WorldWideScience

Sample records for catchment water quality

  1. Assessing water quality trends in catchments with contrasting hydrological regimes

    Science.gov (United States)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  2. The water quality of the LOCAR Pang and Lambourn catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and 'uniform pattern' characteristic of aquifer drainage with, superimposed, a series of 'flashier' spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the 'flashier' responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river. Keywords: water quality, nitrate, ammonium, phosphorus, pH, alkalinity, nutrients, major elements, trace elements, rainfall, river, Pang, Lambourn, LOCAR

  3. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  4. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe

    Science.gov (United States)

    Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy

    2017-08-01

    The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.

  5. Impact of land use on water quality in the Likangala catchment ...

    African Journals Online (AJOL)

    use regulation for improving water quality, improved sanitation, the provision of civic education to communities and the employment of an ecosystem approach in management of the catchment are recommended. Keywords: environment ...

  6. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    Science.gov (United States)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  7. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  8. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  9. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549

  10. Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António

    2016-04-01

    Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, purban patterns and storm drainage system, should help enable urban planners to minimize adverse impacts of urbanization on water quality.

  11. Situational analysis of the microbial water quality in a peri-urban catchment in South Africa

    CSIR Research Space (South Africa)

    Venter, SN

    1997-01-01

    Full Text Available A situational analysis of a peri-urban catchment experiencing microbial water quality problems was carried out using data collected over two and a half years. The water and land use in the area was determined. The main sources of pollution were...

  12. Situation analysis of water quality in the Umtata River catchment ...

    African Journals Online (AJOL)

    The Umtata River was characterised by using standard physico-chemical and microbiological methods to assess the present water quality in the river. The results indicated high turbidity, gross microbiological and cadmium pollution. Turbidity values ranged from 0.28 NTU to 1 899 NTU highlighting the known problem of ...

  13. Simulating high frequency water quality monitoring data using a catchment runoff attenuation flux tool (CRAFT).

    Science.gov (United States)

    Adams, Russell; Quinn, Paul F; Perks, Matthew; Barber, Nicholas J; Jonczyk, Jennine; Owen, Gareth J

    2016-12-01

    High resolution water quality data has recently become widely available from numerous catchment based monitoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept pace with the advances in monitoring data. Model performance at predicting phosphorus (P) and sediment concentrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here, the data from the Eden Demonstration Test Catchments (DTC) project have been used to calibrate the Catchment Runoff Attenuation Flux Tool (CRAFT), a new, parsimonious model developed with the aim of modelling both the generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow (baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contaminants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found that this approach for water quality models may be the best assessment method as opposed to using a single metric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P (TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in the future to explore the impacts on water quality of different mitigation options in the catchment; these will include attenuation of surface runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate

    Science.gov (United States)

    Godsey, Sarah; Kirchner, James

    2017-04-01

    Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration-discharge relationships are important signatures of catchment (bio)geochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, Godsey et al. (2009) showed that concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments were much flatter than this simple dilution model would predict. Instead, their analysis showed that these catchments behaved almost like chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 km2 in drainage area, and spanning a wide range of lithologic and climatic settings. Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described by Godsey et al. (2009). Among these same catchments, however, site-to-site variations in mean concentrations are strongly (negatively) correlated with long-term average precipitation and discharge, suggesting strong dilution of stream concentrations under long-term leaching of the critical zone. The picture that emerges is one in which, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. Examples illustrating the different influences of (short-term) weather and (long-term) climate on water quality will be presented, and their implications will be discussed

  15. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir

    Science.gov (United States)

    Xu, E.

    2015-12-01

    Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.

  16. North Putrajaya Catchment Area Putrajaya, Malaysia-Challenges in Water Quality Management

    International Nuclear Information System (INIS)

    Mohd Zamri Daud; Pereira, J.J.; Mazlin Mokhtar

    2011-01-01

    The Putrajaya Administrative area covers 70 % of the Putrajaya Lake catchment area. Development work carried out within the Putrajaya area abides by the rules and regulations set by the Putrajaya Corporation to ensure that the quality of the lake water and wetland within the Putrajaya area meets the stipulated benchmark standards. However, 30 % of the Putrajaya lake and wetland catchment area is located outside of administration and prerogative of the Putrajaya Corporation. The North Putrajaya catchment area which originates from the Sg. Chuau River contributes the bulk of the water that flows into the lake and wetlands of Putrajaya. Water quality data collected by the Putrajaya Corporation for the period of 2002 to 2005 has been analysed to identify major issues in the Putrajaya Wetland North Catchment area. Data from 2002 shows average percentage parameter of non-compliance Putrajaya Standard for ammoniacal nitrogen (NH 3 -N) at 43.7 %, E. coli at 31.3 % and TSS at 12.5 % while the DO and COD are both 6.2 %. For 2003, the average percentage parameter of non compliance for NH 3 -N was at 23.7 %, E. coli at 18.4 %, total coliform at 18.4 %, TSS at 2.6 %, DO at 13.2 %, COD at 13.2 % and BOD at 10.5 %. For 2004, the average percentage parameter of non complying for NH 3 -N was at 35.5 %, E. coli at 22.6 %, total coliform at 12.9 %, TSS at 9.7 %, COD at 3.2 % and BOD at 16.1 %. For 2005, the average percentage parameter of non compliance were at is 36.4 % for E. coli, 22.7 % for NH 3 -N, 18.2 % for total coliform, 13.6 % for BOD and 4.5 % for both DO and COD. In conclusion the analysed data within the four year period showed that the NH 3 -N and E. coli discharge from the north catchment area did not comply with the Putrajaya Standard. The main factors of water quality issues in the Putrajaya Wetland North Catchment area include the failure of integrating the management of the catchment areas and the stake holders attitude of total disregard of the management and

  17. Estimating the effects of land-use and catchment characteristics on lake water quality: Irish lakes 2004-2009

    OpenAIRE

    Curtis, John; Morgenroth, Edgar

    2013-01-01

    This paper attributes the variation in water quality across Irish lakes to a range of contributory factors such as human population, septic tanks, urban waste water treatment, phosphorous excreted by livestock, as well as catchment soil and geology. Both linear and non-linear quadratic models were estimated in the analysis, which attempts to account for point and non-point sources of pollution affecting water quality in 216 lake catchments. The models show a clear link between activities with...

  18. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    Science.gov (United States)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding

  19. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  20. Challenges for implementing water quality monitoring and analysis on a small Costa Rican catchment

    Science.gov (United States)

    Golcher, Christian; Cernesson, Flavie; Tournoud, Marie-George; Bonin, Muriel; Suarez, Andrea

    2016-04-01

    The Costa Rican water regulatory framework (WRF) (2007), expresses the national concern about the degradation of surface water quality observed in the country since several years. Given the urgency of preserving and restoring the surface water bodies, and facing the need of defining a monitoring tool to classify surface water pollution, the Costa-Rican WRF relies on two water quality indexes: the so-called "Dutch Index" (D.I) and the Biological Monitoring Working Party adapted to Costa Rica (BMWP'CR), allowing an "easy" physicochemical and biological appraisal of the water quality and the ecological integrity of water bodies. Herein, we intend to evaluate whether the compound of water quality indexes imposed by Costa Rican legislation, is suitable to assess rivers local and global anthropogenic pressure and environmental conditions. We monitor water quality for 7 points of Liberia River (northern pacific region - Costa Rica) from March 2013 to July 2015. Anthropogenic pressures are characterized by catchment land use and riparian conditions. Environmental conditions are built from rainfall daily series. Our results show (i) the difficulties to monitor new sites following the recent implementation of the WRF; (ii) the statistical characteristics of each index; and (iii) a modelling tentative of relationships between water quality indexes and explanatory factors (land-use, riparian characteristics and climate conditions).

  1. Water quality improvements from afforestation in an agricultural catchment in Denmark illustrated with the INCA model

    Directory of Open Access Journals (Sweden)

    A. Bastrup-Birk

    2004-01-01

    Full Text Available Intensive agricultural land use across Europe has altered nitrogen (N budget of catchments substantially, causing widespread N pollution of freshwater. Although the N cycle in forests has changed due to increased N deposition, most forest soil waters in Europe have low nitrate concentrations. The protective function of forests on water quality has led to increasing interest in the planting of new forests on arable land as a measure to protect valuable or sensitive freshwater resources. The paper illustrates the effects of afforestation on water and N cycling using the Integrated Nitrogen Catchment (INCA model. The model was calibrated on the Horndrup catchment in the eastern part of Jutland, Denmark, which is dominated by agricultural land use but also covered by 18% of forest land. The dynamics of nitrate concentrations in the stream water were simulated successfully by INCA over a three-year period. The simulation of the dynamics of nitrate concentrations in the soil water is closely linked to the simulation of the hydrological dynamics and especially to the rainfall. The best fit was achieved for both arable and forest land during the wettest year of the study period. The model was then used to simulate the effect of afforestation of a catchment dominated by agriculture on N fluxes with seepage and runoff. Scenarios of whole catchment conversion to forest were run, based on observations of evapotranspiration and N deposition from other Danish sites. The simulated conversion to mature forest reduced runoff by 30–45% and reduced the nitrate concentrations in the soil water by 50–70%. The simulated effect of afforestation on N leaching was an almost direct reflection of the change in the N input: substantial changes in the plant demand and soil N dynamics over the afforestation period were not simulated. To simulate the N dynamics over longer time-scales, appropriate for the study of afforestation, it is suggested that the INCA model be run

  2. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  3. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    Science.gov (United States)

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six

  4. Assessment of water quality of the Odaw river catchment using hydrochemistry and stable isotope techniques

    International Nuclear Information System (INIS)

    Kemetse, J. K.

    2014-07-01

    The physico-chemical and isotopic properties of water In the Odaw River catchment including some hand-dug wells and water from the unsaturated zone were assessed to ascertain the impact of human activities on the water quality and also to assess the vulnerability of ground water resources in the catchment. Samples were collected from October, 2013 to March, 2014 using well washed plastic bottles. During every sampling session; temperature, conductivity, salinity, turbidity and pH were measured in situ using HACH portable conductivity meter and a pH meter. Alkalinity and bicarbonates were determined by titration. In the laboratory, total dissolved solid (TDS) and total suspended solids (TSS) were determined using calorimetric methods. Total hardness, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and dissolved oxygen (DO) and calcium were determined by titration. Anions such as nitrates, phosphates, sulphate, chloride, fluoride were analyzed by Ion Chromatography, while Flame Photometry was used to analyze sodium and potassium. Atomic Absorption Spectroscopy (AAS) was used to determine magnesium, cadmium, mercury, lead and arsenic. Liquid isotope analyzer was also used for the determination of 18 O and 2 H. Stable isotopes of 18 O, 2 H and 15 N were analyzed to help understand the source and flow of nutrients into the catchment. Data were analyzed using Microsoft Excel-2003 and CCME WQI. From the results pH for the water samples upstream was acidic to slightly alkaline (2.8 - 8.1), midstream was alkaline (7.3 - 11.5) and the downstream was 6.4 -7.7; TDS, EC and salinity increased from the upstream to the downstream as the river approaches the lagoon. There was some amount of heavy metal contamination in all the samples with the exception of Cd which was below detection limit. Hg was also below detection limit in the upstream. The CCME WQI was calculated for the surface water samples using 16 physico-chemical parameters. Results indicated that the

  5. Microbial water quality in the upper Olifants River catchment: implications for health

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2012-09-01

    Full Text Available poor to fair condition. Mining-related disturbances were seen as *Corresponding author. E-mail: wleroux@csir.co.za. Tel: (+27)12 841 2189. the main cause of impairment of river health in the upper parts of the catchment, with the exception... relationship, N50: median infectious dose, r: parameter characterised by dose-response relationship. Microbial monitoring Microbial water quality was monitored over a two year period. During the first year, faecal indicator counts (E. coli) levels...

  6. Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition

    Science.gov (United States)

    Crouch, Tia; Walker, Jonathan

    2013-04-01

    Spatial variation in water quality within the water bodies of a Peak District catchment and the contribution of moorland condition Tia Crouch and Jonathan Walker (Moors for the Future Partnership) Upland locations are significant water supply sources providing over 70% of fresh water in Great Britain. However, the peatlands of the Peak District, Southern Pennines are highly contaminated with anthropogenically derived, atmospherically deposited pollutants, such as heavy metals. This is due to their location between the cities of Manchester and Sheffield, the centre of the 19th century English Industrial Revolution. These peatlands are also severely eroded; therefore erosion could be releasing these pollutants into the fluvial system, representing a threat to both aquatic ecosystems and drinking water supplies. These threats are regulated under the Water Framework Directive (WFD) and the Water Supply Regulations respectively. There are two aims of this project. The first aim is to identify spatial and temporal variability of water quality within the Bamford water treatment works (WTW) catchment. This was achieved by fortnightly spot sampling at eight of the tributaries into the reservoir system. The second aim is to assess the contribution of moorland condition to water quality within the Bamford WTW catchment. Similarly, this was achieved by fortnightly spot sampling at eight moorland streams, draining from a variety of peatland conditions (bare peat, restoration, intact and heather burn). Water samples were analysed for carbon (DOC, POC & TOC), pH, hardness and a suite of heavy metals, including copper, iron and zinc. In addition, stream temperature and stage height was recorded. Preliminary results highlight a number of issues within the Bamford WTW catchment: under the WFD streams are not achieving 'good' status for pH, copper and zinc, and under the Drinking Water Standards (DWS) streams are not achieving targets for aluminium, iron and colour. For example, the

  7. Evaluating an ecosystem management approach for improving water quality in two contrasting study catchments in south-west England.

    Science.gov (United States)

    Glendell, Miriam; Brazier, Richard

    2014-05-01

    The European Water Framework Directive (WFD) 2000 established a new emphasis for the management of freshwaters by establishing ecologically-based water quality targets that are to be achieved through holistic, catchment-scale, ecosystem management approaches. However, significant knowledge gaps still exist in the understanding of the cumulative effectiveness of multiple mitigation measures on a number of pollutants at a catchment scale. This research furthers the understanding of the effectiveness of an ecosystem management approach to deliver catchment-scale water quality improvements in two contrasting study catchments in south-west England: the lowland agricultural Aller and the upland semi-natural Horner Water. Characterisation of the spatial variability of soil properties (bulk density, total carbon, nitrogen, C:N ratio, stable isotope δ15N, total, organic and inorganic phosphorus) in the two study catchments demonstrated extensive alteration of soil properties in the agricultural catchment, with likely long-term implications for the restoration of ecosystem functioning and water quality management (Glendell et al., 2014b). Further, the agricultural catchment supported a proportionally greater total fluvial carbon (dissolved and particulate) export than the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment (25.5-116.2 t km-2) were higher than from the semi-natural catchment (21.7-57.8 t km-2). In addition, the agricultural catchment exported proportionally more TPC (0.51-2.59 kg mm-1) than the semi-natural catchment (0.36-0.97 kg mm-1) and a similar amount of DOC (0.26-0.52 kg mm-1 in the Aller and 0.24-0.32 kg mm-1 in Horner Water), when normalised by catchment area and total discharge, despite the lower total soil carbon pool, thus indicating an enhanced fluvial loss of sediment and carbon (Glendell and Brazier, in review). Whilst

  8. Managing erosion, sediment transport and water quality in drained peatland catchments

    Energy Technology Data Exchange (ETDEWEB)

    Marttila, H.

    2010-07-01

    Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and disturbed headwater catchments in Finland are presented and potential sediment load management methods are discussed for drainage areas and headwater brooks. Particular attention is devoted to erosion of organic peat, sediment transport and methods to reduce the impacts of peatland drainage in boreal headwaters. This thesis consists of six articles. The first and second papers focus on the erosion and sediment transport processes at peat harvesting and peatland forestry drainage networks. The results indicate that in-channel processes are important in drained peatland, since the drainage network often constitutes temporary inter-storm storage for eroding and transporting material. Sediment properties determine the bed sediment erosion sensitivity, as fluffy organic peat sediment consolidates over time. As flashiness and peak runoff control sediment entrainment and transport from drained peatland areas, water quality management should include peak runoff management. The third, fourth and fifth papers studies use and application of peak runoff control (PRC) method to the peat harvesting and peatland forestry conditions for water protection. Results indicate that effective water quality management in drained peatland areas can be achieved using this method. Installation of the PRC structures is a useful and cost-effective way of storing storm runoff waters temporarily in the ditch system and providing a retention time for eroded sediment to settle to the ditch bed and drainage network. The main

  9. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  10. Microbial and metal water quality in rain catchments compared with traditional drinking water sources in the East Sepik Province, Papua New Guinea.

    Science.gov (United States)

    Horak, Helena M; Chynoweth, Joshua S; Myers, Ward P; Davis, Jennifer; Fendorf, Scott; Boehm, Alexandria B

    2010-03-01

    In Papua New Guinea, a significant portion of morbidity and mortality is attributed to water-borne diseases. To reduce incidence of disease, communities and non-governmental organizations have installed rain catchments to provide drinking water of improved quality. However, little work has been done to determine whether these rain catchments provide drinking water of better quality than traditional drinking water sources, and if morbidity is decreased in villages with rain catchments. The specific aim of this study was to evaluate the quality of water produced by rain catchments in comparison with traditional drinking water sources in rural villages in the East Sepik Province. Fifty-four water sources in 22 villages were evaluated for enterococci and Escherichia coli densities as well as 14 health-relevant metals. In addition, we examined how the prevalence of diarrhoeal illness in villages relates to the type of primary drinking water source. The majority of tested metals were below World Health Organization safety limits. Catchment water sources had lower enterococci and E. coli than other water sources. Individuals in villages using Sepik River water as their primary water source had significantly higher incidence of diarrhoea than those primarily using other water sources (streams, dug wells and catchments).

  11. The effectiveness of agricultural stewardship for improving water quality at the catchment scale: Experiences from an NVZ and ECSFDI watershed

    Science.gov (United States)

    Kay, Paul; Grayson, Richard; Phillips, Martin; Stanley, Karen; Dodsworth, Alan; Hanson, Ann; Walker, Andrew; Foulger, Miles; McDonnell, Iain; Taylor, Simon

    2012-02-01

    SummaryAgriculture is estimated to be responsible for 70% of nitrate and 30-50% of phosphorus pollution, contributing to ecological and water treatment problems. Despite the fact that significant gaps remain in our understanding, it is known that agricultural stewardship can be highly effective in controlling water pollution at the plot and field scales. Knowledge at the catchment scale is, to a large extent, entirely lacking though and this is of paramount concern given that the catchment is the management unit used by regulatory authorities. The few studies that have examined the impact of agricultural stewardship at the catchment scale have found that Nitrate Vulnerable Zones (NVZs) in the UK have resulted in little improvement in water quality which concurs with the current catchment study. In addition to NVZs, there was little evidence to suggest that the England Catchment Sensitive Farming Delivery Initiative had impacted water quality and suggestions have been made for improvements, such as ensuring that stewardship measures are used in key pollution source areas and their implementation and impacts are monitored more closely. This will be essential if agricultural catchment management schemes are going to provide the benefits expected of them. Nevertheless, more intensive monitoring than that carried out by regulators showed a significant trend in decreasing winter nitrate peaks in some streams which is hypothesised to be due to recent reduced inorganic fertiliser application as a result of increasing prices. It was concluded that, collectively, these findings indicate that agricultural stewardship measures have the potential to improve water quality at the catchment scale but that voluntary schemes with insufficient financial reward or regulatory pressure are unlikely to be successful.

  12. Understanding Biophysical Interactions In The Great Barrier Reef Catchments: Better Landscape Management For Water Quality Outcomes

    Science.gov (United States)

    Bui, E. N.; Wilkinson, S. N.; Bartley, R.

    2014-12-01

    Sediment input to the Great Barrier Reef (GBR) lagoon has had deleterious impacts on seagrass and coral ecosystems. The response of the Australian government has been to develop policies to: (i) reverse the impact of threats from sediments and nutrients, and improve water quality and aquatic health of the GBR lagoon; and (ii) to facilitate the uptake of sustainable farming and land management practices that deliver improved ecosystem services, by at least 30 per cent of farmers. The Reef2050 Long term sustainability plan aims to identify priority locations for on-ground investment of remediation options that will result in a reduction of constituent loads to the GBR. Recent sediment tracing studies indicate that subsoil from erosion features such as gullies and channel banks are the dominant contributors of sediment in the GBR catchments. Better control of gully and streambank erosion and restoration of riparian habitats are therefore necessary. Here we review the evidence for bank erosion in the GBR catchments and how scientific evidence on feedback relationships between climate- geochemistry-vegetation-landforms can be used to develop better guidelines for streambank and gully re-vegetation.

  13. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    Science.gov (United States)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  14. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    Science.gov (United States)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  15. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  16. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    Science.gov (United States)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  17. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    Science.gov (United States)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  18. Water quality improvements from afforestation in an agricultural catchment in Denmark illustrated with the INCA model

    DEFF Research Database (Denmark)

    Bastrup-Birk, A.; Gundersen, P.

    2004-01-01

    Intensive agricultural land use across Europe has altered nitrogen (N) budget of catchments substantially, causing widespread N pollution of freshwater. Although the N cycle in forests has changed due to increased N deposition, most forest soil waters in Europe have low nitrate concentrations...... was then used to simulate the effect of afforestation of a catchment dominated by agriculture on N fluxes with seepage and runoff. Scenarios of whole catchment conversion to forest were run, based on observations of evapotranspiration and N deposition from other Danish sites. The simulated conversion to mature...... forest reduced runoff by 30–45% and reduced the nitrate concentrations in the soil water by 50–70%. The simulated effect of afforestation on N leaching was an almost direct reflection of the change in the N input: substantial changes in the plant demand and soil N dynamics over the afforestation period...

  19. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  20. Pollution from urban development and setback outfalls as a catchment management measure for river water quality improvement

    Science.gov (United States)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Urban development causes an increase in fine sediment and heavy metal stormwater pollution. Pollution load estimation theorises that stormwater pollutant load and type are strongly, directly influenced by contributing catchment land use. The research presented investigates the validity of these assumptions using an extensive novel field data set of 53 catchments. This research has investigated the relationships between land use and pollutant concentrations (Cu, Zn, Pb, Ni, Ca, Ba, Sn, Mn) in urban stormwater outfall sediments. Cartographic and aerial photography data have been utilised to delineate the surface and subsurface contributing catchment land use. A zoned sub-catchment approach to catchment characterisation of stormwater pollutant concentration has been defined and tested. This method effectively describes the specific land use influence on pollutant concentrations at the stormwater outfall, showing strong dependency with road length, brake points, impervious area and open space. Road networks and open space are found to influence land use, and thus stormwater pollution, closer to stormwater outfall/receiving waterbody suggesting storage, treatment, assimilation, loss or dilution of the land use influence further away from stormwater outfall. An empirical description has been proposed with which to predict outfall pollutant contributions to the receiving urban waterbody based on catchment land use information. With the definition and quantification of contributing catchment specific fine sediment and urban heavy metal pollutants, the influence of urban stormwater outfall management on the receiving watercourse has been considered. The locations of stormwater outfalls, and their proximity to the receiving waterway, are known as key water quality and river health influences. Water quality benefits from the implementation of stormwater outfalls set back from the receiving waterway banks have been investigated using the catchment case study. Setback outfalls

  1. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    Science.gov (United States)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of

  2. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Directory of Open Access Journals (Sweden)

    Oszczapińska Katarzyna

    2018-01-01

    Full Text Available The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll “a”, reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake and 2014/2015 (Dojlidy. The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  3. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Science.gov (United States)

    Oszczapińska, Katarzyna; Skoczko, Iwona; Szczykowska, Joanna

    2018-02-01

    The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll "a", reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake) and 2014/2015 (Dojlidy). The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  4. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    Science.gov (United States)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  5. Effects of land use change on streamflow and stream water quality of a coastal catchment

    CSIR Research Space (South Africa)

    Petersen, Chantel R

    2017-01-01

    Full Text Available Main stream length (km) 28.4 19.46 Main stream slope (%) 3.4 2.6 Drainage density (km/km2) 2.51 3.59 Length of overland flow (km) 0.19 0.139   Figure 1    Figure 1 Catchments of the Touws and Duiwe Rivers 141 http://dx.doi.org/10.4314/wsa.v43i1... catchment throughout the period examined (Fig. 2a, Table 3), as the natural forest areas were formally protected from the 142 http://dx.doi.org/10.4314/wsa.v43i1.16 Available on website http://www.wrc.org.za ISSN 1816-7950 (Online) = Water SA Vol. 43 No. 1...

  6. Water quality impact assessment of agricultural Beneficial Management Practices (BMPs) simulated for a regional catchment in Quebec, Eastern Canada

    Science.gov (United States)

    Rousseau, Alain N.; Hallema, Dennis W.; Gumiere, Silvio J.; Savary, Stéphane; Hould Gosselin, Gabriel

    2014-05-01

    Water quality has become a matter of increasing concern over the past four decades as a result of the intensification of agriculture, and more particularly so in Canada where agriculture has evolved into the largest non-point source of surface water pollution. The Canadian WEBs project (Watershed Evaluation of Beneficial Management Practices, BMPs) was initiated in order to determine the efficiency of BMPs in improving the surface water quality of rural catchments, and the economic aspects related to their implementation on the same scale. In this contribution we use the integrated watershed modelling platform GIBSI (Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé) to evaluate the effects of various BMPs on sediment and nutrient yields and, in close relation to this, the surface water quality for the Beaurivage River catchment (718 km2) in Quebec, eastern Canada. A base scenario of the catchment is developed by calibrating the different models of the GIBSI platform, namely HYDROTEL for hydrology, the Revised Universal Soil Loss Equation (RUSLE) for soil erosion, the Erosion-Productivity Impact Calculator (EPIC) of the Soil and Water Assessment Tool (SWAT) for contaminant transport and fate, and QUAL2E for stream water quality. Four BMPs were analysed: (1) vegetated riparian buffer strips, (2) precision slurry application, (3) transition of all cereal and corn fields to grassland (grassland conversion), and (4) no-tillage on corn fields. Simulations suggest that riparian buffer strips and grassland conversion are more effective in terms of phosphorus, nitrogen and sediment load reduction than precision slurry application and no-tillage on corn fields. The results furthermore indicate the need for a more profound understanding of sediment dynamics in streams and on riparian buffer strips.

  7. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    Science.gov (United States)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  8. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    Science.gov (United States)

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  9. Use of catchment liming for the improvement of drainage water quality from smelter-impacted lands near Coniston, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, J.M.; Sein, R.; Keller, B. [Laurentian Univ., Sudbury, ON (Canada) Dept. of Biology

    1999-07-01

    A study was carried out to test whether INCO Ltd.'s aerial land liming program, designed solely for revegetation purposes, was improving water quality from the treated sites in an area affected by air pollution from acidic nickel and copper smelters. A wetland application mehod was tested as a potentially improved technique of drainage water treatment. A summary is included of the results of water quality assessment and bioassay toxicity testing for the experimental catchments during the study period 1991-1997. There were immediate spin-off benefits from the stream monitoring study that were rapidly applied to the larger land reclamation effort. The identified effectivess of the coarse limestone led to testing and adoption of new methods of aerial liming in which finer pelletized materials were used both reducing the application rate and the associated costs. The decline in Cu and Ni during 1991-1994 indicated that the metal contamination of the site was declining even before the first limestone treatment. The occurrence of a brief pulse in metal concentrations immediately after the wetland liming treatments is consistent with an earlier occurrence and supports the hypothesis that liming may temporarily increase metal concentrations in stream water through displacement of metal cations at the soil exchange sites by the added Ca. The presence of acidic groundwater proved to be a confounding factor that reduced the effectiveness of soil and wetland treatments at the site. In spite of surprises, the catchment treatments, particularly the wetland applications, proved to be very effective at improving water quality in much of the catchment stream. 14 refs., 2 figs., 1 tab.

  10. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    International Nuclear Information System (INIS)

    Hinic, V; Grzetic, A; Ljubotina, M; Rubinic, J; Ruzic, I; Volf, G; Vuckovic, I; Kvas, N

    2008-01-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  11. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    Science.gov (United States)

    Hinić, V.; Rubinić, J.; Vučković, I.; Ružić, I.; Gržetić, A.; Volf, G.; Ljubotina, M.; Kvas, N.

    2008-11-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  12. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    Science.gov (United States)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  13. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  14. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  15. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  16. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    Directory of Open Access Journals (Sweden)

    Milca PETROVICI

    2012-01-01

    Full Text Available Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT, Total Invertebrates index (T, Chironomidae index (Ch, EPT / Total invertebrates index (EPT / T, EPT / Chironomidae index (EPT / Ch and % Chironomidae index (% Chironomidae. Considering all these indices, it was found existence of a medium to best quality water in Mureş tributaries from Harghita Mountains and a good quality water which comes from the Maramureş Mountains and Transylvania Plateau.

  17. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    DEFF Research Database (Denmark)

    Petersen, Mette Fjendbo; Eriksson, Eva; Binning, Philip John

    2012-01-01

    the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor...... at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl chloride). Vinyl chloride concentrations surpassed Danish stream water quality criteria with a factor 10. The largest chemical impact...

  18. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  19. Land Use and Water Quality in the Upper Stropnice River Catchment

    Czech Academy of Sciences Publication Activity Database

    Hellebrandová, K.; Bodlák, L.; Štíchová, J.; Pechar, Libor

    2006-01-01

    Roč. 25, č. 3 (2006), s. 27-40 ISSN 1335-342X Institutional research plan: CEZ:AV0Z60870520 Keywords : Surface water chemistrz * land use * agricultural pollution sources Subject RIV: DJ - Water Pollution ; Quality Impact factor: 0.085, year: 2005

  20. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  1. Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?

    Science.gov (United States)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Stamm, Christian

    2017-03-01

    The design and evaluation of solutions for integrated surface water quality management requires an integrated modelling approach. Integrated models have to be comprehensive enough to cover the aspects relevant for management decisions, allowing for mapping of larger-scale processes such as climate change to the regional and local contexts. Besides this, models have to be sufficiently simple and fast to apply proper methods of uncertainty analysis, covering model structure deficits and error propagation through the chain of sub-models. Here, we present a new integrated catchment model satisfying both conditions. The conceptual iWaQa model was developed to support the integrated management of small streams. It can be used to predict traditional water quality parameters, such as nutrients and a wide set of organic micropollutants (plant and material protection products), by considering all major pollutant pathways in urban and agricultural environments. Due to its simplicity, the model allows for a full, propagative analysis of predictive uncertainty, including certain structural and input errors. The usefulness of the model is demonstrated by predicting future surface water quality in a small catchment with mixed land use in the Swiss Plateau. We consider climate change, population growth or decline, socio-economic development, and the implementation of management strategies to tackle urban and agricultural point and non-point sources of pollution. Our results indicate that input and model structure uncertainties are the most influential factors for certain water quality parameters. In these cases model uncertainty is already high for present conditions. Nevertheless, accounting for today's uncertainty makes management fairly robust to the foreseen range of potential changes in the next decades. The assessment of total predictive uncertainty allows for selecting management strategies that show small sensitivity to poorly known boundary conditions. The identification

  2. Applicability of Constructed Wetlands for Water Quality Improvement in a Tea Estate Catchment: The Pussellawa Case Study

    Directory of Open Access Journals (Sweden)

    G. M. P. R. Weerakoon

    2018-03-01

    Full Text Available Water in agricultural catchments is prone to pollution from agricultural runoff containing nutrients and pesticides, and contamination from the human population working and residing therein. This study examined the quality of water in a drainage stream which runs through a congested network of ‘line houses’ (low-income housing, typically found arranged in straight ‘lines’ on estates in the tea estate catchment area of Pussellawa in central Sri Lanka. The study evaluated the applicability of vertical subsurface flow (VSSF and horizontal subsurface flow (HSSF constructed wetlands for water polishing, as the residents use the stream water for various domestic purposes with no treatment other than possibly boiling. Water flow in the stream can vary significantly over time, and so investigations were conducted at various flow conditions to identify the hydraulic loading rate (HLR bandwidth for wetland polishing applications. Two wetland models of 8 m × 1 m × 0.6 m (length × width × depth were constructed and arranged as VSSF and HSSF units. Stream water was diverted to these units at HLRs of 3.3, 4, 5, 10, 20, and 40 cm/day. Results showed that both VSSF and HSSF wetland units were capable of substantially reducing five-day biochemical oxygen demand (BOD5, total suspended solids (TSS, fecal coliform (FC, total coliform (TC, ammonia nitrogen (NH4+-N, and nitrate nitrogen (NO3−-N up to 20 cm/day HLR, with removal efficiencies of more than 64%, 60%, 90%, 93%, 70%, and 59% for BOD5, TSS, FC, TC, NH4+-N, and NO3−-N, respectively, in the VSSF wetland unit; and more than 66%, 62%, 91%, 90%, 53%, and 77% for BOD5, TSS, FC, TC, NH4+-N, and NO3−-N, respectively, in the HSSF wetland unit.

  3. Management and Area-wide Evaluation of Water Conservation Zones in Agricultural Catchments for Biomass Production, Water Quality and Food Security

    International Nuclear Information System (INIS)

    2016-04-01

    Global land and water resources are under threat from both the agricultural and urban development to meet increased demand for food and from the resulting degradation of the environment. Poor crop yields due to water stress is one of the main reasons for the prevailing hunger and rural poverty in parts of the world. The Green Revolution of the 1960s and 1970s particularly in Latin America and Asia resulted in increased agricultural production and depended partly on water management. In the future, most food will still need to come from rain-fed agriculture. Water conservation zones in agricultural catchments, particularly in rainfed areas, play an important role in the capture and storage of water and nutrients from farmlands and wider catchments, and help improve crop production in times of need in these areas. Water conservation zones are considered to be an important part of water resource management strategies that have been developed to prevent reservoir siltation, reduce water quality degradation, mitigate flooding, enhance groundwater recharge and provide water for farming. In addition to making crop production possible in dry areas, water conservation zones minimize soil erosion, improve soil moisture status through capillary rise and enhance soil fertility and quality. These water conservation zones include natural and constructed wetlands (including riparian wetlands), farm ponds and riparian buffer zones. The management of water conservation zones has been a challenge due to the poor understanding of the relationship between upstream land use and the functions of these zones and their internal dynamics. Knowledge of sources and sinks of water and redefining water and nutrient budgets for water conservation zones are important for optimizing the capture, storage and use of water and nutrients in agricultural landscapes. The overall objective of this coordinated research project (CRP) was to assess and enhance ecosystem services provided by wetlands, ponds

  4. Linking Flow Regime and Water Quality in Rivers: a Challenge to Adaptive Catchment Management

    Directory of Open Access Journals (Sweden)

    Christer Nilsson

    2008-12-01

    Full Text Available Water quality describes the physicochemical characteristics of the water body. These vary naturally with the weather and with the spatiotemporal variation of the water flow, i.e., the flow regime. Worldwide, biota have adapted to the variation in these variables. River channels and their riparian zones contain a rich selection of adapted species and have been able to offer goods and services for sustaining human civilizations. Many human impacts on natural riverine environments have been destructive and present opportunities for rehabilitation. It is a big challenge to satisfy the needs of both humans and nature, without sacrificing one or the other. New ways of thinking, new policies, and institutional commitment are needed to make improvements, both in the ways water flow is modified in rivers by dam operations and direct extractions, and in the ways runoff from adjacent land is affected by land-use practices. Originally, prescribed flows were relatively static, but precepts have been developed to encompass variation, specifically on how water could be shared over the year to become most useful to ecosystems and humans. A key aspect is how allocations of water interact with physicochemical variation of water. An important applied question is how waste releases and discharge can be managed to reduce ecological and sanitary problems that might arise from inappropriate combinations of flow variation and physicochemical characteristics of water. We review knowledge in this field, provide examples on how the flow regime and the water quality can impact ecosystem processes, and conclude that most problems are associated with low-flow conditions. Given that reduced flows represent an escalating problem in an increasing number of rivers worldwide, managers are facing enormous challenges.

  5. How old is upland catchment water?

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  6. Hydrogeological processes controlling water quality in the crystalline basement aquifer of the Vea Catchment in Northeast Ghana

    Science.gov (United States)

    Koffi, K. V.; Obuobie, E.; Banning, A.; Wohnlich, S.

    2016-12-01

    In the Vea catchment of Northeast Ghana, groundwater appears to be a good alternative source for domestic and agricultural water supply as surface water is largely unavailable in the prolonged dry season that characterises this semi-arid area underlain by a crystalline rock aquifer. But the usability of water depends on its quality and therefore this study was done to investigate the processes influencing groundwater hydrochemistry in the study area to inform sustainable development and use of the resource. Sixty one groundwater samples were collected from different lithologies of the crystalline aquifer, and analysed for hydrochemical and physico-chemical parameters. Results show that groundwater chemistry is governed by rock-water interaction in the area. It is mainly controlled by cation exchange and silicate weathering processes. The majority of the samples was found to cluster in the Ca-Mg-HCO3 water type, regardless of aquifer geology. From a hydrochemistry perspective, the groundwater in the area is generally suitable for irrigation and drinking purposes.

  7. Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development

    Directory of Open Access Journals (Sweden)

    Hua-peng Qin

    2014-10-01

    Full Text Available Surface water quality deterioration is a serious problem in many rapidly urbanizing catchments in developing countries. There is currently a lack of studies that quantify water quality variation (deterioration or otherwise due to both socio-economic and infrastructure development in a catchment. This paper investigates the causes of water quality changes over the rapid urbanization period of 1985–2009 in the Shenzhen River catchment, China and examines the changes in relation to infrastructure development and socio-economic policies. The results indicate that the water quality deteriorated rapidly during the earlier urbanization stages before gradually improving over recent years, and that rapid increases in domestic discharge were the major causes of water quality deterioration. Although construction of additional wastewater infrastructure can significantly improve water quality, it was unable to dispose all of the wastewater in the catchment. However, it was found that socio-economic measures can significantly improve water quality by decreasing pollutant load per gross regional production (GRP or increasing labor productivity. Our findings suggest that sustainable development during urbanization is possible, provided that: (1 the wastewater infrastructure should be constructed timely and revitalized regularly in line with urbanization, and wastewater treatment facilities should be upgraded to improve their nitrogen and phosphorus removal efficiencies; (2 administrative regulation policies, economic incentives and financial policies should be implemented to encourage industries to prevent or reduce the pollution at the source; (3 the environmental awareness and education level of local population should be increased; (4 planners from various sectors should consult each other and adapt an integrated planning approach for socio-economic and wastewater infrastructure development.

  8. An assessment of the impact of different land use activities on water quality in the upper Olifants River catchment

    CSIR Research Space (South Africa)

    Dabrowski, James M

    2013-04-01

    Full Text Available to the system. Trend analysis of Department of Water Affairs (DWA) data indicated significant positive trends in ortho-phosphate at 12 of 14 stations in the catchment. An increase in sulphate concentrations from upstream to downstream indicates that mining...

  9. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe

    NARCIS (Netherlands)

    Müller, B.; Lotter, A.F.; Sturm, M.; Ammann, A.

    1998-01-01

    68 lakes (63 Swiss, 2 French and 3 Italian) located in an altitudinal range between 334 and 2339 m spanning a wide range of land-use have been investigated. The aim of the study was to discuss influences of geographic location, vegetation and land-use in the catchment area on the water

  10. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    Science.gov (United States)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  11. THE CONTRIBUTION OF GIS TO DISPLAY AND ANALYZE THE WATER QUALITY DATA COLLECTED BY A WIRELESS SENSOR NETWORK: CASE OF BOUREGREG CATCHMENT, MOROCCO

    Directory of Open Access Journals (Sweden)

    S. Boubakri

    2017-11-01

    Full Text Available The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn’t provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS with wireless sensor networks (WSN aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  12. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  13. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  14. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    Science.gov (United States)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water

  15. Characterization of water quality among direct and delayed wet -weather flows in an urban combined sewer catchment of Thailand

    Directory of Open Access Journals (Sweden)

    Anootnara Talkul Kuster

    2017-08-01

    Full Text Available The purpose of this research was to compare five water quality parameters (BOD, TSS, total zinc, TKN, and fecal coliform in wet-weather flow of a combined sewer catchment against dry-weather flow, while making a distinction between direct and delayed inflow, which has often not been made. Correlations and event mean concentrations (EMCs were also calculated. A total of 38 samples were collected from Khon Kaen’s combined sewer system between March and August 2015. Concentrations in direct inflow of three parameters: total zinc ( x = 0.24 mg/L, IQR = 0.12-0.34, TSS (240 mg/L, 176-356, and BOD (59.7 mg/L, 42.4-77.8 were higher than delayed inflow ( x = 0.04 mg/L, 36 mg/L, and 23.7 mg/L, respectively. Concentrations of delayed inflow were similar to or lower than dry-weather flow. Pollutant concentrations for particulatebased pollutants were much higher during the direct inflow phase of rain events compared to the delayed inflow phase. Dissolved-phased nutrients, however, were not different.

  16. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, van der Y.; Geer, van F.C.; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an

  17. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Bierkens, M.F.P.; Broers, H.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an

  18. Long-term changes in the water quality of rainfall, cloud water and stream water for moorland, forested and clear-felled catchments at Plynlimon, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available Long term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001. Atmospheric inputs of chloride and sulphate are influenced by the relative inputs of clean maritime and polluted land based air masses. There is no systematic increase or decrease over time for chloride and non-sea-salt sulphate. Rather, there is a decadal scale process possibly representative of the influence of the North Atlantic Oscillation that affects the maritime and pollution climate of the Atlantic seaboard of the UK. Over 17 years of study, there may be a small decrease in non-sea-salt sulphate of about 10 μeq l-1 and a small improvement in acid neutralising capacity of about 20 to 30 μeq l-1 in rainfall. There is a clear improvement in cloud water chemistry with respect to pollutant components (ammonium, nitrate, non-sea-salt sulphate and acidity (acid neutralising capacity improved by about 300 μeq l-1 through the study period. Many of the changes in cloud water chemistry are similar to rainfall over the same period except the magnitude of change is larger for the cloud water. Within the streams, there is some evidence for reductions in acidity as reflected by acid neutralising capacity becoming less negative. For one stream, deforestation occurred during the sampling period and this led to large increases in nitrate and smaller increases in aluminium midway through the study period. However, the climate and hydrological variability largely masked out other changes. The current analysis provides only a start to identifying trends for such a complex and variable environmental system. The need for strong statistical tools is emphasised to resolve issues of: (a hydrological induced water quality variability, (b changing soil and groundwater "endmember" chemistry contribution to the stream and (c the non-linear patterns of

  19. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    Science.gov (United States)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  20. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    Science.gov (United States)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  1. Water quality characteristics of eight billabongs in the Magela Creek catchment

    International Nuclear Information System (INIS)

    Hart, B.T.; McGregor, R.J.

    1982-12-01

    The billabongs downstream of the Ranger uranium deposits in the Alligator Rivers Region of the Northern Territory have been identified as being potentially endangered. The mining companies propose to discharge contaminated waters to Magela Creek at times of high flow with the possible subsequent problem of accumulation of contaminants such as radium, uranium and heavy metals in the billabongs. An understanding of the billabong ecosystems is needed if the Supervising Scientist is to be able to determine monitoring programs that will enable the detection of any deleterious environmental effects due to the mining operations. A survey of the physico-chemical limnology of the billabongs was conducted during a six-week period covering the end of the dry season to the commencement of the wet season

  2. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Manickum, T; John, W; Terry, S; Hodgson, K

    2014-11-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa

    International Nuclear Information System (INIS)

    Manickum, T.; John, W.; Terry, S.; Hodgson, K.

    2014-01-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050–5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018–0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024–0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is “Blue” – ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive “hot spots”. The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. - Highlights: • Radiological and physicochemical quality of raw and drinking water sources. • Suitability of kinetic phosphorescence analysis for Uranium analysis of water. • Suitability of gas flow proportional counting for determining radioactivity of water. • The Effective

  4. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    Science.gov (United States)

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  6. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality

    International Nuclear Information System (INIS)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Bierkens, M.F.P.; Broers, H.P.

    2010-01-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO 3 concentration patterns in shallow groundwater and to continuous NO 3 records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO 3 and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management. - Direct measurements of flow route contributions to surface water contaminant loading reveal the crucial role of tile drainage for catchment-scale water and solute transport.

  7. Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model.

    Science.gov (United States)

    Pathak, Devanshi; Whitehead, Paul G; Futter, Martyn N; Sinha, Rajiv

    2018-03-07

    The present study analyzes the water quality characteristics of the Ramganga (a major tributary of the Ganga river) using long-term (1991-2009) monthly data and applies the Integrated Catchment Model of Nitrogen (INCA-N) and Phosphorus (INCA-P) to the catchment. The models were calibrated and validated using discharge (1993-2011), phosphate (1993-2010) and nitrate (2007-2010) concentrations. The model results were assessed based on Pearson's correlation, Nash-Sutcliffe and Percentage bias statistics along with a visual inspection of the outputs. The seasonal variation study shows high nutrient concentrations in the pre-monsoon season compared to the other seasons. High nutrient concentrations in the low flows period pose a serious threat to aquatic life of the river although the concentrations are lowered during high flows because of the dilution effect. The hydrological model is satisfactorily calibrated with R 2 and NS values ranging between 0.6-0.8 and 0.4-0.8, respectively. INCA-N and INCA-P successfully capture the seasonal trend of nutrient concentrations with R 2 >0.5 and PBIAS within ±17% for the monthly averages. Although, high concentrations are detected in the low flows period, around 50% of the nutrient load is transported by the monsoonal high flows. The downstream catchments are characterized by high nutrient transport through high flows where additional nutrient supply from industries and agricultural practices also prevail. The seasonal nitrate (R 2 : 0.88-0.94) and phosphate (R 2 : 0.62-0.95) loads in the catchment are calculated using model results and ratio estimator load calculation technique. On average, around 548tonnes of phosphorus (as phosphate) and 77,051tonnes of nitrogen (as nitrate) are estimated to be exported annually from the Ramganga River to the Ganga. Overall, the model has been able to successfully reproduce the catchment dynamics in terms of seasonal variation and broad-scale spatial variability of nutrient fluxes in the

  8. A bottom up approach to implementing multi-purpose mitigation measures for reducing flood risk and improving water quality in agricultural catchments

    Science.gov (United States)

    Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.

    2012-04-01

    A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.

  9. The challenges of modelling phosphorus in a headwater catchment: Applying a 'limits of acceptability' uncertainty framework to a water quality model

    Science.gov (United States)

    Hollaway, M. J.; Beven, K. J.; Benskin, C. McW. H.; Collins, A. L.; Evans, R.; Falloon, P. D.; Forber, K. J.; Hiscock, K. M.; Kahana, R.; Macleod, C. J. A.; Ockenden, M. C.; Villamizar, M. L.; Wearing, C.; Withers, P. J. A.; Zhou, J. G.; Barber, N. J.; Haygarth, P. M.

    2018-03-01

    There is a need to model and predict the transfer of phosphorus (P) from land to water, but this is challenging because of the large number of complex physical and biogeochemical processes involved. This study presents, for the first time, a 'limits of acceptability' approach of the Generalized Likelihood Uncertainty Estimation (GLUE) framework to the Soil and Water Assessment Tool (SWAT), in an application to a water quality problem in the Newby Beck catchment (12.5 km2), Cumbria, United Kingdom (UK). Using high frequency outlet data (discharge and P), individual evaluation criteria (limits of acceptability) were assigned to observed discharge and P loads for all evaluation time steps, identifying where the model was performing well/poorly and to infer which processes required improvement in the model structure. Initial limits of acceptability were required to be relaxed by a substantial amount (by factors of between 5.3 and 6.7 on a normalized scale depending on the evaluation criteria used) in order to gain a set of behavioral simulations (1001 and 1016, respectively out of 5,000,000). Of the 39 model parameters tested, the representation of subsurface processes and associated parameters, were consistently shown as critical to the model not meeting the evaluation criteria, irrespective of the chosen evaluation metric. It is therefore concluded that SWAT is not an appropriate model to guide P management in this catchment. This approach highlights the importance of high frequency monitoring data for setting robust model evaluation criteria. It also raises the question as to whether it is possible to have sufficient input data available to drive such models so that we can have confidence in their predictions and their ability to inform catchment management strategies to tackle the problem of diffuse pollution from agriculture.

  10. Analysis and Model Based Assessment of Water Quality in European Mesoscale Forest Catchments with Different Management Strategies (a Climatic Gradient Approach)

    Science.gov (United States)

    Tavares, Filipa; Schwaerzel, Kai; Nunes, João. Pedro; Feger, Karl-Heinz

    2010-05-01

    Forestry activities affect the environmental conditions of river basins by modifying soil properties and vegetation cover, leading to changes in e.g. runoff generation and routing, water yield or the trophic status of water bodies. Climate change is directly linked to forestry, since site-adapted sustainable forest management can buffer negative climate change impacts in river basins, while practices leading to over-harvesting or increasing wildfires can exacerbate these impacts. While studies relating hydrological processes with forestry practices or climate change have already been conducted, the combined impacts of both are rarely discussed. The main objective of the proposed work is to study the interactions between forest management and climate change and the effects of these upon water fluxes and water quality at the catchment scale, over medium to long-term periods and following an East-West climate gradient. Additional objectives are to increase knowledge about the relations between forest, water quality and soil conservation/degradation; and to improve the modelling of hydrological and matter transport processes in managed forests. The present poster shows a conceptual approach to understand this combined interaction by analysing an East-West climatic gradient (Ukraine-Germany-Portugal), with contrasting forestry practices and climate vulnerabilities. The activities within this workplan, to take place during the period 2010 - 2014, will be developed in close collaboration with several ongoing research projects in the host institution at the Dresden University of Technology (TUD) and in the University of Aveiro (UA). The Institute of Soil Science and Site-Ecology (ISSE) at TUD has an internationally renowned research tradition in forest hydrological topics using methods and findings from various (sub)disciplines in a multidisplinary approach. The measurement and simulation of forest catchments has also been a point of research at the Centre for

  11. Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality.

    Science.gov (United States)

    Klaminder, Jonatan; Bindler, Richard; Laudon, Hjalmar; Bishop, Kevin; Emteryd, Ove; Renberg, Ingemar

    2006-08-01

    It is not well-known how the accumulated pool of atmospheric lead pollution in the boreal forest soil will affect the groundwater and surface water chemistry in the future as this lead migrates through the soil profile. This study uses stable lead isotopes (206Pb/207Pb and 208Pb/ 207Pb ratios) to trace the transport of atmospheric lead pollution within the soil of a small catchment and predict future lead level changes in a stream draining the catchment. Low 206Pb/207Pb and 208Pb/207Pb ratios for the lead in the soil water (1.16 +/- 0.02; 2.43 +/- 0.03) and streamwater (1.18 +/- 0.03; 2.42 +/- 0.03) in comparison to that of the mineral soil (>1.4; >2.5) suggest that atmospheric pollution contributes by about 90% (65-100%) to the lead pool found in these matrixes. Calculated transport rates of atmospheric lead along a soil transect indicate that the mean residence time of lead in organic and mineral soil layers is at a centennial to millennial time scale. A maximum release of the present pool of lead pollution in the soil to the stream is predicted to occur within 200-800 years. Even though the uncertainty of the prediction is large, it emphasizes the magnitude of the time lag between the accumulation of atmospheric lead pollution in soils and the subsequent response in streamwater quality.

  12. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    Science.gov (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  13. Assessment of water availability in Chindwinn catchment

    International Nuclear Information System (INIS)

    Phyu Oo Khin; Ohn Gyaw

    2001-01-01

    A study of water balance over Chindwinn Catchment has been carried out by using three decades of available climatological and hydrological data (i.e. from 1967). The study was based on the monthly, annual and normal values. Actual evapotranspiration (AET) computed by as well as on the using Penman (1963) as well as Hargreaves (1985) methods. Some of the reliable data of evaporation at the stations were also used to estimate actual evaporation with the pancoefficient value 0.7. The values of actual evapotranspiration estimated by Hargreaves method was lower than the values estimated by Penman, but most followed the same significant trend. The soil moisture deficiency generally occurs during November and April. A few cases of soil moisture deficiency do occur in August, September and October. However, on the overall availability of water in the catchment is quite promising. The residual resulted from the water balance estimation may be assumed as soil moisture in the catchment by neglecting some losses from the catchment. (author)

  14. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS OF NERA AND CARAS RIVERS CATCHMENTS USING BENTHIC INVERTEBRATES AS BIOINDICATORS

    Directory of Open Access Journals (Sweden)

    CLAUDIA PETRUCEAN

    2009-01-01

    Full Text Available The study of the two watersheds involved the collection of twenty-four benthic samples from the main tributaries of Nera and Caras rivers, but also from the Nera river. The samples were collected in august 2009 with a benthic net, which had the mesh size of 250 μm, by disturbing the substrate upstream for three minutes, being thus qualitative samples. The next stage, working in the laboratory, consisted in separating the invertebrates from the substrate, sorting them to taxonomic categories and counting them. The data was statistically analized and interpreted. It led to the conclusion that the water quality in the two watersheds is good. In most of the sampling points the major groups of benthic macroinvertebrates were found, some of the sampling points were dominated by the EPT groups (Ephemeroptera, Plecoptera, Trichoptera which is known as a clean freshwater group, sensitive to pollution and human impact.

  15. Dynamics in groundwater and surface water quality : from field-scale processes to catchment-scale monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.C.

    2010-01-01

    Clean water is essential for our existence on earth. In areas with intensive agricultural land use, such as The Netherlands, groundwater and surface water resources are threatened. The leaching of agrochemicals from agricultural fields leads to contamination of drinking water resources and toxic

  16. The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    OpenAIRE

    Zia, Huma; Harris, Nick; Merrett, Geoff V.; Rivers, Mark; Coles, Neil

    2013-01-01

    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is cu...

  17. "Upstream Thinking": the catchment management approach of a water provider

    Science.gov (United States)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not

  18. Water quality simulation in two urban experimental catchments in Italy; Simulazione della qualita` delle acque in due bacini sperimentali urbani in Italia

    Energy Technology Data Exchange (ETDEWEB)

    Artina, S.; Maglionico, M. [Bologna Univ. (Italy). DISTART; Calabro`, P. [Reggio Calabria Univ. (Italy). Dip. di Meccanica dei Fluidi ed Ingegneria Off-shore; La Loggia, A. [Palermo Univ. (Italy). Dip. di Ingegneria Idraulica ed Applicazioni Ambientali

    1998-11-01

    Results of the calibration of SWMM on data coming from two Italian experimental catchments are presented, performed on runoff and quality data. The analysis has pointed on the great importance of runoff processes among all other phenomena taken into account. [Italiano] Viene presentata la calibrazione del modello SWMM dal punto quali-quantitativo su due bacini sperimentali italiani. Si e` compiuta la calibrazione e validazione del modello sugli eventi disponibili, valutandone il comportamento nel riprodurre gli eventi registrati. Lo studio mette in evidenza la particolare importanza del fenomeno del washoff operato dalla pioggia rispetto alle altre fasi della modellazione qualitativa.

  19. Combining catchment and instream modelling to assess physical habitat quality

    DEFF Research Database (Denmark)

    Olsen, Martin

    Study objectives After the implementation of EU's Water Framework Directive (WFD) in Denmark ecological impacts from groundwater exploitation on surface waters has to receive additional consideration. Small streams in particular are susceptible to changes in run-off but have only recieved little...... attention in past studies of run-off impact on the quality of stream physical habitats. This study combined catchment and instream models with instream habitat observations to assess the ecological impacts from groundwater exploitation on a small stream. The main objectives of this study was; • to assess...... which factors are controlling the run-off conditions in stream Ledreborg and to what degree • to assess the run-off reference condition of stream Ledreborg where intensive groundwater abstraction has taken place in 67 years using a simple rainfall-run-off-model • to assess how stream run-off affect...

  20. Modeling of Faecal Contamination in Water from Catchment to Shellfish Growing Area

    OpenAIRE

    Bougeard, Morgane; Le Saux, Jean-claude; Perenne, Nicolas; Le Guyader, Soizick; Pommepuy, Monique

    2009-01-01

    During rainstorms, watersheds can introduce large amounts of faecal pollution into the rivers and sea, leading to shellfish contamination. In this study, we assessed Escherichia coli fluxes from a catchment, and their impact on estuarine water quality, using two assembled models. For the catchment, the agro-hydrological model SWAT was implemented integrating land uses, soil, topography, rainfall and other climatic data on Daoulas watershed (France). Initially, the SWAT model was calibrated an...

  1. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  2. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  3. The assessment of water resources in ungauged catchments in Rwanda

    Directory of Open Access Journals (Sweden)

    O.P. Abimbola

    2017-10-01

    New hydrological insights for the region: Results of this study show that climate, physiography and land cover strongly influence the hydrology of catchments in Rwanda. Using leave-one-out cross-validation, the log-transformed models were found to predict the flow parameters more suitably. These models can be used for estimating the flow parameters in ungauged catchments in Rwanda and the methodology can be applied in any other region, as long as sufficient and good quality streamflow data is available.

  4. Runoff quality and pollution loadings from a tropical urban catchment.

    Science.gov (United States)

    Yusop, Z; Tan, L W; Ujang, Z; Mohamed, M; Nasir, K A

    2005-01-01

    Runoff quality draining from 17.14 km2 urban catchment in Johor Bahru, Malaysia, was analysed. The land-use consists of residential (30.3%), agricultural (27.3%), open space (27.9%), industrial (8.1%) and commercial (6.4%) areas. Three storm events were sampled in detail. These storms produced stormflow between 0.84 mm and 27.82 mm, and peakflow from 2.19 m3/s to 42.36 m3/s. Water quality showed marked variation during storms especially for TSS, BOD and COD with maximum concentrations of 778 mg/l, 135 mg/l and 358 mg/l, respectively. Concentrations of TOC, DOC, NH3-N, Fe and level of colour were also high. In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event Mean Concentrations (EMC) for various parameters varied considerably between storms. The largest storm produced higher EMC for TSS, NO3-N and SS whereas the smaller storms tend to register higher EMC for BOD, COD, NH3-N, TOC, Ca, K, Mg, Fe and Zn. Such variations could be explained in terms of pollutant availability and the effects of flushing and dilution. Based on a three-month average recurrence interval (ARI) of rainfall, the estimated event loadings (ton/ha) of TSS, BOD, COD, TOC, NH3-N and NO3-N were 0.055, 0.016, 0.012, 0.039, 0.010, 0.0007 and 0.0002, respectively. Heavy metals present in trace quantities. Storms with 3 months ARI could capture about 70% of the total annual loads of major pollutants.

  5. Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

    Science.gov (United States)

    Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei

    2013-07-01

    This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.

  6. Catchment-scale groundwater recharge and vegetation water use efficiency

    Science.gov (United States)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  7. Anthropogenic factor and water quality in the rivers of Prespa Lake catchment; Antropogeniot faktor i kvalitetot na vodata vo rekite na prespanskoto slivno podrachje

    Energy Technology Data Exchange (ETDEWEB)

    Jordanoski, Momchulo; Veljanoska-Serafiloska, Elizabeta [Hydrobiological Institute, Ohrid (Macedonia, The Former Yugoslav Republic of)

    2001-07-01

    From the Rivers, which are subject of our investigation, only River Brajcinska and River Kranska are mountain rivers, while River Golema is lowland river. This has influence on water quality, which is evidently from the dates we found for the investigated parameters. Water quality moves from distinctly clear oligo trophic water (winter period), to strongly eytrophic polluted water (summer, autumn,). Great organic loading of River Golema in the summer period is evidential. Although, there are small possibilities of many investigations on this part, our obligation is to find possibilities, even to reduce some of sampling points of this project, to define the real state in long time period, so we could find appropriate conclusions and suggestions to eliminate that situation. Fields watching of the river beds and results from the laboratory investigations, shows how big is mans negligence for this natural resources. Practically, this rivers are recipients of all wastes that man made, like solid waste, communal waste water, waste water from pig farms, etc. International character of Lake Prespa enforces need of much completely and sensible engagement for reclaiming the state of the rivers inflow, in aim to protect the Lake. (Original)

  8. Influence of rainfall and catchment characteristics on urban stormwater quality.

    Science.gov (United States)

    Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha

    2013-02-01

    The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  10. Evaluation of the impact of farming activity in the water quality in surface catchment areas in hydrographic basin from Mogi-Guacu and Pardo Rivers, Sao Paulo

    International Nuclear Information System (INIS)

    Katsuoka, Lidia

    2001-01-01

    This study was performed in 10 small basins located in the Mogi-Guacu and Pardo Rivers, in the Northeastern area of Sao Paulo State. The land belonging of these basins is used to grow row crops of potato, coffee and pasture areas. This study aimed to characterize small basins, to evaluate water and sediment quality and to correlate basic aspects of climatology, hydrology, toxicology and land uses to the physical, chemical and toxicological characteristics of the water in the streams. Geographic Information System (GIS) was used as a tool of evaluation of land uses and risk assessment was performed for a final evaluation. The samplings were carried out from June/1999 to June/2000 in the 13 collecting points. It was verified that water quality is dependent upon the rainy and dry periods and the harvest periods. In the beginning of rainy periods were found large concentrations of metals and traces of herbicides leachate from soil and, in the dry period the same event was verified, caused by concentration of the water. In August, September and October phosphorus concentrations were very low getting an improvement in the water quality. Al, Fe and Mn are majority elements of chemical compositions of rocks of the study area, and exceed the Brazilian Guidelines. The stream waters were classified as 44% oligotrophic, 42% mesotrophic and 14% eutrophic. Jaguari-Mirim River presented the largest values of Trophic Index (TI). Sediment analyses showed a great variety of organic compounds coming from anthropogenic activities (industrial and farming activity). Toxicity tests with hyalella azteca in the sediments presented toxicity for sediments from Sao Joao da Boa Vista and Divinolandia. A methodology was developed for organochlorinated pesticides by gas chromatography coupled to mass spectrometry (GCMS). The presence of organochlorinated pesticides was not verified. (author)

  11. THE STUDY OF WATER QUALITY USING BENTHIC MACROINVERTEBRATES AS BIOINDICATORS IN THE CATCHMENT AREAS OF THE RIVERS JIU, OLT AND IALOMIŢA

    Directory of Open Access Journals (Sweden)

    Elena Daniela MITITELU

    2012-01-01

    Full Text Available The wide distribution of benthic invertebrates and their different sensitivity shown upon modifying the qualitative parameters of aquatic ecosystems led to a frequent use of these group as bioindicators in different studies. The present study aims at presenting a list concerning the different macroinvertebrates identified in the larva stage in three watersheds (Jiu, Olt, Ialomiţa and establishing the water quality of the monitored sections using this benthic macroinvertebrates. The sample collecting points were represented by 23 stations. The abundance and frequency values recorded for benthic communities varied according to the physical-chemical conditions specific to each sample collecting station. There were identified 15 groups in total. The most frequent were Ephemeroptera, Plecoptera, Trichoptera, Diptera (Chironomidae and others. The deterioration of water quality is marked by the decrease in the biotic index EPT/Ch value.

  12. WATER QUALITY EVALUATION OF CRIŞUL ALB AND CRIŞUL NEGRU RIVERS CATCHMENTS, FROM CODRU-MOMA MOUNTAINS (WEST OF ROMANIA, USING BENTHIC INVERTEBRATES COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Andreea VARGA

    2010-01-01

    Full Text Available Water quality evaluation of the two watersheds involved the collection of thirteen samples from the tributaries of Crişul Alb and Crişul Negru rivers. The samples were collected in june 2010 with a benthic net, which had the mesh size of 250 µm, by disturbing the substrate, being thus qualitative samples. To get an overview, a series of physical-chemical parameters (water temperature, pH, oxygen, conductivity, cyanide, nitrates, nitrites, phosphates was studied in parallel with the study of benthic community. In most of the sampling points the major group of benthic macroinvertebrates were found and in some EPT group (Ephemeroptera, Plecoptera, Trichoptera prevailed even, which is known as a clean freshwater group, sensitive to pollution and human impact.

  13. Gap-filling of dry weather flow rate and water quality measurements in urban catchments by a time series modelling approach

    DEFF Research Database (Denmark)

    Sandoval, Santiago; Vezzaro, Luca; Bertrand-Krajewski, Jean-Luc

    2016-01-01

    seeks to evaluate the potential of the Singular Spectrum Analysis (SSA), a time-series modelling/gap-filling method, to complete dry weather time series. The SSA method is tested by reconstructing 1000 artificial discontinuous time series, randomly generated from real flow rate and total suspended......Flow rate and water quality dry weather time series in combined sewer systems might contain an important amount of missing data due to several reasons, such as failures related to the operation of the sensor or additional contributions during rainfall events. Therefore, the approach hereby proposed...... solids (TSS) online measurements (year 2007, 2 minutes time-step, combined system, Ecully, Lyon, France). Results show up the potential of the method to fill gaps longer than 0.5 days, especially between 0.5 days and 1 day (mean NSE > 0.6) in the flow rate time series. TSS results still perform very...

  14. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  15. Qualidade da água em uma microbacia hidrográfica do Rio Piracicaba, SP Water quality in a small catchment of Piracicaba River, SP

    Directory of Open Access Journals (Sweden)

    Ariovaldo A. T. Lucas

    2010-09-01

    Full Text Available A microbacia do Ribeirão dos Marins, afluente do Rio Piracicaba, é importante ao município de Piracicaba, São Paulo, haja vista que concentra a maior área de produção de hortaliças, as quais são irrigadas com as águas do ribeirão. Com o objetivo de avaliar a qualidade da água, coletaram-se amostras de fevereiro a dezembro de 2005 em sete pontos ao longo do ribeirão, considerando-se o uso e ocupação do solo. As variáveis de qualidade de água analisadas foram: físicas e químicas: sedimentos em suspensão, pH, condutividade elétrica, alcalinidade, turbidez, potássio, cálcio, magnésio, cobre, ferro, manganês, zinco, sódio, fósforo, sulfato, cloreto, nitrogênio amoniacal e nitrato. As análises foram realizadas no Laboratório de Ecologia do Instituto de Estudos Florestais e no Laboratório de Água do Departamento de Engenharia Rural, ambos pertencentes à ESALQ-USP. Os resultados obtidos foram comparados com a Resolução nº 357 de 17 março de 2005, do Conselho Nacional de Meio Ambiente (CONAMA que estabelece a classificação das águas brasileiras. As águas do ribeirão dos Marins apresentaram-se fora do padrão estabelecido pela Resolução 357/2005 do CONAMA, para a irrigação de hortaliças.The Marins creek watershed is important to the Piracicaba municipal district because it concentrates a large area of horticultural production, which is irrigated with the creek water. With the aim to evaluate the water quality, samples were collected from February to December 2005 at seven points along the creek according to land use. The parameters of quality analyzed were physical and chemical: suspended sediments, pH, electrical conductivity, alkalinity, turbidity, potassium, calcium, magnesium, copper, iron, manganese, zinc, sodium, phosphorus, sulfate, chloride, ammonia nitrogen, and nitrate. The analyses were made at the Ecology Laboratory of Forest Studies Institute and Water Laboratory at the Rural Engineering

  16. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  17. Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The aims of this study are to identify the capacities of applying an ecohydrological model for simulating flow and to assess the impact of point and non-point source pollution on nitrate loads in a complex lowland catchment, which has special hydrological characteristics in comparison with those of other catchments. The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants.

    Ecohydrological models like the SWAT model (Soil and Water Assessment Tool are useful tools for simulating nutrient loads in river catchments. Diffuse entries from the agriculture resulting from fertilizers as well as punctual entries from the wastewater treatment plants are implemented in the model set-up.

    The results of this study show good agreement between simulated and measured daily discharges with a Nash-Sutcliffe efficiency and a correlation coefficient of 0.76 and 0.88 for the calibration period (November 1998 to October 2004; 0.75 and 0.92 for the validation period (November 2004 to December 2007. The model efficiency for daily nitrate loads is 0.64 and 0.5 for the calibration period (June 2005 to May 2007 and the validation period (June 2007 to December 2007, respectively. The study revealed that SWAT performed satisfactorily in simulating daily flow and nitrate loads at the lowland catchment in Northern Germany.

  18. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  19. Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps

    Directory of Open Access Journals (Sweden)

    R. Balestrini

    2013-03-01

    Full Text Available The study of nitrogen cycling in mountain areas has a long tradition, as it was applied to better understand and describe ecosystem functioning, as well as to quantify long-distance effects of human activities on remote environments. Nonetheless, very few studies, especially in Europe, have considered catchment features controlling nitrogen dynamics above the tree line with focus on running waters. In this study, relationships between some water chemistry descriptors – including nitrogen species and dissolved organic carbon (DOC – and catchment characteristics were evaluated for a range of sites located above the tree line (1950–2650 m a.s.l. at Val Masino, in the central Italian Alps. Land cover categories as well as elevation and slope were assessed at each site. Water samples were collected during the 2007 and 2008 snow free periods, with a nearly monthly frequency. In contrast to dissolved organic nitrogen, nitrate concentrations in running waters showed a spatial pattern strictly connected to the fractional extension of tundra and talus in each basin. Exponential models significantly described the relationships between maximum NO3 and the fraction of vegetated soil cover (negative relation and talus (positive relation, explaining almost 90% of nitrate variation in running waters. Similarly to nitrate but with an opposite behavior, DOC was positively correlated with vegetated soil cover and negatively correlated with talus. Therefore, land cover can be considered one of the most important factors affecting water quality in high-elevation catchments with contrasting effects on N and C pools.

  20. Primer on Water Quality

    Science.gov (United States)

    ... water quality. What do we mean by "water quality"? Water quality can be thought of as a measure ... is suitable for a particular use. How is water quality measured? Some aspects of water quality can be ...

  1. Evaluation of a distributed catchment scale water balance model

    Science.gov (United States)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  2. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine

    Directory of Open Access Journals (Sweden)

    Sameer Shadeed

    2010-06-01

    Full Text Available In arid and semi-arid regions, the availability of adequate water of appropriate quality has become a limiting factor for development. This paper aims to evaluate the potential for rainwater harvesting in the arid to semi-arid Faria Catchment, in the West Bank, Palestine. Under current conditions, the supply-demand gap is increasing due to the increasing water demands of a growing population with hydrologically limited and uncertain supplies. By 2015, the gap is estimated to reach 4.5 × 106 m3. This study used the process-oriented and physically-based TRAIN-ZIN model to evaluate two different rainwater harvesting techniques during two rainfall events. The analysis shows that there is a theoretical potential for harvesting an additional 4 × 106 m3 of surface water over the entire catchment. Thus, it is essential to manage the potential available surface water supplies in the catchment to save water for dry periods when the supply-demand gap is comparatively high. Then a valuable contribution to bridging the supply-demand gap can be made.

  3. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  4. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  5. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    Science.gov (United States)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  6. Stable water isotopes suggest sub-canopy water recycling in a northern forested catchment

    Science.gov (United States)

    Mark B. Green; Bethany K. Laursen; John L. Campbell; Kevin J. McGuire; Eric P. Kelsey

    2015-01-01

    Stable water isotopes provide a means of tracing many hydrologic processes, including poorly understood dynamics like soil water interactions with the atmosphere. We present a four-year dataset of biweekly water isotope samples from eight fluxes and stores in a headwater catchment at the Hubbard Brook Experimental Forest, New Hampshire, USA. We use Dansgaard's...

  7. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.C. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom)]. E-mail: ajo@ceh.ac.uk; Keller, V. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Williams, R.J. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Young, A. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2007-03-15

    An existing GIS hydrology water quality model, LF2000-WQX, was applied to predict the concentrations of the pharmaceuticals diclofenac and propranalol in catchments. As a practical exercise the predominantly rural Tamar (UK) catchment was chosen. Consumption, excretion, and fate data were used to estimate the pharmaceutical input load for the model. The predicted concentrations throughout most of the catchment were 1 ng/L or less under low flow (90th percentile) conditions. However, at a few locations, downstream of small sewage treatment plants, concentrations above 25 ng/L were predicted. This exercise shows that it is relatively straightforward to predict the concentrations of new and emerging organic microcontaminants in real catchments using existing GIS hydrology water quality models. Further testing will be required to establish their accuracy. - A GIS hydrology model was used to predict pharmaceutical concentration hot spots in a rural catchment.

  8. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment

    International Nuclear Information System (INIS)

    Johnson, A.C.; Keller, V.; Williams, R.J.; Young, A.

    2007-01-01

    An existing GIS hydrology water quality model, LF2000-WQX, was applied to predict the concentrations of the pharmaceuticals diclofenac and propranalol in catchments. As a practical exercise the predominantly rural Tamar (UK) catchment was chosen. Consumption, excretion, and fate data were used to estimate the pharmaceutical input load for the model. The predicted concentrations throughout most of the catchment were 1 ng/L or less under low flow (90th percentile) conditions. However, at a few locations, downstream of small sewage treatment plants, concentrations above 25 ng/L were predicted. This exercise shows that it is relatively straightforward to predict the concentrations of new and emerging organic microcontaminants in real catchments using existing GIS hydrology water quality models. Further testing will be required to establish their accuracy. - A GIS hydrology model was used to predict pharmaceutical concentration hot spots in a rural catchment

  9. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption.

    Science.gov (United States)

    Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the

  10. Effects of suburban development on runoff generation and water quality

    OpenAIRE

    Sillanpää, Nora

    2013-01-01

    Urbanization leads to changes in natural catchment characteristics by increasing the imper-vious coverage and drainage efficiency, which enhance flooding, erosion and water quality problems in the receiving waters. Year-round monitoring of catchment-scale hydrological and water quality variables is needed to produce data resources for the development of urban drainage design principles for various management purposes in cold climate. The aim of this thesis was to investigate the impacts of ur...

  11. Ecological quality assessment of rivers and integrated catchment management in England and Wales

    Directory of Open Access Journals (Sweden)

    Paul LOGAN

    2001-09-01

    Full Text Available This paper deals with the ecological assessment of river quality and its relationship to integrated catchment management. The concept of catchment or river basin management has been a basic management tool in England and Wales since 1990; it is now being enshrined in the Water Framework Directive. Historically the statutory and operational drivers in the UK have lead to the development of distinctly different approaches to the management of water quality, water resources (quantity and physical river structure. More recently a proactive approach to the sustainable use of water promulgated in the Local Environment Agency Plans has also dealt with the three management aspects in some isolation although greater effort has been made to present the issues in an integrated manner. The Water Framework Directive calls for further integration in river basin plans and associated programmes of measures. In the paper the three approaches are described and considered in light of the requirements of the Water Framework Directive. Water Quality classification and objective setting has been based on information from the survey of benthic macro-invertebrates. The Biological Monitoring Working Party Score and the predictive software River Invertebrate Prediction and Classification System (RIVPACS have been used to set site-specific targets for management purposes. RIVPACS includes a reference database of minimally impacted sites for comparison with the observed data. This approach is in line with the requirements of the directive. Physical river structure work has been based on monitoring of in-river and river corridor characteristics. The River Habitat System (RHS has also developed a reference database but is less well developed in terms of its predictive ability. The use of ecological information in Water Resource management has taken a different approach based on the concept of differential ecological sensitivity to the hydrological regime within the river. In

  12. Controls on Stormwater Runoff Quality and Quantity in Semi-arid, Urban Catchments

    Science.gov (United States)

    Gallo, E. L.; Brooks, P. D.; Lohse, K. A.

    2009-12-01

    Utilization of recharged urban runoff to complement municipal water supply has gained importance in arid regions where populations and their urban footprint continue to grow, and where water resources are scarce. However, our understanding of how runoff quantity and quality respond to urbanization in arid landscapes is largely incomplete and poses a challenge for water resources management. Here we address the question: What controls the hydrologic and hydrochemical responses of arid urban catchments? We collected water samples and stream stage data from 5 urban catchments of varied land uses (low, medium and high density residential, mixed and commercial land use) in southern Arizona during the summer rainfall seasons of 2007 and 2008. The most homogeneous catchments, as indicated by the index of landscape heterogeneity, were the least and most impervious, while the most heterogeneous sites had mid-range imperviousness. Hydrochemical responses were mixed, did not correlate with imperviousness or vegetation abundance, and were not strongly controlled by land use. Clustering analysis highlight hydrologic and sourcing controls on hydrochemistry, specifically conservative solute transport, land use specific and geologic solute sourcing and atmospheric deposition. Overall, water yields were surprisingly small (< 15%) and increased with imperviousness. Our data show that discharge responses were more sensitive to rainfall magnitude in homogeneous sites. We suggest that imperviousness and rainfall magnitude control water yields; whereas landscape heterogeneity may control a catchment’s sensitivity to generate runoff. The coupling of landscape and hydrology in controlling hydrochemistry is well illustrated by chloride (Cl), a non-reactive hydrologic tracer that was positively correlated with a large number of solutes such as ammonium, dissolved organic carbon, cadmium and zinc. We observed the highest concentrations and coefficients of variation of Cl at least and most

  13. Factors Influencing Water Resource Governance among Pastoral Community at Mkondoa Sub-Catchment Morogoro Region Tanzania

    Directory of Open Access Journals (Sweden)

    Yeremia Yohana Masifia

    2017-06-01

    Full Text Available The importance of proper Water Resource Management with greater emphasis on ensuring sustainability quality accountability and community participation has become imminent as water resources increasingly become scarce Harvey et al 2007. Water resources management in Tanzania is governed under the National Water Policy of 2002 and Water Resources Management Act No.11 of year 2009. Other related legislations include Environmental Management Act No. 20 of year 2004 Forest Policy and Forest Act No. 14 of year 2002 and Water Supply Act No.12 of year 2009 among others. However the mechanisms processes and institutions through which all stakeholders articulate their priorities exercise their legal rights meet their obligations and mediate their differences is still missing. This study employed descriptive exploratory research design. Data collection was done by the use of both structured and semi structured interview to respondents who were both purpose and simple randomly selected observation and focus group discussion. Review of reports from Districts and Basin offices and internet to access relevant secondary information was done. Results show that WUAs LGAs and WSSAs lack relevant understanding capacities management and law enforcement as result water management generally remains non participatory inefficient and expensive and increased water user conflicts in Kisangata and Ilonga WUAs of Mkondoa sub catchment Morogoro region. The study propose participatory approaches best practices on water resource management at local level for embracement of Community- Based Water Resource Management as the only option of managing sub catchment water resources and reduce water related conflicts among water users. Awareness creation on policy and establishment of alternative economic activities like horticulture bee keeping and poultry is significant to give relief to land.

  14. Effects of land use change on streamflow and stream water quality of ...

    African Journals Online (AJOL)

    This study aimed to link land cover/use change to water quality in an important water supply coastal catchment. The approach followed a spatial and temporal analysis of historical catchment land use change to assess how changes influenced water quality and river flow in the Touws and Duiwe Rivers, southwestern Cape, ...

  15. River water quality in the northern sugarcane-producing regions of ...

    African Journals Online (AJOL)

    Sugarcane is the major irrigated crop with regards to area cultivated in the Crocodile, Komati-Lomati and Pongola River catchments. Increasing demand for and use of water resources in these catchments has led to concerns about deterioration in water quality. In this study, chemical water quality data obtained from the ...

  16. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    Energy Technology Data Exchange (ETDEWEB)

    Awad, John [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Leeuwen, John van, E-mail: John.VanLeeuwen@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China); Barbara Hardy Institute, University of South Australia, South Australia 5095 (Australia); Abate, Dawit [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Pichler, Markus; Bestland, Erick [School of the Environment, Flinders University, Bedford Park, South Australia 5042 (Australia); Chittleborough, David J. [School of Physical Sciences, University of Adelaide, North Terrace, South Australia 5005 (Australia); Fleming, Nigel [South Australian Research and Development Institute, P.O. Box 397, Adelaide, SA 5000 (Australia); Cohen, Jonathan; Liffner, Joel [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Drikas, Mary [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, South Australia 5095 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, South Australia 5000 (Australia); State Key Laboratory for Environmental Aquatic Chemistry, CAS, Beijing (China)

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  17. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption

    International Nuclear Information System (INIS)

    Awad, John; Leeuwen, John van; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J.; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-01-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~ 30 cm and ~ 60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV–visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on

  18. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    International Nuclear Information System (INIS)

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  19. Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

    Science.gov (United States)

    Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.

    2014-09-01

    While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.

  20. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso)

    Science.gov (United States)

    Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.

    2016-06-01

    This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007, and 2013. A reclassification procedure levels out differences between the classification schemes of the four maps. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during calibration and validation ranged between 0.6 and 0.9 for total discharge, soil moisture, and groundwater level, indicating a good agreement between observed and simulated variables. After a successful multivariate validation the model was applied to the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment it can be assumed that savannah was mainly converted to cropland. The conversion rate of savannah was lower than the annual population growth of 3%. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high peak flow, suggesting (i) an increase in water resources that are not available for plant growth and human consumption and (ii) an alteration of flood risk for both the population within and

  1. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  2. Catchment hydrochemical processes controlling acidity and nitrogen in forest stream water

    International Nuclear Information System (INIS)

    Foelster, Jens

    2001-01-01

    Atmospheric deposition of air pollutants has been a severe threat to terrestrial and forest ecosystems for several decades. In Sweden sulphur deposition has caused acidification of soils and runoff, while nitrogen deposition only had a minor or local impact on runoff quality so far. During the last three decades, emission control has caused a decline in sulphur deposition, whereas nitrogen deposition on the other hand, has continued to increase to a rate several times above the natural background level. Long term changes in runoff acidity and nitrogen chemistry after these changes in deposition are of great concern. Monitoring of small, well-defined catchments including hydrochemistry of precipitation, soil and runoff, is a valuable tool for addressing this concern. When interpreting runoff data from such sites, the near-stream zone has been identified to be of crucial importance. The main objective for this thesis was to explain how catchment processes were related to short-term variation and long-term trends in the hydrochemistry of forest stream water. The field work was conducted on the strongly acidified and nitrogen limited Kindla catchment, with a special emphasis on the relationship between the near-stream zone and both stream acidity and nitrogen leaching. Furthermore, time series of hydrochemistry in forest stream water from 13 catchments were analysed for changes in acidity and nitrogen leaching. In three of these sites, soil water from E- and B-horizons was also analysed with regards to these questions. The investigations revealed that the near-stream zone was a net source of acidity in runoff at Kindla due to leaching of organic acids, although this contribution was overshadowed by sulphate from upland soils and deposition. The near-stream zone was also the main source for both organic nitrogen and nitrate to the stream, but the leaching rate was low, especially for inorganic nitrogen. In the 13 reference streams, sulphate concentrations declined in

  3. Managing Multiple Catchment Demands for Sustainable Water Use and Ecosystem Service Provision

    Directory of Open Access Journals (Sweden)

    Kathleen C. Stosch

    2017-09-01

    Full Text Available Ensuring water, food and energy security for a growing world population represents a 21st century catchment management challenge. Failure to recognise the complexity of interactions across ecosystem service provision can risk the loss of other key environmental and socioeconomic benefits from the natural capital of catchment systems. In particular, the ability of soil and water to meet human needs is undermined by uncertainties around climate change effects, ecosystem service interactions and conflicting stakeholder interests across catchments. This critical review draws from an extensive literature to discuss the benefits and challenges of utilising an ecosystem service approach for integrated catchment management (ICM. State-of-the-art research on ecosystem service assessment, mapping and participatory approaches is evaluated and a roadmap of the key short- and longer-term research needs for maximising landscape-scale ecosystem service provision from catchments is proposed.

  4. Water erosion and climate change in a small alpine catchment

    Science.gov (United States)

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS

  5. Hydrogeology and water chemistry of Infranz catchment springs, Bahir Dar Area, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Abera, F. N.

    2017-12-01

    The major springs in the Infranz catchment are a significant source of water for Bahir city and nearby villages, while they help to sustain Infranz River and the downstream wetlands. The aim of the research was to understand the hydrogeological conditions of these high-discharge springs, and to explain the hydrochemical composition of spring waters. Water samples from rainwater and springs were collected and analyzed and compared for major cations and anions. The hydrochemical data analysis showed that all water samples of the springs have freshwater chemistry, Ca-HCO3 type, while deep groundwater shows more evolved types. This indicates limited water-rock interaction and short residence time for the spring waters. The rise of NO3- and PO43- may indicate future water quality degradation unless the anthropogenic activities upgradient and nearby are restricted. The uptake of 75% of spring water for water supply of Bahir Dar results in wetland degradation. Key words: Spring water, Infranz River, Bahir Dar, Ethiopia, hydrochemistry

  6. Characterization of atmospheric deposition and runoff water on a small suburban catchment

    OpenAIRE

    LAMPREA, Diana Katerine; RUBAN, Véronique

    2011-01-01

    A study of air quality and atmospheric deposition on a small urban catchment (Pin Sec catchment) has been carried out in Nantes, France, in 2007 and 2008 in the frame of a federative project aimed at understanding the origin of pollution in urban environments. Carbon monoxide, nitrogen monoxide, nitrogen dioxide, ozone, sulphur dioxide and particles less than 10 µm (PM 10) were monitored for air quality, whereas heavy metals, Polycyclic aromatic hydrocarbons (PAHs) and pesticides were analyze...

  7. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    Science.gov (United States)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  8. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Autio, Iida; Soinne, Helena; Helin, Janne

    2016-01-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations...... of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial...

  9. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    Science.gov (United States)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  10. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    Science.gov (United States)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  11. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  12. An integrative water balance model framework for a changing glaciated catchment in the Andes of Peru

    Science.gov (United States)

    Drenkhan, Fabian; Huggel, Christian; García Hernández, Javier; Fluixá-Sanmartín, Javier; Seidel, Jochen; Muñoz Asmat, Randy

    2017-04-01

    In the Santa River catchment [SRC] (Cordillera Blanca, Andes of Peru), human livelihoods strongly depend on year-round streamflow from glaciers and reservoirs, particularly in the dry season and in adjacent arid lowlands. Perennial glacial streamflow represents a buffer to water shortages, annual discharge variability and river contamination levels. However, climate change impacts, consecutive glacier shrinkage as well as new irrigated agriculture and hydropower schemes, population growth and thus water allocation might increase water scarcity in several areas of the SRC. This situation exerts further pressure and conflict potential over water resources and stresses the need to analyze both water supply and demand trends in a multidisciplinary and interlinked manner. In this context, an integrative glacio-hydrological framework was developed based on the Glacier and Snow Melt (GSM) and SOil CONTribution (SOCONT) models using the semi-distributed free software RS MINERVE. This water balance model incorporates hydroclimatic, socioeconomic and hydraulic objects and data at daily scale (with several gaps) for the last 50 years (1965-2015). A particular challenge in this context represents the poor data availability both in quantity and quality. Therefore, the hydroclimatic dataset to be used had to be carefully selected and data gaps were filled applying a statistical copula-based approach. The socioeconomic dataset of water demand was elaborated using several assumptions based on further census information and experiences from other projects in the region. Reservoirs and hydropower models were linked with additional hydraulic data. In order to increase model performance within a complex topography of the 11660 km2 SRC, the area was divided into 22 glaciated (GSM) and 42 non-glaciated (SOCONT) subcatchment models. Additionally, 382 elevation bands at 300 m interval were created and grouped into 22 different calibration zones for the whole SRC. The model was calibrated

  13. How young water fractions can delineate travel time distributions in contrasting catchments

    Science.gov (United States)

    Lutz, Stefanie; Zink, Matthias; Merz, Ralf

    2017-04-01

    Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.

  14. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    Directory of Open Access Journals (Sweden)

    Xue Lijuan

    2008-09-01

    Full Text Available With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas. Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.

  15. Evaluating Water Quality in a Suburban Environment

    Science.gov (United States)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  16. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  17. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    Science.gov (United States)

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  18. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  19. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  20. Estimating runoff from ungauged catchments for reservoir water ...

    African Journals Online (AJOL)

    The Lower Middle Zambezi Basin is sandwiched between three hydropower ... This study applied a rainfall-runoff model (HEC-HMS) and GIS techniques to ... Missing data were generated using the mean value infilling method. ... A hydrological model, HEC- HMS, was used to simulate runoff from the ungauged catchments.

  1. Integration of a modeling task in water policy design - Example of a prospective scenarios approach on an agricultural catchment

    Science.gov (United States)

    Moreau, P.; Raimbault, T.; Durand, P.; Gascuel-Odoux, C.; Salmon-Monviola, J.; Masson, V.; Cordier, M. O.

    2010-05-01

    To meet the objectives of the Water Framework Directive in terms of nitrate pollution of surface water, numerous mitigation options have been proposed. To support stakeholders' decision prior to the implementation of regulations, scenario analysis by models can be used as a prospective approach. The work developed an extensive virtual experiment design from an initial basic requirement of catchment managers. Specific objectives were (1) to test the ability of a distributed model (TNT2) to simulate hydrology and hydrochemistry on a watershed with a high diversity of production systems, (2) to analyse a large set of scenarios and their effects on water quality and (3) to propose an effective mode of communication between research scientists and catchment managers. The focus of the scenario, in accord with catchment managers' requirement, is put on winter catch crop (CC). 5 conditions of implantation in rotations, 3 CC durations and 2 CC harvest modes were tested. CC is favoured by managers because of its simplicity to implement on fields and its relative low influence on farm strategy. Calibration and validation periods were run from 1998 to 2007 and scenario simulation period from 2007 to 2020. Results have been provided, for each scenario, by compartment (soil, atmosphere, plant uptake, water) but especially in the form of nitrogen mass balance at the catchment scale. The scenarios were ranked by integrating positive and negative effects of each measure. This 3-step-process: translation of a simple stakeholder question into extensive set of scenarios (complexification) - modeling process and data analysis - restitution to catchments' manager into a simple integrative form (simplification), gives an operational tool for decision support. In term of water quality, the best improvements in nitrate concentrations at the outlet reached a decrease of 0.8 mgL-1 compared to a "business as usual" scenario and were achieved by exporting the CC residue, by extending CC

  2. Comparison of Water Flows in Four European Lagoon Catchments under a Set of Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Cornelia Hesse

    2015-02-01

    Full Text Available Climate change is supposed to remarkably affect the water resources of coastal lagoons as they are highly vulnerable to changes occurring at their catchment and/or ocean or sea boundaries. Probable impacts of projected climate changes on catchment hydrology and freshwater input were assessed using the eco-hydrological model SWIM (Soil and Water Integrated Model for the drainage areas of four European lagoons: Ria de Aveiro (Portugal, Mar Menor (Spain, Tyligulskyi Liman (Ukraine and Vistula Lagoon (Poland/Russia under a set of 15 climate scenarios covering the time period until the year 2100. Climate change signals for all regions show continuously increasing trends in temperature, but various trends in precipitation. Precipitation is projected to decrease in two catchments on the Iberian Peninsula and increase in the Baltic region catchment, and does not show a clear trend in the catchment located near the Black Sea. The average projected changes in freshwater inputs reflect these changes in climate conditions, but often show variability between the scenarios, in future periods, and within the catchments. According to the individual degrees of water management influences in the four drainage basins, the climate sensitivity of river inflows is differently pronounced in each.

  3. The effect of water storage change in ET estimation in humid catchments based on water balance models and Budyko framework

    Science.gov (United States)

    Wang, Tingting; Sun, Fubao; Liu, Changming; Liu, Wenbin; Wang, Hong

    2017-04-01

    An accurate estimation of ET in humid catchments is essential in water-energy budget research and water resource management etc, while it remains a huge challenge and there is no well accepted explanation for the difficulty of annual ET estimation in humid catchments so far. Here we presents the ET estimation in 102 humid catchments over China based on the Budyko framework and two hydrological models: abcd model and Xin'anjiang mdoel, in comparison with ET calculated from the water balance equation (ETwb) on the ground that the ΔS is approximately zero at multiannual and annual time scale. We provides a possible explanation for this poorly annual ET estimation in humid catchments as well. The results show that at multi-annual timescale, the Budyko framework works fine in ET estimation in humid catchments, while at annual time scale, neither the Budyko framework nor the hydrological models can estimate ET well. The major cause for this poorly estimated annual ET in humid catchments is the neglecting of the ΔS in ETwb since it enlarge the variability of real actual evapotranspiration. Much improvement has been made when compared estimated ET + ΔS with those ETwb, and the bigger the catchment area is, the better this improvement is. It provides a reasonable explanation for the poorly estimated annual ET in humid catchments and reveals the important role of the ΔS in ET estimation and validation. We highlight that the annual ΔS shouldn't be taken as zero in water balance equation in humid catchments.

  4. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  5. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  6. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  7. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  8. Stormwater quality and pollution loading from an urban residential catchment in Johor, Malaysia.

    Science.gov (United States)

    Nazahiyah, R; Yusop, Z; Abustan, I

    2007-01-01

    Sampling of urban runoff was carried out in a small catchment, which represents a residential area (3.34 ha) in Skudai, Johor. One hundred and seventeen runoff samples from ten storm events were analysed. Runoff quality showed large variations in concentrations during storms, especially for SS, BOD5 and COD. Concentrations of NO3-N, NO2-N, NH3-N, and P were also high. Lead (Pb) was also detected but the levels were low (<0.001 mg/L). In general, the river quality is badly polluted and falls in Class V based on the Malaysian Interim National Water Quality Standards. Event mean concentrations for all parameters were found to vary greatly between storms. The values (mg/L) were BOD5 (72), COD (325), SS (386), NO3-N (2.5), NO2-N (0.58), NH3-N (6.8), P (3.4), respectively. First flush phenomena were observed for BOD, COD, SS, NO3-N, NH3-N and P. The first 20-30% of the runoff volume evacuated between 20-59% BOD, 15-69% COD, 15-78% SS, 14-49% NO3-N, 14-19% NO2-N, 23-53% NH3-N and 23-43% P.

  9. Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme

    Science.gov (United States)

    Smith, David; Grand-Clement, Emile; Brazier, Richard

    2014-05-01

    Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme Smith, D., Grand-Clement, E., Anderson, K., Luscombe, D., G, N., Bratis, Brazier, R.E Peatlands in the South West of the British Isles have been extensively drained for agricultural reclamation and peat cutting. The improvement in food production resulting from this management practice has never clearly been observed. Instead, we are now faced with several detrimental consequences on a whole suite of ecosystem services, such as the delivery of water, water quality, biodiversity and carbon storage. Alongside the direct environmental implications, poor water quality is increasing water treatment costs and will drive significant future investment. As a result, water companies now need to find appropriate solutions to varying water levels and decreasing water quality through catchment management. The Mires Project, the catchment management programme used by South West Water (SWW) is working with a wide range of stakeholders to restore the hydrological functioning of peatlands, and the ecosystem services they provide. This programme is driven by overarching legal requirements (i.e. the water framework directive, Natura 2000), future climate change predictions, corporate responsibility and commercial needs. Post-restoration scientific monitoring is at the heart of the project improving of our understanding of the eco-hydrological and chemical process driving changes in management practice. The challenges faced from the involvement of a wide range of stakeholders will be explored, focusing on the benefits from stakeholder involvement in catchment management and hydrological research, but also considering the difficulties to be overcome. SWW is working with private land-owners, government agencies, local and national park Authorities, community and single interest groups and research institutions to achieve its

  10. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  11. Modelling dynamic water redistribution patterns in arid catchments in the Negev Desert of Israel

    NARCIS (Netherlands)

    Buis, E.; Veldkamp, A.

    2008-01-01

    In arid climate regions, redistribution of runoff water is highly relevant for vegetation development. The process of water redistribution at catchment scale is studied with the landscape process model LAPSUS, mainly used for erosion and sedimentation modelling. LAPSUS, formerly applied in

  12. Reducing nitrogen leaching from fertilizers to surface waters: catchment specific indicators of economic benefits

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Levin, Gregor; Odgaard, Mette Vestergaard

    2018-01-01

    We explore with impact pathway methodology the economic benefits of reducing nitrogen leaching to transitional surface waters, as expected for a proportionality test under the EU’s Water Framework Directive article 4. Ten different catchments is analyzed for a policy scenario where downstream dis...

  13. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.

    Science.gov (United States)

    Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo

    2011-12-01

    Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.

  14. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    Directory of Open Access Journals (Sweden)

    François Garnier

    2011-04-01

    Full Text Available An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels… showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance.

  15. Land cover and water yield: inference problems when comparing catchments with mixed land cover

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2012-09-01

    Full Text Available Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation can affect mean catchment streamflow (Q. By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model. The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i noise in land cover, precipitation and Q data; (ii additional catchment climate characteristics more important than land cover; and (iii covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.

  16. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  17. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  18. Effects of changes in land use and climate on water availability of a tropical catchment

    NARCIS (Netherlands)

    Marhaento, Hero

    2018-01-01

    Land use changes such as deforestation and urbanization influence the hydrology of catchments and hence water availability. Together with climate change, land use changes can affect the frequency of floods or droughts and thus threaten local or regional socio-economic development. For Indonesia, the

  19. Factors influencing the residence time of catchment waters : A virtual experiment approach

    NARCIS (Netherlands)

    Dunn, S.M.; McDonnell, J.J.; Vaché, K.B.

    Estimates of mean residence time (MRT) are increasingly used as simple summary descriptors of the hydrological processes involving storage and mixing of water within catchment systems. Current understanding of the physical controls on MRT remains limited, and various hypotheses have been proposed to

  20. Modelling the impact of implementing Water Sensitive Urban Design on at a catchment scale

    DEFF Research Database (Denmark)

    Locatelli, Luca; Gabriel, S.; Bockhorn, Britta

    Stormwater management using Water Sensitive Urban Design (WSUD) is expected to be part of future drainage systems. This project aimed to develop a set of hydraulic models of the Harrestrup Å catchment (close to Copenhagen) in order to demonstrate the importance of modeling WSUDs at different scales......, ranging from models of an individual soakaway up to models of a large urban catchment. The models were developed in Mike Urban with a new integrated soakaway model. A small-scale individual soakaway model was used to determine appropriate initial conditions for soakway models. This model was applied...

  1. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.

    Science.gov (United States)

    le Roux, Betsie; van der Laan, Michael; Vahrmeijer, Teunis; Bristow, Keith L; Annandale, John G

    2017-12-01

    Future water scarcities in the face of an increasing population, climate change and the unsustainable use of aquifers will present major challenges to global food production. The ability of water footprints (WFs) to inform water resource management at catchment-scale was investigated on the Steenkoppies Aquifer, South Africa. Yields based on cropping areas were multiplied with season-specific WFs for each crop to determine blue and green water consumption by agriculture. Precipitation and evapotranspiration of natural vegetation and other uses of blue water were included with the agricultural WFs to compare water availability and consumption in a catchment sustainability assessment. This information was used to derive a water balance and develop a catchment WF framework that gave important insights into the hydrology of the aquifer through a simplified method. This method, which requires the monitoring of only a few key variables, including rainfall, agricultural production, WFs of natural vegetation and other blue water flows, can be applied to inform the sustainability of catchment scale water use (as opposed to more complex hydrological studies). Results indicate that current irrigation on the Steenkoppies Aquifer is unsustainable. This is confirmed by declining groundwater levels, and suggests that there should be no further expansion of irrigated agriculture on the Steenkoppies Aquifer. Discrepancies between in- and outflows of water in the catchment indicated that further development of the WF approach is required to improve understanding of the geohydrology of the aquifer and to set and meet sustainability targets for the aquifer. It is envisaged that this 'working' framework can be applied to other water-stressed aquifers around the world. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Water and Sediment Output Evaluation Using Cellular Automata on Alpine Catchment: Soana, Italy - Test Case

    Science.gov (United States)

    Pasculli, Antonio; Audisio, Chiara; Sciarra, Nicola

    2017-12-01

    In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches become a precious source of information for various human activities, in particular for land use management and planning. Many rainfall- runoff models have been proposed to reflect steady, gradually-varied flow condition inside a catchment. In these last years, the application of Reduced Complexity Models (RCM) has been representing an excellent alternative resource for evaluating the hydrological response of catchments, within a period of time up to decades. Hence, this paper is aimed at the discussion of the application of the research code CAESAR, based on cellular automaton (CA) approach, in order to evaluate the water and the sediment outputs from an alpine catchment (Soana, Italy), selected as test case. The comparison between the predicted numerical results, developed through parametric analysis, and the available measured data are discussed. Finally, the analysis of a numerical estimate of the sediment budget over ten years is presented. The necessity of a fast, but reliable numerical support when the measured data are not so easily accessible, as in Alpine catchments, is highlighted.

  3. Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment

    Directory of Open Access Journals (Sweden)

    Anastassi Stefanova

    2015-04-01

    Full Text Available Climate projections agree on a dryer and warmer future for the Mediterranean. Consequently, the region is likely to face serious problems regarding water availability and quality in the future. We investigated potential climate change impacts, alone (for three scenario periods and in combination with four socio-economic scenarios (for the near future on water resources in a Mediterranean catchment, whose economy relies on irrigated agriculture and tourism. For that, the Soil and Water Integrated Model (SWIM was applied to the drainage area of the Mar Menor coastal lagoon, using a set of 15 climate scenarios and different land use maps and management settings. We assessed the long-term average seasonal and annual changes in generated runoff, groundwater recharge and actual evapotranspiration in the catchment, as well as on water inflow and nutrients input to the lagoon. The projected average annual changes in precipitation are small for the first scenario period, and so are the simulated impacts on all investigated components, on average. The negative trend of potential climate change impacts on water resources (i.e., decrease in all analyzed components becomes pronounced in the second and third scenario periods. The applied socio-economic scenarios intensify, reduce or even reverse the climate-induced impacts, depending on the assumed land use and management changes.

  4. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    Science.gov (United States)

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  6. Water Travel Time Distributions in Permafrost-affected Catchments: Challenges, Progress and Implications

    Science.gov (United States)

    Smith, A. A.; Piovano, T. I.; Tetzlaff, D.; Ala-aho, P. O. A.; Wookey, P. A.; Soulsby, C.

    2017-12-01

    Characterising the travel times of water has been a major research focus in catchment science over the past decade. Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into runoff has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, permafrost-affected catchments have received little attention, despite their global importance in terms of rapid environmental change. Such places have limited access for data collection during critical periods (e.g. early phases of snowmelt), temporal and spatially variable freeze-thaw cycles, and the development of the active layer has a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. This contribution describes an isotope-based study undertaken to provide a preliminary assessment of travel times at SikSik Creek in the Canadian Arctic. We adopted a model-data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using sampling in the spring/summer we characterise the isotopic composition of summer rainfall, melt from residual snow, soil water and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were also monitored. Transit times were estimated for soil and stream water compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs reveals transit time is best estimated using all available inflows (i.e. snowmelt, ice thaw, and rainfall). Early spring transit times are short, dominated by snowmelt and ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer results in more

  7. Assessment of water quality

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2002-01-01

    Water is the most essential component of all living things and it supports the life process. Without water, it would not have been possible to sustain life on this planet. The total quantity of water on earth is estimated to be 1.4 trillion cubic meter. Of this, less than 1 % water, present in rivers and ground resources is available to meet our requirement. These resources are being contaminated with toxic substances due to ever increasing environmental pollution. To reduce this contamination, many countries have established standards for the discharge of municipal and industrial waste into water streams. We use water for various purposes and for each purpose we require water of appropriate quality. The quality of water is assessed by evaluating the physical chemical, biological and radiological characteristics of water. Water for drinking and food preparation must be free from turbidity, colour, odour and objectionable tastes, as well as from disease causing organisms and inorganic and organic substances, which may produce adverse physiological effects, Such water is referred to as potable water and is produced by treatment of raw water, involving various unit operations. The effectiveness of the treatment processes is checked by assessing the various parameters of water quality, which involves sampling and analysis of water and comparison with the National Quality Standards or WHO standards. Water which conforms to these standards is considered safe and palatable for human consumption. Periodic assessment of water is necessary, to ensure the quality of water supplied to the public. This requires proper sampling at specified locations and analysis of water, employing reliable analytical techniques. (author)

  8. The role of land use and soils in regulating water flow in small headwater catchments of the Andes

    Science.gov (United States)

    Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.

    2011-05-01

    Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.

  9. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  10. Characterizing spatiotemporal variations of chromophoric dissolved organic matter in headwater catchment of a key drinking water source in China.

    Science.gov (United States)

    Chen, Yihan; Yu, Kaifeng; Zhou, Yongqiang; Ren, Longfei; Kirumba, George; Zhang, Bo; He, Yiliang

    2017-12-01

    Natural surface drinking water sources with the increasing chromophoric dissolved organic matter (CDOM) have profound influences on the aquatic environment and drinking water safety. Here, this study investigated the spatiotemporal variations of CDOM in Fengshuba Reservoir and its catchments in China. Twenty-four surface water samples, 45 water samples (including surface water, middle water, and bottom water), and 15 pore water samples were collected from rivers, reservoir, and sediment of the reservoir, respectively. Then, three fluorescent components, namely two humic-like components (C1 and C2) and a tryptophan-like component (C3), were identified from the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) for all samples. For spatial distributions, the levels of CDOM and two humic-like components in the reservoir were significantly lower than those in the upstream rivers (p CDOM and humic-like matters from the surrounding catchment. For temporal variations, the mean levels of CDOM and three fluorescent components did not significantly change in rivers, suggesting that perennial anthropic activity maybe an important factor impacting the concentration and composition of river CDOM but not the precipitation and runoff. However, these mean values of CDOM for the bulk waters of the reservoir changed markedly along with seasonal variations, indicating that the hydrological processes in the reservoir could control the quality and quantity of CDOM. The different correlations between the fluorescent components and primary water parameters in the river, reservoir, and pore water samples further suggest that the reservoir is an important factor regulating the migration and transformation of FDOM along with the variations of different environmental gradients.

  11. Spatially Distributed, Coupled Modeling of Plant Growth, Nitrogen and Water Fluxes in an Alpine Catchment

    Science.gov (United States)

    Schneider, K.

    2001-12-01

    Carbon, water and nitrogen fluxes are closely coupled. They interact and have many feedbacks. Human interference, in particular through land use management and global change strongly modifies these fluxes. Increasing demands and conflicting interests result in an increasing need for regulation targeting different aspects of the system. Without being their main target, many of these measures directly affect water quantity, quality and availability. Improved management and planning of our water resources requires the development of integrated tools, in particular since interactions of the involved environmental and social systems often lead to unexpected or adverse results. To investigate the effect of plant growth, land use management and global change on water fluxes and quality, the PROcess oriented Modular EnvironmenT and Vegetation Model (PROMET-V) was developed. PROMET-V models the spatial patterns and temporal course of water, carbon and nitrogen fluxes using process oriented and mechanistic model components. The hydrological model is based on the Penman-Monteith approach, it uses a plant-physiological model to calculate the canopy conductance, and a multi-layer soil water model. Plant growth for different vegetation is modelled by calculating canopy photosynthesis, respiration, phenology and allocation. Plant growth and water fluxes are coupled directly through photosynthesis and transpiration. Many indirect feedbacks and interactions occur due to their mutual dependency upon leaf area, root distribution, water and nutrient availability for instance. PROMET-V calculates nitrogen fluxes and transformations. The time step used depends upon the modelled process and varies from 1 hour to 1 day. The kernel model is integrated in a raster GIS system for spatially distributed modelling. PROMET-V was tested in a pre-alpine landscape (Ammer river, 709 km**2, located in Southern Germany) which is characterized by small scale spatial heterogeneities of climate, soil and

  12. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  13. A distributed water level network in ephemeral river reaches to identify hydrological processes within anthropogenic catchments

    Science.gov (United States)

    Sarrazin, B.; Braud, I.; Lagouy, M.; Bailly, J. S.; Puech, C.; Ayroles, H.

    2009-04-01

    In order to study the impact of land use change on the water cycle, distributed hydrological models are more and more used, because they have the ability to take into account the land surface heterogeneity and its evolution due to anthropogenic pressure. These models provide continuous distributed simulations of streamflow, runoff, soil moisture, etc, which, ideally, should be evaluated against continuous distributed measurements, taken at various scales and located in nested sub-catchments. Distributed network of streamflow gauging stations are in general scarce and very expensive to maintain. Furthermore, they can hardly be installed in the upstream parts of the catchments where river beds are not well defined. In this paper, we present an alternative to these standard streamflow gauging stations network, based on self powered high resolution water level sensors using a capacitive water height data logger. One of their advantages is that they can be installed even in ephemeral reaches and from channel head locations to high order streams. Furthermore, these innovative and easily adaptable low cost sensors offer the possibility to develop in the near future, a wireless network application. Such a network, including 15 sensors has been set up on nested watersheds in small and intermittent streams of a 7 km² catchment, located in the mountainous "Mont du Lyonnais" area, close to the city of Lyon, France. The land use of this catchment is mostly pasture, crop and forest, but the catchment is significantly affected by human activities, through the existence of a dense roads and paths network and urbanized areas. The equipment provides water levels survey during precipitation events in the hydrological network with a very accurate time step (2 min). Water levels can be related to runoff production and catchment response as a function of scale. This response will depend, amongst other, on variable soil water storage capacity, physiographic data and characteristics of

  14. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  15. Clearing invasive alien plants as a cost-effective strategy for water catchment management: The case of the Olifants river catchment, South Africa

    Directory of Open Access Journals (Sweden)

    Tshepo Morokong

    2016-12-01

    Full Text Available Invasive alien plants have a negative impact on ecosystem goods and services derived from ecosystems. Consequently, the aggressive spread of invasive alien plants (IAPs in the river catchments of South Africa is a major threat to, inter alia, water security. The Olifants River catchment is one such a catchment that is under pressure because of the high demand for water from mainly industrial sources and unsustainable land-use, which includes IAPs. This study considered the cost-effectiveness of clearing IAPs and compared these with the cost of a recently constructed dam. The methods used for data collection were semistructured interviews, site observation, desktop data analysis, and a literature review to assess the impact of IAPs on the catchment’s water supply. The outcomes of this study indicate that clearing invasive alien plants is a cost-effective intervention with a Unit Reference Value (URV of R1.44/m3, which compares very favourably with that of the De Hoop dam, the URV for which is R2.93/m3. These results suggest that clearing invasive alien plants is a cost-effective way of catchment management, as the opportunity cost of not doing so (forfeiting water to the value of R2.93/m3 is higher than that of protecting the investment in the dam.

  16. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    Science.gov (United States)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  17. Assessment of Potential Climate Change Effects on the Rice Yield and Water Footprint in the Nanliujiang Catchment, China

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang

    2018-01-01

    Full Text Available The Nanliujiang catchment is one of major rice production bases of South China. Irrigation districts play an important role in rice production which requires a large quantity of water. There are potential risks on future climate change in response to rice production, agricultural irrigation water use and pollution control locally. The SWAT model was used to quantify the yield and water footprint (WF of rice in this catchment. A combined method of automatic and manual sub-basin delineation was used for the model setup in this work to reflect the differences between irrigation districts in yield and water use of rice. We validated our simulations against observed leaf area index, biomass and yield of rice, evapotranspiration and runoff. The outputs of three GCMs (GFDL-ESM2M, IPSL-CM5A-LR and HadGEM2-ES under three RCPs (RCP2.6, 4.5, 8.5 were fed to the SWAT model. The results showed that: (a the SWAT model is an ideal tool to simulate rice development as well as hydrology; (b there would be increases in rice yield ranged from +1.4 to +10.6% under climate projections of GFDL-ESM2M and IPSL-CM5A-LR but slight decreases ranged from −3.5 to −0.8% under that of HadGEM2-ES; (c the yield and WFs of rice displayed clear differences in the catchment, with a characteristic that high in the south and low in the north, mainly due to the differences in climatic conditions, soil quality and fertilization amount; (d there would be a decrease by 45.5% in blue WF with an increase by 88.1% in green WF, which could provide favorable conditions to enlarge irrigated areas and take technical measures for improving green water use efficiency of irrigation districts; (e a clear rise in future grey WF would present enormous challenges for the protection of water resources and environmental pollution control in this catchment. So it should be to improved nutrient management strategies for the agricultural non-point source pollution control in irrigation districts

  18. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  19. EVALUATION OF WATER RETENTION CAPABILITY IN WETLANDS AT SMALL FOREST CATCHMENT

    Directory of Open Access Journals (Sweden)

    Daniel Liberacki

    2015-07-01

    Full Text Available The paper presents the results of researches carried out in the middle part of Pizza Zielonka forest complex. The aim was the evaluation of retention changes at wetlands and mid-forest ponds. The object of the study was the catchment of the Trojanka watercourse, considering from the origin to the cross-section of Zielonka Lake. The catchment is located in in the central part of the Wielkopolska region, approximatelly 20 km on the North-East of Poznań. The area of this forestall catchment is about 223 ha. In the paper an analysis of the results from three hydrological years was presented. The results of the years 1987 (wet year, 2003 (dry year and 2009 (medium year were analysed against meteorological conditions. Retention capacity in each wetlands, as well as the possibility of water retention in the Trojanka watercourse was calculated. The researches confirmed significant meteorological conditions influence the amount of retentioned water. The calculated capacity of retentioned water was 15 852 m3 considering the total area of wetland and swamp (8,58 ha and precipitation sum of 555 mm. 18% increase of water capacity was observed in wet year (1987 In this year the sum of precipitation was 100 mm higher than multiyear average sum. Meanwhile 62% decrease of water capacity was observed in dry year (2003, when the precipitation sum was 208 mm lower than multiyear average one.

  20. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  1. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    Science.gov (United States)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2017-12-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method

  2. The Impact of Climate Change on Groundwater Resources and Groundwater Quality in the Patcham Catchment, England.

    Science.gov (United States)

    Phillips, R. J.; Smith, M.; Pope, D. J.; Gumm, L.

    2012-04-01

    The CLIMAWAT project is an EU-Regional Development Fund Interreg IV funded research programme to study the impacts of climate change on groundwater resources and groundwater quality from the Chalk aquifer of SE England. The use of partially treated wastewater for artificial recharge will also be extensively studied in both the field and laboratory. The Chalk is a major aquifer and regionally supplies 70% of potable water supplies. The long term sustainable use of this resource is of paramount importance and the outcomes of this project will better inform and enhance long term management strategies for this. Project partners include water companies, regulatory bodies and industry consultancies. The four main objectives of the CLIMAWAT project are: i) better improve the prediction of the impact of climate change on this groundwater resource; ii) better understand and quantify how recharge mechanisms will vary due to the uncertainty associated with climate change; iii) better understand the storage mechanisms and fate of contaminants (e.g. nitrates and pesticides) in this aquifer and iv) investigate the impact of using partially treated wastewater for artificial recharge. An extensive field monitoring and data collection programme is underway in the Patcham Catchment (SE of England). Simultaneous monitoring of climatic, unsaturated zone potentiometric, groundwater level and chemistry data will allow for a better understanding of how changes in recharge patterns will effect groundwater quality and quantity. Isoptopic analysis of sampled groundwaters has allowed for interpretations and a better understanding of the storage and movement of water through this aquifer. The laboratory experimental programme is also underway and the results from this will compliment the field based studies to further enhance the understanding of contaminant behaviour in the both unsaturated and saturated zones. Core experiments are being used to investigate how nutrient and other

  3. Nitrogen Source Apportionment for the Catchment, Estuary, and Adjacent Coastal Waters of the River Scheldt

    Directory of Open Access Journals (Sweden)

    Jan E. Vermaat

    2012-06-01

    Full Text Available Using the systems approach framework (SAF, a coupled model suite was developed for simulating land-use decision making in response to nutrient abatement costs and water and nutrient fluxes in the hydrological network of the Scheldt River, and nutrient fluxes in the estuary and adjacent coastal sea. The purpose was to assess the efficiency of different long-term water quality improvement measures in current and future climate and societal settings, targeting nitrogen (N load reduction. The spatial-dynamic model suite consists of two dynamically linked modules: PCRaster is used for the drainage network and is combined with ExtendSim modules for farming decision making and estuarine N dispersal. Model predictions of annual mean flow and total N concentrations compared well with data available for river and estuary (r² ≥ 0.83. Source apportionment was carried out to societal sectors and administrative regions; both households and agriculture are the major sources of N, with the regions of Flanders and Wallonia contributing most. Load reductions by different measures implemented in the model were comparable (~75% remaining after 30 yr, but costs differed greatly. Increasing domestic sewage connectivity was more effective, at comparatively low cost (47% remaining. The two climate scenarios did not lead to major differences in load compared with the business-as-usual scenario (~88% remaining. Thus, this spatially explicit model of water flow and N fluxes in the Scheldt catchment can be used to compare different long-term policy options for N load reduction to river, estuary, and receiving sea in terms of their effectiveness, cost, and optimal location of implementation.

  4. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2016-08-01

    Full Text Available Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33% of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2 using Geographic Information Systems (GIS and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1. The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1 and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1 and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  5. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.

    Science.gov (United States)

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-08-20

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  6. Trends and seasonality in stream water chemistry in two moorland catchments of the Upper River Wye, Plynlimon

    Directory of Open Access Journals (Sweden)

    B. Reynolds

    1997-01-01

    Full Text Available Stream water chemistry in the Cyff and Gwy subcatchments within the headwaters of the River Wye has been monitored regularly since 1980. In the Gwy, which is a predominantly semi-natural grassland catchment, land use has remained relatively static over the monitoring period, whilst the Cyff catchment is more buffered because of base cation inputs from agricultural improvement and ground water sources. Using a variety of statistical techniques, the long-term data are examined for evidence of trends after eliminating seasonal effects. The results highlight some of the difficulties associated with the analysis of longterm water quality data which show considerable variability over a variety of timescales. Some of this variability can be explained in terms of hydrochemical responses to climatic extremes and episodic events such as large atmospheric inputs of seasalts. The long-term fluctuations in solute concentration underline the continuing need for maintaining consistent long-term monitoring at sensitive upland sites if underlying trends related to gradual changes in pollutant deposition or climate are to be detected with any certainty.

  7. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  8. Water Quality Data (WQX)

    Science.gov (United States)

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  9. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    Science.gov (United States)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  10. Soil - water relationships in the Weatherley catchment, South Africa

    African Journals Online (AJOL)

    2009-04-24

    Apr 24, 2009 ... Soil water content is influenced by soil and terrain factors, but studies on the predictive value of diagnostic .... Results for particle size analyses (Soil Classification ...... negating the importance of the negative intercept value in.

  11. Modelling transport of storm-water pollutants using the distributed Multi-Hydro platform on an urban catchment near Paris

    Science.gov (United States)

    Hong, Yi; Bonhomme, Celine; Giangola-Murzyn, Agathe; Schertzer, Daniel; Chebbo, Ghassan

    2015-04-01

    Nowadays, the increasingly use of vehicles causes expanding contaminated storm-water runoff from roads and the associated quarters. Besides, the current utilization of city's separated sewer systems underlines the needs for evaluating precisely the growing impact of these polluted effluents on receiving water bodies. Nevertheless, traditional means of water quality modelling had shown its limits (Kanso, 2004), more accurate modelling schemes are hence required. In this paper, we found that the application of physically based and fully distributed model coupled with detailed high-resolution data is a promising approach to reproduce the various dynamics and interactions of water quantity/quality processes in urban or peri-urban environment. Over recent years, the physically based and spatially distributed numerical platform Multi-Hydro (MH) has been developed at Ecole des Ponts ParisTech (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This platform is particularly adapted for representing the hydrological processes for medium size watersheds, including the surface runoff, drainage water routing and the infiltrations on permeable zones. It is formed by the interactive coupling of several independent modules, which depend on generally used open-access models. In the framework of the ANR (French National Agency for Research) Trafipollu project, a new extension of MH, MH-quality, was set up for the water-quality modelling. MH-quality was used for the simulation of pollutant transport on a peri-urban and highly trafficked catchment located near Paris (Le Perreux-sur-Marne, 0.2 km2). The set-up of this model is based on the detailed description of urban land use features. For this purpose, 15 classes of urban land uses relevant to water quality modelling were defined in collaboration with the National Institute of Geography of France (IGN) using Digital Orthophoto Quadrangles (5cm). The delimitation of the urban catchment was then performed

  12. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  13. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  14. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    Science.gov (United States)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  15. Variability of water regime in the forested experimental catchments

    Czech Academy of Sciences Publication Activity Database

    Buchtele, Josef; Tesař, Miroslav; Krám, P.

    2009-01-01

    Roč. 4, Spec. 2 (2009), S93-S101 ISSN 1801-5395 R&D Projects: GA MŽP SP/1A6/151/07 Grant - others:EU(XE) FP6 IP NeWater 511179-2 Institutional research plan: CEZ:AV0Z20600510 Keywords : rainfall- runoff modeling * evapotranspiration modeling * vegetation change * land use * climate change Subject RIV: DA - Hydrology ; Limnology

  16. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    Science.gov (United States)

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Water Quality Monitoring

    Science.gov (United States)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  18. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  19. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    Science.gov (United States)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  20. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  1. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  2. TransWatL - Crowdsourced water level transmission via short message service within the Sondu River Catchment, Kenya

    Science.gov (United States)

    Weeser, Björn; Jacobs, Suzanne; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana

    2016-04-01

    The fast economic development in East African countries causes an increasing need of water and farmland. Ongoing changes in land use and climate may affect the function of water tower areas such as the Mau Forest complex as an important water source and tropical montane forest in Kenya. Reliable models and predictions are necessary to ensure a sustainable and adequate water resource management. The calibration and validation process of these models requires solid data, based on widespread monitoring in both space and time, which is a time consuming and expensive exercise. Countries with merging economies often do not have the technical capacity and resources to operate monitoring networks, although both the government and citizens are aware of the importance of sustainable water management. Our research focus on the implementation and testing of a crowdsourced database as a low-cost method to assess the water quantity within the Sondu river catchment in Kenya. Twenty to 30 water level gauges will be installed and equipped with instructional signage. Citizens are invited to read and transmit the water level and the station number to the database using a simple text message and their cell phone. The text message service is easy to use, stable, inexpensive and an established way of communication in East African countries. The simplicity of the method ensures a broad access for interested citizens and integration of locals in water monitoring all over the catchment. Furthermore, the system allows a direct and fast feedback to the users, which likely increases the awareness for water flow changes in the test region. A raspberry pi 2 Model B equipped with a mobile broadband modem will be used as a server receiving and storing incoming text messages. The received raw data will be quality checked and formatted by a python script and afterwards written back in a database. This ensures flexible and standardized access for postprocessing and data visualization, for which a

  3. Risk assessment in fractured porous media with particular reference to water catchments

    Science.gov (United States)

    Enzenhoefer, R.; Helmig, R.; Nowak, W.; Binning, P. J.

    2009-04-01

    will later be transferred to a study area, which is located on the Swabian Alb northeast of Ulm at the border to Bavaria. The project partner "Landeswasserversorgung" supplies approx. 60 million m³ groundwater per year for about 3 million inhabitants in the state of Baden-Wuerttemberg, including Stuttgart. Most of the aquifer is Upper Jurassic (Malm) and some parts are Quaternary. For a better understanding of the geological setting and the validation of the model, field tests (tracer tests etc.) can be suggested and optimized by optimal design techniques. Literature: Frind, E.O., Molson, J.W., and Rudolph D.L., "Well Vulnerability: A Quantitative Approach for Source Water Protection", Groundwater, Vol. 44, 2006 Harvey and Gorelick, "Temporal moment-generating equations: Modeling transport and mass transfer in heterogeneous aquifers", Water Resources Research, Vol. 31, No.8, Pages 1895-1911, 1995 Hemminger, A., Neunhäuserer, L. and R. Helmig, "The Reliability of a Stochastic Fracture Generator", ModelCARE 99: International Conference on Calibration and Reliability in Groundwater Modeling - Coping with uncertainty (20. - 23. September 1999, ETH Zurich, Switzerland). IAHS Redbook, Zürich, Schweiz, 2000 World Health Organisation (WHO), „Water Safety plans: Managing drinking-water quality from catchment to consumer", prepared by Annette Davison, Guy Howard, Melita Stevens, Phil Callan, Lorna Fewtrell, Dan Deere and Jamie Bartram, 2005 http://www.who.int/water_sanitation_health/dwq/wsp0506/en/index.html

  4. Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes.

    Science.gov (United States)

    Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P

    2015-09-15

    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Water Retention in a Small Agricultural Catchment and its Potential Improvement by Design of Water Reservoirs – A Case Study of the Bílý Potok Catchment (Czechia

    Directory of Open Access Journals (Sweden)

    Doležal Petr

    2018-03-01

    Full Text Available Water retention in the landscape is discussed in the context of conservation and improvement of both its productive and non-productive functions. We analysed the retention potential of a small agricultural catchment associated with the Bílý potok brook, investigating the possibility to improve its retention capacity and slow down the surface runoff, thus increasing the underground water resources. Method of curve numbers was used for that purposes. From results, it emerged that present maximum water retention in the Bílý potok catchment is 96.2 mm. It could increase by 101.3 mm in case of grassing about 20% arable land threatened by soil erosion. As next possibility to retain water from precipitations in landscape, capacity and transformation effect of reservoirs designed in master plans was analysed. The latest programming tools working in the GIS environment were used to assess the retention capacity of both the catchment surface and the reservoirs. Analysing master plans in the catchment, it was found that 16 designed water reservoirs (from 31 have a good potential to intercept water and transform flood discharges. In the result, priority for building of reservoirs was recommended according to their pertinence and efficiency in the studied catchment. Presented complex approach can be widely implemented, especially for better effectivity and cohesion of landscape planning and land consolidations processes.

  6. Environmental ethics and crime in the water affairs of the Wonderfontein Spruit Catchment, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Elize van Eeden

    2008-04-01

    Full Text Available This article provides an analysis of the water history regarding the Wonderfontein Spruit Catchment in the former Far West Rand in South Africa. The major scope for discussion is a short analysis of environmental ethics and crime in this area in the past, and how it has affected man and environment as analysed from a 21st Century perspective. The Wonderfontein Spruit Catchment forms part of the present-day Merafong municipal area, formerly Carletonville. Although voices of concern have featured prominently since the 1960s and even earlier, no extraordinary ethical approach towards this environment and its inhabitants is recorded in history. Bibliographic sources of the Wonderfontein Spruit Catchment currently number over 5000 entries. Despite this impressive production resulting from especially research, reports and whistle blowing in the past 55 years, the area was exposed to limited and insufficient ethically inspired actions, that should have had the ingredients to confirm a positive approach by primary role players regarding environmental management.

  7. Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments

    Directory of Open Access Journals (Sweden)

    M. H. Mueller

    2013-04-01

    Full Text Available The mean transit time (MTT of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.

  8. Incorporating community and multiple perspectives in the development of acceptable drinking water source protection policy in catchments facing recreation demands.

    Science.gov (United States)

    Syme, Geoffrey J; Nancarrow, Blair E

    2013-11-15

    The protection of catchment areas for drinking water quality has become an increasingly disputed issue in Australia and internationally. This is particularly the case in regard to the growing demand for nature based and rural recreation. Currently the policy for the protection of drinking water in Western Australia is to enforce a 2 km exclusion zone with a much larger surrounding area with limited and prescribed access to recreators. The debate between recreators and water management agencies has been lively, culminating in a recent state government enquiry. This paper describes the second phase of a three phase study to develop a methodology for defensible policy formulation which accounts for the points of view of all stakeholders. We examine general community, active recreators and professionals' views on the current policy of catchment protection and five proposed alternatives using a social judgement theory approach. Key attitudinal determinants of the preferences for policies were identified. Overall the recreators did not support the current policy despite strong support from both the general community and the professional group. Nevertheless, it was evident that there was some support by the community for policies that would enable a slight relaxation of current recreational exclusion. It was also evident that there was a significant proportion of the general community who were dissatisfied with current recreational opportunities and that, in future, it may be less easy to police exclusion zones even if current policy is maintained. The potential for future integration of recreational and water source protection is discussed as well as the benefits of community research in understanding policy preferences in this regard. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  10. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment

    NARCIS (Netherlands)

    Keesstra, Saskia; Wittenberg, Lea; Maroulis, Jerry; Sambalino, Francesco; Malkinson, Dan; Cerdà, Artemi; Pereira, Paulo

    2017-01-01

    Fire is a key factor impacting soil hydrology in many Mediterranean catchments. Soil water repellency (SWR) can stimulate land degradation processes by reducing the affinity of soil and water thereby triggering a reduction in soil fertility and increasing soil and water losses. The effects of two

  11. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    Science.gov (United States)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons

  12. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  13. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Science.gov (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  14. The challenges of rescaling South African water resources management: Catchment Management Agencies and interbasin transfers

    Science.gov (United States)

    Bourblanc, Magalie; Blanchon, David

    2014-11-01

    The implementation of Catchment Management Agencies (CMAs) was supposed to be the cornerstone of the rescaling process of the South African water reform policy. Yet, less than 10 years after the adoption of the National Water Act, the process was suspended for 4 years and by 2012 only two CMAs had been established. Combining approaches in geography and political science, this paper investigates the reasons for the delays in CMAs' implementation in South Africa. It shows that the construction of interbasin transfers (IBTs) since the 1950s by the apartheid regime and nowadays the power struggles between CMAs and the Department of Water Affairs (DWA) are two of the main obstacles to the creation of CMAs planned by the 1998 National Water Act (NWA). Finally, the paper advocates taking the "hydrosocial cycle" as an analytical framework for designing new institutional arrangements that will include both rectifying the legacy of the past (the specific role of DWA) and acknowledging legitimate local interests.

  15. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  16. The catchment based approach using catchment system engineering

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  17. Investigation of 10 herbicides in surface waters of a horticultural production catchment in southeastern Australia.

    Science.gov (United States)

    Allinson, Graeme; Bui, AnhDuyen; Zhang, Pei; Rose, Gavin; Wightwick, Adam M; Allinson, Mayumi; Pettigrove, Vincent

    2014-10-01

    Herbicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the levels and potential ecotoxicological impact of herbicides in horticultural catchments in southern Australia. This study investigated the presence of 10 herbicides at 18 sites during a 5-month period in horticulturally important areas of the Yarra Valley in southeastern Australia. Seven of the 10 herbicides were detected in the streams, in 39 % of spot water samples, in 25 % of surface sediment samples, and in >70 % of the passive sampler systems deployed. Few samples contained residues of ≥2 herbicides. Simazine was the herbicide most frequently detected in water, sediment, and passive sampler samples and had the highest concentrations in water (0.67 μg/L) and sediment (260 μg/kg dry weight). Generally the concentrations of the herbicides detected were several orders of magnitude lower than reported ecotoxicological effect values, including those for aquatic plants and algae, suggesting that concentrations of individual chemicals in the catchment were unlikely to pose an ecological risk. However, little is known about the combined effects of simultaneous, low-level exposure of multiple herbicides of the same mode of action on Australian aquatic organisms nor their contribution when found in mixtures with other pesticides. Further research is required to adequately assess the risk of pesticides in Victorian aquatic environments.

  18. Importance of bottom-up approach in water management - sustainable development of catchment areas in Croatia

    Science.gov (United States)

    Pavic, M.; Cosic-Flajsig, G.; Petricec, M.; Blazevic, Z.

    2012-04-01

    Association for preservation of Croatian waters and sea SLAP is a non-governmental organization (NGO) that gathers more than 150 scientist, hydrologist and civil engineers. SLAP has been established in 2006 and since then had organized many conferences and participated in projects dealing with water management. We have started our work developing plans to secure water supply to the 22 (21) villages in the rural parts of Dubrovnik (Pozega) area and trough the years we have accumulated knowledge and experience in dealing with stakeholders in hydrology and water management. Within this paper we will present importance of bottom-up approach to the stakeholders in water management in Croatia on two case studies: (1) Management of River Trebizat catchment area - irrigation of the Imotsko-Bekijsko rural parts; (2) Development of multipurpose water reservoirs at the River Orljava catchment area. Both projects were designed in the mid and late 1980's but due to the war were forgotten and on halt. River Trebizat meanders between Croatia and Bosnia and Herzegovina and acquires joint management by both countries. In 2010 and 2011 SLAP has organized conferences in both countries gathering all the relevant stakeholders from representatives of local and state governments, water management companies and development agencies to the scientist and interested NGO's. The conferences gave firm scientific background of the topic including presentation of all previous studies and measurements as well as model results but presented in manner appropriate to the stakeholders. The main result of the conference was contribution to the development of joint cross-border project sent to the EU Pre-Accession funds in December 2011 with the aim to strengthen capacities of both countries and prepare larger project dealing with management of the whole Trebizat catchment area to EU structural funds once Croatia enters EU in 2013. Similar approach was taken for the Orljava catchment in the northern

  19. Remote assessment of instantaneous changes in water chemistry after liming in a Nova Scotia catchment

    Science.gov (United States)

    Angelidis, Christine

    2013-04-01

    Remote assessment of instantaneous changes in water chemistry after liming in a Nova Scotia catchment ANGELIDIS, C.1, STERLING, S.1, BREEN, A.2, BIAGI, K.1., and CLAIR, T.A.1 1Dalhousie University, christine.angelidis@dal.ca, 2Bluenose Coastal Action Foundation, andrew@coastalaction.org Southwestern Nova Scotia has some of the most acidic freshwaters in North America due to its location downwind of the major emission sources in eastern Canada and the US and due to a resistant geology which offers little acid buffering capacity (Clair et al. 2007). Because of the poor buffering and regionally high runoff values, hydrological events such as snowmelt and rain storms are frequent and can cause sudden changes in water chemistry which can have devastating effects on freshwater biota due to increases in acidity and metals (Dennis and Clair in press). Clair et al. (2001) have estimated the potential frequency of acidic episodes in this region based on a number of hydrological factors, though the technology available at the time to monitor short-term changes was not dependable. Recent advances in equipment have made the assessment of the frequency and severity of acidic episodes easier and more accurate, allowing better interpretation and prediction of hydrogeochemical changes with variations in weather and deposition patterns. Here we take advantage of these recent advances to monitor water chemistry in an experimental catchment, and explore the response to catchment liming. Catchment liming is one way of mitigating the effects of acid deposition in sensitive areas. We limed a 50 ha catchment at a rate of 5 t/ha in the Gold River watershed of southwest Nova Scotia to examine the interactions between application of lime with the geological and climatological conditions of this region and acid episode frequency. In order to assess changes of episode frequency caused by liming, we established two mobile environmental monitoring platforms in the catchment: a control site

  20. Applications of MIDAS regression in analysing trends in water quality

    Science.gov (United States)

    Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.

    2014-04-01

    We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.

  1. Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment.

    Science.gov (United States)

    Pullan, S P; Whelan, M J; Rettino, J; Filby, K; Eyre, S; Holman, I P

    2016-09-01

    This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8h) pesticide monitoring data and to five larger catchments (479-1653km(2)) with sampling approximately every 14days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally >0.59 and PBIAS water resources to support operational and strategic risk assessments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Water and water quality management in the cholistan desert

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Chaudhry, M.A.

    2005-01-01

    Water scarcity is the main problem in Cholistan desert. Rainfall is scanty and sporadic and groundwater is saline in most of the area. Rainwater is collected in man made small storages, locally called tobas during rainy season for human and livestock consumption. These tobas usually retain rainwater for three to four months at the maximum, due to small storage capacity and unfavorable location. After the tobas become dry, people use saline groundwater for human and livestock consumption where marginal quality groundwater is available. In complete absence of water they migrate towards canal irrigated areas till the next rains. During migration humans and livestock suffer from hunger, thirst and diseases. In order to overcome this problem Pakistan Council of Research in Water Resources (PCRWR) has introduced improved designs of tobas. The PCRWR is collecting more than 13.0 million cubic meter rainwater annually from only ninety hectare catchment area. As a result, water is available for drinking of human and livestock population as well as to wild life through out the year for the village of Dingarh in Cholistan desert. However, water collected in these tobas is usually muddy and full of impurities. To provide good quality drinking water to the residents of Cholistan, PCRWR has launched a Project under which required quantity of drinkable water will be provided at more than seventy locations by rainwater harvesting, pumping of good and marginal quality groundwater and desalination of moderately saline water through Reverse Osmosis Plants. After the completion of project, more then 380 million gallons of fresh rainwater and more than 1300 million gallons of good and marginal quality groundwater will be available annually. Intervention to collect the silt before reaching to the tobas are also introduced, low cost filter plants are designed and constructed on the tobas for purification of water. (author)

  3. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    Science.gov (United States)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow

  4. Summarized water quality criteria

    International Nuclear Information System (INIS)

    Kempster, P.L.; Hattingh, W.H.J.; Van Vliet, H.R.

    1980-08-01

    The available world literature from 27 sources on existing water quality criteria are summarized for the 15 main uses of water. The minimum, median and maximum specified values for 96 different determinands are included. Under each water use the criteria are grouped according to the functional significance of the determinands e.g. aesthetic/physical effects, high toxic potential, low toxic potential etc. A synopsis is included summarizing salient facts for each determinand such as the conditions under which it is toxic and its relationship to other determinands. The significance of the criteria is briefly discussed and the importance of considering functional interactions between determinands emphasized in evaluating the potential for toxic or beneficial effects. From the source literature it appears that the toxic potential, in addition to being determined by concentration, is also affected by the origin of the substance concerned, i.e. whether from natural sources or from anthropogenic pollution

  5. Occurrence of Antibiotics in Surface and Groundwater of a Drinking Water Catchment Area in Germany.

    Science.gov (United States)

    Burke, Victoria; Richter, Doreen; Greskowiak, Janek; Mehrtens, Anne; Schulz, Lena; Massmann, Gudrun

    2016-07-01

    The contamination of the aquatic environment with organic micropollutants, such as veterinary pharmaceuticals, has become an increasingly serious problem and has aroused attention in the course of the last decades. This study presents a screening for a series of veterinary antibiotics, potentially introduced by the application of liquid manure, in ground- and surface water of a drinking water catchment in Lower Saxony, Germany. Of the 26 compounds analyzed, eight, including sulfadiazine, sulfapyridine, sulfamethoxazole, trimethoprim, dehydrato-erythromycin, sulfadimidine, tylosin, and tetracycline were detected in surface water samples. Trimethoprim was detected in 11 out of 15 shallow groundwater samples, indicating its high environmental relevance. Column sorption experiments conducted on trimethoprim show a comparatively moderate sorption affinity to sandy aquifer material with a retardation coefficient of 5.7.

  6. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    Science.gov (United States)

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  7. Impacts of invading alien plant species on water flows at stand and catchment scales

    Science.gov (United States)

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  8. Impacts of invading alien plant species on water flows at stand and catchment scales.

    Science.gov (United States)

    Le Maitre, D C; Gush, M B; Dzikiti, S

    2015-05-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300-400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200-300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5-2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. Published by Oxford University Press on behalf of the Annals of Botany

  9. Water resources assessment in a poorly gauged mountainous catchment using a geographical information system and remote sensing

    Science.gov (United States)

    Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.

    2004-11-01

    Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.

  10. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model

    NARCIS (Netherlands)

    Marhaento, Hero; Booij, Martijn J.; Rientjes, T. H.M.; Hoekstra, Arjen Y.

    2017-01-01

    Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline-altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline

  11. Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management.

    Science.gov (United States)

    Rusiñol, Marta; Fernandez-Cassi, Xavier; Timoneda, Natàlia; Carratalà, Anna; Abril, Josep Francesc; Silvera, Carolina; Figueras, Maria José; Gelati, Emiliano; Rodó, Xavier; Kay, David; Wyn-Jones, Peter; Bofill-Mas, Sílvia; Girones, Rosina

    2015-08-15

    Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution

  12. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  13. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) III. Vegetation and water fluxes

    International Nuclear Information System (INIS)

    Llorens, P.; Poyatos, R.; Muzylo, A.; Rubio, C. M.; Latron, J.; Delgado, J.; Gallart, F.

    2009-01-01

    The Vallcebre research catchment are located in a Mediterranean mountain area (Pyrenean, range, NE Spain). These catchments were originally covered by Quercus pubescens Willd. and deforested for agricultural use in the past. Nowadays they are covered by mesophyle grasses with spontaneous afforestation by Pinus sylvestris L. In this context, different investigations studying water fluxes in the soil-vegetation-atmosphere continuum have been performed. the main objective of these studies is the analysis and modelling of the role of vegetation cover on the catchment water balance in a framework of climate and land use changes. The dynamics of rainfall interception and transpiration by Scots pines and pubescens oaks, are investigated in terms of their dependence on meteorological conditions, on soil moisture and water table depth. (Author) 13 refs.

  14. Hemodialysis and water quality.

    Science.gov (United States)

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  15. National Recommended Water Quality Criteria

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health...

  16. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    Science.gov (United States)

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  17. Effects of evapotranspiration heterogeneity on catchment water balance in the Southern Sierra Nevada of California

    Science.gov (United States)

    Kerkez, B.; Kelly, A. E.; Lucas, R. G.; Son, K.; Glaser, S. D.; Bales, R. C.

    2011-12-01

    Heterogeneity of Evapotranspiration (ET) is the result of poorly understood interactions between climate, topography, vegetation and soil. Accurate predictions of ET, and thus improved water balance estimates, hinge directly upon an improved understanding of the processes that drive ET across a wide spatio-temporal range. Recent warming trends in the Western US are shifting precipitation toward more rain-dominated patterns, significantly increasing vegetation water stress in historically snow-dominated regimes due to reduced soil moisture and increased vapor deficit during warm summer months. We investigate dominant controls that govern ET variability in a highly instrumented 1km2 mountain catchment at the Southern Sierra Critical Zone Observatory, co-located in the Kings River Experimental Watershed. Various ET estimates are derived from a number of measurement approaches: an eddy flux covariance tower, ET chambers, stream flumes, groundwater monitoring wells, matric potential sensors, as well as data from a distributed wireless sensor network with over 300 sensors. Combined with precipitation data, and high-density distributed soil moisture and snowdepth readings, the ET estimates are utilized to reconstruct the overall catchment water balance. We also apply the Regional Hydro-Ecologic Simulation System (RHESSys), a physically based, spatially distributed hydrologic model, to estimate water balance components. The model predictions are compared with the water budget calculated from field data, and used to identify the key variables controlling spatial and temporal patterns of ET at multiple scales. Initial results show that ET estimates are scale-, and vegetation-dependent, with significant ET variability between vegetation types and physiographic parameters such as elevation, slope, and aspect. In mixed conifer forests terrain, ET is more dependent on soil moisture, while in the meadows, where the soil is generally saturated for the duration of the growing

  18. Seasonal change of residence time in spring water and groundwater at a mountainous headwater catchment

    Science.gov (United States)

    Nagano, Kosuke; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sakakibara, Koichi; Sato, Yutaro

    2017-04-01

    Determination of water age in headwater is important to consider water pathway, source and storage in the catchment. Previous studies showed that groundwater residence time changes seasonally. These studies reported that mean residence time of water in dry season tends to be longer than that in rainy season, and it becomes shorter as precipitation and discharge amount increases. However, there are few studies to clarify factors causing seasonal change in mean residence time in spring water and groundwater based on observed data. Therefore, this study aims to reveal the relationship between mean residence time and groundwater flow system using SFconcentration in spring and 10 minutes interval hydrological data such as discharge volume, groundwater level and precipitation amount in a headwater catchment in Fukushima, Japan. The SF6 concentration data in spring water observed from April 2015 to November 2016 shows the mean residence time of springs ranged from zero to 14 years. We also observed a clear negative correlation between discharge rate and residence time in the spring. The residence time in shallow groundwater in rainy season was younger as compared with that in low rainfall period. Therefore, the shallow groundwater with young residence time seems to contribute to the spring in rainy season, causing shorter residence time. Additionally, the residence time of groundwater ranged from 3 to 5 years even in low rainfall period. The residence time in high groundwater table level in ridge was older as compared with that in low groundwater table level. These suggest that the contribution of groundwater with older age in the ridge becomes dominant in the low discharge.

  19. Estimation of Water Quality

    International Nuclear Information System (INIS)

    Vetrinskaya, N.I.; Manasbayeva, A.B.

    1998-01-01

    Water has a particular ecological function and it is an indicator of the general state of the biosphere. In relation with this summary, the toxicological evaluation of water by biologic testing methods is very actual. The peculiarity of biologic testing information is an integral reflection of all totality properties of examination of the environment in position of its perception by living objects. Rapid integral evaluation of anthropological situation is a base aim of biologic testing. If this evaluation has deviations from normal state, detailed analysis and revelation of dangerous components could be conducted later. The quality of water from the Degelen gallery, where nuclear explosions were conducted, was investigated by bio-testing methods. The micro-organisms (Micrococcus Luteus, Candida crusei, Pseudomonas algaligenes) and water plant elodea (Elodea canadensis Rich) were used as test-objects. It is known that the transporting functions of cell membranes of living organisms are violated the first time in extreme conditions by difference influences. Therefore, ion penetration of elodeas and micro-organisms cells, which contained in the examination water with toxicants, were used as test-function. Alteration of membrane penetration was estimated by measurement of electrolytes electrical conductivity, which gets out from living objects cells to distillate water. Index of water toxic is ratio of electrical conductivity in experience to electrical conductivity in control. Also, observations from common state of plant, which was incubated in toxic water, were made. (Chronic experience conducted for 60 days.) The plants were incubated in water samples, which were picked out from gallery in the years 1996 and 1997. The time of incubation is 1-10 days. The results of investigation showed that ion penetration of elodeas and micro-organisms cells changed very much with influence of radionuclides, which were contained in testing water. Changes are taking place even in

  20. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  1. Water quality measure in urban basin of Fossolo; Le misure di qualita` nel bacino urbano Fossolo

    Energy Technology Data Exchange (ETDEWEB)

    Artina, Sandro; Maglionico, Marco; Marinelli, Alberto [Bologna, Univ. (Italy); Raffaelli, Giuseppe; Anzalone, Claudio [Consorzio A.Co.Se.R., Bologna (Italy); Lanzarini, Sergio; Guzzinati, Ermes [AMIU, Bologna (Italy)

    1997-03-01

    Water quantity and quality characteristics of a combined sewer system in a 40 ha urban catchment in the vicinity of Bologna have been studied for two years. The catchment, having residential characteristics with about 10000 inhabitants, is loaded with heavy traffic. The drainage network ends with a main duct having a multicenter cross section of 1800 mm x 1440 mm. The monitoring phase has pointed out how some quality parameters often trespass the Italian regulations on water quality. Moreover, it has been observed how BOD{sub 5}, COD and Suspended Solids are strictly correlated.

  2. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  3. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    Full Text Available Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected by fPAR among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total, surface and subsurface runoff and on vegetation cover (including total, woody and non-woody vegetation cover. Based on the results of statistical analysis, we conclude that annual runoff (R, evapotranspiration (E and runoff coefficient (R/P increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Control of water available on annual evapotranspiration in non-woody dominated catchments is relatively stronger compared to woody dominated ones. The ratio of subsurface runoff to total runoff (Rg/R also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P in current year is the most important factor affecting the change in annual total runoff (R, surface runoff (Rs and subsurface runoff (Rg. The significance of other controlling factors is in the order of annual precipitation in previous years (P−1 and P−2, which represents the net effect of soil moisture and annual mean temperature (T in current year. Change of P by +1% causes a +3.35% change of R, a +3.47% change of Rs and a +2.89% change of

  4. Water quality sensor

    International Nuclear Information System (INIS)

    Ishizuka, Keiko; Takahashi, Masanori; Watanabe, Atsushi; Ibe, Hidefumi.

    1994-01-01

    The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in reactor water under radiation irradiation condition, and it has a long life time. Namely, an oxygen sensor comprises electrodes attached on both sides of high temperature/radiation resistant ion conductive material in which ions are sufficiently diffused within a temperature range of from a room temperature to 300degC. It has a performance for measuring electromotive force caused by the difference of a partial pressure between a reference gas and a gas to be measured contained in the high temperature/radiation resistant material. A hydrogen peroxide sensor has the oxygen sensor described above, to which a filter for causing decomposition of hydrogen peroxide is attached. The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in a reactor water of a BWR type reactor under high temperature/radiation irradiation condition. Accordingly, accurate water quality environment in the reactor water can be recognized. As a result, determination of incore corrosion environment is established thereby enabling to attain reactor integrity, safety and long life. (I.S.)

  5. Application of Tank Model for Predicting Water Balance and Flow Discharge Components of Cisadane Upper Catchment

    Directory of Open Access Journals (Sweden)

    Nana Mulyana Arifjaya

    2012-01-01

    Full Text Available The concept of hydrological tank model was well described into four compartments (tanks. The first tank (tank A comprised of one vertical (qA0 and two lateral (qA1 and qA2 water flow components and tank B comprised of one vertical (qB0 and one lateral (qB1 water flow components. Tank C comprised of one vertical (qC0 and one lateral (qC1 water flow components, whereas tank D comprised of one lateral water flow component (qD1.  These vertical water flows would also contribute to the depletion of water flow in the related tanks but would replenish tanks in the deeper layers. It was assumed that at all lateral water flow components would finally accumulate in one stream, summing-up of the lateral water flow, much or less, should be equal to the water discharge (Qo at specified time concerns. Tank A received precipitation (R and evapo-transpiration (ET which was its gradientof (R-ET over time would become the driving force for the changes of water stored in the soil profiles and thosewater flows leaving the soil layer.  Thus tank model could describe th vertical and horizontal water flow withinthe watershed. The research site was Cisadane Upper Catchment, located at Pasir Buncir Village of CaringinSub-District within the Regency of Bogor in West Java Province.  The elevations ranged 512 –2,235 m above sealevel, with a total drainage area of 1,811.5 ha and total length of main stream of 14,340.7 m.  The land cover wasdominated by  forest  with a total of 1,044.6 ha (57.67%,  upland agriculture with a total of 477.96 ha (26.38%,mixed garden with a total of 92.85 ha(5.13% and semitechnical irigated rice field with a total of 196.09 ha (10,8%.  The soil was classified as hydraquent (96.6% and distropept (3.4%.  Based on the calibration of tank model application in the study area, the resulting coefficient of determination (R2 was 0.72 with model efficiency (NSEof= 0.75, thus tank model could well illustrate the water flow distribution of

  6. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria

    Science.gov (United States)

    van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M.

    2008-04-01

    Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.

  7. Tracing disturbance impacts on water quantity and quality through a stream network

    Science.gov (United States)

    Ross, Matthew; Nippgen, Fabian; McGlynn, Brian; Bernhardt, Emily

    2017-04-01

    By dismantling and redistributing 100s of meters of bedrock to mine coal from the surface, mountaintop mining with valley fills has dramatically changed catchment hydrology and biogeochemistry over more than 5,000 km2 in Central Appalachia. Throughout this expansive coal region, mining operators deposit tens of millions of m3 of crushed bedrock into headwater valleys, creating valley fills, which have substantial subsurface water storage potential. Streams draining mines have reduced peakflows, elevated baseflows, and lower event runoff ratios on average. The water stored in and percolating through valley fills drives the dissolution and oxidation of pyrite into sulfuric acid which reacts with carbonate-rich materials to rapidly weather out a suite of elements including Ca2+, Mg2+, K+, SO42-, HCO3-, and the pollutant Selenium. Together these ions increase the average specific conductance of mined streams from 60 to 1,500 µS/cm, 25-times higher than unmined streams, exporting 45-times more total dissolved solids. Together, the increased catchment storage, consequent elevated baseflow, and elevated weathering rates from mining have the potential to lower water quality throughout river networks in Central Appalachia, especially during the summer low flow period. To better understand the water quality impacts of mining at the river network scale, we used the paired catchment approach. Working in the Mud River, West Virginia, we instrumented a 4th order catchment 35 km2, that was 46% mined. Within the large catchment we instrumented 8 additional 1st-3rd order sub-catchments that varied in catchment size, mining cover, mine size, and mine age. At each site we measured stream discharge and specific conductance (SC). Using SC as a trace for mining we did simple hydrograph separations at our largest catchments, partitioning the hydrograph between mined and unmined water. Our results suggest that on an annual scale, mine water contributes a disproportionate percentage of

  8. Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff model

    Directory of Open Access Journals (Sweden)

    P. Ala-aho

    2017-10-01

    Full Text Available Tracer-aided hydrological models are increasingly used to reveal fundamentals of runoff generation processes and water travel times in catchments. Modelling studies integrating stable water isotopes as tracers are mostly based in temperate and warm climates, leaving catchments with strong snow influences underrepresented in the literature. Such catchments are challenging, as the isotopic tracer signals in water entering the catchments as snowmelt are typically distorted from incoming precipitation due to fractionation processes in seasonal snowpack. We used the Spatially distributed Tracer-Aided Rainfall–Runoff (STARR model to simulate fluxes, storage, and mixing of water and tracers, as well as estimating water ages in three long-term experimental catchments with varying degrees of snow influence and contrasting landscape characteristics. In the context of northern catchments the sites have exceptionally long and rich data sets of hydrometric data and – most importantly – stable water isotopes for both rain and snow conditions. To adapt the STARR model for sites with strong snow influence, we used a novel parsimonious calculation scheme that takes into account the isotopic fractionation through snow sublimation and snowmelt. The modified STARR setup simulated the streamflows, isotope ratios, and snow pack dynamics quite well in all three catchments. From this, our simulations indicated contrasting median water ages and water age distributions between catchments brought about mainly by differences in topography and soil characteristics. However, the variable degree of snow influence in catchments also had a major influence on the stream hydrograph, storage dynamics, and water age distributions, which was captured by the model. Our study suggested that snow sublimation fractionation processes can be important to include in tracer-aided modelling for catchments with seasonal snowpack, while the influence of fractionation during snowmelt

  9. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Science.gov (United States)

    Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.

  10. Land Use Impacts on Water Quality of Rivers draining from Mulanje ...

    African Journals Online (AJOL)

    Land Use Impacts on Water Quality of Rivers draining from Mulanje Mountain: A Case of Ruo River in the Southern Malawi. ... The research recommends an integrated water resources management approach where all users and relevant stakeholders should take an active role in the conservation of Ruo River catchment in ...

  11. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    Science.gov (United States)

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Catchment organisation, free energy dynamics and network control on critical zone water flows

    Science.gov (United States)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    From a functional point of view the catchment system is compiled by patterns of permeable and less permeable textural elements - soils and mother rock. Theses textural elements provide a mechanical stabile matrix for growth of terrestrial biota and soil formation. They furthermore organize subsurface storage of water against gravity, dissolved nutrients and heat. Storage against gravity is only possible because water acts as wetting fluid and is thus attracted by capillary forces in the pores space. Capillarity increases non-linearly with decreasing pore size and is zero at local saturation. The pore size distribution of a soil is thus characteristic of its capability to store water against losses such as drainage, evaporation and root extraction and at the same time a fingerprint of the work that has been performed by physical, chemical and biological processes to weather solid mother rock and form a soil. A strong spatial covariance of soil hydraulic properties within the same soil type is due to a fingerprint of strong spatial organization at small scales. Spatial organization at the hillslope scale implies the existence of a typical soil catena i.e. that hillslopes exhibit the same/ downslope sequence of different soils types. Textural storage elements are separated by strikingly self-similar network like structures, we name them flow structures. These flow structures are created in a self-reinforcing manner by work performed either by biota like earth worms and plant roots or by dissipative processes such as soil cracking and water/fluvial erosion. Regardless of their different origin connected flow structures exhibit a highly similar functioning and similar characteristics: they allow for high mass flows at small driving potential gradients because specific flow resistance along the network is continuously very small. This implies temporal stability even during small extremes, due to the small amount of local momentum dissipation per unit mass flow, as well

  13. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment

    Science.gov (United States)

    Glenn E. Woerndle; Martin Tsz-Ki Tsui; Stephen D. Sebestyen; Joel D. Blum; Xiangping Nie; Randall K. Kolka

    2018-01-01

    Stable isotope compositions of mercury (Hg) were measured in the outlet stream and in soil cores at different landscape positions in a 9.7-ha boreal upland-peatland catchment. An acidic permanganate/persulfate digestion procedure was validated for water samples with high dissolved organic matter (DOM) concentrations through Hg spike addition analysis. We report a...

  14. Quantifying the effect of catchment land-use and water nutrient concentrations on freshwater river and stream biodiversity

    NARCIS (Netherlands)

    Weijters, M.J.; Janse, J.H.; Alkemade, J.R.M.; Verhoeven, J.T.A.

    2009-01-01

    A major threat to freshwater taxon diversity is the alteration of natural catchment Land use into agriculture, industry or urban areas and the associated eutrophication of the water. In order to stop freshwater biodiversity loss, it is essential to quantify the relationships between freshwater

  15. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  16. Communicating water quality risk

    International Nuclear Information System (INIS)

    Scherer, C.W.

    1990-01-01

    Technology for detecting and understanding water quality problems and the impacts of activities on long-range groundwater quality has advanced considerably. In the past a technical solution was considered adequate but today one must consider a wide range of both technical and social factors in evaluating technical alternatives that are also acceptable social solutions. Policies developed and implemented with limited local participation generally are resisted and become ineffective if public cooperation is necessary for effective implementation. The public, the experts and the policymakers all must understand and appreciate the different perspectives present in risk policymaking. The typical model used to involve the public in policy decisions is a strategy described as the decide-announce-defend-approach. Much more acceptable to the public, but also more difficult to implement, is a strategy that calls for free flow of information within the community about the problem, policies and potential solutions. Communication about complex issues will be more successful if the communication is substantial; if it takes advantage of existing interpersonal networks and mass media; if it pays particular attention to existing audience knowledge, interest and behaviors; and if it clearly targets messages to various segments of the audience

  17. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  18. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  19. Factors Influencing Water Resource Governance among Pastoral Community at Mkondoa Sub-Catchment Morogoro Region Tanzania

    OpenAIRE

    Yeremia Yohana Masifia; Sarone Ole Sena

    2017-01-01

    The importance of proper Water Resource Management with greater emphasis on ensuring sustainability quality accountability and community participation has become imminent as water resources increasingly become scarce Harvey et al 2007. Water resources management in Tanzania is governed under the National Water Policy of 2002 and Water Resources Management Act No.11 of year 2009. Other related legislations include Environmental Management Act No. 20 of year 2004 Forest Policy and Forest Act No...

  20. Using stochastic dynamic programming to support catchment-scale water resources management in China

    Science.gov (United States)

    Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2013-04-01

    A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in

  1. Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city.

    Science.gov (United States)

    Sakson, Grazyna; Brzezinska, Agnieszka; Zawilski, Marek

    2018-04-14

    Heavy metals are among the priority pollutants which may have toxic effects on receiving water bodies. They are detected in most of samples of stormwater runoff, but the concentrations are very variable. This paper presents results of study on the amount of heavy metals discharged from urban catchment in Lodz (Poland) in 2011-2013. The research was carried out to identify the most important sources of their emission and to assess the threats to receiving water quality and opportunities of their limitation. The city is equipped with a combined sewerage in the center with 18 combined sewer overflows and with separate system in other parts. Stormwater and wastewater from both systems are discharged into 18 small urban rivers. There is a need of restoration of water bodies in the city. Research results indicate that the main issue is high emission of heavy metals, especially zinc and copper, contained in stormwater. Annual mass loads (g/ha/year) from separate system were 1629 for Zn and 305 for Cu. It was estimated that about 48% of the annual load of Zn, 38% of Cu, 61% of Pb, and 40% of Cd discharged into receiving water came from separate system, respectively 4% of Zn and Cu, 10% of Pb and 11% of Cd from CSOs, and the remaining part from wastewater treatment plant. Effective reduction of heavy metals loads discharged into receiving water requires knowledge of sources and emissions for each catchment. Obtained data may indicate the need to apply centralized solution or decentralized by source control.

  2. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  3. Chalk Catchment Transit Time: Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Darling, W. G.; Gooddy, D. C. [British Geological Survey, Crowmarsh Gifford, Wallingford, Oxfordshire (United Kingdom); Barker, J. A. [School of Civil Engineering and the Environment, University of Southampton, Southampton (United Kingdom); Robinson, M. [Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire (United Kingdom)

    2013-07-15

    The mean transit time (MTT) of a catchment is the average residence time of water from rainfall to river outflow at the foot of the catchment. As such, MTT has important water quality as well as resource implications. Many catchments worldwide have been measured for MTT using environmental isotopes, yet the Chalk, an important aquifer in NW Europe, has received little attention in this regard. The catchment of the River Lambourn in southern England has been intermittently studied since the 1960s using isotopic methods. A tritium peak measured in the river during the 1970s indicates an apparent MTT of {approx}15 years, but the thick unsaturated zone (average {approx}50 m) of the catchment suggests that the MTT should be much greater because of the average downward movement through the Chalk of {approx}1 m/a consistently indicated by tritium and other tracers. Recent work in the catchment using SF{sub 6} as a residence time indicator has given groundwater ages in the narrow range 11-18 yrs, apparently supporting the river tritium data but in conflict with the unsaturated zone data even allowing for a moderate proportion of rapid bypass flow. The MTT of the catchment remains unresolved for the time being. (author)

  4. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  5. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  6. Sharing Water with Nature: Insights on Environmental Water Allocation from a Case Study of the Murrumbidgee Catchment, Australia

    Directory of Open Access Journals (Sweden)

    Becky Swainson

    2011-02-01

    Full Text Available Human use of freshwater resources has placed enormous stress on aquatic ecosystems in many regions of the world. At one time, this was considered an acceptable price to pay for economic growth and development. Nowadays, however, many societies are seeking a better balance between healthy aquatic ecosystems and viable economies. Unfortunately, historically, water allocation systems have privileged human uses over the environment. Thus, jurisdictions seeking to ensure that adequate water is available for the environment must typically deal with the fact that economies and communities have become dependent on water. Additionally, they must often layer institutions for environmental water allocation (EWA on top of already complex institutional systems. This paper explores EWA in a jurisdiction – New South Wales (NSW, Australia – where water scarcity has become a priority. Using an in-depth case study of EWA in the Murrumbidgee catchment, NSW, we characterise the NSW approach to EWA with the goal of highlighting the myriad challenges encountered in EWA planning and implementation. Sharing water between people and the environment, we conclude, is much more than just a scientific and technical challenge. EWA in water-scarce regions involves reshaping regional economies and societies. Thus, political and socio-economic considerations must be identified and accounted for from the outset of planning and decision-making processes.

  7. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs

    Science.gov (United States)

    Reshmidevi, T. V.; Nagesh Kumar, D.; Mehrotra, R.; Sharma, A.

    2018-01-01

    This work evaluates the impact of climate change on the water balance of a catchment in India. Rainfall and hydro-meteorological variables for current (20C3M scenario, 1981-2000) and two future time periods: mid of the 21st century (2046-2065) and end of the century (2081-2100) are simulated using Modified Markov Model-Kernel Density Estimation (MMM-KDE) and k-nearest neighbor downscaling models. Climate projections from an ensemble of 5 GCMs (MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) are used in this study. Hydrologic simulations for the current as well as future climate scenarios are carried out using Soil and Water Assessment Tool (SWAT) integrated with ArcGIS (ArcSWAT v.2009). The results show marginal reduction in runoff ratio, annual streamflow and groundwater recharge towards the end of the century. Increased temperature and evapotranspiration project an increase in the irrigation demand towards the end of the century. Rainfall projections for the future shows marginal increase in the annual average rainfall. Short and moderate wet spells are projected to decrease, whereas short and moderate dry spells are projected to increase in the future. Projected reduction in streamflow and groundwater recharge along with the increase in irrigation demand is likely to aggravate the water stress in the region under the future scenario.

  8. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  9. Effects of future climate and land use scenarios on riverine source water quality.

    Science.gov (United States)

    Delpla, Ianis; Rodriguez, Manuel J

    2014-09-15

    Surface water quality is particularly sensitive to land use practices and climatic events that affect its catchment. The relative influence of a set of watershed characteristics (climate, land use, morphology and pedology) and climatic variables on two key water quality parameters (turbidity and fecal coliforms (FC)) was examined in 24 eastern Canadian catchments at various spatial scales (1 km, 5 km, 10 km and the entire catchment). A regression analysis revealed that the entire catchment was a better predictor of water quality. Based on this information, linear mixed effect models for predicting turbidity and FC levels were developed. A set of land use and climate scenarios was considered and applied within the water quality models. Four land use scenarios (no change, same rate of variation, optimistic and pessimistic) and three climate change scenarios (B1, A1B and A2) were tested and variations for the near future (2025) were assessed and compared to the reference period (2000). Climate change impacts on water quality remained low annually for this time horizon (turbidity: +1.5%, FC: +1.6%, A2 scenario). On the other hand, the influence of land use changes appeared to predominate. Significant benefits for both parameters could be expected following the optimistic scenario (turbidity: -16.4%, FC: -6.3%; p climate change impacts could become equivalent to those modeled for land use for this horizon. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Link between DOC in near surface peat and stream water in an upland catchment.

    Science.gov (United States)

    Clark, Joanna M; Lane, Stuart N; Chapman, Pippa J; Adamson, John K

    2008-10-15

    Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

  11. Using microbiological tracers to assess the impact of winter land use restrictions on the quality of stream headwaters in a small catchment.

    Science.gov (United States)

    Flynn, Raymond M; Deakin, Jenny; Archbold, Marie; Cushnan, Hugh; Kilroy, Kate; O'Flaherty, Vincent; Misstear, Bruce D

    2016-01-15

    Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17 km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cumulative effects analysis of the water quality risk of herbicides used for site preparation in the Central North Island, New Zealand

    Science.gov (United States)

    Dan Neary; Brenda R. Baillie

    2016-01-01

    Herbicide use varies both spatially and temporally within managed forests. While information exists on the effects of herbicide use on water quality at the site and small catchment scale, little is known about the cumulative effects of herbicide use at the landscape scale. A cumulative effects analysis was conducted in the upper Rangitaiki catchment (118,345...

  13. Potentials of mathematical modeling and use of GIS in catchment management and the benefits for the Water Framework Directive fulfilling

    Science.gov (United States)

    Dostal, T.; Krasa, J.

    2009-04-01

    The EU Water Framework Directive (WFD) brings relatively strict demands concerning surface waters protection, soil protection and watershed management. Water quality and soil conservation are among the priorities of European environmental policy. The aims and corresponding limits are clearly and strictly formulated but the ways how to fulfill the task remain unspecified. Moreover the side effects and synergic effects are not considered. Therefore there is no recommended methodology for implementing the protection measures. At the Faculty of Civil Engineering (Czech Technical University in Prague) we deal with development and use of various methods routinely applicable in catchment management and engineering praxis. Mainly we focus on soil conservation, sediment transport assessment, retention capacity of landscape evaluation and flood prevention. Our contribution will present overview of applicable approaches and methods useful for the WFD implementation and for Watershed management strategy defining. Very important part of the problem is use of high precision data sources available for environmental modeling. Data in similar formats and precision (considering soil properties, land use and land cover, precipitation, etc.) exist throughout Europe, but the data availability for research is very limited. In spite of the INSPIRE Directive the European coordination here is low. Typical example can be found in Map of soil loss and sediment transport within Czech Republic. Methodically simple approach (using USLE - Wischmeier et al., 1978) was applied to whole Czech territory in coordination with GIS already in 2001 (Dostal et al.,2001). The map was consistently updated and in 2007 the LPIS database allowed us to estimate soil erosion rates in scale of individual parcels (Dostal et al., 2007). Each agricultural field block was assessed in 25m resolution raster (484 835 individual parcels, 35 301 km2). The data were then used for preparing Watershed management strategy

  14. Integrating terrestrial through aquatic processing of water, carbon and nitrogen over hot, cold and lukewarm moments in mixed land use catchments

    Science.gov (United States)

    Band, L. E.; Lin, L.; Duncan, J. M.

    2017-12-01

    A major challenge in understanding and managing freshwater volumes and quality in mixed land use catchments is the detailed heterogeneity of topography, soils, canopy, and inputs of water and biogeochemicals. The short space and time scale dynamics of sources, transport and processing of water, carbon and nitrogen in natural and built environments can have a strong influence on the timing and magnitude of watershed runoff and nutrient production, ecosystem cycling and export. Hydroclimate variability induces a functional interchange of terrestrial and aquatic environments across their transition zone with the temporal and spatial expansion and contraction of soil wetness, standing and flowing water over seasonal, diurnal and storm event time scales. Variation in sources and retention of nutrients at these scales need to be understood and represented to design optimal mitigation strategies. This paper discusses the conceptual framework used to design both simulation and measurement approaches, and explores these dynamics using an integrated terrestrial-aquatic watershed model of coupled water-carbon-nitrogen processes at resolutions necessary to resolve "hot spot/hot moment" phenomena in two well studied catchments in Long Term Ecological Research sites. The potential utility of this approach for design and assessment of urban green infrastructure and stream restoration strategies is illustrated.

  15. Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2010-10-01

    Full Text Available Understanding catchment hydrological processes is essential for water resources management, in particular in data scarce regions. The Gilgel Abay catchment (a major tributary into Lake Tana, source of the Blue Nile is undergoing intensive plans for water management, which is part of larger development plans in the Blue Nile basin in Ethiopia. To obtain a better understanding of the water balance dynamics and runoff generation mechanisms and to evaluate model transferability, catchment modeling has been conducted using the conceptual hydrological model HBV. Accordingly, the catchment of the Gilgel Abay has been divided into two gauged sub-catchments (Upper Gilgel Abay and Koga and the un-gauged part of the catchment. All available data sets were tested for stationarity, consistency and homogeneity and the data limitations (quality and quantity are discussed. Manual calibration of the daily models for three different catchment representations, i.e. (i lumped, (ii lumped with multiple vegetation zones, and (iii semi-distributed with multiple vegetation and elevation zones, showed good to satisfactory model performances with Nash-Sutcliffe efficiencies Reff > 0.75 and > 0.6 for the Upper Gilgel Abay and Koga sub-catchments, respectively. Better model results could not be obtained with manual calibration, very likely due to the limited data quality and model insufficiencies. Increasing the computation time step to 15 and 30 days improved the model performance in both sub-catchments to Reff > 0.8. Model parameter transferability tests have been conducted by interchanging parameters sets between the two gauged sub-catchments. Results showed poor performances for the daily models (0.30 < Reff < 0.67, but better performances for the 15 and 30 days models, Reff > 0.80. The transferability tests together with a sensitivity analysis using Monte Carlo simulations (more than 1 million

  16. PCBs in Rain Water, Streams and a Reservoir in a Small Catchment of NW Spain

    Science.gov (United States)

    Delgado-Martín, Jordi; Cereijo-Arango, José Luis; García-Morrondo, David; Juncosa-Rivera, Ricardo; Cillero-Castro, Carmen; Muñoz-Ibáñez, Andrea

    2016-04-01

    Polychlorinated biphenyls (PCBs) constitute a significant environmental concern due to its persistence, tendency to bio-accumulate, acknowledged toxicity and ubiquity. In the present study, a small water catchment (~100 km2) inclusive of a two-tailed water supply reservoir (Abegondo-Cecebre) has been monitored between 2009 and 2014. Sampling stations include: a) one precipitation gauge used to collect monthly-integrated bulk precipitation (25 samples); b) seven streams (95 samples); c) five surface and one bottom points within the reservoir (104 samples); d) five points for sediment sampling in two surveys (spring and summer; 10 samples). All the water samples as well as the leachates of sediment washing have been analyzed for their concentration in 6 marker PCB (congeners 28, 52, 101, 138, 153 and 180) and 12 dioxin-like PCB (congeners 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189) compounds. The average concentration of PCBtot in the bulk precipitation during the sampling period is ~406 pg/L although a very significant decrease has occurred since the end of 2011 (~800 pg/L) to the end of 2014 (~60 pg/L). Likewise, the mean concentration of PCBtot in the stream water samples is 174 pg/L and a similar reduction in the concentration of PCBtot is also acknowledged for the same period of time (~250 pg/L before the end of 2011 and ~30 pg/L after then). Reservoir surface water has a PCBtot concentration of ~234 pg/L which, according to its sampling time (2010-2011) is consistent with the measured stream waters. However, deep reservoir water reveals an average concentration which is higher than the corresponding top water (~330 pg/L) but significantly smaller than the water-leached sediments (~860 pg/L). The available data suggest that up to a 30% of PCBs associated with precipitation becomes sequestered by the soil/sediment system while no significant change takes place during the transfer of water from the stream to the reservoir system, at least in

  17. Impact of urbanization on inflows and water quality of rawal lake

    International Nuclear Information System (INIS)

    Awais, M.; Afzal, M.

    2016-01-01

    Two phenomena playing important role in affecting water resources all over the world are: urbanization and climate changes. Urban and peri-urban water bodies are very vulnerable to these phenomena in terms of quality and quantity protection. This study was aimed to perceive the impact of ever-increasing urbanization on water quality in the catchment area of Rawal Lake. Rawal Lake supplies water for domestic use to Rawalpindi city and Cantonment area. The water was found biologically unfit for human consumption due to total and faecal coliforms counts higher than WHO limits. Similarly, turbidity and calcium was more than WHO standards. There should be detailed study on climate change parallel to urbanization in the Rawal catchment to quantify its impacts on water quality and inflows. (author)

  18. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    Science.gov (United States)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  19. Sulphate deposition to a small upland catchment at Suikerbosrand, South Africa

    CSIR Research Space (South Africa)

    Skoroszewski, RW

    1995-12-01

    Full Text Available In 1992, a study was initiated by the Water Research Commission of South Africa, to investigate the relationship between atmospheric deposition and water quality in a small upland catchment. The selected catchment, which had a seasonal stream, was a...

  20. Relationship between land use and water quality in Pesanggrahan River

    Science.gov (United States)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  1. Wood ash or dolomite treatment of catchment areas - effects of mercury in runoff water

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H; Munthe, J [Swedish Environmental Research Inst., Stockholm (Sweden)

    1996-11-01

    A future increased use of biomass as a source of energy, and the planned restoration of mineral nutrient balance in the forest soils by returning the wood ashes, has led to concern for new environmental disturbances. The objectives of the present study were to investigate if the outflow of total mercury (TotHg) and methyl mercury (MeHg) from catchment areas treated with granulated wood ash (1988, 2.2 tons/ha, `ashed area`) or dolomite (1985, 5 tons/ha, `limed area`) differed from the outflow from an untreated (reference) area, and if variations in Hg outflow were correlated with changes in the outflow of organic substances or pH. The study areas are situated in Vaermland, Sweden. Samples of run-off water were taken weekly or monthly (depending on water-flow) during on year (1993-94). The outflow of MeHg, TotHg as well as H+ and dissolved organic material (DOC) was lower from the limed area compared to the other two areas, which did not differ significantly. There was a strong covariation between concentrations of DOC and MeHg and a weaker relation between DOC and TotHg in the run-off waters. MeHg also covaried with temperature while TotHg covaried with pH and water-supply. No difference was found when comparing Hg-data from the limed area before, directly after and eight years after the liming event. 13 refs, 12 figs, 1 tab

  2. Hydrologic Analysis of Ungauged Catchments For The Supply of Water For Irrigation On Railway Embankment Batters

    Science.gov (United States)

    Gyasi-Agyei, Y.; Nissen, D.

    Water has been identified as a key component to the success of grass establishment on railway embankment batters (side slope) within Central Queensland, Australia, to control erosion. However, the region under study being semi-arid experiences less than 600 mm average annual rainfall occurring on about 60 days of the year. Culverts and bridges are integral part of railway embankments. They are used to cross water courses, be it an ephemeral creek or just a surface runoff path. Surface runoff through an ungauged railway embankment culvert is diverted to a temporary excavated pond located at the downstream side of the hydraulic structure. The temporary excavated pond water is used to feed an automated drip irrigation system, with solar as a source of energy to drive a pump. Railway embankment batter erosion remediation is timed in the wet season when irrigation is used to supplement natural rainfall. Hydrologic analysis of ungauged catchments for sizing the temporary excavated pond is presented. It is based on scenarios of runoff coefficient and curve number, and mass curve (Rippl diagram). Three years of continuous rainfall data (1997/1998 -1999/2000) were used to design a pond. The performance of the designed pond was evaluated in a field experiment during the next wet season (2000/2001). It supplied adequate water for irrigation as predicted by the hydrologic analysis during the grass establishment. This helped to achieve 100% grass cover on the railway embankment batter within 12 weeks. The proposed irrigation system has been demonstrated t o be feasible and cost effective.

  3. Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa

    Science.gov (United States)

    Jewitt, G. P. W.; Garratt, J. A.; Calder, I. R.; Fuller, L.

    In arid and semi-arid areas, total evaporation is a major component of the hydrological cycle and seasonal water shortages and drought are common. In these areas, the role of land use and land use change is particularly important and it is imperative that land and water resources are well managed. To aid efficient water management, it is useful to demonstrate how changing land use affects water resources. A convenient framework to consider this is through the use of the ‘blue-water’ and ‘green-water’ classification of Falkenmark, where green-water represents water use by land and blue-water represents runoff. In this study the hydrological response of nine land-use scenarios were simulated for the upper reaches of the Mutale River, an important tributary of the Luvuvhu River in S. Africa. The ACRU and HYLUC land use sensitive hydrological models, were used to investigate the change in blue and green water under the various land-use scenarios. The GIS software ArcGIS(8.3) was used to analyse available spatial data to generate inputs required by the hydrological models. The scenarios investigated included the current land use in the catchment, an increase or decrease in forest cover, and an increase or decrease in the area irrigated. Both models predict that increasing either forestry or irrigation significantly reduces the proportion of blue water in the catchment. The predictions from the models were combined with maps of catchment land use, to illustrate the changes in distribution of green and blue water in a user-friendly manner. The use of GIS in this way is designed to enable policy-makers and managers to quickly assimilate the water resource implication of the land use change.

  4. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  5. Development of soil quality along a chronosequence under natural succession in the Dragonja catchment, SW Slovenia

    Science.gov (United States)

    van Hall, Rutger; Cammeraat, Erik

    2015-04-01

    Agricultural fields have been increasingly abandoned in several regions in Southern Europe. In many cases this leads to natural vegetation succession which may have a direct impact on soil quality,biodiversity and hydrological connectivity. This research aims at getting insight on the effects of natural vegetation succession on the development of soil quality in the Sub-Mediterranean Dragonja catchment in SW Slovenia. This site was chosen due to its uniform geology, geomorphology and soil types. Four different stages of vegetation succession (i.e. field, abandoned field, young forest, semi-mature forest) were selected and sampled on both north-, and south-facing slopes, resulting in 8 treatments for which 6 representative sites were sampled. Samples were analysed on OC and TN content, EC, pH, bulk density, aggregate stability and grain size distribution. To get insight on the changes in biodiversity vegetation records were made distinguishing five different plant functional groups (i.e. juveniles, grasses, herbs, shrubs and trees). Age group (i.e. stage of vegetation succession) significantly influenced the OC and TN content, aggregate stability, bulk density and pH. Directly after abandonment, between age group 0 and 1, OC and TN content, aggregate stability and pH increased significantly and bulk density decreased significantly. OC content was most affected by age group and furthermore significantly correlated to TN content, aggregate stability, bulk density and pH. Regarding biodiversity, there was a significant increase in cover by trees between age group 1 and 2 and a significant decrease between age group 2 and 3. Cover by herbs decreased significantly between age group 1 and 2. The number of different trees and shrubs increased significantly between age group 0 and 1, and the number of different juveniles increased significantly between age group 2 and 3. Another factor significantly influencing the soil's quality is aspect. Although not found for each age

  6. Framework for measuring sustainable development in catchment systems.

    Science.gov (United States)

    Walmsley, Jay J

    2002-02-01

    Integrated catchment management represents an approach to managing the resources of a catchment by integrating environmental, economic, and social issues. It is aimed at deriving sustainable benefits for future generations, while protecting natural resources, particularly water, and minimizing possible adverse social, economic, and environmental consequences. Indicators of sustainable development, which summarize information for use in decision-making, are invaluable when trying to assess the diverse, interacting components of catchment processes and resource management actions. The Driving-Forces--Pressure--State--Impact--Response (DPSIR) indicator framework is useful for identifying and developing indicators of sustainable development for catchment management. Driving forces have been identified as the natural conditions occurring in a catchment and the level of development and economic activity. Pressures include the natural and anthropogenic supply of water, water demand, and water pollution. State indicators can be split into those of quantity and those of quality. Impacts include those that affect the ecosystems directly and those that impact the use value of the resource. It core indicators are identified within each of the categories given in the framework, most major catchment-based management issues can be evaluated. This framework is applied to identify key issues in catchment management in South Africa, and develop a set of indicators for evaluating catchments throughout the country.

  7. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  8. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  9. The role of atmospheric precipitation in introducing contaminants to the surface waters of the Fuglebekken catchment, Spitsbergen

    Directory of Open Access Journals (Sweden)

    Katarzyna Kozak

    2015-11-01

    Full Text Available Although the Svalbard Archipelago is located at a high latitude, far from potential contaminant sources, it is not free from anthropogenic impact. Towards the Fuglebekken catchment, in the southern part of Spitsbergen, north of Hornsund fjord, contaminants can be transported from mainland pollution sources. In the precipitation and surface water collected in the catchment, the following elements were detected and quantified: Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Cs, Mo, Ni, Pb, Sb, Se, Sr, Tl, U, V and Zn. Additionally, pH, electrical conductivity and total organic carbon (TOC were determined in those samples. The acidic reaction of precipitation waters was identified as an important factor intensifying the metal migration in this Arctic tundra environment. The air mass trajectory, surprisingly, explained the variability of only a small fraction of trace elements in precipitation water. The air mass origin area was correlated only with the concentrations of As, V and Cr. Wind directions were helpful in explaining the variability of Mn, U and Ba concentrations (east–north-easterly wind and the contents of B, As, Rb, Se, Sr and Li in precipitation (south-westerly wind, which may indicate the local geological source of those. Atmospheric deposition was found to play a key role in the transport of contaminants into the Fuglebekken catchment; however, the surface water composition was modified by its pH and TOC content.

  10. Paradigm Shift in Transboundary Water Management Policy: Linking Water Environment Energy and Food (weef) to Catchment Hydropolitics - Needs, Scope and Benefits

    Science.gov (United States)

    RAI, S.; Wolf, A.; Sharma, N.; Tiwari, H.

    2015-12-01

    The incessant use of water due to rapid growth of population, enhanced agricultural and industrial activities, degraded environment and ecology will in the coming decades constrain the socioeconomic development of humans. To add on to the precarious situation, political boundaries rarely embrace hydrological boundaries of lakes, rivers, aquifers etc. Hydropolitics relate to the ability of geopolitical institutions to manage shared water resources in a politically sustainable manner, i.e., without tensions or conflict between political entities. Riparian hydropolitics caters to differing objectives, needs and requirements of states making it difficult to administer the catchment. The diverse riparian objectives can be merged to form a holistic catchment objective of sustainable water resources development and management. It can be proposed to make a paradigm shift in the present-day transboundary water policy from riparian hydropolitics (in which the focal point of water resources use is hinged on state's need) to catchment hydropolitics (in which the interest of the basin inhabitants are accorded primacy holistically over state interests) and specifically wherein the water, environment, energy and food (WEEF) demands of the catchment are a priority and not of the states in particular. The demands of the basin pertaining to water, food and energy have to be fulfilled, keeping the environment and ecology healthy in a cooperative political framework; the need for which is overwhelming. In the present scenario, the policy for water resources development of a basin is segmented into independent uncoordinated parts controlled by various riparians; whereas in catchment hydropolitics the whole basin should be considered as a unit. The riparians should compromise a part of national interest and work in collaboration on a joint objective which works on the principle of the whole as against the part. Catchment hydropolitics may find greater interest in the more than 250

  11. Water Quality Monitoring Manual.

    Science.gov (United States)

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  12. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  13. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Science.gov (United States)

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  14. Investigating hydrological regimes and processes in a set of catchments with temporary waters

    NARCIS (Netherlands)

    Gallart, F.; Amaxidis, Y.; Botti, P.; Cane, B.; Castillo, V.; Chapman, P.; Froebrich, J.; Garcia, J.; Latron, J.; Llorens, P.; Porto, Lo A.; Morais, M.; Neves, N.; Ninov, P.; Perrin, J.L.; Ribarova, I.; Skoulikidis, N.; Tournoud, M.G.

    2008-01-01

    Seven catchments of diverse size in Mediterranean Europe were investigated in order to understand the main aspects of their hydrological functioning. The methods included the analysis of daily and monthly precipitation, monthly potential evapotranspiration rates, flow duration curves,

  15. Polymerase chain reaction and nested-PCR approaches for detecting Cryptosporidium in water catchments of water treatment plants in Curitiba, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Silvia Cristina Osaki

    2013-06-01

    Full Text Available Introduction Cryptosporidium is an important protozoan cause of waterborne disease worldwide of concern to public health authorities. To prevent outbreaks of cryptosporidiosis, the monitoring of this parasite in drinking water is necessary. In the present work, the polymerase chain reaction (PCR and nested-PCR techniques were used to detect Cryptosporidium in raw water from catchment points of four water treatment plants (WTP in Curitiba, Paraná, Brazil. Methods First, DNA extraction techniques were tested in samples containing decreasing amount of oocysts in reagent water, and PCR and nested-PCR with specific primers for 18SSU rDNA of Cryptosporidium were conducted to determine their sensitivity. In reagent water, a commercial extraction kit provided the best analytical sensitivity, and PCR and nested-PCR allowed the detection of five and two oocysts, respectively, with the primers XIAOR/XIAOF and XIAO1F/XIAO2R. Results In the spiking experiments, only the PCR with the primers AWA995F/AWA1206R was successful at detecting concentrations of 0.1 oocysts/mL. Two catchments samples of raw water and/or water sludge from four WTPs were contaminated with Cryptosporidium. Conclusions The application of the techniques to monitor Cryptosporidium in water and detect contamination in water catchments of WTPs in Curitiba are discussed in the present work.

  16. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.W.; Uhlenbrook, S.

    2013-01-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches

  17. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  18. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. The problem of institutional fit in integrated water resources management: A case of Zimbabwe’s Mazowe catchment

    Science.gov (United States)

    Chereni, A.

    Integrated Water Resources Management (IWRM) concepts have now been accepted in various contexts and efforts are now being made to implement these concepts. Zimbabwe adopted and indigenized IWRM within the 1990s Water Reforms and stakeholder institutions designed to engender cross-sectoral efforts are now in place. Using evidence from Mazowe Catchment, this paper observes that far from fostering integration, institutions involved in water resources management are multiple, disparate and discordant. In practice, associational relationships - specifications of mandate based roles, lines and direction of accountability and evaluation criteria - of institutions intended to foster sectoral integration in natural resources management are not defined. These poorly defined associational relationships coupled with a dearth of a catchment management and development outline plan have translated into a lack of compulsion of duty among institutions. The study derives its evidence from a blend of qualitative unstructured interviews, participant observation and secondary sources. Although the weaknesses of IWRM are more contextual, it is argued, there are certain weaknesses that are also conceptual. IWRM, it is argued, has to contend with a growing plethora of methodological and motivational questions. Whilst it is agreeable within IWRM discourse that institutions need to be integrated, in practice, the approach falls short of a methodological approach that addresses ways in which the various aspects of these disparate institutions could be harmonized. The paper suggests that associational relationships or modes of interaction among institutions need to be defined. This definition should be based on a catchment development master plan.

  20. Ground Water Quality

    African Journals Online (AJOL)

    The results showed that Na and K were the most abundant dissolved cations in the groundwater. The. + .... concentration of phosphate (PO ) in the water. 4 samples was ...... The Effect of Copper on Some Laboratory Indices of Clarias.

  1. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    Science.gov (United States)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  2. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  3. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  4. The effects of sewer infrastructure on water quality: implications for land use studies.

    Science.gov (United States)

    Vrebos, Dirk; Staes, Jan; Meire, Patrick

    2010-05-01

    The European Water Framework Directive requires a good ecological status of the European water bodies and the necessary measures to obtain this have to be implemented. The water quality of a river is the result of complex anthropogenic systems (buildings, waste water treatment infrastructure, regulations, etc.) and biogeochemical and eco-hydrological interactions. It is therefore essential to obtain more insight in the factors that determine the water quality in a river. Research into the relation between land use and water quality is necessary. Human activities have a huge impact on the flow regimes and associated water quality of river systems. Effects of land use bound activities on water quality are often investigated, but these studies generally ignore the hydrological complexity of a human influenced catchment. Infrastructure like sewer systems and wastewater treatment plants (WWTP) can displace huge quantities of polluted water. The transfers change flow paths, displace water between catchments and change the residence time of the system. If we want to correctly understand the effect of land use distribution on water quality we have to take these sewer systems into account. In this study we analyse the relation between land use and water quality in the Nete catchment (Belgium) and investigate the impact of the sewage infrastructure on this relation. The Nete catchment (1.673 km²) is a mosaic of semi natural, agricultural and urbanized areas and the land use is very fragmented. For the moment 74% of the households within the catchment are connected to a WWTP. The discharges from these WWTP's compose 15% of the total discharge of the Nete. Based on a runoff model the surface of upstream land use was calculated for 378 points. These data were then corrected for the impact of WWTP's. Using sewage infrastructure plans, urban areas connected to a WWTP were added to the upstream land use of the WWTP's water receiving stream. In order to understand the effect of

  5. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    Science.gov (United States)

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    The water quality assessment conducted in the Densu, Birim and Ayensu Basins of Ghana in the Okyeman area ... All the mean nutrient values for Densu, Birim and Ayensu were not significantly .... variability in the composition of the river.

  7. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  8. Rainfall and runoff water quality of the Pang and Lambourn, tributaries of the River Thames, south-eastern England

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of rainfall and runoff is described for two catchments of two tributaries of the River Thames, the Pang and Lambourn. Rainfall chemistry is variable and concentrations of most determinands decrease with increasing volume of catch probably due to 'wash out' processes. Two rainfall sites have been monitored, one for each catchment. The rainfall site on the Lambourn shows higher chemical concentrations than the one for the Pang which probably reflects higher amounts of local inputs from agricultural activity. Rainfall quality data at a long-term rainfall site on the Pang (UK National Air Quality Archive shows chemistries similar to that for the Lambourn site, but with some clear differences. Rainfall chemistries show considerable variation on an event-to-event basis. Average water quality concentrations and flow-weighted concentrations as well as fluxes vary across the sites, typically by about 30%. Stream chemistry is much less variable due to the main source of water coming from aquifer sources of high storage. The relationship between rainfall and runoff chemistry at the catchment outlet is described in terms of the relative proportions of atmospheric and within-catchment sources. Remarkably, in view of the quantity of agricultural and sewage inputs to the streams, the catchments appear to be retaining both P and N. Keywords: water quality, nitrate, ammonium, phosphorus, ammonia, nitrogen dioxide, pH, alkalinity, nutrients, trace metals, rainfall, river, Pang, Lambourn, LOCAR

  9. Water quality. Pt. 3

    International Nuclear Information System (INIS)

    1993-01-01

    This International Standard specifies a method for the determination of gross alpha activity in non-saline waters for alpha-emitting radionuclides which are not volatile at 350 o C. It is possible to determine supported volatile radionuclides measured to an extent determined by half-life, matrix retention (of the volatile species) and the duration of measurement (counting time). The method is applicable to raw and potable waters and can be extended to saline or mineralized waters, but with a reduced sensitivity. The range of application depends on the amount of inorganic material in the water and on the performance characteristics (background count rate and counting efficiency) of the counter. The sample is acidified to stabilize it, evaporated almost to dryness, converted to the sulfate form and then ignited at 350 o C. A portion of the residue is transferred to a planchette and the alpha activity measured by counting in an alpha-particle detector or counting system previously calibrated against an alpha-emitting standard. (author)

  10. Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment.

    Science.gov (United States)

    Collet, Lila; Ruelland, Denis; Estupina, Valérie Borrell; Dezetter, Alain; Servat, Eric

    2015-12-01

    Assessing water supply sustainability is crucial to meet stakeholders' needs, notably in the Mediterranean. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km2, France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need to evaluate possible future changes in water allocation capacity in the catchment, using climate change, dam management and water use scenarios. A modelling framework that was already calibrated and validated on this catchment over the last 50 years was used to assess whether water resources could meet water demands at the 2030 horizon for the domestic, agricultural and environmental sectors. Water supply sustainability was evaluated at the sub-basin scale according to priority allocations using a water supply capacity index, frequency of unsatisfactory years as well as the reliability, resilience and sustainability metrics. Water use projections were based on the evolution of population, per-unit water demand, irrigated areas, water supply network efficiency, as well as on the evaluation of a biological flow. Climate projections were based on an increase in temperature up to 2°C and a decrease in daily precipitation by 20%. Adaptation strategies considered reducing per-unit water demand for the domestic sector and the importation of water volume for the agricultural sector. The dissociated effects of water use and climatic constraints on water supply sustainability were evaluated. Results showed that the downstream portions would be the more impacted as they are the most exploited ones. In the domestic sector, sustainability indicators would be more degraded by climate change scenarios than water use constraints. In the agricultural sector the negative impact of water use scenarios would be

  11. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  12. Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Fluksová, H.; Hejzlar, Josef; Kaňa, Jiří; Porcal, Petr; Turek, Jan

    2017-01-01

    Roč. 584, APR (2017), s. 971-981 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GAP504/12/1218; GA ČR GA17-15229S; GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : bark beetle * nitrogen * organic carbon * aluminium * base cations Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Water resources Impact factor: 4.900, year: 2016

  13. Water quality criteria for lead

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, N.K.

    1987-01-01

    This report is one in a series that establishes water quality criteria for British Columbia. The report sets criteria for lead to protect a number of water uses, including drinking water, freshwater and marine aquatic life, wildlife, livestock, irrigation, and recreation. The criteria are set as either maximum concentrations of total lead that should not be exceeded at any time, or average concentrations that should not be exceeded over a 30-day period. Actual values are summarized.

  14. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  15. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  16. Eco-physiological Study on the Influence of Contaminated Waters from the Topolnitza River Catchment Area on Some Crops

    Directory of Open Access Journals (Sweden)

    Iliana Velcheva

    2012-12-01

    Full Text Available The present study is a small part of a program for an investigation of the water conditions in the Topolnitza Dam Lake, Topolnitza River and its catchment area. The sensitivity of seeds and young wheat, sunflower and mustard plants to heavy metal stress was examined at laboratory conditions. Our results showed that seedling growth was more sensitive to heavy metals in comparison to seed germination. The length of shoot and root has been adversely affected due to water contamination when compared to the control. A certain negative effect on the photosynthetic pigments content was registered.

  17. Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires

    Science.gov (United States)

    Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

    2014-11-01

    Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

  18. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    Science.gov (United States)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  19. Water Quality Analysis Simulation Program (WASP)

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  20. A Simple Scheme for Modeling Irrigation Water Requirements at the Regional Scale Applied to an Alpine River Catchment

    Directory of Open Access Journals (Sweden)

    Pascalle C. Smith

    2012-11-01

    Full Text Available This paper presents a simple approach for estimating the spatial and temporal variability of seasonal net irrigation water requirement (IWR at the catchment scale, based on gridded land use, soil and daily weather data at 500 × 500 m resolution. In this approach, IWR is expressed as a bounded, linear function of the atmospheric water budget, whereby the latter is defined as the difference between seasonal precipitation and reference evapotranspiration. To account for the effects of soil and crop properties on the soil water balance, the coefficients of the linear relation are expressed as a function of the soil water holding capacity and the so-called crop coefficient. The 12 parameters defining the relation were estimated with good coefficients of determination from a systematic analysis of simulations performed at daily time step with a FAO-type point-scale model for five climatically contrasted sites around the River Rhone and for combinations of six crop and ten soil types. The simple scheme was found to reproduce well results obtained with the daily model at six additional verification sites. We applied the simple scheme to the assessment of irrigation requirements in the whole Swiss Rhone catchment. The results suggest seasonal requirements of 32 × 106 m3 per year on average over 1981–2009, half of which at altitudes above 1500 m. They also disclose a positive trend in the intensity of extreme events over the study period, with an estimated total IWR of 55 × 106 m3 in 2009, and indicate a 45% increase in water demand of grasslands during the 2003 European heat wave in the driest area of the studied catchment. In view of its simplicity, the approach can be extended to other applications, including assessments of the impacts of climate and land-use change.

  1. Effectiveness of the stormwater quality devices to improve water quality at Putrajaya

    International Nuclear Information System (INIS)

    Sidek, L M; Basri, H; Puad, A H Mohd; Noh, M N Md; Ainan, A

    2013-01-01

    Development of Putrajaya has changed the character of the natural landform by covering the land with impervious surfaces. Houses, office buildings, commercial place and shopping centres have provided places to live and work. The route between buildings is facilitated and encouraged by a complex network of roads and car parks. However, this change from natural landforms and vegetative cover to impervious surfaces has major effect on stormwater which are water quality (non-point source pollution). This paper describes the effectiveness of the stormwater quality devices to improve water quality at selected Putrajaya for demonstration in order to evaluate low cost storm inlet type devices in the Putrajaya Catchment. Five stormwater quality devices were installed and monitored during the study. The devices include Ultra Drain Guard Recycle model, Ultra Curb Guard Plus, Ultra Grate Guard, Absorbent Tarp and Ultra Passive Skimmer. This paper will provide information on the benefits and costs of these devices, including operations and maintenance requirements. Applicability of these devices in gas stations, small convenience stores, residential and small parking lots in the catchment are possible due to their low cost.

  2. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    Science.gov (United States)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    Worldwide studies modelling the hydrological response to global changes have proven the Mediterranean area as one of the most vulnerable region to water crisis. It is characterised by limited and unequally distributed water resources, as well as by important development of its human activities. Since the late 1950s, water demand in the Mediterranean basin has doubled due to a significant expansion of irrigated land and urban areas, and has maintained on a constant upward curve. The Ebro catchment, third largest Mediterranean basin, is very representative of this context. Since the late 1970s, a negative trend in mean rainfall has been observed as well as an increase in mean temperature. Meanwhile, the Ebro River discharge has decreased by about 40%. However, climate alone cannot explain this downward trend. Another factor is the increase in water consumption for agricultural and domestic uses. Indeed, the Ebro catchment is a key element in the Spanish agricultural production with respectively 30% and 60% of the meat and fruit production of the country. Moreover, population has increased by 20% over the catchment since 1970 and the number of inhabitant doubles each summer due to tourism attraction. Finally, more than 250 storage dams have been built over the Ebro River for hydropower production and irrigation water supply purposes, hence regulating river discharge. In order to better understand the respective influence of climatic and anthropogenic pressures on the Ebro hydrological regime, an integrated water resources modelling framework was developed. This model is driven by water supplies, generated by a conceptual rainfall-runoff model and by a storage dam module that accounts for water demands and environmental flow requirements. Water demands were evaluated for the most water-demanding sector, i.e. irrigated agriculture (5 670 Hm3/year), and the domestic sector (252 Hm3/year), often defined as being of prior importance for water supply. A water allocation

  3. In Hot Water. A study on sociotechnical intervention models and practices of water use in smallholder agriculture, Nyanyadzi catchment, Zimbabwe

    NARCIS (Netherlands)

    Bolding, J.A.

    2004-01-01

    This study focuses on intervention processes in smallholder agriculture in the Nyanyadzi river catchment, located in Chimanimani district, Manicaland Province Zimbabwe. In particular it concerns itself with sociotechnical interventions that were implemented by Agritex, the local extension and

  4. The role of pesticide fate modelling in a prevention-led approach to potable water quality management

    Science.gov (United States)

    Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David

    2013-04-01

    Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management

  5. Storage selection functions : A coherent framework for quantifying how catchments store and release water and solutes

    NARCIS (Netherlands)

    Rinaldo, A.; Benettin, P.; Harman, C.J.; Hrachowitz, M.; McGuire, K.J.; Van der Velde, Y.; Bertuzzo, E.; Botter, G.

    2015-01-01

    We discuss a recent theoretical approach combining catchment-scale flow and transport processes into a unified framework. The approach is designed to characterize the hydrochemistry of hydrologic systems and to meet the challenges posed by empirical evidence. StorAge Selection functions (SAS) are

  6. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  7. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  8. Use of Isotopes in Assessing the Response of Groundwater to Cross-Catchments Water Diversion in the Tarim Basin

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Z.; Huang, T.; Kong, Y. [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2013-07-15

    Since 2000, more than 2 billion m{sup 3} of water has been diverted from the Peacock River to the neighbouring Lower Tarim River in NW China via a 900 km canal for ecosystem rescue by cross-catchment water diversion. Isotope techniques have been used in the riparian groundwater- river interactions along the 350 km long river channel through sampling of monitoring wells and river stream as well as soil profiles. Stable isotopes ({delta}{sup 2}H, {delta} {sup 18}O) show that groundwater is enriched in heavy isotopes, attributed to evaporation during recharge. Tritium data show that the extent of modern recharge is limited to 600-1500 m from the riverbank in the middle reaches and 200-600 m in the lower reaches. The salinity of groundwater is affected by river recharge, residence time and evapotranspiration. The zone of appropriate water table for arid plants is confined to a narrow scope. The assessment calls for a more favourable water allocation and management scheme catchment wide. (author)

  9. Vaal River catchment: problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available , the Pretoria-Witwatersrand-Vereeniging (PWV) complex. Although the catchment only produces eight per cent of the mean annual runoff of the country it has the highest concentration of urban, industrial, mining and power generation development in South Africa... of the Vaal River. The purpose of the workshop and preceding symposium was to examine the ever increasing complexity of the Vaal River system, the much enlarged spectrum of user water quality needs and problems, and those activities in the catchment which...

  10. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  11. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    Science.gov (United States)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    the own-price elasticity of demand for irrigation water can be derived. To illustrate the method, the values of the marginal product of water deployed in the Musi catchment in India are used to determine an own-price elasticity of demand for irrigation water which has some positive value to producers of approximately -0.64. For water that is most highly valued, the elasticity was found to be highly elastic at -2.12, while less valued water used in agriculture was far more inelastic at -0.44. Finally, for almost 36% of water deployed in the catchment the elasticity was logically determined to be perfectly elastic.

  12. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management

    DEFF Research Database (Denmark)

    Refsgaard, A.; Jacobsen, T.; Jacobsen, Brian H.

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by ...... the potential and limitations of comprehensive, integrated modelling tools.  ......The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized...... by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling...

  13. Habitat quality, water quality and otter distribution

    Directory of Open Access Journals (Sweden)

    Christopher Mason

    1995-12-01

    Full Text Available Abstract In recent decades the otter (Lutra lutra has declined over much of Europe. Good habitat has been shown to be essential to otters. Specific elements of cover have been identified in some studies but the minimum cover requirements to support otter populations are not known. These are likely to vary in relation to other factors, such as disturbance. Habitat destruction has been severe in many areas of Europe. Water quantity is important to otters, especially where low flows destroy the food base, namely fish. However the minimum food requirements to support populations are not known. The main cause of the decline in otter populations is almost certainly bioaccumulating pollutants, especially PCBs. These are likely to be inhibiting recolonization in many areas. In Britain, catchment distribution of otters within regions is negatively correlated to mean PCB levels in otter spraints, and these are indicative of tissue levels. PCBs have been found in all samples studied. Current EC statutory monitoring is inadequate to protect otter populations from bioaccumulating contaminants. Standards are presented here for otter protection. More fundamental research is required to refine our understanding of the requirements of the otter. Riassunto Qualità ambientale, qualità dell'acqua e distribuzione della lontra - Negli ultimi decenni la lontra (Lutra lutra è diminuita su buona parte del suo areale europeo, dove particolarmente pesante è stata la distruzione di ambienti favorevoli. Habitat qualitativamente idonei sono essenziali per la sopravvivenza della specie. In alcuni studi, specifici parametri di copertura vegetale dei corpi idrici sono stati ritenuti importanti per la specie, ma quale sia il valore minimo di copertura riparia in grado di supportare una popolazione resta sconosciuto. I parametri di copertura variano probabilmente in relazione ad altri fattori, quali, ad

  14. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  15. Forecasting the impact of global changes on the water resources of a mountainous catchment in the Chilean Andes

    Science.gov (United States)

    Ruelland, D.; Campéon, C.; Dezetter, A.; Jourde, H.

    2012-04-01

    This study aims to simulate the complex interrelationships between climate forcing, human pressure and dynamics of groundwater and surface water of the upper Elqui catchment (5 660 km2) in the Chilean Andes. The water resources of this mountainous, semi-arid catchment has been undergoing a growing pressure because of high climate variability and of the economic mutations of various sectors (agriculture, tourism), which have impacted water availability of the area. Due to the agriculture-based development in the region, water scarcity is thus a matter of great concern for this basin. Hydrological simulations were performed with a conceptual model that takes into account a shallow reservoir supplied by precipitation and feeding evapotranspiration, surface/sub-surface runoff and infiltration, and (ii) a deep reservoir fed by infiltration and generating the baseflow. A third reservoir, in which fluxes are controlled by temperature, has been introduced to account for the snowmelt regime of the catchment. A 30-year period (1979-2008) was chosen to capture long-term hydro-climatic variability due to alternating ENSO and LNSO events. Then water uses (dam functioning, agricultural and domestic withdrawals) were integrated into the model. The model was calibrated and validated with streamflow data on the basis of a multi-objective function that aggregates a variety of goodness-of-fit criteria. Prospective climatic and anthropogenic scenarios were finally elaborated and forced into the model in order to propose midterm (2050 horizon) simulations. The model correctly reproduces the observed discharge at the basin outlet. Depending on the modelling complexity, NSE coefficients are about 0.82-0.90 over the calibration period (1979-1990) and 0.78-0.84 over the validation period (1991-2008). The volume error between observation and simulation is lower than 15% over the whole period studied. The dynamics of both the water level in the deep conceptual reservoir and the water table

  16. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  17. The concentration-discharge slope as a tool for water quality management.

    Science.gov (United States)

    Bieroza, M Z; Heathwaite, A L; Bechmann, M; Kyllmar, K; Jordan, P

    2018-07-15

    Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to

  18. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  19. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  20. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  1. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  2. Water-supply potential from an asphalt-lined catchment near Holualoa Kona, Hawaii

    Science.gov (United States)

    Chinn, Salwyn S.W.

    1965-01-01

    The Jenkins-Whitesburg area includes approximately 250 square miles In Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate

  3. IDENTIFICATION OF DANGER ZONES FOR SURFACE WATER USING GIS (SIP – MAPINFO SYSTEM ON AN EXAMPLE OF UPPER NAREW RIVER CATCHMENT

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-07-01

    Full Text Available Creating the buffer zones is a function intended to designate an area in particular, of a constant distance around the spatial objects. The aim of the study was to create maps as thematic layers, which served to identify areas of existing and potential contamination of surface water and other environmental elements. Among others, it made possible to localize the areas potentially affected by the surface water pollution due to transport; localize the areas potentially affected by the surface water pollution due to the discharge of sewage from human settlements; localize the zones with mitigated impact of communication emissions due to the natural protection of forests taking the form of so-called geochemical barriers. The spatial analyzes allowed to generate model-zones of the existing and potential threat of water pollution in the Narew river catchment. Designated danger zones can be verified by studies as well as they can be very helpful in determining the monitoring network and for water quality modeling process.

  4. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  5. Assessment of the water and energy budget in a peatland catchment of the Alps using the process based GEOtop hydrological model

    DEFF Research Database (Denmark)

    Pullens, Johannes Wilhelmus Maria; Sottocornola, M.; Kiely, G.

    2018-01-01

    close interdependence of the carbon and water cycles in peatland ecosystems signal the importance of understanding the water cycle to the functioning of peatlands. With this aim, the water and energy cycle of an alpine catchment in Italy, which includes a peatland, was studied using the process......-based hydrological model GEOtop and a set of in situ measurements over 4 years (2012-2015). This is a challenging modelling exercise that has not been tried before with GEOtop. The catchment is heterogenous with land covers of peatland, grassland, scree and bare rock in a mountainous area. The GEOtop model was able...

  6. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  7. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    Science.gov (United States)

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  8. Risk-based prioritization of ground water threatening point sources at catchment and regional scales

    DEFF Research Database (Denmark)

    Overheu, Niels Døssing; Tuxen, Nina; Flyvbjerg, John

    2014-01-01

    framework has been developed to enable a systematic and transparent risk assessment and prioritization of contaminant point sources, considering the local, catchment, or regional scales (Danish EPA, 2011, 2012). The framework has been tested in several catchments in Denmark with different challenges...... and needs, and two of these are presented. Based on the lessons learned, the Danish EPA has prepared a handbook to guide the user through the steps in a risk-based prioritization (Danish EPA, 2012). It provides guidance on prioritization both in an administratively defined area such as a Danish Region...... of the results are presented using the case studies as examples. The methodology was developed by a broad industry group including the Danish EPA, the Danish Regions, the Danish Nature Agency, the Technical University of Denmark, and consultants — and the framework has been widely accepted by the professional...

  9. Review on water quality sensors

    Science.gov (United States)

    Kruse, Peter

    2018-05-01

    Terrestrial life may be carbon-based, but most of its mass is made up of water. Access to clean water is essential to all aspects of maintaining life. Mainly due to human activity, the strain on the water resources of our planet has increased substantially, requiring action in water management and purification. Water quality sensors are needed in order to quantify the problem and verify the success of remedial actions. This review summarizes the most common chemical water quality parameters, and current developments in sensor technology available to monitor them. Particular emphasis is on technologies that lend themselves to reagent-free, low-maintenance, autonomous and continuous monitoring. Chemiresistors and other electrical sensors are discussed in particular detail, while mechanical, optical and electrochemical sensors also find mentioning. The focus here is on the physics of chemical signal transduction in sensor elements that are in direct contact with the analyte. All other sensing methods, and all other elements of sampling, sample pre-treatment as well as the collection, transmission and analysis of the data are not discussed here. Instead, the goal is to highlight the progress and remaining challenges in the development of sensor materials and designs for an audience of physicists and materials scientists.

  10. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    Science.gov (United States)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality

  11. Building capacity for co-operative governance as a basis for integrated water resource managing in the Inkomati and Mvoti catchments, South Africa

    OpenAIRE

    Colvin, J; Ballim, F; Chimbuya, S; Everard, M; Goss, J; Klarenberg, G; Ndlovu, S; Ncala, D; Weston, D

    2008-01-01

    South Africa's National Water Act and National Water Resource Strategy set out an ambitious vision for Integrated Water Resources Management including a strong focus on the redistribution of water resources towards the poor and on empowering historically disadvantaged communities. To achieve this vision the Department of Water Affairs & Forestry (DWAF) has been pursuing a programme for devolving powers to 19 stakeholder-led catchment management agencies (CMAs) and more locally, transforming i...

  12. Episodic runoff generation at Central European headwater catchments studied using water isotope concentration signals

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Dohnal, M.; Vogel, T.; Šanda, M.; Tesař, Miroslav

    2017-01-01

    Roč. 65, č. 2 (2017), s. 114-122 ISSN 0042-790X Grant - others:Grantová agentura České republiky (GA ČR)(CZ) GC14-15201J Institutional support: RVO:67985874 Keywords : O isotope * headwater catchment runoff * subsurface runoff * tracer * rainfall-runoff episodes Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 1.654, year: 2016

  13. Streamflow variation of forest covered catchments

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  14. Water quality relationships and evaluation using a new water quality index

    International Nuclear Information System (INIS)

    Said, A.; Stevens, D.; Sehlke, G.

    2002-01-01

    Water quality is dependent on a variety of measures, including dissolved oxygen, microbial contamination, turbidity, nutrients, temperature, pH, and other constituents. Determining relationships between water quality parameters can improve water quality assessment, and watershed management. In addition, these relationships can be very valuable in case of evaluating water quality in watersheds that have few water quality data. (author)

  15. Environmetric data interpretation to assess surface water quality

    International Nuclear Information System (INIS)

    Simeonova, P.; Papazova, P.; Lovchinov, V.

    2013-01-01

    Two multivariate statistical methods (Cluster analysis /CA/ and Principal components analysis /PCA/) were applied for model assessment of the water quality of Maritsa River and Tundja River on Bulgarian territory. The study used long-term monitoring data from many sampling sites characterized by various surface water quality indicators. The application of CA to the indicators results in formation of clusters showing the impact of biological, anthropogenic and eutrophication sources. For further assessment of the monitoring data, PCA was implemented, which identified, again, latent factors confirming, in principle, the clustering output. Their identification coincide correctly to the location of real pollution sources along the rivers catchments. The linkage of the sampling sites along the river flow by CA identified several special patterns separated by specific tracers levels. The apportionment models of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters. Thus, a better risk management of the surface water quality is achieved both on local and national level

  16. Urban Water and Riverine Quality: Participatory Science in Singapore

    Science.gov (United States)

    Higgitt, D. L.

    2011-12-01

    Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.

  17. Assessing water resources under climate change in high-altitude catchments: a methodology and an application in the Italian Alps

    Science.gov (United States)

    Aili, T.; Soncini, A.; Bianchi, A.; Diolaiuti, G.; D'Agata, C.; Bocchiola, D.

    2018-01-01

    Assessment of the future water resources in the Italian Alps under climate change is required, but the hydrological cycle of the high-altitude catchments therein is poorly studied and little understood. Hydrological monitoring and modeling in the Alps is difficult, given the lack of first hand, site specific data. Here, we present a method to model the hydrological cycle of poorly monitored high-altitude catchments in the Alps, and to project forward water resources availability under climate change. Our method builds on extensive experience recently and includes (i) gathering data of climate, of cryospheric variables, and of hydrological fluxes sparsely available; (ii) robust physically based glacio-hydrological modeling; and (iii) using glacio-hydrological projections from GCM models. We apply the method in the Mallero River, in the central (Retiche) Alps of Italy. The Mallero river covers 321 km2, with altitude between 310 and 4015 m a.s.l., and it has 27 km2 of ice cover. The glaciers included in the catchment underwent large mass loss recently, thus Mallero is largely paradigmatic of the present situation of Alpine rivers. We set up a spatially explicit glacio-hydrological model, describing the cryospheric evolution and the hydrology of the area during a control run CR, from 1981 to 2007. We then gather climate projections until 2100 from three Global Climate Models of the IPCC AR5 under RCP2.6, RCP4.5, and RCP8.5. We project forward flow statistics, flow components (rainfall, snow melt, ice melt), ice cover, and volume for two reference decades, namely 2045-2054 and 2090-2099. We foresee reduction of the ice bodies from - 62 to - 98% in volume (year 2100 vs year 1981), and subsequent large reduction of ice melt contribution to stream flows (from - 61 to - 88%, 2100 vs CR). Snow melt, now covering 47% of the stream flows yearly, would also be largely reduced (from - 19 to - 56%, 2100 vs CR). The stream flows will decrease on average at 2100 (from + 1 to - 25

  18. Geochemical and hydrodynamic phosphorus retention mechanisms in lowland catchments

    NARCIS (Netherlands)

    van der Grift, B.

    2017-01-01

    The release of phosphorus (P) to surface water from heavily fertilised agricultural fields is of major importance for surface water quality. The research reported in this thesis examined the role of geochemical and hydrodynamic processes controlling P speciation and transport in lowland catchments

  19. Integrated catchment modelling in a Semi-arid area

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-09-01

    Full Text Available , will increasingly need water quality and quantity management tools to be able to make informed decisions. Integrated catchment modelling (ICM) is regarded as being a valuable tool for integrated water resource management. It enables officials and scientists to make...

  20. Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments

    Science.gov (United States)

    Riscassi, Ami L.; Scanlon, Todd M.

    2011-12-01

    Determining the controls on dissolved mercury (HgD) transport is necessary to improve estimations of export from unmonitored watersheds and to forecast responses to changes in deposition and other environmental forcings. Stream water HgD and dissolved organic carbon (DOC) were evaluated over a range of discharge conditions in three streams within Shenandoah National Park, VA. Watersheds are distinguished by stream water pH (ranging from neutral to acidic) and soil size fractioning (ranging from clays to sands). At all sites, discharge was a significant but poor predictor of HgD concentrations (r2 from 0.13-0.52). HgD was strongly coupled with DOC at all sites (r2 from 0.74-0.89). UV absorbance at 254 nm (UV254), a proxy for DOC quantity and quality, slightly improved the predictions of HgD. Mean DOC quality differed between streams, with less aromatic DOC mobilized from the more acidic watershed. The site with less aromatic DOC and sandy soils mobilized more Hg to the stream for the same quantity and quality of DOC, likely due to the reduced capacity of the larger-grained soils to retain Hg, leaving a greater fraction associated with the organic matter. A similar amount of 0.54 ng HgD/mg DOC is transported at all sites, suggesting the less aromatic DOC transports less Hg per unit DOC, offsetting the effects of soil type. This research demonstrates that soil composition and DOC quality influence HgDexport. We also provide evidence that soil organic carbon is a primary control on Hg-DOC ratios (0.12-1.4 ng mg-1) observed across the U.S. and Sweden.

  1. Diffuse pollution (pesticides and nitrate) at catchment scale on two constrasted sites: mass balances and characterization of the temporal variability of groundwater quality.

    Science.gov (United States)

    Baran, N.; Gutierrez, A.

    2009-04-01

    Enhanced monitoring of groundwater quality over several years has revealed a nitrate and /or pesticide contamination of aquifers in North America and Europe (Gilliom et al., 2006; Ifen, 2004). In many countries (France, United Kingdom, Denmark, Switzerland), drinking water is partly or dominantly supplied by groundwater. Assessing the extent of nitrate or pesticide contamination in aquifer and understanding the transport of the solutes to groundwater is, therefore, of major importance for the management of groundwater resources. Besides, the objective set by the European Water Framework Directive (WFD - 2000/60/EC, OJEC 2000) is for "all groundwater bodies to achieve the good quantitative and chemical status … at the latest by 2015". The Directive demands that European Union Member States not only characterize their levels of groundwater contamination, but also that they study the evolutionary trends of their pollutant concentrations. Monitoring groundwater quality for nitrate and pesticide is thus particularly relevant as well as the characterization of the transfer of solutes to and in groundwater is essential for effective water resource management. Several countries have approached the stage of characterization of their groundwater bodies either by using data derived from various measurement networks, as in France or by establishing specific sampling and analysis protocols (NAQUA network in Switzerland; NAWQA network in the United States). Pesticide monitoring networks, where they exist, are often less than 10 years old with a fairly low measurement frequency (1 to 4 analyses per year). Chemical status and trend interpretations are thus difficult and limited. Characterizing an entire groundwater body from observations limited in time and space remains a challenge. Little published data exists concerning intensive monitoring over several years, whether at the catchment outlet or at observation points spread over a basin, that would allow these

  2. Sea-water/groundwater interactions along a small catchment of the European Atlantic coast

    International Nuclear Information System (INIS)

    Einsiedl, Florian

    2012-01-01

    The geochemistry and isotopic composition of a karstic coastal aquifer in western Ireland has shed light on the effect of sea-water/groundwater interactions on the water quality of Ireland’s Atlantic coastal zone. The use of stable isotope data from the IAEA precipitation station in Valentia, located in SW Ireland has facilitated the characterization of groundwater recharge conditions in the western part of Ireland and suggests that groundwater is mostly replenished by the isotopically light winter precipitation. The dissolved SO 4 2- in the karstic groundwater that was collected during baseflow conditions with δ 34 S values between 4.6‰ and 18‰ may be composed of S stemming from three principal sources: SO 4 2- derived from precipitation which is composed of both sea-spray S (δ 34 S: 20‰) and an isotopically light anthropogenic source (δ 34 S: 1–5‰), SO 4 2- stemming from animal slurries (δ 34 S: ∼5‰), and intruding sea-water SO 4 2- (δ 34 S: 20.2‰). The isotopic composition of δ 18 O in dissolved groundwater SO 4 2- collected during baseflow conditions is interpreted as reflecting sea-water intrusion to the karstic coastal groundwater system. The highest δ 18 O values in dissolved groundwater SO 4 2- were in samples collected near the coast (4.8 ± 0.4‰) and the lowest (2 ± 0.5‰) were collected further inland. The δ 15 N and δ 18 O values of groundwater NO 3 - were between 3.4‰ and 11.4‰ and approximately 7.7‰, respectively, and reflect geochemical conditions in the aquifer that do not promote attenuation of NO 3 - through denitrification. As a result N loading to Kinvara Bay that is controlled by submarine groundwater discharge (SGD) was calculated as 5 tons/day on average compared to an estimated N-input that derives from precipitation of approximately 2.5 tons/a. SGD into the bay may result in near coastal sea-water quality changes. These results represent one of the first studies addressing the effect of groundwater

  3. Dam water quality study. Report to Congress

    International Nuclear Information System (INIS)

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A

  4. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  5. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultu...... in comprehensive, integrated modelling tools.......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...... agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied...

  6. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

    Science.gov (United States)

    Kirchner, J. W.

    2016-01-01

    Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous

  7. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  8. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  9. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    Science.gov (United States)

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  10. An operational weather radar-based Quantitative Precipitation Estimation and its application in catchment water resources modeling

    DEFF Research Database (Denmark)

    He, Xin; Vejen, Flemming; Stisen, Simon

    2011-01-01

    of precipitation compared with rain-gauge-based methods, thus providing the basis for better water resources assessments. The radar QPE algorithm called ARNE is a distance-dependent areal estimation method that merges radar data with ground surface observations. The method was applied to the Skjern River catchment...... in western Denmark where alternative precipitation estimates were also used as input to an integrated hydrologic model. The hydrologic responses from the model were analyzed by comparing radar- and ground-based precipitation input scenarios. Results showed that radar QPE products are able to generate...... reliable simulations of stream flow and water balance. The potential of using radar-based precipitation was found to be especially high at a smaller scale, where the impact of spatial resolution was evident from the stream discharge results. Also, groundwater recharge was shown to be sensitive...

  11. Influence of landscape heterogeneity on water available to tropical forests in an Amazonian catchment and implications for modeling drought response

    Science.gov (United States)

    Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran; Wigmosta, Mark S.; Maxwell, Reed M.; Chambers, Jeffrey Q.; Tomasella, Javier

    2017-08-01

    The Amazon basin has experienced periodic droughts in the past, and intense and frequent droughts are predicted in the future. Landscape heterogeneity could play an important role in how tropical forests respond to drought by influencing water available to plants. Using the one-dimensional ACME Land Model and the three-dimensional ParFlow variably saturated flow model, numerical experiments were performed for a catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoff through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, even in the plateau with much deeper water table depth during the dry season in the drought year of 2005, plant transpiration is not water stressed as the soil saturation is still sufficient for the stomata to be fully open based on the empirical wilting formulation in the models. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies. The results could be applicable to other catchments in the Amazon basin with similar seasonal variability and hydrologic regimes.

  12. Online analysis: Deeper insights into water quality dynamics in spring water.

    Science.gov (United States)

    Page, Rebecca M; Besmer, Michael D; Epting, Jannis; Sigrist, Jürg A; Hammes, Frederik; Huggenberger, Peter

    2017-12-01

    We have studied the dynamics of water quality in three karst springs taking advantage of new technological developments that enable high-resolution measurements of bacterial load (total cell concentration: TCC) as well as online measurements of abiotic parameters. We developed a novel data analysis approach, using self-organizing maps and non-linear projection methods, to approximate the TCC dynamics using the multivariate data sets of abiotic parameter time-series, thus providing a method that could be implemented in an online water quality management system for water suppliers. The (TCC) data, obtained over several months, provided a good basis to study the microbiological dynamics in detail. Alongside the TCC measurements, online abiotic parameter time-series, including spring discharge, turbidity, spectral absorption coefficient at 254nm (SAC254) and electrical conductivity, were obtained. High-density sampling over an extended period of time, i.e. every 45min for 3months, allowed a detailed analysis of the dynamics in karst spring water quality. Substantial increases in both the TCC and the abiotic parameters followed precipitation events in the catchment area. Differences between the parameter fluctuations were only apparent when analyzed at a high temporal scale. Spring discharge was always the first to react to precipitation events in the catchment area. Lag times between the onset of precipitation and a change in discharge varied between 0.2 and 6.7h, depending on the spring and event. TCC mostly reacted second or approximately concurrent with turbidity and SAC254, whereby the fastest observed reaction in the TCC time series occurred after 2.3h. The methodological approach described here enables a better understanding of bacterial dynamics in karst springs, which can be used to estimate risks and management options to avoid contamination of the drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Land use and water quality degradation in the Peixe-Boi River watershed

    Directory of Open Access Journals (Sweden)

    Bruno Wendell de Freitas Pereira

    2016-04-01

    Full Text Available This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage network. The relationship between human disturbance and water quality was analyzed based on observations of land use changes using satellite imagery and in situ collection of water samples. The results show that 46% of the permanent preservation areas have conflicted uses, especially with respect to urban squatters, exposed soil and, most notably, pasture, with over 84 % of the area in conflict. Critical levels of dissolved oxygen reaching 2.14 mg L-1 and pH of 5.12 were observed in some sampling points. These values are below the fresh water standards set by Resolution 357/05 of CONAMA. The poorest water quality may be related to irregular use and occupation of areas within the permanent preservation areas. There is therefore an urgent need to develop a plan for the sustainable use and occupation of catchment area land in the Peixe-Boi River watershed in order to restore the environment and improve water quality.

  14. Analysing the Effects of Forest Cover and Irrigation Farm Dams on Streamflows of Water-Scarce Catchments in South Australia through the SWAT Model

    Directory of Open Access Journals (Sweden)

    Hong Hanh Nguyen

    2017-01-01

    Full Text Available To assist water resource managers with future land use planning efforts, the eco-hydrological model Soil and Water Assessment Tool (SWAT was applied to three catchments in South Australia that experience extreme low flow conditions. Particular land uses and management issues of interest included forest covers, known to affect water yields, and farm dams, known to intercept and change the hydrological dynamics in a catchment. The study achieved a satisfactory daily calibration when irrigation farm dams were incorporated in the model. For the catchment dominated by extreme low flows, a better daily simulation across a range of qualitative and quantitative metrics was gained using the base-flow static threshold optimization technique. Scenario analysis on effects of forest cover indicated an increase of surface flow and a reduction of base-flow when native eucalyptus lands were replaced by pastures and vice versa. A decreasing trend was observed for the overall water yield of catchments with more forest plantation due to the higher evapotranspiration (ET rate and the decline in surface flow. With regards to effects of irrigation farm dams, assessment on a daily time step suggested that a significant volume of water is stored in these systems with the water loss rate highest in June and July. On an annual basis, the model indicated that approximately 13.1% to 22.0% of water has been captured by farm dams for irrigation. However, the scenario analysis revealed that the purposes of use of farm dams rather than their volumetric capacities in the catchment determined the magnitude of effects on streamflows. Water extracted from farm dams for irrigation of orchards and vineyards are more likely to diminish streamflows than other land uses. Outputs from this study suggest that the water use restrictions from farm dams during recent drought periods were an effective tool to minimize impacts on streamflows.

  15. The impact of changing climate on surface and ground water quality in southeast of Ireland

    Science.gov (United States)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk

  16. CHEMICAL WATER QUALITY INDICATORS IN BASIN FOREST PARCZEW

    Directory of Open Access Journals (Sweden)

    Antoni Grzywna

    2014-10-01

    Full Text Available This paper presents the characteristics of the chemistry of surface and ground water in the bottom of the river valley reclaimed Ochoza. Drained grassland accounts for 20% of the total catchment area and are located on organic soils in the valley Tyśmienica classified to the Natura 2000 sites. Analysis of physico-chemical properties of water are to assess the effects of anthropogenic transformation and identify factors that influence water quality in the study area. Water samples were collected in the years 2011–2012 in several points. The walls were characterized by surface water stagnant in the trenches, in July, blueberry plantation. Characterized by the highest quality of surface water runoff river with the test object. Occurring here throughout the growing season water flow reed growing on the bed and temporary impoundment of water contribute to the self-cleaning effect of water. Conducted at different times of the growing season (winter, spring, summer, autumn of water chemistry analysis allows to assess the impact of vegetation on the process of self-purification of water. Based on the survey it was found that the river is reduced by 26% BOD 5, COD by 37%, 12% phosphate and potassium by 13%. Concurrently, an increase in the content of nitrogen compounds – ammonia at 27% and 15% nitrate. The increase in the content of nitrogen compounds is particularly evident in the bottom of the object, which is probably associated with the deep trench causing excessive drying of the soil. The highest values of pollutants were recorded mostly in the spring probably due to the outflow of water from the drans.

  17. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality...

  18. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain

    Science.gov (United States)

    Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.

    2018-01-01

    A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.

  19. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  20. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  1. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  2. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  3. On the impact of the development of the Verkhnyaya Sukhona river catchment area (the Vologda Region on the chemical composition of the waters in its tributaries.

    Directory of Open Access Journals (Sweden)

    Ivicheva Ksenya

    2017-09-01

    Full Text Available The aim of the investigation was to study the influence of anthropogenic burden on the catchment areas of the rivers in Vologda Region and to establish the dependence of the chemical composition of water on pollution sources in the rivers of the Verkhnyaya Sukhona basin. In the catchment areas hydro chemical samples were taken, population density was calculated as well as the automated and visual interpretation of the main elements of the landscape was carried out. At that, forests, populated areas, farmlands and other territories changed by economic activities were identified. An increase in the pollutants concentration in the catchment areas on drawing near the regional center was detected. The development of the catchment areas varies depending on the landscape pattern and on the proximity to the city of Vologda. The population density and the relative area of settlements and farmlands increase while approaching to the city, at the same time the ratio of forests decreases. The positive correlation dependence between the phosphate content and the relative size of farmlands was shown. The main source of pollutants in the catchment areas of the Verkhnyaya Sukhona basin is the presence of settlements and high population density. Under such conditions, high concentration of sodium, chlorine, nitrogen-containing compounds as well as permanganate oxidizability are observed in water.

  4. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    Directory of Open Access Journals (Sweden)

    M. K. Stewart

    2017-09-01

    Full Text Available Kirchner (2016a demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  5. Distribution of Fe in waters and bottom sediments of a small estuarine catchment, Pumicestone Region, southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Liaghati, Tania; Cox, Malcolm E.; Preda, Micaela

    2005-01-01

    Dissolved and extractable iron concentrations in surface water, groundwater and bottom sediments were determined for Halls Creek, a small subtropical tidally influenced creek. Dissolved iron concentrations were much higher in fresh surface waters and groundwater compared to the estuarine water. In bottom sediments, iron minerals were determined by X-ray diffraction (XRD); of these, hematite (up to 11%) has formed by precipitation from iron-rich water in the freshwater section of the catchment. Pyrite was only identified in the estuarine reach and demonstrated several morphologies [identified by scanning electron microscopy (SEM)] including loosely and closely packed framboids, and the euhedral form. The forms of pyrite found in bottom sediments indicate in situ production and recrystallisation. In surface waters, pyrite was detected in suspended sediment; due to oxygen concentrations well above 50 μmol/l, it was concluded that framboids do not form in the water column, but are within resuspended bottom sediments or eroded from creek banks. The persistence of framboids in suspended sediments, where oxygen levels are relatively high, could be due to their silica and clay-rich coatings, which prevent a rapid oxidation of the pyrite. In addition to identifying processes of formation and transport of pyrite, this study has environmental significance, as this mineral is a potential source of bioavailable forms of iron, which can be a major nutrient supporting algal growth

  6. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    Science.gov (United States)

    Stewart, Michael K.; Morgenstern, Uwe; Gusyev, Maksym A.; Małoszewski, Piotr

    2017-09-01

    Kirchner (2016a) demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs) of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years) are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  7. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  9. Drinking water quality assessment and corrosion mitigation in the hospital water supply system of Chacas Village (Peru

    Directory of Open Access Journals (Sweden)

    Riccardo Bigoni

    2014-07-01

    Full Text Available Rural hospitals in developing countries often lack appropriate water treatments to assure their water needs. In these facilities, due to water different uses and its use with medical equipment, water quality problems can cause very hazardous situations. In particular, corrosion of water distribution systems is a common issue that can cause unwanted changes in water quality and failures of the distribution system’s pipes. These considerations suggest that a complete monitoring program and water treatments to control and guarantee the water quality would be required in each health-care facility. This study assessed the quality of the water at the rural hospital of Chacas (Peru as measured via specific physical-chemical and microbiological parameters. The results show that the chemical and microbiological qualities of the water generally worsen from catchment to the hospital’s taps. Moreover, this work investigated the effects of a dolomite limestone filter installed to adjust the quality of the water distributed at the hospital and thereby mitigate the water’s corrosiveness. Corrosion indices were calculated to provide useful information on the water’s corrosiveness and positive results were obtained in reducing corrosiveness after the installation of the dolomite filter.

  10. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    Science.gov (United States)

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. In Hot Water. A study on sociotechnical intervention models and practices of water use in smallholder agriculture, Nyanyadzi catchment, Zimbabwe

    OpenAIRE

    Bolding, J.A.

    2004-01-01

    This study focuses on intervention processes in smallholder agriculture in the Nyanyadzi river catchment, located in Chimanimani district, Manicaland Province Zimbabwe. In particular it concerns itself with sociotechnical interventions that were implemented by Agritex, the local extension and irrigation service, in the mid-1990s. Despite a flurry of interventions and agrarian policies directed at the intensification of agricultural production and promotion of commercial agriculture in communa...

  12. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, QUAL2E and similar models do not address a number of practical problems such as stormwater-flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  13. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    Science.gov (United States)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  14. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  15. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    Science.gov (United States)

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Use of distributed water level and soil moisture data in the evaluation of the PUMMA periurban distributed hydrological model: application to the Mercier catchment, France

    Science.gov (United States)

    Braud, Isabelle; Fuamba, Musandji; Branger, Flora; Batchabani, Essoyéké; Sanzana, Pedro; Sarrazin, Benoit; Jankowfsky, Sonja

    2016-04-01

    Distributed hydrological models are used at best when their outputs are compared not only to the outlet discharge, but also to internal observed variables, so that they can be used as powerful hypothesis-testing tools. In this paper, the interest of distributed networks of sensors for evaluating a distributed model and the underlying functioning hypotheses is explored. Two types of data are used: surface soil moisture and water level in streams. The model used in the study is the periurban PUMMA (Peri-Urban Model for landscape Management, Jankowfsky et al., 2014), that is applied to the Mercier catchment (6.7 km2) a semi-rural catchment with 14% imperviousness, located close to Lyon, France where distributed water level (13 locations) and surface soil moisture data (9 locations) are available. Model parameters are specified using in situ information or the results of previous studies, without any calibration and the model is run for four years from January 1st 2007 to December 31st 2010 with a variable time step for rainfall and an hourly time step for reference evapotranspiration. The model evaluation protocol was guided by the available data and how they can be interpreted in terms of hydrological processes and constraints for the model components and parameters. We followed a stepwise approach. The first step was a simple model water balance assessment, without comparison to observed data. It can be interpreted as a basic quality check for the model, ensuring that it conserves mass, makes the difference between dry and wet years, and reacts to rainfall events. The second step was an evaluation against observed discharge data at the outlet, using classical performance criteria. It gives a general picture of the model performance and allows to comparing it to other studies found in the literature. In the next steps (steps 3 to 6), focus was made on more specific hydrological processes. In step 3, distributed surface soil moisture data was used to assess the

  17. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  18. Phenomenon of organic carbon change in natural waters (system "catchment - Lake") of Russian Federation

    Science.gov (United States)

    Dinu, Marina; Tatyana, Moiseenko; Tatyana, Kremleva; Natalia, Gashkina

    2015-04-01

    In the last two decades in the Russian Federation was found significant increase in the concentration of dissolved organic carbon in many aqueous systems. Most obviously, these changes may be related to global warming. It is known that increasing the temperature dominate during dry periods and increases the concentration of nutrients, primary production increases, leading to an increase of the dissolved organic matter. At the same time, it is known that some of the increase in DOC may be largely due to a decrease of anthropogenic sulfur deposition and increasing organic matter in the soil. The European Russia (ER) is a region with substantial industrial emissions of sulphur. In the central part of ER are concentrated metallurgical productions. This has resulted in high concentrations of anthropogenic sulphate and an increase in the prevalence of acidification as well as a rise in metal concentrations in the lakes of North Kola. However, over the last 30 years, sulfur emissions in ?ola North have decreased substantially. The aim of this work was to explain the mechanisms to improve the content of natural organic matter and to assess its role in the processes of acidification and recovery of water quality while reducing the deposition of technogenic acid. The increasing of organic matter content in lake waters is being also observed for the totality of lakes in the Kola North. This conforms to the data reported by Skjelkvale et al. (2001a) which demonstrates the significant increase of DOC. Some authors explain the increased DOC levels by reduction in strong acid flow and return of water chemistry to its natural parameters of specifying organic matter concentrations in water. It is known that DOC level has a direct relationship with water color. In analyzing long-term study data with regard to the group of 75 lakes (obtained during 1990-2010) DOC is increased year-over-year, but the color decreased. The following chemical processes developing in water can explain

  19. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  20. Functional model of water balance variability at the catchment scale : 2. Elasticity of fast and slow runoff components to precipitation change in the continental United States

    NARCIS (Netherlands)

    Harman, C.J.; Troch, P.A.; Sivapalan, M.

    2011-01-01

    Assessing the sensitivity of annual streamflow to precipitation is challenging due to the complexity of the processes that control the water balance. A low-dimensional model can be useful to interrogate data in regional assessments of a large number of catchments, and can provide insights into the

  1. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  2. Land use and water quality degradation in the Peixe-Boi River watershed

    OpenAIRE

    Bruno Wendell de Freitas Pereira; Maria de Nazaré Martins Maciel; Francisco de Assis Oliveira; Marcelo Augusto Moreno da Silva Alves; Adriana Melo Ribeiro; ; Bruno Monteiro Ferreira; Ellen Gabriele Pinto Ribeiro

    2016-01-01

    This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage networ...

  3. Constraints on Water Reservoir Lifetimes From Catchment-Wide 10Be Erosion Rates—A Case Study From Western Turkey

    Science.gov (United States)

    Heineke, Caroline; Hetzel, Ralf; Akal, Cüneyt; Christl, Marcus

    2017-11-01

    The functionality and retention capacity of water reservoirs is generally impaired by upstream erosion and reservoir sedimentation, making a reliable assessment of erosion indispensable to estimate reservoir lifetimes. Widely used river gauging methods may underestimate sediment yield, because they do not record rare, high-magnitude events and may underestimate bed load transport. Hence, reservoir lifetimes calculated from short-term erosion rates should be regarded as maximum values. We propose that erosion rates from cosmogenic 10Be, which commonly integrate over hundreds to thousands of years, are useful to complement short-term sediment yield estimates and should be employed to estimate minimum reservoir lifetimes. Here we present 10Be erosion rates for the drainage basins of six water reservoirs in Western Turkey, which are located in a tectonically active region with easily erodible bedrock. Our 10Be erosion rates for these catchments are high, ranging from ˜170 to ˜1,040 t/km2/yr. When linked to reservoir volumes, they yield minimum reservoir lifetimes between 25 ± 5 and 1,650 ± 360 years until complete filling, with four reservoirs having minimum lifespans of ≤110 years. In a neighboring region with more resistant bedrock and less tectonic activity, we obtain much lower catchment-wide 10Be erosion rates of ˜33 to ˜95 t/km2/yr, illustrating that differences in lithology and tectonic boundary conditions can cause substantial variations in erosion even at a spatial scale of only ˜50 km. In conclusion, we suggest that both short-term sediment yield estimates and 10Be erosion rates should be employed to predict the lifetimes of reservoirs.

  4. The ethics of socio-ecohydrological catchment management: towards hydrosolidarity

    Directory of Open Access Journals (Sweden)

    M. Falkenmark

    2002-01-01

    Full Text Available This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved: a heritage of constraining tunnel vision in both science and management; inadequate shortcuts made in modern scientific system analyses (e.g. science addressing sustainability issues; simplistic technical-fix approaches to water and ecosystems in land/water/ecosystem management; conventional tools for evaluation of scientific quality with its focus on “doing the thing right” rather than “doing the right thing”. The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected. Keywords: catchment, hydrosolidarity, ecosystem, water determinants, resilience, green water, blue water, sustainability science

  5. A catchment scale evaluation of multiple stressor effects in headwater streams

    DEFF Research Database (Denmark)

    Rasmussen, J. J.; McKnight, Ursula S.; Loinaz, Maria Christina

    2013-01-01

    studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities...... insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded...

  6. Water Quality Investigations at Lake Merritt in Oakland, California

    Science.gov (United States)

    Carter, G.; Casino, C.; Johnson, K.; Huang, J.; Le, A.; Truisi, V. M.; Turner, D.; Yanez, F.; Yu, J. F.; Unigarro, M.; Vue, G.; Garduno, L.; Cuff, K.

    2005-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation's first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt's water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that

  7. Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment

    Science.gov (United States)

    Wang, Hailong; Tetzlaff, Doerthe; Soulsby, Chris

    2018-03-01

    Climate and land cover are two major factors affecting the water fluxes and balance across spatiotemporal scales. These two factors and their impacts on hydrology are often interlinked. The quantification and differentiation of such impacts is important for developing sustainable land and water management strategies. Here, we calibrated the well-known Hydrus-1D model in a data-rich boreal headwater catchment in Scotland to assess the role of two dominant vegetation types (shrubs vs. trees) in regulating the soil water partitioning and balance. We also applied previously established climate projections for the area and replaced shrubs with trees to imitate current land use change proposals in the region, so as to quantify the potential impacts of climate and land cover changes on soil hydrology. Under tree cover, evapotranspiration and deep percolation to recharge groundwater was about 44% and 57% of annual precipitation, whilst they were about 10% lower and 9% higher respectively under shrub cover in this humid, low energy environment. Meanwhile, tree canopies intercepted 39% of annual precipitation in comparison to 23% by shrubs. Soils with shrub cover stored more water than tree cover. Land cover change was shown to have stronger impacts than projected climate change. With a complete replacement of shrubs with trees under future climate projections at this site, evapotranspiration is expected to increase by ∼39% while percolation to decrease by 21% relative to the current level, more pronounced than the modest changes in the two components (seasons, which may result in water stress experienced by the vegetation. The findings provide an important evidence base for adaptive management strategies of future changes in low-energy humid environments, where vegetation growth is usually restricted by radiative energy and not water availability while few studies that quantify soil water partitioning exist.

  8. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    Science.gov (United States)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  9. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    Science.gov (United States)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  10. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  11. Sulphate content of the Muntimpa dam water and its impact on water quality

    International Nuclear Information System (INIS)

    Tembo, F; Shitumbanuma, V; Simukanga, S; Mudenda, G; Chileshe, P; Mulenga, S; Phiri, Y

    2004-01-01

    This article presents results of a study of the quality of water from Muntimpa Dam, a reservior of waste mine water released from the processing of copper and cobalt ores by Konkola Copper Mines(KCM) Plc in Chingola. The mine water is discharged into the local Muntimpa stream, a possible source of drinking and domestic water for the local population. The purpose of the study was to determine levels of sulphate in the dam and stream water and recommend possible methods of partial sulphate removal to levels below the recommended statutory limits and secondly, to assess the impact of high sulphate levels on water quality. Study methods included the sampling of water from the Muntimpa dam and catchment area. Stream water samples were collected about 5m from the stream banks while water samples from the dam were randomly collected from the near the centre of the dam at a depth of 50cm. Laboratory methods involved the determination of physical and chemical properties of the water using standard analytical techniques. Results of the study indicate that both total (2470mg/l) and available (1965mg/l) sulphate concentrations are higher than the recommended statutory limit for the discharge of sulphates into natural streams of 1500mg/l. From the study it is concluded that water in Muntimpa dam and stream is not suitable for drinking and other domestic use due to the high sulphate levels. From theorectical considerations, it was established that sulphate reduction could be achieved by addition of lime, which however had the consquence of increasing the pH of the water in excess of the recommended Zambian statutory value of nine, and would thus require an additional process to reduce the pH. (author)

  12. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    Science.gov (United States)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  13. Ground Albedo Neutron Sensing (GANS) for Measurement of Integral Soil Water Content at the Small Catchment Scale

    Science.gov (United States)

    Rivera Villarreyes, C.; Baroni, G.; Oswald, S. E.

    2012-12-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. One largest initiative to cover the measuring gap of soil moisture between point scale and remote sensing observations is the COSMOS network (Zreda et al., 2012). Here, cosmic-ray neutron sensing, which may be more precisely named ground albedo neutron sensing (GANS), is applied. The measuring principle is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. Soil water content contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters is inversely correlated to the neutron flux at the air-ground interface. This approach is now implemented, e.g. in USA (Zreda et al., 2012) and Germany (Rivera Villarreyes et al., 2011), based on its simple installation and integral measurement of soil moisture at the small catchment scale. The present study performed Ground Albedo Neutron Sensing on farmland at two locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam and Berlin cropped with corn in 2010, sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. In order to test this methodology, classical soil moisture devices and meteorological data were used for comparison. Moreover, several calibration approaches, role of vegetation cover and transferability of calibration parameters to different times and locations were also evaluated. Observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil moisture from GANS compared quantitatively with mean values derived from a network of classical devices under vegetated and non- vegetated conditions. The GANS approach responded well

  14. First Flush Effects in an Urban Catchment Area in Aalborg

    DEFF Research Database (Denmark)

    Larsen, Torben; Brpch, Kirsten; Andersen, Margit Riis

    1997-01-01

    The paper describes the results of measurements from a 2 year period on a 95 hectare urban catchment in Aalborg, Denmark. The results of the rain/discharge measurements include 160 storm events corresponding to an accumulated rain depth of totally 753 mm. The water quality measurements include 15...

  15. The hydrological and economic impacts of changing water allocation in political regions within the peri-urban South Creek catchment in Western Sydney I: Model development

    Science.gov (United States)

    Davidson, Brian; Malano, Hector; Nawarathna, Bandara; Maheshwari, Basant

    2013-08-01

    In this paper an integrated model of the hydrological and economic impacts of deploying water within the political divisions in the South Creek catchment of the ‘peri-urban’ region of Western Sydney is presented. This model enables an assessment of the hydrological and economic merits of different water allocation-substitution strategies, both over the whole catchment and in each political region and jurisdiction within it, to be undertaken. Not only are the differences in the water allocated to each region and use revealed, but also the net present values associated with each use within each region. In addition, it is possible to determine measures of equity in water distribution using this approach. It was found that over a period from 2008 to 2031 the South Creek catchment in total would on average use approximately 50,600 ML of potable water a year, the vast majority of this is used in the two urban regions of Penrith and Blacktown. Agricultural water use was also greatest in these two regions. Over this period the allocation system was estimated to have a small net present value of approximately A301 million and the Benefit-Cost ratio was estimated to be 1.06. The urban regions of Penrith and Blacktown and the rural region of Hawkesbury were estimated to have returned a net positive benefit of A76 million, A246 million and A39 million (respectively), while water to Liverpool and Camden was delivered at a loss of A7 million and A52 million over the period assessed. It was found that across the catchment a fair degree of both physical and economic equity occurred between regions, with the exception of Liverpool, which was over endowed with water and paid a high cost for it.

  16. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    Science.gov (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  17. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    Science.gov (United States)

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  18. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Directory of Open Access Journals (Sweden)

    Jorge G Álvarez-Romero

    Full Text Available Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both

  19. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  20. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  1. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).

    Science.gov (United States)

    Vernier, Françoise; Leccia-Phelpin, Odile; Lescot, Jean-Marie; Minette, Sébastien; Miralles, André; Barberis, Delphine; Scordia, Charlotte; Kuentz-Simonet, Vanessa; Tonneau, Jean-Philippe

    2017-03-01

    Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a "good" ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021-2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French "Grenelle law" catchment areas, French Water Development and Management Plan areas, etc. A so-called "reference scenario" represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio

  2. Characteristics of Rainfall-Discharge and Water Quality at Limboto Lake, Gorontalo, Indonesia

    Directory of Open Access Journals (Sweden)

    Luki Subehi

    2016-08-01

    Full Text Available Problems of high turbidity, sedimentation, water pollution and siltation occur at Limboto Lake, Gorontalo, Indonesia. The objective of this study was to analyze the rainfall-discharge relationship and its implications for water quality conditions. Secchi disk (water transparency, chlorophyll-a (chl-a, and total organic matter (TOM were measured in May 2012, September 2012 and March 2013 at three sites of the lake (L-1, L-2 and L-3 to observe the impacts on the surrounding catchment. Based on representative stations for rainfall data from 2004 to 2013, monthly averages of rainfall in March-May (166.7 mm and September (76.4 mm were used to represent the wet and dry period, respectively. Moreover, sediment traps at these three sites were installed in September 2012. Based on the analysis it is suggested that rainfall magnitude and land use change at the Alopohu River catchment influenced the amount of materials flowing into the lake, degrading the water quality. Specifically, the higher average rainfall in May (184.5 mm gave a higher average total sediment load (4.41 g/L/day. In addition, water transparency decreased with increasing chl-a. This indicates that the concentrations of sediment and nutrients, reflected by the high amount of chl-a, influenced the water quality conditions.

  3. Using stochastic dynamic programming to support catchment-scale water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2013-01-01

    contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in simulation mode. The performance of the operation rules based on water value tables was evaluated. The approach was used......A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due...... to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model...

  4. Modeling of facade leaching in urban catchments

    Science.gov (United States)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To