WorldWideScience

Sample records for catchment basins

  1. Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2010-10-01

    Full Text Available Understanding catchment hydrological processes is essential for water resources management, in particular in data scarce regions. The Gilgel Abay catchment (a major tributary into Lake Tana, source of the Blue Nile is undergoing intensive plans for water management, which is part of larger development plans in the Blue Nile basin in Ethiopia. To obtain a better understanding of the water balance dynamics and runoff generation mechanisms and to evaluate model transferability, catchment modeling has been conducted using the conceptual hydrological model HBV. Accordingly, the catchment of the Gilgel Abay has been divided into two gauged sub-catchments (Upper Gilgel Abay and Koga and the un-gauged part of the catchment. All available data sets were tested for stationarity, consistency and homogeneity and the data limitations (quality and quantity are discussed. Manual calibration of the daily models for three different catchment representations, i.e. (i lumped, (ii lumped with multiple vegetation zones, and (iii semi-distributed with multiple vegetation and elevation zones, showed good to satisfactory model performances with Nash-Sutcliffe efficiencies Reff > 0.75 and > 0.6 for the Upper Gilgel Abay and Koga sub-catchments, respectively. Better model results could not be obtained with manual calibration, very likely due to the limited data quality and model insufficiencies. Increasing the computation time step to 15 and 30 days improved the model performance in both sub-catchments to Reff > 0.8. Model parameter transferability tests have been conducted by interchanging parameters sets between the two gauged sub-catchments. Results showed poor performances for the daily models (0.30 < Reff < 0.67, but better performances for the 15 and 30 days models, Reff > 0.80. The transferability tests together with a sensitivity analysis using Monte Carlo simulations (more than 1 million

  2. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G. J., LLNL

    1998-06-01

    also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  3. Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape...

  4. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Bedrock Geology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of bedrock geology types in square meters compiled for every catchment of MRB_E2RF1 catchments for Major River Basins...

  5. The "Teflon basin" myth: Snow-soil interactions in mountain catchments in the western US

    Science.gov (United States)

    Williams, M. W.; Cowie, R. M.

    2015-12-01

    In much of western North America, snow and snowmelt provide the primary means for storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. A common assumption is that high-elevation catchments in the western United States behave like "Teflon basins" and that water released from seasonal storage in snow packs flows directly into streams with little or no interaction with underlying soils. Here I present information from a variety of catchments in the Colorado Front Range on snowmelt/soil interactions using isotopic, geochemical, nutrient and hydrometric data in 2- and 3- component hydrograph separations, along with end-member mixing analysis (EMMA). For most catchments we measured these parameters in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. We ran EMMA at the catchment scale for catchments that represent the rain-snow transition zone in the montane forest, the seasonally snow covered sub-alpine to alpine transition zone, and a high-elevation alpine zone near the continental divide. In all catchments three end-members were the source waters for about 95% of discharge. Two end-members were the same in all catchments, snow and groundwater. For the alpine catchment talus springs was the third water source, while rain was the third water source in the two lower-elevation catchments. For all three catchments, soil solution plotted with stream waters along or near a line connecting the snow and groundwater end-members. Thus, for seasonally snow-covered catchments from montane to alpine ecosystems, snowmelt infiltrates underlying soils before snowmelt recharges groundwater reservoirs and contributes to surface flows. Seasonally snow-covered catchments are not Teflon basins. Rather, snowmelt infiltrates soils where solute concentrations are changed by biological and geochemical processes.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and...

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Surficial Geology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of surficial geology types in square meters compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs,...

  8. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response

    Directory of Open Access Journals (Sweden)

    D. Zoccatelli

    2011-12-01

    Full Text Available This paper describes a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall" quantifying the dependence existing between spatial rainfall organisation, basin morphology and runoff response. These statistics describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of catchment-scale storm velocity. The concept of the catchment-scale storm velocity takes into account the role of relative catchment orientation and morphology with respect to storm motion and kinematics. The paper illustrates the derivation of the statistics from an analytical framework recently proposed in literature and explains the conceptual meaning of the statistics by applying them to five extreme flash floods occurred in various European regions in the period 2002–2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km2. The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide useful information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling.

  9. A participatory approach for Integrated River Basin Management in the Elbe catchment

    Science.gov (United States)

    Nunneri, C.; Hofmann, J.

    2005-02-01

    This paper presents a qualitative analysis of a series of in-depth interviews with governmental and non-governmental institutions (NGOs). Within the EUROCAT 1 project this methodology of participatory approach, aiming to scope the present perceptions about environmental issues and possible strategies for environmental improvement, is applied to the study of the Elbe catchment for the first time. In this frame, an Advisory Board (AB) was created, with the aim of giving insights into conflicting interests in the river catchment and guidelines for river basin management. Focus of the Elbe case study is the issue of nutrient enrichment (from the catchment) and the induced eutrophication of the coastal waters (the German Bight). Specifically, regarding this topic, the possible reduction of eutrophication in the German Bight by a (policy driven) decrease in nutrient inputs from the catchment area is analysed. Different measures for reducing the input of nutrients from the catchment, and ultimately preventing eutrophication of the coastal waters are considered. In this context, the members of the AB were asked about the efficiency and feasibility of different measures and the criteria for choosing 'better' management solutions among the possible ones. Although there is a general agreement about the necessity of reducing nutrient emissions, some members of the AB perceive other environmental issues (e.g. altered morphodynamics) as more relevant than nutrient enrichment. Voluntary cooperation, eco-efficiency and 'trans-sectoral' communication are the key concepts mentioned as being indispensable for integrated management. The (public) acceptance of measures for nutrient reduction have to find its way through compromises and social equity, allowing for win-win solutions among different groups of interests and balanced spatial division of costs and benefits. EUROpean CATchments, Project N° EVK1-CT-2000-00044 ( http://www.iia-cnr.unical.it/EUROCAT/project.htm).

  10. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    Science.gov (United States)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  11. Determinism Of Hydrological Recession Processes On Oueme Basin Catchment And Application Of Least Actions Principle

    Directory of Open Access Journals (Sweden)

    Avahounlin Ringo F.

    2015-08-01

    Full Text Available ABSTRACT This work aim to analyze the hydrodynamic process of oueme basin catchment basin located in Benin between 758N and 1012N latitude and 135 and 305E longitude. From rainfall and discharge data chronic rates over the period 2000-2009 empirical hydrological modeling based on linearization of Boussinesqs equation and least actions principle methods were used to predict the mechanism of the water drain to determine the streamflow recession curves to the watershed scale and compare the modeling findings with hygrogram obtained by applied of principle of the least actions. An analysis of drying up showed a varied trend in four sub-basins. At Beterou and Bonou sub-basin the non-linear character observed reflects a succession of phases of drying up. A conceptual linearization formulation of the basic equations of Boussinesq considering the non-linear character of the drying up of the two sub-basins helped simulate low flow rates with high efficiency and to determine the types low flow curves. Successfully comparing analyzed of modeling findings with recession curves obtained by least actions principle confirm the heterogeneity of recession nature at oueme basin scale.

  12. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    Science.gov (United States)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  13. Streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    ZHAO FangFang; XU ZongXue; ZHANG Lu; ZUO DePeng

    2009-01-01

    Both sensitivity-based method and simulation method are used to analyze the streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin (UYRB) in this study.The separation regime of effects from climate variability and human activities is investigated.Results show that the changes of streamflow are more sensitive to precipitation than potential evapotranspiration (PET).Effect of climate variability on streamflow estimated using the sensitiv-ity-based method is weak in the upper catchment of Jimai station, and strong in the upper catchment of Lanzhou station, where the climate effects accounted for about 50% of total streamflow changes.Effects of human activities on streamflow accounted for about 40% in the UYRB, with weaker effects in the upper catchment of Tangnaihai station than those in the upper catchment of Lanzhou station.Both climate variability and human activities are main factors to affect the changes of streamflow in the UYRB.

  14. Streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Both sensitivity-based method and simulation method are used to analyze the streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin (UYRB) in this study. The separation regime of effects from climate variability and human activities is investigated. Results show that the changes of streamflow are more sensitive to precipitation than potential evapotranspiration (PET). Effect of climate variability on streamflow estimated using the sensitivity-based method is weak in the upper catchment of Jimai station, and strong in the upper catchment of Lanzhou station, where the climate effects accounted for about 50% of total streamflow changes. Effects of human activities on streamflow accounted for about 40% in the UYRB, with weaker effects in the upper catchment of Tangnaihai station than those in the upper catchment of Lanzhou station. Both climate variability and human activities are main factors to affect the changes of streamflow in the UYRB.

  15. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    Science.gov (United States)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated

  16. Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment

    Science.gov (United States)

    Mwenge Kahinda, J.; Meissner, R.; Engelbrecht, F. A.

    2016-06-01

    A three-phase study was initiated as a way to promote Integrated Catchment Management approaches in the Limpopo River basin. This paper presents the situational assessment, which should enable De Beers to understand how their Venetia Mine operations are located within a broader and highly dynamic socio-economic and ecohydrological landscape as it pertains to water risks. The second phase, Risk assessment, aims to develop conservation interventions in the identified areas; the third phase will develop mechanisms for implementing water stewardship schemes to mitigate the shared water risks. Analysis of the social-ecological system (hydrological, climatic, ecological, socio-economic and governance systems) of the Limpopo River basin indicates that the institutional arrangement of the Limpopo River basin is neither simple nor effective. The basin is rapidly approaching closure in the sense that almost all of the available supplies of water have already been allocated to existing water users. If the proposed ecological flow requirements were to be met for all of the tributaries, the basin would be 'closed'. On-going and projected land use changes and water resources developments in the upper reaches of the basin, coupled with projected rainfall reductions and temperature increases, and allocation of the flows for the ecological reserve, are likely to further reduce downstream river flows. The coupled increase in temperature and decrease in rainfall is of great concern for everyone in the basin, especially the poorer communities, who rely on rain-fed agriculture for their livelihoods. Increased temperatures also lead to increased evaporation from reservoirs and therefore result in a decrease in water availability. This will lead to increased abstraction of groundwater, especially from alluvial aquifers, and consequently an increase in river transmission losses and a decrease in river flows.

  17. Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin.

    Science.gov (United States)

    Nascimento, C A; Staggemeier, R; Bianchi, E; Rodrigues, M T; Fabres, R; Soliman, M C; Bortoluzzi, M; Luz, R B; Heinzelmann, L S; Santos, E L; Fleck, J D; Spilki, F R

    2015-05-01

    Unplanned use and occupation of the land without respecting its capacity of assimilation and environmental purification leads to the degradation of the environment and of water used for human consumption. Agricultural areas, industrial plants and urban centres developed without planning and the control of effluent discharges are the main causes of water pollution in river basins that receive all the liquid effluents produced in those places. Over the last decades, environmental management has become part of governmental agendas in search of solutions for the preservation of water quality and the restoration of already degraded resources. This study evaluated the conditions of the main watercourse of the Sinos River basin by monitoring the main physical, chemical and microbiological parameters described in the CONAMA Resolution no. 357/2005.The set of parameters evaluated at five catchment points of water human consumption revealed a river that has different characteristics in each reach, as the upper reach was class 1, whereas the middle and lower reaches of the basin were class 4. Monitoring pointed to households as the main sources of pollutants in those reaches, although metals used in the industrial production of the region were found in the samples analyzed.

  18. THE CHANGES IN WATER RELATIONS IN THE CATCHMENT BASIN OF RIVER TYSMIENICA

    Directory of Open Access Journals (Sweden)

    Antoni Grzywna

    2014-10-01

    Full Text Available The paper presents the history of water conditions in the catchment area of the river Tyśmienica. On the basis of topographic maps in scale 1 : 100 000 1839 to 2009, and drainage projects presents the changes of the water network. In the middle 19th century, the river took the start from the lake Krzczeń, and major reclamation works were performed at the turn of the century. In the seventeenth century, built the largest pond Siemień. The development of the joint occurred after World One War because the existence of joints protect assets before breaking up. The biggest changes in water relations occurred in the years 1954 to 1961, when it built Wieprz – Krzna Canal in the valley created several objects drainage area of about 15 000 ha. In the 60’s the water channel beginning the Tyśmienica led passing to the east of Lake Krzczeń and Rogóźno. As a result of hydrotechnical works, the length of the river increased from 62 to 74,5 km, and its beginning was shifted to lake Rogóźno. The surface area of the catchment basin of the river at the beginning of the 18th century was 2000 km2, while at present, at the beginning of the 21st century it is 2750 km2.

  19. Variability of streamflow under climate change: A study for 26 Brazilian large basins and sub-catchments.

    Science.gov (United States)

    Isidoro, Jorge; Tiezzi, Rafael

    2016-04-01

    Human activity is entirely dependent on water resources, thus highly vulnerable to the effects of rainfall variability. This work aims to analyse the impact of rainfall variability on streamflow for 26 Brazilian large basins and sub-catchments. Records form 83-years of observations (1931-2013) were compared with the results of simulations for the 2011-2100 (90-year) period. Two rainfall-runoff hydrological models were used for the numerical simulations: Soil Moisture Accounting Procedure-SMAP (process-based) and Stochastic Linear Model-MEL (stochastic). Very significant impacts were found, namely the increase in streamflow in the Southern basins that may reach almost 100%, while in the Northern and Northeastern basins, streamflow may decrease about 90%. These major changes can aggravate the history of flooding in the Southern basins and of droughts in several regions of the North and Northeast basins.

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006)....

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Hydrologic Landscape Regions

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and...

  2. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins...

  3. Relationship between catchment characteristics and forms of nitrogen in Cao-E River Basin, Eastern China

    Institute of Scientific and Technical Information of China (English)

    JIN Shuquan; LU Jun; CHEN Dingjiang; SHEN Yena; SHI Yiming

    2009-01-01

    The distribution of different nitrogen forms and their spatial and temporal variations in different pollution types of tributaries or reaches were investigated. Based on the catchments characteristics the tributaries or reaches can be classified into 4 types including headwater in mountainous areas (type I), agricultural non-point source (NPS) pollution in rural areas (type II), municipal and industrial pollution in urban areas (type III), and combined pollution in the main stream (type IV). Water samples were collected monthly from July 2003 to June 2006 in the Cao-E River basin in Zhejiang, Eastern China. The concentrations of NO3-N, NH4+-N, and total nitrogen (TN) were measured. The mean concentrations of NO3-N were in the order type IV > type II> type III > type I, whereas, NH4+-N, total organic nitrogen (TON), and TN were in the order type III > type IV > type II> type I. In headwater and rural reaches, CNO3-N was much higher than CNH4+-N. In urban reaches, TON and NH4+-N were the main forms, accounting for 54.7% and 32.1% of TN, respectively. In the whole river system, CNH4+-N decrease with increasing distance from cities, and CNO3-N increased with the increasing area of farmland in the catchments. With increased river flow, the CNO3-N increased and the CNH4+-N decreased in all types of reaches, while the variations of CTON and CTN were different. For TN, the concentration may be decreased with the increase of river flow, but the export load always increased.

  4. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Surficial Geology

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of surficial geology types in square meters compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  5. Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The transient effect of forest fires on runoff, erosion and yield of woody biomass has been investigated by combining the experimental approach with mathematical models of hydrological processes. The case study is the Branega creek in Liguria, Italy, where a forest fire in August 2003 caused substantial changes to soil and vegetation, and left a considerable amount of woody debris on the ground. Immediately after the fire, rainfall simulator experiments in adjacent burned and unburned plots showed the extent to which fire had increased runoff and erosion rates. A distributed hydrological model using the tube-flux approach, calibrated on experimental measurements, has been used to investigate hill slope and channel erosion in a small sub-catchment, 1.5 ha in area, nested in the Branega basin. Simulation runs show that the model accommodates the observed variability of runoff and erosion under disturbed and undisturbed conditions. A model component describing the delivery of wood from hill slopes to the channel in post-fire conditions, validated against local survey data, showed that the removal and transport of woody biomass can be reproduced using an integrated hydrological approach. Hence, transient complexity after wildfires can be addressed by such an approach with empirically determined physically-based parameters.

  6. Characterisation of stable isotopes to identify residence times and runoff components in two meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia

    NARCIS (Netherlands)

    Tekleab, S.; Wenninger, J.W.; Uhlenbrook, S.

    2014-01-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin, as mo

  7. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    Science.gov (United States)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  8. Catchment modeling and model transferability in upper Blue Nile Basin, Lake Tana, Ethiopia

    Directory of Open Access Journals (Sweden)

    A. S. Gragne

    2008-03-01

    Full Text Available Understanding spatial and temporal distribution of water resources has an important role for water resource management. To understand water balance dynamics and runoff generation mechanisms at the Gilgel Abay catchment (a major tributary into lake Tana, source of Blue Nile, Ethiopia and to evaluate model transferability, catchment modeling was conducted using the conceptual hydrological model HBV. The catchment of the Gigel Abay was sub-divided into two gauged sub-catchments (Upper Gilgel Abay, UGASC, and Koga, KSC and one ungauged sub-catchment.

    Manual calibration of the daily models for three different catchment representations (CRs: (i lumped, (ii lumped with multiple vegetation zones, and (iii semi-distributed with vegetations zone and elevation zones, showed good to satisfactory model performance (Nash-Sutcliffe efficiency values, Reff>0.75 and >0.6, respectively, for UGASC and KSC. The change of the time step to fifteen and thirty days resulted in very good model performances in both sub-catchments (Reff>0.8. The model parameter transferability tests conducted on the daily models showed poor performance in both sub-catchments, whereas the fifteen and thirty days models yielded high Reff values using transferred parameter sets. This together with the sensitivity analysis carried out after Monte Carlo simulations (1 000 000 model runs per CR explained the reason behind the difference in hydrologic behaviors of the two sub-catchments UGASC and KSC. The dissimilarity in response pattern of the sub-catchments was caused by the presence of dambos in KSC and differences in the topography between UGASC and KSC. Hence, transferring model parameters from the view of describing hydrological process was found to be not feasible for all models. On the other hand, from a water resources management perspective the results obtained by transferring parameters of the larger time step model were

  9. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    Directory of Open Access Journals (Sweden)

    Li-juan XUE

    2008-09-01

    Full Text Available With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas. Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.

  10. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    Institute of Scientific and Technical Information of China (English)

    Xue Lijuan; Li Lijiao; Zhang Qi

    2008-01-01

    With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeleddaily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoffprocess in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.

  11. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia

    Directory of Open Access Journals (Sweden)

    T. H. M. Rientjes

    2011-06-01

    Full Text Available In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysis. Results of the supervised land cover classification analysis indicated that 50.9 % and 16.7 % of the catchment area was covered by forest in 1973 and 2001, respectively. This significant decrease in forest cover is mainly due to expansion of agricultural land.

    By use of a change detection procedure, three periods were identified for which changes in rainfall and stream flow were analyzed. Rainfall was analyzed at monthly base by use of the Mann-Kendall test statistic and results indicated a statistically significant, decreasing trend for most months of the year. However, for the wet season months of June, July and August rainfall has increased. In the period 1973–2005, the annual flow of the catchment decreased by 12.1 %. Low flow and high flow at daily base were analyzed by a low flow and a high flow index that is based on a 95 % and 5 % exceedance probability. Results of the low flow index indicated decreases of 18.1 % and 66.6 % for the periods 1982–2000 and 2001–2005 respectively. Results of high flows indicated an increase of 7.6 % and 46.6 % for the same periods. In this study it is concluded that over the period 1973–2005 stream flow has changed in the Gilgel Abbay catchment by changes in land cover and changes in rainfall.

  12. EFFECT OF ANTHROPOGENIC POLLUTANTS ON THE QUALITY OF SURFACE WATERS AND GROUNDWATERS IN THE CATCHMENT BASIN OF LAKE BIALSKIE

    Directory of Open Access Journals (Sweden)

    Krzysztof Jóżwiakowski

    2016-09-01

    Full Text Available The work evaluates the effect of anthropogenic pollutants on the quality of water in Lake Bialskie (51º32’07” N 23º00’55” E and its catchment basin. Samples of water were taken from the lake (4 sampling points and from wells dug within the catchment basin. The quality of water was analysed in May, June, August and November 2015. In the wells only in single cases was the level of chemical pollution found to exceed drinking water standards. However, in all samples the standard content of manganese was exceeded. In waters from the lake the concentrations of total phosphorus, which can contribute to eutrophication were recorded above the standard level. Both in waters from the lake and from the well a large count of meso- and psychrophiles and Coli and faecal coliforms as well as faecal Enterococci was found, which points to a high degree of contamination of the analysed waters with anthropogenic faeces. The phenomenon was observed to intensify in summer months, which can be associated with increased tourist traffic around the lake in this period.

  13. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report; Entrainement et redistribution des radionucleides sur le bassin versant de la Peyne. Rapport preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Duffa, C.; Danic, F

    2006-07-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  14. Impacts of climate change on the seasonality of low flows in 134 catchments in the river Rhine basin using an ensemble of bias-corrected regional climate simulations.

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, M.J.; Hoekstra, A.Y.

    2013-01-01

    The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR), weighted mean occurrence day (WMOD) and we

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Level 3 Nutrient Ecoregions, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of each level 3 nutrient ecoregion in square meters compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs,...

  16. Contributions of Climate Variability and Human Activities to Runoff Changes in the Upper Catchment of the Red River Basin, China

    Directory of Open Access Journals (Sweden)

    Yungang Li

    2016-09-01

    Full Text Available Quantifying the effects of climate variability and human activities on runoff changes will contribute to regional water resource planning and management. This study aims to separate the effects of climate variability and human activities on runoff changes in the upper catchment of the Red River Basin in China. The Mann–Kendall test and Pettitt’s test methods were applied to identify the trends and change points of the hydro-meteorological variables. The hydrological sensitivity, climate elasticity and hydrological simulation methods were adopted to estimate the contributions of climate variability and human activities to runoff changes. Results showed that annual runoff significantly decreased by 1.57 mm/year during the period of 1961–2012. A change point in annual runoff coefficient occurred in 2002. Accordingly, the annual runoff series were divided into the baseline period (1961–2002 and the impacted period (2003–2012. Mean annual runoff of the impacted period decreased by 29.13% compared with the baseline period. Similar estimates of the contributions of climate variability and human activities were obtained by the three different methods. Climate variability was estimated to be responsible for 69%–71% of the reduction in annual runoff, and human activities accounted for 29%–31%. Climate variability was the main driving factor for runoff decrease in the catchment.

  17. Environmental isotopic and hydrochemical characteristics of groundwater from the Sandspruit Catchment, Berg River Basin, South Africa.

    Science.gov (United States)

    Naicker, S; Demlie, M

    2014-01-01

    The Sandspruit catchment (a tributary of the Berg River) represents a drainage system, whereby saline groundwater with total dissolved solids (TDS) up to 10,870 mg/l, and electrical conductivity (EC) up to 2,140 mS/m has been documented. The catchment belongs to the winter rainfall region with precipitation seldom exceeding 400 mm/yr, as such, groundwater recharge occurs predominantly from May to August. Recharge estimation using the catchment water-balance method, chloride mass balance method, and qualified guesses produced recharge rates between 8 and 70 mm/yr. To understand the origin, occurrence and dynamics of the saline groundwater, a coupled analysis of major ion hydrochemistry and environmental isotopes (δ(18)O, δ(2)H and (3)H) data supported by conventional hydrogeological information has been undertaken. These spatial and multi-temporal hydrochemical and environmental isotope data provided insight into the origin, mechanisms and spatial evolution of the groundwater salinity. These data also illustrate that the saline groundwater within the catchment can be attributed to the combined effects of evaporation, salt dissolution, and groundwater mixing. The salinity of the groundwater tends to vary seasonally and evolves in the direction of groundwater flow. The stable isotope signatures further indicate two possible mechanisms of recharge; namely, (1) a slow diffuse type modern recharge through a relatively low permeability material as explained by heavy isotope signal and (2) a relatively quick recharge prior to evaporation from a distant high altitude source as explained by the relatively depleted isotopic signal and sub-modern to old tritium values.

  18. Response of Stream Pollution Characteristics to Catchment Land Cover in Cao-E River Basin, China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ye-Na; L(U) Jun; CHEN Ding-Jiang; SHI Yi-Ming

    2011-01-01

    This study addressed the relationship of river water pollution characteristics to land covers and human activities in the catchments in a complete river system named Cao-E River in eastcrn China. Based on the hydrogsochemical data collected monthly over a period of 3 years, cluster analysis (CA) and principal component analysis (PCA) were adopted to categorize the river reaches and reveal their pollution characteristics. According to the differences of water quality in the river reaches and land use patterns and average population densities in their catchments, the whole river system could be categorized into three groups of river reaches, i.e., non-point sources pollution reaches (NPSPR), urban reaches (UR) and mixed sources pollution reaches (MSPR). In UR and MSPR, the water quality was mainly impacted by nutrient and organic pollution, while in NPSPR nutrient pollution was the main cause. The nitrate was the main nitrogen form in NPSPR and particulate phosphorus was the main phosphorus form in MSPR. There were no apparent trends for the variations of pollutant concentrations with increasing river flows in NPSPR and MSPR, while in UR the pollutant concentrations decreased with increasing river flows. Thus dry season was the critical period for water pollution control in UR. Therefore, catchment land covers and human activities had significant impact on river reach water pollution type, nutrient forms and water quality responses to hydrological conditions, which might be crucial for developing strategies to combat water pollution in watershed scale.

  19. Simulating wind-affected snow accumulations at catchment to basin scales

    Science.gov (United States)

    Winstral, Adam; Marks, Danny; Gurney, Robert

    2013-05-01

    In non-forested mountain regions, wind plays a dominant role in determining snow accumulation and melt patterns. A new, computationally efficient algorithm for distributing the complex and heterogeneous effects of wind on snow distributions was developed. The distribution algorithm uses terrain structure, vegetation, and wind data to adjust commonly available precipitation data to simulate wind-affected accumulations. This research describes model development and application in three research catchments in the Reynolds Creek Experimental Watershed in southwest Idaho, USA. All three catchments feature highly variable snow distributions driven by wind. The algorithm was used to derive model forcings for Isnobal, a mass and energy balance distributed snow model. Development and initial testing took place in the Reynolds Mountain East catchment (0.36 km2) where R2 values for the wind-affected snow distributions ranged from 0.50 to 0.67 for four observation periods spanning two years. At the Upper Sheep Creek catchment (0.26 km2) R2 values for the wind-affected model were 0.66 and 0.70. These R2 values matched or exceeded previously published cross-validation results from regression-based statistical analyses of snow distributions in similar environments. In both catchments the wind-affected model accurately located large drift zones, snow-scoured slopes, and produced melt patterns consistent with observed streamflow. Models that did not account for wind effects produced relatively homogenous SWE distributions, R2 values approaching 0.0, and melt patterns inconsistent with observed streamflow. The Dobson Creek (14.0 km2) application incorporated elevation effects into the distribution routine and was conducted over a two-dimensional grid of 6.67 × 105 pixels. Comparisons with satellite-derived snow-covered-area again demonstrated that the model did an excellent job locating regions with wind-affected snow accumulations. This final application demonstrated that the

  20. Two-step calibration and proxy-basin validation of ensemble rainfall-runoff predictions in a Swedish mesoscale catchment

    Science.gov (United States)

    Exbrayat, Jean-Francois; Viney, Neil R.; Seibert, Jan; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    (or skill). A proxy-basin validation approach was then performed to simulate ungauged basin conditions. Calibrated parameter sets of one discharge station were used to generate predictions for the other discharge record. Weights and regression coefficients computed in the above mentioned calibration step for each catchment were utilised for the uncalibrated predictions of the other catchment. The two previously defined criteria were also calculated for the newly created ensemble predictions. They were used to investigate the evolution of the quality of the single predictions between members and compiled ensembles. In the same way the evolution of the described uncertainty bounds between members and full set of generated ensembles was addressed. Improvement was achieved by merging single runs in ensembles, even with only 2 members, fulfilling the ensemble approach aim. At the same time, uncertainty bounds of the predictions were always reduced for the ensembles compared to single model calibrations and these bounds included most of the measured discharges. We therefore concluded that the application of multi-model ensembles in hydrology was one way to overcome structural model uncertainty issues.

  1. Environmental flows allocation in river basins: Exploring allocation challenges and options in the Great Ruaha River catchment in Tanzania

    Science.gov (United States)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Lankford, Bruce A.; Mahoo, Henry F.; Mashauri, Damus A.

    Provision for environmental flows is currently becoming a central issue in the debate of integrated water resources management in river basins. However, the theories, concepts and practical applications are still new in most developing countries with challenging situations arising in complex basins with multiple water uses and users and increasing water demands and conflicts exemplified by the Great Ruaha River catchment in Tanzania. The research has shown that a flow of 0.5-1 m 3/s for Great Ruaha River through the Ruaha National Park is required to sustain the environment in the park during the dry season. But a question is how can this be achieved? This paper reviews the challenges and suggests some options for achieving environmental water allocation in river basins. The following challenges are identified: (a) the concept of environmental flows is still new and not well known, (b) there is limited data and understanding of the hydrologic and ecological linkages, (c) there is insufficient specialist knowledge and legislative support, (d) there are no storage reservoirs for controlled environmental water releases, and (e) there are contradicting policies and institutions on environmental issues. Notwithstanding these challenges, this paper identifies the options towards meeting environmental water allocation and management: (a) conducting purposive training and awareness creation to communities, politicians, government officials and decision makers on environmental flows, (b) capacity building in environmental flows and setting-up multidisciplinary environmental flows team with stakeholders involvement, (c) facilitating the development of effective local institutions supported by legislation, (d) water harvesting and storage and proportional flow structures design to allow water for the environment, and (e) harmonizing policies and reform in water utilization and water rights to accommodate and ensure water for the environment.

  2. Projected impacts of climate change on groundwater and stormflow in a humid, tropical catchment in the Ugandan Upper Nile Basin

    Directory of Open Access Journals (Sweden)

    D. G. Kingston

    2010-03-01

    Full Text Available The changing availability of freshwater resources is likely to be one of the most important consequences of projected 21st century climate change for both human and natural systems. However, substantial uncertainty remains regarding the precise impacts of climate change on water resources, due in part to uncertainty in GCM projections of climate change. Here we explore the potential impacts of climate change on water resources in a humid, tropical catchment (the River Mitano in the Upper Nile Basin of Uganda. Uncertainty associated with GCM structure and climate sensitivity is explored, as well as from parameter specification within hydrological models. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (developed using SWAT of the catchment. Importantly, use of pattern-scaled GCM output allows investigation of specific thresholds of global climate change including the purported 2 °C threshold of "dangerous" climate change. In-depth analysis of results based on HadCM3 climate scenarios shows that annual river discharge first increases, then declines with rising global mean air temperature. A coincidental shift from a bimodal to unimodal discharge regime also results from a projected reduction in baseflow (groundwater discharge. Both of these changes occur after a 4 °C rise in global mean air temperature. These results are, however, highly GCM dependent in both the magnitude and direction of change. This dependence stems primarily from projected differences in GCM scenario precipitation rather than temperature. GCM-related uncertainty is far greater than that associated with climate sensitivity or hydrological model parameterisation.

  3. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  4. Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe river basin

    Directory of Open Access Journals (Sweden)

    M. Nied

    2012-09-01

    Full Text Available Floods are the result of a complex interaction between meteorological event characteristics and pre-event catchment conditions. While the large-scale meteorological conditions have been classified and successfully linked to floods, this is lacking for the large-scale pre-event catchment conditions. Therefore, we propose to classify soil moisture as a key variable of pre-event catchment conditions and to investigate the link between soil moisture patterns and flood occurrence in the Elbe river basin. Soil moisture is simulated using a semi-distributed conceptual rainfall-runoff model over the period 1951–2003. Principal component analysis (PCA and cluster analysis are applied successively to identify days of similar soil moisture patterns. The results show that PCA considerably reduced the dimensionality of the soil moisture data. The first principal component (PC explains 75.71% of the soil moisture variability and represents the large-scale seasonal wetting and drying. The successive PCs express the spatial heterogeneous antecedent catchment conditions. By clustering the leading PCs, we detected large-scale soil moisture patterns which frequently occur before the onset of floods. In winter floods are initiated by overall high soil moisture content whereas in summer the flood initiating soil moisture patterns are diverse and less stable in time. The results underline the importance of large-scale pre-event catchment conditions in flood initiation.

  5. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC)

    OpenAIRE

    ADINA SANDA ŞERBAN

    2011-01-01

    Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC). The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losse...

  6. Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data

    Science.gov (United States)

    Montzka, Carsten; Canty, Morton; Kunkel, Ralf; Menz, Gunter; Vereecken, Harry; Wendland, Frank

    2008-05-01

    SummaryHydrological modelling of mesoscale catchments is often adversely affected by a lack of adequate information about specific site conditions. In particular, digital land cover data are available from data sets which were acquired on a European or a national scale. These data sets do not only exhibit a restricted spatial resolution but also a differentiation of crops and impervious areas which is not appropriate to the needs of mesoscale hydrological models. In this paper, the impact of remote sensing data on the reliability of a water balance model is investigated and compared to model results determined on the basis of CORINE (Coordination of Information on the Environment) Land Cover as a reference. The aim is to quantify the improved model performance achieved by an enhanced land cover representation and corresponding model modifications. Making use of medium resolution satellite imagery from SPOT, LANDSAT ETM+ and ASTER, detailed information on land cover, especially agricultural crops and impervious surfaces, was extracted over a 5-year period (2000-2004). Crop-specific evapotranspiration coefficients were derived by using remote sensing data to replace grass reference evapotranspiration necessitated by the use of CORINE land cover for rural areas. For regions classified as settlement or industrial areas, degrees of imperviousness were derived. The data were incorporated into the hydrological model GROWA (large-scale water balance model), which uses an empirical approach combining distributed meteorological data with distributed site parameters to calculate the annual runoff components. Using satellite imagery in combination with runoff data from gauging stations for the years 2000-2004, the actual evapotranspiration calculation in GROWA was methodologically extended by including empirical crop coefficients for actual evapotranspiration calculations. While GROWA originally treated agricultural areas as homogeneous, now a consideration and differentiation

  7. Catchment-flowline network and selected model inputs for an enhanced and updated spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin

    Science.gov (United States)

    Buto, Susan G.; Spangler, Lawrence E.; Flint, Alan L.; Flint, Lorraine E.

    2017-01-01

    This USGS data release consists of the synthetic stream network and associated catchments used to develop spatially referenced regressions on watershed attributes (SPARROW) model of dissolved-solids sources and transport in the Upper Colorado River Basin as well as geology and selected Basin Characterization Model (BCM) data used as input to the model.

  8. Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin

    Directory of Open Access Journals (Sweden)

    M. Nied

    2013-04-01

    Full Text Available Floods are the result of a complex interaction between meteorological event characteristics and pre-event catchment conditions. While the large-scale meteorological conditions have been classified and successfully linked to floods, this is lacking for the large-scale pre-event catchment conditions. Therefore, we propose classifying soil moisture as a key variable of pre-event catchment conditions and investigating the link between soil moisture patterns and flood occurrence in the Elbe River basin. Soil moisture is simulated using a semi-distributed conceptual rainfall-runoff model over the period 1951–2003. Principal component analysis (PCA and cluster analysis are applied successively to identify days of similar soil moisture patterns. The results show that PCA considerably reduced the dimensionality of the soil moisture data. The first principal component (PC explains 75.71% of the soil moisture variability and represents the large-scale seasonal wetting and drying. The successive PCs express spatially heterogeneous catchment processes. By clustering the leading PCs, we identify large-scale soil moisture patterns which frequently occur before the onset of floods. In winter, floods are initiated by overall high soil moisture content, whereas in summer the flood-initiating soil moisture patterns are diverse and less stable in time.

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Tree Canopy

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set represents tree canopy percentage for the conterminous United States for 2001. The Canopy Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Imperviousness

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Physiographic Provinces

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every MRB_E2RF1 catchment of...

  12. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    Science.gov (United States)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  13. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    Science.gov (United States)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands

  14. Calculation of Sediment yield at the S 7-4 catchment of the Shirindareh Watershed of Iran using the River Basins model

    Science.gov (United States)

    Spalevic, Velibor; Barovic, Goran; Vujacic, Dusko; Mijanovic, Dragica; Curovic, Milic; Tanaskovik, Vjekoslav; Behzadfar, Morteza

    2016-04-01

    Soil erosion is driven by complex processes involving detachment of material caused by raindrops and flow tractions, which is further transported by the wind or by the water flow. The region of Shirindareh Watershed of Iran is particularly prone to erosion because it is subject to long dry periods followed by heavy erosive rainfalls, falling on steep slopes with soils prone to erosion. The identification of areas that are vulnerable to those processes is needed for improving our knowledge about the extent of the areas affected and for developing measures to control the problem. In our opinion, models can be very supportive tools for understanding of the soil erosion and sediment transport at the watershed scale. This study aims to illustrate the possibility in computing the runoff and sediment yield at the catchment scale using the River Basins model of Spalevic, which is based on the Erosion Potential Method of Garilovic. We apply the mode in the S 7-4 catchment of the Shirindareh Watershed of Iran using the computer graphic model, which allowed the quantification of the environmental effects of erosion and the land use measures applied at the studied area. Model calculations showed that the calculated peak discharge from the river basin was 61 m3 s-1 for the incidence of 100 years and the net soil loss was 5806 m3 per year, specific 159 m3km-2 per year. According to Gavrilovic this amount of soil loss indicates very weak erosion category. The method we used in this study can also be of interest for soil erosion modelling in other basins. The proper implementation of best management practices and control measures are crucial for protecting land resources in the Shirindareh Watershed and the other river basins with similar physical - geographical conditions.

  15. Effects of catchment and riparian landscape setting on water chemistry and seasonal evolution of water quality in the upper Han River basin, China.

    Directory of Open Access Journals (Sweden)

    Siyue Li

    Full Text Available Six-year (2005-2010 evolution of water chemistry (Cl(-, NO(3(-, SO(4(2-, HCO(3(-, Na(+, K(+, Ca(2+ and Mg(2+ and their interactions with morphological properties (i.e., slope and area, land cover, and hydrological seasonality were examined to identify controlling factors and processes governing patterns of stream water quality in the upper Han River, China. Correlation analysis and stepwise multiple regression models revealed significant correlations between ions (i.e., Cl(-, SO(4(2-, Na(+ and K(+ and land cover (i.e., vegetation and bare land over the entire catchment in both high- and low-flow periods, and in the buffer zone the correlation was much more stronger in the low-flow period. Catchment with steeper slope (>15° was negatively correlated with major ions, largely due to multicollinearity of basin characteristics. Land cover within the buffer zone explained slightly less of major elements than at catchment scale in the rainy season, whereas in the dry season, land cover along the river networks in particular this within 100 m riparian zone much better explained major elements rather than this over the entire catchment. Anthropogenic land uses (i.e., urban and agriculture however could not explain water chemical variables, albeit EC, TDS, anthropogenic markers (Cl(-, NO(3(-, SO(4(2, Na(+, K(+ and Ca(2+ significantly increased during 2005-2010, which was corroborated by principal component analyses (PCA that indicated anthropogenic inputs. Observations demonstrated much higher solute concentrations in the industrial-polluted river. Our results suggested that seasonal evolution of water quality in combined with spatial analysis at multiple scales should be a vital part of identifying the controls on spatio-temporal patterns of water quality.

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Land Use and Land Cover

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of land use and land cover from the National Land Cover Dataset 2001 (LaMotte, 2008), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set represents land use and land cover for the conterminous United States for 2001. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering the South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5) and the Pacific Northwest (MRB7) river basins.

  17. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  19. Evaluation of soil erosion as a basis of sediment yield in mountainous catchments: a preliminary study in the River Douro Basin (Northern Portugal)

    Science.gov (United States)

    Reis, Anabela; Martinho Lourenço, José M.; Parker, Andrew; Alencoão, Ana

    2013-04-01

    The River Corgo drains a meso-scale mountainous rural catchment with an area of 295 km2, underlain by crystalline rocks, in a temperate climate, which integrates the transboundary River Douro Basin, in the northeast of Portugal. A geochemical survey on oxic fluvial sediments of the river network shows considerable contents of metals associated to the finer particles (soils and weathering products. Moreover, taking into account the hydrological pattern of the catchment, the seasonal and spatial variability of metal contents associated to the sediments suggests that the control of metal in the sediments by their mineralogical, geochemical and physical properties is governed primarily at the level of the basin soils system, especially in the Wet Period, when the sediments are frequently remobilised (Reis, 2010). Although the soil particles are a common pathway of transport and entrance of metals in the fluvial network by runoff derived erosion, this mechanism is naturally more marked in mountainous catchments. Modelling sediment and adsorbed contaminant transport within catchments can help to identify possible contaminant sources, as well as to estimate the delivered quantities of eroded material and associated contaminants. In catchments with the described morphological features, monitoring the transport of sediments poses some issues concerning: (a) the low mass yield of suspended sediment from river water, under low-flow conditions; (b) the maintenance of the sediment sampler's devices in the streams, in periods of high-flow or storm events. This study describes the preliminary results of a GIS-based mass balance model of overland sediment transport to the River. The erosion, the first step of sediment transport, was estimated by an empirical model - The Universal Soil Loss Equation (USLE). The objective was to construct a GIS based potential soil loss spatial index model and posteriorly estimate the sediment yield for different locations within the catchment. The

  20. Impacts of climate change on the seasonality of low flows in 134 catchments in the river Rhine basin using an ensemble of bias-corrected regional climate simulations. Discussion paper

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, M.J.; Hoekstra, A.Y.

    2013-01-01

    The impacts of climate change on the seasonality of low flows are analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch–German border. Three seasonality indices for low flows are estimated, namely seasonality ratio (SR), weighted mean occurrence day (WMOD) and weighted

  1. BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments

    NARCIS (Netherlands)

    Hollander, A; Huijbregts, M A J; Ragas, A M J; Meent, D van de

    2006-01-01

    Multimedia fate models have proven to be very useful tools in chemical risk assessment and management. This paper presents BasinBox, a newly developed steady-state generic multimedia fate model for evaluating risks of new and existing chemicals in river basins. The model concepts, as well as the int

  2. SUGAR CANE GROWING AND CATTLE GRAZING AS DRIVERS TO WETLAND DEGRADATION IN UGANDA: A case of upper river Ruizi and Iguluibi catchments Lake Victoria basin

    Science.gov (United States)

    Nakiyemba Were, Alice; Isabirye, Moses; Mathijs, Erik; Deckers, Jozef; Poesen, Jean

    2010-05-01

    Introduction: This study was conducted with in the framework of the VLIR-OI project with the aim of making contributions to the Diagnosis and Remediation of Land Degradation Processes in the Riparian Zone of Lake Victoria Uganda in view of reducing sediment pollution of the Lake Waters with a special focus on the upper river Ruiz and Iguluibi catchments. The study seeks to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in light of the current farming systems and practices and their contributions to land degradation and pollution of the Lake Victoria waters. Vegetation especially wetlands improves the resistance to erosion. The removal of riparian vegetation tends to accelerate surface erosion as a result of human activities. Increased erosion with in the catchments due to clearing of wetlands for sugarcane growing and cattle grazing has caused adverse increased sedimentation, degraded the water quality, and reduced the water productivity of the Lake Victoria Basin. Methods: We conducted a qualitative and quantitative study to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in Uganda in light of the current farming systems and practices and their socio-economic contributions to wetland degradation and pollution of the Lake Victoria waters. Focus group discussions, key informant interviews, semi structured interviews and observations were undertaken with the relevant stakeholders in the community. Results: Findings reveal that in Iguluibi catchment, sugarcane growing is now a major activity indicating land use change since the 1990s. Community members said when planting sugarcane all vegetations including all trees are cut leaving the land bare to allow the tractor to clear the land for cultivation. This has left the land bare without any natural vegetation with increased erosion hence eventually loss of soil fertility and increased sediment pollution to the Lake Victoria waters. As a result of

  3. Analysis of the Course and Frequency of High Water Stages in Selected Catchments of the Upper Vistula Basin in the South of Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Walega

    2016-09-01

    Full Text Available The paper presents an analysis of the course and frequency of high water stages in selected catchments of the upper Vistula basin in the south of Poland. The following rivers were investigated: the Dunajec–Nowy Targ-Kowaniec cross-section, the Rudawa–Balice cross-section, the Kamienica–Nowy Sącz cross-section, the Wisłok–Tryńcza cross-section and the San–Przemyśl cross-section. Daily flows from the years 1983–2014 were used to determine maximum annual flows and maximum flows per summer and winter half-year. Selected floods were analyzed with reference to the following metrics: POTX (mean size of the flow determined based on high water stages exceeding the assumed threshold value, POT3F (number of high water stages exceeding the threshold value for each hydrological year, WPOT3F (number of high water stages exceeding the threshold value for the winter half-year and, LOPT3F (number of high water stages exceeding the threshold value for the summer half-year. The determined metrics were analyzed for trend (Mann-Kendall test, homogeneity (Kruskal-Wallis test, and heteroscedasticity (Levene test. Additionally, periodograms were used to determine periodicity of time series for maximum annual flows. The resulting computations indicated upward trends in the analyzed flood metrics but they were not significant in any case. Therefore, in the years 1983–2014 no factors were observed that would significantly affect the size and frequency of high water runoff from the investigated catchments.

  4. Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda

    Directory of Open Access Journals (Sweden)

    D. G. Kingston

    2010-07-01

    Full Text Available The changing availability of freshwater resources is likely to be one of the most important consequences of projected 21st century climate change for both human and natural systems. However, substantial uncertainty remains regarding the precise impacts of climate change on water resources, due in part due to uncertainty in GCM projections of climate change. Here we explore the potential impacts of climate change on freshwater resources in a humid, tropical catchment (the River Mitano in the Upper Nile Basin of Uganda. Uncertainty associated with GCM structure and climate sensitivity is explored, as well as parameter specification within hydrological models. These aims are achieved by running pattern-scaled output from seven GCMs through a semi-distributed hydrological model of the catchment (developed using SWAT. Importantly, use of pattern-scaled GCM output allows investigation of specific thresholds of global climate change including the purported 2 °C threshold of "dangerous" climate change. In-depth analysis of results based on the HadCM3 GCM climate scenarios shows that annual river discharge first increases, then declines with rising global mean air temperature. A coincidental shift from a bimodal to unimodal discharge regime also results from a projected reduction in baseflow (groundwater discharge. Both of these changes occur after a 4 °C rise in global mean air temperature. These results are, however, highly GCM dependent, in both the magnitude and direction of change. This dependence stems primarily from projected differences in GCM scenario precipitation rather than temperature. GCM-related uncertainty is far greater than that associated with climate sensitivity or hydrological model parameterisation.

  5. Crop yield risk analysis and mitigation of smallholder farmers at quaternary catchment level: Case study of B72A in Olifants river basin, South Africa

    Science.gov (United States)

    Magombeyi, Manuel S.; Taigbenu, Akpofure E.

    Currently, Sub-Sahara is experiencing increased frequency of disasters either as floods or droughts which depletes the scarce resources available to sustain increasing populations. Success in preventing food shortages in the African continent can only be achieved by understanding the vulnerability and risk of the majority of smallholder farmers under rainfed and supplementary irrigation coupled with appropriate interventions. Increased frequency of floods, droughts and dry spells pose an increasing threat to the smallholder farmers’ food security and water resources availability in B72A quaternary catchment of the Olifants river basin in South Africa. This paper links maize crop yield risk and smallholder farmer vulnerability arising from droughts by applying a set of interdisciplinary indicators (physical and socio-economic) encompassing gender and institutional vulnerabilities. For the study area, the return period of droughts and dry spells was 2 years. The growing season for maize crop was 121 days on average. Soil water deficit during critical growth stages may reduce potential yields by up to 62%, depending on the length and severity of the moisture deficit. To minimize grain yield loss and avoid total crop failures from intra-seasonal dry spells, farmers applied supplementary irrigation either from river water or rainwater harvested into small reservoirs. Institutional vulnerability was evidenced by disjointed water management institutions with lack of comprehension of roles of higher level institutions by lower level ones. Women are most hit by droughts as they derived more than 90% of their family income from agriculture activities. An enhanced understanding of the vulnerability and risk exposure will assist in developing technologies and policies that conform to the current livelihood strategies of smallholder, resource-constrained farmers. Development of such knowledge base for a catchment opens avenues for computational modeling of the impacts of

  6. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China

    Directory of Open Access Journals (Sweden)

    H. Xu

    2011-01-01

    Full Text Available Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the Yangtze and Yellow River Basins that feature contrasting climate regimes (humid and semi-arid. Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1, SRES emissions scenarios (A1B, A2, B1, B2 and prescribed increases in global mean air temperature (1 °C to 6 °C. Climate projections, applied to semi-distributed hydrological models (SWAT 2005 in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990, for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C respectively. Intra-annual changes include increases in flood (Q05 discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93% in dry season (Q95 discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13 to 17% rise from baseline but substantial (73 to 121% for the River Huangfuchuan. With one minor exception of a slight (−2% decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is substantial uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05 discharges (−1 to 41% under SRES A1B and −3 to 41% under 2

  7. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the River Yangtze and Yellow Basins, China

    Directory of Open Access Journals (Sweden)

    H. Xu

    2010-09-01

    Full Text Available Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the River Yangtze and Yellow Basins that feature contrasting climate regimes (humid and semi-arid. Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1, SRES emissions scenarios (A1B, A2, B1, B2 and prescribed increases in global mean air temperature (1 °C to 6 °C. Climate projections, applied to semi-distributed hydrological models (SWAT 2005 in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990, for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C, respectively. Intra-annual changes include increases in flood (Q05 discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93% in dry season (Q95 discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13% to 17% rise from baseline but substantial (73% to 121% for the River Huangfuchuan. With one minor exception of a slight (−2% decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is great uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05 discharges (−1% to 41% under SRES A1B and −3% to 41% under 2

  8. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    Science.gov (United States)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  9. Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

    Science.gov (United States)

    Khan, K. M.; Yaseen, M.

    2014-12-01

    Pakistan's economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen's method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows

  10. Hydrological Modeling of the Upper Indus Basin: A Case Study from a High-Altitude Glacierized Catchment Hunza

    Directory of Open Access Journals (Sweden)

    Khan Garee

    2017-01-01

    Full Text Available The Soil andWater Assessment Tool (SWAT model combined with a temperature index and elevation band algorithm was applied to the Hunza watershed, where snow and glacier-melt are the major contributor to river flow. This study’s uniqueness is its use of a snow melt algorithm (temperature index with elevation bands combined with the SWAT, applied to evaluate the performance of the SWAT model in the highly snow and glacier covered watershed of the Upper Indus Basin in response to climate change on future streamflow volume at the outlet of the Hunza watershed, and its contribution to the Indus River System in both space and time, despite its limitation; it is not designed to cover the watershed of heterogeneous mountains. The model was calibrated for the years 1998–2004 and validated for the years 2008–2010. The model performance is evaluated using the four recommended statistical coefficients with uncertainty analysis (p-factor and r-factor. Simulations generated good calibration and validation results for the daily flow gauge. The model efficiency was evaluated, and a strong relationship was observed between the simulated and observed flows. The model results give a coefficient of determination (R2 of 0.82 and a Nash–Sutcliffe Efficiency index (NS of 0.80 for the daily flow with values of p-factor (79% and r-factor (76%. The SWAT model was also used to evaluate climate change impact on hydrological regimes, the target watershed with three GCMs (General Circulation Model of the IPCC fifth report for 2030–2059 and 2070–2099, using 1980–2010 as the control period. Overall, temperature (1.39 C to 6.58 C and precipitation (31% indicated increased variability at the end of the century with increasing river flow (5%–10%; in particular, the analysis showed smaller absolute changes in the hydrology of the study area towards the end of the century. The results revealed that the calibrated model was more sensitive towards temperature and

  11. Numerical groundwater flow modeling of the northern river catchment of the Lake Tana, Upper Blue Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Nigussie Ayehu Asrie

    2016-06-01

    decreased by 32% and the simulation results showed on average head decrease of 8.06m over the whole area; with the highest fall 32m in wells to north and a minimum of about 1m in wells to the south of the catchment. In addition, the stream leakage, compared to the simulated steady state value and it was decreased by 75.36%. The simulated value showed an average 2.74m increased head over the whole area. High difference values were observed at Tseda (7.83m and Koladiba (7.3m. The minimum difference 1.08m was recorded at Angereb well field (observation 94. In addition, the stream leakage compared with the steady state value the change was about 87.43%. Keywords: MODFLOW 2000, Groundwater, Modelling, Sensitivity analysis, Simulation, Recharge

  12. Statistical downscaling and projection of future temperature and precipitation change in middle catchment of Sutlej River Basin, India

    Indian Academy of Sciences (India)

    Dharmaveer Singh; Sanjay K Jain; R D Gupta

    2015-06-01

    Ensembles of two Global Climate Models (GCMs), CGCM3 and HadCM3, are used to project future maximum temperature (Max), minimum temperature (Min) and precipitation in a part of Sutlej River Basin, northwestern Himalayan region, India. Large scale atmospheric variables of CGCM3 and HadCM3 under different emission scenarios and the National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis datasets are downscaled using Statistical Downscaling Model (SDSM). Variability and changes in Max, Min and precipitation under scenarios A1B and A2 of CGCM3 model and A2 and B2 of HadCM3 model are presented for future periods: 2020s, 2050s and 2080s. The study reveals rise in annual average Max, Min and precipitation under scenarios A1B and A2 for CGCM3 model as well as under A2 and B2 scenarios for HadCM3 model in 2020s, 2050s and 2080s. Increase in mean monthly Min is also observed for all months of the year under all scenarios of both the models. This is followed by decrease in Max during June, July August and September. However, the model projects rise in precipitation in months of July, August and September under A1B and A2 scenarios of CGCM3 model and A2 and B2 of HadCM3 model for future periods.

  13. Rainfall and runoff regime trends in mountain catchments (Case study area: the upper Hron River basin, Slovakia

    Directory of Open Access Journals (Sweden)

    Blahušiaková Andrea

    2015-09-01

    Full Text Available This paper presents an analysis of trends and causes of changes of selected hydroclimatic variables influencing the runoff regime in the upper Hron River basin (Slovakia. Different methods for identifying trends in data series are evaluated and include: simple mass curve analysis, linear regression, frequency analysis of flood events, use of the Indicators of Hydrological Alteration software, and the Mann-Kendall test. Analyses are performed for data from two periods (1931-2010 and 1961-2010. The changes in runoff are significant, especially in terms of lower QMax and 75 percentile values. This fact is also confirmed by the lower frequency and extremity of flood events. The 1980s are considered a turning point in the development of all hydroclimatic variables. The Mann-Kendall test shows a significant decrease in runoff in the winter period. The main causes of runoff decline are: the considerable increase in air temperature, the decrease in snow cover depth and changes in seasonal distribution of precipitation amounts.

  14. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  15. Groundwater recharge processes in the Nasia sub-catchment of the White Volta Basin: Analysis of porewater characteristics in the unsaturated zone

    Science.gov (United States)

    Addai, Millicent Obeng; Yidana, Sandow Mark; Chegbeleh, Larry-Pax; Adomako, Dickson; Banoeng-Yakubo, Bruce

    2016-10-01

    Vertical infiltration of precipitation has been examined in this study for the purpose of evaluating groundwater recharge processes in parts of the Nasia sub-catchment of the White Volta Basin. As recharge is an essential component in the detailed assessment of groundwater resources potential in a basin, evaluating its processes is vital in determining the spatial and temporal variability of the resource. Stable isotope data of precipitation, groundwater, surface water and porewater in the area suggest that the local precipitation is largely enriched compared to global meteoric water. This is consistent with the prevailing local conditions in the region and ties in with observations in other parts of the sub-region. The groundwater and porewater data indicate that prior to, and in the process of infiltration and final percolation into the saturated zone, rainwater undergoes evaporative enrichment such that the finally recharged water plots along an evaporation line with a much shallower gradient and intercept compared to the global meteoric water line and the local meteoric water line. The isotope data further suggest that through the shallow unsaturated zone, a significant fraction of the initial precipitation would have been evaporated by a depth of 3.0 m. Evaporation rates in the range of 38-49% have been estimated for the depth range of 0-3.0 m based on the porewater stable isotope data. Details of the procedures and implications of high evaporation rates within such shallower depths are presented and discussed. Groundwater recharge rates estimated from the chloride mass balance technique report values in the range of 73.26 mm/yr (390 Mm3/yr)-109.89 mm/yr (585.27 Mm3/yr), with an average of 94 mm/yr (500.6 Mm3/yr). These translate into 6.6-10.9% of annual precipitation. Based on the current population trends and per capita water demand of 50 L per capita per day, this study finds that the estimated recharge rates exceed the demand 59 times. This suggests

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River...

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1 catchment of...

  18. Debris-flow frequency and dynamics of an Alpine catchment during the past 150 years, the Schimbrig drainage basin, Central Switzerland

    Science.gov (United States)

    Savi, Sara; Bollschweiler, Michelle; Stoffel, Markus; Schlunegger, Fritz

    2010-05-01

    This paper focuses on links between landsliding and debris-flow activity in a ca. 4 km2-large drainage basin located at the northern foothills of the Central Swiss Alps. Debris-flow frequency of the recent past was reconstructed using dendrogeomorphic methods. In addition, the source area was mapped in detail to assess the spatial distribution of landslides, and to determine the connectivity between hillslopes and the channel network. The geomorphic map indicates that the hillslopes host abundant landslides sourced in Paleogene Flysch and Molasse sandstone-mudstone alternations. Major differences in the landscape architecture between the eastern and western sides were identified. In particular, the eastern segment is characterized by a >300'000 m2 large earth flow (Schimbrig landslide) that is 5-10 m deep. This flow experienced a phase of high slip rates >2m day-1 between September 1994 and May 1995, transferring a total of 350'000 m3 of material. In contrast, the western side is characterized by a network of deeply incised channels (>50 m) bordered by hillslopes that host landslides that generally measure <15'000 m2. On these hillslopes, the downslope transfer of sediment is dominated by soil creep or by rotational and translational slip. The depositional fan at the outlet of the catchment has an approximate size of 50'000 m2. The surface is characterized by levees, lobes and channels and is covered by a conifer forest comprising spruces (Picea abies (L.) Karst.) and firs (Abies alba Mill.). A total of 325 increment cores were sampled from 162 trees obviously influenced by past debris-flow activity. Preliminary analysis of the tree samples indicate that 64% of the tree grew up between 1900 and 2009. 34% of the tree samples showed germination dates between 1800 and 1900, and the remaining 2% of the sampled specimens germinated before 1800. Dendrogeomorphic analyses depict that nearly 50% of the sampled trees were affected by debris-flow activity in the 1990s. This

  19. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment

    NARCIS (Netherlands)

    Wang, X.; Lu, H.; Vandenberghe, J.; Zheng, S.; Balen, van R.T.

    2012-01-01

    The geomorphological evolution of the marginal areas of the Tibetan Plateau may provide valuable information for reconstructing the tectonic movements of the region. This study reports on a morpho-tectonic analysis of the Huang Shui catchment (tributary of the Yellow River), in the Northeastern Tibe

  20. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the 30-year (1971-2000) catchment-average total annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1...

  1. Incorporating flood event analyses and catchment structures into model development

    Science.gov (United States)

    Oppel, Henning; Schumann, Andreas

    2016-04-01

    The space-time variability in catchment response results from several hydrological processes which differ in their relevance in an event-specific way. An approach to characterise this variance consists in comparisons between flood events in a catchment and between flood responses of several sub-basins in such an event. In analytical frameworks the impact of space and time variability of rainfall on runoff generation due to rainfall excess can be characterised. Moreover the effect of hillslope and channel network routing on runoff timing can be specified. Hence, a modelling approach is needed to specify the runoff generation and formation. Knowing the space-time variability of rainfall and the (spatial averaged) response of a catchment it seems worthwhile to develop new models based on event and catchment analyses. The consideration of spatial order and the distribution of catchment characteristics in their spatial variability and interaction with the space-time variability of rainfall provides additional knowledge about hydrological processes at the basin scale. For this purpose a new procedure to characterise the spatial heterogeneity of catchments characteristics in their succession along the flow distance (differentiated between river network and hillslopes) was developed. It was applied to study of flood responses at a set of nested catchments in a river basin in eastern Germany. In this study the highest observed rainfall-runoff events were analysed, beginning at the catchment outlet and moving upstream. With regard to the spatial heterogeneities of catchment characteristics, sub-basins were separated by new algorithms to attribute runoff-generation, hillslope and river network processes. With this procedure the cumulative runoff response at the outlet can be decomposed and individual runoff features can be assigned to individual aspects of the catchment. Through comparative analysis between the sub-catchments and the assigned effects on runoff dynamics new

  2. Cesium-137 global fallout into the Ob river basin and its influence on the Kara sea contamination - Weapons fallout cesium-137 in the Ob' catchment landscapes and its influence on radioactive contamination of the Kara sea: Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Semenkov, Ivan N.; Miroshnikov, Alexey Yu. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences (Russian Federation)

    2014-07-01

    There are several high level {sup 137}Cs anomaly zones detected in the deposits of the SW part of the Kara Sea. These anomaly zones were formed in the Ob' and the Enisey river estuaries due to the geochemical 'river-sea' boarder barrier. Level of radiocaesium specific activity reaches 120 Bq*kg{sup -1} in the deposits from these zones. Radiochemical enterprises occur in the both river basins. Their activity results in caesium-137 transfer into the river net. Vast area is contaminated by {sup 137}Cs after nuclear weapons in Semipalatinsk test-site and Kyshtym disaster in the Ob' river basin. Moreover, caesium comes to the Ob' and the Enisey river basins with global atmospheric fallout. The inflow of global fallout caesium-137 to the catchments is 660 kCi (320 kCi including radioactive decay) that is 4 times higher than {sup 137}Cs emission due to Fukushima disaster. Therefore, these river basins as any other huge catchment are an important sources of radioactive contamination of the Arctic Ocean. The aim of our research is to study behavior of global fallout caesium-137 in the landscapes of the Ob and the Enisey river basins. We studied caesium-137 behavior on the example of first order catchments in taiga, wetland, forest-steppe, steppe, and semi-arid landscapes. Geographic information system (GIS) was made. The tenth-order catchments (n=154, Horton coding system) shape 20-groups due to topsoil properties controlling cesium mobility. Eleven first-order basins, characterized 7 groups of tenth order catchments, were studied. And 700 bulk-core soil samples were collected in 2011-2013. Cesium runoff is calculated for 3 first-order river basins in taiga and forest-steppe landscapes. Storage of global fallout caesium-137 declines from undisturbing taiga first-order river basin (90% of cumulative fallout including radioactive decay)> arable steppe and fores-steppe (70 - 75%)> undisturbing wetland (60%). Caesium-137 transfer is high in arable lands

  3. Modeling the impact of development and management options on future water resource use in the Nyangores sub-catchment of the Mara Basin in Kenya

    Science.gov (United States)

    Omonge, Paul; Herrnegger, Mathew; Fürst, Josef; Olang, Luke

    2016-04-01

    Despite the increasing water insecurity consequent of competing uses, the Nyangores sub-catchment of Kenya is yet to develop an inclusive water use and allocation plan for its water resource systems. As a step towards achieving this, this contribution employed the Water Evaluation and Planning (WEAP) system to evaluate selected policy based water development and management options for future planning purposes. Major water resources of the region were mapped and quantified to establish the current demand versus supply status. To define a reference scenario for subsequent model projections, additional data on urban and rural water consumption, water demand for crop types, daily water use for existing factories and industries were also collated through a rigorous fieldwork procedure. The model was calibrated using the parameter estimation tool (PEST) and validated against observed streamflow data, and subsequently used to simulate feasible management options. Due to lack of up-to-date data for the current year, the year 2000 was selected as the base year for the scenario simulations up to the year 2030, which has been set by the country for realizing most flagship development projects. From the results obtained, the current annual water demand within the sub-catchment is estimated to be around 27.2 million m3 of which 24% is being met through improved and protected water sources including springs, wells and boreholes, while 76% is met through informal and unprotected sources which are insufficient to cater for future increases in demand. Under the reference scenario, the WEAP model predicted an annual total inadequate supply of 8.1 million m3 mostly in the dry season by the year 2030. The current annual unmet water demand is 1.3 million m3 and is noteworthy in the dry seasons of December through February at the irrigation demand site. The monthly unmet domestic demand under High Population Growth (HPG) was projected to be 1.06 million m3 by the year 2030. However

  4. Impact of Urbanization on Stormwater Runoff from a Small Urban Catchment: Gdańsk Małomiejska Basin Case Study

    Science.gov (United States)

    Olechnowicz, Borys; Weinerowska-Bords, Katarzyna

    2014-12-01

    This paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.

  5. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    Science.gov (United States)

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  6. The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ10Be, 26Al and 21Ne in sediment of the Po river catchment

    Science.gov (United States)

    Wittmann, Hella; Malusà, Marco G.; Resentini, Alberto; Garzanti, Eduardo; Niedermann, Samuel

    2016-10-01

    We analyze the source-to-sink variations of in situ10Be, 26Al and 21Ne concentrations in modern sediment of the Po river catchment, from Alpine, Apennine, floodplain, and delta samples, in order to investigate how the cosmogenic record of orogenic erosion is transmitted across a fast-subsiding foreland basin. The in situ10Be concentrations in the analyzed samples range from ∼ 0.8 ×104 at /gQTZ to ∼ 6.5 ×104 at /gQTZ. The 10Be-derived denudation rates range from 0.1 to 1.5 mm/yr in the Alpine source areas and from 0.3 to 0.5 mm/yr in the Apenninic source areas. The highest 10Be-derived denudation rates are found in the western Central Alps (1.5 mm/yr). From these data, we constrain a sediment flux leaving the Alpine and the Apenninic source areas (>27 Mt/yr and ca. 5 Mt/yr, respectively) that is notably higher than the estimates of sediment export provided by gauging (∼10 Mt/yr at the Po delta). We observe a high variability in 10Be concentrations and 10Be-derived denudation rates in the source areas. In the Po Plain, little variability is observed, and at the same time, the area-weighed 10Be concentration of (2.29 ± 1.57) ×104 at /gQTZ (±1 SD of the dataset) from both the Alps and the Apennines is poorly modified (by tributary input) in sediment of the Po Plain ((2.68 ± 0.78 , ± 1 SD) ×104 at /gQTZ). The buffering effect of the Po floodplain largely removes scatter in 10Be signals. We test for several potential perturbations of the cosmogenic nuclide record during source to sink transfer in the Po basin. We find that sediment trapping in deep glacial lakes or behind dams does not significantly change the 10Be-mountain record. For example, similar 10Be concentrations are measured upstream and downstream of the postglacial Lake Maggiore, suggesting that denudation rates prior to lake formation were similar to today's. On the scale of the entire basin, the 10Be concentration of basins with major dams is similar to those without major dams. A potential

  7. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    Science.gov (United States)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  8. Co-evolution of volcanic catchments in Japan

    Directory of Open Access Journals (Sweden)

    T. Yoshida

    2015-09-01

    Full Text Available Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma in Japan. We derived indices of landscape properties (drainage density as well as hydrological response (annual water balance, baseflow index, and flow duration curves and examined their relation with catchment age and climate (through the aridity index. We found significant correlation between drainage density and baseflow index with age, but not with climate. The age of the catchments was also significantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of significant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggests two hypotheses on the evolution of drainage density in matured catchments. One is that as

  9. Holocene floodplain sediment storage and hillslope erosion within the Rhine catchment

    NARCIS (Netherlands)

    Hoffmann, T.; Erkens, G.; Cohen, K.M.; Houben, P.; Seidel, J.; Dikau, R.

    2007-01-01

    The response of fluvial systems to land use and climate change varies depending on catchment size. While forcing-response mechanisms of small catchments are reasonably well understood, the response of larger drainage basins is less clear. In particular, the impact of land use and climate change on t

  10. Water balance modeling of Upper Blue Nile catchments using a top-down approach

    NARCIS (Netherlands)

    Tekleab, S.; Uhlenbrook, S.; Mohamed, Y.; Savenije, H.H.G.; Temesgen, M.; Wenninger, J.

    2011-01-01

    The water balances of twenty catchments in the Upper Blue Nile basin have been analyzed using a top-down modeling approach based on Budyko’s hypotheses. The objective of this study is to obtain better understanding of water balance dynamics of upper Blue Nile catchments on annual and monthly time sc

  11. A detailed study on Catchment delineation for Urban areas

    Science.gov (United States)

    Sharma, B.; B M, A.; Lohani, B.; Jain, A.

    2015-12-01

    Urban flood modelling is carried out for predicting, analysing and planning of floods in urban areas. Catchment information is an important input for urban flood modelling. Automatic catchment delineation at gully gratings for urban areas using appropriate software packages/methods along with an appropriate set of input data and parameters is still a research challenge. Considering the above, the aim of this study is to (i) identify the best suitable software for automatic catchment delineation by considering gully grating as outlet (ii) understand the effect of resolution of DEM on catchments delineated (iii) understand whether to consider DEM or DSM for catchment delineation (iv) study the effect of grid based and TIN based DEM. In this study catchment delineation has been investigated considering IIT Kanpur as a study site. LiDAR data are used to generate DEM/DSM of the study area. A comparative study of catchment delineation has been carried out between ArcHydro 10.1, BASINS 4.1, ArcSWAT, WMS 7.1, and HEC-GeoHMS approaches. Catchments have been delineated for different drainage threshold areas using gully grating points as outlets and their effects have been compared for the aforementioned software. In order to understand the effect of resolution of data, DEMs of 1m and 5m resolution have been generated and compared against each other. Effects of building ridge lines and their contribution to catchment delineation has been studied by generating a DSM of 1m resolution, and comparing the results with catchments delineated using 1m DEM. In order to assess the effects of the types of DEM over catchment delineation, a grid based DEM and TIN based DEM are compared against each other using WMS 7.1 software. The results for the catchment delineation using various software illustrate that ArcHydro 10.1 performs better than any other aforementioned software. Also, it is noted that varied drainage threshold area parameters, resolutions of DEM, selection of DEM

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major...

  13. Hydrologic comparison between a lowland catchment (Kielstau, Germany and a mountainous catchment (XitaoXi, China using KIDS model in PCRaster

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The KIDS model (Kielstau Discharge Simulation model is a simple rainfall-runoff model developed originally for the Kielstau catchment. To extend its range of application we applied it to a completely different catchment, the XitaoXi catchment in China. Kielstau is a small (51 km2 lowland basin in Northern Germany, with large proportion of wetland area. And XitaoXi is a mesoscale (2271 km2 mountainous basin in the south of China. Both catchments differ greatly in size, topography, landuse, soil properties, and weather conditions. We compared two catchments in these features and stress on the analysis how the specific catchment characteristics could guide the adaptation of KIDS model and the parameter estimation for streamflow simulation. The Nash and Sutcliffe coefficient was 0.73 for Kielstau and 0.65 for XitaoXi. The results suggest that the application of KIDS model may require adjustments according to the specific physical background of the study basin.

  14. Creating a catchment perspective for river restoration

    Science.gov (United States)

    Benda, L.; Miller, D.; Barquín, J.

    2011-03-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we coupled general principles of hydro-geomorphic processes with computer tools to characterize the fluvial landscape. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to topography, valley morphology, river network structure, and fan and terrace landforms. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  15. Creating a catchment perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-03-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we coupled general principles of hydro-geomorphic processes with computer tools to characterize the fluvial landscape. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to topography, valley morphology, river network structure, and fan and terrace landforms. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  16. Streamflow Characteristics of Two Forested Catchments in the Sopron Hills

    Directory of Open Access Journals (Sweden)

    GRIBOVSZKI, Zoltán

    2006-01-01

    Full Text Available One of the central issues in hydrology is today to establish a relationship between thehydrological and biological processes in ecosystems. One question of this theme is the vegetationimpact on the water budget of the catchment. Water use by vegetation can closely be linked tostreamflow patterns on a variety of time scales. At present many details of these connections arepoorly understood.Investigation on small catchments is the best way of studying hydrological processes in headwater,forested watersheds. In this paper drainage basin morphology and streamflow characteristics (baseflow and quick flow have been analysed under conditions of forest management in two neighbouringsmall forested catchments (the Farkas Valley and Vadkan Valley located in the prealpine hillsbordering to Austria on the basis of streamflow data collected during 2001.

  17. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin.

    Science.gov (United States)

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2013-05-01

    One of the largest urban agglomerations in Brazil is the capital Brasilia and its surrounding area. Due to fast urban sprawl and accelerated land use changes, available water supplies are near their limits. The water supply depends largely on surface water collected in reservoirs. There are increasing concerns regarding water shortages due to sediment aggradations, and of water quality due to geochemical modification of sediments from human activities. The concentration of 18 chemical elements and five sediment properties was analyzed from different potential land-based sediment sources and deposited alluvial sediment within the Lago Paranoà catchment. The goal of this study was to assess the distribution of chemical elements and geochemical/physical properties of potential sediment sources in the Lago Paranoá catchment. Principal component analysis and hierarchical cluster analysis were used to investigate the influence of different land use types on the geochemistry of sediments. Geochemical fingerprints of anthropogenic activities were developed based on the results of the cluster analysis grouping. The anthropogenic input of land use specific geochemical elements was examined and quantified by the calculation of enrichment factors using the local geological background as reference. Through comparison of the geochemical signature of potential sediment sources and alluvial sediments of the Lago Paranoá and sub-catchments, the relative contribution of land use specific sediment sources to the sediment deposition of the main water reservoir were estimated. The existing findings suggest a strong relationship between land use and quantifiable features of sediment geochemistry and indicate that urban land use had the greatest responsibility for recent silting in the Lago Paranoá. This assessment helps to characterize the role of human activities in mixed-used watersheds on sediment properties, and provides essential information to guide management responses

  18. Integrated flow and temperature modeling at the catchment scale

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael

    2013-01-01

    , the Silver Creek Basin in Idaho, where stream temperature affects the populations of fish and other aquatic organisms. The model calibration highlights the importance of spatially distributed flow dynamics in the catchment to accurately predict stream temperatures. The results also show the value...... of including temperature data in an integrated flow model calibration because temperature data provide additional constraints on the flow sources and volumes. Simulations show that a reduction of 10% in the groundwater flow to the Silver Creek Basin can cause average and maximum temperature increases in Silver...... Creek over 0.3°C and 1.5°C, respectively. In spring-fed systems like Silver Creek, it is clearly not feasible to separate river habitat restoration from upstream catchment and groundwater management....

  19. Hydrological Catchment Similarity Assessment in Geum River Catchments, Korea

    Science.gov (United States)

    Ko, Ara; Park, Kisoon; Lee, Hyosang

    2013-04-01

    Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is notclearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum river catchments, Korea. Three Catchment Characteristics, Area (A)-Annual precipitation (SAAR)-SCS Curve Number (CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve (ILow:Q275/Q185, IDrought:Q355/Q185, IFlood:Qmax/Q185, IAbundant:Q95/Q185, IFloodDuration:Q10/Q355 and IRiverRegime:Qmax/Qmin) are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups: H1 (Cheongseong, Gidae, Bukil, Oksan, Seockhwa, Habgang and Sangyeogyo), H2 (Cheongju, Guryong, Ugon, Boksu, Useong and Seokdong) and H3 (Muju, Yangganggyo and YongdamDam). The four catchments (Cheoncheon, Donghyang, DaecheongDam and Indong) are not grouped in this study. The clustering analysis of FDC provides four Groups; CFDC1 (Muju, YongdamDam, Yangganggyo, DaecheongDam, Cheongseong, Gidae, Seokhwa, Bukil, Habgang, Cheongju, Oksan, Yuseong and Guryong), CFDC2 (Cheoncheon, Donghyang, Boksu, Indong, Nonsan, Seokdong, Ugon, Simcheon, Useong and Sangyeogyo), CFDC3 (Songcheon) and CFDC4 (Tanbu). The six catchments (out of seven) of H1 are grouped in CFDC1, while Sangyeogyo is grouped in CFDC2. The four catchments (out of six) of H2 are also grouped in CFDC2, while Cheongju and Guryong are grouped in CFDC1. The catchments of H3 are categorized in CFDC1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (CFDC1 and CFDC2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by

  20. Modeling of matters removal from swampy catchment

    Science.gov (United States)

    Inishev, N. G.; Inisheva, L. I.

    2010-05-01

    This work shows the results of fixed study of geochemical conditions in the system of landscape oligotrophic profile at Vasyugan mire spurs, and also we make an approach to processes modelling of compounds removal from swampy catchment. During investigation of symbolic model of chemical matters removal from the surface of a catchment basin and their movement along the channel network it was taken into account that removal of chemical elements during the period of spring flood and rain high waters occur mainly with overland flow. During calculation of dissolved matters movement the following admissions take place: 1. The problem is solved at one-dimension set-up. Concentration of investigated components is taken as averaged one along the flow cross section or effective area of slope cross-section for overland runoff, i.e. it changes only lengthways and in time. 2. It is considered that dissolved matters spread due to movement of water and together with its particles. 3. Processes of water self-clarification are not considered. The model is calculated on the basis of discharge of the investigated ingredient, i.e. matter mass moving through the given flow cross-section into time unit. This is the peculiarity of the model. Matter removal together with water flow is determined if necessary. Everyday impurity consumptions and its concentration can be estimated at the outlet at the moment of time according to convolution integral. Estimation of overland runoff and water inflow into the channel network is based on the mathematic model of outflow formation from peatland areas which considers basic processes carrying out at catchment and basin channel network. Stored moisture estimation of snow cover is taken according to snow survey data before snow melting. Everyday water supply to the surface of water collection was determined according to the results of snow melt intensity estimation by the methods of temperature coefficient and water yield from snow (A.G. Kovzel). All

  1. Study of the dynamics of drainage of {sup 137C}s present on the catchment basins of French rivers; Etude de la dynamique de drainage du {sup 137}Cs present sur les bassins versants des cours d'eau francais. Etat d'avancement

    Energy Technology Data Exchange (ETDEWEB)

    Vray, F.; Debayle, Ch.; Metivier, J.M

    2005-07-01

    An operational model describing the drainage of radionuclides was selected from a bibliographical synthesis. This model supplies an expression of the dissolved flux in rivers according to the flow of the river and the activity deposited on the catchment basin. To adjust this model for {sup 137}Cs coming from the Chernobylsk accident and the main French rivers, series of data reporting the temporal evolution of the activity of {sup 137}Cs in the water are necessary.The difficulty inherent to the measure of this radionuclide in the water led to dread its activity through that, more easily measurable, sediments and water plants. Measures on these indicators, upstream to any release of industrial effluents, were notably realized since 1991 within the framework of the annual follow-up of French nuclear power plants. The model of drainage is thus adjusted essentially on these data within a multiplicative factor (this factor being K{sub d} or F{sub c}). This requires however some preliminary adaptations: K{sub d} being dependent on granulometry characteristics of the sediments samples, a standardization of their activity on granulometry criteria must be made. For the aquatic plants, it is necessary to look for their time of answer before being able to adjust the model. The obtained results, on plants as on sediments, indicate that for the big French rivers, the activity of {sup 137}Cs in aquatic environment decreases since 1987 with a period from 4 to 7 years. If the level of contamination of every river depends on the average contamination of the catchment basin (average deposit in Bq by m{sup 2}), it seems that this level is also influenced by the other parameters as the size of the catchment basin, even some characteristics of the drained soils. This part of the study remains to deepen. It joins the works led to the L.E.R.C.M. on the migration of radionuclides in soils. On the upstream part of the Rhone river, the aquatic plants indicate that the flow plays a role of

  2. Management of combined sewer overflows based on observations from the urbanized Liguori catchment of Cosenza, Italy.

    Science.gov (United States)

    Piro, P; Carbone, M; Garofalo, G; Sansalone, J J

    2010-01-01

    This paper examines an urbanized catchment in Cosenza, Italy where an off-line basin intercepting CSOs was studied to illustrate reduction in CSO discharges to the Crati River. While the hydrologic transport of pollutant mass is never known a-priori and can be flow-limited, the volumetric requirements of the basin were modeled based on the classic assumption that wet weather flows transport urban and sewer loads in a mass-limited (first-flush) delivery. The volumetric capacity of the basin was varied from 10 to 50 m(3)/ha. Operational basin control was simulated with historical datasets from the Liguori catchment, event-based loading data, and continuous simulation modelling with SWMM. Utilizing data from the catchment, the SWMM simulations were conducted considering the storage basin with or without sedimentation treatment. Results illustrate the potential benefits of the off-line operation for the system with respect to the volume and mass reduction of CSOs into the Crati River. Results demonstrate the importance of particle size distribution (PSD) as an index of basin efficiency, coupled with analysis of the hydrodynamic response of the basin. The basin model attenuated influent PSDs, separating the coarser fraction of the PSD, and reduced the load of influent particulate matter (PM).

  3. THE FORMATION OF THE OUTFLOW IN THE URBANISED CATCHMENT AREA ON THE EXAMPLE OF THE CATCHMENT OF STRZYŻA

    OpenAIRE

    Magda Sikora; Roman Cieśliński

    2015-01-01

    The aim of the study is to determine what influence made various forms of land use of catchment area on the size and variability of the outflow. Linking the flow rate with the forms of land use will determine which factors affect the runoff in the basin. The object of the research is Strzyża river basin situated within the administrative boundaries of the city of Gdańsk. It was found that streams flowing through urban areas, including the city of Gdańsk (river Strzyża), quickly react to any e...

  4. Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model

    Indian Academy of Sciences (India)

    Narendra Hengade; T I Eldho

    2016-12-01

    The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971−2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971−2010).

  5. Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model

    Science.gov (United States)

    Hengade, Narendra; Eldho, T. I.

    2016-12-01

    The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971-2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971-2010).

  6. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-02-10

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.

  7. The relative influence of climate and catchment properties on hydrological drought

    Science.gov (United States)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  8. Catchment areas for public transport

    DEFF Research Database (Denmark)

    Andersen, Jonas Lohmann Elkjær; Landex, Alex

    2008-01-01

    In the planning of public transport catchment areas of stops are often included to estimate potential number of travellers. There are different approaches to GIS-based catchment area analyses depending on the desired level of detail. The Circular Buffer approach is the fundamental, but also...... the simplest approach. The Service Area approach is based on searches in road networks and represents the actual feeder routes and is thereby a more detailed approach. The Service Area approach can be refined by adding additional resistance to certain points in the road network, e.g. stairways. Differences...... between the Circular Buffer approach and the Service Area approach are illustrated and a comparison between the sizes of the catchment areas is made. The strength of the Service Area approach and the impact on the catchment area when adding additional time resistance to crossing of stairways...

  9. Longterm Measurements of Bedload-Transport in alpine Catchments

    Science.gov (United States)

    Achleitner, Stefan; Kammerlander, Johannes; Eichner, Bernhard; Schöber, Johannes; Chiari, Michael

    2016-04-01

    In recent years the necessity of predicting the long-term behavior of sediment transport has increased. On the one hand, the effects of technical measures (e.g. retaining measures, hydropower, etc.) in the natural system are to be evaluated. On the other hand long term ecological studies that are strongly linked to the sediment budgets and its variation are more and more evolving. The ACRP Project DevoBeta-CC addresses the dynamics of long term sediment transport dynamics and its temporal altering. The focus is put on smaller tributary catchments enabling the model development. In total the data from ten catchments connected to the hydropower station Kaunertal (Tyrol/Austria) and eleven catchments linked to the power plant group Sellrain-Silz (Tyrol/Austria) are available. The considered catchments vary regarding their characteristics such as size (3 km³ to 27 km²), glaciation (0 % to 53 %), mean catchment slope (53 % to 92 %) and mean channel gradient (4 % to 49 %). The main data basis are records from the water intake structures operated (partly since 1965) by the TIWAG (Tiroler Wasserkraft AG). The sedimentation dynamics and operational flushings of the connected settling basins are used to measure the transported sediments. Since 1985 even high resolution data (15min intervals) are available. At selected catchments, the operationally recorded data (flushings, load membrane measurements,...) are verified within measuring campaigns using bed load traps upstream. Further, the sedimentation dynamics and grain size distributions in the settling basins are evaluated. Therefor two water intakes were put temporally out of operation, allowing an improved measurement of settled volumes by means of terrestrial surveying. Uncertainty assessments reveal an overall accuracy of estimated annual bed load volumes lower than a factor of two. Additionally, the data set enables to address sediment transport at a sub-annual basis, hence, the presented data set is unique regarding

  10. 巢湖流域丰乐河洪水事件营养盐输出动态研究%DYNAMIC EVOLUTION OF NUTRIENT EXPORT DURING FLOOD EVENTS FROM FENGLE RIVER CATCHMENT OF CHAO LAKE BASIN,CHINA

    Institute of Scientific and Technical Information of China (English)

    储茵; 潮洪武; 马友华; 郑珊珊; 潘应生

    2013-01-01

    洪水期是非点源污染输出的关键时期.通过对巢湖典型农业型流域丰乐河桃溪断面两次暴雨洪水过程(发生于2010年6月初的Event06和8月底的Event08)进行集中取样监测,结合该断面流量数据,分析了洪水过程中氮和磷营养盐不同指标(包括总氮、铵氮、硝态氮、总磷和可溶磷)浓度和瞬时负荷的动态变化规律.结果表明:Event06氮磷各指标浓度最小值、最大值及平均值均比Event08大,这与6月初农作物大量施肥,氮磷来源丰富有很大关系.丰乐河洪水事件氮输出的形式以可溶性无机氮(铵氮和硝态氮)为主,而磷则以颗粒态为主,但在涨水段的初、中期颗粒态氮和颗粒态磷所占比例比其它时段高.洪水过程中主要氮、磷指标浓度和瞬时负荷随流量增大而总体呈上升趋势(除了硝态氮),在流量峰值前达到最大值,然后呈总体下降趋势.总磷、总氮浓度与流量呈比较典型的顺时针圈形结构,表明暴雨洪水较强烈的冲刷输送作用.虽然进一步的负荷累积分析并没有显示显著的初期冲刷效应,但洪水期,特别是涨水段营养盐输出的重要性已较明显.丰乐河流域面积较大、地势较平坦,以农业活动为主,水体污染的非点源来源与农业活动有关,具体的洪水过程对营养盐的输出动态也有一定影响.%Non-point source pollutants are mainly transported during flood events.The Fengle River,one of the main tributaries of the Chao Lake in the middle-east part of China,was chosen to study non-point source nutrient export characteristics in a large-sized agricultural catchment.Two summer events (Event06,in the beginning of June and Event08,at the end of August,2010) were intensively sampled at Taoxi section of the river and analyzed for Total Nitrogen (TN),Ammonia,Nitrate,Total Phosphorus (TP) and Dissolved Phosphorus.Hourly discharge and rainfall data were also available at the same section.The drainage

  11. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    Science.gov (United States)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  12. Keeping it simple: a conceptual model of DOC dynamics in a subarctic alpine catchment

    Science.gov (United States)

    Lessels, J. S.; Tetzlaff, D.; Carey, S. K.; Soulsby, C.

    2013-12-01

    Understanding hydrological processes in subarctic alpine catchments characterised with discontinuous permafrost is important in order to understand carbon exports. Subarctic catchments have large storages of carbon in organic and permafrost soils. Active layer depth is one of the largest controlling factors of the release of dissolved organic carbon (DOC) due to its control on runoff pathways. Therefore, any change of this depth will affect the amount of DOC mobilised from these catchments. Simple low parameterised conceptual models offer the ability to characterise hydrological processes and linked DOC dynamics without introducing many of the uncertainties linked to high parameterised models. Lumped models can also be used to identify sources of DOC within catchments. Here, we investigate hydrological sources, flow pathways and consequently DOC dynamics in the Granger Basin, Canada, a subarctic alpine catchment using data collected from 2001 to 2008. The catchment is distinguished by aspect dependant discontinuous permafrost and seasonal frost, compounded further by differences in soil and vegetation types. Applying a simple low parameterised conceptual model allowed identification of the dominant flow paths of the main hydrological response units. The results showed that it was necessary to include active layer dynamics combined with aspect to represent the hydrological and DOC dynamics. The model provides information on the effect of climatic conditions on DOC releases. By identifying the key flow paths and relating these to spring freshet DOC exports over multiple years it is possible to gain an insight of the how climatic changes might affect hydrological processes within subarctic catchments.

  13. Use of remote sensing for hydrological parameterisation of Alpine catchments

    Directory of Open Access Journals (Sweden)

    H. Bach

    2003-01-01

    Full Text Available Physically-based water balance models require a realistic parameterisation of land surface characteristics of a catchment. Alpine areas are very complex with strong topographically-induced gradients of environmental conditions, which makes the hydrological parameterisation of Alpine catchments difficult. Within a few kilometres the water balance of a region (mountain peak or valley can differ completely. Hence, remote sensing is invaluable for retrieving hydrologically relevant land surface parameters. The assimilation of the retrieved information into the water balance model PROMET is demonstrated for the Toce basin in Piemonte/Northern Italy. In addition to land use, albedos and leaf area indices were derived from LANDSAT-TM imagery. Runoff, modelled by a water balance approach, agreed well with observations without calibration of the hydrological model. Keywords: PROMET, fuzzy logic based land use classification, albedo, leaf area index

  14. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  15. Spatial and temporal patterns of off-slope sediment delivery for small catchments subject to shallow landslides within the Waipaoa catchment, New Zealand

    Science.gov (United States)

    Jones, Katie E.; Preston, Nicholas J.

    2012-03-01

    The Waipaoa catchment in New Zealand has one of the highest measured specific suspended sediment yields measured in New Zealand compared to basins of comparable size. A significant source of this sediment is from shallow landslides which are often triggered on a regional scale during large magnitude storm events, defined as ~ 200 mm rainfall within 72 h. The first step of this sediment cascade is removal of landslide material from the slope and into the fluvial system when the debris tail is in physical contact and hence considered connected. The difference between the volume of sediment liberated in the event and the volume remaining on the slope immediately following the event is termed the off-slope sediment delivery ratio. This value ranged from 0.12 to 0.28 for small sub-catchments within the Waipaoa catchment depending on catchment morphology, landslide and triggering event characteristics. In the Waipaoa catchment a decrease in the catchment sediment delivery ratio is observed as the sub-catchment size increased. A human induced process which may affect off-slope sediment delivery is regolith exhaustion, as scars move further upslope in response to removal of preferred weathered material during previous events on the lower sections of slope. However, it appears that temporal scar migration away from the channels is not prevalent. Therefore, the hypothesis that hillslope relaxation since deforestation is prevalent in this setting is considered null. Rather the temporal pattern to sediment delivery ratios supports the context of evolving catchment in response to deforestation in the Terrain Event Resistance Model.

  16. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    Science.gov (United States)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  17. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  18. Nivní malakofauna povodí Úštěckého potoka a její vývoj během holocénu The floodplain mollusc fauna of the Úštěcký Brook catchment basin and its development during the Holocene (North Bohemia, Czech Republic

    Directory of Open Access Journals (Sweden)

    Lucie Juřičková

    2013-03-01

    Full Text Available This paper presents a research of floodplain mollusc assemblages of the Úštěcký Brook catchment basin (Elbe tributary, North Bohemia, Czech Republic. Altogether, 71 mollusc species (69 species of Gastropoda, 2 species of Bivalvia were recorded in the study sites between 2007 and 2011, representing 29% of the total Czech malacofauna. The common forest species dominated (41% of all recorded species and included some rare woodland species as Daudebardia rufa, Discus perspectivus, Macrogastra ventricosa, and Sphyradium doliolum. Rare wetland species protected by the NATURA system Vertigo angustior and endangered wetland species Vallonia enniensis were also found. The richest assemblages occurred on the upper part of the brook, while the lower part was very species poor due to agriculture land use in this fertile floodplain. A small calcareous moorland, situated in the northeastern vicinity of Úštěk Town (north Bohemia includes a Holocene mollusc succession that was subdivided into three local mollusc zones: I – basal zone with marked numbers of Discus ruderatus, Vertigo geyeri and numerous aquatic taxa, II – with forest species including Platyla polita and III – dominated by open-ground and catholic species. Despite the specific conditions of the moorland habitat the succession largely corresponds with the standard developmental pattern of the mollusc fauna in the zone of mid-European uplands. Of particular interest is the developmental break reflected by the poor fauna in the layer 3. The malacofauna of the Úštěcký Brook can be used as a model of alluvial mollusc assemblages of the brook floodplain that is situated in the warm area of Central Europe with long-term history of agriculture land use.

  19. Hydrological forecasting in catchments with glaciers

    OpenAIRE

    Nahat, Angèle

    2015-01-01

    The runoff forecast is crucial in Norway because the country bases most of its electricity from hydropower. The hydrological model has thus been improved for years in order to foresee the runoff in the best possible way. In Norway, there are many catchments with extensive water storage: glaciers. Those catchments represent a significant part of the catchments where hydropower is produced. Therefore knowing the right amount of outflow from a catchment with glaciers is essential but more challe...

  20. Using isotope, hydrochemical methods and energy-balance modelling to estimate contribution of different components to flow forming process in a high-altitude catchment (Dzhancuat river basin case study)

    Science.gov (United States)

    Rets, Ekaterina; Loshakova, Nadezhda; Chizhova, Julia; Kireeva, Maria; Frolova, Natalia; Tokarev, Igor; Budantseva, Nadine; Vasilchuk, Yurij

    2016-04-01

    A multicomponent structure of sources of river runoff formation is characteristic of high-altitude territories: ice and firn melting; seasonal snow melting on glacier covered and non-glacier area of a watershed; liquid precipitation; underground waters. In addition, each of these components can run off the watershed surface in different ways. Use of isotopic, hydrochemical methods and energy balance modelling provides possibility to estimate contribution of different components to river runoff that is an essential to understand the mechanism of flow formation in mountainious areas. A study was carried out for Dzhancuat river basin that was chosen as representative for North Caucasus in course of the International Hydrological Decade. Complex glaciological, hydrological and meteorological observation have been carried in the basin since 1965. In years 2013-2015 the program also included daily collecting of water samples on natural stable isotopes on the Dzhancuat river gauging station, and sampling water nourishment sources (ice, snow, firn, liquid precipitation) within the study area. More then 800 water samples were collected. Application of an energy balance model of snow and ice melt with distributed parameters provided an opportunity to identify Dzhancuat river runoff respond to glaciers melt regime and seasonal redistribution of melt water. The diurnal amplitude of oscillation of the Dzhakuat river runoff in the days without precipitation is formed by melting at almost snow-free areas of the Dzhancuat glacier tongues. Snowmelt water from the non-glacierized part contributes to the formation of the next day runoff. A wave of snow and firn melt in upper zones of glacier flattens considerably during filtration through snow and run-off over the surface and in the body of the glacier. This determines a general significant inertia of the Dzhacuat river runoff. Some part of melt water is stored into natural regulating reservoirs of the watershed that supply the

  1. River basin management plans for the European Water Framework Directive

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Behrendt, H.; Ruboek, G.H.; Schoumans, O.F.

    2004-01-01

    The newly adopted EU water framework directive aims at protecting different water bodies by performing impact analysis and developing river basin management plans before 2009. The adoption of management measures in river basins demands that catchment managers are able to quantify the importance of d

  2. AN APPROACH TO THE MODEL USE FOR MEASURING SUSPENDED SEDIMENT YIELD IN UNGAUGED CATCHMENTS

    Directory of Open Access Journals (Sweden)

    Sokchhay Heng

    2013-01-01

    Full Text Available Different types of water resources studies require the information of Suspended Sediment Yield (SSY in different time resolutions. In ungauged watersheds where hydrometeorogical time series are not available, the mean annual SSY (SSYa is solely predictable and catchment area is traditionally used as the predictor because it is the most important variable and generally determined during project planning. Firstly, this research tried to advance the traditional SSYa model by additionally associating global topographic data. Based on the jack-knife procedure, the modified method considering catchment area with slope greater than 15% was evaluated in 17 gauged catchments in the Lower Mekong Basin and the overall predictive accuracy was improved about 66% in term of mean absolute percentage error. Secondly, the predicted SSYa in each modeled catchment was monthly distributed using Unit mean annual Sedimentograph (USGa. The double-average USGa superior to the single-average one provides overall better quality results than the regionalized USGa dependent upon the spatial proximity approach. The model performance measured by Nash-Sutcliffe Efficiency (NSE is about 0.66 in median value and satisfactory results (NSE >0.50 are obtained in 11 catchments. Lastly, the validated regional model was regarded as a potential and feasible tool in solving sediment-ungauged issues in the basin.

  3. Water Yield and Sediment Yield Simulations for Teba Catchment in Spain Using SWRRB Model: Ⅱ.Simulation Results

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Simulated results of water yield, sediment yield, surface runoff, subsurface runoff, peak flow, evapotranspiration, etc., in the Teba catchment, Spain, using SWRRB (Simulator for Water Resources in Rural Basins) model are presented and the related problems are discussed. The results showed that water yield and sediment yield could be satisfactorily simulated using SWRRB model The accuracy of the annual water yield simulation in the Teba catchment was up to 83.68%, which implied that this method could be effectively used to predict the annual or inter-annual water yield and to realize the quantification of geographic elements and processes of a river basin.``

  4. Applying different spatial distribution and modelling concepts in three nested mesoscale catchments of Germany

    Science.gov (United States)

    Bongartz, K.

    Distributed, physically based river basin models are receiving increasing importance in integrated water resources management (IWRM) in Germany and in Europe, especially after the release of the new European Water Framework Directive (WFD). Applications in mesoscale catchments require an appropriate approach to represent the spatial distribution of related catchment properties such as land use, soil physics and topography by utilizing techniques of remote sensing and GIS analyses. The challenge is to delineate scale independent homogeneous modelling entities which, on the one hand may represent the dynamics of the dominant hydrological processes and, on the other hand can be derived from spatially distributed physiographical catchment properties. This scaling problem is tackled in this regional modelling study by applying the concept of hydrological response units (HRUs). In a nested catchment approach three different modelling conceptualisations are used to describe the runoff processes: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. [Precipitation-Runoff-Modelling-System, User’s Manual, Water Resource Investigations Report 83-4238, US Geological Survey, 1983]; (ii) the process based physiographic HRU-concept introduced by Flügel [Hydrol. Process. 9 (1995) 423] and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenraush [Eco Regio 8 (2000) 121]. The influence of different boundary conditions associated with changing the landuse classes, the temporal data resolution and the landuse scenarios were investigated. The mesoscale catchment of the river Ilm ( A∼895 km 2) in Thuringia, Germany, and the Precipitation-Runoff-Modelling-System (PRMS) were selected for this study. Simulations show that the physiographic based concept is a reliable method for modelling basin dynamics in catchments up to 200 km 2 whereas in larger catchments

  5. Water balance modeling of Upper Blue Nile catchments using a top-down approach

    Directory of Open Access Journals (Sweden)

    S. Tekleab

    2010-09-01

    Full Text Available The hydrological behavior and functioning of twenty catchments in the Upper Blue Nile basin have been analyzed using a top-down modeling approach that is based on Budyko's hypotheses. The objective is to obtain better understanding of catchment response for prediction in ungauged catchments. The water balance analysis using Budyko-type curve at annual scale reveals that the aridity index does not exert a first order control in most of the catchments. This implies the need to increase model complexity to a monthly time scale to include the effects of seasonal soil moisture dynamics. The dynamic water balance model used in this study predicts the direct runoff and other processes based on limit concept. The uncertainty of model parameters has been assessed using the GLUE (Generalized Likelihood Uncertainty Estimation. The results show that the majority of the parameters are reasonably well identifiable. Moreover, a multi-objective model calibration strategy has been employed within the GLUE framework to emphasize the different aspects of the hydrographs on low and high flows. The model has been calibrated and validated against observed streamflow time series and it shows good performance for the twenty catchments of the upper Blue Nile. During the calibration period (1995–2000 the Nash and Sutcliffe coefficient of efficiency for monthly flow prediction varied between 0.52 to 0.93 during high flows, while it varied between 0.32 to 0.90 during low flows (logarithms of flow series. The model is parsimonious and it is suggested that the resulting parameters can be used to predict monthly stream flows in the ungauged catchments of the Upper Blue Nile basin, which accounts about 60% of total Nile basin flow.

  6. Modelling runoff dynamics from information on river network and shape of catchment area

    Science.gov (United States)

    Skaugen, T.

    2009-12-01

    In a new approach, the dynamics of discharge is derived from the distribution of distances to the nearest river reach within a natural catchment. The river network and the shape of catchment provide a unique distribution function for each catchment which can be determined from a GIS. The distribution can be considered as a detailed description of the drainage density, where the location of the river relative to the catchment is taken into account. Within a fixed time interval, water flows through the catchment a certain distance which defines a fractional area. This fraction is estimated as an area enveloping the river network, whose width, perpendicular to the river network, is determined for the time interval of interest by the flow velocity. For a constant flow velocity, the time steps define adjacent areas which , for a sufficient number of time intervals, cover the entire catchment. For different flow velocities, we have different horizontal layers and the total discharge is the sum of discharge from each of the layers for each time step. The proposed principle for modelling the dynamics of discharge is implemented in the Swedish HBV model. The new model, named 3D (distance distribution dynamics), has the same precision as the HBV model but requires fewer parameters and represents thus a step in the right direction for meeting the challenge of predictions in ungauged basins.

  7. Identifying residence times and streamflow generation processes using δ18O and δ2H in meso-scale catchments in the Abay/Upper Blue Nile, Ethiopia

    NARCIS (Netherlands)

    Teklaeb, S.; Wenninger, J.W.; Uhlenbrook, S.

    2013-01-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin. Stabl

  8. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  9. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    Science.gov (United States)

    Troch, P. A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K.

    2013-06-01

    release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungauged basins.

  10. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution (Invited)

    Science.gov (United States)

    Troch, P. A.; Carrillo, G. A.; Sivapalan, M.; Sawicz, K. A.; Wagener, T.

    2013-12-01

    release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungaged basins.

  11. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    Directory of Open Access Journals (Sweden)

    P. A. Troch

    2013-06-01

    subsurface storage release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less E/P are associated with catchments that have vegetation with less (more efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungauged basins.

  12. THE FORMATION OF THE OUTFLOW IN THE URBANISED CATCHMENT AREA ON THE EXAMPLE OF THE CATCHMENT OF STRZYŻA

    Directory of Open Access Journals (Sweden)

    Magda Sikora

    2015-01-01

    Full Text Available The aim of the study is to determine what influence made various forms of land use of catchment area on the size and variability of the outflow. Linking the flow rate with the forms of land use will determine which factors affect the runoff in the basin. The object of the research is Strzyża river basin situated within the administrative boundaries of the city of Gdańsk. It was found that streams flowing through urban areas, including the city of Gdańsk (river Strzyża, quickly react to any excess water. Heavy rain combined with the discharge of water through the storm sewer system results of increasing the flow and runoff in streams, among others, Strzyża river.

  13. Neighbourhood catchments: a new approach for achieving ownership and change in catchment and stream management.

    Science.gov (United States)

    Carroll, C; Rohde, K; Millar, G; Dougall, C; Stevens, S; Ritchie, R; Lewis, S

    2002-01-01

    The Neighbourhood Catchment approach integrates land and stream management practices at a property and through to a local catchment scale, links production and environmental goals, and is a building block to achieve ownership and change at a sub-catchment scale and larger. Research conducted in two 'focus' Neighbourhood Catchments has shown that land management practices that retain >30% soil cover reduce sediment movement to streams. The Neighbourhood Catchment approach engages both early and cautious adopters, and enables continuous improvement of resource management to take place, and be recorded at an individual property and local catchment scale.

  14. Creating a catchment scale perspective for river restoration

    Science.gov (United States)

    Benda, L.; Miller, D.; Barquín, J.

    2011-09-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  15. Creating a catchment scale perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-09-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  16. Important progress on the use of isotope techniques and methods in catchment hydrology

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The use of isotope techniques and methods in catchment hydrology in the last 50 years has generated two major types of progress: (1) Assessment of the temporal variations of the major stocks and flows of water in catchments, from which the estimation of wa-ter residence times is introduced in this paper. (2) Assessment of catchment hydrologic processes, in which the interactions be-tween different waters, hydrographical separation, and bio-geochemical process are described by using isotopes tracers. Future progress on isotope techniques and methods in hydrology is toward the understanding of the hydrological process in large river basins. Much potential also waits realization in terms of how isotope information may be used to calibrate and test distributed rainfall-runoff models and regarding aid in the quantification of sustainable water resources management.

  17. Comparison of nitrogen and phosphorus removal efficiencies by storm runoffs for the ponds in the upper and lower reaches of a typical sub-catchment in Lake Chaohu drainage basin%巢湖典型子流域上下游水塘对暴雨径流氮磷去除效率比较

    Institute of Scientific and Technical Information of China (English)

    聂小飞; 李恒鹏; 李新艳

    2012-01-01

    从流域上下游环境条件及氮磷输出强度差异出发,探讨上下游水塘对径流氮磷去除的特征及效率,选取巢湖小柘皋河源头流域上下游水塘开展水塘去除暴雨径流氮磷的对比试验,研究暴雨及暴雨间期上下游水塘氮磷去除效率差异及原因,为流域上下游设计不同类型净化塘去除氮磷提供科学依据.结果表明:暴雨期,上游径流氮磷浓度高于下游,且颗粒态所占比例上游大于下游,流域上游应作为防治暴雨径流氮磷流失的重点区域;暴雨期,上游塘对暴雨径流中的氮磷去除效果明显,氮、磷去除率分别为74%和52%,且对颗粒态去除效果好于溶解态,下游塘没有表现出明显的去除效果;暴雨间期,上游塘塘内氮磷浓度平均下降50%和20%,下游塘则分别为72%和16%,且均以溶解态去除为主;水塘去除暴雨径流氮磷有一定的浓度适用范围,浓度过低,去除效果不明显;流域部位不同引起入塘径流氮磷浓度和形态的差异是上下游水塘对暴雨径流去除效果差异的主要外部原因.流域上游出山口,可以在渗透性好的山前洪积扇上构建深水宽塘,通过增加暴雨径流拦截量和降低流速增强物理沉降作用,实现暴雨径流氮磷的高效去除;流域下游农田区,宜构建水面较大的浅滩湿地,通过延长滞留时间和促进生物活动增强去除暴雨径流氮磷的效果.%In this paper, we analyze the removal efficiencies and characteristics of nitrogen and phosphorus in storm runoff in two ponds located in the upper and lower reaches of Xiaozhegao Stream, Lake Chaohu drainage basin. Results indicate that in the storm period, the runoff nitrogen and phosphorus levels in the upper reaches of stream are higher than those in the lower reaches. There is a good removal performance for the upper pond on both nitrogen and phosphorus (mainly in paniculate), with a removal efficiency of 74% and 52

  18. Analyzing runoff processes through conceptual hydrological modelling in the Upper Blue Nile basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    M. Dessie

    2014-05-01

    Full Text Available Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data scarce regions of the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall–runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile basin, the Lake Tana sub-basin to study the runoff mechanisms and rainfall–runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile basin were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44–48% in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18–19% for the Gumara, and 20% for the Gilgel Abay and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics well the rainfall–runoff process in the Upper Blue Nile basin

  19. Recasting catchment water balance for water allocation between human and environmental purposes

    Directory of Open Access Journals (Sweden)

    S. Zhou

    2015-01-01

    Full Text Available Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. The conventional water balance approach which partitions precipitation into evapotranspiration (ET and surface runoff supports the optimization of water allocations among different human water use sectors under the cap of water supply. However, this approach is unable to support the emerging water management priority issue of allocating water between societal and ecological systems. This paper recast the catchment water balance by partitioning catchment total ET into ET for the society and ET for the natural ecological systems, and estimated the impacts of water allocation on the two systems in terms of gross primary productivity (GPP, in the Murray–Darling Basin (MDB of Australia over the period 1900–2010. With the recast water balance, the more than 100 year water management in the MDB was divided into four periods corresponding to major changes in basin management: period 1 (1900–1956 expansion of water and land use by the societal system, period 2 (1956–1985 maximization of water and land use by the societal system, period 3 (1985–2002 maximization of water diversion for the societal system, and period 4 (2002–present rebalancing of water and land use between the societal and ecological systems. The recast water balance provided new understandings of the water and land dynamics between societal and ecological systems in the MDB, and it highlighted the experiences and lessons of catchment water management in the MDB over the last more than 100 years. The recast water balance could serve as the theoretical foundation for water allocation to keep a dynamic balance between the societal and ecological systems within a basin for sustainable catchment development. It provides a new approach to advance the discipline of socio-hydrology.

  20. 10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef

    Science.gov (United States)

    Croke, Jacky; Bartley, Rebecca; Chappell, John; Austin, Jenet M.; Fifield, Keith; Tims, Stephen G.; Thompson, Chris J.; Furuichi, Takahisa

    2015-07-01

    Terrestrial cosmogenic nuclides (TCNs) such as Beryllium-10 (10Be) are now routinely used to reconstruct erosional rates over tens of thousands of years at increasingly large basin scales (> 100,000 km2). In Australia, however, the approach and its assumptions have not been systematically tested within a single, large drainage basin. This study measures 10Be concentrations in river sediments from the Burdekin catchment, one of Australia's largest coastal catchments, to determine long-term (> 10,000 years), time-integrated rates of sediment generation and denudation. A nested-sampling design was used to test for effects of increasing catchment scale on nuclide concentrations with upstream catchment areas ranging from 4 to 130,000 km2. Beryllium-10 concentrations in sediment samples collected from the upstream headwater tributaries and mid-stream locations range from 1.8 to 2.89 × 105 atoms g- 1 and data confirm that nuclide concentrations are well and rapidly mixed downstream. Sediment from the same tributaries consistently yielded 10Be concentrations in the range of their upstream samples. Overall, no decrease in 10Be concentrations can be observed at the range of catchment scales measured here. The mean denudation rate for all river sediment samples throughout the Fanning subcatchment (1100 km2) is 18.47 m Ma- 1, which compares with the estimate at the end of the Burdekin catchment (130,000 km2) of 16.22 m Ma- 1. Nuclide concentrations in the lower gradient western and southern catchments show a higher degree of variability, and several complications emerged as a result of the contrasting geomorphic processes and settings. This study confirms the ability of TCNs to determine long-term denudation rates in Australia and highlights some important considerations in the model assumptions that may affect the accuracy of limited sampling in large, low-gradient catchments with long storage times.

  1. Nutrient sources in a Mediterranean catchment and their improvement for water quality management

    Science.gov (United States)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    Changes in land-use or management strategies may affect water outflow, sediment and nutrients loads. Thus, there is an increasing demand for quantitative information at the catchment scale that would help decision makers or planners to take appropriate decisions. The characterisation of water status, the description of pollution sources impact, the establishment of monitoring programs and the implementation of river basin management plans require an analysis of the current basin status and estimates of the relative significance of the different sources of pollution. Particularly, in this study the Soil and Water Assessment Tool (SWAT2000) model was considered since it is an integrated hydrological model that simulates both the qualitative as well as quantitative terms of hydrological balances. It is a spatially distributed hydrological model that operates on a daily time step at catchment scale developed by the Agricultural Research Service at the U.S. Department of Agriculture. Its purpose is to simulate water sediment and chemical yields on large river basins and possible impacts of land use, climate changes and watershed management. Integrated hydrological models are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the European Water Directive. Actually, they can help in evaluating current water resources, identify pollution sources, evaluate alternative management policies. More specifically, the analysis has been applied to the Oreto catchment (77 Km2), an agricultural and urbanised catchment located in Sicily (Italy). Residential, commercial, farm and industrial settlements cover almost the entire area. The climate is Mediterranean with hot dry summer and rainy winter season. The hydrological response of this basin is dominated by long dry seasons and following wetting-up periods, during which even large inputs of rainfall may produce little or no response at the basin outlet

  2. Seasonalstreamflow Generation At Variousspatial Scales On A Smallmediterranean Vineyard Catchment

    Science.gov (United States)

    Marofi, S.; Moussa, R.; Voltz, M.

    The importance of surface hydrological processes, under field and sub-catchment conditions, was examines on a small-cultivated watershed, located in South of France. Hydrological responses at different spatial scales were evaluated during the wetness and drier phases, which included the within-year and the long-term periods. The experimental design involved monitoring of surface runoff, streamflow and groundwaters behaviours, in response to rainfall events, during three hydrological cycles. In addition to the mean outlet of catchment and the two vineyard fields that have different situations, runoff was measured at 8 sub-catchments of site. Rainfall was monitored on continuous basis at 4 sites, and the water tables fluctuations also were recorded in more than 15 locations of catchment. During the experimentation period, more than 175 rainy events were observed. The dates analyse show that the regime of surface water, compound of three principals phases: (i) the phases of great flow circulation, (ii) the recession phases, and (iii) the phase without surface flow. The results also indicate that the annual runoff changes appreciably according to hydrological cycles and the rainfall variability. It varies from 28% to 50% of the total of precipitation. The inter-annual variations of the runoff also recovers that the annual runoff flow is insured for approximately 40% by the instantaneous floods, which occur the moment or a few hours only after precipitation, and about 60% by the recession periods, which take place for the long time after floods. The flood events were classified in three groups, differentiated by the initial water table levels and their occurrence period. The direct runoff and the baseflow calculation show that according to the type of flood, they change respectively from 7% to17% and 0% to 7% of precipitation. Comparing to the field areas, on average, the total runoff and direct runoff of the mean basin respectively are 46% and 35%. The water flow

  3. Development and application of the distributed hydrologic model based on the two-source PET model and the hybrid runoff model: A case study of Laoha River catchment, Liaohe River Basin%基于双源蒸散和混合产流的分布式水文模型构建及应用——以辽河老哈河流域为例

    Institute of Scientific and Technical Information of China (English)

    刘晓帆; 任立良; 徐静; 袁飞

    2011-01-01

    The Laoha River catchment, Liaohe River Basin in the semi-arid region of northern China is selected for study. The interception evaporation,canopy transpiration and soil evaporation are computed by a physically-based two-source potential evapotranspiration model in each grid cell of the basin. The calculated potential evapotranspiration is regarded as the input of the hybrid runoff model instead of the pan evaporation. Then the grid-basod distributed hydrologic model is built for daily runoff simulation during 1970 - 1979 in the target basin by coupling the two-source PET model in the hybrid runoff model framework. The results show that the two-source PET model can reflect the effects of vegetation type, vegetation physiological features and phonological characteristics on the evapotranspiration. And the grid-based distributed hydrologic model which can illuminate the role of runoff generation and runoff muting is applicable for runoff simulation in the target basin.%以北方半干旱地区的辽河老哈河流域为研究对象,采用网格离散化方法进行水文模拟单元划分,利用具有物理基础的双源蒸散发能力估算模型,计算每个栅格单元的截留蒸发、植被蒸腾能力和土壤蒸发能力,并取代蒸发皿资料作为混合产流模型的蒸散发能力输入,从而构建摹于双源蒸散与混合产流的分布式水文模型,并对老哈河流域1970-1979年的日径流过程进行模拟分析,结果表明双源蒸散发能力计算模型能够考虑植被类型及其生理、物候特性对蒸散发能力的影响.将其与混合产流模型进行嵌套构建的分布式水文模型能较合理地揭示研究区域的产汇流规律,适用于该地区的水文过程模拟.

  4. Winter streamflow analysis in frozen, alpine catchments to quantify groundwater contribution and properties

    Science.gov (United States)

    Stoelzle, Michael; Weiler, Markus

    2016-04-01

    contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.

  5. Silting in the dense reservoir network of the Pereira de Miranda catchment

    OpenAIRE

    Lira,Daniely; Toledo,Cristian; Mamede,George

    2014-01-01

    This study aims to analyze the impacts of the reservoir network within Pereira de Miranda - CE catchment (also called Pentecoste) over sediment transport and storage capacity of the system. The survey of the "damming" was carried out using satellite images. We identified 502 erosion units, derived from overlaying maps of the Universal Soil Loss Equation parameters, which allowed the estimation of localized erosion in the basin and identification of areas potentially generating sediment. In or...

  6. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.

    Science.gov (United States)

    Salvia-Castellví, Mercè; Iffly, Jean François; Borght, Paul Vander; Hoffmann, Lucien

    2005-05-15

    Nutrient enrichment of freshwaters continues to be one of the most serious problems facing the management of surface waters. Effective remediation/conservation measures require accurate qualitative and quantitative knowledge of nutrient sources, transport mechanisms, transformations and annual dynamics of different nitrogen (N) and phosphorus (P) forms. In this paper, nitrate (NO3-N), soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations and loads are presented for two adjacent rural basins of 306 km2 and 424 km2, and for five sub-basins differing in size (between 1 km2 and 33 km2), land use (extent of forest cover between 20% and 93%) and household pressure (from 0 to 40 people/km2) with the aim of studying the influence of land use and catchment size on nutrient exports. The studied catchments are all situated on Devonian schistous substrates in the Ardennes region (Belgium-Luxembourg), and therefore have similar hydrological regimes. As the study period could not be the same for all basins, annual export coefficients were corrected with the 25 years normalized discharge of the Sure River: two regression analyses (for dry and humid periods) relating monthly nutrient loads to monthly runoff were used to determine correction factors to be applied to each parameter and each basin. This procedure allows for the comparing annual export coefficients from basins sampled in different years. Results show a marked seasonal response and a large variability of NO3-N export loads between forested (4 kg N ha-1 year-1), agricultural (27-33 kg N ha-1 year-1) and mixed catchments (17-22 kg N ha-1 year-1). For SRP and TP, no significant agricultural impact was found. Land and bank erosion control the total P massflow in the studied catchments (0.4-1.3 kg P ha-1 year-1), which is mostly in a particulate form, detached and transported during storm events. Soluble reactive P fluxes ranged between 10% and 30% of the TP mass, depending on the importance of point

  7. Hydropedological insights when considering catchment classification

    Directory of Open Access Journals (Sweden)

    J. Bouma

    2011-06-01

    Full Text Available Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhere with identical classifications. This principle also applies to catchments. However, to be useful, soil classifications have to be based on permanent characteristics as formed by the soil forming factors over often very long periods of time. When defining permanent catchment characteristics, discharge data would therefore appear to be less suitable. But permanent soil characteristics do not necessarily match with characteristics and parameters needed for functional soil characterization focusing, for example, on catchment hydrology. Hydropedology has made contributions towards the required functional characterization of soils as is illustrated for three recent hydrological catchment studies. However, much still needs to be learned about the physical behaviour of anisotropic, heterogeneous soils with varying soil structures during the year and about spatial and temporal variability. The suggestion is made therefore to first focus on improving simulation of catchment hydrology, possibly incorporating hydropedological expertise, before embarking on a catchment classification effort which involves major input of time and involves the risk of distraction. In doing so, we suggest to also define other characteristics for catchment performance than the traditionally measured discharge rates. Such characteristics may well be derived from societal issues being studied, as is illustrated for the Green Water Credits program.

  8. Hydrological dynamics of a Mediterranean catchment in a global change context. (Romanyac catchment, Cap de Creus, Girona, Spain)

    Science.gov (United States)

    Latron, J.; Pardini, G.; Gispert, M.; Llorens, P.

    2009-04-01

    Mediterranean regions are characterized by unevenly distributed water resources, and consequently a more precise knowledge of the main hydrological processes and their variability and changes is crucial for a better management of water resources. However, the lack of hydrological information and data in most areas of the Mediterranean basin greatly difficult the analyses of changes in water resources at relevant scales. In this context, the Soil Science Unit GRCT48 from the University of Girona is conducting an integrated study of hydrological response, soil erosion and soil degradation processes in fragile Mediterranean areas undergoing changes in use and management. The study area is located in the Cap de Creus Peninsula (NE Spain), where land abandonment has been the outstanding characteristic over the last decades. The area is covered by terraced soils, most of them abandoned, and stands for a representative Mediterranean environment. Current land cover is a mosaic of areas with different shrubs according to wildfire occurrence. Residual patches of cork and pine trees are also present as well as small extensions of pastures. Finally some localized areas of vineyards and olive trees are still cultivated. The approach is based on the complementary use of plot and catchment scales to assess the effect of land cover and land use change on physical, chemical and biological parameters of soil quality and on rainfall-runoff-erosion relationships. Along the study period, observed rainfall-runoff response at the plot scale was highly variable among sites but also for a given environment, depending on antecedent wetness conditions and rainfall characteristics. Overall, surface runoff responses were low in all environments. Soil loss associated to rainfall-runoff events showed very large variations among sites, and also for a given site, between the different rainfall events. At the catchment scale, preliminary results obtained from the monitoring, of three catchments of

  9. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus

  10. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: surficial geology

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of surficial geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River

  11. SOILS VULNERABILITY OF CATCHMENT ALMAŞ AT GEOMORPHOLOGIC CONTEMPORARY PROCESSES

    Directory of Open Access Journals (Sweden)

    MĂDĂLINA-IOANA RUS

    2015-03-01

    Full Text Available Soils vulnerability of the Catchment Almas geomorphologic processes. Almas Basin, signed lower lithologic Miocene soils deposits, shows six classes: Cernisols, Cambisols, Luvisols, Hydrosols, Pelisols, Protosols (after SRTS, 2003. The largest share is attributed to Luvisols class (60%, followed by undeveloped soil represented by Protosols and Antrisols (15%, followed by the remaining classes with lower weights: Cambisols (13%, Cernisols (7%, Pelisols (4%, Hydrosols (1%. Contemporary geomorphological processes (surface and deep erosion, mass movements change agricultural areas and forest ratio or flow out of economic network tens of hectares annually. Soil vulnerability to the manifestation of these processes is expressed by disturbing soil horizons, coastal springs appearance and growth of the adjoining excess moisture, soil sealing productive by dropping or by alienation.

  12. Morphometric properties of the trans-Himalayan river catchments: Clues towards a relative chronology of orogen-wide drainage integration

    Science.gov (United States)

    Ghosh, Parthasarathi; Sinha, Sayan; Misra, Arindam

    2015-03-01

    transverse watersheds occurring in the middle of the catchments resemble a series of small drainage basins formed on the precursor topography of the modern Himalayas. The lower parts of the catchments were shaped instead by drainage diversions induced by deformations related to the frontal thrust. We show how the shape of the catchments represents an integration of processes such as headward drainage enlargement, capture of pre-existing drainage, and diversion of drainage in response to crustal deformation at successive stages of Himalayan mountain growth. We further show that there is a systematic change in the morphological characters and organization of the watersheds, nested in the catchments, from the middle towards the flanks of the Himalayas indicating the variations in relative influence of different drainage evolution processes and the orogen-scale heterogeneity in tectonic style.

  13. Doing hydrology backwards in tropical humid catchments

    Science.gov (United States)

    Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.

    2015-12-01

    Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).

  14. Use of modeling to protect, plan, and manage water resources in catchment areas.

    Science.gov (United States)

    Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves

    2016-08-01

    The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another

  15. Comprehensive Management of the Heihe Catchment:A Success in Coupling Water-Ecological Setting with Local Economy

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ In the arid regions of northwestern China, water is considered as the "life blood" of all living organisms and economic activities.An oasis will grow greener with ample supply of water, whereas the green will fade if water is in short supply. An inland river catchment constitutes an independent unit of ecological functions in which interactions and transformation occur between mountainous areas and plains, between oases and wastelands, and between ground surface runoffs and underground water. The sustainability of a catchment is deeply rooted in the coordination of hydrological, ecological and economical processes in a drainage basin.

  16. Examination of catchment areas for public transport

    DEFF Research Database (Denmark)

    Landex, Alex; Hansen, Stephen; Andersen, Jonas Lohmann Elkjær

    2006-01-01

    The paper presents a method to examine the catchment areas for stops in high quality public transport systems based on the street network in the examined area. This is achieved by implementing the Service Area functions from the ArcGIS extension Network Analyst. The method is compared to a more...... or by making changes in the street network around the station. The paper also discusses the degree of realism in the used GIS networks and how it can affect the size of the catchment areas. It is concluded that the Service Area method improves the detail-level and accuracy in catchment area analyses...

  17. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?

    Directory of Open Access Journals (Sweden)

    F. Fenicia

    2009-09-01

    Full Text Available The objective of this paper is to investigate the time variability of catchment characteristics in the Meuse basin through its effect on catchment response. The approach uses a conceptual model to represent rainfall-runoff behaviour of this catchment, and evaluates possible time-dependence of model parameters. The main hypothesis is that conceptual model parameters, although not measurable quantities, are representative of specific catchment attributes (e.g. geology, land-use, land management, topography. Hence, we assume that eventual trends in model parameters are representative of catchment attributes that may have changed over time. The available hydrological record involves ninety years of data, starting in 1911. During this period the Meuse catchment has undergone significant modifications. The catchment structural modifications, although documented, are not available as "hard-data". Hence, our results should be considered as "plausible hypotheses". The main motivation of this work is the "anomaly" found in the rainfall runoff behaviour of the Meuse basin, where ninety years of rainfall-runoff simulations show a consistent overestimation of the runoff in the period between 1930 and 1965. Different authors have debated possible causes for the "anomaly", including climatic variability, land-use change and data errors. None of the authors considered the way in which the land is used by for instance agricultural and forestry practises. This aspect influenced the model design, which has been configured to account for different evaporation demand of growing forest. As a result of our analysis, we conclude that the lag time of the catchment has decreased significantly over time, which we attribute to more intensive drainage and river training works. Furthermore, we hypothesise that forest rotation has had a significant impact on the evaporation of the catchment. These results contrast with previous studies, where the effect of land-use change on

  18. Removal of Heavy Metals and PAH in Retention Basins

    DEFF Research Database (Denmark)

    Larsen, Torben; Neerup-Jensen, Ole

    2004-01-01

    Solid seperation in retention basins is strongly non-linear and depends significantly on the flow rate and the settling characteristics of the particles. Accordingly the calculation of the annual loads of pollutants from storm overflows including basins is rather complex and time consuming. The p...... in order to calculate annual loads of pollutants from urban catchments. The study cover Cd, Cu, Ni, Pb, Zn and PAH....

  19. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  20. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    Science.gov (United States)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  1. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    Science.gov (United States)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  2. Impact Assessment of Uncertainty Propagation of Ensemble NWP Rainfall to Flood Forecasting with Catchment Scale

    Directory of Open Access Journals (Sweden)

    Wansik Yu

    2016-01-01

    Full Text Available The common approach to quantifying the precipitation forecast uncertainty is ensemble simulations where a numerical weather prediction (NWP model is run for a number of cases with slightly different initial conditions. In practice, the spread of ensemble members in terms of flood discharge is used as a measure of forecast uncertainty due to uncertain precipitation forecasts. This study presents the uncertainty propagation of rainfall forecast into hydrological response with catchment scale through distributed rainfall-runoff modeling based on the forecasted ensemble rainfall of NWP model. At first, forecast rainfall error based on the BIAS is compared with flood forecast error to assess the error propagation. Second, the variability of flood forecast uncertainty according to catchment scale is discussed using ensemble spread. Then we also assess the flood forecast uncertainty with catchment scale using an estimation regression equation between ensemble rainfall BIAS and discharge BIAS. Finally, the flood forecast uncertainty with RMSE using specific discharge in catchment scale is discussed. Our study is carried out and verified using the largest flood event by typhoon “Talas” of 2011 over the 33 subcatchments of Shingu river basin (2,360 km2, which is located in the Kii Peninsula, Japan.

  3. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  4. Factors influencing water transit times in snowmelt-dominated, headwater catchments of the western U.S.

    Science.gov (United States)

    Clow, D. W.; Mast, A.

    2015-12-01

    In catchments, water transit times (TTs) refer to the elapsed time between entry of water at the ground surface and exit of water at the catchment outlet. Transit times are an important characteristic of catchments in that they reflect the time available for interaction between water, soil, and biota within the system. Thus, they exert a strong influence on hydrologic resilience to drought and climate change, and on the sensitivity of aquatic ecosystems to atmospheric pollutants. Transit times may vary spatially due to variations in basin characteristics, such as slope, size, and amount and type of soil and vegetation; however, the relative influence of these factors on TTs is poorly known. In this study, we estimate mean transit times (MTTs) for 11 snowmelt-dominated, headwater catchments in the western U.S. using the convolution integral approach, which relies on differences in the magnitude of seasonal variability in δ18O in precipitation and stream water to estimate MTTs. Seasonal variability in δ18O was calculated based on analyses of precipitation and stream water samples collected at weekly to monthly intervals. Results indicate that MTTs ranged from 0.6 to 2.1 years, and were positively influenced by percent of the catchment covered by forest (r2 = 0.56; p = 0.008), and negatively influenced by barren terrain (e.g., bedrock; r2 = 0.48; p = 0.019). MTTs showed a weak negative relation to mean basin slope (r2 = 0.31; p = 0.076) and no relation to basin size or elevation. These results illustrate the importance of soil as a key factor influencing MTTs, with basin slope acting as a secondary influence. Heavily forested basins tend to have deep, well-developed soils with substantial water storage capacity; these soils help maintain baseflow during drought conditions, providing hydrologic resilience to the system, and they are an important location for geochemical and biological processes that neutralize acidity and assimilate atmospherically deposited nitrogen

  5. An Open-Source Approach for Catchment's Physiographic Characterization

    Science.gov (United States)

    Di Leo, M.; Di Stefano, M.

    2013-12-01

    A water catchment's hydrologic response is intimately linked to its morphological shape, which is a signature on the landscape of the particular climate conditions that generated the hydrographic basin over time. Furthermore, geomorphologic structures influence hydrologic regimes and land cover (vegetation). For these reasons, a basin's characterization is a fundamental element in hydrological studies. Physiographic descriptors have been extracted manually for long time, but currently Geographic Information System (GIS) tools ease such task by offering a powerful instrument for hydrologists to save time and improve accuracy of result. Here we present a program combining the flexibility of the Python programming language with the reliability of GRASS GIS, which automatically performing the catchment's physiographic characterization. GRASS (Geographic Resource Analysis Support System) is a Free and Open Source GIS, that today can look back on 30 years of successful development in geospatial data management and analysis, image processing, graphics and maps production, spatial modeling and visualization. The recent development of new hydrologic tools, coupled with the tremendous boost in the existing flow routing algorithms, reduced the computational time and made GRASS a complete toolset for hydrological analysis even for large datasets. The tool presented here is a module called r.basin, based on GRASS' traditional nomenclature, where the "r" stands for "raster", and it is available for GRASS version 6.x and more recently for GRASS 7. As input it uses a Digital Elevation Model and the coordinates of the outlet, and, powered by the recently developed r.stream.* hydrological tools, it performs the flow calculation, delimits the basin's boundaries and extracts the drainage network, returning the flow direction and accumulation, the distance to outlet and the hill slopes length maps. Based on those maps, it calculates hydrologically meaningful shape factors and

  6. Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change

    Science.gov (United States)

    Ruelland, D.; Ardoin-Bardin, S.; Collet, L.; Roucou, P.

    2012-03-01

    SummaryThis paper assesses the future variability of water resources in the short, medium and long terms over a large Sudano-Sahelian catchment in West Africa. Flow simulations were performed with a daily conceptual model. A period of nearly 50 years (1952-2000) was chosen to capture long-term hydro-climatic variability. Calibration and validation were performed on the basis of a multi-objective function that aggregates a variety of goodness-of-fit indices. The climate models HadCM3 and MPI-M under SRES-A2 were used to provide future climate scenarios over the catchment. Outputs from these models were used to generate daily rainfall and temperature series for the 21st century according to: (i) the unbias and delta methods application and (ii) spatial and temporal downscaling. A temperature-based formula was used to calculate present and future potential evapotranspiration (PET). The daily rainfall and PET series were introduced into the calibrated and validated hydrological model to simulate future discharge. The model correctly reproduces the observed discharge at the basin outlet. The Nash-Sutcliffe efficiency criterion is over 89% for both calibration and validation periods, and the volume error between simulation and observation is close to null for the overall considered period. With regard to future climate, the results show clear trends of reduced rainfall over the catchment. This rainfall deficit, together with a continuing increase in potential evapotranspiration, suggests that runoff from the basin could be substantially reduced, especially in the long term (60-65%), compared to the 1961-1990 reference period. As a result, the long-term hydrological simulations show that the catchment discharge could decrease to the same levels as those observed during the severe drought of the 1980s.

  7. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  8. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    Science.gov (United States)

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  9. In Lieu of the Paired-Catchment Approach - Hydrologic Model Change Detection at the Catchment Scale

    Science.gov (United States)

    Zegre, N. P.

    2009-05-01

    Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment studies conducted world-wide. While this approach has been useful for discerning changes in small experimental catchments and has contributed fundamental knowledge of the effects of forest and natural resources management on hydrology, results from experimental catchment studies exhibit temporal variability, have limited spatial inference, and lack insight into internal catchment processes. To address these limitations, traditional field experiments can be supplemented with numerical models to isolate the effects of disturbance on catchment behavior. Outlined in this study is an alternative method of change detection for daily time-series streamflow that integrates hydrologic modeling and statistical change detection methods used to discern the effects of contemporary forest management on the hydrology of western Oregon Cascades headwater catchments. In this study, a simple rainfall-runoff model was used to generate virtual reference catchments using attributes that reflect streamflow conditions absent of forest disturbance. Streamflow was simulated under three levels of model uncertainty using GLUE and were used to construct generalized least squares regression models to discern changes in hydrologic behavior. By considering processes within a single experimental catchment rather than the two spatially explicit catchments used in traditional paired experiments, it was possible to reduce unexplained variation and increase the likelihood of correctly detecting hydrologic effects following forest harvesting. In order to evaluate the stability of the hydrologic and statistical models and catchment behavior over time, the change detection method was applied to a contemporary reference catchment. By applying the change detection model to reference catchments, it was possible to eliminate unexpected variation as a cause for detected changes in observed hydrology. Further, it

  10. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    Science.gov (United States)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  11. Water balance modeling of Upper Blue Nile catchments using a top-down approach

    Directory of Open Access Journals (Sweden)

    S. Tekleab

    2011-07-01

    Full Text Available The water balances of twenty catchments in the Upper Blue Nile basin have been analyzed using a top-down modeling approach based on Budyko's hypotheses. The objective of this study is to obtain better understanding of water balance dynamics of upper Blue Nile catchments on annual and monthly time scales and on a spatial scale of meso scale to large scale. The water balance analysis using a Budyko-type curve at annual scale reveals that the aridity index does not exert a first order control in most of the catchments. This implies the need to increase model complexity to monthly time scale to include the effects of seasonal soil moisture dynamics. The dynamic water balance model used in this study predicts the direct runoff and other processes based on the limit concept; i.e. for dry environments since rainfall amount is small, the aridity index approaches to infinity or equivalently evaporation approaches rainfall and for wet environments where the rainfall amount is large, the aridity index approaches to zero and actual evaporation approaches the potential evaporation. The uncertainty of model parameters has been assessed using the GLUE (Generalized Likelihood Uncertainty Estimation methodology. The results show that the majority of the parameters are reasonably well identifiable. However, the baseflow recession constant was poorly identifiable. Parameter uncertainty and model structural errors could be the reason for the poorly identifiable parameter. Moreover, a multi-objective model calibration strategy has been employed to emphasize the different aspects of the hydrographs on low and high flows.

    The model has been calibrated and validated against observed streamflow time series and it shows good performance for the twenty study catchments in the upper Blue Nile. During the calibration period (1995–2000 the Nash and Sutcliffe efficiency (E NS for monthly flow prediction varied between 0.52 to 0.93 (dominated by

  12. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    Science.gov (United States)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and

  13. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  14. Understanding Polycyclic Aromatic Hydrocarbon transfers at the catchment scale combining chemical and fallout radionuclides analyses

    Science.gov (United States)

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2013-04-01

    Contamination of river water and sediment constitutes a major environmental issue for industrialized countries. Polycyclic Aromatic Hydrocarbons (PAHs) are a group of persistent organic pollutants characterized by two or more fused rings. In recent years, studies dealing with PAHs have grown in number. Some PAHs present indeed a high risk for environment and human health because of their carcinogenic and mutagenic properties. However, most of these studies focused on measuring PAH concentration in the different compartments of the environment (air, soil, sediment, water, etc.) In this context, there remains a lack of understanding regarding the various processes responsible for PAH transfers from one environmental compartment to another. Our study aims to quantify PAHs transfers at the catchment scale by combining chemical analysis with gamma spectrometry. Air, soil, river water and sediment samples (n=820) were collected in two upstream sub-catchments of the Seine River basin (France) during one year. Chemical analyses were carried out to determine PAHs concentrations in all samples. Furthermore, measurement of fallout radionuclides (Beryllium-7, Lead-210, Caesium-137) in both rainfall and river sediment provided a way to discriminate between freshly eroded sediment vs. resuspension of older material that previously deposited on the riverbed. This information is crucial to estimate PAH residence time and transfer velocities in the Seine River basin. The results show that the PAH behaviour varies from one subcatchment to the next. PAH transfers depend indeed on both the characteristics of the catchment (e.g. topography, presence of drained cropland in catchments) and the local anthropogenic pressures. A significant increase in atmospheric deposition of PAHs is observed during winter due to a larger number of sources (household heating). The 14-month study has also highlighted the seasonal variations of PAH fluxes, which are mainly related to the hydrological

  15. 太湖上游水源保护区生态补偿支付意愿问卷调查——以天目湖流域为例%Questionnaire survey on willingness to pay about ecological compensation of Lake Tianmu catchment, Taihu Basin

    Institute of Scientific and Technical Information of China (English)

    李青; 张落成; 武清华

    2011-01-01

    在天目湖流域建立生态补偿机制,形成上游生态保护激励机制,对于太湖流域水环境改善有着极为重要的作用.本文通过问卷调查的方式,首先,调查了解天目湖流域居民对环境保护和生态补偿的认知状况,得出天目湖流域居民环境保护意识很强,生态补偿需求旺盛.其次,对居民和旅游者的生态补偿支付意愿进行了解.最后,对最大支付意愿公式进行改进,在原有水费反哺的基础上结合了旅游者门票反哺的最大支付意愿,算出天目湖流域生态补偿总额为12924.08万元.同时生态补偿不仅仅是物质或货币的补偿,更重要的是从国家与省市层面上对天目湖这一重要生态功能区给予一定的政策倾斜.%It is important for improving water quality of Lake Taihu that ecological compensation mechanism and incentive mechanism for upstream ecological protection is carried out in Lake Tianmu catchment. Firstly, we acquainted of residents'cognitive status of environmental protection and ecological compensation in Lake Tianmu catchment, and found a strong environmental protection awareness and a great ecological compensation demand. Then, we investigated the willingness to pay for ecological compensation of both local residents and visitors. Finally, we improved the original formula of the greatest willingness to pay. We summed up a total ecological compensation amount of 12924.08 thousand yuan in Lake Tianmu catchment by integrating the greatest back-feeding willingness of tourist tickets to pay into water fee regurgitation-feeding. It was not enough for ecological compensation merely at the material or monetary compensation, and more important way of Lake Tianmu catchment ecological compensation was that some policy inclination of this important eco-function areas from both state and provincial level.

  16. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    Science.gov (United States)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  17. Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA

    Directory of Open Access Journals (Sweden)

    K. Sawicz

    2011-09-01

    Full Text Available Hydrologic similarity between catchments, derived from similarity in how catchments respond to precipitation input, is the basis for catchment classification, for transferability of information, for generalization of our hydrologic understanding and also for understanding the potential impacts of environmental change. An important question in this context is, how far can widely available hydrologic information (precipitation-temperature-streamflow data and generally available physical descriptors be used to create a first order grouping of hydrologically similar catchments? We utilize a heterogeneous dataset of 280 catchments located in the Eastern US to understand hydrologic similarity in a 6-dimensional signature space across a region with strong environmental gradients. Signatures are defined as hydrologic response characteristics that provide insight into the hydrologic function of catchments. A Bayesian clustering scheme is used to separate the catchments into 9 homogeneous classes, which enable us to interpret hydrologic similarity with respect to similarity in climatic and landscape attributes across this region. We finally derive several hypotheses regarding controls on individual signatures from the analysis performed here.

  18. Characterizing streamflow generation in Alpine catchments

    Science.gov (United States)

    Chiogna, Gabriele; Cano Paoli, Karina; Bellin, Alberto

    2016-04-01

    Developing effective hydrological models for streamflow generation in Alpine catchments is challenging due to the inherent complexity of the intertwined processes controlling water transfer from hillslopes to streams and along the river network. With water discharge as the sole observational variable it is impossible to differentiate between different streamflow sources, and modelling activity is often limited to simplified phenomenological rainfall-runoff models. This study focuses on quantifying streamflow sources at different temporal scales and the associated uncertainty by using natural tracer data (electrical conductivity, oxygen and hydrogen stable isotopes ratios) as observational variables supplementing streamflow measurements. We determine the spatial and temporal hydrological behavior and the mean residence time of water in the Vermigliana catchment, North-Eastern Italy and we separate contributions to streamflow originating from Presena and Presanella glaciers, both exerting a strong control on the hydrologic budget of the study site. Furthermore, we identify a seasonal control on the effect of storm events. The catchment responded rapidly to precipitation events in early autumn, it was unaffected by precipitation events in early spring, while runoff generation was enhanced by snow melting in late autumn. Air temperature is identified as the main controlling parameter, in addition to precipitation. Two-component mixing analysis showed that the relative contribution of new water, which can contribute up to 75% of total streamflow, is very rapid. Only two hours time-lag was observed between the beginning of the precipitation event and the emergence of a significant contribution of new water. These results evidence the relevance of mixing between pre-event and event water in the Vermigliana catchment, and in similar high elevation Alpine catchments. This study provides new insights on the dynamics of streamflow generation in Alpine catchments and a

  19. Exploring Hydrological Flow Paths in Conceptual Catchment Models using Variance-based Sensitivity Analysis

    Science.gov (United States)

    Mockler, E. M.; O'Loughlin, F.; Bruen, M. P.

    2013-12-01

    Conceptual rainfall runoff (CRR) models aim to capture the dominant hydrological processes in a catchment in order to predict the flows in a river. Most flood forecasting models focus on predicting total outflows from a catchment and often perform well without the correct distribution between individual pathways. However, modelling of water flow paths within a catchment, rather than its overall response, is specifically needed to investigate the physical and chemical transport of matter through the various elements of the hydrological cycle. Focus is increasingly turning to accurately quantifying the internal movement of water within these models to investigate if the simulated processes contributing to the total flows are realistic in the expectation of generating more robust models. Parameter regionalisation is required if such models are to be widely used, particularly in ungauged catchments. However, most regionalisation studies to date have typically consisted of calibrations and correlations of parameters with catchment characteristics, or some variations of this. In order for a priori parameter estimation in this manner to be possible, a model must be parametrically parsimonious while still capturing the dominant processes of the catchment. The presence of parameter interactions within most CRR model structures can make parameter prediction in ungauged basins very difficult, as the functional role of the parameter within the model may not be uniquely identifiable. We use a variance based sensitivity analysis method to investigate parameter sensitivities and interactions in the global parameter space of three CRR models, simulating a set of 30 Irish catchments within a variety of hydrological settings over a 16 year period. The exploration of sensitivities of internal flow path partitioning was a specific focus and correlations between catchment characteristics and parameter sensitivities were also investigated to assist in evaluating model performances

  20. Estimation of groundwater contribution in runoff from small agricultural dominated catchments

    Science.gov (United States)

    Deelstra, Johannes; Jansons, Viesturs; Lagzdiņš, Ainis

    2013-04-01

    Latvia. Each set consisted of a field providing both surface and subsurface runoff located within the catchment. Different filters were tested but the one developed by Chapman & Maxwell (1996) was selected. An improved filter parameter value was obtained, resulting in more realistic values for BFI in Norwegian catchments, being in the order of 10%. The values for the Latvian catchments were slightly higher, the main reason for this being soil types and geological settings. The results indicate that care should be taken in selecting the digital filter value for catchments having flashy runoff behaviour. This might lead to wrong estimates of baseflow contribution which can have negative effects on modelling hydrology, pollutant transport and the selection of mitigation measures at the scale of small agricultural catchments. References Chapman, T.G., Maxwell, A.I . 1996. Baseflow separation - comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Publ. 96/05, 539-545 Deelstra, J., Eggestad, H.O., Iital, A., Jansons, V. and Barkved, L.J. (2010), "Time resolution and hydrological characteristics in agricultural catchments", in Hermann, A. and Schumann, S. (Eds), Status and Perspectives of Hydrology in Small Basins, Vol. 336, IAHS Publication, pp. 138 - 143.

  1. Climate Change Impacts in the Upper Rio Grande Catchment

    Science.gov (United States)

    Heikkila, T.; Siegfried, T. U.; Sellars, S. L.; Schlager, E.

    2010-12-01

    In the US Southwest, evidence of increased future drought severity and duration in the context of climate change has been detected. Considering the already difficult water distribution and allocation strategies within the region, we are investigating the Costilla Creek, a tributary to the Rio Grande. The catchment is located in Costilla county in Colorado from where on runoff is crossing boundaries between Colorado and New Mexico three times before its confluence with the Rio Grande in New Mexico. Water allocation is governed by an interstate compact between Colorado and New Mexico. While the states have been relatively successful in complying with the compact’s allocation rules, the Costilla Creek catchment has experienced interstate upstream/downstream conflict, mainly during irrigation seasons. Whether or not the states will be able to avert conflict in the future and maintain compliance with the compact, is a critical question. The situation in the relatively small catchment is not unique. Various interstate watersheds, including the entire Rio Grande basin, the La Plata, Arkansas, and Colorado, are expected to face similar impacts from climate change, yet the water compacts that govern them may not be structured to adapt to these conditions. Looking at the Costilla Creek offers a valuable starting point for understanding how to model these effects across various basins. We have developed a lumped-parameter rainfall-runoff model including snow storage of the Costilla Creek watershed. Temperature and precipitation data from NCRS - SNOTEL stations together with USGS gauging station data were utilized for model calibration and validation. ISCCP solar radiation data and temperature data were used to estimate irrigation water demand in irrigated agriculture. The model is driven by the IPCC SRES A2 scenario. GCM ensemble averaged temperature / precipitation trends were extracted for the upper Rio Grande region. 50 year precipitation simulations were created using a

  2. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    Science.gov (United States)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management.

  3. Comparative assessment of predictions in ungauged basins – Part 2: Flood and low flow studies

    Directory of Open Access Journals (Sweden)

    J. L. Salinas

    2013-07-01

    Full Text Available The objective of this paper is to assess the performance of methods that predict low flows and flood runoff in ungauged catchments. The aim is to learn from the similarities and differences between catchments in different places, and to interpret the differences in performance in terms of the underlying climate-landscape controls. The assessment is performed at two levels. The Level 1 assessment is a meta-analysis of 14 low flow prediction studies reported in the literature involving 3112 catchments, and 20 flood prediction studies involving 3023 catchments. The Level 2 assessment consists of a more focused and detailed analysis of individual basins from selected studies from Level 1 in terms of how the leave-one-out cross-validation performance depends on climate and catchment characteristics as well as on the regionalisation method. The results indicate that both flood and low flow predictions in ungauged catchments tend to be less accurate in arid than in humid climates and more accurate in large than in small catchments. There is also a tendency towards a somewhat lower performance of regressions than other methods in those studies that apply different methods in the same region, while geostatistical methods tend to perform better than other methods. Of the various flood regionalisation approaches, index methods show significantly lower performance in arid catchments than regression methods or geostatistical methods. For low flow regionalisation, regional regressions are generally better than global regressions.

  4. Catchment scale afforestation for mitigating flooding

    Science.gov (United States)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  5. Drought characteristics and related risks in large and mesoscale tropical catchments in Latin-America and South East Asia

    Science.gov (United States)

    Nauditt, Alexandra; Ribbe, Lars; Birkel, Christian; Célleri, Rolando

    2016-04-01

    Seasonal meteorological and hydrological droughts are a recurrent phenomenon in water abundant tropical countries and are expected to become more frequent in the future. Unusual water shortage in the past months and years has severely affected societies living in the Paraiba do Sul river basin (Brazil), the Mekong, as well as in a number of basins in Central America and Vietnam among many others. Preparedness, however, is absent and site appropriate water management measures and strategies are not available. While drought related research and water management in recent years has been widely addressed in water scarce subtropical regions, the US and Europe, not much attention has been paid to drought risk in tropical catchments. Available daily or monthly precipitation and runoff time series for catchments in Brazil, Costa Rica, Ecuador, the Mekong region and Vietnam were analysed to compare historical meteorological and hydrological drought frequency (SPI/SRI). The role of tropical catchment characteristics, storage and climate variability in seasonal drought evolvement was investigated by applying the conceptual semi-distributed HBV light model to two undisturbed catchments in Central Vietnam and 18 catchments of a size of 70-5000 km² in Costa Rica. For the Mekong and the Paraíba de Sul, the hydrological module of the WEAP model was applied to undisturbed subcatchments with the same objective. To understand and separate the anthropogenic impact on drought evolvement, the abstractions (irrigation, reservoirs, water supply) and hydrological alterations were observed and quantified by applying water allocation and balance model WEAP. We conclude that such a combined model-data analysis that equally accounts for landscape related and anthropogenic impacts on the local hydrological cycle is a useful approach for drought management in tropical countries.

  6. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    Science.gov (United States)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As

  7. Climate model validation and selection for hydrological applications in representative Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-07-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22-degree (about 24 km rotated grid over Europe and the Mediterranean. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the E-OBS dataset, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of 4 RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the XXI century. We present and discuss the validation setting, as well as the obtained results and, to some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and hint for an audience of researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more in general, climate change impact studies in the Mediterranean.

  8. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    Science.gov (United States)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  9. Mapping Model of Groundwater Catchment Area based on Geological Fault : Case Study in Semarang City

    Directory of Open Access Journals (Sweden)

    Qudus, N.

    2016-04-01

    Full Text Available Groundwater is a naturally renewable resource because groundwater is an integral part of hydrological cycle. However, in reality, there are many limiting factors which influence its usage, in both quality and quantity, the provision ability of groundwater will decrease if its availability is exceeded. The problems of ground water potential in both quantity and quality are always related to its constituents' characteristics or its geological element where the groundwater resides. This present study aims at determining the groundwater catchment area based on the geological condition of an area so that groundwater recharge can be accomplished. In addition, it is necessary for groundwater catchment area to comply with the geological condition. The geologically unfit area will only result in land movement or landslide if it is used as groundwater catchment area. The results of geo-electricity analysis which was conducted in Semarang city showed that there are 3 faults; Sukorejo fault, Tinjomoyo fault and Jangli fault which will be explained in detail in the paper. Those faults intersect the underground water stream in Semarang from south to north towards the Java Sea. The majority of underground water stream in Semarang flows from south to north. In contrary, the results of the analysis showed that there are some points that become local basins such as in the south area and southwest of Semarang where flow direction is on the opposite direction. In addition, the results of the analysis showed that some coastal areas in Semarang have experienced salt water intrusion.

  10. Palaeo-fluvial origin for Jakobshavn Isbrae catchment

    Science.gov (United States)

    Cooper, Michael; Michaelides, Katerina; Siegert, Martin; Bamber, Jonathan

    2016-04-01

    Subglacial topography exerts strong controls on ice dynamics, influencing the nature of ice flow, and modulating the distribution of basal waters and sediment. Bed geometry can provide a long-term record of geomorphic processes, allowing insight into landscape evolution, the origin of which, in some cases, can pre-date ice sheet inception. Here, we present evidence from ice-penetrating radar data for a large dendritic drainage network, radiating inland from Jakobshavn Isbrae, Greenland's largest outlet glacier. The size of the drainage basin is ~450,000 km-squared, comparable with that of the Ohio River in the United States, and accounts for ~20% of the land area of Greenland. Topographic, and basin morphometric analysis of isostatically compensated (ice-free) bedrock topography suggests that this catchment pre-dates ice sheet inception (~3.5 Ma), and will have been instrumental in influencing flow from the island's interior to the margin. The geological setting, and glacial history of Greenland lends itself well to the preservation of such landscapes; the island is dominated by erosion-resistant, Precambrian crystalline rocks with few sedimentary deposits, and has only been extensively ice-covered for ~3.5 million years (Ma). Despite this, most analysis of subglacial geomorphology, and of 'pre-glacial' landscapes, has been focused on Antarctica (e.g. the Ellsworth Subglacial Highlands and, 'pre-glacial erosional surfaces' of the West Antarctic Ice Sheet (WAIS)), with little consideration for such associations in Greenland. However, a large subglacial 'mega-canyon' in northern Greenland, thought to of palaeo-fluvial origin, has recently been discovered.

  11. Paradigm Shift in Transboundary Water Management Policy: Linking Water Environment Energy and Food (weef) to Catchment Hydropolitics - Needs, Scope and Benefits

    Science.gov (United States)

    RAI, S.; Wolf, A.; Sharma, N.; Tiwari, H.

    2015-12-01

    The incessant use of water due to rapid growth of population, enhanced agricultural and industrial activities, degraded environment and ecology will in the coming decades constrain the socioeconomic development of humans. To add on to the precarious situation, political boundaries rarely embrace hydrological boundaries of lakes, rivers, aquifers etc. Hydropolitics relate to the ability of geopolitical institutions to manage shared water resources in a politically sustainable manner, i.e., without tensions or conflict between political entities. Riparian hydropolitics caters to differing objectives, needs and requirements of states making it difficult to administer the catchment. The diverse riparian objectives can be merged to form a holistic catchment objective of sustainable water resources development and management. It can be proposed to make a paradigm shift in the present-day transboundary water policy from riparian hydropolitics (in which the focal point of water resources use is hinged on state's need) to catchment hydropolitics (in which the interest of the basin inhabitants are accorded primacy holistically over state interests) and specifically wherein the water, environment, energy and food (WEEF) demands of the catchment are a priority and not of the states in particular. The demands of the basin pertaining to water, food and energy have to be fulfilled, keeping the environment and ecology healthy in a cooperative political framework; the need for which is overwhelming. In the present scenario, the policy for water resources development of a basin is segmented into independent uncoordinated parts controlled by various riparians; whereas in catchment hydropolitics the whole basin should be considered as a unit. The riparians should compromise a part of national interest and work in collaboration on a joint objective which works on the principle of the whole as against the part. Catchment hydropolitics may find greater interest in the more than 250

  12. A general protocol for restoration of entire river catchments

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, J.A.; Frissell, C.A. [Univ. of Montana, Polson, MT (United States). Flathead Lake Biological Station; Ward, J.V. [EAWAG/ETH, Dubendorf (Switzerland). Dept. of Limnology; Liss, W.J. [Oregon State Univ., Corvallis, OR (United States). Dept. of Fisheries and Wildlife; Coutant, C.C. [Oak Ridge National Lab., TN (United States); Williams, R.N.; Lichatowich, J.A.

    1996-05-28

    Large catchment basins may be viewed as ecosystems with interactive natural and cultural attributes. Stream regulation severs ecological connectivity between channels and flood plains by reducing the range of natural flow and temperature variation, reduces the capacity of the ecosystem to sustain native biodiversity and bioproduction and promotes proliferation of non-native biota. However, regulated rivers regain normative attributes, which promote recovery of native biota, as distance from the dam increases and in relation to the mode of regulation. Therefore, reregulation of flow and temperature to normative pattern, coupled with elimination of pollutants and constrainment of nonnative biota, can naturally restore damaged habitats from headwaters to mouth. The expectation is rapid recovery of depressed populations of native species. The protocol requires: restoration of seasonal temperature patterns; restoration of peak flows needed to reconnect and periodically reconfigure channel and floodplain habitats; stabilization of base flows to revitalize the shallow water habitats; maximization of dam passage to allow restoration of metapopulation structure; change in the management belief system to rely on natural habitat restoration as opposed to artificial propagation, installation of artificial instream structures (river engineering) and artificial food web control; and, practice of adaptive ecosystem management.

  13. Development of catchment research, with particular attention to Plynlimon and its forerunner, the East African catchments

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Dr J.S.G. McCulloch was deeply involved in the establishment of research catchments in East Africa and subsequently in the UK to investigate the hydrological consequences of changes in land use. Comparison of these studies provides an insight into how influential his inputs and direction have been in the progressive development of the philosophy, the instrumentation and the analytical techniques now employed in catchment research. There were great contrasts in the environments: tropical highland (high radiation, intense rainfall vs. temperate maritime (low radiation and frontal storms, contrasting soils and vegetation types, as well as the differing social and economic pressures in developing and developed nations. Nevertheless, the underlying scientific philosophy was common to both, although techniques had to be modified according to local conditions. As specialised instrumentation and analytical techniques were developed for the UK catchments many were also integrated into the East African studies. Many lessons were learned in the course of these studies and from the experiences of other studies around the world. Overall, a rigorous scientific approach was developed with widespread applicability. Beyond the basics of catchment selection and the quantification of the main components of the catchment water balance, this involved initiating parallel process studies to provide information on specific aspects of catchment behaviour. This information could then form the basis for models capable of extrapolation from the observed time series to other periods/hydrological events and, ultimately, the capability of predicting the consequences of changes in catchment land management to other areas in a range of climates.

  14. Inverse distributed hydrological modelling of alpine catchments

    Directory of Open Access Journals (Sweden)

    H. Kunstmann

    2005-12-01

    Full Text Available Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions.

    WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m. Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex

  15. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2012-02-01

    Full Text Available During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most.

    Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2 with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process.

    Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached

  16. The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration

    Science.gov (United States)

    Wang, Weiguang; Zou, Shan; Shao, Quanxi; Xing, Wanqiu; Chen, Xi; Jiao, Xiyun; Luo, Yufeng; Yong, Bin; Yu, Zhongbo

    2016-10-01

    The concept of elasticity has been widely employed to quantify the hydrological response to changes in climate and catchments properties. To separate the effect of different climatic variables on runoff, the potential evaporation (E0) elasticity of runoff needs to be presented in term of observed climate variables. To fully reflect the effects of maximum and minimum temperatures and reduce the influence of the correlations of radiation with sunshine duration and relative humidity on the assessment results, we decompose the E0 elasticity into five evaporation-related elasticities (i.e., sunshine duration, maximum and minimum temperature, wind speed and relative humidity) via the first-order differentiation of the FAO 56 Penman equation. As the catchment runoff is frequently affected by the land use/cover change, we also consider changes in catchment characteristics and derive a catchment alteration elasticity based on the Budyko framework. An application was carried out in 30 catchments with widespread climatic types in China. For the two periods (i.e., the baseline period and the changed period) divided by the Pettitt test, the contributions of different climatic variables and land use/cover conditions to runoff change were quantified. In general, the alteration of catchment characteristics and climatic change should be mainly responsible for changes in runoff in water-limited and humid basins, respectively. Although the elasticity of maximum temperature are usually higher than that of minimum temperature, the contributions to runoff change present the opposite direction. Furthermore, additional analysis indicated some overestimation in relative humidity elasticities in the previous studies, further emphasizing the necessity of our extension to alleviate the influence of correlation between climatic variables to the assessment results. Moreover, the results of model performance versus model complexity showed that the choice of model complexity still depends on the

  17. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  18. Estimating net anthropogenic nitrogen inputs (NANI in the Lake Dianchi Basin of China

    Directory of Open Access Journals (Sweden)

    W. Gao

    2014-03-01

    Full Text Available Net anthropogenic nitrogen inputs (NANI with components of atmospheric N deposition, synthetic N fertilizer, agricultural N fixation and N in net food and feed imports from 15 catchments in Lake Dianchi Basin were determined over an 11 year period (2000–2010. The 15 catchments range in size from 44 km2 to 316 km2 with an average of 175 km2. To reduce uncertainty from scale change methodology, results from data extracting by area-weighting and land use-weighting methods were compared. Results show that methodology for extrapolating data from county scale to watersheds has a great influence on NANI computation for catchments in the Lake Dianchi Basin, and estimates of NANI between two methods have an average difference of 30% on catchments basis while a smaller difference (15% was observed on the whole Lake Dianchi Basin basis. The riverine N export has stronger linear relationship with NANI computed by land use-weighting method, which we believe is more reliable. Overall, nitrogen inputs assessed by the NANI approach for the Lake Dianchi Basin are 9900 kg N km−2 yr−1, ranging from 6600 to 28 000 kg N km−2 yr−1 among the 15 catchments. Synthetic N fertilizer is the largest component of NANI in most subwatersheds. On average, riverine flux of nitrogen in catchments of the Lake Dianchi Basin averages 83% of NANI, far higher than generally observed in North America and Europe. Saturated N sinks and limited capacity for denitrification in rivers may be responsible for this high percent of riverine N export. A negative intercept observed in the linear relationship between NANI and riverine N export suggests the influence of pollution control measures on N flux in small watershed. The NANI methodology should be applicable in small watersheds when sufficiently detailed data are available to estimate its components.

  19. Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia

    Science.gov (United States)

    Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

    2014-05-01

    Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As

  20. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

    Directory of Open Access Journals (Sweden)

    G. Bussi

    2013-08-01

    Full Text Available Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain. Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods over the time period 1990–2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha−1 yr−1, probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.

  1. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    Science.gov (United States)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  2. ASSESSMENT OF THE ARTIFICIAL NEURAL NETWORKS TO GEOMORPHIC MODELLING OF SEDIMENT YIELD FOR UNGAUGED CATCHMENTS, ALGERIA

    Directory of Open Access Journals (Sweden)

    Khanchoul Kamel

    2014-01-01

    Full Text Available Knowledge of sediment yield and the factors controlling it provides useful information for estimating erosion intensities within river basins. The objective of this study was to build a model from which suspended sediment yield could be estimated from ungauged rivers using computed sediment yield and physical factors. Researchers working on suspended sediment transported by wadis in the Maghreb are usually facing the lack of available data for such river types. Further study of the prediction of sediment transport in these regions and its variability is clearly required. In this work, ANNs were built between sediment yield established from longterm measurement series at gauging stations in Algerian catchments and corresponding basic physiographic parameters such as rainfall, runoff, lithology index, coefficient of torrentiality, and basin area. The proposed Levenberg-Marquardt and Multilayer Perceptron algorithms to train the neural networks of the current research study was based on the feed-forward backpropagation method with combinations of number of neurons in each hidden layer, transfer function, error goal. Additionally, three statistical measurements, namely the root mean square error (RMSE, the coefficient of determination (R², and the efficiency factor (EF have been reported for examining the forecasting accuracy of the developed model. Single plot displays of network outputs with respect to targets for training have provided good performance results and good fitting . Thus, ANNs were a promising method for predicting suspended sediment yield in ungauged Algerian catchments.

  3. Impact of land use changes on connectivity in a rural catchment with mild topography

    Science.gov (United States)

    Langhammer, Jakub; Ghaffari, Golaleh

    2016-04-01

    Concept of sediment connectivity and quantitative assessment of its spatial distribution became important tool for analysis of spatial connectivity of sediment transport processes in basins. Most of the first connectivity studies is focused on montane basins with high rates of erosion originating in steep slopes in headwater areas. However, less attention is paid to the mild landscapes in highland and lowland landscape, with often high connectivity. It applies to the rural areas where the sediment transport and erosion control are of key importance. Assessment of connectivity and its control in such environment thus can contribute to the efficient and sustainable landscape management. In our study we have tested applicability of the concept of index of sediment connectivity (IC) in mid-latitude rural catchment with mild topography and extensive share of arable land. The aim of the study was (i) to test the GIS-based IC calculation in specific topographic conditions, (ii) to assess the effects of land use changes on the sediment connectivity and (iii) to identify the landscape features affecting connection between hillslopes and stream channels. The study area - Loucka River Basin, Czech Republic with area of 386 sq km is located in highland landscape with 60% share of arable land. The basin study area has a reverse pattern of topography compared to the typical montane catchments - the extensive headwater areas, used for agriculture, are flat and are drained into steep valleys in downstream. The basin is equipped with long-term monitoring of suspended sediment transport. We have used the high resolution 5 meter DEM derived from aerial LiDAR scanning as a base for analysis of topographic controls of sediment connectivity and for calculation of connectivity topographic index. The index of connectivity was calculated in a multitemporal scale of two decades since 1990 to analyze the the changes of sediment connectivity and its spatial distribution in response to the

  4. Runoff of small rocky headwater catchments: Field observations and hydrological modeling

    Science.gov (United States)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.

    2016-10-01

    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  5. Runoff generation mechanism at two distinct headwater catchments - isotopic evidence

    Science.gov (United States)

    Dohnal, Michal; Votrubová, Jana; Šanda, Martin; Tesař, Miroslav; Vogel, Tomáš; Dušek, Jaromír

    2016-04-01

    Data from two headwater catchments indicate considerably different runoff formation mechanisms. The contributions of different surface and subsurface runoff mechanisms to the catchment discharge formation at these two small forested headwater catchments are studied with help of the natural isotopic signatures of the observed fluxes. The Uhlirska catchment (1.78 sq. km, Jizera Mts., Czech Republic) is situated in headwater area of Cerna Nisa stream. Deluviofluvial granitic sediments in the valley bottom areas (riparian zones/wetlands) are surrounded by gentle hillslopes with shallow soils developed on crystalline bedrock. The Liz catchment (0.99 sq. km, Bohemian Forest, Czech Republic) belongs to hillslope-type catchments without riparian zones situated in headwater area of Volynka River. The soil at Liz is developed on biotite paragneiss bedrock. Autocorrelation analysis of the measured catchment discharge rates reveals different hydrograph characteristics for each of the two catchments. Estimated autocorrelation lengths differ by an order of magnitude. Variations of oxygen-18 isotope concentrations in precipitation, groundwater and streamflow were analyzed. Several significant rainfall-runoff events at each of the two catchments were analyzed in detail. These events exhibit substantial difference in isotopic compositions of event and pre-event water, which facilitates hydrograph separation. Clockwise and counterclockwise hysteretic relationships between the stream discharge and its isotope concentration were identified. Results were confronted with the previously published concepts of the runoff formation at the catchments under study. The research was funded by the Czech Science Foundation, project No. 14-15201J.

  6. Catchment Engineering: A New Paradigm in Water Management

    Science.gov (United States)

    Quinn, P. F.; Burke, S.; O'Donnell, G. M.; Wilkinson, M.; Jonczyk, J.; Barber, N.; Nicholson, A.; Proactive Team

    2011-12-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Here, a catchment engineering approach seeks to describe catchment 'function' (or role) as the principal driver for evaluating how it should be managed in the future. Catchment engineering does not seek to re-establish a natural system but seeks to work with natural processes in order to engineer landscapes so that multiple benefits accrue. This approach involves quantifying and assessing catchment change and impacts but most importantly suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders, namely the general public and policy makers. This inclusive concept under a catchment engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of catchment engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management whilst maintaining economic food production. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Catchment engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving

  7. Meteorological, snow, streamflow, topographic, and vegetation height data from four western juniper-dominated experimental catchments in southwestern Idaho, USA

    Science.gov (United States)

    Kormos, Patrick R.; Marks, Danny G.; Pierson, Frederick B.; Williams, C. Jason; Hardegree, Stuart P.; Boehm, Alex R.; Havens, Scott C.; Hedrick, Andrew; Cram, Zane K.; Svejcar, Tony J.

    2017-02-01

    Meteorological, snow, streamflow, topographic, and vegetation height data are presented from the South Mountain experimental catchments. This study site was established in 2007 as a collaborative, long-term research laboratory to address the impacts of western juniper encroachment and woodland treatments in the interior Great Basin region of the western USA. The data provide detailed information on the weather and hydrologic response from four highly instrumented catchments in the late stages of woodland encroachment in a sagebrush steppe landscape. Hourly data from six meteorologic stations and four weirs have been carefully processed, quality-checked, and are serially complete. These data are ideal for hydrologic, ecosystem, and biogeochemical modeling. Data presented are publicly available from the USDA National Agricultural Library administered by the Agricultural Research Service (https://data.nal.usda.gov/dataset/data-weather-snow-and-streamflow-data-four-western-juniper-dominated-experimental-catchments" target="_blank">https://data.nal.usda.gov/dataset/data-weather-snow-and-streamflow-data-four-western-juniper-dominated-experimental-catchments, doi:10.15482/USDA.ADC/1254010).

  8. Modeling the stream water nitrate dynamics in a 60,000-km2 European catchment, the Garonne, southwest France.

    Science.gov (United States)

    Tisseuil, Clément; Wade, Andrew J; Tudesque, Loïc; Lek, Sovan

    2008-01-01

    The spatial and temporal dynamics in the stream water NO(3)-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byråns Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed under the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO(3)-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distributed catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO(3)-N patterns at large spatial (>300 km(2)) and temporal (> or = monthly) scales using available national datasets.

  9. Groundwater recharge from point to catchment scale

    Science.gov (United States)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  10. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.

  11. Similarity and scale in catchment storm response

    Science.gov (United States)

    Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith

    1993-01-01

    Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.

  12. Variability in riparian zone potential and actual evapotranspiration in a 1st order agricultural catchment in Southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    M. C. English

    2002-02-01

    Full Text Available Micrometeorological and hydrological measurements were made over one growing season using automatic weather stations and weighing lysimeters at several locations within a multiple land-use agricultural catchment in Southern Ontario. This paper compares modelled potential evapotranspiration (PET and measured actual evapotranspiration (AET values obtained from the soil weighing lysimeters, and determines the spatial variability in riparian zone AET in a multiple land-use agricultural watershed in Southern Ontario. Two sites were chosen in two different riparian areas of the watershed, representing the surface conditions dominant in the upper and lower reaches of the basin. The results indicated that AET was higher in the northern end of the basin than in the southern portion of the basin, while the hydrological and energy balance components were similar at both sites. The causes of the different rates are attributed to the surrounding vegetation on adjacent fields and the differing wind regimes.

  13. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-03-02

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody.

  14. Selected Micropollutants as Indicators in a Karst Catchment

    Science.gov (United States)

    Zirlewagen, Johannes; Schiperski, Ferry; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    High flow dynamics and variations in water quality are typical for karst springs and reflect the complex interaction of different flow and storage components within a karst system. Event-based monitoring of mobile micropollutants in spring water combined with information on their input is used (1) to quantify the impact of certain contamination scenarios on spring water quality and (2) to gain additional information on the intrinsic characteristics of a karst system. We employ the artificial sweeteners acesulfame and cyclamate as source specific indicators for sewage along with the herbicides atrazine and isoproturon for agriculture. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (SDB, combined sewer system) are known to impact water quality. Most of the sewer system is situated in the SW of the catchment. Most agricultural land is found in the NE. Neither atrazine nor significant amounts of isoproturon were detected in wastewater. Concentrations and mass fluxes of acesulfame and cyclamate in wastewater were determined. The combined evaluation of the persistent compound acesulfame with the rather degradable cyclamate allows for the distinction of long and short transit times and thus slow and fast flow components. The same applies for atrazine (persistent) and isoproturon (degradable). In Germany, acesulfame was licensed in 1990, atrazine was banned shortly after, in 1991. During low flow conditions only atrazine (max. 4 ng/L) and acesulfame (max. 20 ng/L) were detected in spring water. After a recharge event without SDB overflow concentrations as well as mass fluxes of both compounds decreased, reflecting an increasing portion of event water in spring discharge. A breakthrough of isoproturon (max. 9 ng/L) indicated the arrival of water from croplands. After a recharge event accompanied by a SDB overflow cyclamate was detected at max

  15. Acid rain project biosurveys of streams in the Wastwater catchment

    OpenAIRE

    Prigg, R.F.

    1985-01-01

    This is the Acid rain project biosurveys of streams in the Wastwater catchment produced by the North West Water Authority in 1985. This report forms part of a series on component biological investigations, identified by location or topic, within the acid rain project. Reporting of the Wastwater catchment data would not have been given priority ordinarily, but it has been brought forward to coincide with J. Robinson's reporting of his investigations of land use and liming in the catchment. Thi...

  16. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Philipp [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany); Collins, Adrian L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Rode, Michael [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany)

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km{sup 2} Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments

  17. Characterization of physical parameters and environmental sanitation for experimental-representative catchment located in the lowlands of Jacarepaguá, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Luciene Pimentel da Silva

    2010-12-01

    Full Text Available This paper aimed to evaluate the physical characteristics and environmental sanitation aspects for a drainage area inserted in the region of Morto river catchment, taken as experimental and representative of Jacarepaguá Lowland Basin in Rio de Janeiro, where city´s growth is taking place very fast. It is expected that this study will support the development of public policies that may guide the conservation of water and sustainable development of the region. The methodology used for watershed delimitation and the physical characteristics calculation involved the application of small computational procedures associated to ArcGis 9.2, ArcHydro®. It was determined the area, the perimeter, the compactness index, shape factor, drainage density, average extension of runoff and catchment´s slope. The observed low slope along the river coast combined with the physical parameters of the basin, enabled to conclude that this catchment is susceptible to floods especially during concomitant events of high tide and heavy rain. The analysis of social and environmental sanitation aspects took into account IBGE`s 2000 Census results. It was observed that illiteracy rates for the catchment area was doubled of that observed for the city as whole and that services such as water supply, sewage and garbage collection are more precarious in the catchment area than in the neighborhood of Jacarepaguá or the city of Rio de Janeiro. In relative terms, sewage collection was in the worst situation while the garbage collection services were in the best for the studied basin.

  18. Evaluation of the impact of farming activity in the water quality in surface catchment areas in hydrographic basin from Mogi-Guacu and Pardo Rivers, Sao Paulo; Avaliacao do impacto da atividade agropecuaria na qualidade da agua em areas de captacao superficial nas bacias hidrograficas dos Rios Mogi-Guacu e Pardo, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Katsuoka, Lidia

    2001-07-01

    This study was performed in 10 small basins located in the Mogi-Guacu and Pardo Rivers, in the Northeastern area of Sao Paulo State. The land belonging of these basins is used to grow row crops of potato, coffee and pasture areas. This study aimed to characterize small basins, to evaluate water and sediment quality and to correlate basic aspects of climatology, hydrology, toxicology and land uses to the physical, chemical and toxicological characteristics of the water in the streams. Geographic Information System (GIS) was used as a tool of evaluation of land uses and risk assessment was performed for a final evaluation. The samplings were carried out from June/1999 to June/2000 in the 13 collecting points. It was verified that water quality is dependent upon the rainy and dry periods and the harvest periods. In the beginning of rainy periods were found large concentrations of metals and traces of herbicides leachate from soil and, in the dry period the same event was verified, caused by concentration of the water. In August, September and October phosphorus concentrations were very low getting an improvement in the water quality. Al, Fe and Mn are majority elements of chemical compositions of rocks of the study area, and exceed the Brazilian Guidelines. The stream waters were classified as 44% oligotrophic, 42% mesotrophic and 14% eutrophic. Jaguari-Mirim River presented the largest values of Trophic Index (TI). Sediment analyses showed a great variety of organic compounds coming from anthropogenic activities (industrial and farming activity). Toxicity tests with hyalella azteca in the sediments presented toxicity for sediments from Sao Joao da Boa Vista and Divinolandia. A methodology was developed for organochlorinated pesticides by gas chromatography coupled to mass spectrometry (GCMS). The presence of organochlorinated pesticides was not verified. (author)

  19. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    Science.gov (United States)

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  20. Examining runoff generation processes in the Selke catchment in central Germany: Insights from data and semi-distributed numerical model

    Directory of Open Access Journals (Sweden)

    Sumit Sinha

    2016-09-01

    New hydrological insights for the region: We examined the spatio-temporal variation of runoff generating mechanisms on the sub-basin level on seasonal basis. Our analysis reveals that the runoff generation in the Selke catchment is primarily dominated by shallow sub-surface flow and very rarely the contribution from Dunne overland flow exceeds sub-surface flow. Runoff generated by Hortonian mechanism is very infrequent and almost negligible. We also examined the spatio-temporal variation of runoff coefficients on seasonal basis as well as for individual storms. Due to higher precipitation and topographic relief in the upland catchment of Silberhutte, the runoff coefficients were consistently higher and its peak was found in winter months due to lower evapotranspiration.

  1. Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment

    Science.gov (United States)

    Mendoza, Pablo A.; McPhee, James; Vargas, Ximena

    2012-09-01

    Data scarcity has traditionally precluded the application of advanced hydrologic techniques in developing countries. In this paper, we evaluate the performance of a flood forecasting scheme in a sparsely monitored catchment based on distributed hydrologic modeling, discharge assimilation, and numerical weather predictions with explicit validation uncertainty analysis. For the hydrologic component of our framework, we apply TopNet to the Cautin River basin, located in southern Chile, using a fully distributed a priori parameterization based on both literature-suggested values and data gathered during field campaigns. Results obtained from this step indicate that the incremental effort spent in measuring directly a set of model parameters was insufficient to represent adequately the most relevant hydrologic processes related to spatiotemporal runoff patterns. Subsequent uncertainty validation performed over a six month ensemble simulation shows that streamflow uncertainty is better represented during flood events, due to both the increase of state perturbation introduced by rainfall and the flood-oriented calibration strategy adopted here. Results from different assimilation configurations suggest that the upper part of the basin is the major source of uncertainty in hydrologic process representation and hint at the usefulness of interpreting assimilation results in terms of model input and parameterization inadequacy. Furthermore, in this case study the violation of Markovian state properties by the Ensemble Kalman filter did affect the numerical results, showing that an explicit treatment of the time delay between the generation of surface runoff and the arrival at the basin outlet is required in the assimilation scheme. Peak flow forecasting results demonstrate that there is a major problem with the Weather Research and Forecasting model outputs, which systematically overestimate precipitation over the catchment. A final analysis performed for a large flooding

  2. Combining caesium-137 measurements and suspended sediment load data to investigate the sediment response of a small catchment in southern Italy

    Science.gov (United States)

    Porto, P.; Walling, D. E.; La Spada, C.; Mallimo, N.

    2015-03-01

    A long-term measurement programme was operated in southern Italy during the 1960s and 1970s, to provide information on the suspended sediment yields from the main river basins. Information obtained for the rivers of Calabria suggests that suspended sediment yields in this area are relatively low. However, there is evidence that the intensity of land degradation within the upstream catchments is substantially higher than suggested by the values of specific sediment yield and there is a need to explore the relationship between on-site soil loss and downstream sediment yield more closely. Monitoring time-integrated erosion rates over large areas has traditionally required extensive long-term measurement programmes employing experimental plots. The fallout radionuclide caesium-137 (137Cs) offers an alternative means of documenting medium-term rates of soil loss. This paper describes the use of 137Cs measurements and the available sediment load data to explore the links between soil erosion, sediment redistribution and storage, and sediment output for a medium-scale (41.3 km2) catchment in Calabria. Data available from a sediment load monitoring programme undertaken at the catchment outlet during 1962-1977 have been used to estimate the longer-term catchment sediment yield. This estimate has been combined with information provided by the 137Cs measurements, to establish a medium-term sediment budget for the catchment. The results provided by the 137Cs measurements indicate that the catchment is subject to much higher rates of soil loss and land degradation than suggested by its specific sediment yield. These findings are consistent with the results obtained for other catchments in Calabria for which both 137Cs derived erosion rates and measured sediment yields are available.

  3. Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington

    Science.gov (United States)

    Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.

    2013-01-01

    The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

  4. Extreme Rainfall Impacts in Fractured Permeable Catchments

    Science.gov (United States)

    Ireson, A. M.; Butler, A. P.

    2009-12-01

    Serious groundwater flooding events have occurred on Chalk catchments in both the UK and north west Europe in the last decade, causing substantial amounts of disruption and economic damage. These fractured, permeable catchments are characterized by low surface runoff, high baseflow indices and strongly attenuated streamflow hydrographs. They have a general resilience to drought and pluvial/fluvial flooding. The small pore size of the Chalk matrix (~ 1 µm) exerts a high suction, such that dynamic storage is primarily due to the fractures, and amounts to ~ 1% of the total volume. As a result, under sustained rainfall the water table can rise up to exceptional levels leading to surface water emergence from springs and valleys. Floodwater may slowly drain with the topography, or, in localized depressions, it may simply pond until the groundwater levels decline. In winter 2000/1, a sequence of individually unexceptional rainfall events over several months led to large scale flooding in the Pang catchment, Berkshire, UK. By contrast, an extreme rainfall event on 20th July 2007 in the same catchment caused a very rapid response at the water table, but due to the antecedent conditions did not lead to flooding. The objective of this study is to quantify how the water table in a fractured permeable catchment responds to different types of rainfall, and the implications of this for groundwater flooding. We make use of measurements from the Pang catchment, including: rainfall (tipping bucket gauges); actual evaporation (eddy flux correlation); soil water content (profile probes and neutron probes); near surface matric potential (tensiometers and equitensiometers); deep (>10m) matric potential (deep jacking tensiometers); and water table elevation (piezometers). Conventional treatment of recharge in Chalk aquifers considers a fixed bypass component of rainfall, normally 15%, to account for the role of the fractures. However, interpretation of the field data suggest three modes

  5. Long-Term Water Quality Studies in a Eutrophic Lake Catchment: Slapton Ley, SW England

    Science.gov (United States)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2014-12-01

    Monitoring is the process by which we keep the behaviour of the environment in view, an essential way of discovering whether there are significant undesirable changes taking place. Long-term datasets reveal important patterns for scientists to explain and are essential for testing hypotheses undreamt of at the time monitoring scheme was set up. Many environmental processes take place over relatively long periods of time; very often, subtle processes are embedded within highly variable systems so that their weak signal cannot be extracted without a long record. Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, wetland 116 ha in area which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is open water. In the 1960s it became apparent that the Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in late 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. The nitrate issue has been of particular interest at Slapton; although many longer series exist for large rivers like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for small rural basins. Other issues to be explored will be the phosphorus legacy in lake sediments and a long-term decline in lake pH. The Slapton water quality record has confirmed that undesirable changes are taking place, revealed evidence of important patterns to be explained, allowed testing of new hypotheses (e.g. links with land-use change) and helped

  6. Lithogenic and cosmogenic tracers in catchment hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed {open_quotes}lithogenic{close_quotes} solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing {open_quotes}cosmogenic{close_quotes} nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing {open_quotes}thermonuclear{close_quotes} nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing {open_quotes}in-situ{close_quotes} lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading {open_quotes}cosmogenic nuclides{close_quotes}, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system.

  7. Describing Ecosystem Complexity through Integrated Catchment Modeling

    Science.gov (United States)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  8. Evaluation of TOPLATS on three Mediterranean catchments

    Science.gov (United States)

    Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2016-08-01

    Physically based hydrological models are complex tools that provide a complete description of the different processes occurring on a catchment. The TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and distributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different conditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a 4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by different levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar results that identified Brooks-Corey Pore Size distribution Index (B), Bubbling pressure (ψc) and Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After calibration and validation, adequate streamflow simulations were obtained in the two wettest catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability between calibration and validation periods. To overcome this issue, an alternative random and discontinuous method of cal/val period selection was implemented, improving model results.

  9. Design of a Rainwater Catchment System

    OpenAIRE

    Neil Cammardella

    2011-01-01

    Certain dimensions of a rainwater catchment and storage system were optimized using climatological and sociological data. Using only daily demand and average daily rain fall data, the following dimensions were optimized: 1) The horizontal roof area needed to collect the daily demand of water, 2) The tank size needed to store all the water collected during a heavy rain event, 3) When full, how long the tank will be able to provide water without rain, and 4) The diameter of the outlet flow orif...

  10. ANN modeling for flood prediction in the upstream Eure's catchment (France)

    Science.gov (United States)

    Kharroubi, Ouissem; masson, Eric; Blanpain, Olivier; Lallahem, Sami

    2013-04-01

    Rainfall-Runoff relationship at basin scale is strongly depending on the catchment complexity including multi-scale interactions. In extreme events cases (i.e. floods and droughts) this relationship is even more complex and differs from average hydrological conditions making extreme runoff prediction very difficult to achieve. However, flood warning, flood prevention and flood mitigation rely on the possibility to predict both flood peak runoff and lag time. This point is crucial for decision making and flood warning to prevent populations and economical stakes to be damaged by extreme hydrological events. Since 2003 in France, a dedicated state service is in charge of producing flood warning from national level (i.e. SCHAPI) to regional level (i.e. SPC). This flood warning service is combining national weather forecast agency (i.e. Meteo France) together with a fully automated realtime hydrological network (i.e. Rainfall-Runoff) in order to produce a flood warning national map online and provide a set of hydro-meteorological data to the SPC in charge of flood prediction from regional to local scale. The SPC is in fact the flood service delivering hydrological prediction at operational level for decision making about flood alert for municipalities and first help services. Our research in collaboration with the SPC SACN (i.e. "Seine Aval et fleuves Côtiers Normands") is focused on the implementation of an Artificial Neural Network model (ANN) for flood prediction in deferent key points of the Eure's catchment and main subcatchment. Our contribution will focus on the ANN model developed for Saint-Luperce gauging station in the upstream part of the Eure's catchment. Prediction of extreme runoff at Saint-Luperce station is of high importance for flood warning in the Eure's catchment because it gives a good indicator on the extreme status and the downstream propagation of a potential flood event. Despite a good runoff monitoring since 27 years Saint Luperce flood

  11. Estimating the input of wastewater-born micropollutants in a rural karst catchment (Gallusquelle, Germany)

    Science.gov (United States)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Schiperski, Ferry; Scheytt, Traugott; Licha, Tobias

    2013-04-01

    The main focus of the AGRO research project is on the use of various micropollutants as indicators (e.g. for wastewater) in the catchment of the karst spring Gallusquelle, Swabian Alb. For modeling the micropollutants' fate in the subsurface and their occurrence in spring water, reliable estimates of the spatio-temporal input, i.e. input functions, are crucial. Therefore potential sources for wastewater-born substances are identified. These are the combined sewer system with a stormwater retention basin (untreated wastewater) and the river Fehla (treated wastewater). The micropollutants' concentrations and loads in the potentially infiltrating waters are estimated on the one hand by local water and substance consumption data and on the other hand by water sample analysis and stream gauging. The spring's discharge varies from 0.2-2.0 m³/s with an average of 0.5 m³/s. Treated spring water serves as drinking water for 45 000 people. The catchment area measures 45 km² and is rural in character with 55% forest, 27% grassland, 15% agriculture and 3% residential/industrial. Industrial activity is restricted to a few minor textile and metal works. There are around 4 000 inhabitants and except for a few farms, all households are connected to the public sewer system. The only surface water within the catchment is the stream Fehla, which forms a part of the catchment boundary. It was formerly identified as a sinking stream with an ephemeral part in the lower course. Connections to the Gallusquelle spring were proven by several tracer tests conducted in the 1960's, when the river started to become perennial over the whole course due to heavy colmatation. During a one week campaign, samples of wastewater and river water were taken three times per day. Additionally, hourly samples were taken during a 24 h period. Water samples were analysed for major ions and 58 micropollutants, including pharmaceuticals, stimulants (as caffeine), the artificial sweeteners acesulfame and

  12. Hydrological response variability in a small vineyard catchment (D.O. Penedès, NE Spain): effects of rainfall intensity and soil moisture conditions

    Science.gov (United States)

    Carles Balasch Solanes, Josep; Concepción Ramos Martín, M.; Martínez Casasnovas, José Antonio

    2013-04-01

    The catchment of Hostalets de Pierola, a small tributary of the low course of the Anoia river (Llobregat basin), is located in the Catalan Prelitoral Depression (Penedès Depression) on Pliocene gravels and detritic Miocene substratum. The catchment size is 0.46 km2 with an average slope of 7.2 %. The main land use in the catchment is vineyards (62.3 %), with other crops and land uses with minor occupation: olive trees 4.8 %, winter cereals 9.5 %, alfalfa 8.5 %, among other). In order to carry out a research on the hydrological response and sediment transport in a representative catchment of vineyard areas in the Spanish Mediterranean region, the catchment was equipped with pluviographs to measure rainfall amount and intensity, soil moisture content sensors and a flume (HL 4" type) to measure water flow in the outlet. This water gauging allows to measure flows up to 3400 l•s-1, and it is equipped with two ultrasonic level sensors and a data-logger for data register. In parallel, monitoring of subsurface water flow of the catchment was carried out in the natural source called Can Flaquer. During the springs of 2011 and 2012 several rainfall events occurred, which allow a preliminary analysis of the hydrological response of the catchment, in comparison with rainfall characteristics (depth and intensity) and the antecedent soil moisture content. The spring events include episodes up to 27 mm, with maximum intensities of 50 mm•h-1 and peak flows up to 1100 l•s-1. The surface runoff of the catchment ceases very quickly, in a few hours after the end of rainfall events, indicating a limited role of soils in water retention and a very active percolation into the aquifer of the Pleistocene gravels. The runoff rates of the analyzed events were relatively low (between 1 - 12 %), depending on the rainfall characteristics and the antecedent soil moisture, indicating a high soil permeability. An important part of the infiltrated water follows a slow subsuperficial way to

  13. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    Science.gov (United States)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  14. Identifying residence times and streamflow generation processes using δ18O and δ2H in meso-scale catchments in the Abay/Upper Blue Nile, Ethiopia

    OpenAIRE

    Teklaeb, S.; J. W. Wenninger; S. Uhlenbrook

    2013-01-01

    Measurements of the stable isotopes oxygen-18 (18O) and deuterium (2H) were carried out in two meso-scale catchments, Chemoga (358 km2) and Jedeb (296 km2) south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin. Stable isotope composition in precipitation, spring water and streamflow were analyzed (i) to characterize the spatial and temporal variations of water fluxes; (ii) to estimate the mean residence time o...

  15. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    Science.gov (United States)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    region shows a distinct increase of mean elevation from the major overdeepend valleys near the Foreland to the alpine main divide at around 4000 m.a.s.l. within a distance of only 150 km. To define channel heads we first analyzed the variations to fine-scale topography of catchments by calculating the plan curvature at low topographic wavelengths. Higher elevated catchments more frequently impacted by glacial erosion show a higher degree in topographic flattening than catchments with a lower mean elevation where rougher fluvial (steady state) channels dominate. We found that this process of glacial destruction of fine-scale topography can well be analyzed by extracting the plan curvature from a DEM (1-30 m resolution). We furthermore found that the plan curvature frequency depends on the mean elevation of a catchment. Accordingly, the correlation between mean elevation of basins and the related density of pixels with a certain curvature is highly controlled by the used curvature threshold (e.g. used range of curvature pixels). A statistically derived optimum of the negative plan curvature was taken to define a threshold for the concavity of channels. The resulting fragmented network of channel segments was then fully integrated by utilizing a steepest descent algorithm. The upstream-most point of this fully integrated network was then defined as channel head. Our approach offers not only a consistent method to derive (i) hillslope and channel parameters in formerly glaciated catchments but also to (ii) measure the degree in glacial conditioning and therefore (iii) separating non-glacial from glacial catchments.

  16. Catchment Systems Engineering: A New Paradigm in Water Management

    Science.gov (United States)

    Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.

    2012-04-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties

  17. Assessment of Runoff Contributing Catchment Areas in Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Johansen, C.; Schaarup-Jensen, Kjeld

    2005-01-01

    to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literary values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literary values of the hydrological reduction factor are over-estimated for this type of catchments. In addition, different catchment descriptions...... are presented in order to investigate how the hydrological reduction factor depends on the level of detail regarding the catchment description. When applying a total survey of the catchment area, including all possible impervious surfaces, a hydrological reduction factor of approximately 0.5 for residential...

  18. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...... are presented in order to investigate how the hydrological reduction factor depends on the level of detail regarding the catchment description. When applying a total survey of the catchment area, including all possible impervious surfaces, a hydrological reduction factor of approximately 0.5 for residential...

  19. Water Yield and Sediment Yield Simulations for Teba Catchment in Spain Using SWRRB Model: Ⅰ. Model Input and Simulation Experiment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Water yield and sediment yield in the Teba catchment, Spain, were simulated using SWRRB (Simulator for Water Resources in Rural Basins) model. The model is composed of 198 mathematical equations. About 120 items (variables) were input for the simulation, including meteorological and climatic factors, hydrologic factors, topographic factors, parent materials, soils, vegetation, human activities, etc. The simulated results involved surface runoff, subsurface runoff, sediment, peak flow, evapotranspiration, soil water, total biomass,etc. Careful and thorough input data preparation and repeated simulation experiments are the key to get the accurate results. In this work the simulation accuracy for annual water yield prediction reached to 83.68%.``

  20. Dominant climatic factor driving annual runoff change at catchments scale over China

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2015-12-01

    Full Text Available With global climate changes intensifying, the hydrological response to climate changes has attracted more attentions. It is beneficial not only for hydrology and ecology but also for water resources planning and management to reveal the impacts of climate change on runoff. It is of great significance of climate elasticity of runoff to estimate the impacts of climatic factors on runoff. In addition, there are large spatial variations in climate type and geography characteristics over China. To get a better understanding the spatial variation of runoff response to climate variables change and detect the dominant climatic factor driving annual runoff change, we chose the climate elasticity method proposed by Yang and Yang (2011, where the impact of the catchment characteristics on runoff was represented by a parameter n. The results show that the dominant climatic factor driving annual runoff is precipitation in the most part of China, net radiation in the lower reach of Yangtze River Basin, the Pearl River Basin, the Huai River Basin and the southeast area, and wind speed in part of the northeast China.

  1. Nitrogen budget of Lago Maggiore: the relative importance of atmospheric deposition and catchment sources

    Directory of Open Access Journals (Sweden)

    Gabriele TARTARI

    2001-02-01

    Full Text Available Hydrological and chemical data of 1996 and 1997 are used to evaluate the relative contributions of atmospheric deposition and urban/industrial wastewaters to the nitrogen budget of Lago Maggiore. The atmospheric load of nitrogen was about 80% of the total input to the lake, with negligible variations in dry (1997 and wet (1996 years. A comparison of the two study years with the yearly N budgets evaluated from 1978 to 1998, showed that the N load was higher with increasing amounts of precipitation/water inflow. Soils and vegetation act as N sinks; the % retention varies between 40-60% for the forested catchments with low population density in the central-northern part of the basin, to values close to zero or even negative in the south, indicating a net leaching from the soils. The Traaen & Stoddard (1995 approach revealed that all the catchments of the major inflowing rivers were oversaturated with nitrogen. The long-term trend of nitrogen concentrations in Lago Maggiore (1955-99 is analogous to the trend for atmospheric deposition (1975-99, which is related to emissions of nitrogen oxides and ammonia in the atmosphere. The relationships between the present N load and in-lake concentrations are discussed using a budget model, which is also used to infer the pristine load of N. The close relationships between N trends in lakes Maggiore, Como and Iseo, and the geographical and anthropogenic features common to their catchments, suggest that the results obtained for Lago Maggiore can be extended to a wider area.

  2. A catchment-wide assessment of bed sediment metal concentrations in the first industrial city

    Science.gov (United States)

    Hurley, Rachel; Rothwell, James; Woodward, Jamie

    2016-04-01

    Manchester is often heralded as the 'first industrial city'. Rapid industrialisation in the 18th and 19th centuries saw vast quantities of fine-grained sediments (e.g. boiler ash and cinders) and contaminants (e.g. dyes, bleaches, and chemicals) deposited into the river channels of the Irwell and Mersey in a manner largely unchecked until the 1970s. Although water quality has improved in recent decades, there is a paucity of information on fluvial sediment quality and the extent to which a legacy of historical contamination persists in the contemporary river network. Forty five sites were sampled across the Irwell and Mersey catchments during low flow conditions in spring/summer 2015. Fine-grained bed sediment was collected using the Lambert and Walling (1988) method. Wet sieving was used to isolate the <63 μm fraction for geochemical analysis. Heavy metal concentrations were obtained via XRF with a particular focus on As, Cr, Cu, Pb and Zn. In order to explore controls on sediment-associated metal concentrations, additional characteristics of the bed sediment were also investigated, including particle size and organic matter content. Enrichment factors, based on mean concentrations obtained from pre-industrial floodplain deposits, were calculated. The enrichment factors reveal severe or very severe metal contamination across the whole catchment, including the headwater basins. Relationships between bed sediment quality and hotspots of historic industrial activity have been examined - these reveal complex spatial patterns associated with the high number and variety of historic contaminant inputs. These data form the first baseline assessment and will be used within a larger project investigating the impact of extreme hydrological events on bed sediment quality and transfer in these catchments.

  3. Pursuing realistic hydrologic model under SUPERFLEX framework in a semi-humid catchment in China

    Science.gov (United States)

    Wei, Lingna; Savenije, Hubert H. G.; Gao, Hongkai; Chen, Xi

    2016-04-01

    Model realism is pursued perpetually by hydrologists for flood and drought prediction, integrated water resources management and decision support of water security. "Physical-based" distributed hydrologic models are speedily developed but they also encounter unneglectable challenges, for instance, computational time with low efficiency and parameters uncertainty. This study step-wisely tested four conceptual hydrologic models under the framework of SUPERFLEX in a small semi-humid catchment in southern Huai River basin of China. The original lumped FLEXL has hypothesized model structure of four reservoirs to represent canopy interception, unsaturated zone, subsurface flow of fast and slow components and base flow storage. Considering the uneven rainfall in space, the second model (FLEXD) is developed with same parameter set for different rain gauge controlling units. To reveal the effect of topography, terrain descriptor of height above the nearest drainage (HAND) combined with slope is applied to classify the experimental catchment into two landscapes. Then the third one (FLEXTOPO) builds different model blocks in consideration of the dominant hydrologic process corresponding to the topographical condition. The fourth one named FLEXTOPOD integrating the parallel framework of FLEXTOPO in four controlled units is designed to interpret spatial variability of rainfall patterns and topographic features. Through pairwise comparison, our results suggest that: (1) semi-distributed models (FLEXD and FLEXTOPOD) taking precipitation spatial heterogeneity into account has improved model performance with parsimonious parameter set, and (2) hydrologic model architecture with flexibility to reflect perceived dominant hydrologic processes can include the local terrain circumstances for each landscape. Hence, the modeling actions are coincided with the catchment behaviour and close to the "reality". The presented methodology is regarding hydrologic model as a tool to test our

  4. Snow modelling in a glacierized catchment using scale-dependent calibration data

    Science.gov (United States)

    Engel, Michael; Comiti, Francesco; Penna, Daniele; Notarnicola, Claudia; Bertoldi, Giacomo

    2013-04-01

    Physically-based hydrological models that integrate a large amount of parameters often face the problem of equifinality. Thus, the application of such models to Alpine catchments with high spatial heterogeneity and complex hydrological behaviour is challenging. In this context, the distributed hydrological model GEOtop was employed to simulate snow dynamics in the period 2010 - 2012 at different spatial scales within the Saldur basin (Eastern Italian Alps). In this catchment, hydrometric, isotopic and sediment transport data at different spatial scales are available to validate the model and to assess the physical consistency of the model output. This work aims to: (i) assess the model validation at the plot scale in order to improve performances at the catchment scale; (ii) verify the usefulness of using multiple types of observations (snow, satellites, tracers, discharge) in order to assess the physical consistency and reduce the equifinality of the model output. At the plot scale, the model was calibrated by a manual sensitivity analysis on predicted snow heights, water equivalent and duration compared with the corresponding snow depth data of two meteorological stations (at 1930 m and 3035 m a.s.l.) in the study area. Selected snow parameters controlling snow reflectivity and snow aging were calibrated. In addition to traditional snow depth data, photosynthetically active radiation (PAR) sensor data were used to derive snow duration of other four meteorological stations In order to account for the spatial distribution of snow cover, best parameter settings of the plot scale models were transferred to catchment scale models. These models were assigned for two nested catchments, named LSG (19 km²) and USG (11 km²), which provided snow height and SWE in the catchment. At this scale, the model calibration was based on two types of remotely sensed snow maps: monthly Landsat images (30 m of resolution) and daily MODIS images (250 m of resolution). To support the

  5. The Effect of Converting Combined Sewer Catchments to Separate Sewer Catchments

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Rasmussen, Michael R.; Thorndahl, Søren Liedtke

    2011-01-01

    The overall objective of this paper is to contribute to the standing debate concerning the advantages of separate sewer systems compared to traditional combined sewers. By a case study this investigation reveals that a transformation of one fourth of a given total area from being combined to become...... separate sewer catchments decreases the amounts of storm water and pollutants diverted to the waste water treatment plant (WWTP) or as combined sewer overflows (CSO). But this happens at the expense of an increase in amounts of storm water and pollutants diverted to local receiving waters when detention...... ponds are not built-in the new separate sewer systems. If a total catchment area transformation – instead of only one fourth – is put through, the consequences could be fatal for receiving waters if no retention of pollutants is integrated in such a transformation....

  6. Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment

    Indian Academy of Sciences (India)

    Mahesh Kothari; K D Gharde

    2015-07-01

    The streamflow prediction is an essentially important aspect of any watershed modelling. The black box models (soft computing techniques) have proven to be an efficient alternative to physical (traditional) methods for simulating streamflow and sediment yield of the catchments. The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years (1992–2011) rainfall and other hydrological data were considered, of which 13 years (1992–2004) was for training and rest 7 years (2005–2011) for validation of the models. The mode performance was evaluated by R, RMSE, EV, CE, and MAD statistical parameters. It was found that, ANN model performance improved with increasing input vectors. The results with fuzzy logic models predict the streamflow with single input as rainfall better in comparison to multiple input vectors. While comparing both ANN and FL algorithms for prediction of streamflow, ANN model performance is quite superior.

  7. BISTRIŢA ARDELEANĂ CATCHMENT AREA – COORDINATES OF STRATEGIC LAND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    S. F. FONOGEA

    2014-11-01

    Full Text Available Bistriţa Ardeleană Catchment Area – Coordinates of Strategic Land Management. The approach of “creation and execution” / designing of this territorial cut-out of basin type, in the paradigmatic context of the durable development, is subordinate to an (almostexhaustive investigation of the vocation and potentiality of this area in terms of geographical and spatial organization of the territory. There may be multiple reasons to justify the existence of a paper which approaches this territory in an integrating and prospective manner. First of all, this area has an “identity card” type of evidence, at the level of the collective memory of the county’s inhabitants. Even if many contradictions multiplied along the years, nuances and specificities have been imposed, there is a filiation and a common territorial manifestation for the population and the settlements in this area. Secondly, the building of the settlements from Bârgău area and their later historical evolution was accomplished in a close interdependence, therefore the premise of development cannot be achieved outside the association (the access to different financing sources is easier when partnerships are built. Thirdly, the challenge of developing a study that shows the real prospects of developing a territory from the Bistriţa Ardeleană catchment area was motivated by subjective arguments, and the love of nature and environment played a key role in the effort to complete this action.

  8. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    H. Roux

    2011-09-01

    Full Text Available A spatially distributed hydrological model, dedicated to flood simulation, is developed on the basis of physical process representation (infiltration, overland flow, channel routing. Estimation of model parameters requires data concerning topography, soil properties, vegetation and land use. Four parameters are calibrated for the entire catchment using one flood event. Model sensitivity to individual parameters is assessed using Monte-Carlo simulations. Results of this sensitivity analysis with a criterion based on the Nash efficiency coefficient and the error of peak time and runoff are used to calibrate the model. This procedure is tested on the Gardon d'Anduze catchment, located in the Mediterranean zone of southern France. A first validation is conducted using three flood events with different hydrometeorological characteristics. This sensitivity analysis along with validation tests illustrates the predictive capability of the model and points out the possible improvements on the model's structure and parameterization for flash flood forecasting, especially in ungauged basins. Concerning the model structure, results show that water transfer through the subsurface zone also contributes to the hydrograph response to an extreme event, especially during the recession period. Maps of soil saturation emphasize the impact of rainfall and soil properties variability on these dynamics. Adding a subsurface flow component in the simulation also greatly impacts the spatial distribution of soil saturation and shows the importance of the drainage network. Measures of such distributed variables would help discriminating between different possible model structures.

  9. Response of rock-fissure seepage to snowmelt in Mount Taihang slope-catchment, North China.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun

    2013-01-01

    The complex physiographic and hydrogeological systems of mountain terrains facilitate intense rock-fissure seepages and multi-functional ecological interactions. As mountain eco-hydrological terrains are the common water sources of river basins across the globe, it is critical to build sufficient understanding into the hydrological processes in this unique ecosystem. This study analyzes infiltration and soil/rock-fissure seepage processes from a 65 mm snowfall/melt in November 2009 in the typical granitic gneiss slope catchment in the Taihang Mountains. The snowfall, snowmelt and melt-water processes are monitored using soil-water time-domain reflectometry (TDR) probes and tipping bucket flowmeters. The results suggest that snowmelt infiltration significantly influences soil/rock water seepage in the 0-100 cm soil depth of the slope-catchment. It is not only air temperature that influences snowmelt, but also snowmelt infiltration and rock-fissure seepage. Diurnal variations in rock-fissure seepage are in close correlation with air temperature (R(2) > 0.7). Temperature also varies with soil/rock water viscosity, which element in turn influences soil/rock water flow. Invariably, water dynamics in the study area is not only a critical water supply element for domestic, industrial and agricultural uses, but also for food security and social stability.

  10. Comparison of drought occurrence in selected Slovak and Czech catchments

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Porubska, Diana; Hanel, Martin; Horacek, Stanislav; Martinkova, Marta; Vizina, Adam

    2014-05-01

    The presented study is focused on the analysis and comparison of hydrological drought occurrence, development and duration in six small to middle sized catchments in the Czech Republic (CZ) and Slovakia. The main questions to be answered are: (1) are there correlations between the physical conditions in the catchments and drought occurrence, and (2) does the spatial trend of drought occurrence exist. The Žitava catchment is located in the central western part of Slovakia having runoff dominated by rainfall with the contribution of snow melting during the spring period. The Belá River catchment is located on the contact of Západné and Vysoké Tatry Mts. in the north of Slovakia. The runoff is snow to snow-rain combined type. The Ľupčianka catchment is located on the northern slopes of the Nízke Tatry Mts. in the northern part of the central Slovakia. The runoff regime is snow-rain combined in the upper part of the catchment, and of rain-snow type in the rest of catchment. The Rakovnický potok brook (CZ) has its spring in Rakovnická pahorkatina hilly land. Runoff is dominated by rainfall, quite heavily influenced by water uptakes in the catchment. The Teplá River (CZ) originates in peat meadows in the western part of the Czech Republic. Runoff is dominated by rainfall. The Metuje catchment (CZ) is formed by Adršsbach-Teplické stěny Upland. The headwater part is typical by deeply incest valleys, table mountains and pseudokarst caves. The discharge is fed dominantly by groundwater. The streamflow drought was characterized using discharge data, the groundwater drought using the base flow values. The local minimum method was used for base flow separation. The threshold level method (Q80, BF80) and the sequent peak algorithm were used for calculation of drought duration in discharge and base flow time series. The data of the same three decades of the common period (1971 - 1980, 1981 - 1990 and 1991 - 2000) were used. The resulting base flow values along with

  11. Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment.

    Science.gov (United States)

    Wulff, Fredrik; Humborg, Christoph; Andersen, Hans Estrup; Blicher-Mathiesen, Gitte; Czajkowski, Mikołaj; Elofsson, Katarina; Fonnesbech-Wulff, Anders; Hasler, Berit; Hong, Bongghi; Jansons, Viesturs; Mörth, Carl-Magnus; Smart, James C R; Smedberg, Erik; Stålnacke, Per; Swaney, Dennis P; Thodsen, Hans; Was, Adam; Zylicz, Tomasz

    2014-02-01

    The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion Euro.

  12. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, C.A.;

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface...... conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface...

  13. Pesticide uses and transfers in urbanised catchments.

    Science.gov (United States)

    Blanchoud, Hélène; Farrugia, Frédéric; Mouchel, Jean Marie

    2004-05-01

    An investigation on herbicide uses in two semi-urban catchments was performed simultaneously with sampling campaigns at six stations inside both watersheds from April to July 1998. Urban uses of herbicides exceeded agricultural uses, and transfer coefficients were also higher in urban areas. Therefore, the most used product in urban areas (diuron) was by far the most contaminating product. Householders accounted for 30% of all uses. The highest measured diuron concentration in water surface was 8.7 microg l(-1) due to its use on impervious surfaces. Compared to EEC standards for drinking water production (0.1 microg l(-1)), it is clear that suburban uses of herbicides may severely endanger drinking water production from river water.

  14. Chemical weathering and runoff chemistry in a steep headwater catchment

    Science.gov (United States)

    Anderson, Suzanne Prestrud; Dietrich, William E.

    2001-07-01

    We present here deductions about the location, rate, and mechanisms of chemical weathering in a small catchment based on a catchment-scale sprinkling experiment. In this experiment demineralized water was applied at an approximately steady rate in the CB1 catchment in the Oregon Coast Range to reach and maintain a quasi-steady discharge for a period of 4 days. Because of nearly steady flow conditions within the catchment, the contribution to solute fluxes from soil and bedrock could be partitioned. One half of the solute flux from the catchment derived from colluvial soil, and one half from weathering in bedrock. This implies more intense weathering in the thin colluvium mantling the catchment than in the thick underlying weathered bedrock. The annual solute flux from the catchment, scaled to the annual runoff from the catchment, is 32 +/- 10 t km-2 year-1, equivalent to published chemical denudation rates for nearby rivers with drainage areas 106 times greater than the experiment site. Soil waters sampled during the sprinkling experiment had steady compositions following a period of transient water flow conditions, implying steady-state chemical evolution in the soil. The waters leached organic anions from shallow depths in the soil, which solubilized aluminium and iron, indicating that podzolization is occurring in these soils. Carbonate dissolution appears to be an important source of solutes from the bedrock, despite being present as only a minor phase in the rock. Water balance suggests that the residence time of water in the catchment is about 2 months, and that typical 24 h storms displace only a fraction of the stored water. A consequence is that runoff chemistry is dominated by old water, which imposes strong limits on the variability of runoff composition.

  15. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    Science.gov (United States)

    Löffler, Jörg; Rößler, Ole

    different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine altitudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large- scaled hydrological dynamics of high mountain catchment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of investigations on altitudinal changes of mountain ecosystem structure and functioning (LÖFFLER &WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖßLER [in prep.]. JUNG, G., J. LÖFFLER &D. WUNDRAM (1997): Untersuchungen zur Struktur, Funktion und Dynamik mittelnorwegischer Hochgebirgsökosysteme. Forschungsansatz. Oldenburger Geoökologisches Kolloquium 3: 4-36. Oldenburg. KÖHLER, B., J. LÖFFLER &D. WUNDRAM (1994): Probleme der kleinräumigen Geoökovarianz im mittelnorwegischen Gebirge. Norsk geogr. Tidsskr. 48: 99- 111. LÖFFLER, J. (1997): Großmaßstäbige geoökologische Kartierungen in den Höhenstufen des mittelnorwegischen Gebirges. NORDEN 12: 205-228. Bremen. LÖFFLER, J. (1998): Geoökologische Untersuchungen zur Struktur mittelnorwegischer Hochgebirgsökosysteme. Oldenburger Geoökologische Studien 1. Oldenburg. LÖFFLER, J., O.-D. FINCH, J. NAUJOK &R. PAPE (2001): Möglichkeiten der Integration zoologischer Aspekte in die landschaftsökologische Untersuchung von Hochgebirgen. Methodendiskussion am Beispiel ökologischer Prozesssysteme und Biozönosen. Naturschutz u. Landschaftsplanung 33 (11): 351-357. LÖFFLER, J. &D. WUNDRAM (1997): Klimatische Phänomene in mittelnorwegischen Hochgebirgslandschaften und ihre ökosystemare Bedeutung. Oldenburger Geoökologisches Kolloquium

  16. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.

    Science.gov (United States)

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.

  17. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    Science.gov (United States)

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  18. Usefulness of four hydrological models in simulating high-resolution discharge dynamics of a catchment adjacent to a road

    Science.gov (United States)

    Kalantari, Z.; Jansson, P.-E.; Stolte, J.; Folkeson, L.; French, H. K.; Sassner, M.

    2012-04-01

    Four hydrological models (LISEM, MIKE SHE, CoupModel and HBV) were compared with respect to their capability to predict peak flow in a small catchment upstream of a road in SE Norway on an hourly basis. All four models were calibrated using hourly observed streamflow. Simulated and observed discharge generated during three types of hydrological situations characteristic of winter/spring conditions causing overland flow were considered: snowmelt, partially frozen soil and heavy rain events. Using parameter sets optimised for winter/spring conditions, flows simulated by HBV coupled with CoupModel were comparable to measured discharge from the catchment in corresponding periods. However, this combination was best when all the parameters were calibrated in HBV. For ungauged basins with no real-time monitoring of discharge and when the spatial distribution is important, MIKE SHE may be more suitable than the other models, but the lack of detailed input data and the uncertainty in physical parameters should be considered. LISEM is potentially capable of calculating runoff from small catchments during winter/spring but requires better description of snowmelt, infiltration into frozen layers and tile drainage. From a practical road maintenance perspective, the usefulness and accuracy of a model depends on its ability to represent site-specific processes, data availability and calibration requirements.

  19. Usefulness of four hydrological models in simulating high-resolution discharge dynamics of a catchment adjacent to a road

    Directory of Open Access Journals (Sweden)

    Z. Kalantari

    2012-04-01

    Full Text Available Four hydrological models (LISEM, MIKE SHE, CoupModel and HBV were compared with respect to their capability to predict peak flow in a small catchment upstream of a road in SE Norway on an hourly basis. All four models were calibrated using hourly observed streamflow. Simulated and observed discharge generated during three types of hydrological situations characteristic of winter/spring conditions causing overland flow were considered: snowmelt, partially frozen soil and heavy rain events. Using parameter sets optimised for winter/spring conditions, flows simulated by HBV coupled with CoupModel were comparable to measured discharge from the catchment in corresponding periods. However, this combination was best when all the parameters were calibrated in HBV. For ungauged basins with no real-time monitoring of discharge and when the spatial distribution is important, MIKE SHE may be more suitable than the other models, but the lack of detailed input data and the uncertainty in physical parameters should be considered. LISEM is potentially capable of calculating runoff from small catchments during winter/spring but requires better description of snowmelt, infiltration into frozen layers and tile drainage. From a practical road maintenance perspective, the usefulness and accuracy of a model depends on its ability to represent site-specific processes, data availability and calibration requirements.

  20. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    Science.gov (United States)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  1. Soil storage influences climate–evapotranspiration interactions in three western United States catchments

    Directory of Open Access Journals (Sweden)

    E. S. Garcia

    2015-08-01

    Full Text Available In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how soil available water capacity (AWC and rates of drainage influence model estimates of ET-climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second order control. Low soil AWC, however, increases the sensitivity of annual ET to these climate drivers by three to five times in our two study basins with drier summers. ET–climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver-ET relationships are most sensitive to soil AWC and soil drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in soil properties are likely to lead to substantial within-watershed plot scale differences in forest water use and drought stress.

  2. Multi-Site Validation of the SWAT Model on the Bani Catchment: Model Performance and Predictive Uncertainty

    Directory of Open Access Journals (Sweden)

    Jamilatou Chaibou Begou

    2016-04-01

    Full Text Available The objective of this study was to assess the performance and predictive uncertainty of the Soil and Water Assessment Tool (SWAT model on the Bani River Basin, at catchment and subcatchment levels. The SWAT model was calibrated using the Generalized Likelihood Uncertainty Estimation (GLUE approach. Potential Evapotranspiration (PET and biomass were considered in the verification of model outputs accuracy. Global Sensitivity Analysis (GSA was used for identifying important model parameters. Results indicated a good performance of the global model at daily as well as monthly time steps with adequate predictive uncertainty. PET was found to be overestimated but biomass was better predicted in agricultural land and forest. Surface runoff represents the dominant process on streamflow generation in that region. Individual calibration at subcatchment scale yielded better performance than when the global parameter sets were applied. These results are very useful and provide a support to further studies on regionalization to make prediction in ungauged basins.

  3. Contribution of rainfall, snow and ice melt to the hydrological regime of the Arve upper catchment and to severe flood events

    Science.gov (United States)

    Lecourt, Grégoire; Revuelto, Jesús; Morin, Samuel; Zin, Isabella; Lafaysse, Matthieu; Condom, Thomas; Six, Delphine; Vionnet, Vincent; Charrois, Luc; Dumont, Marie; Gottardi, Frédéric; Laarman, Olivier; Coulaud, Catherine; Esteves, Michel; Lebel, Thierry; Vincent, Christian

    2016-04-01

    In Alpine catchments, the hydrological response to meteorological events is highly influenced by the precipitation phase (liquid or solid) and by snow and ice melt. It is thus necessary to simulate accurately the snowpack evolution and its spatial distribution to perform relevant hydrological simulations. This work is focused on the upper Arve Valley (Western Alps). This 205 km2 catchment has large glaciated areas (roughly 32% of the study area) and covers a large range of elevations (1000-4500 m a.s.l.). Snow presence is significant year-round. The area is also characterized by steep terrain and strong vegetation heterogeneity. Modelling hydrological processes in such a complex catchment is therefore challenging. The detailed ISBA land surface model (including the Crocus snowpack scheme) has been applied to the study area using a topography based discretization (classifying terrain by aspect, elevation, slope and presence of glacier). The meteorological forcing used to run the simulations is the reanalysis issued from the SAFRAN model which assimilates meteorological observations from the Meteo-France networks. Conceptual reservoirs with calibrated values of emptying parameters are used to represent the underground water storage. This approach has been tested to simulate the discharge on the Arve catchment and three sub-catchments over 1990-2015. The simulations were evaluated with respect to observed water discharges for several headwaters with varying glaciated areas. They allow to quantify the relative contribution of rainfall, snow and ice melt to the hydrological regime of the basin. Additionally, we present a detailed analysis of several particular flood events. For these events, the ability of the model to correctly represent the catchment behaviour is investigated, looking particularly to the relevance of the simulated snowpack. Particularly, its spatial distribution is evaluated using MODIS snow cover maps, punctual snowpack observations and summer

  4. A catchment-integrated approach to determine the importance of secondary sources of contaminated sediment

    Science.gov (United States)

    Andres Lopez-Tarazon, Jose; Byrne, Patrick; Mullan, Donal; Smith, Hugh

    2015-04-01

    Water pollution has been identified as one of the most important environmental challenges of the early 21st Century. The Water Framework Directive (WFD) (2008/105/EC) explicitly recognises the risk to water resources posed by sediment-associated contaminants in European river basins. The potential impacts on water supply and the biodiversity of aquatic ecosystems from sediment and associated contaminants may be further exacerbated by climate change pressures on water resources, as highlighted in the 2009 EU White Paper "Adapting to climate change: Towards a European framework for action" (SEC(2009) 386, 387, 388). Despite these concerns, the role of floodplains and other storage areas as secondary sources of contaminated sediment (i.e. metals) in river basins affected by historic industrial or mining pollution has been largely overlooked. Thereby, besides the sediment which is transported by the river, secondary sources of contaminants represent a credible threat to achieving EU water quality targets set by the WFD. This project addresses this issue by developing a catchment-based approach looking at metal geochemistry from source to sink (i.e., from sediment generation at slopes, passing through sediment transported by the river system, to sediment deposition at the storage areas to the outlet) and develop a geochemical model to predict the chemical aspects of metals transport and transformation. This approach will allow us to quantify (i) the sediment fluxes and associated contaminants flowing through the river, (ii) the storage areas contributions to downstream contaminated sediment fluxes, (ii) the timescales for the storage and removal of contaminated sediment in the sinks, and (iv) the transformation and bioavailability of the pollutants (i.e. metals) along the basin. Both physical and chemical aspects of metal transport will be considered by looking at metal geochemistry, mobility and bioavailability, hence producing information on chemical metal transport

  5. Annual flow duration curves assessment in ephemeral small basins

    Science.gov (United States)

    Pumo, D.; Viola, F.; La Loggia, G.; Noto, L. V.

    2014-11-01

    Flow duration curve (FDC) represents a comprehensive signature of temporal runoff variability often used to synthesize catchment rainfall-runoff responses. A new model, the ModABa (MODel for Annual flow duration curves assessment in ephemeral small BAsins), is here introduced. It can be thought as a wide mosaic whose tesserae are frameworks, models or conceptual schemes separately developed in different studies and harmoniously interconnected with the final aim of reproducing the annual FDC in intermittent small catchments. Two separated seasons within the hydrological year are distinguished: a dry season, characterized by absence of streamflow, and a non-zero season. Streamflow is disaggregated into a subsurface component and a surface component that, in turn, is considered formed by two different contributions: impervious runoff and surface runoff from permeable areas induced by heavy rains. The FDCs of the two streamflow components are first separately and differently computed, and then combined to obtain the non-zero FDC. This last, together with the estimated probability of null streamflow, allows the annual FDC assessment through the theory of total probability. The ModABa is here tested on a small Italian catchment and the results show how the model, once calibrated, is able to accurately reproduce the empirical FDC for the analyzed case, starting from easily derivable parameters and commonly available climatic data. In this sense, the model reveals itself as a valid tool, potentially suitable for predictions at ungauged basins in a regionalization framework.

  6. Evaluation of fluxes of suspended matters and bedload in the small granitic Strengbach catchment (Vosges massif, France)

    Science.gov (United States)

    Cotel, Solenn; Viville, Daniel; Pierret, Marie Claire; Benarioumlil, Sylvain; Chabaux, François

    2016-04-01

    Transport of suspended matters (SM) and bedload in river controls the erosion process and elements export of a catchment. Furthermore, the SM are heavily involved in the migration of organic matter, metals and pollutants. The knowledge of the dynamics of the SM export is also essential to better understand the hydrogeochemical functioning of natural ecosystem. We investigated this question at the scale of a catchment; the Strengbach basin (site of OHGE - Observatoire Hydro-Géochimique de l'Environnement) where meteorological and hydrological data are monitored since 30 years. This small granitic basin (0,8km²) is located in the Vosges massif at altitudes between 883m and 1146m with 1400mm mean annual precipitations. A first evaluation of the solid fluxes exported at the Strengbach catchment was carried out on the basis of fortnightly sampling and measurement (Viville et al., 2012). Two automatic water samplers have been set up at the outlet of the basin in december 2012, in order to 1) evaluate the potential bias generated by the sampling frequency and 2) improve the SM flux calculation accuracy especially by taking into account the high flow events. These two samplers allowed regular sampling at 16h time step as well as high flow events sampling. At the same time, the bedload flux was estimated fortnightly by measuring the volume of sediments accumulated in a flume. However, the characteristics of the small Strengbach catchment (low water level, low SM concentration and mountainous winter climatic conditions) required to adapt the conventionally used systems. In this way, the SM annual flux estimated with the data from the two samplers varied between 7,5T and 8,8T during the three years of the study. By comparison, the SM annual flux obtained with previous method (only fortnightly sampling) was significantly different with values ranging from 2,8T to 16,6T. The contribution from each sampler and thus each sampling strategy to the improvement of the SM flux

  7. Evidence for active tilting of the NW-German Basin from correlations between fluvial landscape and geological subground

    Science.gov (United States)

    Szeder, Thore; Sirocko, Frank

    2005-02-01

    The catchment basin of the River Hunte (Lower Saxony, NW-German Basin) was studied on a mesoscale (length of ~90 km) to investigate the influence of the geological subground on modern morphology. A Geo Information System (GIS) was used to calculate linear correlation coefficients between the depth of geological strata (Base Zechstein to Base Quaternary) and the height of the modern landscape (Holocene Alluvial Plain, Lower Weichselian Terrace, catchment basin and watershed). High linear correlation coefficients between the Base of Tertiary and the height of the modern topography (catchment basin [r2=0.87], Lower Weichselian Terrace [r2=0.95] and Holocene Alluvial Plain [r2=0.95]) indicate control of the modern topography by the depth of the geological subsurface via tilting of the entire basin. Most likely northward tilting of the NW-German Basin forces the River Hunte to flow in a northerly direction by relative uplift of the hinterland (Wiehengebirge, Rhenish Massif) and subsidence of the North Sea area.

  8. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan)

    Science.gov (United States)

    Tahir, Adnan Ahmad; Adamowski, Jan Franklin; Chevallier, Pierre; Haq, Ayaz Ul; Terzago, Silvia

    2016-03-01

    The Upper Indus Basin (UIB), situated in the Himalaya-Karakoram-Hindukush (HKH) mountain ranges, is the major contributor to the supply of water for irrigation in Pakistan. Improved management of downstream water resources requires studying and comparing spatiotemporal changes in the snow cover and hydrological behavior of the river basins located in the HKH region. This study explored in detail the recent changes that have occurred in the Gilgit River basin (12,656 km2; western sub-basin of UIB), which is characterized by a mean catchment elevation of 4250 m above sea level (m ASL). The basin's snow cover was monitored through the snow products provided by the MODIS satellite sensor, while analysis of its hydrological regime was supported by hydrological and climatic data recorded at different altitudes. The Gilgit basin findings were compared to those previously obtained for the lower-altitude Astore basin (mean catchment elevation = 4100 m ASL) and the higher-altitude Hunza basin (mean catchment elevation = 4650 m ASL). These three catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. Almost 7, 5 and 33 % of the area of the Gilgit, Astore and Hunza basins, respectively, are situated above 5000 m ASL, and approximately 8, 6 and 25 %, respectively, are covered by glaciers. The UIB region was found to follow a stable or slightly increasing trend in snow coverage and had a discharge dominated by snow and glacier melt in its western (Hindukush-Karakoram), southern (Western-Himalaya) and northern (Central-Karakoram) sub-basins.

  9. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan )

    Science.gov (United States)

    Tahir, Adnan Ahmad; Adamowski, Jan Franklin; Chevallier, Pierre; Haq, Ayaz Ul; Terzago, Silvia

    2016-12-01

    The Upper Indus Basin (UIB), situated in the Himalaya-Karakoram-Hindukush (HKH) mountain ranges, is the major contributor to the supply of water for irrigation in Pakistan. Improved management of downstream water resources requires studying and comparing spatiotemporal changes in the snow cover and hydrological behavior of the river basins located in the HKH region. This study explored in detail the recent changes that have occurred in the Gilgit River basin (12,656 km2; western sub-basin of UIB), which is characterized by a mean catchment elevation of 4250 m above sea level (m ASL). The basin's snow cover was monitored through the snow products provided by the MODIS satellite sensor, while analysis of its hydrological regime was supported by hydrological and climatic data recorded at different altitudes. The Gilgit basin findings were compared to those previously obtained for the lower-altitude Astore basin (mean catchment elevation = 4100 m ASL) and the higher-altitude Hunza basin (mean catchment elevation = 4650 m ASL). These three catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. Almost 7, 5 and 33 % of the area of the Gilgit, Astore and Hunza basins, respectively, are situated above 5000 m ASL, and approximately 8, 6 and 25 %, respectively, are covered by glaciers. The UIB region was found to follow a stable or slightly increasing trend in snow coverage and had a discharge dominated by snow and glacier melt in its western (Hindukush-Karakoram), southern (Western-Himalaya) and northern (Central-Karakoram) sub-basins.

  10. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT

    Science.gov (United States)

    The Merguellil catchment (Central Tunisia) is a typical Mediterranean semi-arid basin which suffers from regular water shortage aggravated by current droughts. During the recent decades the continuous construction of small and large dams and Soil and Water Conservation Works (i.e. Contour ridges) ha...

  11. Temporal variations in the export of REE in boreal catchments of varying character and size

    Science.gov (United States)

    Köhler, S.; Lidman, F.; Mörth, M.; Björkvald, L.; Laudon, H.

    2009-04-01

    . Geochimica Et Cosmochimica Acta 71(11), 2718-2735. Steinmann M. and Stille P. (2008) Controls on transport and fractionation of the rare earth elements in stream water of a mixed basaltic-granitic catchment basin (Massif Central, France). Chemical Geology 254(1-2), 1-18. Tipping E. (1998) Humic Ion-Binding Model VI: An improved Description of the Intercations of Protons and Metal Ions with Humic Substances. Aquatic Geochemistry 4, 3-48.

  12. Regional flow system delineation in arid karstic basins with sparse hydrogeologic data: Cuatro Cienegas Basin, Coahuila, Mexico

    Science.gov (United States)

    Wolaver, B. D.; Sharp, J. M.; Rodriguez, J. M.

    2006-12-01

    We develop procedures for the delineation of regional groundwater flow systems in arid, karstic basins with sparse hydrogeologic data using surface topography data, geologic mapping, permeability data, chloride concentrations of groundwater and precipitation, and measured discharge data. Aquifers are characterized using geographic information systems (GIS) for groundwater catchment delineation, an analytical model for interbasin flow evaluation, a chloride balance approach for recharge estimation, and a water budget for mapping contributing catchments over a 160,000 km2 region (24.87° to 28.70° north latitude and 100.68° west to 104.75° west longitude). The study area includes the Cuatro Cienegas Basin (CCB) of Coahuila, Mexico, a National Biosphere Reserve containing springs that support groundwater-dependent ecosystems and irrigated agriculture. Sustainable groundwater development is a key issue on the U.S. Mexico border. However, these procedures may be applicable in similar settings globally. We delineate groundwater catchments that contribute local and regional groundwater discharge to CCB springs and identify a large regional flow system includes mountain recharge from as both the Sierra Madre Oriental and Occidental.

  13. Temporal and spatial dynamics of carbon and nitrogen in headwater snow-dominated catchments, Jemez Mountains, New Mexico

    Science.gov (United States)

    Dannemann, F. K.; Zapata, X.; McIntosh, J. C.; Perdrial, J. N.; Brooks, P. D.; Chorover, J.; Lohse, K. A.; Fricke, H. C.

    2011-12-01

    The concentration and availability of stream nutrients, particularly dissolved organic carbon (DOC) and nitrogen species, determine aquatic system productivity, and are important indicators of catchment hydrobiogeochemical processes. In semi-arid montane areas, such as the Valles Caldera National Preserve located within the Jemez River Basin, NM, an understanding of the relationship between discharge and nutrient concentrations is particularly important. Although the annual hydrograph is dominated (~40%) by spring snowmelt, similar to well studies sites in the northern Rockies, the JRB region receives a much larger percentage of precipitation associated with summer rainfall, and consequently may provide insight into how more northerly catchments will respond to changing climate. This study focuses on four headwater catchments: History Grove, La Jara, Upper Jaramillo and Upper Redondo, over two water years (2009 to 2011) to examine how nutrient concentrations vary as a function of hillslope aspect, catchment hydrologic responses, seasonality, and discharge. Stream water grab samples were collected on a monthly to weekly basis from 2009 to 2011 and analyzed for inorganic carbon (DIC), dissolved organic carbon (DOC) and nitrogen species (total dissolved nitrogen (DN), NO3, NO2, NH4). DOC and DN concentrations in stream waters from all 4 catchments are positively correlated, indicating a tight coupling of carbon and nitrogen. During dry periods (September to February) stream waters have high DIC (4.8-7.6 mg/L), and low DOC (1.6-2.7 mg/L) and DN (<0.3 mg/L) concentrations, indicating that stream water is dominated by groundwater inputs. In contrast, during spring snowmelt (March-May) stream waters have high DOC (2.9-6.2 mg/L) and DN (0.2-0.5mg/L) concentrations and low DIC (3.1-4.5mg/L) values; the majority of DN is comprised of organic-N. These results suggest flushing of shallow soil waters during snowmelt periods. High DIC (5.8-6.3mg/L), and low DOC (1.7-4.0mg/L) and

  14. A catchment scale water balance model for FIFE

    Science.gov (United States)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  15. Identifying residence times and streamflow generation processes using δ18O and δ2H in meso-scale catchments in the Abay/Upper Blue Nile, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Tekleab

    2013-08-01

    Full Text Available Measurements of the stable isotopes oxygen-18 (18O and deuterium (2H were carried out in two meso-scale catchments, Chemoga (358 km2 and Jedeb (296 km2 south of Lake Tana, Abay/Upper Blue Nile basin, Ethiopia. The region is of paramount importance for the water resources in the Nile basin. Stable isotope composition in precipitation, spring water and streamflow were analyzed (i to characterize the spatial and temporal variations of water fluxes; (ii to estimate the mean residence time of water using a sine wave regression approach; and (iii to identify runoff components using classical two component hydrograph separations at a seasonal time scale. The results show that the isotopic composition of precipitation exhibit marked seasonal variations, which suggests different sources of moisture generation for the rainfall in the study area. The Atlantic–Indian ocean, Congo basin, and the Sud swamps are the likely the potential moisture source areas during the main rainy (summer season. While, the Indian–Arabian, and Mediterranean Sea moisture source areas during little rain (spring, and dry (winter seasons. The spatial variation of the isotopic composition is affected by the amount effect and to less extent by altitude and temperature effects. A mean altitude effect of −0.12‰ (100 m−1 for 18O and −0.58‰ (100 m−1 for 2H were discernable in precipitation isotope composition. The seasonal variations of the isotopic signature of the spring water exhibit a damped response as compared to the river waters, which shows that the spring water has longer residence times than the river water. Results from the hydrograph separation at a seasonal time scale indicate the dominance of event water with an average of 71% and 64% of the total runoff during the wet season in the Chemoga and Jedeb catchment, respectively. The stable isotope compositions of streamflow samples were damped compared to the input function of precipitation for both catchments

  16. Analysis on radiocesium concentration in rivers that have catchment areas affected by the fallout from Fukushima Daiichi Nuclear Power Plant

    Science.gov (United States)

    Taniguchi, Keisuke; Yoshimura, Kazuya; Sakaguchi, Aya; Yamamoto, Masayoshi; Onda, Yuichi

    2014-05-01

    Due to Fukushima Daiichi Nuclear Power Plant accident, radioactive materials including Cs-134 and Cs-137 were widely distributed in surrounded area. The radiocesiums have been transported in river networks. This study showed the monitoring results of radiocesium concentration in river waters and suspended sediments in Abukuma river basin and smaller coastal river catchments. The monitoring started at 6 sites from June 2011. Subsequently, additional 24 monitoring sites were installed between October 2012 and January 2013. Flow and turbidity (for calculation of suspended sediment concentration) were measured at each site, while suspended sediments and river water were collected every one or half month to measure Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Activity concentrations of Cs-134 and Cs- 137 on suspended sediments were generally decreasing at all sites. The decreasing rate changed lower at about one year later from the accident. Activity concentration in river waters also showed the same tendency although there are only few data within 1 year from the accident. Activity concentrations measured at the same day are proportional to the mean catchment inventory. Therefore, the activity concentration can be normalized by the mean catchment inventory. The normalized activity can be fitted to following double exponential function: [At] = 1.551 exp (-5.265t) + 0.069 exp (-0.266 t), where t [year] is the time from the accident. There is no time evolution of Kd between suspended sediments and river water. Instead, Kd was varied spatially. Although the reason of the spatial variation is not clear for now, geology of the catchment (i.e. mineral composition of suspended particles) seems to relate to the variation.

  17. Examining the Impacts of Wildfire on Throughfall and Stemflow Chemistry and Flux at Plot and Catchment Scales

    Science.gov (United States)

    White, A. M.; Swetnam, T. L.; McIntosh, J. C.; Meixner, T.; Brooks, P. D.; Chorover, J.

    2015-12-01

    This study investigates the effects of fire on the chemistry and flux of precipitation diverted to the forest floor as stemflow and throughfall by observing the impact of the June 2013 Thompson Ridge wildfire in the Jemez River Basin of New Mexico. The loss of canopy cover from wildfire drastically modifies landscapes and alters ecosystems as high intensity burns replace canopies with charred branches and trunks, change soil composition and erosion processes, and affect hydrologic flow paths and water chemistry. In order to track these changes throughfall and stemflow collectors were installed beneath burned and unburned canopies in two catchments impacted by the Thompson Ridge fire. Throughfall, stemflow, and open precipitation samples were analyzed for major cations, anions, organic matter, trace metals, and rare earth elements to determine how fire affects the chemical composition of the precipitation that interacts with burned canopies. Precipitation samples collected from both burned and unburned sites during the 2014 summer monsoon season show variations across burn severity, specifically in calcium and strontium concentrations, and collector type with stemflow concentrations generally higher than throughfall and open precipitation concentrations. Precipitation samples collected from burned sites have distinct rare earth element concentrations, positive europium anomalies, and titanium/zirconium ratios as compared to those of unburned sites. Aqueous extracts of ash and charred bark were also analyzed to determine the origin of these signatures. A stem count model was used to determine tree density for individual plots and catchments from orthophotos taken before and after the 2013 fire. Upscaling these plot scale concentrations and fluxes to catchment scale allows this study to represent changes to an entire catchment and quantify effects of wildfire on chemical load and water chemistry.

  18. Streamflow response of a small forested catchment on different timescales

    Directory of Open Access Journals (Sweden)

    A. Zabaleta

    2013-01-01

    Full Text Available The hydrological response of a catchment to rainfall on different timescales is result of a complex system involving a range of physical processes which may operate simultaneously and have different spatial and temporal influences. This paper presents the analysis of streamflow response of a small humid-temperate catchment (Aixola, 4.8 km2 in the Basque Country on different timescales and discusses the role of the controlling factors. Firstly, daily time series analysis was used to establish a hypothesis on the general functioning of the catchment through the relationship between precipitation and discharge on an annual and multiannual scale (2003–2008. Second, rainfall-runoff relationships and relationships among several hydrological variables, including catchment antecedent conditions, were explored at the event scale (222 events to check and improve the hypothesis. Finally, the evolution of electrical conductivity (EC during some of the monitored storm events (28 events was examined to identify the time origin of waters. Quick response of the catchment to almost all the rainfall events as well as a considerable regulation capacity was deduced from the correlation and spectral analyses. These results agree with runoff event scale data analysis; however, the event analysis revealed the non-linearity of the system, as antecedent conditions play a significant role in this catchment. Further, analysis at the event scale made possible to clarify factors controlling (precipitation, precipitation intensity and initial discharge the different aspects of the runoff response (runoff coefficient and discharge increase for this catchment. Finally, the evolution of EC of the waters enabled the time origin (event or pre-event waters of the quickflow to be established; specifically, the conductivity showed that pre-event waters usually represent a high percentage of the total discharge during runoff peaks. The importance of soil waters in the

  19. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  20. Effects of input discretization, model complexity, and calibration strategy on model performance in a data-scarce glacierized catchment in Central Asia

    Science.gov (United States)

    Tarasova, L.; Knoche, M.; Dietrich, J.; Merz, R.

    2016-06-01

    Glacierized high-mountainous catchments are often the water towers for downstream region, and modeling these remote areas are often the only available tool for the assessment of water resources availability. Nevertheless, data scarcity affects different aspects of hydrological modeling in such mountainous glacierized basins. On the example of poorly gauged glacierized catchment in Central Asia, we examined the effects of input discretization, model complexity, and calibration strategy on model performance. The study was conducted with the GSM-Socont model driven with climatic input from the corrected High Asia Reanalysis data set of two different discretizations. We analyze the effects of the use of long-term glacier volume loss, snow cover images, and interior runoff as an additional calibration data. In glacierized catchments with winter accumulation type, where the transformation of precipitation into runoff is mainly controlled by snow and glacier melt processes, the spatial discretization of precipitation tends to have less impact on simulated runoff than a correct prediction of the integral precipitation volume. Increasing model complexity by using spatially distributed input or semidistributed parameters values does not increase model performance in the Gunt catchment, as the more complex model tends to be more sensitive to errors in the input data set. In our case, better model performance and quantification of the flow components can be achieved by additional calibration data, rather than by using a more distributed model parameters. However, a semidistributed model better predicts the spatial patterns of snow accumulation and provides more plausible runoff predictions at the interior sites.

  1. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    Science.gov (United States)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  2. Groundwater head controls nitrate export from an agricultural lowland catchment

    Science.gov (United States)

    Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H.

    2016-10-01

    Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale.

  3. CONDITIONING FACTORS IN SUSTAINABLE DEVELOPMENT OF THE NORTHERN COAST OF SÃO PAULO STATE – THE EXAMPLE OF LAGOINHA CREEK CATCHMENT BASIN – UBATUBA – SP, BRAZIL = CONDICIONANTES DO DESENVOLVIMENTO SUSTENTÁVEL DO LITORAL NORTE PAULISTA – O EXEMPLO DA BACIA DO CÓRREGO DA LAGOINHA – UBATUBA – SP, BRASIL

    Directory of Open Access Journals (Sweden)

    Luis Roberto Cottas

    2003-01-01

    Full Text Available The Northern Coast of Sao Paulo State is naturally endowed for the tourismrelated activities, especially focused on the use of natural resources, of beaches and coastal waters. The systematic studies performed by CETESB on the quality of coastal waters revealed the degradation in their quality, especially from domestic sewagecontamination. The purpose of the performance of this work was to find the conditioning factors for a sustainable tourism-based development, using a representative area as a model. The chosen area was the drainage basin of Lagoinha creek in the county of Ubatuba. This choice was the result of its physical and anthropic haracteristics typical of the region. Basic thematic and integrated maps were made on a scale of 1:10,000. The description was made of the current status of this geo-system and the relevant local legislation while studies were carried out to correlate this area in the regional context. Space analysis methods, lists and matrixes were used to interpret the data. The conditioning factors were identified as being, geologic formations, water resources, legislation, the road system, relative variation in the average sea level and the current spread of urbanization. Suggestions are offered to mitigate the effects of anthropic action on the environmental quality that will prejudice regional tourism. = O Litoral Norte do Estado de São Paulo tem uma vocação natural para atividades relacionadas ao turismo, especialmente sob o prisma da utilização dos recursos naturais das praias e águas costeiras. As análises sistemáticas realizadas pela CETESB sobre a qualidade das águas costeiras evidenciam degradação, especialmente pela contaminação com esgoto doméstico. O trabalho realizado procura identificar as condicionantes para o desenvolvimento sustentável baseado no turismo para uma área representativa tomada como modelo. A área escolhida foi a Bacia Hidrográfica do Córrego da Lagoinha, localizada no Munic

  4. Annual production and its dynamics of four dominant mayflies in Hujiaxi Stream of Qingjiang River catchment, Yangtze River Basin%长江流域清江胡家溪四种蜉蝣优势种的周年生产量及其动态

    Institute of Scientific and Technical Information of China (English)

    江晶; 温芳妮; 王利肖; 邱爽; 李晓宇; 闫云君

    2013-01-01

    2006年4月至2007年3月对长江支流清江二级支流——胡家溪的大型底栖动物群落结构和生产量进行为期一周年的调查和研究.结果表明,主要蜉蝣优势种小裳蜉(Leptophlebia sp.)、扁蜉(Electrogena sp.)、四节蜉(lndobaetis sp.)的生活史为一年三代,细蜉(Caenis sp.)为一年两代;小裳蜉的年均密度和年均生物量分别为407 ind./m2、1.00 g/m2;扁蜉为150 ind./m2、0.37 g/m2,四节蜉为232 ind./m2、0.30 g/m2,细蜉为91 ind./m2、0.17 g/m2.采用龄期频率法测算的周年生产量和P/B分别为:小裳蜉为441.42 g/m2(WW),14.3;扁蜉为434.88 g/m2 (WW),7.6;四节蜉为747.21 g/m2(WW),15.0;细蜉为40.52 g/m2 (WW),7.2.四种蜉蝣生产量的时间重叠比例相似系数较高,均大于0.55,这可能与四种蜉蝣的生境及食物资源较为相似有关.%During the period of April 2006 to March 2007 , secondary production and its dynamics of the dominant species of mayfly community in a second order river (Hujiaxi Stream) of Qingjiang River, Yangtze River Basin were investigated. From the upper to the lower reach of the stream, we sampled at six sites of different habitats quantitatively. The life cycles of the four dominant mayflies , namely Leptopklebia sp. , Electrogena sp. , Indobaelis sp. , and Caenis sp. , were analyzed by the monthly size-class frequency distribution, the cohort and annual production were estimated by size frequency method, and the production dynamics were examined by the method sensu Benke and Wallace (1997). The results show that Leptophlebia sp. , Electrogena sp. , and Indobaetis sp. appear to develop three generations per year, while Caenis sp. completed two generation a year. Their average annual standing stocks were: for Leptophlebia sp. , 407 ind. /m2,1.00 g/m2 ; for Electrogena sp. , 150 ind. /m2 , 0. 37 g/m2 ; for Indobaetis sp. , 232 ind. /m2, 0. 30 g/m2 ; and for Caenis sp. , 91 ind. /m2 , 0. 17 g/m2 , respectively. The annual production (g/m2 ( WW

  5. A Flash Flood Study on the Small Montaneous River Catchments in Western Romania

    Science.gov (United States)

    Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël

    2013-04-01

    interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

  6. Catchments catch all in South African coastal lowlands: topography and palaeoclimate restricted gene flow in Nymania capensis (Meliaceae)—a multilocus phylogeographic and distribution modelling approach

    Science.gov (United States)

    2017-01-01

    Background This study investigates orbitally-forced range dynamics at a regional scale by exploring the evolutionary history of Nymania capensis (Meliaceae) across the deeply incised landscapes of the subescarpment coastal lowlands of South Africa; a region that is home to three biodiversity hotspots (Succulent Karoo, Fynbos, and Maputaland-Pondoland-Albany hotspots). Methods A range of methods are used including: multilocus phylogeography (chloroplast and high- and low-copy nuclear DNA), molecular dating and species distribution modelling (SDM). Results The results support an ‘evolutionarily distinct catchment’ hypothesis where: (1) different catchments contain genetically distinct lineages, (2) limited genetic structuring was detected within basins whilst high structuring was detected between basins, and (3) within primary catchment populations display a high degree of genealogical lineage sorting. In addition, the results support a glacial refugia hypothesis as: (a) the timing of chloroplast lineage diversification is restricted to the Pleistocene in a landscape that has been relatively unchanged since the late Pliocene, and (b) the projected LGM distribution of suitable climate for N. capensis suggest fragmentation into refugia that correspond to the current phylogeographic populations. Discussion This study highlights the interaction of topography and subtle Pleistocene climate variations as drivers limiting both seed and pollen flow along these lowlands. This lends support to the region’s large-scale conservation planning efforts, which used catchments as foundational units for conservation as these are likely to be evolutionarily significant units.

  7. GIS-based methodologies for assessing nitrate, nitrite and ammonium distributions across a major UK basin, the Humber

    Directory of Open Access Journals (Sweden)

    H. Davies

    2004-01-01

    Full Text Available The distributions of nitrate, nitrite and ammonium at various monitoring sites across the Humber basin (area 24 000 km2 were examined within a Geographical Information System (GIS framework. This basin contains diverse characteristics, from areas of high population and industry to rural and arable regions. The Humber River is a major provider of and nutrient fluxes to the North Sea from the UK. Within the GIS analysis, the distributions of mean and mean flow weighted concentrations, flux and flux per unit area, were investigated. Empirical relationships between land characteristics and water quality for the whole catchment draining to each water quality monitoring site were established. Thirty-eight catchments were chosen for this analysis, with areas ranging from 46 km2 to 8225 km2. These catchments are distributed across the Humber, encompassing the different conditions across the basin, thus allowing relationships between water quality and catchment characteristics to be used to estimate the nitrogen concentrations and flux throughout the basin river network. The main water quality data source was the Land Ocean Interaction Study (LOIS dataset. The Environment Agency of England and Wales water quality datasets were used to infill areas of sparse LOIS monitoring network density within the Humber. The work shows the feasibility of estimating nitrate and, to a lesser extent, nitrite and ammonium concentrations and fluxes across the river network based on land characteristics, using a GIS methodology. The estimations work particularly well for the main river channels. However, there are local anomalies which are more difficult to predict. Maps showing concentration variations at 500 m intervals along the Humber basin river networks are presented; these are of particular value for environmental managers and socio-economists. Keywords: GIS, nitrate, nitrite, ammonium, catchment characteristics

  8. Mountaintop Removal Mining and Catchment Hydrology

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2014-03-01

    Full Text Available Mountaintop mining and valley fill (MTM/VF coal extraction, practiced in the Central Appalachian region, represents a dramatic landscape-scale disturbance. MTM operations remove as much as 300 m of rock, soil, and vegetation from ridge tops to access deep coal seams and much of this material is placed in adjacent headwater streams altering landcover, drainage network, and topography. In spite of its scale, extent, and potential for continued use, the effects MTM/VF on catchment hydrology is poorly understood. Previous reviews focus on water quality and ecosystem health impacts, but little is known about how MTM/VF affects hydrology, particularly the movement and storage of water, hence the hydrologic processes that ultimately control flood generation, water chemistry, and biology. This paper aggregates the existing knowledge about the hydrologic impacts of MTM/VF to identify areas where further scientific investigation is needed. While contemporary surface mining generally increases peak and total runoff, the limited MTM/VF studies reveal significant variability in hydrologic response. Significant knowledge gaps relate to limited understanding of hydrologic processes in these systems. Until the hydrologic impact of this practice is better understood, efforts to reduce water quantity and quality problems and ecosystem degradation will be difficult to achieve.

  9. On the measure of large woody debris in an alpine catchment

    Science.gov (United States)

    D'Agostino, V.; Bertoldi, G.; Rigon, E.

    2012-04-01

    The management of large woody debris (LWD) in Alpine torrents is a complex and ambiguous task. On one side the presence of LWD contributes to in-channel and floodplain morphological processes and plays an important role in landscape ecology and biodiversity. On the other side LWD increases considerably flood hazards when some river cross-sections result critical for the human interface (e.g. culverts, bridges, artificial channels). Only few studies provide quantitative data of LWD volumes in Alpine torrents. Research is needed both at basin scale processes (LWD recruiting from hillslopes) and at channel scale processes (feeding from river bank, storage/transport/deposition of LWD along the river bed). Our study proposes an integrate field survey methodology to assess the overall LWD amount which can be entrained by a flood. This knowledge is mandatory for the scientific research, for the implementation of LWD transport models, and for a complete hazard management in mountain basins. The study site is the high-relief basin of the Cordevole torrent (Belluno Province, Central Alps, Italy) whose outlet is located at the Saviner village (basin area of 109 square kilometers). In the November 1966 an extreme flood event occurred and some torrent reaches were heavily congested by LWD enhancing the overall damages due to long-duration overflows. Currently, the LWD recruitment seems to be strictly correlated with bank erosion and hillslope instability and the conditions of forest stand suggest LWD hazard is still high. Previous studies on sub-catchments of the Cordevole torrent have also shown an inverse relation between the drainage area and the LWD storage in the river-bed. Present contribution analyzes and quantifies the presence of LWD in the main valley channel of the Cordevole basin. A new sampling methodology was applied to integrate surveys of riparian vegetation and LWD storage. Data inventory confirms the previous relationship between LWD volumes and drainage area

  10. Guiding soil conservation strategy in headwater mediterranean catchments

    Science.gov (United States)

    Ben Slimane, Abir; Raclot, Damien; Evrard, Olivier; Sanaa, Mustapha; Lefèvre, Irène; Le Bissonnais, Yves

    2016-04-01

    Reservoir siltation due to water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. In order to reduce water erosion, this study aimed to design a methodology for guiding the implementation of efficient conservation strategies by identifying the dominant sediment sources in Mediterranean context. To this end, a fingerprinting method was combined with long-term field monitoring of catchment sediment yield in five headwater catchments (0.1-10 km2) equipped with a small reservoir between 1990 and 1995. The five catchments were chosen to cover the large diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. The fingerprinting techniques based on measurements of cesium-137 and Total Organic Carbon within the catchments and in reservoir sediment deposits successfully identified the contribution of rill/interrill and gully/channel erosion to sediment yield at the outlet of five small headwater catchments during the last 15-20 years. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. This demonstrates that the dominant erosion process in the Mediterranean regions highly depends on the local environmental context. The lowest rill/interrill erosion contribution (2.2 Mg ha-1 yr-1) in the five catchments remained significantly higher than the tolerable soil loss indicating the severe levels reached by soil erosion along the Tunisian Ridge and in the Cape Bon region. This study also showed that although the implementation of improved topsoil management measures greatly reduced rill

  11. Water balance of the Lepenci river basin, Kosova

    Science.gov (United States)

    Osmanaj, L.; Avdullahi, S.

    2009-04-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. Kosova has four water basins, such as the Basin of river Drini i Bardhe, Ibri, Morava e Binqes and Lepenci. The Basin of river Lepenci is located in South-eastern part of Kosova with surface of 650 km2, belongs to Axios river basin discharging into Aegean Sea. The annual rainfall is 670-1.000 mm and specific runoff 8 - 20 l/s/km2. There are also steep mountains in this area. In this case study we have calculate the water balance of the river Lepenc Basin. The Basin of river Lepenc we have divided in to 3 catchments: of Nerodima river, and upper and lower part of river Lepenci. This basin is covered by three municipalities such as municipality of Ferizaj, Kaçanik and Shterpc. The data on precipitation are obtained from three metering stations, such as the metering station of Ferizaj, Kaçanik and Jazhnice. The obtained records are elaborated. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. In a basin of river Lepenci we have four stations for measuring the discharges and levels: in Ferizaj, and Kaçanik - Nerodime river and in Hani i Elezit - Lepenc river. The river basin Lepenc has two inflowing points, where are Lepenci river in the border with the FYR of Macedonia and Sazli village near Ferizaj. Key works: precipitation, evaporation, flow, river, discharges,

  12. Catchment clearing accelerates the infilling of a shallow subtropical bay in east coast Australia

    Science.gov (United States)

    Coates-Marnane, Jack; Olley, Jon; Burton, Joanne; Sharma, Ashneel

    2016-06-01

    Understanding processes that govern the transport and distribution of terrestrial sediments to and within bays is critical for interpreting the drivers of long-term changes in these ecosystems. On the east coast of Australia increased soil erosion and sediment delivery following extensive land clearing in the contributing catchments, associated with European settlement, is highlighted as a key driver of the decline of numerous nearshore habitats including seagrass meadows and in-shore coral reefs. Here we use optical, radiocarbon and radionuclide dating to estimate mass accumulation rates and type of terrestrial sedimentation in central Moreton Bay during the Holocene. We compare the long-term rates of infilling within the central basin with the recent past and show a 3-9 fold increase in sediment accretion over the last 100 years compared to the long term (last ∼ 1500 to 3000 yrs) average. Infilling during the Holocene is not spatially uniform, with preferential deposition occurring within the now submerged palaeochannels of the Brisbane and Pine rivers. We suggest that modern turbidity regimes in Moreton Bay are the result of the compounded effect of both a historical increase in fine sediment supply and a rapid decline in the effective storage capacity of the basin.

  13. Predicting in ungauged basins using a parsimonious rainfall-runoff model

    Science.gov (United States)

    Skaugen, Thomas; Olav Peerebom, Ivar; Nilsson, Anna

    2015-04-01

    Prediction in ungauged basins is a demanding, but necessary test for hydrological model structures. Ideally, the relationship between model parameters and catchment characteristics (CC) should be hydrologically justifiable. Many studies, however, report on failure to obtain significant correlations between model parameters and CCs. Under the hypothesis that the lack of correlations stems from non-identifiability of model parameters caused by overparameterization, the relatively new parameter parsimonious DDD (Distance Distribution Dynamics) model was tested for predictions in ungauged basins in Norway. In DDD, the capacity of the subsurface water reservoir M is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than, for example, the well-known Swedish HBV model. In this study, multiple regression equations relating CCs and model parameters were trained from 84 calibrated catchments located all over Norway and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p- value < 0.05) ranged from 0.22-0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For 10 of the 17 catchments, deviations in Nash-Suthcliffe Efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1. The median NSE for the regionalised DDD for the 17 catchments, for two

  14. Sources, transport, and mixing of particle-bound PAHs fluxes in the upper Neckar River basin

    Science.gov (United States)

    Schwientek, Marc; Rügner, Hermann; Qin, Xintong; Scherer, Ulrike; Grathwohl, Peter

    2016-04-01

    Transport of many urban pollutants in rivers is coupled to transport of suspended particles. The degree of contamination of these suspended particles depends on the mixture of "polluted" urban and "clean" background particles. Recent results have shown that, in several meso-scale catchments studied in southwestern and eastern Germany, the loading of particles with polycyclic aromatic hydrocarbons (PAHs) was stable over time and characteristic for each catchment. The absence of significant long-term trends or pronounced changes of the catchment-specific loadings indicate that either input and output of PAHs into the stream networks are largely at steady state or that storage of PAHs in the sediments within the stream network are sufficient to smooth out larger fluctuations. Moreover, it was shown that the contamination of sediments and suspended particles with PAHs is proportional to the number of inhabitants per suspended sediment flux in a catchment. These processes are being further studied at larger scale in the upper Neckar River basin (2300 km²) in southwestern Germany. This basin, located between the mountain ranges of the Black Forest and the Swabian Alb, comprises sub-catchments that are diverse in terms of urban impact, geology (ranging from gypsum and limetstones to siliceous sandstones) and hydrology (dynamics driven either by summerly convective events or by winterly frontal systems and snow melt). Accordingly, quality and quantity of particles being released in the sub-catchments as potential vectors for hydrophobic pollutants differ; and so do the events that mobilize the particles. These settings enable the investigation of how particle-bound pollutant fluxes generated at the meso-scale are mixed and transported at larger scales when introduced into a higher order river. A prominent research question is whether varying contributions from contrasting sub-catchments lead to changing contamination patterns in the main stem or if the sediment storage in

  15. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France)

    Science.gov (United States)

    Lemarchand, Emmanuel; Chabaux, François; Vigier, Nathalie; Millot, Romain; Pierret, Marie-Claire

    2010-08-01

    Over the last decade it has become apparent that Li isotopes may be a good proxy to trace silicate weathering. However, the exact mechanisms which drive the behaviour of Li isotopes in surface environments are not totally understood and there is a need to better calibrate and characterize this proxy. In this study, we analysed the Li concentrations and isotopic compositions in the various surface reservoirs (soils, rocks, waters and plants) of a small forested granitic catchment located in the Vosges Mountains (Strengbach catchment, France, OHGE http://ohge.u-strasbg.fr). Li fluxes were calculated in both soil profiles and at the basin scale and it was found that even in this forested basin, atmospheric inputs and litter fall represented a minor flux compared to input derived from the weathering of rocks and soil minerals (which together represent a minimum of 70% of dissolved Li). Li isotope ratios in soil pore waters show large depth dependent variations. Average dissolved δ 7Li decreases from -1.1‰ to -14.4‰ between 0 and -30 cm, but is +30.7‰ at -60 cm. This range of Li isotopic compositions is very large and it encompasses almost the entire range of terrestrial Li isotope compositions that have been previously reported. We interpret these variations to result from both the dissolution and precipitation of secondary phases. Large isotopic variations were also measured in the springs and stream waters, with δ 7Li varying from +5.3‰ to +19.6‰. δ 7Li increases from the top to the bottom of the basin and also covaries with discharge at the outlet. These variations are interpreted to reflect isotopic fractionations occurring during secondary phase precipitation along the water pathway through the rocks. We suggest that the dissolved δ 7Li increases with increasing residence time of waters through the rocks, and so with increasing time of interaction between waters and solids. A dissolution precipitation model was used to fit the dissolved Li isotopic

  16. Understanding the relative role of dispersion mechanisms across basin scales

    Science.gov (United States)

    Di Lazzaro, M.; Zarlenga, A.; Volpi, E.

    2016-05-01

    Different mechanisms are understood to represent the primary sources of the variance of travel time distribution in natural catchments. To quantify the fraction of variance introduced by each component, dispersion coefficients have been earlier defined in the framework of geomorphology-based rainfall-runoff models. In this paper we compare over a wide range of basin sizes and for a variety of runoff conditions the relative role of geomorphological dispersion, related to the heterogeneity of path lengths, and hillslope kinematic dispersion, generated by flow processes within the hillslopes. Unlike previous works, our approach does not focus on a specific study case; instead, we try to generalize results already obtained in previous literature stemming from the definition of a few significant parameters related to the metrics of the catchment and flow dynamics. We further extend this conceptual framework considering the effects of two additional variance-producing processes: the first covers the random variability of hillslope velocities (i.e. of travel times over hillslopes); the second deals with non-uniform production of runoff over the basin (specifically related to drainage density). Results are useful to clarify the role of hillslope kinematic dispersion and define under which conditions it counteracts or reinforces geomorphological dispersion. We show how its sign is ruled by the specific spatial distribution of hillslope lengths within the basin, as well as by flow conditions. Interestingly, while negative in a wide range of cases, kinematic dispersion is expected to become invariantly positive when the variability of hillslope velocity is large.

  17. Hydrological drought severity explained by climate and catchment characteristics

    Science.gov (United States)

    Van Loon, A. F.; Laaha, G.

    2015-07-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to climate and catchment characteristics. In this study we investigated controls on drought severity based on a comprehensive Austrian dataset consisting of 44 catchments with long time series of hydrometeorological data (on average around 50 year) and information on a large number of physiographic catchment characteristics. Drought analysis was performed with the variable threshold level method and various statistical tools were applied, i.e. bivariate correlation analysis, heatmaps, linear models based on multiple regression, varying slope models, and automatic stepwise regression. Results indicate that streamflow drought duration is primarily controlled by storage, quantified by the Base Flow Index or by a combination of catchment characteristics related to catchment storage and release, e.g. geology and land use. Additionally, the duration of dry spells in precipitation is important for streamflow drought duration. Hydrological drought deficit, however, is governed by average catchment wetness (represented by mean annual precipitation) and elevation (reflecting seasonal storage in the snow pack and glaciers). Our conclusion is that both drought duration and deficit are governed by a combination of climate and catchment control, but not in a similar way. Besides meteorological forcing, storage is important; storage in soils, aquifers, lakes, etc. influences drought duration and seasonal storage in snow and glaciers influences drought deficit. Consequently, the spatial variation of hydrological drought severity is highly dependent on terrestrial hydrological processes.

  18. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  19. Assessing the past impact of climatic variability and human activities on the water resources of the Hérault River catchment (South of France)

    Science.gov (United States)

    Collet, L.; Ruelland, D.; Borrell-Estupina, V.; Servat, E.

    2012-04-01

    This study investigates the hydrological functioning scheme of a Mediterranean catchment. Located in southern France, the mesoscale Hérault River catchment (~2500 km2) supplies with water its inhabitants and some external cities as well as agricultural activities. The catchment water resources are intensively exploited during summertime, when tourism and irrigation needs reach a peak while water supply is limited. Since the 1980s, discharge has significantly decreased in various gauging stations. The functioning scheme aims at understanding the impact of climatic variability and human activities on the water resources of this catchment over the last 50 years. Firstly, a quality analysis of the hydro-climatic and anthropogenic variables was conducted. This allowed a robust database to be constituted over the 1959-2010 period. The hydro-climatic trends over the catchment were then studied from analysis of statistical breaks in the series of precipitation, temperature, discharge and water withdrawals. A correlation analysis was also performed to assess the influence of each forcing variable on water flow at the outlet. In order to investigate the catchment heterogeneity, six sub-basins have been identified according to the main geographical characteristics (climate, topography, lithology, land use, water uses…) and to the availability of the streamflow series. Finally, a detailed water balance at different scales made it possible to estimate the respective impact of changes in climate, land use and water withdrawals on the water resources within the basin. The statistical analysis demonstrated a break in the temperature and discharge series around 1980, but no break was detected for precipitations. Temperatures have increased by 1°C on average between 1959-1979 and 1980-2010 while discharge has decreased by 33-40% in the same time at different gauging stations. Meanwhile, the catchment has undergone a sensible reforestation since forested areas have increased from

  20. Catchment systems science and management: from evidence to resilient landscapes

    Science.gov (United States)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is

  1. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  2. Nitrogen attenuation along delivery pathways in agricultural catchments

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  3. Debris flows and cosmogenic catchment wide denudation rates

    Science.gov (United States)

    Kober, F.; Hippe, K.; Salcher, B.; Ivy-Ochs, S.; Kubik, P. W.; Christl, M.; Wacker, L.

    2012-04-01

    One of the basic question in alpine Quantitative Geomorphology is: Are widely measured cosmogenic nuclide-derived denudation rates in alpine catchments truly representative for the whole catchment at any given time? Or in contrast can they vary markedly in response to extreme events and perturbations? And if such perturbations affect cosmogenic nuclide-derived denudation rates then what bias can occur when such denudation rates are compared with sediment yield or thermochronological data or to various morphometric parameters, such as slope, mean elevation or uplift rates as potential controlling factors? We present 10Be and 14C results measured in sand samples from an active river channel from a single catchment (upper Aare), in the Swiss Alps (up to monthly sampling between 2008 to 2011). Our goal was to establish a time series to see if extreme events (such as landslides or debris flows) do have a discernible effect on derived denudation rates. The admixture of sediment of debris flows in 2009, originating upstream of the sampling spot, began to have a marked effect on 10Be concentrations and thus catchment wide denudation rates that are assumed to be in a long-term range mode prior to 2009. In summer of 2010, several extreme debris flows were recorded in the studied catchment. Samples taken document a doubling of denudation rates over the values determined from 2008. These cosmogenic nuclide data clearly demonstrate the impact of episodic events on sediment flux and the related perturbation of catchment wide denudation rates. We have recently expanded this dataset into 2011, with i) a spatial sub-sampling of debris flow and non-debris flow catchment compartments and ii) including again a major debris flow event in early autumn 2011. These data will be presented at the conference. Never-the-less the fact that the CWDR's only doubled does suggest a certain robustness in the method beyond a certain catchment size. In addition to the 10Be data, in situ 14C

  4. Comparison of subsurface connectivity in Alpine headwater catchments

    Science.gov (United States)

    Zuecco, Giulia; Rinderer, Michael; van Meerveld, Ilja; Penna, Daniele; Borga, Marco

    2016-04-01

    Saturation at the soil-bedrock interface or the rise of shallow groundwater into more permeable soil layers results in subsurface stormflow and can lead to hillslope-stream connectivity. Despite the importance of subsurface connectivity for streamflow and streamwater chemistry, the factors controlling its spatial and temporal variability are still poorly understood. This study takes advantage of networks of spatially-distributed piezometers in five small (stream when shallow groundwater was observed in the piezometer and it was connected by the edges to the stream. Weights were given to each piezometer based on Thiessen polygons to determine the area of the catchment that was connected to the stream. For the Swiss pre-alpine catchments the duration that nodes were connected to the stream was significantly correlated to the local and upslope site characteristics, such as the topographic wetness index, local slope and curvature. For the dolomitic catchment with the largest riparian zone, the time that nodes were connected to the stream was correlated with downslope site characteristics, such as the vertical distance to the nearest stream. The temporal changes in the area of the catchment that was connected to the stream reflected the streamflow dynamics for all catchments. Subsurface connectivity increased during rainfall events but there was a short delay compared to streamflow, suggesting that other processes (e.g. direct channel precipitation, runoff from near stream saturated areas) contributed to streamflow at the beginning of the event. Groundwater levels declined later and slower than streamflow, resulting in complex but mainly anti-clockwise hysteretic relations between streamflow and the area that was connected to the stream. Threshold-like relations between maximum connectivity and total stormflow and between maximum connectivity and the sum of total rainfall plus antecedent rainfall were more evident for the dolomitic catchments, where the riparian zone is

  5. An elusive search for regional flood frequency estimates in the River Nile basin

    Directory of Open Access Journals (Sweden)

    P. Nyeko-Ogiramoi

    2012-09-01

    Full Text Available Estimation of peak flow quantiles in ungauged catchments is a challenge often faced by water professionals in many parts of the world. Approaches to address such problem exist, but widely used techniques such as flood frequency regionalisation is often not subjected to performance evaluation. In this study, the jack-knifing principle is used to assess the performance of the flood frequency regionalisation in the complex and data-scarce River Nile basin by examining the error (regionalisation error between locally and regionally estimated peak flow quantiles for different return periods (QT. Agglomerative hierarchical clustering based algorithms were used to search for regions with similar hydrological characteristics. Hydrological data employed were from 180 gauged catchments and several physical characteristics in order to regionalise 365 identified catchments. The Generalised Extreme Value (GEV distribution, selected using L-moment based approach, was used to construct regional growth curves from which peak flow growth factors could be derived and mapped through interpolation. Inside each region, variations in at-site flood frequency distribution were modelled by regression of the mean annual maximum peak flow (MAF versus catchment area. The results showed that the performance of the regionalisation is heavily dependent on the historical flow record length and the similarity of the hydrological characteristics inside the regions. The flood frequency regionalisation of the River Nile basin can be improved if sufficient flow data of longer record length of at least 40 yr become available.

  6. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions.

    Science.gov (United States)

    Guittonny-Philippe, Anna; Masotti, Véronique; Höhener, Patrick; Boudenne, Jean-Luc; Viglione, Julien; Laffont-Schwob, Isabelle

    2014-03-01

    In the Mediterranean area, surface waters often have low discharge or renewal rates, hence metal contamination from industrialised catchments can have a high negative impact on the physico-chemical and biological water quality. In a context of climate and anthropological changes, it is necessary to provide an integrative approach for the prevention and control of metal pollution, in order to limit its impact on water resources, biodiversity, trophic network and human health. For this purpose, introduction of constructed wetlands (CWs) between natural aquatic ecosystems and industrialised zones or catchments is a promising strategy for eco-remediation. Analysis of the literature has shown that further research must be done to improve CW design, selection and management of wetland plant species and catchment organisation, in order to ensure the effectiveness of CWs in Mediterranean environments. Firstly, the parameters of basin design that have the greatest influence on metal removal processes must be identified, in order to better focus rhizospheric processes on specific purification objectives. We have summarised in a single diagram the relationships between the design parameters of a CW basin and the physico-chemical and biological processes of metal removal, on the basis of 21 mutually consistent papers. Secondly, in order to optimise the selection and distribution of helophytes in CWs, it is necessary to identify criteria of choice for the plant species that will best fit the remediation objectives and environmental and economic constraints. We have analysed the factors determining plant metal uptake efficiency in CWs on the basis of a qualitative meta-analysis of 13 studies with a view to determine whether the part played by metal uptake by plants is relevant in comparison with the other removal processes. Thirdly, we analysed the parameters to consider for establishing suitable management strategies for CWs and how they affect the whole CW design process

  7. The ethics of socio-ecohydrological catchment management: towards hydrosolidarity

    Directory of Open Access Journals (Sweden)

    M. Falkenmark

    2002-01-01

    Full Text Available This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved: a heritage of constraining tunnel vision in both science and management; inadequate shortcuts made in modern scientific system analyses (e.g. science addressing sustainability issues; simplistic technical-fix approaches to water and ecosystems in land/water/ecosystem management; conventional tools for evaluation of scientific quality with its focus on “doing the thing right” rather than “doing the right thing”. The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected. Keywords: catchment, hydrosolidarity, ecosystem, water determinants, resilience, green water, blue water, sustainability science

  8. Minimizing the effects of filtering on catchment scale GRACE solutions

    Science.gov (United States)

    Dutt Vishwakarma, Bramha; Devaraju, Balaji; Sneeuw, Nico

    2016-08-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided time variable gravity information since its launch in 2002. Due to short-wavelength noise, the total water storage variations over a catchment observed from GRACE are usable only after filtering. Filtering smooths both the signal and the noise, inevitably changing the nature of the estimated total water storage change. The filtered estimates suffer from attenuation and leakage, which changes the signal characteristics. Several studies have mainly focused on correcting the changed amplitude with the aid of hydrological models. In this study, it is demonstrated that in addition to the amplitude loss, also significant phase change in the time series of total water storage over a region can occur. The phase change due to leakage from nearby catchments can be around 20° to 30° for catchments with moderate size, which makes it difficult to retrieve signal by only scaling. We propose a strategy to approach the true time series with improved phase and amplitude. The strategy is independent of any hydrological model. It is first demonstrated in a closed-loop environment over 32 catchments, where we show that the performance of our method is consistent and better than other model-dependent approaches. Then we also discuss the limitations of our approach. Finally we apply our method to the GRACE level 2 products for 32 catchments.

  9. Modelling nitrogen and phosphorus loads in a Mediterranean river catchment (La Tordera, NE Spain)

    Science.gov (United States)

    Caille, F.; Riera, J. L.; Rosell-Melé, A.

    2012-08-01

    Human activities have resulted in increased nutrient levels in many rivers all over Europe. Sustainable management of river basins demands an assessment of the causes and consequences of human alteration of nutrient flows, together with an evaluation of management options. In the context of an integrated and interdisciplinary environmental assessment (IEA) of nutrient flows, we present and discuss the application of the nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) to the Catalan river basin, La Tordera (north-east Spain), for the period 1996-2002. After a successful calibration and verification process (Nash-Sutcliffe efficiencies E=0.85 for phosphorus and E=0.86 for nitrogen), the application of the model MONERIS proved to be useful in estimating nutrient loads. Crucial for model calibration, in-stream retention was estimated to be about 50 % of nutrient emissions on an annual basis. Through this process, we identified the importance of point sources for phosphorus emissions (about 94% for 1996-2002), and diffuse sources, especially inputs via groundwater, for nitrogen emissions (about 31% for 1996-2002). Despite hurdles related to model structure, observed loads, and input data encountered during the modelling process, MONERIS provided a good representation of the major interannual and spatial patterns in nutrient emissions. An analysis of the model uncertainty and sensitivity to input data indicates that the model MONERIS, even in data-starved Mediterranean catchments, may be profitably used by water managers for evaluating quantitative nutrient emission scenarios for the purpose of managing river basins. As an example of scenario modelling, an analysis of the changes in nutrient emissions through two different future scenarios allowed the identification of a set of relevant measures to reduce nutrient loads.

  10. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia

    Science.gov (United States)

    Soms, Juris

    2015-04-01

    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic

  11. Morphometrical Analysis and Peak Runoff Estimation for the Sub-Lower Niger River Basin, Nigeria

    Science.gov (United States)

    Salami, Adebayo Wahab; Amoo, Oseni Taiwo; Adeyemo, Joshiah Adetayo; Mohammed, Abdulrasaq Apalando; Adeogun, Adeniyi Ganiyu

    2016-03-01

    This study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.

  12. Development of a regional model for integrated management of water resources at the basin scale

    Science.gov (United States)

    Gaiser, T.; Printz, A.; von Raumer, H. G. Schwarz; Götzinger, J.; Dukhovny, V. A.; Barthel, R.; Sorokin, A.; Tuchin, A.; Kiourtsidis, C.; Ganoulis, I.; Stahr, K.

    Integrated modeling is a novel approach to couple knowledge and models from different disciplines and research fields and to use their potential in the strategic planning of water management at the river basin scale. The MOSDEW integrated regional model has been developed in the Neckar basin, a 14,000 km 2 river catchment in South-West Germany as a model cascade of nine submodels covering large scale hydrology, groundwater flow, water demand, agricultural production, point and non-point pollution and chemical as well as biological water quality. The models are being tested and validated in the Neckar basin as well as in additional river basins in West Africa (Ouémé basin) and Central Asia (Chirchik-Ahangaran-Keles basin, CHAB) with contrasting ecological, hydrological and socio-economic boundary conditions. The transfer to the CHAB basin required changes in the submodel selection and integration structure due to the strong anthropogenic modifications of the flow regime in the downstream area. There, water is conveyed from the Chirchik river to other catchments and distributed in a complex channel system to satisfy the demand of competing water users (irrigation, urban water supply, energy production). In the Ouémé basin, the ecohydraulic model was not integrated due to lack of input data for ecological requirements of fish species whereas the groundwater flow model was not applicable to the predominant presence of aquifers in fractured rock. The model results obtained so far are promising with respect to their accuracy to be used in scenario simulations for the strategic basin wide planning of water management.

  13. High-resolution monitoring of stormwater quality in an urbanising catchment in the United Kingdom during the 2013/2014 winter storms

    Science.gov (United States)

    McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.

    2015-12-01

    Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.

  14. River Suspended Sediment and Particulate Organic Carbon Transport in Two Montane Catchments in the Luquillo Critical Zone Observatory of Puerto Rico over 25 years: 1989 to 2014

    Science.gov (United States)

    Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.

    2015-12-01

    Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.

  15. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  16. Element export from a small catchment in the tropical montane forest of Ecuador responds to climate change

    Science.gov (United States)

    Leimer, Sophia; Willimann, Elias; Alaoui, Abdallah; Trachte, Katja; Wilcke, Wolfgang

    2015-04-01

    In a very remote tropical montane rain forest in the Ecuadorian Andes on the rim of the Amazon basin, increasing temperatures, longer dry spells, and an associated reduction in soil moisture were observed in the past 15 years. In the study ecosystem, element exports from a 9-ha large catchment with stream water are linked to the depth of water flow through soil because of vertical variations in soil chemical properties. The further increase in temperature and precipitation, as predicted by climate models, will have an impact on the water flow paths in soil and therefore alter element exports. Hence, we investigated how future element exports from this catchment in Ecuador will develop under the emission scenarios A1B and B1 for the decades 2050-2059 and 2090-2099 compared to current element exports. Discharge from the study catchment was measured in 1998-2013, partly in high resolution. Element concentrations in stream water (total organic carbon, NO3-N, NH4-N, dissolved organic nitrogen, PO4-P, total dissolved phosphorus, S, Cl, K, Ca, Mg, Na, Zn, Al, Mn) were measured in 1998-2012 in weekly resolution. Based on catchment properties, measured climate, and water flow data, discharge in 1998-2013 was simulated in daily resolution with the hydrological model WaSiM. From the hydrograph of surface flow, three flow classes (baseflow, intermediate, storm) were separated and linked with stream chemical properties. Element concentrations in stream water were grouped according to the flow classes and mean concentrations per flow class were calculated. Subsequently, the mean element concentration was multiplied with the mean of the annual discharge sums per flow class resulting in current element exports. For estimations of future element exports with stream water, discharge was simulated under the emission scenarios A1B and B1 for the decades 2050-2059 and 2090-2099 and separated into the three flow classes. Future element exports per scenario were calculated according to

  17. Modelling a river catchment using an electrical circuit analogue

    Directory of Open Access Journals (Sweden)

    C. G. Collier

    1998-01-01

    Full Text Available An electrical circuit analogue of a river catchment is described from which is derived an hydrological model of river flow called the River Electrical Water Analogue Research and Development (REWARD model. The model is based upon an analytic solution to the equation governing the flow of electricity in an inductance-capacitance-resistance (LCR circuit. An interpretation of L, C and R in terms of catchment parameters and physical processes is proposed, and tested for the River Irwell catchment in northwest England. Hydrograph characteristics evaluated using the model are compared with observed hydrographs, confirming that the modelling approach does provide a reliable framework within which to investigate the impact of variations in model input data.

  18. The hydrological response of catchments to simulated changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Viney, Neil R.; Sivapalan, Murugesu [Centre for Water Research, University of Western Australia, Nedlands, WA (Australia)

    1996-04-17

    The Large Scale Catchment Model has been developed to predict the responses in stream yield and salinity to changes in land use and climate in southwestern Western Australia. In this paper it is used to simulate, for one small forested catchment, the hydrological consequences that might be associated with a doubling of the atmospheric carbon dioxide concentration. The simulations assume that the region will experience a decrease in the amount of winter rainfall (with an increase in rainfall intensity) and an increase in potential evaporation. The results suggest that the assumed change in climate has the potential to lead to a 45% decrease in stream runoff in this catchment. About two-thirds of this decrease is associated with the reduction in rainfall; the remainder being associated with the increased potential evaporation. Furthermore, stream salinity is predicted to increase by about 8%, mostly in response to the enhanced evaporation regime

  19. Remote sensing Penman-Monteith model to estimate catchment evapotranspiration considering the vegetation diversity

    Science.gov (United States)

    Li, Fawen; Cao, Runxiang; Zhao, Yong; Mu, Dongjing; Fu, Changfeng; Ping, Feng

    2017-01-01

    A new method for calculating evaporation is proposed, using the Penman-Monteith (P-M) model with remote sensing. This paper achieved the effective estimation to daily evapotranspiration in the Ziya river catchment by using the P-M model based on MODIS remote sensing leaf area index and respectively estimated plant transpiration and soil evaporation by using coefficient of soil evaporation. This model divided catchment into seven different sub-regions which are prairie, meadow, grass, shrub, broad-leaved forest, cultivated vegetation, and coniferous forest through thoroughly considering the vegetation diversity. Furthermore, optimizing and calibrating parameters based on each sub-region and analyzing spatio-temporal variation rules of the model main parameters which are coefficient of soil evaporation f and maximum stomatal conductance g sx . The results indicate that f and g sx calibrated by model are basically consistent with measured data and have obvious spatio-temporal distribution characteristics. The monthly average evapotranspiration value of simulation is 37.96 mm/mon which is close to the measured value with 33.66 mm/mon and the relative error of simulation results in each subregion are within 11 %, which illustrates that simulated values and measured values fit well and the precision of model is high. In addition, plant transpiration and soil evaporation account for about 84.64 and 15.36 % respectively in total evapotranspiration, which means the difference between values of them is large. What is more, this model can effectively estimate the green water resources in basin and provide effective technological support for water resources estimation.

  20. A PROPOSED APPROACH OF SEDIMENT SOURCES AND EROSION PROCESSES IDENTIFICATION AT LARGE CATCHMENTS

    Directory of Open Access Journals (Sweden)

    Preksedis M. Ndomba

    2007-01-01

    Full Text Available In the subject of identifying sediment sources and erosion processes at catchment level researchers have proposed various methods. Most of the techniques have been applied in isolation. A few workers have combined some methods but still they could not ascertain their findings. As a result they recommended more sophisticated methods in order to compare the results. Little however has been done to correlate suspended sediment concentrations using spatial and temporal hydrological variables like rainfall and surface runoff at reasonable time step such as daily time series. In this study selected methods by previous workers are used and compared. The hydrological variables mapping technique has complemented the results of various renowned sediment sources identification techniques. The introduced method gives not only probable sources and processes but also it additionally identifies location based sediment sources using rainfall stations as pointers. The combined results from both methods indicate that either clay soil land plots or agricultural areas are potential sediment source areas. The result is comparable to previous researchers¿ findings in the Pangani River basin that mapped the erosion zones using simple empirical and complex physics-based mathematical models. Although, the methods adopted in this study lacked high-resolution data, the authors believe that the methods and modifications applied give a quick, reliable and more insight to future sediment yield modelling efforts at a catchment level. For instance, a distributed watershed sediment yield model would be appropriate based on high spatial and temporal variation of the hydrological variables as reported in this study. Also, the results suggest that Sediment yield model that simulates sheet erosion might be an ideal tool since the major source areas of the transported sediment are topsoils or sheet erosion.

  1. A PROPOSED APPROACH OF SEDIMENT SOURCES AND EROSION PROCESSES IDENTIFICATION AT LARGE CATCHMENTS

    Directory of Open Access Journals (Sweden)

    Preksedis Marco Ndomba

    2007-12-01

    Full Text Available In the subject of identifying sediment sources and erosion processes at catchment level researchers have proposed various methods. Most of the techniques have been applied in isolation. A few workers have combined some methods but still they could not ascertain their findings. As a result they recommended more sophisticated methods in order to compare the results. Little however has been done to correlate suspended sediment concentrations using spatial and temporal hydrological variables like rainfall and surface runoff at reasonable time step such as daily time series. In this study selected methods by previous workers are used and compared. The hydrological variables mapping technique has complemented the results of various renowned sediment sources identification techniques. The introduced method gives not only probable sources and processes but also it additionally identifies location based sediment sources using rainfall stations as pointers. The combined results from both methods indicate that either clay soil land plots or agricultural areas are potential sediment source areas. The result is comparable to previous researchers’ findings in the Pangani River basin that mapped the erosion zones using simple empirical and complex physics-based mathematical models. Although, the methods adopted in this study lacked high-resolution data, the authors believe that the methods and modifications applied give a quick, reliable and more insight to future sediment yield modelling efforts at a catchment level. For instance, a distributed watershed sediment yield model would be appropriate based on high spatial and temporal variation of the hydrological variables as reported in this study. Also, the results suggest that Sediment yield model that simulates sheet erosion might be an ideal tool since the major source areas of the transported sediment are topsoils or sheet erosion.

  2. Socio-hydrology of the Thippagondanahalli catchment in India - from common property to open-access.

    Science.gov (United States)

    Srinivasan, V.; Thomas, B.; Lele, S.

    2014-12-01

    Developing countries face difficult challenge as they must adapt to an uncertain climate future even as land use, demography and the composition of their economies are rapidly changing. Achieving a secure water future requires making reliable predictions of water cycle dynamics in future years. This necessitates understanding societal feedbacks and predicting how these will change in the future. We explore this "Predictions Under Change" problem in the Thippagondanahalli (TG Halli) catchment of the Arkavathy Basin in South India. Here, river flows have declined sharply over the last thirty years. The TG Halli Reservoir that once supplied 148 MLD to Bangalore city only yields 30 MLD today. Our analyses suggest that these declines cannot be attributed to climatic factors; groundwater depletion is probably the major cause. We analysed the interlinked human and hydrologic factors and feedbacks between them that have resulted in the present situation using extensive primary data, including weather stations, stream gaging, soil moisture sensing, household surveys, oral histories, interviews, and secondary data including census data, crop reports, satellite imagery and historical hydro-climatic data. Our analysis suggests that several factors have contributed to a continuous shift from surface to groundwater in the TG Halli catchment. First, cheap borewell technology has made groundwater more accessible. Second, as demand for high-value produce from the city and wealth increased, farmers became increasingly willing to invest in risky borewell drilling. Third, differences in governance in groundwater (open access) versus surface water (community managed tanks) hastened the break-down of community managed water systems allowing unchecked exploitation of groundwater. Finally, the political economy of water spurred groundwater development through provision of free electricity and "watershed development" programmes.

  3. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    Science.gov (United States)

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  4. Susceptibility of Shallow Landslide in Fraser Hill Catchment, Pahang Malaysia

    Directory of Open Access Journals (Sweden)

    Wan Nor Azmin Sulaiman

    2010-01-01

    Full Text Available In tropical areas especially during monsoon seasons intense precipitation is the main caused that trigger the natural shallow landslide phenomena. This phenomenon can be disastrous and widespread in occurrence even in undisturbed forested catchment. In this paper, an attempt has been made to evaluate the susceptibility of natural hill slopes to failure for a popular hill resort area, the Fraser Hill Catchment under different rainfall regimes and soil thickness. A Digital Elevation Model (DEM was prepared for the 8.2 km2 catchment. A GIS based deterministic model was then applied to predict the spatial landslide occurrence within catchment. Model input parameters include bulk density, friction angle, cohesion and hydraulic conductivity were gathered through in situ and lab analysis as well as from previous soil analysis records. Landslides locations were recorded using GPS as well as previous air photos and satellite imagery to establish landslide source areas inventory. The landslide susceptibility map was produced under different precipitation event’s simulation to see the effects of precipitation to stability of the hill slopes of the catchment. The results were categorized into naturally unstable (Defended, Upper Threshold, Lower Threshold, marginal instability (Quasi Stable and stable area (Moderately Stable and Stable. Results of the simulation indicated notable change in precipitation effect on Defended area is between 10mm to 40mm range in a single storm event. However, when storm event is exceeded 120mm, the result on Defended area produced by the model tends to be constant further on. For area categorized as naturally unstable (Factor of Safety, SF<1, with 110 mm of precipitation in a single storm event and soil depth at 2 meters and 4 meters could affect 69.51% and 69.88% respectively of the catchment area fall under that class. In addition, the model was able to detect 4% more of the landslide inventory under shallower soil depth of

  5. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  6. Field-based study of connectivity in an agricultural catchment

    Science.gov (United States)

    Lexartza-Artza, I.; Wainwright, J.

    2009-12-01

    Field-based studies of hydrological connectivity can provide context-specific knowledge that might both help understand dynamic complex systems and contribute to other synthetic or modelling approaches. The importance of such an understanding of catchment processes and also of the knowledge of catchment connections with water bodies and the changes of concentration with scale for Integrated Catchment Management has been increasingly emphasized. To provide a holistic understanding, approaches to the study of connectivity need to include both structural and functional aspects of the system and must consider the processes taking place within and across different temporal and spatial scales. A semi-quantitative nested approach has been used to investigate connectivity and study the interactions and feedbacks between the factors influencing transfer processes in the Ingbirchworth Catchment, in the uplands of the River Don, England. A series of reconnaissance techniques have been combined with monitoring of aspects such as rainfall, runoff, sediment transfer and soil-moisture distribution from plot to catchment scale and with consideration of linkages between land and water bodies. The temporal aspect has also been considered, with a special focus on the temporal distribution of events and the influence of longer term catchment changes such as those in land use and management practices. A variability of responses has been observed in relation to the characteristics of events, land use and scale of observation, with elements traditionally considered as limiting or enhancing connectivity responding differently under changing conditions. Sediment redistribution, reshaping of structure and consequent reinforcing loops can be observed across all land uses and landscape units, but the relevance it terms of effective connectivity of highly connected patches varies as the scale is increased. The knowledge acquired can contribute to recognise emerging processes significant for

  7. Response of surface and groundwater on meteorological drought in Topla River catchment, Slovakia

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Vrablikova, Dana; Blaskovicova, Lotta; Slivova, Valeria; Horvat, Oliver

    2016-04-01

    Continuously increasing number of drought studies published in scientific journals reflects the attention of the scientific community paid to drought. The fundamental works among many others were published by Yevjevich (1967), Zelenhasic and Salvai (1987), later by Tallaksen and van Lanen Eds. (2004). The aim of the paper was to analyze the response of surface and groundwater to meteorological drought occurrence in the upper and middle part of the Topla River Basin, Slovakia. This catchment belongs to catchments with unfavourable hydrogeological conditions, being built of rocks with quite low permeability. The basin is located in the north-eastern part of Slovakia covering the area of 1050.05 km2. The response was analyzed using precipitation data from the Bardejov station (long-term annual average of 662 mm in 1981 - 2012) and discharge data from two gauging stations - Bardejov and Hanusovce nad Toplou. Data on groundwater head from eight observation wells, located in the catchment, were also used, covering the same observation period. Meteorological drought was estimated using characterisation of the year humidity and SPI index. Hydrological drought was evaluated using the threshold level method and method of sequent peak algorithm, both with the fixed and also variable thresholds. The centroid method of the cluster analysis with the squared Euclidean distance was used for clustering data according to occurrence of drought periods, lasting for 100 days and more. Results of the SPI index showed very good applicability for drought periods identification in the basin. The most pronounced dry periods occurred in 1982 - 1983, 1984, 1998 and 2012 being classified as moderately dry, and also in 1993 - 1994, 2003 - 2004 and 2007 evolving from moderately to severely dry years. Short-term drought prevailed in discharges, only three periods of drought longer than 100 days occurred during the evaluated period in 1986 - 1987, 1997 and 2003 - 2004. Discharge drought in the

  8. Explicit simulations of stream networks to guide hydrological modelling in ungauged basins

    Directory of Open Access Journals (Sweden)

    S. Stoll

    2010-01-01

    Full Text Available Rainfall-runoff modelling in ungauged basins is still one of the greatest challenges in recent hydrological research. The lack of discharge data necessitates the establishment of new innovative approaches to guide hydrological modelling in ungauged basins. Besides the transfer of calibrated parameters from similar gauged catchments, the application of distributed data as a hydrological response in addition to discharge seems to be promising. A new approach for model and parameter evaluation based on explicit simulation of the spatial stream network was tested in four different catchments in Germany. In a first step, spatial explicit modelling of stream networks was performed using a simplified version of the process-based model Hill-Vi together with regional climate normals. The simulated networks were compared to mapped stream networks and their degree of spatial agreement was evaluated. Significant differences between good and poor simulations could be distinguished and the corresponding parameter sets relate well with the hydrogeological properties of the catchments. The optimized parameters were subsequently used to simulate daily discharge using an observed time series of precipitation and air temperature. The performance was evaluated against observed discharge and water balance. This approach shows some promising results but also some limitations. Although the model's parsimonious model structure should to be further improved regarding discharge recession and evapotranspiration, the performance was similar to the regionalisation methods. Stream network modelling, which has minimal data requirements, seems to be a reasonable alternative for model development and parameter evaluation in ungauged basins.

  9. Conditioning rainfall-runoff model parameters to reduce prediction uncertainty in ungauged basins

    Science.gov (United States)

    Visessri, S.; McIntyre, N.; Maksimovic, C.

    2012-12-01

    Conditioning rainfall-runoff model parameters in ungauged catchments in Thailand presents problems common to ungauged basins involving data availability, data quality, and rainfall-runoff model suitability, which all contribute to prediction uncertainty. This paper attempts to improve the estimation of streamflow in ungauged basins and reduce associated uncertainties using the approaches of conditioning the prior parameter space. 35 catchments from the upper Ping River basin, Thailand are selected as a case study. The catchments have a range of attributes e.g. catchment sizes 20-6350 km2, elevations 632-1529 m above sea level. and annual rainfall 846-1447 mm/year. For each catchment, three indices - rainfall-runoff elasticity, base flow index and runoff coefficient - are calculated using the observed rainfall-runoff data and regression equations relating these indices to the catchment attributes are identified. Uncertainty in expected indices is defined by the regression error distribution, approximated by a Gaussian model. The IHACRES model is applied for simulating streamflow. The IHACRES parameters are randomly sampled from their presumed prior parameter space. For each sampled parameter set, the streamflow and hence the three indices are modelled. The parameter sets are conditioned on the probability distributions of the regionalised indices, allowing ensemble predictions to be made. The objective function, NSE, calculated for daily and weekly time steps from the water years 1995-2000, is used to assess model performance. Ability to capture observed streamflow and the precision of the estimate is evaluated using reliability and sharpness measures. Similarity in modelled and expected indices contributes to good objective function values. Using only the regionalised runoff coefficient to condition the model yields better NSE values compared to using either only the rainfall-runoff elasticity or only the base flow index. Conditioning on the runoff coefficient

  10. A disaggregating approach to describe overland flow occurrence within a catchment

    NARCIS (Netherlands)

    Vigiak, O.; Romanowicz, R.; van Loon, E.E.; Sterk, G.; Beven, K.J.

    2006-01-01

    A parametrically parsimonious, data-based model was built on observations at hillslope and catchment scale to simulate the distribution of overland flow within a small East African Highlands catchment (Kwalei, Tanzania). A rainfall-flow Data Based Mechanistic model identified catchment effective rai

  11. Constitution of a catchment virtual observatory for sharing flow and transport models outputs

    Science.gov (United States)

    Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Benjamin W.; Marçais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald

    2016-12-01

    Predicting hydrological catchment behavior based on measurable (and preferably widely available) catchment characteristics has been one of the main goals of hydrological modelling. Residence time distributions provide synoptic information about catchment functioning and can be useful metrics to predict their behaviors. Moreover, residence time distributions highlight a wide range of characteristic scales (spatial and temporal) and mixing processes. However, catchment-specific heterogeneity means that the link between residence time distributions and catchment characteristics is complex. Investigating this link for a wide range of catchments could reveal the role of topography, geology, land-use, climate and other factors in controlling catchment hydrology. Meaningful comparison is often challenging given the diversity of data and model structures and formats. To address this need, we are introducing a new virtual platform called Catchment virtual Observatory for Sharing flow and transport models outputs (COnSOrT). The goal of COnSOrT is to promote catchment intercomparison by sharing calibrated model outputs. Compiling commensurable results in COnSOrT will help evaluate model performance, quantify inter-catchment controls on hydrology, and identify research gaps and priorities in catchment science. Researchers interested in sharing or using calibrated model results are invited to participate in the virtual observatory. Participants may test post-processing methods on a wide range of catchment environments to evaluate the generality of their findings.

  12. Modelling Pesticide Leaching At Column, Field and Catchment Scales I. Analysis of Soil Variability At Field and Catchment Scales

    Science.gov (United States)

    Gärdenäs, A.; Jarvis, N.; Alavi, G.

    The spatial variability of soil characteristics was studied in a small agricultural catch- ment (Vemmenhög, 9 km2) at the field and catchment scales. This analysis serves as a basis for assumptions concerning upscaling approaches used to model pesticide leaching from the catchment with the MACRO model (Jarvis et al., this meeting). The work focused on the spatial variability of two key soil properties for pesticide fate in soil, organic carbon and clay content. The Vemmenhög catchment (9 km2) is formed in a glacial till deposit in southernmost Sweden. The landscape is undulating (30 - 65 m a.s.l.) and 95 % of the area is used for crop production (winter rape, winter wheat, sugar beet and spring barley). The climate is warm temperate. Soil samples for or- ganic C and texture were taken on a small regular grid at Näsby Farm, (144 m x 144 m, sampling distance: 6-24 m, 77 points) and on an irregular large grid covering the whole catchment (sampling distance: 333 m, 46 points). At the field scale, it could be shown that the organic C content was strongly related to landscape position and height (R2= 73 %, p organic C content of hollows in the landscape is so high that they contribute little to the total loss of pesticides (Jarvis et al., this meeting). Clay content is also related to landscape position, being larger at the hilltop locations resulting in lower near-saturated hydraulic conductivity. Hence, macropore flow can be expected to be more pronounced (see also Roulier & Jarvis, this meeting). The variability in organic C was similar for the field and catchment grids, which made it possible to krige the organic C content of the whole catchment using data from both grids and an uneven lag distance.

  13. Understanding the Emergence and Functioning of River Committees in a Catchment of the Pangani Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Hans C. Komakech

    2011-06-01

    To explain the difference in the performance of the three RCs we need to consider factors related to heterogeneity. We find that the functioning of RCs is strongly influenced by group size, spatial distance, heterogeneity of users and uses, and market forces.

  14. Flood forecasting using a fully distributed model: application of the TOPKAPI model to the Upper Xixian Catchment

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2005-01-01

    Full Text Available TOPKAPI is a physically-based, fully distributed hydrological model with a simple and parsimonious parameterisation. The original TOPKAPI is structured around five modules that represent evapotranspiration, snowmelt, soil water, surface water and channel water, respectively. Percolation to deep soil layers was ignored in the old version of the TOPKAPI model since it was not important in the basins to which the model was originally applied. Based on published literature, this study developed a new version of the TOPKAPI model, in which the new modules of interception, infiltration, percolation, groundwater flow and lake/reservoir routing are included. This paper presents an application study that makes a first attempt to derive information from public domains through the internet on the topography, soil and land use types for a case study Chinese catchment - the Upper Xixian catchment in Huaihe River with an area of about 10000 km2, and apply a new version of TOPKAPI to the catchment for flood simulation. A model parameter value adjustment was performed using six months of the 1998 dataset. Calibration did not use a curve fitting process, but was chiefly based upon moderate variations of parameter values from those estimated on physical grounds, as is common in traditional calibration. The hydrometeorological dataset of 2002 was then used to validate the model, both against the outlet discharge as well as at an internal gauging station. Finally, to complete the model performance analysis, parameter uncertainty and its effects on predictive uncertainty were also assessed by estimating a posterior parameter probability density via Bayesian inference.

  15. Effects of spatial variability of precipitation for process-orientated hydrological modelling: results from two nested catchments

    Directory of Open Access Journals (Sweden)

    D. Tetzlaff

    2005-01-01

    Full Text Available The importance of considering the spatial distribution of rainfall for process-oriented hydrological modelling is well-known. However, the application of rainfall radar data to provide such detailed spatial resolution is still under debate. In this study the process-oriented TACD (Tracer Aided Catchment model, Distributed model had been used to investigate the effects of different spatially distributed rainfall input on simulated discharge and runoff components on an event base. TACD is fully distributed (50x50 m2 raster cells and was applied on an hourly base. As model input rainfall data from up to 11 ground stations and high resolution rainfall radar data from an operational C-band radar were used. For seven rainfall events the discharge simulations were investigated in further detail for the mountainous Brugga catchment (40 km2 and the St. Wilhelmer Talbach (15.2 km2 sub-basin, which are located in the Southern Black Forest Mountains, south-west Germany. The significance of spatial variable precipitation data was clearly demonstrated. Dependent on event characteristics, localized rain cells were occasionally poorly captured even by a dense ground station network, and this resulted in insufficient model results. For such events, radar data can provide better input data. However, an extensive data adjustment using ground station data is required. Therefore, a new method was developed that considers the rainfall intensity distribution. The use of the distributed catchment model allowed further insights into spatially variable impacts of different rainfall estimates. Impacts for discharge predictions are the largest in areas that are dominated by the production of fast runoff components. To conclude, the improvements for distributed runoff simulation using high resolution rainfall radar input data are strongly dependent on the investigated scale, the event characteristics, the existing

  16. Optimal catchment area and primary PCI centre volume revisited

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Pedersen, Frants; Holmvang, Lene;

    2015-01-01

    AIMS: The currently stated optimal catchment population for a pPCI centre is 300,000-1,100,000, resulting in 200-800 procedures/year. pPCI centres are increasing in number even within small geographic areas. We describe the organisation and quality of care after merging two high-volume centres...

  17. First Flush Effects in an Urban Catchment Area in Aalborg

    DEFF Research Database (Denmark)

    Larsen, Torben; Brpch, Kirsten; Andersen, Margit Riis

    1997-01-01

    The paper describes the results of measurements from a 2 year period on a 95 hectare urban catchment in Aalborg, Denmark. The results of the rain/discharge measurements include 160 storm events corresponding to an accumulated rain depth of totally 753 mm. The water quality measurements include 15...

  18. WWF Kikori Catchment Developmental Project, Papua New Guinea orchid survey

    NARCIS (Netherlands)

    Clements, M.A.; Harris, W.K.

    2002-01-01

    The World Wildlife Fund (Kikori Catchment Developmental Project, Papua New Guinea) has commenced field surveys of the Orchidaceae in the Lake Kutabu and Mt Bosavi areas of Papua New Guinea. The main purpose of the survey is to get a more accurate assessment of the orchids in the region. In a previou

  19. Modelling (flash) floods in a Dutch lowland catchment

    NARCIS (Netherlands)

    Brauer, C.C.; Teuling, A.J.; Overeem, A.; Velde, Y. van der; Hazenberg, P.; Warmerdam, P.M.M.; Kloosterman, P.; Uijlenhoet, R.

    2012-01-01

    On 26 August 2010 the eastern part of The Netherlands and the bordering part of Germany were struck by a series of rainfall events.We investigated the unprecedented flash flood triggered by this exceptionally heavy rainfall event (return period > 1000 years) in the 6.5 km2 Hupsel Brook catchment, wh

  20. Hydrological response of a small catchment burned by experimental fire

    NARCIS (Netherlands)

    Stoof, C.R.; Vervoort, R.W.; Iwema, J.; Elsen, van den H.G.M.; Ferreira, A.J.D.; Ritsema, C.J.

    2012-01-01

    Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We p

  1. Examining the Potential Travellers in Catchment Areas for Public Transport

    DEFF Research Database (Denmark)

    Landex, Alex; Hansen, Stephen

    2006-01-01

    The paper presents a method to examine the catchment areas for stops in high quality public transport systems based on the actual street network in the examined area. This is achieved by implementing the service area functions from the ArcGIS extension Network Analyst. The method is compared...

  2. Discharge Water Quality Models of Storm Runoff in a Catchment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The relationships between the water qualities of nitrogen and phosphorous contents in the discharge water and the discharge of storm runoff of an experimental catchment including terraced paddy field are analyzed based on experiment results of the catchment. By summarizing the currently related research on water quality models, the water quality models of different components of storm runoff of the catchment are presented and verified with the experiment data of water quality analyses and the corresponding discharge of the storm runoffs during 3 storms. Through estimating the specific discharge of storm runoff, the specific load of different components of nitrogen and phosphorus in the discharge water of the catchment can be forecasted by the models. It is found that the mathematical methods of linear regression are very useful for analysis of the relationship between the concentrations of nitrogen and phosphorus and the water discharge of storm runoff. It is also found that the most content of the nitrogen (75%) in the discharge water is organic, while half of the content (49%) of phosphorus in the discharge water is inorganic.

  3. The ethics of socio-ecohydrological catchment management: towards hydrosolidarity

    Science.gov (United States)

    Falkenmark, M.; Folke, Carl

    This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved: a heritage of constraining tunnel vision in both science and management; inadequate shortcuts made in modern scientific system analyses (e.g. science addressing sustainability issues); simplistic technical-fix approaches to water and ecosystems in land/water/ecosystem management; conventional tools for evaluation of scientific quality with its focus on "doing the thing right" rather than "doing the right thing". The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected.

  4. Seasonal exports of phosphorus from intensively fertilised nested grassland catchments

    Institute of Scientific and Technical Information of China (English)

    Ciaran Lewis; Rashad Rafique; Nelius Foley; Paul Leahy; Gerard Morgan; John Albertson; Sandeep Kumar

    2013-01-01

    We carried out a one year (2002) study of phosphorus (P) loss from soil to water in three nested grassland catchments with known P input in chemical fertilizer and animal liquid slurry applications.Chemical fertilizer was applied to the grasslands between March and September and animal slurry was applied over the twelve months.The annual chemical P fertilizer applications for the 17 and 211 ha catchments were 16.4 and 23.7 kg P/ha respectively and the annual slurry applications were 10.7 and 14.0 kg P/ha,respectively.The annual total phosphorus (TP) export in stream-flow was 2.61,2.48 and 1.61 kg P/ha for the 17,211 and 1524 ha catchments,respectively,compared with a maximum permissible (by regulation) annual export of ca.0.35 kg P/ha.The export rate (ratio of P export to P in land applications) was 9.6% and 6.6% from the 17 and 211 ha catchments,respectively.On average,70% of stream flow and 85% of the P export occurred during the five wet months (October to February) indicating that when precipitation is much greater than evaporation,the hydrological conditions are most favourable for P export.However the soil quality and land use history may vary the results.Particulate P made up 22%,43% and 37% of the TP export at the 17,211 and 1524 ha catchment areas,respectively.As the chemical fertilizer was spread during the grass growth months (March to September),it has less immediate impact on stream water quality than the slurry applications.We also show that as the catchment scale increases,the P concentrations and P export decrease,confirming dilution due to increasing rural catchment size.In the longer term,the excess P from fertilizer maintains high soil P levels,an antecedent condition favourable to P loss from soil to water.This study confirms the significant negative water quality impact of excess P applications,particularly liquid animal slurry applications in wet winter months.The findings suggest that restricted P application in wet months can

  5. Sediment yield and connectivity in a gullied sandy catchment

    Science.gov (United States)

    Lucía, Ana; Francisco Martín-Duque, José; Laronne, Jonathan B.; Ángel Sanz-Santos, Miguel

    2014-05-01

    Badland areas are considered to have high connectivity of sediment at the catchment scale; however, little is known about processes occurring in gullies and badlands developed in sands. This type of gullies is quite common in the Central-Eastern Iberian Peninsula and is associated with historic mining. The sandy badlands also appear in both abandoned and traditionally reclaimed mines, generating on- and offsite environmental effects. Our aim is to quantify the rates of the different processes occurring in the sandy gullied catchments, as well as their coupling and connectivity at a catchment scale. This may allow application to improve reclamation practice in mines and quarries located in sandy materials. The study site is a small (1.32 ha) gullied catchment, the Barranca de los Pinos, which is located in the Northern Piedmont of the Guadarrama Mountains (Central Spain). The catchment area has been divided into Homogeneous Response Units (HRUs) attending to the dominant active process . The sediment produced in the different HRUs has been monitored by a variety of methods: repeat Terrestrial Laser Scanning of high gradient slopes, closed microplots in low gradient slopes and automatic (Reid type) slot bedload samplers and siphon samplers to monitor suspended sediment transport in the channel. During the 2010-11 monitoring period the sediment yield due to gravitational movements in high gradient slopes varied from 20 to 200 kg m-2y-1. In the low gradient slopes the splash and non-concentrated runoff generated 0.1 - 6 kg m-2y-1,while the channel yielded 7.44 ± 1.08 kg m-2y-1 with a very high proportion (>70%) of bedload. Despite the difficulties of extrapolating and comparing the results obtained at different spatial and temporal resolutions, annual patterns of erosion and transport of sediments within the sandy gullied catchments have been identified. These confirm that the transport of sediment in this catchment is limited by the capacity of flow events to

  6. Tritium-based age/streamflow relationships and catchment function

    Science.gov (United States)

    Stewart, M. K.; Morgenstern, U.

    2013-12-01

    Understanding runoff generation is important for management of freshwater systems. Determining transit time distributions (TTDs) of streamwaters and how they change with flow gives information on the flowpaths and water storages in catchments - fundamental for understanding the responses of streams to stressors such as pollution, land use change and climate change. This work uses tritium measurements on single samples to determine TTDs and how they change with flow. Such use of tritium is only practical so far in the Southern Hemisphere, because of its much-lower input of bomb-tritium in the 1960s. Another advantage of tritium is that it reveals the full spectrum of ages present in streams, whereas oxygen-18 or chloride variations only show younger ages (i.e. truncated TTDs). Case studies are presented for two New Zealand catchments, both with volcanic ash substrates. The first (Toenepi) is a dairy catchment near Hamilton, which shows well-constrained power law relationships between mean transit time (MTT) and flow, and between silica concentration and flow. Baseflow MTTs vary from 2.5 to 157 years. The second (Tutaeuaua) is a pastoral farming catchment near Taupo. Results for nested catchments along the stream also show power law relationships for both MTT and silica with flow. Baseflow MTTs vary from 1 to 11 years. Although the MTT data could be represented approximately by straight lines in log-log plots, hysteresis effects due to catchment wetness variations did disturb the relationships. Having TTDs from individual samples focusses attention on the nature of the water storages supplying the stream at the times of sampling. The flow record contains information on catchment function, which can enhance the value of the age data, provided such information can be satisfactorily interpreted. A new baseflow estimation method is used to determine the slow storage (aka groundwater) fraction in the stream. The age data is showing that slow storages have mean ages of

  7. Seasonal exports of phosphorus from intensively fertilised nested grassland catchments.

    Science.gov (United States)

    Lewis, Ciaran; Rafique, Rashad; Foley, Nelius; Leahy, Paul; Morgan, Gerard; Albertson, John; Kumar, Sandeep; Kiely, Gerard

    2013-09-01

    We carried out a one year (2002) study of phosphorus (P) loss from soil to water in three nested grassland catchments with known P input in chemical fertilizer and animal liquid slurry applications. Chemical fertilizer was applied to the grasslands between March and September and animal slurry was applied over the twelve months. The annual chemical P fertilizer applications for the 17 and 211 ha catchments were 16.4 and 23.7 kg P/ha respectively and the annual slurry applications were 10.7 and 14.0 kg P/ha, respectively. The annual total phosphorus (TP) export in stream-flow was 2.61, 2.48 and 1.61 kg P/ha for the 17, 211 and 1524 ha catchments, respectively, compared with a maximum permissible (by regulation) annual export of ca. 0.35 kg P/ha. The export rate (ratio of P export to P in land applications) was 9.6% and 6.6% from the 17 and 211 ha catchments, respectively. On average, 70% of stream flow and 85% of the P export occurred during the five wet months (October to February) indicating that when precipitation is much greater than evaporation, the hydrological conditions are most favourable for P export. However the soil quality and land use history may vary the results. Particulate P made up 22%, 43% and 37% of the TP export at the 17, 211 and 1524 ha catchment areas, respectively. As the chemical fertilizer was spread during the grass growth months (March to September), it has less immediate impact on stream water quality than the slurry applications. We also show that as the catchment scale increases, the P concentrations and P export decrease, confirming dilution due to increasing rural catchment size. In the longer term, the excess P from fertilizer maintains high soil P levels, an antecedent condition favourable to P loss from soil to water. This study confirms the significant negative water quality impact of excess P applications, particularly liquid animal slurry applications in wet winter months. The findings suggest that restricted P application in

  8. Crossing thresholds: Analysis of hazardous tipping points in alpine catchments

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Steep mountain channels or torrents in small alpine catchments are characterized by high geomorphic activity with sediment dynamics being inherently nonlinear and threshold-mediated. Localized, high intensity rainstorms can drive torrential systems past a tipping point resulting in a sudden onset of hazardous events like (flash-) flooding, heavy bedload transport or debris flows. Such responses exhibit an abrupt switch in the fluvial system's mode (e.g. transport / supply limited). Changes in functional connectivity may persist beyond the tipping point. Torrential hazards cause costly damage in the densely populated Alpine Region. Thus, there is a rising interest in potential effects of climate change on torrential sediment dynamics. Understanding critical conditions close to tipping points is important to reduce uncertainty in predicting sediment fluxes. In this study we aim at (i) establishing threshold precipitation characteristics for the Eastern Alps of Austria. Precipitation is hypothesized to be the main forcing factor of torrential events. (ii) How do thresholds vary in space and time? (iii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which internal conditions are critical for susceptibility? (iv) Is there a change in magnitude or frequency in the recent past and what can be expected for the future? The 71 km2 catchment of the river Schöttlbach in the East Alpine Region of Styria (Austria) is monitored since a heavy precipitation event resulted in a catastrophic flood in July 2011. Sediment mobilization from slopes as well as within-channel storage and bedload transport are regularly measured using photogrammetric methods and sediment impact sensors. Thus, detailed knowledge exists on magnitude and spatial propagation of sediment waves through the catchment. The associated hydro-meteorological (pre-) conditions can be inferred from a dense station network. Changing bedload transport rates and

  9. Understanding catchment scale sediment sources using geochemical tracers

    Science.gov (United States)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and chemical elements analysed

  10. The Effect of Subsurface Parameterizations on Modeled Flows in the Catchment Land Surface Model, Fortuna 2.5

    Science.gov (United States)

    Roningen, J. M.; Eylander, J. B.

    2014-12-01

    Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.

  11. Flood survey of nitrate behaviour using nitrogen isotope tracing in the critical zone of a French agricultural catchment

    Science.gov (United States)

    Paul, Alexia; Moussa, Issam; Payre, Virginie; Probst, Anne; Probst, Jean-Luc

    2015-11-01

    Measurements of δ15N-NO3- were taken in a highly flood-responsive agricultural catchment in the southwest of France to trace the sources and transfer pathways of nitrates during flood events. From January to March 2013, surface water samples were collected every week at the outlet, and four floods were sampled with a high resolution. Sampling was also performed in surface waters and sand lenses from the rest of the basin to trace nitrate sources and processes spatially. Nitrate extractions were performed using a method based on the solubility difference between inorganic salts and organic solutions. The δ15N values were in the range of surface water contaminated by N-fertilisers. Depending on the hydroclimatic event, nitrates resulted from a combination of sources and processes. At the start of the floods, the values of δ15N-NO3- and nitrate concentrations were low, demonstrating the dilution of water with rainwater. During a second phase, the nitrate concentration and the δ15N were higher. Deeper waters and soil solutions were the second source of nitrates. When the water level was low, both nitrate concentration and isotopic composition were high. These values reflected the denitrification processes that occurred in the soil under anaerobic conditions. An analysis of δ15N-NO3- in stream water in a small agricultural catchment was efficient at determining the origin of nitrates during flood events using a simple method.

  12. Catchment properties in the Kruger National Park derived from the new TanDEM-X Intermediate Digital Elevation Model (IDEM)

    Science.gov (United States)

    Baade, J.; Schmullius, C.

    2015-04-01

    Digital Elevation Models (DEM) represent fundamental data for a wide range of Earth surface process studies. Over the past years the German TanDEM-X mission acquired data for a new, truly global Digital Elevation Model with unpreceded geometric resolution, precision and accuracy. First processed data sets (i. e. IDEM) with a geometric resolution of 0.4 to 3 arcsec have been made available for scientific purposes. This includes four 1° x 1° tiles covering the Kruger National Park in South Africa. Here we document the results of a local scale IDEM validation exercise utilizing RTK-GNSS-based ground survey points from a dried out reservoir basin and its vicinity characterized by pristine open Savanna vegetation. Selected precursor data sets (SRTM1, SRTM90, ASTER-GDEM2) were included in the analysis and highlight the immense progress in satellite-based Earth surface surveying over the past two decades. Surprisingly, the high precision and accuracy of the IDEM data sets have only little impact on the delineation of watersheds and the calculation of catchment size. But, when it comes to the derivation of topographic catchment properties (e.g. mean slope, etc.) the high resolution of the IDEM04 is of crucial importance, if - from a geomorphologist's view - it was not for the disturbing vegetation.

  13. Using stochastic dynamic programming to support catchment-scale water resources management in China

    Science.gov (United States)

    Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2013-04-01

    A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in

  14. Optimization of precipitation inputs for SWAT modeling in mountainous catchment

    Science.gov (United States)

    Tuo, Ye; Chiogna, Gabriele; Disse, Markus

    2016-04-01

    Precipitation is often the most important input data in hydrological models when simulating streamflow in mountainous catchment. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauging station which is nearest to the centroid of each subcatchment, eventually corrected using the band elevation method. This leads in general to inaccurate subcatchment precipitation representation, which results in unreliable simulation results in mountainous catchment. To investigate the impact of the precipitation inputs and consider the high spatial and temporal variability of precipitation, we first interpolated 21 years (1990-2010) of daily measured data using the Inverse Distance Weighting (IDW) method. Averaged IDW daily values have been calculated at the subcatchment scale to be further supplied as optimized precipitation inputs for SWAT. Both datasets (Measured data and IDW data) are applied to three Alpine subcatchments of the Adige catchment (North-eastern Italy, 12100 km2) as precipitation inputs. Based on the calibration and validation results, model performances are evaluated according to the Nash Sutchliffe Efficiency (NSE) and Coefficient of Determination (R2). For all three subcatchments, the simulation results with IDW inputs are better than the original method which uses measured inputs from the nearest station. This suggests that IDW method could improve the model performance in Alpine catchments to some extent. By taking into account and weighting the distance between precipitation records, IDW supplies more accurate precipitation inputs for each individual Alpine subcatchment, which would as a whole lead to an improved description of the hydrological behavior of the entire Adige catchment.

  15. Advancing catchment hydrology to deal with predictions under change

    Directory of Open Access Journals (Sweden)

    U. Ehret

    2013-07-01

    Full Text Available Throughout its historical development, hydrology as an engineering discipline and earth science has relied strongly on the assumption of long-term stationary boundary conditions and system configurations, which allowed for simplified and sectoral descriptions of the dynamics of hydrological systems. However, in the face of rapid and extensive global changes (of climate, land use etc. which affect all parts of the hydrological cycle, the general validity of this assumption appears doubtful. Likewise, so does the application of hydrological concepts based on stationarity to questions of hydrological change. The reason is that transient system behaviours often develop through feedbacks between the system constituents, and with the environment, generating effects that could often be neglected under stationary conditions. In this context, the aim of this paper is to present and discuss paradigms and theories potentially helpful to advancing hydrology towards the goal of understanding and predicting hydrological systems under change. For the sake of brevity we focus on catchment hydrology. We begin with a discussion of the general nature of explanation in hydrology and briefly review the history of catchment hydrology. We then propose and discuss several perspectives on catchments: as complex dynamical systems, self-organizing systems, co-evolving systems and open dissipative thermodynamic systems. We discuss the benefits of comparative hydrology and of taking an information-theoretic view of catchments, including the flow of information from data to models to predictions. In summary, we suggest that the combination of these closely related perspectives can serve as a paradigm for the further development of catchment hydrology to address predictions under change.

  16. Evaluation of water balance components in the Elbe river catchment simulated by the regional climate model CCLM

    Directory of Open Access Journals (Sweden)

    Jan Volkholz

    2014-12-01

    Full Text Available For investigations of feedbacks between the hydrological cycle and the climate system, we assess the performance of the regional climate model CCLM in reconstructing the water balance of the Elbe river catchment. To this end long-term mean precipitation, evapotranspiration and runoff are evaluated. Extremes (90th percentile are also considered in the case of precipitation. The data are provided by a CCLM present-day simulation for Europe that was driven by large-scale global reanalyses. The quality of the model results is analyzed with respect to suitable reference data for the period 1970 to 1999. The principal components of the hydrological cycle and their seasonal variations were captured well. Basin accumulated, averaged daily precipitation, evapotranspiration and runoff differ by no more than 10 % from observations. Larger deviations occur mainly in summer, and at specific areas.

  17. Environmental controls, sediment sources and spatiotemporal variability of suspended sediment yields in partly glacierized catchment systems in western Norway

    Science.gov (United States)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2016-04-01

    This work focuses on environmental controls, sediment sources and the spatiotemporal variability of suspended sediment yields in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) catchment systems in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was carried out since 2004 in Erdalen and since 2008 in Bødalen. Fluvial suspended sediment transport in the inner Nordfjord is altogether supply-limited and larger thermally and/or pluvially generated runoff events occurring mostly during the period April-November are needed to mobilize and transport significant amounts of suspended sediments. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (>70 mm/d) in autumn can trigger relevant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The share of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls of the detected spatial variability of suspended sediment yields. The contemporary sediment delivery from glacierized surface areas through different outlet glaciers shows a high spatial variability which is mostly explained by a spatially variable availability

  18. Water balance and its intra-annual variability in a permafrost catchment: hydrological interactions between catchment, lake and talik

    Directory of Open Access Journals (Sweden)

    E. Bosson

    2013-07-01

    Full Text Available Few hydrological studies have been made in Greenland with focus on permafrost hydrology rather than on the glacial hydrology associated with the Greenland ice sheet. Understanding permafrost hydrology, and its reflection and propagation of hydroclimatic change and variability, however, can be a key to understand important climate change effects and feedbacks in arctic landscapes. This paper presents a new extensive and detailed hydrological dataset, with high temporal resolution of main hydrological parameters, for a permafrost catchment with a lake underlain by a talik close to the Greenland ice sheet in the Kangerlussuaq region, western Greenland. The paper describes the hydrological site investigations and data collection, and their synthesis and interpretation to develop a conceptual hydrological model. The catchment and lake water balances and their intra-annual variability, and uncertainty intervals for key water balance components, are quantified. The study incorporates all relevant hydrological processes within the catchment and, specifically, links the surface water system to both supra-permafrost and sub-permafrost groundwater. The dataset enabled water balance quantification with high degree of confidence. The measured hydraulic gradient between the lake and the groundwater in the talik shows this to be a groundwater recharging talik. Surface processes, dominated by evapotranspiration during the active flow period, and by snow dynamics during the frozen winter period, influence the temporal variation of groundwater pressure in the talik. This shows the hydrology in the catchment as being rather independent from external large-scale landscape features, including those of the close-by ice sheet.

  19. How should a rainfall-runoff model be parameterized in an almost ungauged catchment? A methodology tested on 609 catchments

    Science.gov (United States)

    Rojas-Serna, Claudia; Lebecherel, Laure; Perrin, Charles; Andréassian, Vazken; Oudin, Ludovic

    2016-06-01

    This paper examines catchments that are almost ungauged, i.e., catchments for which only a small number of point flow measurements are available. In these catchments, hydrologists may still need to simulate continuous streamflow time series using a rainfall-runoff model, and the methodology presented here allows using few point measurements for model parameterization. The method combines regional information (parameter sets of neighboring gauged stations) and local information (contributed by the point measurements) within a framework where the relative weight of each source of information is made dependent on the number of point measurements available. This approach is tested with two different hydrological models on a set of 609 catchments in France. The results show that on average a few flow measurements can significantly improve the simulation efficiency, and that 10 measurements can reduce the performance gap between the gauged and ungauged situations by more than 50%. The added value of regional information progressively decreases until being almost insignificant when sufficient flow measurements are available. Model parameters tend to come closer to the values obtained by calibration in fully gauged conditions as the number of point flow measurements increases.

  20. FISHERY MANAGEMENT IN THE DANUBE CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    Tomislav Treer

    1999-12-01

    Full Text Available There are three successive regions of the Danube, each of which has to deal with its own problems in fisheries. Sport fishing and ecological recontruction problem matters predominate in the upper flow. These problems also characterize the middle flow, where to a certain extent, commercial fishery is coming into view, while the lower flow has to deal with commercial fishery problems to full extent. The difference is not so much due to the morphometry as to the development and state of the economy of the countries in the river basin, their legislation on fishery and the manner in which the legislation is applied. Numerous dams of the upper flow of the Danube (29 in Germany, 9 in Austria, influence significantly the ichthyocenoses. An extreme example of that is Gabčikovo dam at the Slovak-Hungarian border where fish catch decreased to one fourth. In the lower segment of the Danube fish catch falls down to one third and is followed, by a drastically negative change of fish species composition. The records show that highly valued species as sturgeons, pike and tench are in drastic decline over the last few years. The changes were caused by physical barriers, like dams and weirs, by water pollution, by increasing concentration of nutrients and heavy metals, by poaching and by overexploitation. For all those alarming reasons, some legal interventions in commercial fishery must be undertaken. In the middle flow, where the Danube flows through Croatian territory, there have also been declining trends of bentivore and phytophyl species respectively. The law supports the coexistence of sport and commercial fishery in this area and although sport fishing should be given the advantage, commercial fishing should be rigorously supervised and allowed only when there is a naturally produced surplus. Because of fish migrations and political frontiers of Danube area, it is essential that the neighboring countries coordinate their efforts in managing fisheries

  1. Heavy metal enrichments in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150 years.

    Science.gov (United States)

    Guo, Yanwei; Yang, Shouye

    2016-02-01

    Compositions of heavy metals including Cu, Zn, Cr and Pb in three sediment cores recovered from the lower basin of the Changjiang (Yangtze River) and the inner shelf mud of the East China Sea were analyzed by traditional X-ray florescence (XRF) and XRF Core Scanner. This study aims to investigate the accumulation of heavy metals in the fluvial sediments and to decipher the influence of anthropogenic activities within the large catchment over the last 150 years. The data suggest that the heavy metals, especially Pb and Zn, show obvious enrichments in concentrations since 1950s, and the small and consistent variations of heavy metal concentrations before 1950s can represent geochemical background values. After removing the grain size effect on elemental concentrations, we infer that the sources of heavy metals predominantly come from natural weathering detritus, while human contamination has increased over the last half century. The calculations of both enrichment factor and geoaccumulation index, however, indicate that the pollution of these heavy metals in the fluvial and shelf environments is not significant. The rapid increase in human activities and fast socioeconomic development in the Changjiang catchment and East China over the last five decades accounts for the enrichments of heavy metals in the river and marine sediments. The inner shelf of the East China Sea, as the major sink of the Changjiang-derived fine sediments, provides a high-resolution sediment archive for tracing the anthropogenic impacts on the catchment.

  2. Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact

    Science.gov (United States)

    Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.

    2015-12-01

    Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.

  3. Land use and land cover change detection in Karinca river catchment (NW Turkey) using GIS and RS techniques.

    Science.gov (United States)

    Efe, Recep; Soykan, Abdullah; Curebal, Isa; Sonmez, Suleyman

    2012-04-01

    The basin of Karinca river, in the north-west of Turkey, covers an area of 29,840 ha. Pronounced changes in land use emerged as a result of the development of activities in the tourism sector in Turkey in the 1970's. The basin has been significantly affected in the course of this process. This study was conducted in order to determine the land use changes (as well as the type of changes and their direction) occurring in the use of land in the Karinca river catchment for the period 1979-2007. The geographical data were gathered by using 1:25000 scale topographical maps as a basis. Thus, the existing soil and land use data from 1979 were processed on these bases and the the main materials rendering the land use were produced. Geometric verification was made by putting the previously prepared bases onto landsat ETM+ and satellite images of 2007. In the final stage, results pertaining to the changes in land use were obtained by overlapping the two sets of data. All processes were done using the ArcGIS Desktop v9.x program. According to the data of the year 1979, the catchment area consisted of 43.4% forest, 26.5% grassland, 18.3% olive groves, 10.6% agriculture and 1.2% built-up lands. Comparing these coverage with the data of 2007, show a clear shift among residential areas, olive groves and forest terrain. It was found that the agricultural areas, particularly along the shoreline, were converted into resort houses and that the olive groves (the dominant land use) shifted from lower regions to its upper sectors. All these changes caused loss of natural habitats leading to degradation.

  4. Prevalence of Cryptosporidium and Giardia in the water resources of the Kuang River catchment, Northern Thailand.

    Science.gov (United States)

    Chuah, C Joon; Mukhaidin, Nabila; Choy, Seow Huey; Smith, Gavin J D; Mendenhall, Ian H; Lim, Yvonne A L; Ziegler, Alan D

    2016-08-15

    A catchment-scale investigation of the prevalence of Cryptosporidium and Giardia in the Kuang River Basin was carried out during the dry and rainy seasons. Water samples were collected from the Kuang River and its tributaries as well as a major irrigation canal at the study site. We also investigated the prevalence of gastrointestinal parasitic infection among dairy and beef cattle hosts. Cryptosporidium and/or Giardia were detected in all the rivers considered for this study, reflecting their ubiquity within the Kuang River Basin. The high prevalence of Cryptosporidium/Giardia in the upper Kuang River and Lai River is of a particular concern as both drain into the Mae Kuang Reservoir, a vital source of drinking-water to many local towns and villages at the research area. We did not, however, detected neither Cryptosporidium nor Giardia were in the irrigation canal. The frequency of Cryptosporidium/Giardia detection nearly doubled during the rainy season compared to the dry season, highlighting the importance of water as an agent of transport. In addition to the overland transport of these protozoa from their land sources (e.g. cattle manure, cess pits), Cryptosporidium/Giardia may also be re-suspended from the streambeds (a potentially important repository) into the water column of rivers during storm events. Faecal samples from dairy and beef cattle showed high infection rates from various intestinal parasites - 97% and 94%, respectively. However, Cryptosporidium and Giardia were only detected in beef cattle. The difference in management style between beef (freeranging) and dairy cattle (confined) may account for this disparity. Finally, phylogenetic analyses revealed that the Cryptosporidium/Giardia-positive samples contained C. ryanae (non-zoonotic) as well as Giardia intestinalis assemblages B (zoonotic) and E (non-zoonotic). With only basic water treatment facilities afforded to them, the communities of the rural area relying on these water supplies are

  5. Nutrient Legacies and Time Lags: Understanding Catchment Biogeochemical Responses in Anthropogenic Landscapes

    Science.gov (United States)

    Van Meter, K. J.; Basu, N. B.

    2014-12-01

    Human modification of the nitrogen (N) cycle has resulted in increased flows of reactive N, with some suggesting that planetary boundaries for maintaining human and ecosystem health have been exceeded. Persistence of large hypoxic zones in inland and coastal waters created by elevated concentrations of nitrate is one of the most significant impacts of such increased flows. While the need to manage these flows is recognized, best management practices to reduce stream N concentrations have had only limited success. Some have attributed this lack of success to accumulation of legacy N stores from decades of fertilizer application. Here we introduce an unprecedented analysis of long-term soil data from the Mississippi River Basin (MRB) revealing significant increases in total N (TN) content. We show that TN accumulation for the MRB accounts for 43% of net anthropogenic N inputs, complementing previous work indicating an approximately 25% loss of net inputs as riverine output. These findings significantly reduce uncertainty associated with basin-level N retention and demonstrate the presence of N accumulation in the deeper subsurface of agricultural soils. The presence of such legacy N stores is utilized in the development of a conceptual framework for quantifying catchment-scale time lags based on both soil nutrient accumulations (biogeochemical legacy) and groundwater travel time distributions (hydrologic legacy). Time scales of change for stream nutrient concentrations are explored as a function of both natural and anthropogenic controls, from topography to spatial patterns of land-use change, and an optimization approach has been developed to determine maximum possible concentration reduction benefits within time frames of interest.

  6. Seasonal and interannual variability in runoff from the Werenskioldbreen catchment, Spitsbergen

    Directory of Open Access Journals (Sweden)

    Majchrowska Elżbieta

    2015-09-01

    Full Text Available The results from a hydrological monitoring program of Breelva basin (Spits− bergen, Svalbard have been analysed to improve the understanding of the Werenskiöld Glacier system’s functioning in the High Arctic. Hydrographs of a 44 km2 river basin (27 km2 of which was covered by a glacier were analysed for the period 2007-2012. Sea− sonal discharge fluctuations were linked to glacier ablation and meteorological parameters, including atmospheric circulation types. A dichotomy was found in the discharge peaks generation during the hydrologically active season, with the main role played by snow and ice melt events during its first part and the rainfall regime dominating its second part. Foehn type strong winds played a significant role in the generation of ablation type floods (e.g. in August 2011. A simple classification of the runoff regime was applied to the examined six−year period, resulting in the identification of its three types: the ablation type (dominant in 2007 and 2009, the rainfall type (in the years 2011-2012, and the mixed type (during 2008 and 2010. According to publications the river flow season in Spitsbergen begins in June and end with freeze−up in September or at the beginning of October. Recently, this sea− son for Breelva tend to be extended with the mid−May onset and end in the second part of October. A multiannual trend was noted that reflects a growing importance of rainfalls, especially in September. Rainfall waters play a more distinct role in outflow from the Breelva catchment recently.

  7. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range

    Science.gov (United States)

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.

    2003-01-01

    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  8. Characterizing Runoff and Water Yield from Headwater Catchments in the Southern Sierra Nevada

    Science.gov (United States)

    Safeeq, M.; Hunsaker, C. T.

    2015-12-01

    In a mediterranean climate where much of the annual precipitation falls during winter, the snow-capped Sierra Nevada serves as the primary source of dry season runoff that supports agriculture, industries, urban, and other ecosystems. Increased warming has led to significant reductions in mountain snowpack accumulation and earlier snowmelt throughout the western United States where most of the snow accumulates at temperatures near the freezing point. As a result, declines in dry season runoff magnitude, earlier runoff timing, and altered flood risk have been reported across the region. An important question in this context is, how to best manage forested catchments for water and other ecosystem services? We depict the differences in hydrologic response of ten catchments in the Kings River Experimental Watersheds (KREW) research project using continuous precipitation, snow, and runoff data during 2004-2014. The size of these catchments ranges from 50 to 475 ha, and they span a 600-m elevation range in the rain snow transitional zone. In terms of soil, Shaver and Gerle-Cagwin dominate the lower elevation Providence catchments, and Cagwin soils dominate the higher elevation Bull catchments. The majority of these catchments have southwest aspect, moderate average slope (i.e. annual runoff ranges between 281 to 408 mm in Providence and 436 to 656 mm in Bull catchments despite no significant difference in precipitation among KREW's four meteorological stations. However, high elevation Bull catchments receive significantly more precipitation as snow than the low elevation Providence catchments. The average runoff ratio ranges from 18% to as high as 43% among different catchments, indicating that the catchment evapotranspiration exceeds the catchment runoff. Inter-catchment variability in runoff, runoff ratio, characteristics of runoff ratio-precipitation relationship (i.e. slope and intercept), and precipitation elasticity of runoff can be primarily explained by

  9. Response of the Nile and its catchment to millennial-scale climatic change since the LGM from Sr isotopes and major elements of East Mediterranean sediments

    Science.gov (United States)

    Box, M. R.; Krom, M. D.; Cliff, R. A.; Bar-Matthews, M.; Almogi-Labin, A.; Ayalon, A.; Paterne, M.

    2011-02-01

    Changes in 87Sr/ 86Sr and major element geochemistry, from two sediment cores (9509 and 9501) in the Eastern Mediterranean (EM), were used to resolve changes in sediment provenance and, hence, determine climate changes in the Nile catchment and Eastern Sahara desert over the past 25 ka. The sediment was described by a three end-member system comprising Blue Nile (BN; 87Sr/ 86Sr = 0.7506; Sr = 210 ppm), White Nile (WN; 87Sr/ 86Sr = 0.7094; Sr = 72.5 ppm) and Saharan dust (SD; 87Sr/ 86Sr = 0.7183; Sr = 99 ppm). The sedimentary record of these cores represents the suspended load carried down the Nile river and discharged into the S.E. Levantine basin and thus records palaeoclimatically controlled changes in erosion and transport in the catchment. During arid periods (0-5 ka BP) and prior to 11 ka BP, fluxes of BN sediment at 9509 (˜6 g/cm 2/yr & 10-12 g/cm 2/yr, respectively) were greater than during the peak of the African Humid Period (AHP) from 5 to 11 ka BP (15 g/cm 2/yr. In the Ethiopian Highlands (BN catchment) increases in the amount and duration of the monsoon during the AHP caused more vegetation to grow resulting in less soil erosion. In the WN catchment increased rainfall caused more catchment erosion and higher sediment flux through the Sudd marshes. The sedimentation rate in core 9509 increased during the AHP because of the greater importance of the WN sediment flux relative to the BN sediment flux. Saharan dust flux also decreased during the AHP reaching a minimum at ˜6 ka BP (core 9509) due to 'greening' of the Sahara desert. At the onset of S-1, the changes in Nile flow as determined by 87Sr/ 86Sr and climatic changes in the EM basin determined by δ 18O of planktonic foraminifera were simultaneous, confirming that such isotopic tracers cannot be used directly to determine the cause of the circulation changes in the EM at this time. The increase in the proportion of BN sediment at 9509 with a somewhat higher grain size during the H-1 period (15-17 ka

  10. Sediment budget for Rediu reservoir catchment, North-Eastern Romania

    Science.gov (United States)

    Todosi, Cristian; Niculita, Mihai

    2016-04-01

    Sediment budgets are a useful tool for geomorphologic analysis, catchment management and environmental assessment, despite the uncertainties related to their assessment. We present the sediment budget construction and validation for a small catchment of 9.5319 kmp (953.19 ha) situated in the North-Eastern part of Romania. The Rediu reservoir was built between 1986 and 1988, on Rediu valley, a left tributary of Bahlui river, north-west from Iasi city. The catchment of the reservoir has 6.5 km in length and 2.5 km in maximum width, the altitudes decreasing from 170 m in the northern part, to 52 m in the southern part. The valley is symmetric, the altitude of the hillslopes going between 200 m to 75 m in one km length, in the transversal section with the maximum width. The floodplain is narrow having between 20 m to 210 m (in the area of confluence with Breazu tributary). The mean slope of the catchment is 6.4 degree, the maximum slope being 24.6 degrees. The length of channels which show banks of up to 2 m is 19.98 km. The land is used predominantly as crops (58.1 %), 16.7 % being covered by pastures (from which over half are eroded), 11.5 % percent of the catchment being covered by planted forests, 9.2 % by rural constructions and roads, 2.9 % by hayfields, 1.5 % by lakes and 0.1 % by orchards. Beside the Rediu reservoir, there are three ponds (15 771, 1761 and 751 sqm) in the catchment. We considered the trap efficiency for the reservoir and the ponds to be 95%. Aerial images from 1963, 1978 , 1984, 2005, 2008, 2010, 2012 and 2014 were used to assess the state of geomorphological processes before and after the reservoir construction. After 1970 a gully system situated in Breazu tributary sub-catchment and several active landslides along the main valley left side were forested. Beside these processes, soil erosion and human impact by constructions are the main processes generating sediment in the study area. The sediment yields were quantified by estimating the

  11. Spatial and Temporal Distribution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Stormwater Detention Basin Sediments

    Science.gov (United States)

    Schifman, L. A.; Kasaraneni, V. K.; Boving, T. B.; Craver, V.

    2015-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) into surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices, such as retention/detention ponds. While the effectiveness of catchment basins in runoff volume reduction and removal of some contaminants has been established, very little is known about contaminant fate within these structures. Particularly in coastal regions and places with shallow groundwater tables PAH accumulation in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Here, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and land use (industrial, urban, highway, and commercial). To study the stratification of PAHs one foot sediment cores were collected and analyzed for 17 PAHs (16 EPA parent PAH and Retene). The concentrations of PAHs in sediments of detention ponds in urban and industrial land use areas ranged from 20 μg/g to 200 μg/g. Generally higher concentrations of contaminants were found in sediments near the pond inlet and a decreasing concentration gradient is observed laterally and vertically throughout the pond. To compare stormwater ponds in various land use settings a new index based on sediment contamination, pond size and age, and catchment area will be presented. Further, it will be investigated whether BMP maintenance has to be targeted towards pollutant removal to maintain an effective stormwater treatment system.

  12. Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River basin, Canada

    Directory of Open Access Journals (Sweden)

    G. Jost

    2011-05-01

    Full Text Available Glacier melt provides important contributions to streamflow in many mountainous regions. Hydrologic model calibration in glacier-fed catchments is difficult because errors in modelling snow accumulation can be offset by compensating errors in glacier melt. This problem is particularly severe in catchments with modest glacier cover, where goodness-of-fit statistics such as the Nash-Sutcliffe model efficiency may not be highly sensitive to the streamflow variance associated with glacier melt. While glacier mass balance measurements can be used to aid model calibration, they are absent for most catchments. We introduce the use of glacier volume change determined from repeated glacier mapping in a guided GLUE (generalized likelihood uncertainty estimation procedure to calibrate a hydrologic model. We also explicitly account for changes in glacier area through the calibration and test periods. The approach is applied to the Mica basin in the Canadian portion of the Columbia River basin using the HBV-EC hydrologic model. Use of glacier volume change in the calibration procedure effectively reduced parameter uncertainty and helped to ensure that the model was accurately predicting glacier mass balance as well as streamflow. The seasonal and interannual variations in glacier melt contributions were assessed by running the calibrated model with historic glacier cover and also after converting all glacierized areas to alpine land cover in the model setup. Although glaciers in the Mica basin only cover 5 % of the watershed, glacier ice melt contributes up to 25 % and 35 % of streamflow in August and September, respectively, and is particularly important during periods of warm, dry weather following winters with low accumulation and early snowpack depletion. The approach introduced in this study provides an effective and widely applicable approach for calibrating hydrologic models in glacier fed catchments, as well as for quantifying the magnitude and

  13. Effects of suburban development on runoff generation in the Croton River basin, New York, USA

    Science.gov (United States)

    Burns, Douglas; Vitvar, Tomas; McDonnell, Jeffrey; Hassett, James; Duncan, Jonathan; Kendall, Carol

    2005-09-01

    The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for δ 18O, NO 3-, and SO 42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm

  14. How important are sediments in the flood peaks generated by a Mediterranean catchment?

    Science.gov (United States)

    Puertes, Cristina; Francés, Félix

    2016-04-01

    Currently, soil erosion and sediment yield have increased their importance because of their impact on the increase in flood peaks, in addition to the sedimentation in reservoirs, channels and flooded urban areas. Hence, this research wants to be a contribution in that sense. The aim was to evaluate the importance of the incorporation of sediment cycle to hydrological models in order to improve the reliability of the simulated floods. It was focused on the flood that took place in Valencia, Spain, in 1957. This flood produced two straight floods, of 2700 and 3700 m3/s peak flows, as a consequence of two heavy rainy days (above 100mm precipitations in 24h), preceded by two rainy days. As a result, it caused 81 dead, thousands homeless and high material damage. The amount of sediments deposited in the city was slightly lower than 2 hm3. Cleaning up tasks lasted more than a month and, although less than one seventh of the sediments volume were removed, public expenditures exceed 23.500.000€ (2015 currency value). In order to carry out this study, it was necessary to make a reconstruction of the event. The first step was to calibrate a distributed hydrological model in the Turia River basin. The total catchment area is 6350 km2, but only the catchment downstream the Benagéber Reservoir was active during the flood. The parameters needed for the calibration were obtained from a 100x100 m Digital Elevation Model, the land use map and the physical characteristics of the basin. The model was calibrated using a time step of one hour and the observed discharge in the outlet point from the period 1990-2013. Previously, a daily model was calibrated and used for the computation of the initial conditions of the hourly model. Once calibrated, a reconstruction of precipitation at hourly discretization for the 1957 event was made. Finally, the sedimentological sub-model was calibrated using only data from the amount of sediments deposited in the city during the overflowing. All

  15. Assessment of Socioeconomic Vulnerability to Floods in the Bâsca Chiojdului Catchment Area

    Directory of Open Access Journals (Sweden)

    REMUS PRĂVĂLIE

    2014-12-01

    Full Text Available Hydrological risk phenomena such as floods are among the most costly natural disasters worldwide, effects consisting of socioeconomic damages and deaths. The Bâsca Chiojdului catchment area, by its morphometric and hydrographic peculiarities, is prone to generate these hydrological risk phenomena, so there is a high vulnerability in the socioeconomic elements. This paper is focused on the identification of the main socioeconomic elements vulnerable to hydrological risk phenomena such as floods, based on the assessment of their manifestation potential. Thus, following the delimitation of areas with the highest flood occurrence potential (susceptibility to floods, major socioeconomic factors existing in the basin, considering human settlements (constructions, transport infrastructure, and agricultural areas (the most important category, were superimposed. Results showed a high vulnerability for all three exposed socioeconomic elements especially in valley sectors, of which household structures were the most vulnerable, given both their importance and the high number of areas highly exposed to floods (approximately 2,500 houses and outbuildings, out of a total of about 10,250, intersect the most susceptible area to floods in the study area.

  16. From catchment to fish: Impact of anthropogenic pressures on gill histopathology.

    Science.gov (United States)

    Fonseca, A R; Sanches Fernandes, L F; Fontainhas-Fernandes, A; Monteiro, S M; Pacheco, F A L

    2016-04-15

    Gill histopathology was investigated in barbel (Luciobarbus bocagei) and nase (Pseudochondrostoma sp.) in sub-catchments of Paiva River (Portugal) located upstream and downstream of a Waste Water Treatment Plant (WWTP). Multivariate statistical analyses were performed to set up correlations between the species sample (n=24) and injury types (8). The results discriminate well edema and vasodilatation between reference (upstream) and disturbed (downstream) samples. Using a watershed model, time series of physico-chemical parameters and heavy metal concentrations were calibrated and validated for the entire Paiva River basin as to investigate the relationship between water quality and the gill histopathology results. Increased concentrations of heavy metal downstream, specifically of zinc and lead, coincided with a higher severity of histopathological alterations in the fish gills. Significant but less evident relationship between water quality parameters and severity of gill injuries in the analyzed fish species were also observed for fecal coliforms, water temperature and manganese. Notwithstanding the location of the samples upstream and downstream of the WWTP, contamination of Paiva River and its effect on gill injuries cannot be disconnected from other punctual and diffuse pollution sources acting in different sectors within the watershed, namely agriculture and forest management. The severity of histopathological alterations in the fish gills reflected differences in the type and concentration of contaminants in Paiva River, and consequently can be viewed as valuable indicator of water quality.

  17. Combining data sources to characterise climatic variability for hydrological modelling in high mountain catchments

    Science.gov (United States)

    Pritchard, David; Fowler, Hayley; Bardossy, Andras; O'Donnell, Greg; Forsythe, Nathan

    2016-04-01

    Robust hydrological modelling of high mountain catchments to support water resources management depends critically on the accuracy of climatic input data. However, the hydroclimatological complexity and sparse measurement networks typically characteristic of these environments present significant challenges for determining the structure of spatial and temporal variability in key climatic variables. Focusing on the Upper Indus Basin (UIB), this research explores how different data sources can be combined in order to characterise climatic patterns and related uncertainties at the scales required in hydrological modelling. Analysis of local observations with respect to underlying climatic processes and variability is extended relative to previous studies in this region, which forms a basis for evaluating the domains of applicability and potential insights associated with selected remote sensing and reanalysis products. As part of this, the information content of recent high resolution simulations for understanding climatic patterns is assessed, with particular reference to the High Asia Refined Analysis (HAR). A strategy for integrating these different data sources to obtain plausible realisations of the distributed climatic fields needed for hydrological modelling is developed on the basis of this analysis, which provides a platform for exploring uncertainties arising from potential biases and other sources of error. The interaction between uncertainties in climatic input data and alternative approaches to process parameterisation in hydrological and cryospheric modelling is explored.

  18. Optimization of a Groundwater Monitoring Network for a Sustainable Development of the Maheshwaram Catchment, India

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed

    2011-02-01

    Full Text Available Groundwater is one of the most valuable resources for drinking water and irrigation in the Maheshwaram Catchment, Central India, where most of the local population depends on it for agricultural activities. An increasing demand for irrigation and the growing concern about potential water contamination makes imperative the implementation of a systematic groundwater-quality monitoring program in the region. Nonetheless, limited funding and resources emphasize the need to achieve a representative but cost-effective sampling strategy. In this context, field observations were combined with a geostatistical analysis to define an optimized monitoring network able to provide sufficient and non-redundant information on key hydrochemical parameters. A factor analysis was used to evaluate the interrelationship among variables, and permitted to reduce the original dataset into a new configuration of monitoring points still able to capture the spatial variability in the groundwater quality of the basin. The approach is useful to maximize data collection and contributes to better manage the allocation of resources under budget constrains.

  19. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    Science.gov (United States)

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase.

  20. Modeling of hydrographs in torrent catchments by use of improved field data and adapted precipitation/runoff models

    Science.gov (United States)

    Kohl, B.; Klebinder, K.; Kirnbauer, R.; Markart, G.

    2009-04-01

    For description of runoff formation in alpine catchments still often simple runoff formulas are used on the one hand. On the other hand many precipitation / runoff models for assessment of runoff characteristics in mesoscale and microscale catchments require detailed input data and some are using algorithms which don't describe runoff processes "process-oriented". This especially applies to lumped and to some conceptual models. Fully distributed models mostly require enormous effort for determining serious catchment description parameters. As a first step into the direction of a time and cost sparing but still process based assessment of runoff development in alpine torrent catchments a two column-procedure has been developed at the BFW in cooperation with university scientists and in cooperation with the Austrian Avalanche and Torrent Control Service and the Bavarian Environmental Agency: 1) Based on the results of about 700 simulations of torrential rain on various soil vegetation complexes and land-use forms in the Eastern Alps a code of practice for assessment of surface runoff coefficients in torrential rain has been developed. By use of three indicator groups (soil conditions, sort and condition of plant cover, way and intensity of land-use / cultivation) runoff coefficients and surface roughness coefficients can be easily attributed to runoff contributing hydrological vegetation units. The big advantage: Dominant infiltration and runoff controlling processes are integrated in the assessed runoff and surface roughness coefficients. The manual is freely available under: http://bfw.ac.at/rz/bfwcms.web?dok=4342 (in German language). 2) The coefficients derived from field studies and/or GIS analysis form input parameters for the precipitation / runoff model ZEMOKOST (The runtime Method of ZEller MOdified by KOhl and STepanek), an MS-EXCEL based calculation tool which can be used with or without GIS-environment. The approach is permanently improved by addition of

  1. Hyporheic flow pattern based on the coupling of regional and stream scales: Case of Krycklan Catchment area

    Science.gov (United States)

    Mojarrad, Morteza; Wörman, Anders; Riml, Joakim

    2016-04-01

    Water resources intense development within the past century has had an enormous impact on hydrological systems especially on rivers and groundwater resources. A river basin is a flow system involving the interaction between surface water and groundwater. This interaction occurs in terrestrial and coastal zone and even in arid and semi-arid areas, where surface water overlie on a permeable sediment. A key zone for the interaction between surface water and groundwater is the hyporheic zone, which forms by stream water that in- and exfiltrating in the permeable sediments surrounding the river corridor. Groundwater and hyporheic flows arise due to different range of topographical scales and their relative importance is investigated in this study. Krycklan is a well-monitored research catchment in which the data collection for more than 90 years has comprised hydrology, biochemistry, and aquatic ecology. The catchment is located in a boreal area of northern Sweden. The head-water streams begin in mountainous area and fall to the Baltic Sea near the city of Umea. In this paper, COMSOL Multi-physics simulation software has been used to model the subsurface flow of the whole Krycklan catchment in order to reach a comprehensive understanding of large-scale groundwater circulation and its impact of the stream hyporheic flows. The model statement is based on the 3D Laplace equation, which has been applied independently on two ranges of topographical scales to obtain a superimposed solution. Steady state simulation has been done based on the simplified assumption of constant boundary conditions of the groundwater surface and otherwise non-flow boundaries. The hydraulic head of the groundwater surface was taken as the topography, which apply as an approximation in wet climate with shallow soil layers. The results demonstrated how the ratio of the topographical amplitudes on different scales affect the size (depth) and fragmentation of the hyporheic zone. "Fragmentation" was

  2. Influence of snow pack and soil water dynamics on river flows in un-glaciarized Himalayan catchments.

    Science.gov (United States)

    Eeckman, Judith; Neppel, Luc; Chevalier, Pierre; Delclaux, François; Boone, Aaron

    2016-04-01

    In the Central Himalayas, it is generally accepted that 80 % of the annual precipitation occurs during the monsoon months (June - September). However, surveys with local populations show that surface water is available throughout the year. The main question then is to identify the origin of these surface flows. One hypothesis proposes that they are provided by glacial melt during the dry season. However, on the one hand, this historically "permanent" supply is also observed in catchments with little or no glacial contribution, and on the other hand, annual volumes cannot be totally explained by the glacial mass balances currently monitored. Therefore, a better understanding of the hydrological processes is needed for quantifying the influence of the inter-seasonal surface (snow) and sub-surface storage on surface flows outside of the monsoon season. One solution consists in the application of modelling tools. However, simulations for Himalayan catchments are limited due to a lack of knowledge regarding their hydrological behaviour. The main source of uncertainty in poorly monitored environments is the scarcity of observations, which can be used for model calibration and evaluation. In this study, physically-based modelling with the ISBA Soil-Vegetation-Atmosphere transfer scheme is applied to small catchments whose physical characteristics are well studied, therefore this approach could constitute an interesting way for understanding hydrological systems. For that purpose, two small slope catchments selected in the Dudh Koshi River basin (Eastern Nepal), which represent high and mid-mountain environments, are studied in order to evaluate the spatial variability of the studied processes. They are equipped with 6 stations for air temperature and precipitation observations. A distributed approach allows a better representation of the spatial variation of hydro-climatic processes. Moreover, the descriptions of surfaces currently available at global scales are enhanced

  3. Isotope methods as a tool to characterize nitrate origin and transport in Kocinka catchment (central Poland): preliminary results

    Science.gov (United States)

    Zurek, Anna; Wachniew, Przemyslaw; Witczak, Stanislaw; Rozanski, Kazimierz; Kania, Jaroslaw

    2014-05-01

    Kocinka catchment with 258 km2 of surface area is one of the Soils2Sea project (BONUS programme) case studies. One of the main scientific objectives of this project is to analyze how changes in land use and climate may affect the nutrient load to the Baltic Sea. Hydrogeological conditions in the Kocinka catchment are determined by Quaternary glacial till and glacifluvial sands and gravels underlain by karstic-fractured limestones which compose the Upper Jurassic Major Groundwater Basin (MGWB 326), one of four most important groundwater reservoirs in Poland. Pollution with nitrates is the most important threat to groundwater quality in this groundwater body. The concentration of nitrate in some wells, in the southern part of Kocinka catchment where outcrops of Jurassic limestones occur, exceeds the maximum permissible level of 50 mgNO3/L and constantly increases. A prerequisite for measures to reduce NO3 loads to the groundwater body is identification of sources of nitrate pollution. The working hypothesis links the high nitrate concentrations with the leaking sewage system in Czestochowa city and its surroundings but agricultural sources cannot be excluded as 66% of Kocinka catchment area is used agriculturally. A dedicated study employing environmental tracers was launched with the main aim of quantifying the pathways and dynamic of groundwater flow in the aquifer. Tritium was found throughout the system but its concentrations vary considerably. Decrease of tritium contents with depth in the aquifer was observed in one of wells. This points to active recharge and characteristic time scales of groundwater flow in order of years to several decades. To identify the origin of nitrate pollution nitrogen and oxygen isotope ratios of dissolved nitrate was analyzed in a number of wells with high nitrate concentrations. The isotopic composition of dissolved nitrates does not confirm the hypothesis on the decisive role of urban sewage in nitrate pollution. The isotope date

  4. Soil weathering rates in 21 catchments of the Canadian Shield

    Directory of Open Access Journals (Sweden)

    D. Houle

    2012-03-01

    Full Text Available Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmolc ha−1 yr−1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated (r = 0.80 and 0.64 with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51%. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas

  5. Tracer Cycles and Water Ages in Heterogeneous Catchments and Aquifers

    Science.gov (United States)

    Kirchner, J. W.; Jasechko, S.

    2015-12-01

    Estimates of catchment mean transit times are often based on seasonal cycles of stable isotope tracers in precipitation and streamflow. In many cases these transit time estimates are derived directly from sine-wave fitting to the observed seasonal isotope cycles. Broadly similar results are also obtained from time-domain convolutions or explicit tracer modeling, because here too the dominant tracer signal that these techniques seek to match is the seasonal isotopic cycle. Here I use simple benchmark tests to show that estimates of mean transit times based on seasonal tracer cycles will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. A similar bias arises in estimates of mean transit times in nonstationary catchments. Since typical real-world catchments are both spatially heterogeneous and nonstationary, this analysis poses a fundamental challenge to tracer-based estimates of mean transit times. I propose an alternative storage metric, the fraction of "young water" in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that young water fractions are virtually free of aggregation bias; that is, they can be accurately estimated from tracer cycles in highly heterogeneous mixtures of subcatchments with strongly contrasting transit time distributions. They can also be reliably estimated in strongly nonstationary catchments. Young water fractions can be estimated separately for individual flow regimes, allowing direct determination of how shifts in hydraulic regime alter the fraction of water reaching the stream by fast flowpaths. One can also estimate the chemical composition of idealized "young water" and "old water" end-members, using relationships between young water fractions and solute concentrations across

  6. Soil weathering rates in 21 catchments of the Canadian Shield

    Directory of Open Access Journals (Sweden)

    D. Houle

    2011-06-01

    Full Text Available Soil mineral weathering represents an essential source of nutrient base cation (Ca, Mg and K for forest growth in addition to provide a buffering power against precipitation acidity for soils and surface waters. Weathering rates of base cations were obtained for 21 catchments located within the temperate and the boreal forest of the Canadian Shield with the geochemical model PROFILE. Weathering rates ranged from 0.58 to 4.46 kmolc ha−1 yr−1 and their spatial variation within the studied area was mostly in agreement with spatial variations in soil mineralogy. Weathering rates of Ca and Mg were significantly correlated (r = 0.80 and 0.64 with their respective lake concentrations. Weathering rates of K and Na did not correlate with lake concentrations of K and Na. The modeled weathering rates for each catchment were also compared with estimations of net catchment exportations. The result show that modeled weathering rates of Ca were not significantly different than the net catchment exportations while modeled weathering rates of Mg were higher by 51 %. Larger differences were observed for K and Na weathering rates that were significantly different than net catchment exportations being 6.9 and 2.2 times higher than net exportations, respectively. The results for K were expected given its high reactivity with biotic compartments and suggest that most of the K produced by weathering reactions was retained within soil catchments and/or above ground biomass. This explanation does not apply to Na, however, which is a conservative element in forest ecosystems because of the insignificant needs of Na for soil microorganisms and above ground vegetations. It raises concern about the liability of the PROFILE model to provide reliable values of Na weathering rates. Overall, we concluded that the PROFILE model is powerful enough to reproduce spatial geographical gradients in weathering rates for relatively large areas

  7. Assessing water quality trends in catchments with contrasting hydrological regimes

    Science.gov (United States)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  8. Safeguarding the provision of ecosystem services in catchment systems.

    Science.gov (United States)

    Everard, Mark

    2013-04-01

    A narrow technocentric focus on a few favored ecosystem services (generally provisioning services) has led to ecosystem degradation globally, including catchment systems and their capacities to support human well-being. Increasing recognition of the multiple benefits provided by ecosystems is slowly being translated into policy and some areas of practice, although there remains a significant shortfall in the incorporation of a systemic perspective into operation management and decision-making tools. Nevertheless, a range of ecosystem-based solutions to issues as diverse as flooding and green space provision in the urban environment offers hope for improving habitat and optimization of beneficial services. The value of catchment ecosystem processes and their associated services is also being increasingly recognized and internalized by the water industry, improving water quality and quantity through catchment land management rather than at greater expense in the treatment costs of contaminated water abstracted lower in catchments. Parallel recognition of the value of working with natural processes, rather than "defending" built assets when catchment hydrology is adversely affected by unsympathetic upstream development, is being progressively incorporated into flood risk management policy. This focus on wider catchment processes also yields a range of cobenefits for fishery, wildlife, amenity, flood risk, and other interests, which may be optimized if multiple stakeholders and their diverse value systems are included in decision-making processes. Ecosystem services, particularly implemented as a central element of the ecosystem approach, provide an integrated framework for building in these different perspectives and values, many of them formerly excluded, into commercial and resource management decision-making processes, thereby making tractable the integrative aspirations of sustainable development. This can help redress deeply entrenched inherited assumptions

  9. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin

    Institute of Scientific and Technical Information of China (English)

    SONG; Xianfang; LIU; Xiangchao; XIA; Jun; YU; Jingjie; TANG; Changyuan

    2006-01-01

    The surface water and groundwater are important components of water cycle,and the interaction between surface water and groundwater is the important part in water cycle research.As the effective tracers in water cycle research,environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively.The study area is the Huaisha River basin,which is located in Huairou district,Beijing.The field surveying and sampling for spring,river and well water were finished in 2002 and 2003.The hydrogen and oxygen isotopes and water quality were measured at the laboratory.The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed.The altitude effect of oxygen isotope in springs was revealed,and then using this equation,theory foundation for deducing recharge source of spring was estimated.By applying the mass balance method,the annual mean groundwater recharge rate at the catchment was estimated.Based on the groundwater recharge analysis,combining the hydrogeological condition analysis,and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin,part of the runoff in the Huaisha River basin is recharged outside of this basin,in other words,this basin is an un-enclosed basin.On the basis of synthetically analyses,combining the compositions of hydrogen and oxygen isotopes and hydrochemistry,geomorphology,geology,and watershed systems characteristics,the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated,and the interaction between surface water and groundwater was revealed lastly.

  10. Distribution of subglacial sediments across the Wilkes Subglacial Basin, East Antarctica

    Science.gov (United States)

    Frederick, Bruce C.; Young, Duncan A.; Blankenship, Donald D.; Richter, Thomas G.; Kempf, Scott D.; Ferraccioli, Fausto; Siegert, Martin J.

    2016-04-01

    Topography, sediment distribution, and heat flux are all key boundary conditions governing the dynamics of the East Antarctic Ice Sheet (EAIS). EAIS stability is most at risk in Wilkes Land across vast expanses of marine-based catchments including the 1400 km × 600 km expanse of the Wilkes Subglacial Basin (WSB) region. Data from a recent regional aerogeophysical survey (Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)/IceBridge) are combined with two historical surveys (Wilkes basin/Transantarctic Mountains System Exploration-Ice-house Earth: Stability or DYNamism? (WISE-ISODYN) and Wilkes Land Transect (WLK)) to improve our understanding of the vast subglacial sedimentary basins impacting WSB ice flow and geomorphology across geologic time. Analyzing a combination of gravity, magnetic and ice-penetrating radar data, we present the first detailed subglacial sedimentary basin model for the WSB that defines distinct northern and southern subbasin isopachs with average sedimentary basin thicknesses of 1144 m ± 179 m and 1623 m ± 254 m, respectively. Notably, more substantial southern subbasin sedimentary deposition in the WSB interior supports a regional Wilkes Land hypothesis that basin-scale ice flow and associated glacial erosion is dictated by tectonic basement structure and the inherited geomorphology of preglacial fluvial networks. Orbital, temperate/polythermal glacial cycles emanating from adjacent alpine highlands during the early Miocene to late Oligocene likely preserved critical paleoclimatic data in subglacial sedimentary strata. Substantially thinner northern WSB subglacial sedimentary deposits are generally restricted to fault-controlled, channelized basins leading to prominent outlet glacier catchments suggesting a more dynamic EAIS during the Pliocene.

  11. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques

    Science.gov (United States)

    Chang, Tak Kwin; Talei, Amin; Alaghmand, Sina; Ooi, Melanie Po-Leen

    2017-02-01

    Input selection for data-driven rainfall-runoff models is an important task as these models find the relationship between rainfall and runoff by direct mapping of inputs to output. In this study, two different input selection methods were used: cross-correlation analysis (CCA), and a combination of mutual information and cross-correlation analyses (MICCA). Selected inputs were used to develop adaptive network-based fuzzy inference system (ANFIS) in Sungai Kayu Ara basin, Selangor, Malaysia. The study catchment has 10 rainfall stations and one discharge station located at the outlet of the catchment. A total of 24 rainfall-runoff events (10-min interval) from 1996 to 2004 were selected from which 18 events were used for training and the remaining 6 were reserved for validating (testing) the models. The results of ANFIS models then were compared against the ones obtained by conceptual model HEC-HMS. The CCA and MICCA methods selected the rainfall inputs only from 2 (stations 1 and 5) and 3 (stations 1, 3, and 5) rainfall stations, respectively. ANFIS model developed based on MICCA inputs (ANFIS-MICCA) performed slightly better than the one developed based on CCA inputs (ANFIS-CCA). ANFIS-CCA and ANFIS-MICCA were able to perform comparably to HEC-HMS model where rainfall data of all 10 stations had been used; however, in peak estimation, ANFIS-MICCA was the best model. The sensitivity analysis on HEC-HMS was conducted by recalibrating the model by using the same selected rainfall stations for ANFIS. It was concluded that HEC-HMS model performance deteriorates if the number of rainfall stations reduces. In general, ANFIS was found to be a reliable alternative for HEC-HMS in cases whereby not all rainfall stations are functioning. This study showed that the selected stations have received the highest total rain and rainfall intensity (stations 3 and 5). Moreover, the contributing rainfall stations selected by CCA and MICCA were found to be located near the outlet of

  12. During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient

    Science.gov (United States)

    McGrane, Scott J.; Hutchins, Michael G.; Miller, James D.; Bussi, Gianbattista; Kjeldsen, Thomas R.; Loewenthal, Matt

    2017-02-01

    This paper presents the hydrological and water quality response from a series of extreme storm events that passed across the UK during the winter of 2013/2014, in an experimental catchment with a strong rural-urban gradient across four nested sub-catchment areas. The Ray catchment in the upper Thames basin, UK, was extensively monitored using in-situ, high-resolution (15 min) flow and water quality instrumentation. Dissolved oxygen, ammonium, turbidity and specific conductivity are used to characterise the water quality dynamics. The impact of the Swindon sewage treatment works (SSTW) on water chemistry at the catchment outlet is considerable. Hydrological and water-quality response varies considerably during the events, with the rural catchments exhibiting a much slower hydrological response compared to urban areas. A simple hydrological model (TETIS) was developed to provide insight into water sources in nested subcatchments, highlighting the disparity of the hydrological dynamics across contrasting land-uses during events. The variation in stormwater runoff sources impacts water quality signals with urban sites contributing to dilution dynamics in ammonium, whereas the more rural site experiences a peak in ammonium during the same event. Dissolved oxygen concentrations vary on a rural-urban gradient and experience a notable sag at the Water Eaton outlet (4.4 mg/l) during the events, that would have resulted in significant ecological harm had they occurred during the summer in warmer temperatures. The water-quality legacy of these storms in the wider context of the hydrological year is somewhat negligible, with markedly poorer water quality signals being observed during the summer months of 2014. Although ammonium concentrations during the events are elevated (above the 'good' status threshold under the WFD), higher values are observed during spring and summer months. The high flows actually appear to flush contaminants out of the Ray and its subcatchments

  13. Life-size experimentation of bioengineering for sedimentation control in eroded marly gullies (Francon catchment, Draix, France)

    Science.gov (United States)

    Rey, F.; Labonne, S.; Mathys, N.; Puëch, C.; Jardin, J. L.

    2009-04-01

    On marly eroded terrains of the French Southern Alps, many researches are undertaken in order to better understand the role of vegetation and bioengineering works on erosion and sedimentation control. These researches in particular made it possible to develop tools of ecological engineering bound for the practitioners in order to conceive operations for mitigation of damage related to soil erosion. In particular they are methods of diagnosis and strategies for action with bioengineering techniques. These tools must make it possible to guide the choice of the gullies to be rehabilitated and that of the types of works of vegetalisation to be used, in particular via the establishment and the use of a gully typology. Before passing to phases of real use of these tools through expertise, as this is today considered on the scale of the large catchment area of the Durance in France (4000 km²), it appeared convenient to carry out a life-size test of application of these tools. This test was carried out on the marly catchment of Francon (73 ha), which belongs to the experimental complex of Draix (04), labellized Observatoire of Research in Environment (ORE) and of which the objectives are to improve knowledge on the formation of floods and bedload transport in small mountainous marly catchments. On this basin, 30 gullies, representing a total surface area of approximately 20 ha, were thus identified like "ecologically suitable for rehabilitation", i.e. on which it appeared possible and convenient to install bioengineering works. This test thus made it possible to check the relevance of the tools proposed to apply an action with bioengineering. An ecological operation of rehabilitation of this basin, carried out jointly with the French ‘Office National des Forêts (ONF)', was then carried out in April 2008 in accordance with the test results. It consisted of the construction of 672 bioengineering works, namely of "brush layers and brush mats of cuttings on deadwood

  14. A decade plus of snow distribution observations in a mountain catchment: assessing variability, self-similarity, and the representativeness of an index site

    Science.gov (United States)

    Winstral, A. H.; Marks, D. G.

    2012-12-01

    This study presents an analysis of eleven years of manually sampled snow depth and SWE data at the drift-dominated Reynolds Mountain East catchment (0.36 km^2) in southwestern Idaho, U.S.A. The dataset includes eleven mid-winter surveys and ten surveys that targeted peak accumulation in the early spring. Depths were sampled on the same 30-meter grid covering the entire catchment in each survey. Densities were sampled at a coarser resolution using a depth-stratified random sampling scheme. In 19 of the 21 surveys, snow density increased with increasing depth until an upper limit was attained in the drifts. The coefficient of variation (CV) for mid-winter snow depths varied from 0.46 to 0.75 and was significantly related to seasonal wind speeds (p = 0.02). Energy inputs, correlated inversely to accumulation rates in this catchment, caused variability to increase as melt increased through the season. The CV for all three surveys that took place after peak accumulation exceeded 1.0. Inter-seasonal distributions were strongly correlated - correlation coefficients ranged from 0.70 to 0.97 with a mean of 0.84. An index site with similar site characteristics to NRCS Snotel sites gave reasonable approximations of average catchment SWE in drier years, however as snowfall increased this site increasingly over-estimated basin-wide SWE. Though others have found snow distributions to be reasonably approximated by two-parameter lognormal distributions, Kolmogorov-Smirnov goodness of fit tests rejected this hypothesis (p < 0.01) in 20 of the 21 observed distributions.

  15. Presence-only approach to assess landslide triggering-thickness susceptibility: a test for the Mili catchment (north-eastern Sicily, Italy)

    KAUST Repository

    Lombardo, L.

    2016-06-29

    This study evaluates the performances of the presence-only approach, Maximum Entropy, in assessing landslide triggering-thickness susceptibility within the Mili catchment (Sicily, Italy). This catchment underwent several meteorological stresses, resulting in hundreds of shallow rapid mass movements between 2007 and 2011. In particular, the area has become known for two disasters, which occurred in 2009 and 2010; the first weather system did not pass directly over the catchment; however, peak rainfall was registered over the basin during the second meteorological event. Field data were collected to associate the depth from the slope surface that material was mobilised at the triggering zone to each mass movement within the catchment. This information has been used to model the landslide susceptibility for two classes of processes, divided into shallow failures for maximum depths of 1 m and deep ones in case of values equal or greater than 1 m. Topographic attributes from a 2-m DEM were used as predictors, together with medium resolution vegetation indexes derived from ASTER scenes and geological, land use and tectonic maps. The presence-only approach discriminated between the two depth classes at the landslide trigger zone, producing excellent prediction skills associated with relatively low variances across a set of 50 randomly generated replicates. The role of each predictor was assessed to ascertain the significance to the final model output. This work uses simple field measurements to produce triggering-thickness susceptibility, which is a novel approach and may perform better as a proxy for landslide hazard assessments with respect to more common susceptibility practises. © 2016, Springer Science+Business Media Dordrecht.

  16. Characteristic of water level changes in river-bed during the 2012 drought in context of ground water levels in a small catchment

    Science.gov (United States)

    Wasilewicz, Michał; Kaznowska, Ewa; Hejduk, Leszek

    2014-05-01

    The objective of this paper is to characterize the water level changes in river bed during the 2012 drought, in the context of ground water levels in the catchment. During the growing season , and long- lasting lack of precipitation causes atmospheric drought. Prolonged lack of precipitation causes depletion of water resources in the saturated zone . Groundwater recharge of rivers decreases , and hence streamflow droughts (summer droughts) occur, which is identified as hydrological droughts. In the phase of hydrological drought a much stronger relationship between surface and ground waters is observed. The study area is the Zagożdżonka river. The Zagożdzonka catchment is situated in the strip of the Central Polish Lowlands, in the region where droughts are the most frequent. The basin is the research area of the Department of Hydraulic Engineering of WUoLS-SGGW in Warsaw. It is one of the few catchments in Poland, with long-term records of rainfall and runoff occurrences. Hydrometeorological measurements are carried out from July 1962. The catchment area is mainly covered by one Quaternary aquifer . Quaternary layer is composed mostly of Pleistocene sands and gravels, with thickness from 4 to 40 m. Aquifer is at a depth of 1 to 12 m below ground level and is unconfined and fed by direct infiltration of precipitation. The Zagożdżonka river is the main drainage in the local hydrologic cycle. There is a strong relationship between surface waters and occurring in the Quaternary sediments. In the hydrological year 2012 hydrological and atmospheric drought occurred. The duration and deficit of streamflow drought ( defined by with the Q90 % truncation level) in 2012 was three time greater than the average value from the multi-annual period, which influenced the groundwater level fluctuations. Acknowledgment The paper has been prepared with financial support by a grant from National Science Centre

  17. Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain).

    Science.gov (United States)

    Candela, Lucila; Tamoh, Karim; Olivares, Gonzalo; Gomez, Manuel

    2012-12-01

    Gaining knowledge on potential climate change impacts on water resources is a complex process which depends on numerical models capable of describing these processes in quantitative terms. Under limited data or ungauged basin conditions, which constrain the modelling approach, a physically based coherent methodological approach is required. The traditional approach to assess flow regime and groundwater recharge impacts, based on coupling general atmosphere-ocean circulation models (GCM) and hydrologic models, has been investigated in the Siurana ungauged catchment (NE Spain). The future A2 (medium-high) and B1 (medium-low) greenhouse gas scenarios and time slices 2013-2037 (2025) and 2038-2062 (2050), developed by the Intergovernmental Panel on Climate Change (IPCC, 2001), have been selected. For scenario simulations, coupled GCM ECHAM5 scenarios, stochastically downscaled outputs and surface-subsurface modelling to simulate changes in water resources were applied to the catchment. Flow regime analysis was assessed by HEC-HMS, a physically based hydrologic model to assess rainfall-runoff in a catchment, while recharge was estimated with VisualBALAN, a distributed model for natural recharge estimation. Simulations show that the projected climate change at the catchment will affect the entire hydrological system with a maximum of 56% reduction of water resources. While subtle changes are observed for the 2025 time slice, the temperature and precipitation forecast for 2050 shows a maximum increase of 2.2 °C and a decreased precipitation volume of 11.3% in relation to historical values. Regarding historical values, runoff output shows a maximum 20% decrease, and 18% decrease of natural recharge with a certain delay in relation to runoff and rainfall data. According to the results, the most important parameters conditioning future water resources are changes in climatic parameters, but they are highly dependent on soil moisture conditions.

  18. The prediction and management of aquatic nitrogen pollution across Europe: an introduction to the Integrated Nitrogen in European Catchments project (INCA

    Directory of Open Access Journals (Sweden)

    A. J. Wade

    2002-01-01

    Full Text Available Excess nitrogen in soils, fresh water, estuarine and marine systems contributes to nutrient enrichment in key ecosystems throughout Europe, often leading to detrimental environmental impacts, such as soil acidification or the eutrophication of water bodies. The Integrated Nitrogenmodel for European Catchments (INCA project aims to develop a generic version of the Integrated Nitrogen in Catchments (INCA model to simulate the retention and transport of nitrogen within river systems, thereby providing a tool to aid the understanding of nitrogen dynamics and for river-basin management/policy-making. To facilitate the development of the model, 10 partners have tested the INCA model with data collected in study sites located in eight European countries as part of the INCA project. This paper summarises the key nitrogen issues within Europe, describes the main aims and methodology of the INCA project, and sets the project in the context of the current major research initiatives at a European level. Keywords: Europe, European Union, nitrogen, nitrate, ammonium, river basin management, modelling, water chemistry, acidification, eutrophication, Water Framework Directive, INCA.

  19. THE INFLUENCE OF HYDROLOGICAL DATA QUALITY ON ESTIMATING THE RUNOFF FROM CITY CATCHMENT ON THE EXAMPLE OF STRZYŻA STEAM IN GDAŃSK

    Directory of Open Access Journals (Sweden)

    Michał Szydłowski

    2015-10-01

    Full Text Available Channel flow control and prediction of waterbodies reaction on heavy rainfalls or rapid snowmelt become critical when forecasting the flood risk in urban catchments. A very good example of both problematic and carrying a real threat to urban infrastructure is the Strzyża Creek in Gdańsk. In years 2011–2013 undertook the implementation of storm water monitoring system in the Strzyża Creek basin in Gdańsk. Since that time, it has become possible to collect valuable hydrological data on rainfall and flows in the strongly diversified urbanized districts of the city. Currently, the work is underway to extend the Strzyża Creek monitoring system. The ongoing research project is being realized again in years 2015–2017. The main aims of a project are: development of the methods of flood control, expansion of the existing rainfall-runoff and storage monitoring system in the basin and integrated water quantity and quality analysis, since the Strzyża Creek is one of the main stormwater collectors in Gdańsk. The article presents an example of using continuous data collected by the hydrological monitoring system to determine the annual runoff coefficient. The results were compared with the same parameter estimated on the basis of monthly instantaneous flow measurements and rainfall observations from the precipitation gauge localized in the vicinity of the analyzed catchment.

  20. Modelling the emerging pollutant diclofenac with the GREAT-ER model: application to the Llobregat River Basin.

    Science.gov (United States)

    Aldekoa, Joana; Medici, Chiara; Osorio, Victoria; Pérez, Sandra; Marcé, Rafael; Barceló, Damià; Francés, Félix

    2013-12-15

    The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results.

  1. Nitrogen and salt loads in the irrigation return flows of the Ebro River Basin (Spain)

    Science.gov (United States)

    Isidoro, Daniel; Balcells, Maria; Clavería, Ignacio; Dechmi, Farida; Quílez, Dolores; Aragüés, Ramón

    2013-04-01

    The conservation of the quality of surface waters demanded by the European Water Framework Directive requires, among others, an assessment of the irrigation-induced pollution. The contribution of the irrigation return flows (IRF) to the pollution of the receiving water bodies is given by its pollutant load, since this load determines the quality status or pollutant concentration in these water bodies. The aim of this work was to quantify the annual nitrogen and salt loads in the IRF of four irrigated catchments within the Ebro River Basin: Violada (2006-10), Alcanadre (2008-10), Valcuerna (2010), and Clamor Amarga (2010). The daily flow (Q), salt (EC) and nitrate concentration (NO3) were measured in the drainage outlets of each basin. The net irrigation-induced salt and nitrogen loads were obtained from these measurements after discounting the salt and nitrogen inputs from outside the catchments and the non-irrigated areas. The N-fertilizer applications were obtained from farmer surveys and animal farming statistical sources. Irrigation water salinity was very low in all catchments (EC farm residues. The highest NO3 concentrations (mean of 113 mg/L) and annual N loads (mean of 38 kg/ha) were found in Valcuerna, the most intense corn sprinkler-irrigated catchment. The lowest NO3 concentrations (21 mg/L; 5 times lower than Valcuerna) were measured in the Alcanadre flood-irrigated catchment. In contrast, Alcanadre N loads (21 kg/ha) were only about two times lower than in Valcuerna, due to the higher IRF volumes in Alcanadre (353 mm versus 132 mm in Valcuerna). Irrigation modernization in Violada decreased N loads from 20 to 5 kg N/ha (four times lower) due to the sharp reduction of IRF while maintaining NO3 concentration around 20 mg/L. The only significant contribution of ammonium (17% to the total N load of 13 hg/ha) was found in Clamor, the catchment with highest agro-industrial development. Overall, IRF salt and nitrate concentrations tended to increase and salt

  2. Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: Implications for catchment weathering, provenance, and sedimentary processes

    Science.gov (United States)

    Sahoo, Prafulla Kumar; Felix Guimarães, José Tasso; Martins Souza-Filho, Pedro Walfir; Sousa da Silva, Marcio; Maurity, Clovis Wagner; Powell, Mike A.; Rodrigues, Tarcísio Magevski; Fonseca da Silva, Delmo; Mardegan, Sílvia Fernanda; Furtini Neto, Antonio Eduardo; Dall'Agnol, Roberto

    2016-12-01

    A multi-proxy geochemical study of surficial sediments of an upland lake (Amendoim Lake), located in the Serra dos Carajás region, Brazil, was carried out to understand catchment weathering and provenance of sediments in the basin, as well as sedimentary processes. The carbon and nitrogen isotopic compositions of organic matter in the sediment were quite homogeneous, and suggest that the organic sources for this lake are mainly composed of palms and submerged macrophytes. The R-mode factor analysis indicates that most of the trace elements, including rare earth elements (REEs), are clustered with Al (Group 1), Si is grouped with Zr and Hf (Group 4), total organic carbon (TOC) with TS and Hg (Group 2), and Fe with Mn and As (Group 3). The elements of the Group 1 show strong positive correlations with Al, suggesting that these elements are hosted in detrital minerals during laterization in the catchment basin and not significantly affected by diagenesis. The high CIA values (96-99) of sediments together with their position in A-CN-K and log (Fe2O3/K2O) vs log (SiO2/Al2O3) plots indicate intense chemical weathering in source area. However, similar geochemical signatures between lake sediments and catchment lateritic crust indicates that mechanical erosion was the dominant sediment formation process. REE patterns normalized to chondrite along with geochemical indices (Al/K, Al/Ti, La/Th, La/Al, Ti/Zr, Zr/Hf, Th/Sc, Co/Th, Ba/Sr, and Eu/Eu*) also indicate that the sediments are mainly derived from laterite crust. This study provides reliable background information to reconstruct weathering processes and lake evolution in the Serra dos Carajás area.

  3. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.W.; Uhlenbrook, S.

    2013-01-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches

  4. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.W.

    2014-01-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center – the Hydrologic Modell

  5. Internally Drained Supraglacial River Catchments on the Southwest Greenland Ice Sheet

    Science.gov (United States)

    Yang, K.; Smith, L. C.; Chu, V. W.; Pitcher, L. H.; Gleason, C. J.

    2015-12-01

    Internally drained catchments are the hydrologic units on the Greenland ice sheet (GrIS) surface that collect and drain meltwater into moulins or supraglacial lakes without out flows. Understanding the spatial pattern of these internal catchments is critical, which can provide key information about how supraglacial meltwater is transported and released on the ice surface. This study proposed an automatic approach to detect supraglacial hydrologic features (rivers, lakes, moulins, and internal catchments) located at southwest GrIS from Landsat-8 OLI panchromatic imagery. A total of 800 internal catchments are delineated and the average catchment size (river network length) is found to increase with elevations. In addition, moulins are the prime way to drain internal catchments and the average moulin densities decrease with elevations. Adaptive depression area thresholds are calculated to achieve optimal match between DEM-modeled and image-detected internal catchment patterns. The pattern of these image-detected internal catchments also indicates that: 1) not all the DEM-modeled topographic depressions act as meltwater sinks; 2) moulin distribution greatly impacts the internal catchment patterns; and 3) topographic depressions can be connected downstream without being fully filled, changing the fragmentary of the internal catchments.

  6. Paleohydrological change in the Turkana Basin at the termination of the African Humid Period

    Science.gov (United States)

    Vonhof, Hubert; van der Lubbe, Jeroen; Joordens, Josephine; Feibel, Craig; Junginger, Annett; Garcin, Yannick; Krause-Nehring, Jacqueline; Beck, Catherine; Johnson, Thomas

    2016-04-01

    One of the most significant features of Holocene climate change in East Africa is the termination of the African Humid Period (AHP), which occurred at ~ 5 ka. Many lakes in the East African Rift System (EARS) were strongly affected by these climatic changes, generally exhibiting much higher lake levels before the termination of the AHP than after. One of the larger lakes in the EARS, is Lake Turkana which was filled to overflow level for much of the early Holocene and experienced a dramatic ~70 meter lake level drop at ~5 ka, turning it into the terminal lake system as it still is today. The precise hydrological response of Lake Turkana to climate change at the termination of the AHP is potentially complex, because it is situated at the cross roads of two large atmospheric convection systems; the Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary (CAB). Shifting of these atmospheric systems at the end of the AHP dramatically re-organised spatial rainfall patterns over the Turkana Basin catchment, causing a shift in runoff contributions from the different sub-catchments of the Turkana Basin. Here, we present a Holocene Turkana lake water Sr isotope reconstruction based on the analysis of well-dated lacustrine ostracods and shells, which reveals consistently high Sr isotope values for the early Holocene, followed by a significant, but gradual drop in Sr isotope ratios across the AHP termination. Since lacustrine Sr isotope ratios are a runoff provenance indicator in this setting, such dramatic lacustrine Sr isotope change points towards a significant (climate-driven) reorganisation of runoff contributions from different sub-catchments to Lake Turkana. In more detail, the Sr isotope reconstruction strongly suggests that changes in runoff patterns at the termination of the AHP in the Turkana Basin were gradual. The higher Sr isotope ratios during the Early Holocene indicate significant runoff contribution from a more radiogenic sub-catchment at that time

  7. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.

    Science.gov (United States)

    Lefrancq, M; Imfeld, G; Payraudeau, S; Millet, M

    2013-01-01

    Surface runoff and spray drift represent a primary mode of pesticide mobilisation from agricultural land to ecosystem. Though pesticide drift has mainly been studied at small scale (inverse weighting distance and ordinary kriging) and ranged between 53 g and 61 g (5.8 and 6.6% of the total mass applied). The amount of KM drifted on roads was 50 times larger than that in runoff water collected at the outlet of the catchment. Although KM application was carried out under regular operational and climatic conditions, its deposition on non-target surfaces may be significant and lead to pesticide runoff. These results can be anticipated as a starting point for assessing pesticide deposition during spray application and corresponding pesticide runoff in agricultural catchments.

  8. A conceptual glacio-hydrological model for high mountainous catchments

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2005-01-01

    Full Text Available In high mountainous catchments, the spatial precipitation and therefore the overall water balance is generally difficult to estimate. The present paper describes the structure and calibration of a semi-lumped conceptual glacio-hydrological model for the joint simulation of daily discharge and annual glacier mass balance that represents a better integrator of the water balance. The model has been developed for climate change impact studies and has therefore a parsimonious structure; it requires three input times series – precipitation, temperature and potential evapotranspiration – and has 7 parameters to calibrate. A multi-signal approach considering daily discharge and – if available – annual glacier mass balance has been developed for the calibration of these parameters. The model has been calibrated for three different catchments in the Swiss Alps having glaciation rates between 37% and 52%. It simulates well the observed daily discharge, the hydrological regime and some basic glaciological features, such as the annual mass balance.

  9. Predicting the ungauged basin: model validation and realism assessment

    Science.gov (United States)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2016-04-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) [1] led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this study [2] we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. We do not present a generic approach that can be transferred to other ungauged catchments, but we aim to show how clever model design and alternative data acquisition can result in a valuable hydrological model for ungauged catchments. [1] Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48, 857-880. doi: 10.1623/hysj.48.6.857.51421 [2] van Emmerik, T., Mulder, G., Eilander, D., Piet, M. and Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment

  10. Restoring Landform Geodiversity in Modified Rivers and Catchments

    Science.gov (United States)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    Extensive human modification and exploitation has created degraded and simplified systems lacking many of the landforms which would characterise healthy, geodiverse rivers. As awareness of geodiversity grows we must look to ways not only to conserve geodiversity but to also restore or create landforms which contribute to geodiverse environments. River restoration, with lessons learned over the last 30 years and across multiple continents, has much to offer as an exemplar of how to understand, restore or create geodiversity. Although not mentioned explicitly, there is an implicit emphasis in the Water Framework Directive on the importance of landforms and geodiversity, with landform units and assemblages at the reach scale assumed to provide the physical template for a healthy aquatic ecosystem. The focus on hydromorphology has increased the importance of geomorphology within river restoration programmes. The dominant paradigm is to restore landforms in order to increase habitat heterogeneity and improve biodiversity within rivers. However, the process of landform restoration is also a goal in its own right in the context of geodiversity, and extensive compilations of restoration experiences allow an inventory and pattern of landform (re-) creation to be assembled, and an assessment of landform function as well as landform presence/absence to be made. Accordingly, this paper outlines three principal research questions: Which landforms are commonly reinstated in river restoration activities? How do these landforms function compared to natural equivalents and thus contribute to 'functional' geodiversity as compared to the 'aesthetic' geodiversity? How does landform diversity scale from reach to catchment and contribute to larger-scale geodiversity? Data from the UK National River Restoration Inventory and the RHS are combined to assess the frequency and spatial distribution of commonly created landforms in relation to catchment type and more local context. Analysis is

  11. Hydrological response of a small catchment burned by experimental fire

    Directory of Open Access Journals (Sweden)

    C. R. Stoof

    2011-04-01

    Full Text Available Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire are scarce, and nested approaches are rarely used. Taking a unique approach, we performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in shrub-covered paired catchments pre- and post-fire. Post-fire runoff coefficients were higher than pre-fire, and fire changed the rainfall-streamflow relationship – although the increase in streamflow was only significant at the subcatchment-scale. Fire also increased the response of topsoil moisture to rainfall, and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire, namely: (1 increased effective rainfall and decreased transpiration – increasing the amount of water available for (subsurface runoff, (2 more rapid development of soil water repellency and decreased surface water storage – increasing overland flow risk, (3 more rapid breakdown of post-fire soil water repellency – increasing infiltration during extended rain events. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

  12. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  13. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    Science.gov (United States)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  14. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    Science.gov (United States)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    Worldwide studies modelling the hydrological response to global changes have proven the Mediterranean area as one of the most vulnerable region to water crisis. It is characterised by limited and unequally distributed water resources, as well as by important development of its human activities. Since the late 1950s, water demand in the Mediterranean basin has doubled due to a significant expansion of irrigated land and urban areas, and has maintained on a constant upward curve. The Ebro catchment, third largest Mediterranean basin, is very representative of this context. Since the late 1970s, a negative trend in mean rainfall has been observed as well as an increase in mean temperature. Meanwhile, the Ebro River discharge has decreased by about 40%. However, climate alone cannot explain this downward trend. Another factor is the increase in water consumption for agricultural and domestic uses. Indeed, the Ebro catchment is a key element in the Spanish agricultural production with respectively 30% and 60% of the meat and fruit production of the country. Moreover, population has increased by 20% over the catchment since 1970 and the number of inhabitant doubles each summer due to tourism attraction. Finally, more than 250 storage dams have been built over the Ebro River for hydropower production and irrigation water supply purposes, hence regulating river discharge. In order to better understand the respective influence of climatic and anthropogenic pressures on the Ebro hydrological regime, an integrated water resources modelling framework was developed. This model is driven by water supplies, generated by a conceptual rainfall-runoff model and by a storage dam module that accounts for water demands and environmental flow requirements. Water demands were evaluated for the most water-demanding sector, i.e. irrigated agriculture (5 670 Hm3/year), and the domestic sector (252 Hm3/year), often defined as being of prior importance for water supply. A water allocation

  15. Forecasting the impact of global changes on the water resources of a mountainous catchment in the Chilean Andes

    Science.gov (United States)

    Ruelland, D.; Campéon, C.; Dezetter, A.; Jourde, H.

    2012-04-01

    This study aims to simulate the complex interrelationships between climate forcing, human pressure and dynamics of groundwater and surface water of the upper Elqui catchment (5 660 km2) in the Chilean Andes. The water resources of this mountainous, semi-arid catchment has been undergoing a growing pressure because of high climate variability and of the economic mutations of various sectors (agriculture, tourism), which have impacted water availability of the area. Due to the agriculture-based development in the region, water scarcity is thus a matter of great concern for this basin. Hydrological simulations were performed with a conceptual model that takes into account a shallow reservoir supplied by precipitation and feeding evapotranspiration, surface/sub-surface runoff and infiltration, and (ii) a deep reservoir fed by infiltration and generating the baseflow. A third reservoir, in which fluxes are controlled by temperature, has been introduced to account for the snowmelt regime of the catchment. A 30-year period (1979-2008) was chosen to capture long-term hydro-climatic variability due to alternating ENSO and LNSO events. Then water uses (dam functioning, agricultural and domestic withdrawals) were integrated into the model. The model was calibrated and validated with streamflow data on the basis of a multi-objective function that aggregates a variety of goodness-of-fit criteria. Prospective climatic and anthropogenic scenarios were finally elaborated and forced into the model in order to propose midterm (2050 horizon) simulations. The model correctly reproduces the observed discharge at the basin outlet. Depending on the modelling complexity, NSE coefficients are about 0.82-0.90 over the calibration period (1979-1990) and 0.78-0.84 over the validation period (1991-2008). The volume error between observation and simulation is lower than 15% over the whole period studied. The dynamics of both the water level in the deep conceptual reservoir and the water table

  16. Neotectonic formation of drainage patterns and their palaeohydrological implications for the Okwa River catchment, Botswana

    Science.gov (United States)

    Hartmann, Kai; Schmidt, Mareike; Shemang, Elisha; Zhang, Shuping; Frank, Riedel

    2014-05-01

    Large inter- and intramontane endorheic basins provide long term archives of environmental change, often integrating regional to continental climate driven process dynamics of huge drainage systems. On one hand the large-scale integration can be regarded as an advantage by averaging small-scale variations of either local hydrological peculiarities or random triggered drainage behaviour (e.g. internal thresholds, tectonics, etc.) and thus just recording atmospheric circulation pattern up to hemispherical scales with millennial resolution. Otherwise, with increasing basin size the process dynamic and their response system along one or more sediment cascades often become a complexity resulting in crucial problems of sedimentological archive interpretations by e.g. signal interference, equifinality or even multiple reworking. Therefore, studies of geomorphological or hydrological response processes and ecological adaption can only be undertaken on sub-catchment scale considering process dynamics along pathways. For southern-hemispheric palaeoclimate reconstruction of land-ocean linkages, Makgadikgadi Basin - as the largest (c. 37,000 km2) and deepest depression in the middle Kalahari - provides a fluvio-lacustrine archive in high-continental position since at least 300 kyr BP. Recent studies suggest a mega-lake high-stand within the basin for the Last Glacial Maximum (LGM) For the hydrological persistence of the lake for about 6 kyrs, the since Heinrich Event 1 (17-16 ka) inactive Okwa River seems to play a key role indicating a northward-shift of the winter rainfall zone. However, beside some dating of exposed shell bearing sediments at the river mouth, a thorough investigation of the c. 129,000 km2 drainage system is missing. Our presentation aims to point out the linkages between neotectonic activity and sediment transport. The combination of adaptive DEM-filter and multispectral remote sensing data reveals obvious traps (of neotectonic origin) of small temporary

  17. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    Science.gov (United States)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-01-18

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  18. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  19. Catchment-scale herbicides transport: Theory and application

    Science.gov (United States)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  20. Sediment sources in the Upper Severn catchment: a fingerprinting approach

    Directory of Open Access Journals (Sweden)

    A. L. Collins

    1997-01-01

    Full Text Available Suspended sediment sources in the Upper Severn catchment are quantified using a composite fingerprinting technique combining statistically-verified signatures with a multivariate mixing model. Composite fingerprints are developed from a suite of diagnostic properties comprising trace metal (Fe, Mn, AI, heavy metal (Cu, Zn, Pb, Cr, Co, Ni, base cation (Na, Mg, Ca, K, organic (C, N, radiometric (137Cs, 210Pb, and other (total P determinands. A numerical mixing model, to compare the fingerprints of contemporary catchment source materials with those of fluvial suspended sediment in transit and those of recent overbank floodplain deposits, provides a means of quantifying present and past sediment sources respectively. Sources are classified in terms of eroding surface soils under different land uses and channel banks. Eroding surface soils are the most important source of the contemporary suspended sediment loads sampled at the Institute of Hydrology flow gauging stations at Plynlimon and at Abermule. The erosion of forest soils, associated with the autumn and winter commercial activities of the Forestry Commission, is particularly evident. Reconstruction of sediment provenance over the recent past using a sediment core from the active river floodpiain at Abermule, in conjunction with a 137Cs chronology, demonstrates the significance of recent phases of afforestation and deforestation for accelerated catchment soil erosion.

  1. Preliminary study on assessment of nutrient transport in the Taihu Basin based on SWAT modeling

    Institute of Scientific and Technical Information of China (English)

    LAI; Geying; YU; Ge; GUI; Feng

    2006-01-01

    With the Taihu Basin as a study area, using the spatially distributed and mechanism-based SWAT model, preliminary simulations of nutrient transport in the Taihu Basin during the period of 1995~2002 has been carried out. The topography, soil, meteorology and land use with industrial point pollution discharge, the loss of agricultural fertilizers, urban sewerage, and livestock drainages were all considered in the boundary conditions of the simulations. The model was calibrated and validated against water quality monitoring data from 2001 to 2002. The results show that the annual total productions of nitrogen (TN) and phosphorus (TP) into Lake Taihu are 40000t and 2000t respectively. Nutrient from the Huxi Region is a major resource for Lake Taihu. The non-point source (surface source) pollution is the main form of catchment sources of nutrients into Lake Taihu,occupied TN 53% and TP 56% respectively. TN and TP nutrients from industrial point pollution discharge are 30% and 16%, and sewerage in both forms of point source and non-point source are TN 31% and TP 47%. Both the loss of agricultural fertilizers and livestock drainages from the catchment should be paid more attention as an important nutrient source. The results also show that SWAT is an effective model for the simulation of temporally and spatially nutrient changes and for the assessment of the trends in a catchment scale.

  2. Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan

    Directory of Open Access Journals (Sweden)

    A. A. Tahir

    2011-03-01

    Full Text Available A major proportion of f