other perennial vegetation. Lack of sound information on and funding for establishing and managing trees in SMZs is hindering widescale adoption of this practice....

  5. Proceedings of the 7. annual workshop of the CEATI Water Management Group : water management 2006 : collecting and managing hydrologic data

    International Nuclear Information System (INIS)

    2006-01-01

    This workshop by the Water Management Interest Group of CEATI focused on the development and methods and tools needed to optimize hydraulic processes while maintaining safe and environmentally-sound operations. In particular, it addressed issues regarding watershed management and water use planning, meteorological forecasting, operational modeling, data acquisition techniques, and impact assessment. Hydrologic data must be acquired and processed in order to effectively operate water control structures. It was noted that although data requirements may change from basin to basin, depending on seasonal forecasting, quality data is the foundation of all hydrological operational modelling and decision support software packages. As such, better acquisition methods and equipment are needed along with well designed networks and modern control applications. The first session of this workshop dealt with network data collection offered an opportunity to expand network design criteria standards and technologies that can offer support for cost effective maintenance to achieve acceptable levels of reliability and accuracy. The second session on quality control and data validation explored potential solutions for improved methods and techniques in quality control. The third session on data sharing and network coordination examined ways that companies and government agencies manage and share hydrologic data. The workshop featured 22 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  6. Water and water quality management in the cholistan desert

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Chaudhry, M.A.

    2005-01-01

    Water scarcity is the main problem in Cholistan desert. Rainfall is scanty and sporadic and groundwater is saline in most of the area. Rainwater is collected in man made small storages, locally called tobas during rainy season for human and livestock consumption. These tobas usually retain rainwater for three to four months at the maximum, due to small storage capacity and unfavorable location. After the tobas become dry, people use saline groundwater for human and livestock consumption where marginal quality groundwater is available. In complete absence of water they migrate towards canal irrigated areas till the next rains. During migration humans and livestock suffer from hunger, thirst and diseases. In order to overcome this problem Pakistan Council of Research in Water Resources (PCRWR) has introduced improved designs of tobas. The PCRWR is collecting more than 13.0 million cubic meter rainwater annually from only ninety hectare catchment area. As a result, water is available for drinking of human and livestock population as well as to wild life through out the year for the village of Dingarh in Cholistan desert. However, water collected in these tobas is usually muddy and full of impurities. To provide good quality drinking water to the residents of Cholistan, PCRWR has launched a Project under which required quantity of drinkable water will be provided at more than seventy locations by rainwater harvesting, pumping of good and marginal quality groundwater and desalination of moderately saline water through Reverse Osmosis Plants. After the completion of project, more then 380 million gallons of fresh rainwater and more than 1300 million gallons of good and marginal quality groundwater will be available annually. Intervention to collect the silt before reaching to the tobas are also introduced, low cost filter plants are designed and constructed on the tobas for purification of water. (author)

  7. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  8. Agricultural Adaptation and Water Management in Sri Lanka

    Science.gov (United States)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  9. Applying Telecoupling Framework for Urban Water Sustainability Research and Management

    Science.gov (United States)

    Yang, W.; Hyndman, D. W.; Winkler, J. A.; Viña, A.; Deines, J.; Lupi, F.; Luo, L.; Li, Y.; Basso, B.; Zheng, C.; Ma, D.; Li, S.; Liu, X.; Zheng, H.; Cao, G.; Meng, Q.; Ouyang, Z.; Liu, J.

    2016-12-01

    Urban areas, especially megacities (those with populations greater than 10 million), are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and also interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need for applying integrated frameworks to systematically analyze urban water dynamics and factors influencing these dynamics. Here, we apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration city. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrated framework presented here demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water receiving system), but also water sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. This study also provides a foundation to apply the telecoupling framework to better understand and

  10. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    Science.gov (United States)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  11. Ground water monitoring waste water management - a risk based approach

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1990-01-01

    The Weldon Spring Site Remedial Action Project (WSSRAP), a twelve year, $400 million remedial action project sponsored by the U.S. Department of Energy, has installed numerous ground water monitoring wells over the past several years which it routinely samples. The problem of disposal of water removed during well development and purging prior to sampling was recently identified. Numerous alternatives were evaluated and a solution formulated. The solution consists of classifying the water using risk-based criteria and handling the two classes of water as appropriate using the facilities currently available. The approach presented in this manuscript is currently being reviewed by the Environmental Protection Agency and the State of Missouri. The methods and concepts used in developing this process may be applicable to other sites

  12. Managing Scarce Water Resources in China's Coal Power Industry

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  13. Proceedings of the CEATI water management 2008 workshop : climate change impacts on hydroelectric water resource management

    International Nuclear Information System (INIS)

    2008-01-01

    Hydroelectric power will occupy a significant portion of future renewable energy sources. This conference provided a forum for scientists, industry experts, and utility operators to discuss methods of determining and managing the potential impacts of climatic change on water resources. Attendants at the conference discussed issues related to future water supplies, and examined methods of predicting hydrological shifts and pattern changes for various watersheds and basins. Methods of using global climate and regional climate models for predicting the impacts of climatic change on water resources were reviewed, and new strategies for simulating and predicting shifts in sedimentation and shoreline erosion were discussed. New technologies and tools designed to improve the accuracy of utility risk assessments were also presented. The conference was divided into the following 11 sessions: (1) climate change impacts, (2) hydroclimatic variability, (3) downscaling of climate models, (4) global climate models and regional climate models, (5) watershed modelling, (6) adaptation on short-, medium-, and long-term planning, (7) climate change adaptation, (8) operations and planning, (9) risk assessment and uncertainty, (10) operations and planning, and (11) extreme events. A series of workshop posters presented new forecasting and simulation tools. The conference featured 35 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs

  14. Improving water resources management in Nigeria: policy ...

    African Journals Online (AJOL)

    Despite these noble giant strides by government, potable water supply for all is still uncertain. It is sad to note, however, that at this stage of the nation's development that there are varied and poorly coordinated groups and individual agencies participating in water supply programmes. These result in conflicts of efforts and ...

  15. Water scarcity and urban forest management: introduction

    Science.gov (United States)

    E. Gregory McPherson; Robert Prince

    2013-01-01

    Between 1997 and 2009 a serious drought affected much of Australia. Whether reasoned or unintentional, water policy decisions closed the tap, turning much of the urban forest’s lifeline into a trickle. Green infrastructure became brown infrastructure, exposing its standing as a low priority relative to other consumptive sources. To share new solutions to water scarcity...

  16. Water Management in Islam | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2001-01-01

    Jan 1, 2001 ... In the Middle East and North Africa, water is rapidly becoming the key development issue. In response, policymakers have proposed or tried to implement policies such as higher water tariffs or privatization, but have done so without considering local culture and values. Yet culture, including religion, clearly ...

  17. Airborne electromagnetics supporting salinity and natural resource management decisions at the field scale in Australia

    NARCIS (Netherlands)

    Cresswell, R.G.; Mullen, I.C.; Kingham, R.; Kellett, J.; Dent, D.L.; Jones, G.L.

    2007-01-01

    Airborne geophysics has been used at the catchment scale to map salt stores, conduits and soil variability, but few studies have evaluated its usefulness as a land management tool at the field scale. We respond to questions posed by land managers with: (1) comparison of airborne and ground-based

  18. WaterOnto: Ontology of Context-Aware Grid-Based Riverine Water Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-06-01

    Full Text Available The management of riverine water always remains a big challenge, because the volatility of water flow creates hurdles to determine the exact time and quantity of water flowing in rivers and available for daily use. The volatile water caused by various water sources and irregular flow pattern generates different kinds of challenges for management. Distribution of flow of water in irrigation network affects the relevant community in either way. In the monsoon seasons, river belt community high risk of flood, while far living community suffering drought. Contemplating this situation, we have developed an ontology for context-aware information representation of riverine water management system abetting the visualization and proactive planning for the complex real-time situation. The purpose of this WaterOnto is to improve river water management and enable for efficient use of this precious natural resource. This would also be helpful to save the extra water being discharged in sea & non-irrigational areas, and magnitude and location of water leakage. We conceptualized stakeholder and relevant entities. We developed a taxonomy of irrigation system concepts in machine process able structure. Being woven these hierarchies together we developed a detailed conceptualization of river flow that helps us to manage the flow of water and enable to extract danger situation.

  19. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  20. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    Science.gov (United States)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    than absolute sense at the landscape scale. Riparian woodland planting is proposed as one mitigation action to address these pressures. This planting disconnects the transfer of material from the landscape to the river channel by promoting increased infiltration and also provides river shading and hence decreases the rate of water heating. To identify the optimal locations for riparian woodland planting, a Monte Carlo based approach was used to identify multiple mitigation options and their influence on the pressures identified. These results were integrated into a decision support tool, which allows the user to explore the implications of individual and a set of pressures. This is achieved by allowing the user to change the importance of different pressures to identify the optimal locations for a custom combination of pressures. For example, reductions in flood risk can be prioritized over reductions in fine sediment. This approach provides an innovative way of identifying and targeting multiple diffuse pressures at the catchment scale simultaneously, which has presented a challenge in previous management efforts. The approach has been tested in the River Ribble Catchment, North West England.

  1. Problems of Financing Water Protection and Water Management Activities in the Republic of Buryatia

    Directory of Open Access Journals (Sweden)

    Dondyukov Z. B.-D.

    2010-06-01

    Full Text Available The development of the payment system for using water objects in the Russian Federation is studied. The problem of insufficient financing the water protection and water management activities in the Republic of Buryatia under conditions of active environmental restrictions of the Baikal natural area is revealed. The necessity for amendments in Russia’s budget legislation concerning water tax and charges for using water objects is substantiated and relevant proposals are made

  2. Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gregolin Grisotto

    2010-12-01

    Full Text Available This paper presents the history of occupation in the water source areas in São Paulo Metropolitan Region (hereinafter SPMR and the evolution of the legislation related to this issue, from the point of view of the environmental and water management. A descriptive methodology was used, with searches into bibliographical and documental materials, in order to present the main laws for the protection of the water supply areas of SPMR and environmental and water management. It was possible to observe some progress in the premises of the both legislation and the format proposed for the management of the water source areas. However, such progress is limited due to the lack of a more effective mechanism for metropolitan management. The construction of the metropolitan management in SPMR would enlarge the capacity of integration between municipalities and sectors. The integration between the management of water and the land use management showed to be fundamental for the protection of the water sources. The new law for protection of the water sources, State Law nº 9.866/97, is decentralized and participative, focusing on non-structural actions and integrated management. However, the effective implementation of the law still depends on the harmonization of sectoral public policies, extensive coordination and cooperation among municipalities and the progress in the degree of the commitment of the governments.

  3. Shaping the Future of Water for Agriculture : A Sourcebook for Investment in Agricultural Water Management

    OpenAIRE

    World Bank

    2005-01-01

    Agricultural water management is a vital practice in ensuring reduction, and environmental protection. After decades of successfully expanding irrigation and improving productivity, farmers and managers face an emerging crisis in the form of poorly performing irrigation schemes, slow modernization, declining investment, constrained water availability, and environmental degradation. More an...

  4. Incorporating green infrastructure into water resources management plans to address water quality impairments

    Science.gov (United States)

    Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the waters...

  5. Risk-based prioritisation of point sources through assessment of the impact on a water supply

    DEFF Research Database (Denmark)

    Overheu, Niels D.; Tuxen, Nina; Troldborg, Mads

    2011-01-01

    vulnerability mapping, site-specific mass flux estimates on a local scale from all the sources, and 3-D catchment-scale fate and transport modelling. It handles sources at various knowledge levels and accounts for uncertainties. The tool estimates the impacts on the water supply in the catchment and provides......A large number of point sources threaten groundwater resources. A tool is presented which enables a uniform and transparent risk assessment and prioritisation of these point sources at the catchment scale with respect to the needs of further investigation or remediation. The tool integrates aquifer...

  6. Water chemistry management during hot functional test

    International Nuclear Information System (INIS)

    Yokoyama, Jiro; Kanda, Tomio; Kagawa, Masaru

    1988-01-01

    To reduce radiation exposure in light water reactor, it is important decrease radioactive corrosion product which is a radiation source. One of the countermeasures is to improve water quality during plant trial operation to form a stable oxide film and to minimize metal release to the coolant at the beginning of commercial operation. This study reviews the optimum water quality conditions to form a chromium rich oxide film during hot functional test (HFT) that is thought to be stable under the PWR condition and reduce the release of Ni that is the source of Co-58, the main radiation source of exposure. (author)

  7. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  8. Water management by early people in the Yucatan, Mexico

    Science.gov (United States)

    Back, W.

    1995-06-01

    The Yucatan Peninsula is a coastal plain underlain by permeable limestone and receives abundant rainfall. Such hydrogeologic conditions should provide major supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that limits the amount of fresh water available. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed on extensive use of groundwater. The religion was water oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management, primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supply by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution. A historical perspective of a paper such as this provides insight into the attitudes concerning water of early people and perhaps provides insight into current attitudes concerning water. Hydrogeologists possess the expertise to generate relevant information required by water managers to arrive at management programs to achieve sustainable development.

  9. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  10. Water Management Membrane for Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an improved water management membrane for a static vapor feed electrolyzer that produces sub-saturated H2 and O2 is proposed. This improved membrane...

  11. 2012 Suwannee River Water Management District (SRWMD) Lidar: Bradford (FL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — USGS - Suwannee River Water Management District Contract No.G10PC00093, Task Order No.G12PD00242 Prime Contractor: Digital Aerial Solutions (DAS) Sub-Contractor:...

  12. 2006 Southwest Florida Water Management District (SWFWMD) Lidar: North District

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is one component of a digital terrain model (DTM) for the Southwest Florida Water Management District's FY2006 Digital Orthophoto (B089) and LiDAR...

  13. Sustainable River Water Quality Management in Malaysia

    OpenAIRE

    Abdullah Al-Mamun; Zaki Zainuddin

    2013-01-01

    Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA) in 1974, the water quality of Malaysian inland water (especially rivers) is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE), whereas a significant amount of pollutants is contributed by un...

  14. A Water Management Model for Toshka Depression

    Directory of Open Access Journals (Sweden)

    K. M. Fassieh

    2014-01-01

    Full Text Available Toshka Depression (TD, located about 250 km south west of the High Aswan Dam (HAD, consists of four deep-cut basins connected by natural sills. It is required to assess the contribution of TD as a spillway, in enhancing the effectiveness of Lake Nasser in flood control and water availability. However, most related previous works are descriptive and use qualitative methods. In order to provide the required assessment quantitatively, we developed a numerical model which computes TD mass balance and interbasin water movements. The model computes the variation of water volume, surface area, and water level in each one of the four basins (subdepressions, thus depicting their filling sequence, for the past 130 years. This TD response to realistic time series of water inflow gains and evaporation losses is analyzed to compute the TD overflow time series. This response helps assess water availability for agricultural use and effectiveness in alleviating flood risks. Furthermore, the developed model compares between three TD configurations to help the decision maker and recommends (i building a dam—height 10 m—at the end of the fourth subdepression near Kharga Oasis and/or (ii incorporating the third subdepression into TD by digging a canal through the hill that blocks it from the first subdepression.

  15. A Water Demand Management Strategy For The Namibian Tourism Sector

    Science.gov (United States)

    Schachtschneider, K.; Winter, K.

    The arid conditions of Namibia are forcing its decision-makers to resort to new wa- ter resource management approaches, including Water Demand Management (WDM). When Namibia achieved its independence from South Africa 1990, a new opportunity arose to rewrite certain restrictive laws and policies in order to bring about redress, development and transformation. The new Water Policy is one example in which the mindset is changed from a supply to a demand oriented water management ap- proach. Legal support for WDM within the new Water Act is a critical component that will support the implementation of WDM in all economic sectors, such as agri- culture, mining and tourism. It is argued that an appropriate WDM strategy should be designed specifically for each sector, once the typical water use patterns in a sec- tor are understood and key water resource managers at all levels are identified. The Namibian tourism sector is geographically dispersed and control over its operations is compounded by the fact that it is frequently located in extremely remote areas that are arid and ecologically sensitive. In general, WDM is rarely practised, because it is not yet supported by law and there are currently no institutional arrangements to con- trol water use in this geographically dispersed industrial sector through which WDM could be enforced either through metering and/or payments. Managers of tourist en- terprises undertake most of the water management themselves, and have been identi- fied as being crucial to the implementation of WDM strategies. A study of six tourist facilities determined the willingness and motivation of these managers to undertake various WDM initiatives. The study identified three factors which appear to influence the actions of managers, namely external controls, economics and company ethics. It is recommended that a tourism sector WDM strategy should focus on these three factors in order to transform the WDM aims and objectives on the policy level into

  16. Urban-Water Harmony model to evaluate the urban water management.

    Science.gov (United States)

    Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun

    2014-01-01

    Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.

  17. 76 FR 58840 - Central Valley Project Improvement Act; Refuge Water Management Plans

    Science.gov (United States)

    2011-09-22

    ... Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY... the Criteria for Developing Refuge Water Management Plans (Refuge Criteria). Several entities have each developed a Refuge Water Management Plan (Refuge Plan), which Reclamation has evaluated and...

  18. A model to assess water tariffs as part of water demand management

    African Journals Online (AJOL)

    Keywords: water demand management, price elasticity, change in water tariff, block tariff, WC/WDM model. INTRODUCTION ... ever developed for a 6-block pricing structure and allows for limited available input data from ..... Payment Strategies and Price Elasticity of Demand for Water for. Different revenue Groups in Three ...

  19. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  20. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  1. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  2. Rethinking Environmental Water Allocations: Demand Management of Environmental

    Science.gov (United States)

    Rudge, V.; Lankford, B.; Gowing, J.

    England is commonly perceived as a wet country, but annual internal renewable water resources per capita across all regions are less than the equivalent figures for France, Italy, Spain and Portugal. Water scarcity is an issue and there is a need for water re- source managers to address growing concerns for parity across all water use sectors in terms of their water rights, responsibilities and performance objectives. In this paper we examine, in particular, tradeoffs between environmental allocations and agricul- tural demands in the Anglian Region. Farmers understand and generally accept the need for water allocations to satisfy en- vironmental protection objectives, however they detect unfairness in the way that re- sources are managed during drought periods. This has resulted in many incidents when their water rights have been temporarily suspended, often with little or no prior warn- ing. The effect has been to create tension amongst water users and to foster perceptions of uncertainty about access to water for irrigation. In a recent initiative the UK Environment Agency has implemented a more transpar- ent system for managing water resources at a catchment level. Associated with this initiative, there has been an effort to establish more consistent and scientifically rigor- ous methods for determining environmental allocations. Yet despite this transparency, during droughts environmental water needs will be determined using a precautionary principle and prior to determining needs of other sectors. The question however re- mains should the environment receive fixed and preferential water rights and does this contribute to Swise and efficientS use of available water resources? ´ 1 The adoption of principles underlying the EU Water Framework Directive should im- prove allocation of available resources during periods of water scarcity. We will exam- ine the problems that arise in representative catchments within the Anglian Region if the environment receives a

  3. Bringing ecosystem services into integrated water resources management.

    Science.gov (United States)

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Water quality and resource management in the dairy industry.

    Science.gov (United States)

    Boguniewicz-Zablocka, Joanna; Klosok-Bazan, Iwona; Naddeo, Vincenzo

    2017-11-03

    Food industry is one of the most important and fastest growing sectors of economy in Poland. This sector is also characterized by high demand for the resources, particularly for water. Polish food industrial plants consumed 793 hm 3 of water in 2014. Dairy branch had a combined 35% share of the above consumption. As shown by the data obtained from the Polish Central Statistical Office, the majority of dairy plants use its own source of water, so this branch is also important water producer in Poland. Water used for dairy industry should meet the requirements of at least drinking water quality, so the factories need to treat the water. This paper analyses the correlations between selected technical process, equipment profiles and water quality, and consumption in two types of dairy factories (DF). The first one DF-1 processes approx. 50,000 L of milk, and the second, DF-2 processes approx. 330,000 L of milk per day. The water taken from the wells needs to be pre-treated because of iron and manganese concentration and due to specific requirements in various industrial processes. As a result of this work, we have managed to propose technological solutions in the context of water consumption rationalization. The proposed solutions aim at improving water and wastewater management by reducing the amount of consumed water by industry.

  5. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Science.gov (United States)

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  6. Are our dynamic water quality models too complex? A comparison of a new parsimonious phosphorus model, SimplyP, and INCA-P

    Science.gov (United States)

    Jackson-Blake, L. A.; Sample, J. E.; Wade, A. J.; Helliwell, R. C.; Skeffington, R. A.

    2017-07-01

    Catchment-scale water quality models are increasingly popular tools for exploring the potential effects of land management, land use change and climate change on water quality. However, the dynamic, catchment-scale nutrient models in common usage are complex, with many uncertain parameters requiring calibration, limiting their usability and robustness. A key question is whether this complexity is justified. To explore this, we developed a parsimonious phosphorus model, SimplyP, incorporating a rainfall-runoff model and a biogeochemical model able to simulate daily streamflow, suspended sediment, and particulate and dissolved phosphorus dynamics. The model's complexity was compared to one popular nutrient model, INCA-P, and the performance of the two models was compared in a small rural catchment in northeast Scotland. For three land use classes, less than six SimplyP parameters must be determined through calibration, the rest may be based on measurements, while INCA-P has around 40 unmeasurable parameters. Despite substantially simpler process-representation, SimplyP performed comparably to INCA-P in both calibration and validation and produced similar long-term projections in response to changes in land management. Results support the hypothesis that INCA-P is overly complex for the study catchment. We hope our findings will help prompt wider model comparison exercises, as well as debate among the water quality modeling community as to whether today's models are fit for purpose. Simpler models such as SimplyP have the potential to be useful management and research tools, building blocks for future model development (prototype code is freely available), or benchmarks against which more complex models could be evaluated.

  7. Management of Water Resources and Protected Territories

    Directory of Open Access Journals (Sweden)

    Antonio Cezar Leal

    2017-09-01

    Full Text Available According to Carl Sagan (1934-1996 water is the singular element gives color and life to this pale blue dot of the solar system we inhabit - the Earth. Interspersed by five large oceans, there are terrestrial ecosystems, which house a diverse set of living beings and, also, more water in different forms. In this arena of life, mankind has evolved, created its own media and ecosystems, moving away from the natural world (Thomas 2010. This contrast has led us to face planetary crises never before experienced by our species, such as loss of biodiversity, global climate change, and changes in biogeochemical fluxes (Steffen et al. 2015. These crises, in addition to water crises, threaten our quality of life and even our ability to survive.

  8. Promoting Integrated Water Resources Management in South West ...

    African Journals Online (AJOL)

    This paper elucidates the need to implement Integrated Water Resources Management (IWRM) in South West Nigeria. At present, water related programmes in existing capacity building institutions (CBIs) do not have IWRM and climate change adaptation in their synopsis; this suggests the need for curriculum review.

  9. 33 CFR 151.1510 - Ballast water management.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE... an alternative environmentally sound method of ballast water management that has been submitted to... under the Federal Water Pollution Control Act (33 U.S.C. 1251 et seq.). [CGD 91-066, 58 FR 18334, Apr. 8...

  10. Community-based management of water supply services

    CSIR Research Space (South Africa)

    Mogane-Ramahotswa, B

    1992-01-01

    Full Text Available One of the most important aspects of suitability of water supply is the ability of the community to manage its own scheme. Unlike in urban settlement institutional arrangements for rural water supply are rudimentary. Over the past decade...

  11. Emergence of Integrated Water Resources Management : Measuring implementation in Vietnam

    NARCIS (Netherlands)

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would

  12. The role of eutrophication models in water management

    NARCIS (Netherlands)

    Molen, van der D.

    1999-01-01

    In this thesis the role of eutrophication models in water management is analysed. The thesis consists of an extended introduction followed by five Appendices with papers describing different mathematical models dealing with eutrophication in surface waters. At first systems analysis is

  13. Management of water resources in South Africa: A review | Molobela ...

    African Journals Online (AJOL)

    Too often, the participation discourse draws attention away from the very real social and economic differences between people and the need for the redistribution of resources, entitlements, and opportunities. This is typified by the definition of stakeholders as water. Keywords: Water, management, resources, stakeholder, ...

  14. Water management paradigms in Iran: technical, social and ethical aspects

    NARCIS (Netherlands)

    Balali, M.R.; Keulartz, F.W.J.; Korthals, M.J.J.A.A.

    2007-01-01

    In Iran, water scarcity is one of the main problems threatening food security. The country is confronted with the challenge to continue the expansion of food production to meet future demand without negative effects on the environment. To illuminate the problems and perspectives of water management

  15. Multi-criteria decision making for water resource management: a ...

    African Journals Online (AJOL)

    In this study, a water resource management model that facilitates indicator-based decisions, with respect to environmental, social and economic dimensions in a multiple criteria perspective, is developed for the Gediz River Basin in Turkey. The basic input of the proposed model is the quantity of surface water that is mainly ...

  16. A eed for Hydroinformatics for the Water Resource Management in ...

    African Journals Online (AJOL)

    Nafiisah

    With the ever changing climatic conditions, it is imperative that the water sector of small island states rethinks their strategies and start to lay more and more emphasis on the importance of hydroinformatics. There is need for proper knowledge management in the water sector and this paper attempts to highlight the ...

  17. Changing the Currents of Water Management | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Avoiding a catastrophic water shortage in the coming decades will require finding new ways to control the demand for this precious resource. This is the view of participants in the Water Demand Management Forum, an initiative sponsored by the International Development Research Centre (IDRC) that brought together ...

  18. Using Demand Side Management to Adapt to Water Scarcity and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will examine whether demand-side management (DSM) can provide a solid basis for water management and strengthen the capacity for adapting to climate change in the Saiss basin. The project will work with multiple stakeholders and endeavor to benefit the most vulnerable and disadvantaged communities ...

  19. A Candidate Army Energy and Water Management Strategy

    National Research Council Canada - National Science Library

    Fournier, Donald F; Westervelt, Eileen T

    2004-01-01

    .... This work augments on-going energy and water management initiatives within the Army by developing a new candidate Army level strategy that responds to anticipated legislation; reflects current DOD and DA requirements, vision, and values in light of the current world situation; incorporates sound science and management principles; and organizes and focuses efforts into an integrated program.

  20. Drivers and barriers towards sustainable water and land management in the Olifants-Doorn Water Management Area, South Africa

    CSIR Research Space (South Africa)

    Knüppe, K

    2016-11-01

    Full Text Available of ecosystem services in the Olifants-Doorn Water Management Area (WMA). Results obtained from a literature search and qualitative interviews indicate that the environmental awareness of stakeholders about their natural resources and related ecosystem services...

  1. Vertical profiles of soil water content as influenced by environmental factors in a small catchment on the hilly-gully Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Bing Wang

    Full Text Available Characterization of soil water content (SWC profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0-20, 20-160, and 160-300 cm, generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05. Landform significantly affected SWC in the surface soil layer (0-20 cm before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other

  2. Emergence of Integrated Water Resources Management: Measuring implementation in Vietnam

    OpenAIRE

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would be interesting to evaluate how well water resources plans are adhering to the principles of IWRM, to learn and further tailor these principles to the Vietnamese situation. Practical approaches on h...

  3. State of Art About water Uses and Waste water Management in Lebanon

    International Nuclear Information System (INIS)

    Geara, D.; Moilleron, R.; Lorgeoux, C.; El Samarani, A.; Chebbo, Gh.

    2010-01-01

    This paper shows the real situation about management of water and waste water in Lebanon and focuses on problems related to urban water pollution released in environment. Water and waste water infrastructures have been rebuilt since 1992. However, waste water management still remains one of the greatest challenges facing Lebanese people, since water supply projects have been given priority over wastewater projects. As a consequence of an increased demand of water by agricultural, industrial and household sectors in the last decade, waste water flows have been increased. In this paper, the existing waste water treatment plants (WWTP) operating in Lebanon are presented. Most of them are small-scale community-based ones, only two large-scale plants, constructed by the government, are currently operational. Lebanese aquatic ecosystems are suffering from the deterioration of water quality because of an insufficient treatment of waste water, which is limited mostly to pre-treatment processes. In fact, domestic and industrial effluents are mainly conducted together in the sewer pipes to the WWTP before being discharged, without adequate treatment into the rivers or directly into the Mediterranean Sea. Such discharges are threatening the coastal marine ecosystem in the Mediterranean basin. This paper aims at giving the current state of knowledge about water uses and wastewater management in Lebanon. The main conclusion drawn from this state of art is a lack of data. In fact, the available data are limited to academic research without being representative on a national scale. (author)

  4. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  5. Ecological Risk Assessment in Water Resource Management ...

    African Journals Online (AJOL)

    The US EPA published guidelines for the application of ecological risk assessment (ERA) in the USA in 1998 (US EPA 1998). The process diagram derived by Murray and Claassen (1999) in an evaluation of the US EPA framework is discussed in the context of the South African National Water Act. The evaluation discusses ...

  6. SOIL AND WATER CONSERVATION MANAGEMENT THROUGH ...

    African Journals Online (AJOL)

    Osondu

    excess water for the field. However, according to farmers' opinion, through time most of these structures are accelerating soil erosion. During a transect walk with DAs gullies associated with the construction of these structure especially, between the boundaries of plots, were commonly observed. Leaving crop residues on ...

  7. Management strategies for sustainable western water

    Science.gov (United States)

    Scott Tyler; Sudeep Chandra; Gordon Grant

    2017-01-01

    With the effects of the dramatic western US drought still reverberating through the landscape, researchers gathered in advance of the 20th annual Lake Tahoe Summit to discuss western US water issues in the 21st century. This two-day workshop brought together ~40 researchers from universities and agencies (federal and state) to discuss the prospects that...

  8. Water Sludge Management for Military Installations

    Science.gov (United States)

    1989-11-01

    sludge has been suggested for use as a plasticizer in the ceramics industry as part of refractory bricks, and as a road-stabilizing agent. 3 3 In Atlanta...G. L Gulp (Eds.), Handbook of Public Water Supply [Van Nostrand Reinhold, 1986]. Used with permission.) o 50 100 150 2 E 4 -0 60 81 Mg

  9. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Nigeria has a population of about 160 million people and an area of land covering 200,000 square kilometres. Amongst the numerous natural resources in Nigeria; water resources is most plenteous and is developing at a fast pace. Because of the lack of sound early development policy and meaningful investments, the ...

  10. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  11. Water demand management: A policy response to climate change

    International Nuclear Information System (INIS)

    Rivers, R.; Tate, D.

    1990-01-01

    The impacts of climate change on the water resources of the Great Lakes region are discussed. It is predicted that there will be a relative water scarcity in the Great Lakes basin of Ontario as climate changes occur over the next two decades. Declines in water supply will be accompanied by deterioration in the quality of fresh water as higher temperatures and higher relative quantities of discharged wastewater to water bodies reduce both assimilative and dilutive capacity. The most cost effective policy is to encourage water conservation through programs of water demand management. Water should be priced at the point at which its marginal cost is equal to its marginal product, ie. if priced any higher, less efficient substitutes would be used. Not only would water usage, and subsequent degradation of used water, be reduced, but energy and other cost savings would be achieved. The additional costs that apply to water users could be returned to the communities as additional revenue to be applied against sewage treatment upgrades and other environmental enhancements. Communities involved in water study should consider the development of water use analysis models to assist with decision making about allocation, pricing and availability of water supplies. 10 refs

  12. ISSUES ON THE ROLE OF EFFICIENT WATER PRICING FOR SUSTAINABLE WATER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Simona FRONE

    2012-06-01

    Full Text Available This paper aims to highlight some of the main issues raised by developing and implementing the most appropriate approach to water pricing, and to induce a sustainable water management. Therefore, we define the concept and utility of water demand management as one objective of efficient water pricing. Next we analyse the basic economics and some important theoretical insights of water pricing. We further with state the main four inter-correlated principles of sustainable water pricing (full-cost recovery, economic efficiency,equity and administrative feasability and the trends and challenges of their actual implementing in the water pricing policy of Romania and other EU countries. We end with a review of opinions, personal conclusions and recommendations on the actual opportunity, effectiveness and role of efficient water pricing in fulfilling the goals of sustainabilty.

  13. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    Science.gov (United States)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  14. Challenges of Integrated Water Resources Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2014-07-01

    Full Text Available The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM should cope with complex issues of water in order to maximize the resultant economic and social welfare in an equitable manner, without compromising the sustainability of vital ecosystems. Even though the government of Indonesia has adopted new paradigm for water resources management by the enactment of Law No. 7/2004 on water resources, the implementation of IWRM may face the technical and managerial challenges. This paper briefly reviews the implementation of IWRM and related principles and provides an overview of potential water-related issues and progress towards implementation of IWRM in Indonesia. The availability of water and a broader range of water-related issues are identified. The recommended actions for improving the future IWRM are suggested. Challenges to improve the capacity buildings of IWRM related to enabling environment, institutional frameworks and management instruments are verified to contribute to the future directions for efficient problem-solving ability.

  15. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  16. Working towards sustainable urban water management: the vulnerability blind spot.

    Science.gov (United States)

    Werbeloff, L; Brown, R

    2011-01-01

    The unprecedented water scarcity in Australia coincides with the adoption of a new urban water rhetoric. The 'Security through Diversity' strategy has been adopted in a number of Australian cities as a new and innovative approach to urban water management. Although this strategy offers a more holistic approach to urban water management, in practice, the Security through Diversity strategy is largely being interpreted and implemented in a way that maintains the historical dependence on large scale, centralised water infrastructure and therefore perpetuates existing urban water vulnerabilities. This research explores the implementation of Security through Diversity as the new water scarcity response strategy in the cities of Perth and Melbourne. Through a qualitative study with over sixty-five urban water practitioners, the results reveal that the practitioners have absorbed the new Security through Diversity language whilst maintaining the existing problem and solution framework for urban water management. This can be explained in terms of an entrenched technological path dependency and cognitive lock-in that is preventing practitioners from more comprehensively engaging with the complexities of the Security through Diversity strategy, which is ultimately perpetuating the existing vulnerability of our cities. This paper suggests that greater engagement with the underlying purpose of the security though diversity strategy is a necessary first step to overcome the constraints of the traditional technological paradigm and more effectively reduce the continued vulnerability of Australian cities.

  17. Research on water management system based on Android

    Science.gov (United States)

    Li, Dongjiang; Hu, Songlin

    2018-04-01

    With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.

  18. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-11-16

    ... Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The following Water Management Plans are available for review: Orland-Artois Water District Kern Tulare Water... Water Management Plans (Criteria). For the purpose of this announcement, Water Management Plans (Plans...

  19. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  20. Small Water System Management Program: 100 K Area

    International Nuclear Information System (INIS)

    Hunacek, G.S. Jr.

    1995-01-01

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site's 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410