WorldWideScience

Sample records for catastrophic photometric redshift

  1. Uncertain Photometric Redshifts

    CERN Document Server

    Polsterer, Kai Lars; Gieseke, Fabian

    2016-01-01

    Photometric redshifts play an important role as a measure of distance for various cosmological topics. Spectroscopic redshifts are only available for a very limited number of objects but can be used for creating statistical models. A broad variety of photometric catalogues provide uncertain low resolution spectral information for galaxies and quasars that can be used to infer a redshift. Many different techniques have been developed to produce those redshift estimates with increasing precision. Instead of providing a point estimate only, astronomers start to generate probabilistic density functions (PDFs) which should provide a characterisation of the uncertainties of the estimation. In this work we present two simple approaches on how to generate those PDFs. We use the example of generating the photometric redshift PDFs of quasars from SDSS(DR7) to validate our approaches and to compare them with point estimates. We do not aim for presenting a new best performing method, but we choose an intuitive approach t...

  2. The impact of photometric redshift errors on weak lensing tomography: a clipping method of the catastrophic errors

    CERN Document Server

    Nishizawa, Atsushi J; Hamana, Takashi; Furusawa, Hisanori

    2010-01-01

    We use the mock catalog of galaxies, constructed based on the COSMOS galaxy catalog including information on photometric redshifts (photo-z) and SED types of galaxies, in order to study how to define a galaxy subsample suitable for weak lensing tomography feasible with optical (and NIR) multi-band data. Since most of useful cosmological information arises from the sample variance limited regime for planned lensing surveys, a suitable subsample can be obtained by discarding a large fraction of galaxies that have less reliable photo-z estimations, mostly photo-z outliers. We develop a method to efficiently identify photo-z outliers by monitoring the width of posterior likelihood unction of redshift estimation for each galaxies. By using the Fisher information matrix formalism, we propagate photo-z errors into biases in cosmological parameters, especially dark energy equation of state parameter w. We found that, by discarding most of ill-defined photo-z galaxies, the bias in w may be reduced to the level compara...

  3. Photometric Redshifts of Submillimeter Galaxies

    CERN Document Server

    Chakrabarti, Sukanya; McKee, Christopher F; Lutz, Dieter; Berta, Stefano; Popesso, Paola; Pozzi, Francesca

    2012-01-01

    We use the photometric redshift method of Chakrabarti & McKee (2008) to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) $\\it{Herschel}$ data obtained as part of the PACS Evolutionary Probe (PEP) program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts ($ 4 \\ga z \\ga 0.3$) and luminosities, finding an average accuracy in $(1+z_{\\rm phot})/(1+z_{\\rm spec})$ of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass ($L/M$) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution (SED), rather than dust temperatures. Once the redshift is derived, we can determine physical properties of infrared bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to c...

  4. Overconfidence in Photometric Redshift Estimation

    CERN Document Server

    Wittman, David; Tobin, Ryan

    2016-01-01

    We describe a new test of photometric redshift performance given a spectroscopic redshift sample. This test complements the traditional comparison of redshift {\\it differences} by testing whether the probability density functions $p(z)$ have the correct {\\it width}. We test two photometric redshift codes, BPZ and EAZY, on each of two data sets and find that BPZ is consistently overconfident (the $p(z)$ are too narrow) while EAZY produces approximately the correct level of confidence. We show that this is because EAZY models the uncertainty in its spectral energy distribution templates, and that post-hoc smoothing of the BPZ $p(z)$ provides a reasonable substitute for detailed modeling of template uncertainties. Either remedy still leaves a small surplus of galaxies with spectroscopic redshift very far from the peaks. Thus, better modeling of low-probability tails will be needed for high-precision work such as dark energy constraints with the Large Synoptic Survey Telescope and other large surveys.

  5. Neural Networks and Photometric Redshifts

    OpenAIRE

    Tagliaferri, Roberto; Longo, Giuseppe; Andreon, Stefano; Capozziello, Salvatore; Donalek, Ciro; Giordano, Gerardo

    2002-01-01

    We present a neural network based approach to the determination of photometric redshift. The method was tested on the Sloan Digital Sky Survey Early Data Release (SDSS-EDR) reaching an accuracy comparable and, in some cases, better than SED template fitting techniques. Different neural networks architecture have been tested and the combination of a Multi Layer Perceptron with 1 hidden layer (22 neurons) operated in a Bayesian framework, with a Self Organizing Map used to estimate the accuracy...

  6. Neural Networks and Photometric Redshifts

    CERN Document Server

    Tagliaferri, R; Andreon, S; Capozziello, S; Donalek, C; Giordano, G; Tagliaferri, Roberto; Longo, Giuseppe; Andreon, Stefano; Capozziello, Salvatore; Donalek, Ciro; Giordano, Gerardo

    2002-01-01

    We present a neural network based approach to the determination of photometric redshift. The method was tested on the Sloan Digital Sky Survey Early Data Release (SDSS-EDR) reaching an accuracy comparable and, in some cases, better than SED template fitting techniques. Different neural networks architecture have been tested and the combination of a Multi Layer Perceptron with 1 hidden layer (22 neurons) operated in a Bayesian framework, with a Self Organizing Map used to estimate the accuracy of the results, turned out to be the most effective. In the best experiment, the implemented network reached an accuracy of 0.020 (interquartile error) in the range 0

  7. CuBANz: Photometric redshift estimator

    Science.gov (United States)

    Samui, Saumyadip; Pal, Shanoli Samui

    2016-09-01

    CuBANz is a photometric redshift estimator code for high redshift galaxies that uses the back propagation neural network along with clustering of the training set, making it very efficient. The training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u-g, g-r etc.) rather than the apparent magnitudes at various photometric bands, as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. The clustering method enables accurate determination of the redshifts. CuBANz considers uncertainty in the photometric measurements as well as uncertainty in the neural network training. The code is written in C.

  8. A Model-Independent Photometric Redshift Estimator

    CERN Document Server

    Wang, Y; Turner, E L; Wang, Yun; Bahcall, Neta; Turner, Edwin L.

    1999-01-01

    We derive a simple empirical photometric redshift estimator using a training set of galaxies with multiband photometry and measured redshifts in the Hubble Deep Field (HDF). This estimator is model-independent; it does not use spectral templates. The dispersion between the estimated redshifts and the spectroscopically measured ones is small; the dispersions range from 0.14$ to 0.25 for $z\\ga 2$ galaxies. The predictions provided by our empirical redshift estimator agree well with recently measured galaxy redshifts. We illustrate how our empirical redshift estimator can be modified to include flat spectrum galaxies with $1.4\\la z \\la 2$.

  9. Novel Methods for Predicting Photometric Redshifts

    Data.gov (United States)

    National Aeronautics and Space Administration — We calculate photometric redshifts from the Sloan Digital Sky Survey Main Galaxy Sample, The Galaxy Evolution Explorer All Sky Survey, and The Two Micron All Sky...

  10. Photometric Redshifts in the IRAC Shallow Survey

    Energy Technology Data Exchange (ETDEWEB)

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  11. Accurate photometric redshifts for the CFHT Legacy Survey calibrated using the VIMOS VLT Deep Survey

    CERN Document Server

    Ilbert, O; Arnouts, S; Bardelli, S; Bertin, E; Bolzonella, M; Bondi, M; Bongiorno, A; Bottini, D; Busarello, G; Cappi, A; Charlot, S; Ciliegi, P; Contini, T; Cucciati, O; De la Torre, S D; Foucaud, S; Franzetti, P; Garilli, B; Gavignaud, I; Gregorini, L; Guzzo, L; Iovino, A; Lamareille, F; Le Brun, V; Lefèvre, O; MacCagni, D; Marano, B; Marinoni, C; Mathez, G; Mazure, A; McCracken, H J; Mellier, Y; Meneux, B; Merighi, R; Merluzzi, P; Paltani, S; Pellò, R; Picat, J P; Pollo, A; Pozzetti, L; Radovich, M; Ripepi, V; Rizzo, D; Scaramella, R; Scodeggio, M; Tresse, L; Vergani, D; Vettolani, G; Zamorani, G; Zanichelli, A; Zucca, E

    2006-01-01

    We present photometric redshifts for an uniquely large and deep sample of 522286 objects with i'_{AB}<25 in the Canada-France Legacy Survey ``Deep Survey'' fields, which cover a total effective area of 3.2 deg^2. We use 3241 spectroscopic redshifts with 0photometric redshifts. We devise a robust calibration method which removes systematic trends in the photometric redshifts and significantly reduces the fraction of catastrophic errors. We use our unique spectroscopic sample to present a detailed assessment of the robustness of the photometric redshift sample. For a sample selected at i'_{AB}<24, we reach a redshift accuracy of \\sigma_{\\Delta z/(1+z)}=0.037 with \\eta=3.7% of catastrophic error. The reliability of our photometric redshifts is lower for fainter objects: we find \\sigma_{\\Delta z/(1+z)}=0.029, 0.043 and \\eta=1.7%, 5.4% for samples selected at i'_{AB}=17.5-22.5 and 22.5-24 respectively. We find that the photometric red...

  12. Improving Estimation Accuracy of Quasars’ Photometric Redshifts by Integration of KNN and SVM

    Science.gov (United States)

    Han, Bo; Ding, Hongpeng; Zhang, Yanxia; Zhao, Yongheng

    2015-08-01

    The massive photometric data collected from multiple large-scale sky surveys offers significant opportunities for measuring distances of many celestial objects by photometric redshifts zphot in a wide coverage of the sky. However, catastrophic failure, an unsolved problem for a long time, exists in the current photometric redshift estimation approaches (such as k-nearest-neighbor). In this paper, we propose a novel two-stage approach by integration of k-nearest-neighbor (KNN) and support vector machine (SVM) methods together. In the first stage, we apply KNN algorithm on photometric data and estimate their corresponding zphot. By analysis, we observe two dense regions with catastrophic failure, one in the range of zphot [0.1,1.1], the other in the range of zphot [1.5,2.5]. In the second stage, we map the photometric multiband input pattern of points falling into the two ranges from original attribute space into high dimensional feature space by Gaussian kernel function in SVM. In the high dimensional feature space, many bad estimation points resulted from catastrophic failure by using simple Euclidean distance computation in KNN can be identified by classification hyperplane SVM and further be applied correction. Experimental results based on SDSS data for quasars showed that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshift.

  13. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    CERN Document Server

    Leistedt, Boris; Peiris, Hiranya V

    2016-01-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometri...

  14. A Unified Theory of Photometric Redshifts

    CERN Document Server

    Budavari, Tamas

    2008-01-01

    We present a rigorous mathematical solution to the generalized photometric inversion problem. The challenge we address is to meaningfully constrain unknown properties of astronomical sources based on given observables, usually multicolor photometry, with the help of a training set that provides an empirical relation between the measurements and the desired quantities. Photometric redshift estimation is an example of such methods. We establish a formalism that blurs the boundary between the traditional empirical and template fitting algorithms, as both are just special cases that are discussed in detail to put them in context. The new approach enables the development of more sophisticated methods that go beyond the classic techniques to combine their advantages. The basic concepts are illustrated in a simple case that is analogous to the classic empirical methods. We look at the directions for further improvement as well as the technical aspects of practical implementations, and study the qualities of the cali...

  15. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Tomas; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Faber, Sandra M.; Barro, Guillermo; Guo, Yicheng [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Finlator, Kristian [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen (Denmark); Fontana, Adriano [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040, Monteporzio (Italy); Gruetzbauch, Ruth [Center for Astronomy and Astrophysics, Observatorio Astronomico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Johnson, Seth [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Pforr, Janine; Dickinson, Mark E. [NOAO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Salvato, Mara; Wuyts, Stijn [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei München (Germany); Wiklind, Tommy [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Acquaviva, Viviana [Physics Department, CUNY NYC College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Huang, Kuang-Han [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Newman, Jeffrey A., E-mail: dahlen@stsci.edu [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); and others

    2013-10-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.

  16. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    Science.gov (United States)

    Leistedt, Boris; Mortlock, Daniel J.; Peiris, Hiranya V.

    2016-08-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.

  17. Photometric Redshift Estimation on SDSS Data Using Random Forests

    CERN Document Server

    Carliles, Samuel; Heinis, Sebastien; Priebe, Carey; Szalay, Alexander

    2007-01-01

    Given multiband photometric data from the SDSS DR6, we estimate galaxy redshifts. We employ a Random Forest trained on color features and spectroscopic redshifts from 80,000 randomly chosen primary galaxies yielding a mapping from color to redshift such that the difference between the estimate and the spectroscopic redshift is small. Our methodology results in tight RMS scatter in the estimates limited by photometric errors. Additionally, this approach yields an error distribution that is nearly Gaussian with parameter estimates giving reliable confidence intervals unique to each galaxy photometric redshift.

  18. Accurate photometric redshift probability density estimation - method comparison and application

    CERN Document Server

    Rau, Markus Michael; Brimioulle, Fabrice; Frank, Eibe; Friedrich, Oliver; Gruen, Daniel; Hoyle, Ben

    2015-01-01

    We introduce an ordinal classification algorithm for photometric redshift estimation, which vastly improves the reconstruction of photometric redshift probability density functions (PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered values, which improves the quality of photometric redshift PDFs, compared with non-ordinal classification architectures. We also propose a new single value point estimate of the galaxy redshift, that can be used to estimate the full redshift PDF of a galaxy sample. This method is competitive in terms of accuracy with contemporary algorithms, which stack the full redshift PDFs of all galaxies in the sample, but requires orders of magnitudes less storage space. The methods described in this paper greatly improve the log-likelihood of individual object redshift PDFs, when compared with a popular Neural Network code (ANNz). In our use case, this improvemen...

  19. A Critical Assessment of Photometric Redshift Methods: A CANDELS Investigation

    CERN Document Server

    Dahlen, Tomas; Faber, Sandra M; Ferguson, Henry C; Barro, Guillermo; Finkelstein, Steven L; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn; Acquaviva, Viviana; Dickinson, Mark E; Guo, Yicheng; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A; Bell, Eric F; Conselice, Christopher J; Galametz, Audrey; Gawiser, Eric; Giavalisco, Mauro; Grogin, Norman A; Hathi, Nimish; Kocevski, Dale; Koekemoer, Anton M; Koo, David C; Lee, Kyoung-Soo; McGrath, Elizabeth J; Papovich, Casey; Peth, Michael; Ryan, Russell; Somerville, Rachel; Weiner, Benjamin; Wilson, Grant

    2013-01-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from eleven participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs) and priors, are used to examine the properties of photometric redshifts applied to deep fields with broad-band multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a...

  20. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS

    International Nuclear Information System (INIS)

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of Δznorm (i.e., (zspec – zphot)/(1 + zspec)), to an average of Δznorm = 0.004, a standard deviation of σ = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., zspec ≤ 3.6), defined by the four-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e., of objects with photo-z deviating more than 2σ from the spectroscopic value, is <3%, leading to σ = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application

  1. SuperNova Acceleration Probe (SNAP): Investigating Photometric Redshift Optimization

    CERN Document Server

    Dahlen, Tomas; Jouvel, Stephanie; Kneib, Jean-Paul; Ilbert, Olivier; Arnouts, Stephane; Bernstein, Gary; Rhodes, Jason

    2007-01-01

    The aim of this paper is to investigate ways to optimize the accuracy of photometric redshifts for a SNAP like mission. We focus on how the accuracy of the photometric redshifts depends on the magnitude limit and signal-to-noise ratio, wave-length coverage, number of filters and their shapes and observed galaxy type. We use simulated galaxy catalogs constructed to reproduce observed galaxy luminosity functions from GOODS, and derive photometric redshifts using a template fitting method. By using a catalog that resembles real data, we can estimate the expected number density of galaxies for which photometric redshifts can be derived. We find that the accuracy of photometric redshifts is strongly dependent on the signal-to-noise (S/N) (i.e., S/N>10 is needed for accurate photometric redshifts). The accuracy of the photometric redshifts is also dependent on galaxy type, with smaller scatter for earlier type galaxies. Comparing results using different filter sets, we find that including the U-band is important fo...

  2. Exploring the SDSS photometric galaxies with clustering redshifts

    Science.gov (United States)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  3. Photometric redshift estimation for quasars by integration of KNN and SVM

    Science.gov (United States)

    Han, Bo; Ding, Hong-Peng; Zhang, Yan-Xia; Zhao, Yong-Heng

    2016-05-01

    The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding z phot. Our analysis has found two dense regions with catastrophic failure, one in the range of z phot ɛ [0.3, 1.2] and the other in the range of zphot ɛ [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different |δz| ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).

  4. Exploring the SDSS Photometric Galaxies with Clustering Redshifts

    CERN Document Server

    Rahman, Mubdi; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J; Morrison, Christopher B; Budavári, Tamás

    2015-01-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SED). We identify and locate star-forming, quiescent galaxies, and AGN, as well as colour changes due to spectral features, such as the 4000 \\AA{} break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ~ 0.8. While the overall shape agrees with that infer...

  5. Photometric Redshifts for Quasars in Multi-band Surveys

    Science.gov (United States)

    Brescia, M.; Cavuoti, S.; D'Abrusco, R.; Longo, G.; Mercurio, A.

    2013-08-01

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of Δz norm (i.e., (z spec - z phot)/(1 + z spec)), to an average of Δz norm = 0.004, a standard deviation of σ = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., z spec objects with photo-z deviating more than 2σ from the spectroscopic value, is <3%, leading to σ = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application.

  6. COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg(2)

    NARCIS (Netherlands)

    Ilbert, O.; Capak, P.; Salvato, M.; Aussel, H.; McCracken, H. J.; Sanders, D. B.; Scoville, N.; Kartaltepe, J.; Arnouts, S.; Le Floc'h, E.; Mobasher, B.; Taniguchi, Y.; Lamareille, F.; Leauthaud, A.; Sasaki, S.; Thompson, D.; Zamojski, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Brusa, M.; Caputi, K. I.; Carollo, C. M.; Contini, T.; Cook, R.; Coppa, G.; Cucciati, O.; De La Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Hasinger, G.; Iovino, A.; Kampczyk, P.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Le Borgne, J. F.; Le Brun, V.; Le Fevre, O.; Lilly, S.; Looper, D.; Maier, C.; Mainieri, V.; Mellier, Y.; Mignoli, M.; Murayama, T.; Pello, R.; Peng, Y.; Perez-Montero, E.; Renzini, A.; Ricciardelli, E.; Schiminovich, D.; Scodeggio, M.; Shioya, Y.; Silverman, J.; Surace, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.

    2009-01-01

    We present accurate photometric redshifts (photo-z) in the 2-deg(2) COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrowbands covering the UV (Galaxy Evolution Explorer), visible near-IR (NIR; Subaru, Canada-France-Hawaii Telescope (CFHT), United Kingdom Infrared Telescop

  7. Photometric redshifts for the SDSS Data Release 12

    Science.gov (United States)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-08-01

    We present the methodology and data behind the photometric redshift data base of the Sloan Digital Sky Survey (SDSS) Data Release 12. We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalogue was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1976 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208 474 076 galaxies of the SDSS primary photometric catalogue. We achieve an average bias of overline{Δ z_{norm}} = {5.84 × 10^{-5}}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11 per cent when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high-quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  8. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco Kind, Matias [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  9. Photometric Redshift Estimation for Quasars by Integration of KNN and SVM

    CERN Document Server

    Han, Bo; Zhang, Yanxia; Zhao, Yongheng

    2016-01-01

    The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is still an unsolved problem for a long time and exists in the current photometric redshift estimation approaches (such as $k$-nearest-neighbor). In this paper, we propose a novel two-stage approach by integration of $k$-nearest-neighbor (KNN) and support vector machine (SVM) methods together. In the first stage, we apply KNN algorithm on photometric data and estimate their corresponding z$_{\\rm phot}$. By analysis, we find two dense regions with catastrophic failure, one in the range of z$_{\\rm phot}\\in[0.3,1.2]$, the other in the range of z$_{\\rm phot}\\in [1.2,2.1]$. In the second stage, we map the photometric input pattern of points falling into the two ranges from original attribute space into a high dimensional feature space by Gaussian kernel function in SVM. In the high dimensional feature space,...

  10. Photometric redshifts for Quasars in multi band Surveys

    CERN Document Server

    Brescia, M; D'Abrusco, R; Longo, G; Mercurio, A

    2013-01-01

    MLPQNA stands for Multi Layer Perceptron with Quasi Newton Algorithm and it is a machine learning method which can be used to cope with regression and classification problems on complex and massive data sets. In this paper we give the formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (SDSS, GALEX, UKIDSS and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able i) to achieve a very high accuracy; ii) to drastically reduce the number of outliers and catastrophic objects; iii) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from ...

  11. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    CERN Document Server

    Bezanson, Rachel; Brammer, Gabriel B; van Dokkum, Pieter G; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G; Nelson, Erica J; Quadri, Ryan F; Skelton, Rosalind E; Weiner, Benjamin J; Whitaker, Katherine E

    2015-01-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than $H_{F140W} 2$), dusty star-forming galaxies for which the scatter increases to $\\sim0.1(1+z)$. Although the overall photometric redshift accuracy for quiescent galaxies is better than for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to $\\sim0.046(1+z)$ at $H_{F160W}=26$. We demonstrate that photometric redshift accuracy is strongly filter-dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of $\\sim1.1-1.6$, but that uniformly broadening the distributi...

  12. Galaxy clustering with photometric surveys using PDF redshift information

    Science.gov (United States)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  13. Calibrating photometric redshift distributions with cross-correlations

    CERN Document Server

    Schulz, A E

    2009-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshifts by two orders of magnitude, drastically expanding both redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair sub-sample of this new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys. We examine a promising alternative to direct spectroscopic follow up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is effective, but the estimator is weakened by two factors. 1) The correlation function of the spectroscopic sample must be measured i...

  14. Photometric redshift techniques of quasars in big-data era

    Science.gov (United States)

    Zhang, Yanxia

    2015-08-01

    With the availability of the huge amounts of data from ground- and space-based large multiband photometric surveys, photometric redshifts provide an estimate for the distance of an astronomical object and have become a crucial tool for extragalactic astronomy and cosmology. Various phtometric redshift approaches are in bloom. Their performance and efficiency not only depend on completeness and quality of data, but also on the volume of data. The increase of data volume lead to different choice of techniques. We present various data mining methods used for photometric redshift estimation of quasars and compare their advantages and disadvantages. In the big-data era, the methods fit for large-scale data are in great requirement.

  15. Measuring photometric redshifts using galaxy images and Deep Neural Networks

    Science.gov (United States)

    Hoyle, B.

    2016-07-01

    We propose a new method to estimate the photometric redshift of galaxies by using the full galaxy image in each measured band. This method draws from the latest techniques and advances in machine learning, in particular Deep Neural Networks. We pass the entire multi-band galaxy image into the machine learning architecture to obtain a redshift estimate that is competitive, in terms of the measured point prediction metrics, with the best existing standard machine learning techniques. The standard techniques estimate redshifts using post-processed features, such as magnitudes and colours, which are extracted from the galaxy images and are deemed to be salient by the user. This new method removes the user from the photometric redshift estimation pipeline. However we do note that Deep Neural Networks require many orders of magnitude more computing resources than standard machine learning architectures, and as such are only tractable for making predictions on datasets of size ≤50k before implementing parallelisation techniques.

  16. Measuring photometric redshifts using galaxy images and Deep Neural Networks

    CERN Document Server

    Hoyle, Ben

    2015-01-01

    We propose a new method to estimate the photometric redshift of galaxies by using the full galaxy image in each measured band. This method draws from the latest techniques and advances in machine learning, in particular Deep Neural Networks. We pass the entire multi-band galaxy image into the machine learning architecture to obtain a redshift estimate that is competitive with the best existing standard machine learning techniques. The standard techniques estimate redshifts using post-processed features, such as magnitudes and colours, which are extracted from the galaxy images and are deemed to be salient by the user. This new method removes the user from the photometric redshift estimation pipeline. However we do note that Deep Neural Networks require many orders of magnitude more computing resources than standard machine learning architectures.

  17. Modelling multimodal photometric redshift regression with noisy observations

    CERN Document Server

    Kügler, S D

    2016-01-01

    In this work, we are trying to extent the existing photometric redshift regression models from modeling pure photometric data back to the spectra themselves. To that end, we developed a PCA that is capable of describing the input uncertainty (including missing values) in a dimensionality reduction framework. With this "spectrum generator" at hand, we are capable of treating the redshift regression problem in a fully Bayesian framework, returning a posterior distribution over the redshift. This approach allows therefore to approach the multimodal regression problem in an adequate fashion. In addition, input uncertainty on the magnitudes can be included quite naturally and lastly, the proposed algorithm allows in principle to make predictions outside the training values which makes it a fascinating opportunity for the detection of high-redshifted quasars.

  18. Photometric Redshift with Bayesian Priors on Physical Properties of Galaxies

    CERN Document Server

    Tanaka, Masayuki

    2015-01-01

    We present a proof-of-concept analysis of photometric redshifts with Bayesian priors on physical properties of galaxies. This concept is particularly suited for upcoming/on-going large imaging surveys, in which only several broad-band filters are available and it is hard to break some of the degeneracies in the multi-color space. We construct model templates of galaxies using a stellar population synthesis code and apply Bayesian priors on physical properties such as stellar mass and star formation rate. These priors are a function of redshift and they effectively evolve the templates with time in an observationally motivated way. We demonstrate that the priors help reduce the degeneracy and deliver significantly improved photometric redshifts. Furthermore, we show that a template error function, which corrects for systematic flux errors in the model templates as a function of rest-frame wavelength, delivers further improvements. One great advantage of our technique is that we simultaneously measure redshifts...

  19. Cosmological parameters from a million photometric redshifts of SDSS LRGs

    CERN Document Server

    Blake, C; Bridle, S; Lahav, O; Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2006-01-01

    We analyze MegaZ-LRG, a new photometric-redshift catalogue of Luminous Red Galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains > 10^6 photometric redshifts derived with ANNz, an Artificial Neural Network method, constrained by a spectroscopic sub-sample of ~13,000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4redshift error ~ 0.03(1+z). We present the first cosmological parameter fits to galaxy angular power spectra from a photometric redshift survey. Combining the redshift slices with appropriate covariances, we determine the matter density Omega_m and baryon density Omega_b in the combinations Omega_m h = 0.20+/-0.03 and Omega_b/Omega_m = 0.14+/-0.04. These results are in agreement with and independent of the latest studies of the Cosmic Microwave Background radiation, and their precision is comparable to analyses of conte...

  20. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    Science.gov (United States)

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  1. Photometric redshifts and selection of high redshift galaxies in the NTT and Hubble Deep Fields

    CERN Document Server

    Fontana, A; Poli, F; Giallongo, E; Arnouts, S; Cristiani, S; Moorwood, A F M; Saracco, P

    2000-01-01

    We present and compare in this paper new photometric redshift catalogs of the galaxies in three public fields: the NTT Deep Field, the HDF-N and the HDF-S. Photometric redshifts have been obtained for thewhole sample, by adopting a $\\chi^2$ minimization technique on a spectral library drawn from the Bruzual and Charlot synthesis models, with the addition of dust and intergalactic absorption. The accuracy, determined from 125 galaxies with known spectroscopic redshifts, is $\\sigma_z\\sim 0.08 (0.3)$ in the redshift intervals $z=0-1.5 (1.5-3.5)$. The global redshift distribution of I-selected galaxies shows a distinct peak at intermediate redshifts, z~0.6 at I_{AB}5 candidates in the HDF filter set and that the 4 brightest candidates at $z>5$ in the HDF-S are indeed most likely M stars. (ABRIDGED)

  2. A sparse Gaussian process framework for photometric redshift estimation

    Science.gov (United States)

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  3. A catalogue of photometric redshifts for the SDSS-DR9 galaxies

    CERN Document Server

    Brescia, M; Longo, G; De Stefano, V

    2014-01-01

    Accurate photometric redshifts for large samples of galaxies are among the main products of modern multiband digital surveys. Over the last decade, the Sloan Digital Sky Survey (SDSS) has become a sort of benchmark against which to test the various methods. We present an application of a new method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced and made available at the URL: http://dame.dsf.unina.it/catalog/DR9PHOTOZ/. The MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) model provided within the framework of the DAMEWARE (DAta Mining and Exploration Web Application REsource) is an interpolative method derived from machine learning models. The obtained redshifts have an overall uncertainty of sigma=0.023 with a very small average bias of about 3x10^-5, and a fraction of catastrophic outliers of about 5%. This result is slightly better than what was already available in the lite...

  4. A Sparse Gaussian Process Framework for Photometric Redshift Estimation

    CERN Document Server

    Almosallam, Ibrahim A; Jarvis, Matt J; Roberts, Stephen J

    2015-01-01

    Accurate photometric redshift are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Data from a simulated survey was used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementation of most regression algorithms has as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we optimize to directly target minimizing $\\Delta z = (z_\\textrm{s} - z_\\textrm{p})/(1+z_\\textrm{s})$ and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with ot...

  5. Evolution of Galaxy Luminosity Function Using Photometric Redshifts

    CERN Document Server

    Ramos, B H F; Benoist, C; da Costa, L N; Maia, M A G; Makler, M; Ogando, R L C; de Simoni, F; Mesquita, A A

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end we compare LFs obtained using photometric redshifts from the CFHT Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ~4800 galaxies. We find that for z<2, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of CFHTLS comprising ~386000 galaxies to compute the LF of the combined fields and estimate directly the error in the parameters based on field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ~0.7mag from z~1.8 to z~0.3, while the characteristic density phi* increases by a factor of ~4 in the same redshift bin. We use the galaxy classification provided by the templ...

  6. Photometric redshifts for the SDSS Data Release 12

    CERN Document Server

    Beck, Róbert; Budavári, Tamás; Szalay, Alexander S; Csabai, István

    2016-01-01

    We present the methodology and data behind the photometric redshift database of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalog was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of $1,976,978$ galaxies, and extends up to redshift $z\\approx 0.8$, with a useful coverage of up to $z\\approx 0.6$. We provide photometric redshifts and realistic error estimates for the $208,474,076$ galaxies of the SDSS primary photometric catalog. We achieve an average bias of $\\overline{\\Delta z_{\\mathrm{norm}}} = -0.0012$, a standard deviation of $\\sigma \\left(\\Delta z_{\\mathrm{norm}}\\right)=0.0249$, and a $3\\sigma$ outlier rate of $P_o=1.6\\%$ when cross-validating on our training set. The published...

  7. Machine Learning based photometric redshifts for the KiDS ESO DR2 galaxies

    CERN Document Server

    Cavuoti, Stefano; Tortora, Crescenzo; Longo, Giuseppe; Napolitano, Nicola R; Radovich, Mario; La Barbera, Francesco; Capaccioli, Massimo; de Jong, Jelte T A; Getman, Fedor; Grado, Aniello; Paolillo, Maurizio

    2015-01-01

    We estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the ESO Public Kilo-Degree Survey (KiDS) Data Release 2. KiDS is an optical wide-field imaging survey carried out with the VLT Survey Telescope (VST) and the OmegaCAM camera, which aims at tackling open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base which was obtained by merging spectroscopic datasets from GAMA (Galaxy And Mass Assembly) data release 2 and SDSS-III data release 9. The overall 1 sigma uncertainty on Delta z = (zspec - zphot) / (1+ zspec) is ~ 0.03, with a very small average bias of ~ 0.001, a NMAD of ~ 0.02 and a fraction of catastrophic outl...

  8. Estimating Photometric Redshifts of Quasars via K-nearest Neighbor Approach Based on Large Survey Databases

    CERN Document Server

    Yanxia, Zhang; Nanbo, Peng; Yongheng, Zhao; Xue-bing, Wu

    2013-01-01

    We apply one of lazy learning methods named k-nearest neighbor algorithm (kNN) to estimate the photometric redshifts of quasars, based on various datasets from the Sloan Digital Sky Survey (SDSS), UKIRT Infrared Deep Sky Survey (UKIDSS) and Wide-field Infrared Survey Explorer (WISE) (the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN arrives at the best performance when k is different with a special input pattern for a special dataset. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results show that generally the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. By comparing the performance of various m...

  9. Spectroscopic Needs for Calibration of LSST Photometric Redshifts

    CERN Document Server

    Schmidt, Samuel J; Abate, Alexandra

    2014-01-01

    This white paper summarizes the conclusions of the Snowmass White Paper "Spectroscopic Needs for Imaging Dark Energy Experiments" (arXiv:1309.5384) which are relevant to the calibration of LSST photometric redshifts; i.e., the accurate characterization of biases and uncertainties in photo-z's. Any significant miscalibration will lead to systematic errors in photo-z's, impacting nearly all extragalactic science with LSST. As existing deep redshift samples have failed to yield highly-secure redshifts for a systematic 20%-60% of their targets, it is a strong possibility that future deep spectroscopic samples will not solve the calibration problem on their own. The best options in this scenario are provided by cross-correlation methods that utilize clustering with objects from spectroscopic surveys (which need not be fully representative) to trace the redshift distribution of the full sample. For spectroscopy, the eBOSS survey would enable a basic calibration of LSST photometric redshifts, while the expected LSST...

  10. Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys

    CERN Document Server

    Masters, Daniel; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-01-01

    Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and whe...

  11. DNF - Galaxy photometric redshift by Directional Neighbourhood Fitting

    Science.gov (United States)

    De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.

    2016-07-01

    Wide field images taken in several photometric bands allow simultaneous measurement of redshifts for thousands of galaxies. A variety of algorithms to make this measurement have appeared in the last few years, the majority of which can be classified as either template- or training-based methods. Among the latter, nearest neighbour estimators stand out as one of the most successful, in terms of both precision and the quality of error estimation. In this paper we describe the Directional Neighbourhood Fitting (DNF) algorithm based on the following: a new neighbourhood metric (Directional Neighbourhood), a photo-z estimation strategy (Neighbourhood Fitting) and a method for generating the photo-z probability distribution function. We compare DNF with other well-known empirical photometric redshift tools using different public data sets (Sloan Digital Sky Survey, VIMOS VLT Deep Survey and Photo-z Accuracy Testing). DNF achieves high-quality results with reliable error.

  12. Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys

    Science.gov (United States)

    Masters, Daniel; Capak, Peter; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-11-01

    Calibrating the photometric redshifts of ≳109 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  13. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Capak, Peter [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel; Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ilbert, Olivier [Aix Marseille Universite, CNRS, LAM (Laboratoire dAstrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Salvato, Mara [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Schmidt, Samuel [Department of Physics, University of California, Davis, CA 95616 (United States); Longo, Giuseppe [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); Paltani, Stephane; Coupon, Jean [Department of Astronomy, University of Geneva ch. dcogia 16, CH-1290 Versoix (Switzerland); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Universität Bonn, Auf dem H’´ugel 71, D-53121 Bonn (Germany); Speagle, Josh [Department of Astronomy, Harvard University, 60 Garden Street, MS 46, Cambridge, MA 02138 (United States); Kalinich, Adam [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Brescia, Massimo; Cavuoti, Stefano [Astronomical Observatory of Capodimonte—INAF, via Moiariello 16, I-80131, Napoli (Italy)

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  14. Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation

    CERN Document Server

    Laurino, Omar; Longo, Giuseppe; Riccio, Giuseppe

    2011-01-01

    With the availability of the huge amounts of data produced by current and future large multi-band photometric surveys, photometric redshifts have become a crucial tool for extragalactic astronomy and cosmology. In this paper we present a novel method, called Weak Gated Experts (WGE), which allows to derive photometric redshifts through a combination of data mining techniques. \

  15. New Improved Photometric Redshifts of Galaxies in the HDF

    CERN Document Server

    Furusawa, H; Doi, M; Okamura, S; Furusawa, Hisanori; Shimasaku, Kazuhiro; Doi, Mamoru; Okamura, Sadanori

    1999-01-01

    We report new improved photometric redshifts of 1048 galaxies in the HubbleDeep Field (HDF). A standard chi^2 minimizing method is applied to seven-colorUBVIJHK photometry by Fernandez-Soto, Lanzetta, & Yahil (1999). We use 187template SEDs representing a wide variety of morphology and age of observedgalaxies based on a population synthesis model by Kodama & Arimoto (1997). Weintroduce two new recipes. First, the amount of the internal absorption ischanged as a free parameter in the range of E(B-V)=0.0 to 0.5 with an intervalof 0.1. Second, the absorption due to intergalactic HI clouds is also changedby a factor of 0.5, 1.0, and 1.5 around the opacity given by Madau (1995). Thetotal number of template SEDs is thus 187x6x3=3,366, except for the redshiftgrid. The dispersion sigma_z of our photometric redshifts with respect tospectroscopic redshifts is sigma_z=0.08 and 0.24 for z2, respectively,which are smaller than the corresponding values (sigma_z=0.09 and 0.45) byFernandez-Soto et al. Improvement is ...

  16. A new method to search for high-redshift clusters using photometric redshifts

    Energy Technology Data Exchange (ETDEWEB)

    Castignani, G.; Celotti, A. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Chiaberge, M.; Norman, C., E-mail: castigna@sissa.it [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  17. Reconstructing the galaxy density field with photometric redshifts: I. Methodology and validation on stellar mass functions

    CERN Document Server

    Malavasi, Nicola; Cucciati, Olga; Bardelli, Sandro; Cimatti, Andrea

    2016-01-01

    Measuring environment for large numbers of distant galaxies is still an open problem, for which we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic ones. In this work we study how photometric redshifts affect the measurement of galaxy environment and how this may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Using mock galaxy catalogues, we measured the environment with a fixed aperture method, using each galaxy's true and photometric redshifts. We varied the fixed aperture volume parameters and the photometric redshift uncertainties. We then computed GSMF as a function of redshift and environment. We found that only when using high-precision photometric redshifts with $\\sigma_{\\Delta z/(1+z)} \\le 0.01$, the most extreme environments can be reconstructed in a fairly accurate way, with a fraction $\\ge 60\\div 80\\%$ of galaxies placed in the corr...

  18. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    International Nuclear Information System (INIS)

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  19. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.; /Toronto U., Astron. Dept.; Lin, H.; /Fermilab; Gladders, M.D.; /Carnegie Inst.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) < 0.06 within the redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.

  20. Robust Machine Learning Applied to Astronomical Datasets II: Quantifying Photometric Redshifts for Quasars Using Instance-Based Learning

    CERN Document Server

    Ball, N M; Myers, A D; Strand, N E; Alberts, S L; Tcheng, D; Llora, X; Ball, Nicholas M.; Brunner, Robert J.; Myers, Adam D.; Strand, Natalie E.; Alberts, Stacey L.; Tcheng, David; Llor\\`a, Xavier

    2006-01-01

    We apply instance-based machine learning to the task of estimating photometric redshifts for 55,746 objects spectroscopically classified as quasars in the Fifth Data Release of the Sloan Digital Sky Survey, and compare the results obtained to those from an empirical color-redshift relation (CZR). In contrast to previously published results using CZRs, we find that the instance-based photometric redshifts are assigned with no regions of catastrophic failure. Remaining outliers are simply scattered about the ideal relation, in a similar manner to the pattern seen in the optical for normal galaxies at redshifts z < ~1. The instance-based algorithm is trained on a representative sample of the data and pseudo-blind-tested on the remaining unseen data. The variance between the photometric and spectroscopic redshifts is sigma = 0.123 +/- 0.002 (compared to sigma = 0.265 +/- 0.006 for the CZR), and 54.9 +/- 0.7%, 73.3 +/- 0.6%, and 80.7 +/- 0.3% of the objects are within delta z < 0.1, 0.2, and 0.3 respectively...

  1. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    NARCIS (Netherlands)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redsh

  2. A new method to search for high redshift clusters using photometric redshifts

    CERN Document Server

    Castignani, Gianluca; Celotti, Annalisa; Norman, Colin

    2014-01-01

    We describe a new method (Poisson Probability Method, PPM) to search for high redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for Mpc-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. (2009) sample, that are selected within the COSMOS survey, and on the specific dataset used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. i) We use two z~1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z=2. We find that the PPM detects the cluster candidates up to z=1.5, and it correctly estimates both the redshift and size of the two clusters. ii) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e...

  3. Tracing The Sound Horizon Scale With Photometric Redshift Surveys

    CERN Document Server

    Sanchez, E; Garcia-Bellido, J; Gaztanaga, E; de Simoni, F; Crocce, M; Cabre, A; Fosalba, P; Alonso, D

    2010-01-01

    We propose a new method for cosmological parameters extraction using the baryon acoustic oscillation scale as a standard ruler in deep galaxy surveys with photometric determination of redshifts. The method consists in a simple empirical parametric fit to the angular 2-point correlation function w(theta). It is parametrized as a power law to describe the continuum plus a Gaussian to describe the BAO bump. The location of the Gaussian is used as the basis for the measurement of the sound horizon scale. This method, although simple, actually provides a robust estimation, since the inclusion of the power law and the use of the Gaussian removes the shifts which affect the local maximum. We discuss the effects of projection bias, non-linearities, redshift space distortions and photo-z precision, and apply our method to a mock catalog of the Dark Energy Survey, built upon a large N-body simulation provided by the MICE collaboration. We discuss the main systematic errors associated to our method and show that they ar...

  4. QSO Selection and Photometric Redshifts with Neural Networks

    CERN Document Server

    Yeche, Ch; Rich, J; Aubourg, E; Busca, N; Hamilton, J -Ch; Goff, J -M Le; Paris, I; Peirani, S; Pichon, Ch; Rollinde, E; Vargas-Magana, M

    2009-01-01

    Baryonic Acoustic Oscillations (BAO) and their effects on the matter power spectrum can be studied by using the Lyman-alpha absorption signature of the matter density field along quasar (QSO) lines of sight. A measurement sufficiently accurate to provide useful cosmological constraints requires the observation of ~100000 quasars in the redshift range 2.2redshifts, we have developed an Artificial Neural Networks (NN) with a multilayer perceptron architecture. The input variables are photometric measurements, i.e. the object magnitudes and their errors in the five bands (ugriz) of the SDSS photometry. For target selection, we ac...

  5. The SDSS Coadd: A Galaxy Photometric Redshift Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Ribamar R.R.; /Fermilab /Rio de Janeiro Federal U.; Soares-Santos, Marcelle; /Fermilab /Inst. Geo. Astron., Havana /Sao Paulo U.; Annis, James; /Fermilab; Dodelson, Scott; /Fermilab /Chicago U. /Chicago U., KICP; Hao, Jiangang; /Fermilab; Johnston, David; /Fermilab; Kubo, Jeffrey; /Fermilab; Lin, Huan; /Fermilab; Seo, Hee-Jong; /UC, Berkeley; Simet, Melanie; /Chicago U.

    2011-11-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for {approx} 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx} 89, 000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS), the Visible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.036. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  6. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    International Nuclear Information System (INIS)

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  7. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hennawi, Joseph F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); McMahon, Richard G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P., E-mail: jo.bovy@nyu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2012-04-10

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques-which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data-and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  8. Photometric redshifts and quasar probabilities from a single, data-driven generative model

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo [New York Univ. (NYU), NY (United States); Myers, Adam D. [Univ. of Wyoming, Laramie, WY (United States); Max Planck Inst. for Medical Research, Heidelberg (Germany); Hennawi, Joseph F. [Max Planck Inst. for Medical Research, Heidelberg (Germany); Hogg, David W. [Max Planck Inst. for Medical Research, Heidelberg (Germany); New York Univ. (NYU), NY (United States); McMahon, Richard G. [Univ. of Cambridge (United Kingdom); Schiminovich, David [Columbia Univ., New York, NY (United States); Sheldon, Erin S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brinkmann, Jon [Apache Point Observatory and New Mexico State Univ., Sunspot, NM (United States); Schneider, Donald P. [Pennsylvania State Univ., University Park, PA (United States); Weaver, Benjamin A. [New York Univ. (NYU), NY (United States)

    2012-03-20

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  9. QSO Photometric Redshift estimation for the XMM-Newton/2dF Survey

    CERN Document Server

    Kitsionas, S; Georgantopoulos, I; Georgakakis, A; Giannakis, O

    2003-01-01

    The technique of estimating redshifts using photometric rather than spectroscopic observations has recently received great attention due to its simplicity and the accuracy of the results obtained. In this work, we estimate photometric redshifts for an X-ray selected QSO sample. This is the first time this technique is applied on such a sample. We first calculate the accuracy of the results obtained by comparing photometric to spectroscopic redshifts for a sub-sample of our QSO sample: for the majority (~67%) of the objects in this sub-sample, photometric redshift estimates are correct within Dz<0.3. We then derive the photometric redshift distribution for the whole QSO sample. In the future, we expect to use the photometric redshift distribution in order to derive the distributions of properties such as the Hardness Ratio and hence the hydrogen column density, the luminosity function etc. As an example, we estimate here the dependence of the Hardness Ratio of the QSO sample on photometric redshift.

  10. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    Science.gov (United States)

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-09-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on Δz = (zspec - zphot)/(1 + zspec) is ˜0.03, with a very small average bias of ˜0.001, a normalized median absolute deviation of ˜0.02 and a fraction of catastrophic outliers (|Δz| > 0.15) of ˜0.4 per cent.

  11. The Overlooked Potential of Generalized Linear Models in Astronomy-II: Gamma regression and photometric redshifts

    CERN Document Server

    Elliott, J; Krone-Martins, A; Cameron, E; Ishida, E E O; Hilbe, J

    2014-01-01

    Machine learning techniques offer a precious tool box for use within astronomy to solve problems involving so-called big data. They provide a means to make accurate predictions about a particular system without prior knowledge of the underlying physical processes of the data. In this article, and the companion papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method for tackling general astronomical problems, including the ones related to the machine learning paradigm. To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength photometry. Using the gamma family with a log link function we predict redshifts from the photo-z Accuracy Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain fits that result in catastrophic outlier rates as low as ~1% for simulated and ~2% for...

  12. PhotoRaptor - Photometric Research Application To Redshifts

    CERN Document Server

    Cavuoti, Stefano; De Stefano, Virgilio; Longo, Giuseppe

    2016-01-01

    Due to the necessity to evaluate photo-z for a variety of huge sky survey data sets, it seemed important to provide the astronomical community with an instrument able to fill this gap. Besides the problem of moving massive data sets over the network, another critical point is that a great part of astronomical data is stored in private archives that are not fully accessible on line. So, in order to evaluate photo-z it is needed a desktop application that can be downloaded and used by everyone locally, i.e. on his own personal computer or more in general within the local intranet hosted by a data center. The name chosen for the application is PhotoRApToR, i.e. Photometric Research Application To Redshift (Cavuoti et al. 2015, 2014; Brescia 2014b). It embeds a machine learning algorithm and special tools dedicated to preand post-processing data. The ML model is the MLPQNA (Multi Layer Perceptron trained by the Quasi Newton Algorithm), which has been revealed particularly powerful for the photo-z calculation on t...

  13. Getting leverage on inflation with a large photometric redshift survey

    CERN Document Server

    Basse, Tobias; Hannestad, Steen; Wong, Yvonne Y Y

    2015-01-01

    We assess the potential of a future large-volume photometric redshift survey to constrain observational inflationary parameters using three large-scale structure observables: the angular shear and galaxy power spectra, and the cluster mass function measured through weak lensing. When used in combination with Planck-like CMB measurements, we find that the spectral index n_s can be constrained to a 1 sigma precision of up to 0.0025. The sensitivity to the running of the spectral index can potentially improve to 0.0017, roughly a factor of five better than the present 1 sigma~constraint from Planck and auxiliary CMB data, allowing us to test the assumptions of the slow-roll scenario with unprecedented accuracy. Interestingly, neither CMB+shear nor CMB+galaxy nor CMB+clusters alone can achieve this level of sensitivity; it is the combined power of all three probes that conspires to break the different parameter degeneracies inherent in each type of observations. We make our forecast software publicly available vi...

  14. The overlooked potential of Generalized Linear Models in astronomy-II: Gamma regression and photometric redshifts

    Science.gov (United States)

    Elliott, J.; de Souza, R. S.; Krone-Martins, A.; Cameron, E.; Ishida, E. E. O.; Hilbe, J.

    2015-04-01

    Machine learning techniques offer a precious tool box for use within astronomy to solve problems involving so-called big data. They provide a means to make accurate predictions about a particular system without prior knowledge of the underlying physical processes of the data. In this article, and the companion papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method for tackling general astronomical problems, including the ones related to the machine learning paradigm. To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength photometry. Using the gamma family with a log link function we predict redshifts from the PHoto-z Accuracy Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain fits that result in catastrophic outlier rates as low as ∼1% for simulated and ∼2% for real data. Moreover, we can easily obtain such levels of precision within a matter of seconds on a normal desktop computer and with training sets that contain merely thousands of galaxies. Our software is made publicly available as a user-friendly package developed in Python, R and via an interactive web application. This software allows users to apply a set of GLMs to their own photometric catalogues and generates publication quality plots with minimum effort. By facilitating their ease of use to the astronomical community, this paper series aims to make GLMs widely known and to encourage their implementation in future large-scale projects, such as the Large Synoptic Survey Telescope.

  15. A Photometric Redshift Galaxy Catalog from the Red-Sequence Cluster Survey

    CERN Document Server

    Hsieh, B C; Lin, H; Gladders, M D

    2005-01-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the $z'$ and $R_c$ bands for ~90 square degrees of sky, and supplemental $V$ and $B$ data have been obtained for 33.6 deg$^{2}$. We compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts $< 1.5$ and $R_c < 24$, giving an rms scatter $\\sigma(\\Delta{z}) < 0.06$ within the redshift range $0.2 < z < 0.5$ and $\\sigma(\\Delta{z}) < 0.11$ for galaxies at $0.0 < z < 1.5$. We describe the empirical quadratic polynomial photometric redshift fitting technique which we use to determine the relation between redshift and photometry. A kd-tree algorithm is used to divide up our sample to improve the accuracy of our cat...

  16. GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshift

    CERN Document Server

    Almosallam, Ibrahim A; Roberts, Stephen J

    2016-01-01

    The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates of photometric redshifts is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty (and noise) in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform da...

  17. MegaZ-LRG: A photometric redshift catalogue of one million SDSS Luminous Red Galaxies

    CERN Document Server

    Collister, A A; Blake, C; Cannon, R; Croom, S; Drinkwater, M; Edge, A; Eisenstein, D; Loveday, J; Nichol, R; Pimbblet, K; De Propris, R; Roseboom, I; Ross, N; Schneider, D P; Shanks, T; Wake, D; Collister, Adrian; Lahav, Ofer; Blake, Chris; Cannon, Russell; Croom, Scott; Drinkwater, Michael; Edge, Alastair; Eisenstein, Daniel; Loveday, Jon; Nichol, Robert; Pimbblet, Kevin; Propris, Roberto De; Roseboom, Isaac; Ross, Nic; Schneider, Donald P.; Shanks, Tom; Wake, David

    2006-01-01

    We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range 0.4 < z < 0.7 with limiting magnitude i < 20. The catalogue is selected from the imaging data of the Sloan Digital Sky Survey Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift catalogue of 13,000 intermediate-redshift LRGs provides a photometric redshift training set, allowing use of ANNz, a neural network-based photometric-redshift estimator. The rms photometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is sigma_z = 0.049 averaged over all galaxies, and sigma_z = 0.040 for a brighter subsample (i < 19.0). The catalogue is expected to contain ~5 per cent stellar contamination. The ANNz code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies...

  18. The VIPERS Multi-Lambda Survey. I. UV and near-IR observations, multi-colour catalogues, and photometric redshifts

    Science.gov (United States)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Hudelot, P.; Vibert, D.; Comte, V.; Conseil, S.; Davidzon, I.; Guzzo, L.; Llebaria, A.; Martin, C.; McCracken, H. J.; Milliard, B.; Morrison, G.; Schiminovich, D.; Treyer, M.; Van Werbaeke, L.

    2016-05-01

    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet with the GALEX satellite (far- and near-ultraviolet channels) and in the near-infrared with the CFHT/WIRCam camera (Ks band) over an area of 22 and 27 deg2, respectively. The depth of the photometry was optimised to measure the physical properties (e.g., star formation rate, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 ≤ z ≤ 1.2). In this paper, we present the observations, the data reductions, and the build-up of the multi-colour catalogues. The CFHTLS-T0007 (gri-χ2) images are used as reference to detect and measure the Ks-band photometry, while the T0007 u∗-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVAB ~ 25 (at 5σ) and KAB ~ 22 (at 3σ). The large spectroscopic sample (~51 000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation and the reliability of our photometric redshifts with a typical accuracy of σz ≤ 0.04 and a fraction of catastrophic failures η ≤ 2% down to i ~ 23. We present various tests on the Ks-band completeness and photometric redshift accuracy by comparing our results with existing overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs. (r-Ks) diagram at low redshift (z ≤ 0.25) based on the high image quality of the CFHTLS. The catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A102The images, catalogues, and photometric redshifts for 1.5 million sources (down to NUV

  19. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R. [GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 61 Avenue de l' Observatoire, F-75014 Paris (France); Erben, T.; Hildebrandt, H. [Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Ilbert, O.; Boissier, S.; Boselli, A. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de Marseille, UMR 7326, F-13388 Marseille (France); Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Chen, Y.-T. [Insitute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Cuillandre, J.-C. [Canada-France-Hawaïi Telescope Corporation, Kamuela, HI 96743 (United States); Duc, P. A. [Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp, CNRS/INSU, Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Guhathakurta, P. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Lançon, A., E-mail: anand.raichoor@obspm.fr [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  20. A critical appraisal of the SED fitting method to estimate photometric redshifts

    CERN Document Server

    Massarotti, M; Buzzoni, A

    2001-01-01

    We discuss the stability of the photometric redshift estimate obtained with the SED fitting method with respect to the choice of the galaxy templates. Within the observational uncertainty and photometric errors, we find satisfactory agreement among different sets of theoretical and empirical templates using the Hubble Deep Field North as a target galaxy sample. Our results suggest that, especially at high redshift, the description of the physical processes of photon absorption in the interstellar and intergalactic medium plays a dominant role in the redshift estimate. The specific choice of the template set, as long as this includes both normal and starburst galaxies, is in comparison a minor issue.

  1. TPZ : Photometric redshift PDFs and ancillary information by using prediction trees and random forests

    CERN Document Server

    Kind, M Carrasco

    2013-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. In this paper, we present a new, publicly available, parallel, machine learning algorithm that generates photometric redshift PDFs by using prediction trees and random forest techniques, which we have named TPZ. This new algorithm incorporates measurement errors into the calculation while also dealing efficiently with missing values in the data. In addition, our implementation of this algorithm provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, a quantification of the relative importance of the variables used to con...

  2. Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Yan-Xia Zhang; Chao Liu; Yong-Heng Zhao

    2008-01-01

    We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.

  3. Improving photometric redshifts with Lyα tomography

    Science.gov (United States)

    Schmittfull, Marcel; White, Martin

    2016-08-01

    Forming a three dimensional view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper we discuss how tomography of the intergalactic medium (IGM) at z ≃ 2.5 can be used to estimate the redshifts of massive galaxies in a large volume of the Universe based on spectra of galaxies in their background. Our method is based on the fact that hierarchical structure formation leads to a strong dependence of the halo density on large-scale environment. A map of the latter can thus be used to refine our knowledge of the redshifts of halos and the galaxies and AGN which they host. We show that tomographic maps of the IGM at a resolution of 2.5 h-1Mpc can determine the redshifts of more than 90 per cent of massive galaxies with redshift uncertainty Δz/(1 + z) = 0.01. Higher resolution maps allow such redshift estimation for lower mass galaxies and halos.

  4. Improving photometric redshifts with Ly$\\alpha$ tomography

    CERN Document Server

    Schmittfull, Marcel

    2016-01-01

    Forming a three dimensional view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper we discuss how tomography of the intergalactic medium (IGM) at $z\\simeq 2.5$ can be used to estimate the redshifts of massive galaxies in a large volume of the Universe based on spectra of galaxies in their background. Our method is based on the fact that hierarchical structure formation leads to a strong dependence of the halo density on large-scale environment. A map of the latter can thus be used to refine our knowledge of the redshifts of halos and the galaxies and AGN which they host. We show that tomographic maps of the IGM at a resolution of $2.5\\,h^{-1}$Mpc can determine the redshifts of more than 90 per cent of massive galaxies with redshift uncertainty $\\Delta z/(1+z)=0.01$. Higher resolution maps allow such redshift estimation for lower mass galaxies and halos.

  5. Simultaneous Estimation of Photometric Redshifts and SED Parameters: Improved Techniques and a Realistic Error Budget

    CERN Document Server

    Acquaviva, Viviana; Gawiser, Eric

    2015-01-01

    We seek to improve the accuracy of joint galaxy photometric redshift estimation and spectral energy distribution (SED) fitting. By simulating different sources of uncorrected systematic errors, we demonstrate that if the uncertainties on the photometric redshifts are estimated correctly, so are those on the other SED fitting parameters, such as stellar mass, stellar age, and dust reddening. Furthermore, we find that if the redshift uncertainties are over(under)-estimated, the uncertainties in SED parameters tend to be over(under)-estimated by similar amounts. These results hold even in the presence of severe systematics and provide, for the first time, a mechanism to validate the uncertainties on these parameters via comparison with spectroscopic redshifts. We propose a new technique (annealing) to re-calibrate the joint uncertainties in the photo-z and SED fitting parameters without compromising the performance of the SED fitting + photo-z estimation. This procedure provides a consistent estimation of the mu...

  6. The SCUBA HAlf Degree Extragalactic Survey (SHADES) - IV: Radio-mm-FIR photometric redshifts

    CERN Document Server

    Aretxaga, I; Coppin, K; Mortier, A M J; Wagg, J; Dunlop, J S; Chapin, E L; Eales, S A; Gaztañaga, E; Halpern, M; Ivison, R J; van Kampen1, E; Scott, D; Serjeant, S; Smail, I; Babbedge, T; Benson, A J; Chapman, S; Clements, D L; Dunne, L; Dye, S; Farrah, D; Jarvis, M J; Mann, R G; Pope, A; Priddey, R; Rawlings, S; Seigar, M; Silva, L; Simpson, C; Vaccari, M; Aretxaga, Itziar; Hughes, David H.; Coppin, Kristen; Mortier, Angela M.J.; Wagg, Jeff; Dunlop, James S.; Chapin, Edward L.; Eales, Stephen A.; Gaztanaga, Enrique; Halpern, Mark; Ivison, Rob J.; Kampen1, Eelco van; Scott, Douglas; Serjeant, Stephen; Smail, Ian; Babbedge, Thomas; Benson, Andrew J.; Chapman, Scott; Clements, David L.; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Jarvis, Matthew J.; Mann, Robert G.; Pope, Alexandra; Priddey, Robert; Rawlings, Steve; Seigar, Marc; Silva, Laura; Simpson, Chris; Vaccari, Mattia

    2007-01-01

    We present the redshift distribution of the SHADES galaxy population based on the rest-frame radio-mm-FIR colours of 120 robustly detected 850um sources in the Lockman Hole East (LH) and Subaru XMM-Newton Deep Field (SXDF). The redshift distribution derived from the full SED information is shown to be narrower than that determined from the radio-submm spectral index, as more photometric bands contribute to higher redshift accuracies. The redshift of sources derived from at least two photometric bands peaks at z ~ 2.4 and has a near-Gaussian distribution, with 50 per cent (interquartile) of sources at z=1.8-3.1. We find a statistically-significant difference between the measured redshift distributions in the two fields; the SXDF peaking at a slightly lower redshift (median z ~ 2.2) than the LH (median z ~ 2.7), which we attribute to the noise-properties of the photometric observations. We demonstrate however that there could also be field-to-field variations that are consistent with the measured differences in...

  7. CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields

    CERN Document Server

    Jouvel, S; Lahav, O; Seitz, S; Molino, A; Coe, D; Postman, M; Moustakas, L; Benìtez, N; Rosati, P; Balestra, I; Grillo, C; Bradley, L; Fritz, A; Kelson, D; Koekemoer, A M; Lemze, D; Medezinski, E; Mercurio, A; Moustakas, J; Nonino, M; Scodeggio, M; Zheng, W; Zitrin, A; Bartelmann, M; Bouwens, R; Broadhurst, T; Donahue, M; Ford, H; Graves, G; Infante, L; Jimenez-Teja, Y; Lazkoz, R; Melchior, P; Meneghetti, M; Merten, J; Ogaz, S; Umetsu, K

    2013-01-01

    The Cluster Lensing And Supernovae survey with Hubble (CLASH) is an Hubble Space Telescope (HST) Multi-Cycle Treasury program observing 25 massive galaxy clusters. CLASH observations are carried out in 16 bands from UV to NIR to derive accurate and reliable estimates of photometric redshifts. We present the CLASH photometric redshifts and study the photometric redshift accuracy of the arcs in more detail for the case of MACS1206.2-0847. We use the publicly available Le Phare and BPZ photometric redshift codes on 17 CLASH galaxy clusters. Using Le Phare code for objects with StoN>=10, we reach a precision of 3%(1+z) for the strong lensing arcs, which is reduced to 2.4%(1+z) after removing outliers. For galaxies in the cluster field the corresponding values are 4%(1+z) and 3%(1+z). Using mock galaxy catalogues, we show that 3%(1+z) precision is what one would expect from the CLASH photometry when taking into account extinction from dust, emission lines and the finite range of SEDs included in the photo-z templa...

  8. I. Apples to apples $A^2$: photometric redshift predictions for next-generation surveys

    CERN Document Server

    Ascaso, Begoña; Benítez, Narciso

    2015-01-01

    This is the first of a series of papers where we compare the expected performance of two of the largest stage IV next-generation surveys in the optical and infrared (LSST and Euclid), with a particular focus on cluster surveys. In this first paper, we introduce the mock catalogues we have utilized in this work, an N-body simulation+semi-analytical cone with a posterior modification with PhotReal, a technique which modifies the original photometry to make it more realistic by using an empirical library of spectral templates. We have confirmed the reliability of the mock catalogue by comparing the obtained color-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. We also analyze the behavior of the expected photometric redshifts for each different survey, in terms of photometric redshift resolution, photometric redshift bias and fraction of outliers. In addition, we discuss the benefits of using the BPZ \\emph{odds} photometric redshift quality param...

  9. Photometric redshifts with the Multilayer Perceptron Neural Network: application to the HDF-S and SDSS

    CERN Document Server

    Vanzella, E; Fontana, A; Nonino, M; Arnouts, S; Giallongo, E; Grazian, A; Fasano, G; Popesso, P; Saracco, P; Zaggia, S R

    2003-01-01

    We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, $0.1photometric and spectroscopic redshifts in the HDF-S is good: the training on mixed data produces sigma_z(test) ~ 0.11, showing that model libraries together with observed data provide a sufficiently complete description...

  10. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-04-11

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  11. Photometric Selection of High-Redshift Type Ia Supernova Candidates

    Science.gov (United States)

    Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1%-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of Δz/(1+zspec)<0.09 in redshift and +/-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and ΩM) and find any effect to be negligible.

  12. Photometric selection of high-redshift type Ia supernovae

    CERN Document Server

    Sullivan, M; Perrett, K; Nugent, P; Astier, Pierre; Aubourg, E; Balam, D; Basa, S; Carlberg, R; Conley, A; Fabbro, S; Fouchez, D; Guy, J; Hook, I; Lafoux, H; Neill, J D; Pain, R; Palanque-Delabrouille, Nathalie; Pritchet, C; Regnault, N; Rich, J; Taillet, R; Aldering, G; Baumont, S; Bronder, J; Filiol, M; Knop, R; Perlmutter, S; Tao, C

    2005-01-01

    We present a method for selecting high-redshift type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only 2-3 epochs of multi-band real-time photometry, is able to discriminate between SNe Ia and core collapse SNe. Furthermore, for the SNe Ia, the method accurately predicts the redshift, phase and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period May 2004 to January 2005 in the SNLS, 440 SN candidates were discovered of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test dataset, the selection technique ...

  13. Robust photometric redshift determinations of gamma-ray burst afterglows at z ≳ 2

    Science.gov (United States)

    Curran, P. A.; Wijers, R. A. M. J.; Heemskerk, M. H. M.; Starling, R. L. C.; Wiersema, K.; van der Horst, A. J.

    2008-11-01

    Context: Theory suggests that about 10% of Swift-detected gamma-ray bursts (GRBs) will originate at redshifts, z, greater than 5 yet a number of high redshift candidates may be left unconfirmed due to the lack of measured redshifts. Aims: Here we introduce our code, GRBz, a method of simultaneous multi-parameter fitting of GRB afterglow optical and near infrared, spectral energy distributions. It allows for early determinations of the photometric redshift, spectral index and host extinction to be made. Methods: We assume that GRB afterglow spectra are well represented by a power-law decay and model the effects of absorption due to the Lyman forest and host extinction. We use a genetic algorithm-based routine to simultaneously fit the parameters of interest, and a Monte Carlo error analysis. Results: We use GRBs of previously determined spectroscopic redshifts to prove our method, while also introducing new near infrared data of GRB 990510 which further constrains the value of the host extinction. Conclusions: Our method is effective in estimating the photometric redshift of GRBs, relatively unbiased by assumptions of the afterglow spectral index or the host galaxy extinction. Monte Carlo error analysis is required as the method of error estimate based on the optimum population of the genetic algorithm underestimates errors significantly.

  14. WISE × SuperCOSMOS Photometric Redshift Catalog: 20 Million Galaxies over 3/pi Steradians

    Science.gov (United States)

    Bilicki, Maciej; Peacock, John A.; Jarrett, Thomas H.; Cluver, Michelle E.; Maddox, Natasha; Brown, Michael J. I.; Taylor, Edward N.; Hambly, Nigel C.; Solarz, Aleksandra; Holwerda, Benne W.; Baldry, Ivan; Loveday, Jon; Moffett, Amanda; Hopkins, Andrew M.; Driver, Simon P.; Alpaslan, Mehmet; Bland-Hawthorn, Joss

    2016-07-01

    We cross-match the two currently largest all-sky photometric catalogs—mid-infrared Wide-field Infrared Survey Explorer and SuperCOSMOS scans of UKST/POSS-II photographic plates—to obtain a new galaxy sample that covers 3π steradians. In order to characterize and purify the extragalactic data set, we use external GAMA and Sloan Digital Sky Survey spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended source catalog. After appropriate data cleaning, we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of more than 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of {z}{med}=0.2, with a broad {dN}/{dz} reaching up to z > 0.4. The photometric redshifts have a mean bias of | δ z| ∼ {10}-3, a normalized scatter of σ z = 0.033, and less than 3% outliers beyond 3σ z . Comparison with external data sets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for “all-sky” three-dimensional (3D) cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source preselection and identification in forthcoming surveys, such as TAIPAN or WALLABY.

  15. A new method to assign galaxy cluster membership using photometric redshifts

    CERN Document Server

    Castignani, Gianluca

    2016-01-01

    We introduce a new effective strategy to assign group and cluster membership probabilities $P_{mem}$ to galaxies using photometric redshift information. Large dynamical ranges both in halo mass and cosmic time are considered. The method takes the magnitude distribution of both cluster and field galaxies as well as the radial distribution of galaxies in clusters into account using a non-parametric formalism and relies on Bayesian inference to take photometric redshift uncertainties into account. We successfully test the method against 1,208 galaxy clusters within redshifts $z=0.05-2.55$ and masses $10^{13.29-14.80}~M_\\odot$ drawn from wide field simulated galaxy mock catalogs developed for the Euclid mission. Median purity $(55^{+17}_{-15})\\%$ and completeness $(95^{+5}_{-10})\\%$ are reached for galaxies brighter than 0.25$L_\\ast$ within $r_{200}$ of each simulated halo and for a statistical photometric redshift accuracy $\\sigma((z_s-z_p)/(1+z_s))=0.03$. The mean values $\\overline{\\mathsf{p}}=56\\%$ and $\\overl...

  16. The Next Generation Virgo Cluster Survey. XV. The photometric redshift estimation for background sources

    CERN Document Server

    Raichoor, A; Erben, T; Hildebrandt, H; Huertas-Company, M; Ilbert, O; Licitra, R; Ball, N M; Boissier, S; Boselli, A; Chen, Y -T; Côté, P; Cuillandre, J -C; Duc, P A; Durrell, P R; Ferrarese, L; Guhathakurta, P; Gwyn, S D J; Kavelaars, J J; Lançon, A; Liu, C; MacArthur, L A; Muller, M; Muñoz, R P; Peng, E W; Puzia, T H; Sawicki, M; Toloba, E; Van Waerbeke, L; Woods, D; Zhang, H

    2014-01-01

    The Next Generation Virgo Cluster Survey is an optical imaging survey covering 104 deg^2 centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz-bands and one third in the r-band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point spread function-homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior which extends to iAB = 12.5 mag. When using the u*griz-bands, our photometric redshifts for 15.5 \\le i \\lesssim 23 mag or zphot \\lesssim 1 galaxies have a bias |\\Delta z| < 0.02, less than 5% outliers, and a scatter \\sigma_{outl.rej.} and an individual error on zphot that increase with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz-bands over the same magnitude and redshift range, the lack of the r-band increases t...

  17. GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

    Science.gov (United States)

    Almosallam, Ibrahim A.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-10-01

    The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent, commonly known in statistics as heteroscedastic noise. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform data density and in most cases require manual tuning of many parameters. In this paper, we present a Bayesian machine learning approach that jointly optimizes the model with respect to both the predictive mean and variance we refer to as Gaussian processes for photometric redshifts (GPZ). The predictive variance of the model takes into account both the variance due to data density and photometric noise. Using the Sloan Digital Sky Survey (SDSS) DR12 data, we show that our approach substantially outperforms other machine learning methods for photo-z estimation and their associated variance, such as TPZ and ANNZ2. We provide a MATLAB and PYTHON implementations that are available to download at https://github.com/OxfordML/GPz.

  18. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Energy Technology Data Exchange (ETDEWEB)

    Jouvel, S.; et al.

    2015-09-23

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \\pm 0.1 for the bright sample and of 1.78 \\pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm.

  19. Photometric Redshift Probability Distributions for Galaxies in the SDSS DR8

    CERN Document Server

    Sheldon, Erin S; Mandelbaum, Rachel; Brinkmann, J; Weaver, Benjamin A

    2011-01-01

    We present redshift probability distributions for galaxies in the SDSS DR8 imaging data. We used the nearest-neighbor weighting algorithm presented in Lima et al. 2008 and Cunha et al. 2009 to derive the ensemble redshift distribution N(z), and individual redshift probability distributions P(z) for galaxies with r < 21.8. As part of this technique, we calculated weights for a set of training galaxies with known redshifts such that their density distribution in five dimensional color-magnitude space was proportional to that of the photometry-only sample, producing a nearly fair sample in that space. We then estimated the ensemble N(z) of the photometric sample by constructing a weighted histogram of the training set redshifts. We derived P(z) s for individual objects using the same technique, but limiting to training set objects from the local color-magnitude space around each photometric object. Using the P(z) for each galaxy, rather than an ensemble N(z), can reduce the statistical error in measurements t...

  20. Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. II. Comparing Sampling Techniques Using Mock Data

    CERN Document Server

    Speagle, Joshua S

    2015-01-01

    In a companion paper, we proposed combining large numbers of "fuzzy archetypes" with Self-Organizing Maps (SOMs) to derive photometric redshifts in a data-driven way. In this paper, we investigate the performance of several sampling approaches that build on this general idea using a mock catalog designed to approximately simulate LSST ($ugrizY$) and Euclid ($YJH$) data from $z=0-6$ at fixed LSST $Y=24$ mag. We test eight different approaches: two brute-force methods, two Markov Chain Monte Carlo (MCMC)-based methods, two hierarchical sampling methods, and two "quick-search" methods based on quantities derived during the initial SOM training process. We find most methods perform reasonably well with small catastrophic outlier fractions and are able to robustly identify redshift probability distribution functions that are multi-modal and/or poorly constrained. Once these insecure objects are removed, the results are generally in good agreement with the strict accuracy requirements necessary to meet Euclid weak ...

  1. Photometric redshift estimation based on data mining with PhotoRApToR

    Science.gov (United States)

    Cavuoti, S.; Brescia, M.; De Stefano, V.; Longo, G.

    2015-03-01

    Photometric redshifts (photo-z) are crucial to the scientific exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C ++ based desktop application capable to solve non-linear regression and multi-variate classification problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multi-layer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and post-processing data. PhotoRApToR has been successfully tested on several scientific cases. The application is available for free download from the DAME Program web site.

  2. Photometric redshift estimation based on data mining with PhotoRApToR

    CERN Document Server

    Cavuoti, Stefano; De Stefano, Virgilio; Longo, Giuseppe

    2015-01-01

    Photometric redshifts (photo-z) are crucial to the scienti?c exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C++ based desktop application capable to solve non-linear regression and multi-variate classi?cation problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multilayer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and postprocessing data. PhotoRApToR has been successfully tested on several scienti?c cases. The application is available for free download from the DAME Program web site.

  3. The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; Shmakova, M.; Gerke, B.; /KIPAC, Menlo Park /SLAC /Stanford U.; Griffith, R.L.; /Caltech, JPL; Lotz, J.; /NOAO, Tucson

    2011-05-20

    We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We show that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a trade-off between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.

  4. Pan-STARRS1 variability of XMM-COSMOS AGN. I. Impact on photometric redshifts

    Science.gov (United States)

    Simm, T.; Saglia, R.; Salvato, M.; Bender, R.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2015-12-01

    Aims: Upcoming large area sky surveys like Euclid and eROSITA, which are dedicated to studying the role of dark energy in the expansion history of the Universe and the three-dimensional mass distribution of matter, crucially depend on accurate photometric redshifts. The identification of variable sources, such as active galactic nuclei (AGNs), and the achievable redshift accuracy for varying objects are important in view of the science goals of the Euclid and eROSITA missions. Methods: We probe AGN optical variability for a large sample of X-ray-selected AGNs in the XMM-COSMOS field, using the multi-epoch light curves provided by the Pan-STARRS1 (PS1) 3π and Medium Deep Field surveys. To quantify variability we employed a simple statistic to estimate the probability of variability and the normalized excess variance to measure the variability amplitude. Utilizing these two variability parameters, we defined a sample of varying AGNs for every PS1 band. We investigated the influence of variability on the calculation of photometric redshifts by applying three different input photometry sets for our fitting procedure. For each of the five PS1 bands gP1, rP1, iP1, zP1, and yP1, we chose either the epochs minimizing the interval in observing time, the median magnitude values, or randomly drawn light curve points to compute the redshift. In addition, we derived photometric redshifts using PS1 photometry extended by GALEX/IRAC bands. Results: We find that the photometry produced by the 3π survey is sufficient to reliably detect variable sources provided that the fractional variability amplitude is at least ~3%. Considering the photometric redshifts of variable AGNs, we observe that minimizing the time spacing of the chosen points yields superior photometric redshifts in terms of the percentage of outliers (33%) and accuracy (0.07), outperforming the other two approaches. Drawing random points from the light curve gives rise to typically 57% of outliers and an accuracy of

  5. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    CERN Document Server

    Sánchez, C; Lin, H; Miquel, R; Abdalla, F B; Amara, A; Banerji, M; Bonnett, C; Brunner, R; Capozzi, D; Carnero, A; Castander, F J; da Costa, L A N; Cunha, C; Fausti, A; Gerdes, D; Greisel, N; Gschwend, J; Hartley, W; Jouvel, S; Lahav, O; Lima, M; Maia, M A G; Martí, P; Ogando, R L C; Ostrovski, F; Pellegrini, P; Rau, M M; Sadeh, I; Seitz, S; Sevilla-Noarbe, I; Sypniewski, A; de Vicente, J; Abbot, T; Allam, S S; Atlee, D; Bernstein, G; Bernstein, J P; Buckley-Geer, E; Burke, D; Childress, M J; Davis, T; DePoy, D L; Dey, A; Desai, S; Diehl, H T; Doel, P; Estrada, J; Evrard, A; Fernández, E; Finley, D; Flaugher, B; Gaztanaga, E; Glazebrook, K; Honscheid, K; Kim, A; Kuehn, K; Kuropatkin, N; Lidman, C; Makler, M; Marshall, J L; Nichol, R C; Roodman, A; Sánchez, E; Santiago, B X; Sako, M; Scalzo, R; Smith, R C; Swanson, M E C; Tarle, G; Thomas, D; Tucker, D L; Uddin, S A; Valdés, F; Walker, A; Yuan, F; Zuntz, J

    2014-01-01

    We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification (SV) period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq.~deg.~at the nominal depth of the survey. We assess the photometric redshift performance using about 15000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-$z$'s are obtained and studied using most of the existing photo-$z$ codes. A weighting method in a multi-dimensional color-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-$z$ performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-$z$ methods using, for instance, Artificial Neural Networks or Random Forests, y...

  6. Photometric redshifts with the quasi Newton algorithm (MLPQNA) Results in the PHAT1 contest

    Science.gov (United States)

    Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A.

    2012-10-01

    Context. Since the advent of modern multiband digital sky surveys, photometric redshifts (photo-z's) have become relevant if not crucial to many fields of observational cosmology, such as the characterization of cosmic structures and the weak and strong lensing. Aims: We describe an application to an astrophysical context, namely the evaluation of photometric redshifts, of MLPQNA, which is a machine-learning method based on the quasi Newton algorithm. Methods: Theoretical methods for photo-z evaluation are based on the interpolation of a priori knowledge (spectroscopic redshifts or SED templates), and they represent an ideal comparison ground for neural network-based methods. The MultiLayer Perceptron with quasi Newton learning rule (MLPQNA) described here is an effective computing implementation of neural networks exploited for the first time to solve regression problems in the astrophysical context. It is offered to the community through the DAMEWARE (DAta Mining & Exploration Web Application REsource) infrastructure. Results: The PHAT contest (Hildebrandt et al. 2010, A&A, 523, A31) provides a standard dataset to test old and new methods for photometric redshift evaluation and with a set of statistical indicators that allow a straightforward comparison among different methods. The MLPQNA model has been applied on the whole PHAT1 dataset of 1984 objects after an optimization of the model performed with the 515 available spectroscopic redshifts as training set. When applied to the PHAT1 dataset, MLPQNA obtains the best bias accuracy (0.0006) and very competitive accuracies in terms of scatter (0.056) and outlier percentage (16.3%), scoring as the second most effective empirical method among those that have so far participated in the contest. MLPQNA shows better generalization capabilities than most other empirical methods especially in the presence of underpopulated regions of the knowledge base.

  7. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    Science.gov (United States)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-09-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  8. Estimating Photometric Redshifts with Artificial Neural Networks and Multi-Parameters

    Institute of Scientific and Technical Information of China (English)

    Li-Li Li; Yan-Xia Zhang; Yong-Heng Zhao; Da-Wei Yang

    2007-01-01

    We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Galaxy Sample using artificial neural networks(ANNs).Different input sets based on various parameters(e.g.magnitude,color index,flux information)are explored.Mainly,parameters from broadband photometry are utilized and their performances in redshift prediction are compared.While any parameter may be easily incorporated in the input,our results indicate that using the dereddened magnitudes often produces more accurate photometric redshifts than using the Petrosian magnitudes or model magnitudes as input.but the model magnitudes are superior to the Petrosian magnitudes.Also,better performance results when more effective parameters are used in the training set.The method is tested on a sample of 79 346 galaxies from the SDSS DR2.When using 19 parameters based on the dereddened magnitudes,the rms error in redshift estimation is σz=0.020184.The ANN is highly competitive tool compared to the traditional template-fitting methods when a 1arge and representative training set is available.

  9. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    Science.gov (United States)

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-01

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.

  10. The Impact of Starbursts and Post-Starbursts on the Photometric Evolution of High Redshift Galaxies

    CERN Document Server

    Fritze von Alvensleben, U; Alvensleben, Uta Fritze -- v.; Bicker, Jens

    2006-01-01

    We present evolutionary synthesis models for galaxies of spectral types Sa through Sd with starbursts of various strengths triggered at various redshifts and study their photometric evolution before, during, and after their bursts in a cosmological context. We find that bursts at high redshift, even very strong ones, only cause a small blueing of their intrinsically blue young parent galaxies. At lower redshift, even small bursts cause a significant blueing of their intrinsically redder galaxies. While the burst phase is generally short, typically a few hundred Myr in normal-mass galaxies, the postburst stage with its red colors and, in particular the very red ones for early bursts at high redshift, is much longer, of the order of several Gyr. Even without any dust, which in the postburst stage is not expected to play an important role anyway, models easily reach the colors of EROs in the redshift range z=2 through z=0.5 after starbursts at redshifts between 2 and 4. We therefore propose a third alternative f...

  11. A reliable cluster detection technique using photometric redshifts: introducing the 2TecX algorithm

    CERN Document Server

    van Breukelen, Caroline

    2009-01-01

    We present a new cluster detection algorithm designed for finding high-redshift clusters using optical/infrared imaging data. The algorithm has two main characteristics. First, it utilises each galaxy's full redshift probability function, instead of an estimate of the photometric redshift based on the peak of the probability function and an associated Gaussian error. Second, it identifies cluster candidates through cross-checking the results of two substantially different selection techniques (the name 2TecX representing the cross-check of the two techniques). These are adaptations of the Voronoi Tesselations and Friends-Of-Friends methods. Monte-Carlo simulations of mock catalogues show that cross-checking the cluster candidates found by the two techniques significantly reduces the detection of spurious sources. Furthermore, we examine the selection effects and relative strengths and weaknesses of either method. The simulations also allow us to fine-tune the algorithm's parameters, and define completeness an...

  12. Robust photometric redshift determinations of gamma-ray burst afterglows at z > 2

    CERN Document Server

    Curran, P A; Heemskerk, M H M; Starling, R L C; Wiersema, K; Van der Horst, A J

    2008-01-01

    Theory suggests that about 10% of Swift-detected gamma-ray bursts (GRBs) will originate at redshifts greater than 5 yet a number of high redshift candidates may be left unconfirmed due to the lack of measured redshifts. Here we introduce our code, GRBz, a method of simultaneous multi-parameter fitting of GRB afterglow optical and near infrared, spectral energy distributions. It allows for early determinations of the photometric redshift, spectral index and host extinction to be made. We assume that GRB afterglow spectra are well represented by a power-law decay and model the effects of absorption due to the Lyman forest and host extinction. We use a genetic algorithm-based routine to simultaneously fit the parameters of interest, and a Monte Carlo error analysis. We use GRBs of previously determined spectroscopic redshifts to prove our method, while also introducing new near infrared data of GRB 990510 which further constrains the value of the host extinction. Our method is effective in estimating the photome...

  13. A new catalog of photometric redshifts in the Hubble Deep Field

    CERN Document Server

    Fernández-Soto, A; Yahil, A

    1999-01-01

    Using the newly available infrared images of the Hubble Deep Field in the J, H, and K bands and an optimal photometric method, we have refined a technique to estimate the redshifts of 1067 galaxies. A detailed comparison of our results with the spectroscopic redshifts in those cases where the latter are available shows that this technique gives very good results for bright enough objects (AB(8140) < 26.0). From a study of the distribution of residuals (Dz(rms)/(1+z) ~ 0.1 at all redshifts) we conclude that the observed errors are mainly due to cosmic variance. This very important result allows for the assessment of errors in quantities to be directly or indirectly measured from the catalog. We present some of the statistical properties of the ensemble of galaxies in the catalog, and finish by presenting a list of bright high-redshift (z ~ 5) candidates extracted from our catalog, together with recent spectroscopic redshift determinations confirming that two of them are at z=5.34 and z=5.60.

  14. ANNz2 - Photometric redshift and probability density function estimation using machine learning methods

    CERN Document Server

    Sadeh, Iftach; Lahav, Ofer

    2015-01-01

    We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister and Lahav (2004). Large photometric galaxy surveys are important for cosmological studies, and in particular for characterizing the nature of dark energy. The success of such surveys greatly depends on the ability to measure photo-zs, based on limited spectral data. ANNz2 utilizes multiple machine learning methods, such as artificial neural networks, boosted decision/regression trees and k-nearest neighbours. The objective of the algorithm is to dynamically optimize the performance of the photo-z estimation, and to properly derive the associated uncertainties. In addition to single-value solutions, the new code also generates full probability density functions (PDFs) in two different ways. In addition, estimators are incorporated to mitigate possible problems of spectroscopic training samples which are not representative or are incomplete. ANNz2 is also adapted to provide optimized solution...

  15. THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG

    International Nuclear Information System (INIS)

    We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for ∼13 million objects classified as galaxies in the co-add with r 68 = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  16. Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. I. Methodology

    CERN Document Server

    Speagle, Joshua S

    2015-01-01

    We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large numbers of galaxy spectral templates into a corrresponding collection of "fuzzy archetypes" using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission line strengths. To bypass widely seperated degeneracies in parameter space (e.g., the redshift-reddening degeneracy), we train Self-Organizing Maps (SOMs) on a large "model catalogs" generated from appropriate Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs) using the associated set of inverse mappings from the SOM to the underlying model parameters. This combined approach enables the multi-modal exploration of known variation among galaxy spectral energy distributions (S...

  17. A Photometric Redshift of z ~ 9.4 for GRB 090429B

    CERN Document Server

    Cucchiara, A; Fox, D B; Tanvir, N R; Ukwatta, T N; Berger, E; Krühler, T; Yoldaş, A Küpcü; Wu, X F; Toma1, K; Greiner, J; E., F Olivares; Rowlinson, A; Amati, L; Sakamoto, T; Roth, K; Stephens, A; Fynbo, J P U; Hjorth, J; Malesani, D; Jakobsson, P; Wiersema, K; O'Brien, P T; Soderberg, A M; Foley, R J; Fruchter, A S; Rhoads, J; Rutledge, R E; Schmidt, B P; Dopita, M A; Podsiadlowski, P; Willingale, R; Wolf, C; Kulkarni, S R; D'Avanzo, P

    2011-01-01

    Gamma-ray bursts (GRBs) serve as powerful probes of the early Universe, with their luminous afterglows revealing the locations and physical properties of star forming galaxies at the highest redshifts, and potentially locating first generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal to noise spectroscopy, or photometry. Here we present a photometric redshift of $z \\sim 9.4$ for the {\\em Swift} detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming an Small Magellanic Cloud dust law (which has been found in a majority of GRB sight-lines), the 90% likelihood range for the redshift is $9.067$. The non-detection of the host galaxy to deep limits ($Y$(AB) $\\sim 28$, which would correspond roughly to 0.001$L^*$ at $z=1$) in our late time optical and infrared observations with the {\\em Hubble Space Telescope}, strongly supports the ext...

  18. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    Science.gov (United States)

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J.-P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J.-F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy \\sigma _{\\Delta z/(1+z_{spec})}\\sim 0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H AB = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band. Based on observations by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under

  19. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    CERN Document Server

    Castellano, M; Trevese, D; Grazian, A; Pentericci, L; Fiore, F; Fontana, A; Giallongo, E; Santini, P; Cristiani, S; Nonino, M; Vanzella, E

    2007-01-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South Field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)D technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field and we found that the two populations are significantly different supporting the reality of the structure. The reddest galaxies, once evolved according to their best fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M_200 total mass of the cluster is in the range 1.3 x 10^14 - 5.7x 10^14 Msun, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1Ms Chandra observations, is L_X=0.5 x 10^43 erg s^...

  20. Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data

    CERN Document Server

    Crocce, M; Bauer, A H; Ross, A J; Sevilla-Noarbe, I; Giannantonio, T; Sobreira, F; Sanchez, J; Gaztanaga, E; Kind, M Carrasco; Sanchez, C; Bonnett, C; Benoit-Levy, A; Brunner, R J; Rosell, A Carnero; Cawthon, R; Fosalba, P; Hartley, W; Kim, E J; Leistedt, B; Miquel, R; Percival, W J; Rosenfeld, R; Rykoff, E S; Sanchez, E; Abbott, T; Abdalla, F B; Allam, S; Banerji, M; Bernstein, G M; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Castander, F J; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Diehl, H T; Eifler, T F; Evrard, A E; Neto, A Fausti; Fernandez, E; Finley, D A; Flaugher, B; Frieman, J; Gerdes, D W; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; Maia, M A G; March, M; Marshall, J L; Martini, P; Melchior, P; Miller, C J; Neilsen, E; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Sako, M; Santiago, B; Schubnell, M; Smith, R C; Soares-Santos, M; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Vikram, V; Walker, A R; Wechsler, R H; Weller, J; Zuntz, J

    2015-01-01

    We study the clustering of galaxies detected at $i<22.5$ in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using $2.3\\times 10^6$ galaxies over a contiguous 116 deg$^2$ region in five bins of photometric redshift width $\\Delta z = 0.2$ in the range $0.2 < z < 1.2.$ The impact of photometric redshift errors are assessed by comparing results using a template-based photo-$z$ algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper (Leistedt et al 2015) presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck $\\Lam...

  1. WISE x SuperCOSMOS photometric redshift catalog: 20 million galaxies over 3pi steradians

    CERN Document Server

    Bilicki, M; Jarrett, T H; Cluver, M E; Maddox, N; Brown, M J I; Taylor, E N; Hambly, N C; Solarz, A; Holwerda, B W; Baldry, I; Loveday, J; Moffett, A; Hopkins, A M; Driver, S P; Alpaslan, M; Bland-Hawthorn, J

    2016-01-01

    We cross-match the two currently largest all-sky photometric catalogs, mid-infrared WISE and SuperCOSMOS scans of UKST/POSS-II photographic plates, to obtain a new galaxy sample that covers 3pi steradians. In order to characterize and purify the extragalactic dataset, we use external GAMA and SDSS spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended-source catalog. After appropriate data cleaning we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of over 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic da...

  2. Using the 2-MASS photometric redshift survey to optimize LIGO follow-up observations

    Science.gov (United States)

    Antolini, Elisa; Heyl, Jeremy S.

    2016-10-01

    The initial discovery of Laser Interferometer Gravitational-Wave Observatory (LIGO) on 2015 September 14 was the inspiral merger and ring-down of the black hole binary at a distance of about 500 Mpc or a redshift of about 0.1. The search for electromagnetic counterparts for the inspiral of binary black holes is impeded by coarse initial source localizations and a lack of a compelling model for the counterpart; therefore, rapid electromagnetic follow-up is required to understand the astrophysical context of these sources. Because astrophysical sources of gravitational radiation are likely to reside in galaxies, it would make sense to search first in regions where the LIGO-Virgo probability is large and where the density of galaxies is large as well. Under the assumption that the probability of a gravitational-wave event from a given region of space is proportional to the density of galaxies within the probed volume, one can calculate an improved localization of the position of the source simply by multiplying the LIGO-Virgo skymap by the density of galaxies in the range of redshifts. We propose using the 2-MASS photometric redshift galaxy catalogue for this purpose and demonstrate that using it can dramatically reduce the search region for electromagnetic counterparts.

  3. Cosmology with photometric weak lensing surveys: constraints with redshift tomography of convergence peaks and moments

    CERN Document Server

    Petri, Andrea; Haiman, Zoltán

    2016-01-01

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state $w$. When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet $(\\Omega_m,w,\\sigma_8)$ for an LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the $1\\sigma$ confidence interval in $(\\Omega_m,w)$ space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in $(\\Omega_m,w)$ by a factor of 3 and 4, respectively. When we add cosmic microwave background ...

  4. Pan-STARRS1 variability of XMM-COSMOS AGN. I. Impact on photometric redshifts

    CERN Document Server

    Simm, T; Salvato, M; Bender, R; Burgett, W S; Chambers, K C; Draper, P W; Flewelling, H; Kaiser, N; Kudritzki, R -P; Magnier, E A; Metcalfe, N; Tonry, J L; Wainscoat, R J; Waters, C

    2015-01-01

    [Abbreviated] Upcoming large area sky surveys like EUCLID and eROSITA crucially depend on accurate photometric redshifts (photo-z). The identification of variable sources, such as AGNs, and the achievable redshift accuracy for varying objects are important in view of the science goals of the EUCLID and eROSITA missions. We probe AGN optical variability for a large sample of X-ray-selected AGNs in the XMM-COSMOS field, using the light curves provided by the Pan-STARRS1 (PS1) 3pi and MDF04 surveys. Utilizing two different variability parameters, we defined a sample of varying AGNs for every PS1 band. We investigated the influence of variability on the calculation of photo-z by applying three different input photometry sets for our fitting procedure. For each of the five PS1 bands, we chose either the epochs minimizing the interval in observing time, the median magnitude values, or randomly drawn light curve points to compute the redshift. In addition, we derived photo-z using PS1 photometry extended by GALEX/IR...

  5. Photo-$z$ with CuBAN$z$: An improved photometric redshift estimator using Clustering aided Back Propagation Neural network

    CERN Document Server

    Samui, Saumyadip

    2016-01-01

    We present an improved photometric redshift estimator code, CuBAN$z$, that is publicly available at https://goo.gl/fpk90V}{https://goo.gl/fpk90V. It uses the back propagation neural network along with clustering of the training set, which makes it more efficient than existing neural network codes. In CuBAN$z$, the training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. $u-g$, $g-r$ etc.) rather than the apparent magnitudes at various photometric bands as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. Separate neural networks are trained for each cluster using all possible colors, magnitudes and uncertainties in the measurements. For a galaxy with unknown redshift, we identify the closest possible clusters having similar photometric properties and use those clusters to get the...

  6. UV-to-FIR analysis of Spitzer/IRAC sources in the Extended Groth Strip II: Photometric redshifts, Stellar masses and Star formation rates

    CERN Document Server

    Barro, Guillermo; Gallego, Jesus; Ashby, Matthew L N; Kajisawa, Masaru; Miyazaki, Satoshi; Villar, Victor; Yamada, Toru; Zamorano, Jaime

    2011-01-01

    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Barro et al. 2011a, Paper I), we present a detailed SED analysis of nearly 80,000 IRAC 3.6+4.5 micron selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] < 23.75 (85% completeness level of the IRAC survey) over 0.48 square degrees. The typical photometric redshift accuracy is Delta z/(1+z)=0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and IMFs in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic dif...

  7. NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Expanding upon the work of Way and Srivastava we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large-size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best-fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u, g, r, i, z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.

  8. The ALHAMBRA Survey: Bayesian Photometric Redshifts with 23 bands for 3 squared degrees

    CERN Document Server

    Molino, A; Moles, M; Fernández-Soto, A; Cristóbal-Hornillos, D; Ascaso, B; Jiménez-Teja, Y; Schoenell, W; Arnalte-Mur, P; Pović, M; Coe, D; López-Sanjuan, C; Díaz-García, L A; Varela, J; Matute, I; Masegosa, J; Márquez, I; Perea, J; Del Olmo, A; Husillos, C; Alfaro, E; Aparicio-Villegas, T; Cerviño, M; Huertas-Company, M; Aguerri, A L; Broadhurst, T; Cabrera-Caño, J; Cepa, J; Delgado, R M González; Infante, L; Martínez, V J; Prada, F; Quintana, J M

    2013-01-01

    The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous ~ $300\\AA$ filters covering the optical range, combining them with deep $JHKs$ imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 sq. deg FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs on-target science images. The photometric system was designed to maximize the effective depth of the survey in terms of accurate spectral-type and photo-zs estimation along with the capability of identification of relatively faint emission lines. Here we present multicolor photometry and photo-zs for ~438k galaxies, detected in synthetic F814W images, complete down to I~24.5 AB, taking into account realistic noise estimates, and correcting by PSF and aperture effects with the ColorPro so...

  9. CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For Normal and for X-Ray-Detected Galaxies

    CERN Document Server

    Hsu, Li-Ting; Nandra, Kirpal; Brusa, Marcella; Bender, Ralf; Buchner, Johannes; Donley, Jennifer L; Kocevski, Dale D; Guo, Yicheng; Hathi, Nimish P; Rangel, Cyprian; Willner, S P; Brightman, Murray; Georgakakis, Antonis; Budavári, Tamás; Szalay, Alexander S; Ashby, Matthew L N; Barro, Guillermo; Dahlen, Tomas; Faber, Sandra M; Ferguson, Henry C; Galametz, Audrey; Grazian, Andrea; Grogin, Norman A; Huang, Kuang-Han; Koekemoer, Anton M; Lucas, Ray A; McGrath, Elizabeth; Mobasher, Bahram; Peth, Michael; Rosario, David J; Trump, Jonathan R

    2014-01-01

    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources ($\\sim 96\\%$). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are $4\\%$ and $5.4\\%$ respectively. The results within the CANDELS...

  10. The impact of JWST broad-band filter choice on photometric redshift estimation

    CERN Document Server

    Bisigello, L; Colina, L; Fèvre, O Le; Nørgaard-Nielsen, H U; Pérez-González, P G; Pye, J; van der Werf, P; Ilbert, O; Grogin, N; Koekemoer, A

    2016-01-01

    The determination of galaxy redshifts in James Webb Space Telescope (JWST)'s blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6-5.0 {\\mu}m and Mid Infrared Instrument (MIRI) at {\\lambda}>5.0 {\\mu}m. In this work we analyse the impact of choosing different combinations of NIRCam and MIRI broad-band filters (F070W to F770W), as well as having ancillary data at {\\lambda}=10, but the zphot quality significantly degrades at S/N<=5. Adding MIRI photometry with one magnitude brighter depth than the NIRCam depth allows for a redshift recovery of 83-99%, depending on SED type, and its effect is particularly noteworthy for galaxies with nebular emission. The vast majority of NIRCam galaxies with [F150W]=29 AB mag at z=7-10 will be detected with MIRI at [F560W, F770W]<28 mag if these sources are at least mildly evolved or have spectra with emission lines boosting the mid-infrared fluxes.

  11. Accuracy of photometric redshifts for future weak lensing surveys from space

    CERN Document Server

    Bellagamba, Fabio; Moscardini, Lauro; Bolzonella, Micol

    2012-01-01

    Photometric redshifts are a key tool to extract as much information as possible from planned cosmic shear experiments. In this work we aim to test the performances that can be achieved with observations in the near-infrared from space and in the optical from the ground. This is done by performing realistic simulations of multi-band observations of a patch of the sky, and submitting these mock images to software usually applied to real images to extract the photometry and then a redshift estimate for each galaxy. In this way we mimic the most relevant sources of uncertainty present in real data analysis, including blending and light pollution between galaxies. As an example we adopt the infrared setup of the ESA-proposed Euclid mission, while we simulate different observations in the optical, modifying filters, exposure times and seeing values. Finally, we consider directly some future ground-based experiments, such as LSST, Pan-Starrs and DES. The results highlight the importance of u-band observations, espec...

  12. A blind test of photometric redshifts on ground-based data

    CERN Document Server

    Hildebrandt, H; Benítez, N

    2008-01-01

    Aims. We analyse the relative performance of different photo-z codes in blind applications to ground-based data. Methods. We tested the codes on imaging datasets with different depths and filter coverages and compared the results to large spectroscopic catalogues. The photo-z error behaviour was analysed to select cleaner subsamples with more secure photo-z estimates. We consider Hyperz, BPZ, and the code used in the CADIS, COMBO-17, and HIROCS surveys. Results. The photo-z error estimates of the three codes do not correlate tightly with the accuracy of the photo-z's. While very large errors sometimes indicate a true catastrophic photo-z failure, smaller errors are usually not meaningful. For any given dataset, we find significant differences in redshift accuracy and outlier rates between the different codes when compared to spectroscopic redshifts. However, different codes excel in different regimes. The agreement between different sets of photo-z's is better for the subsample with secure spectroscopic redsh...

  13. Can We Detect the Color–Density Relation with Photometric Redshifts?

    Science.gov (United States)

    Lai, Chuan-Chin; Lin, Lihwai; Jian, Hung-Yu; Chiueh, Tzi-Hong; Merson, Alex; Baugh, Carlton M.; Foucaud, Sebastien; Chen, Chin-Wei; Chen, Wen-Ping

    2016-07-01

    A variety of methods have been proposed to define and to quantify galaxy environments. While these techniques work well in general with spectroscopic redshift samples, their application to photometric redshift surveys remains uncertain. To investigate whether galaxy environments can be robustly measured with photo-z samples, we quantify how the density measured with the nearest-neighbor approach is affected by photo-z uncertainties by using the Durham mock galaxy catalogs in which the 3D real-space environments and the properties of galaxies are known exactly. Furthermore, we present an optimization scheme in the choice of parameters used in the 2D projected measurements that yield the tightest correlation with respect to the 3D real-space environments. By adopting the optimized parameters in the density measurements, we show that the correlation between the 2D projected optimized density and the real-space density can still be revealed, and the color–density relation is also visible out to z ∼ 0.8 even for a photo-z uncertainty ({σ }{{{Δ }}z/(1+z)}) up to 0.06. We find that at redshifts 0.3 Medium Deep Survey (PS-MDS), one of the largest deep optical imaging surveys. Using data from ∼5 square degrees of survey area, our results show that it is possible to measure local density and to probe the color–density relation with 3σ confidence level out to z ∼ 0.8 in the PS-MDS. The color–density relation, however, quickly degrades for data covering smaller areas.

  14. The LABOCA survey of the Extended Chandra Deep Field South: A photometric redshift survey of submillimetre galaxies

    CERN Document Server

    Wardlow, J L; Coppin, K E K; Alexander, D M; Brandt, W N; Danielson, A L R; Luo, B; Swinbank, A M; Walter, F; Weiss, A; Xue, Y Q; Zibetti, S; Bertoldi, F; Biggs, A D; Chapman, S C; Dannerbauer, H; Dunlop, J S; Gawiser, E; Ivison, R J; Knudsen, K K; Kovacs, A; Lacey, C G; Menten, K M; Padilla, N; Rix, H -W; van der Werf, P P

    2010-01-01

    [abridged] We derive photometric redshifts from 17-band optical to mid-IR photometry of 74 robust counterparts to 68 of the 126 submillimetre galaxies (SMGs) selected at 870um by LABOCA observations in the ECDFS. The median photometric redshift of identified SMGs is z=2.2\\pm0.1, the interquartile range is z=1.8-2.7 and we identify 10 (~15%) high-redshift (z>3) SMGs. We derive a simple redshift estimator for SMGs based on the 3.6 and 8um fluxes, which is accurate to Delta_z~0.4 for SMGs at z3 and hence ~30% of all SMGs have z>3. We estimate that the full S_870um>4mJy SMG population has a median redshift of 2.5\\pm0.6. In contrast to previous suggestions we find no significant correlation between S_870um and redshift. The median stellar mass of the SMGs derived from SED fitting is (9.2\\pm0.9)x10^10Msun and the interquartile range is (4.7-14)x10^10Msun, although we caution that uncertainty in the star-formation histories results in a factor of ~5 uncertainty in these stellar masses. The median characteristic dust...

  15. Photometric Redshifts and Model Spectral Energy Distributions of Galaxies From the SDSS-III BOSS DR10 Data

    CERN Document Server

    Greisel, N; Drory, N; Bender, R; Saglia, R P; Snigula, J

    2015-01-01

    We construct a set of model spectra specifically designed to match the colours of the BOSS CMASS galaxies and to be used with photometric redshift template fitting techniques. As a basis we use a set of spectral energy distributions (SEDs) of single and composite stellar population models. These models cannot describe well the whole colour range populated by the CMASS galaxies at all redshifts, wherefore we modify them by multiplying the SEDs with $\\lambda^{-\\beta}$ for $\\lambda>\\lambda_i$ for different values of $\\lambda_i$ and $\\beta$. When fitting these SEDs to the colours of the CMASS sample, with a burst and dust components in superposition, we can recreate the location in colour spaces inhabited by the CMASS galaxies. From the best fitting models we select a small subset in a two-dimensional plane, whereto the galaxies were mapped by a self-organizing map. These models are used for the estimation of photometric redshifts with a Bayesian template fitting code. The photometric redshifts with the novel tem...

  16. Structure detection in the D1 CFHTLS deep field using accurate photometric redshifts: a benchmark

    CERN Document Server

    Mazure, A; Pierre, M; Lefèvre, O; Arnouts, S; Duc, P A; Ilbert, O; Le Brun, V; Meneux, B; Pacaud, F; Surdej, J; Valtchanov, I

    2007-01-01

    We investigate structures in the D1 CFHTLS deep field in order to test the method that will be applied to generate homogeneous samples of clusters and groups of galaxies in order to constrain cosmology and detailed physics of groups and clusters. Adaptive kernel technique is applied on galaxy catalogues. This technique needs none of the usual a-priori assumptions (luminosity function, density profile, colour of galaxies) made with other methods. Its main drawback (decrease of efficiency with increasing background) is overcame by the use of narrow slices in photometric redshift space. There are two main concerns in structure detection. One is false detection and the second, the evaluation of the selection function in particular if one wants "complete" samples. We deal here with the first concern using random distributions. For the second, comparison with detailed simulations is foreseen but we use here a pragmatic approach with comparing our results to GalICS simulations to check that our detection number is n...

  17. ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning

    Science.gov (United States)

    Sadeh, I.; Abdalla, F. B.; Lahav, O.

    2016-10-01

    We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister & Lahav, which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machine learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiment's first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at http://github.com/IftachSadeh/ANNZ.

  18. The Las Campanas IR Survey. II. Photometric redshifts, comparison with models and clustering evolution

    CERN Document Server

    Firth, A E; McMahon, R G; Lahav, O; Ellis, Richard S; Sabbey, C N; McCarthy, P J; Chen, H W; Marzke, R O; Wilson, J; Abraham, R G; Beckett, M G; Carlberg, R G; Lewis, J R; MacKay, C D; Murphy, D C; Oemler, A E; Persson, S E

    2002-01-01

    The LCIR Survey, using the Cambridge IR Survey Instrument (CIRSI), reaches H \\~ 20-21 over ~1 deg^2. We present results for 744 arcmin^2 in which public UBVRI data exist. We compare optical-IR colours with predictions of a semi-analytic hierarchical model (SAM) and find reasonable agreement. We also determine photometric redshifts, finding a median z of z_m ~ 0.55. We compare N(z) of different spectral types with models, showing that the observations are inconsistent with simple PLE models while the SAM provides a reasonable fit to the total N(z) but underestimates the number of z ~ 1 red spectral types. We also present N(z) for samples of red objects (EROs). We find that EROs with R - H > 4 and H 4 comprise ~18% of the observed galaxy population while in the SAM they contribute only ~4%. We also determine the angular correlation function w(theta) for magnitude, colour, spectral type and photo-z selected samples and use the estimated N(z) to derive the spatial clustering xi(r). Parametrizing xi(r) by xi(r_c,...

  19. Analytic Photometric Redshift Estimator for Type Ia Supernovae From the Large Synoptic Survey Telescope

    CERN Document Server

    Wang, Yun; Kuhlmann, S

    2015-01-01

    Accurate and precise photometric redshifts (photo-z's) of Type Ia supernovae (SNe Ia) can enable the use of SNe Ia, measured only with photometry, to probe cosmology. This dramatically increases the science return of supernova surveys planned for the Large Synoptic Survey Telescope (LSST). In this paper we describe a significantly improved version of the simple analytic photo-z estimator proposed by Wang (2007) and further developed by Wang, Narayan, and Wood-Vasey (2007). We apply it to 55,422 simulated SNe Ia generated using the SNANA package with the LSST filters. We find that the estimated errors on the photo-z's, \\sigma(z_{phot})/(1+z_{phot}), can be used as filters to produce a set of photo-z's that have high precision, accuracy, and purity. Using SN Ia colors as well as SN Ia peak magnitude in the $i$ band, we obtain a set of photo-z's with 2 percent accuracy (with \\sigma(z_{phot}-z_{spec})/(1+z_{spec}) = 0.02), a bias in z_{phot} (the mean of z_{phot}-z_{spec}) of -9 X 10^{-5}, and an outlier fraction...

  20. A Custom Support Vector Machine Analysis of the Efficacy of Galaxy Shape Information in Photometric Redshift Estimation

    CERN Document Server

    Jones, Evan

    2016-01-01

    Aims: We present an analysis of the effects of integrating galaxy morphological information in photometric redshift (photo-z) estimation with a custom support vector machine (SVM) classification package. We also present a comparison with other methods. Statistical correlations between galaxy shape information and redshift that are not degenerate with photometric band magnitudes would be evident through an improvement in the accuracy of photo-z estimations, or possibly even in a lack of significant loss of accuracy in light of the noise introduced by including additional parameters. Methods: SVM algorithms, a type of machine learning, utilize statistical learning theory and optimization theory to construct predictive models based on the information content of data in a way that can treat different input types symmetrically, which can be a useful estimator of the additional information contained in parameters, such as those describing the morphology of the galaxies. The custom SVM classification code we have de...

  1. Apples to apples A2 - I. Realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys

    Science.gov (United States)

    Ascaso, B.; Mei, S.; Benítez, N.

    2015-11-01

    We present new mock catalogues for two of the largest Stage IV next-generation surveys in the optical and infrared: Large Synoptic Sky Telescope (LSST) and Euclid, based on an N-body simulation+semi-analytical cone with a posterior modification with PHOTREAL. This technique modifies the original photometry by using an empirical library of spectral templates to make it more realistic. The reliability of the catalogues is confirmed by comparing the obtained colour-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. Consistent comparisons between the expected photometric redshifts for different surveys are also provided. Very deep near-infrared surveys such as Euclid will provide very good performance (Δz/(1 + z) ˜ 0.025-0.053) down to H ˜ 24 AB mag and up to z ˜ 3 depending on the optical observations available from the ground, whereas extremely deep optical surveys such as LSST will obtain an overall lower photometric redshift resolution (Δz/(1 + z) ˜ 0.045) down to i ˜ 27.5 AB mag, being considerably improved (Δz/(1 + z) ˜ 0.035) if we restrict the sample down to i ˜ 24 AB mag. Those numbers can be substantially upgraded by selecting a subsample of galaxies with the best quality photometric redshifts. We finally discuss the impact that these surveys will have for the community in terms of photometric redshift legacy. This is the first of a series of papers where we set a framework for comparability between mock catalogues and observations with a particular focus on cluster surveys. The Euclid and LSST mocks are made publicly available.

  2. Finding Galaxy Groups In Photometric Redshift Space: the Probability Friends-of-Friends (pFoF) Algorithm

    CERN Document Server

    Li, I-hui

    2008-01-01

    We present a structure finding algorithm designed to identify galaxy groups in photometric redshift data sets: the probability friends-of-friends (pFoF) algorithm. This algorithm is derived by combining the friends-of-friends algorithm in the transverse direction and the photometric redshift probability densities in the radial dimension. The innovative characteristic of our group-finding algorithm is the improvement of redshift estimation via the constraints given by the transversely connected galaxies in a group, based on the assumption that all galaxies in a group have the same redshift. Tests using the Virgo Consortium Millennium Simulation mock catalogs allow us to show that the recovery rate of the pFoF algorithm is larger than 80% for mock groups of at least $2\\times10^{13}M_{\\sun}$, while the false detection rate is about 10% for pFoF groups containing at least $\\sim8$ net members. Applying the algorithm to the CNOC2 group catalogs gives results which are consistent with the mock catalog tests. From al...

  3. The ASTRODEEP Frontier Fields catalogues. II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416

    Science.gov (United States)

    Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.

    2016-05-01

    Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The

  4. The VLT observations of the HDF-S NICMOS field photometric catalog and high redshift galaxy candidates

    CERN Document Server

    Fontana, A; Fosbury, R A E; Giallongo, E; Hook, R N; Poli, F; Renzini, A; Rosati, P; Viezzer, R

    1999-01-01

    We present the deep UBVRI observations of the HDF-S NICMOS field obtained as part of the Science Verification of the VLT Unit 1 telescope. The images have been used to construct object catalogs and to obtain photometric redshifts. The effective field of view is $\\simeq 70\\times70$ arcsec$^2$, and the formal $5\\sigma$ limiting magnitudes (in a 2 FWHM aperture) are 26.3, 27.8, 27.5, 26.9, 25.2 in the $U$, $B$, $V$, $R$ and $I$ bands, respectively. Thanks to the sub-arcsecond image quality, relatively long exposure time, and large collecting area of the VLT, this is the deepest set of multicolor images ever obtained from a ground-based telescope. Galaxy counts have been derived independently in each band, and show no significant departures from previous data from wider areas. A multicolor photometric catalog of all the galaxies selected in the $R$ band has also been obtained and used to derive photometric redshifts for all galaxies with $R \\leq 26.5 $, using also the J,H and K magnitudes from the NICMOS deep obs...

  5. Simultaneous Constraints on Cosmology and Photometric Redshift Bias from Weak Lensing and Galaxy Clustering

    CERN Document Server

    Samuroff, S; Bridle, SL; Zuntz, J; MacCrann, N; Krause, E; Eifler, T; Kirk, D

    2016-01-01

    We investigate the expected cosmological constraints from a combination of weak lensing and large-scale galaxy clustering using realistic redshift distributions. Introducing a systematic bias in the weak lensing redshift distributions (of 0.05 in redshift) produces a $>2\\sigma$ bias in the recovered matter power spectrum amplitude and dark energy equation of state, for preliminary Stage III surveys. We demonstrate that these cosmological errors can be largely removed by marginalising over unknown biases in the assumed weak lensing redshift distributions, if we assume high quality redshift information for the galaxy clustering sample. Furthermore the cosmological constraining power is mostly retained despite removing much of the information on the weak lensing redshift distribution biases. We show that this comes from complementary degeneracy directions between cosmic shear and the combination of galaxy clustering with cross-correlation between shear and galaxy number density. Finally we examine how the self-c...

  6. Measuring the Dark Matter Halo Mass of X-ray AGN at z~1 using photometric redshifts

    OpenAIRE

    Mountrichas, G.; Georgakakis, A.; Finoguenov, A.; Erfanianfar, G.; Cooper, M. C.; Coil, A. L.; Laird, E. S.; Nandra, K.; Newman, J. A.

    2012-01-01

    Data from the AEGIS, COSMOS and ECDFS surveys are combined to infer the bias and dark matter halo mass of moderate luminosity [LX(2-10 keV) = 42.9 erg s-1] X-ray AGN at z~1 via their cross-correlation function with galaxies. In contrast to standard cross-correlation function estimators, we present a method that requires spectroscopy only for the AGN and uses photometric redshift probability distribution functions for galaxies to determine the projected real-space AGN/galaxy cross-correlation ...

  7. Exploring Photometric Redshifts as an Optimization Problem: An Ensemble MCMC and Simulated Annealing-Driven Template-Fitting Approach

    CERN Document Server

    Speagle, Joshua S; Eisenstein, Daniel J; Masters, Daniel C; Steinhardt, Charles L

    2015-01-01

    Using a grid of $\\sim 2$ million elements ($\\Delta z = 0.005$) adapted from COSMOS photometric redshift (photo-z) searches, we investigate the general properties of template-based photo-z likelihood surfaces. We find these surfaces are filled with numerous local minima and large degeneracies that generally confound rapid but "greedy" optimization schemes, even with additional stochastic sampling methods. In order to robustly and efficiently explore these surfaces, we develop BAD-Z [Brisk Annealing-Driven Redshifts (Z)], which combines ensemble Markov Chain Monte Carlo (MCMC) sampling with simulated annealing to sample arbitrarily large, pre-generated grids in approximately constant time. Using a mock catalog of 384,662 objects, we show BAD-Z samples $\\sim 40$ times more efficiently compared to a brute-force counterpart while maintaining similar levels of accuracy. Our results represent first steps toward designing template-fitting photo-z approaches limited mainly by memory constraints rather than computation...

  8. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    CERN Document Server

    Jouvel, S; Comparat, J; Carnero, A; Camacho, H; Abdalla, F B; Kneib, J-P; Merson, A; Lima, M; Sobreira, F; da Costa, Luiz; Prada, F; Zhu, G B; Benoit-Levy, A; De La Macora, A; Kuropatkin, N; Lin, H; Abbott, T M C; Allam, S; Banerji, M; Bertin, E; Brooks, D; Capozzi, D; Kind, M Carrasco; Carretero, J; Castander, F J; Cunha, C E; Desai, S; Doel, P; Eifler, T F; Estrada, J; Neto, A Fausti; Flaugher, B; Fosalba, P; Frieman, J; Gaztanaga, E; Gerdes, D W; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Lahav, O; Li, T S; Maia, M A G; March, M; Marshall, J L; Miquel, R; Percival, W J; Plazas, A A; Reil, K; Romer, A K; Roodman, A; Rykoff, E S; Sako, M; Sanchez, E; Santiago, B; Scarpine, V; Sevilla-Noarbe, I; Santos, M Soares; Suchyta, E; Tarle, G; Thaler, J; Thomas, D; Walker, A; Zhang, Y

    2015-01-01

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\\%. We measure a galaxy bias averaged on scales of 1 and 10~...

  9. 3D-HST WFC3-selected Photometric Catalogs in the Five CANDELS/3D-HST Fields: Photometry, Photometric Redshifts and Stellar Masses

    CERN Document Server

    Skelton, Rosalind E; Momcheva, Ivelina G; Brammer, Gabriel B; van Dokkum, Pieter G; Labbe, Ivo; Franx, Marijn; van der Wel, Arjen; Bezanson, Rachel; Da Cunha, Elisabete; Fumagalli, Mattia; Schreiber, Natascha Foerster; Kriek, Mariska; Leja, Joel; Lundgren, Britt F; Magee, Daniel; Marchesini, Danilo; Maseda, Michael V; Nelson, Erica J; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G; Price, Sedona; Rix, Hans-Walter; Tal, Tomer; Wake, David A; Wuyts, Stijn

    2014-01-01

    The 3D-HST and CANDELS programs have obtained WFC3 and ACS spectroscopy and imaging over five fields, comprising a total area of ~900 sq. arcmin: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging datasets in addition to the HST data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3um -8um. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point spread function into account. A total of 147 distinct imaging datasets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determin...

  10. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, Rosalind E. [South African Astronomical Observatory, PO Box 9, Observatory, Cape Town 7935 (South Africa); Whitaker, Katherine E. [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Momcheva, Ivelina G.; Van Dokkum, Pieter G.; Bezanson, Rachel; Leja, Joel; Nelson, Erica J.; Oesch, Pascal [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia [Leiden Observatory, Leiden University, Leiden (Netherlands); Van der Wel, Arjen; Da Cunha, Elisabete; Maseda, Michael V. [Max Planck Institute for Astronomy (MPIA), Königstuhl 17, D-69117, Heidelberg (Germany); Förster Schreiber, Natascha [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Kriek, Mariska [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Magee, Daniel [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Marchesini, Danilo, E-mail: ros@saao.ac.za [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); and others

    2014-10-01

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)

  11. Precise photometric redshifts with a narrow-band filter set: The PAU Survey at the William Herschel Telescope

    CERN Document Server

    Martí, Pol; Castander, Francisco J; Gaztañaga, Enrique; Eriksen, Martin; Sánchez, Carles

    2014-01-01

    The Physics of the Accelerating Universe (PAU) survey at the William Herschel Telescope (WHT) will use a new optical camera (PAUCam) with a large set of narrow-band filters to perform a photometric galaxy survey with a quasi-spectroscopic redshift precision of \\sigma(z)/(1 + z) ~ 0.0035 and map the large-scale structure of the universe in three dimensions up to i_AB < 22.5-23.0. In this paper we present a detailed photo-z performance study using photometric simulations for 40 equally-spaced 12.5-nm-wide (FWHM) filters with a ~25% overlap and spanning the wavelength range from 450 nm to 850 nm, together with a ugrizY broad-band filter system. We then present the migration matrix r_ij, containing the probability that a galaxy in a true redshift bin j is measured in a photo-z bin i, and study its effect on the determination of galaxy auto- and cross-correlations. Finally, we also study the impact on the photo-z performance of small variations of the filter set in terms of width, wavelength coverage, etc., and...

  12. Quasi-stellar objects in the ALHAMBRA survey. I. Photometric redshift accuracy based on 23 optical-NIR filter photometry

    Science.gov (United States)

    Matute, I.; Márquez, I.; Masegosa, J.; Husillos, C.; del Olmo, A.; Perea, J.; Alfaro, E. J.; Fernández-Soto, A.; Moles, M.; Aguerri, J. A. L.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Infante, L.; González Delgado, R. M.; Martínez, V. J.; Molino, A.; Prada, F.; Quintana, J. M.

    2012-06-01

    Context. Even the spectroscopic capabilities of today's ground and space-based observatories can not keep up with the enormous flow of detections (>105 deg-2) unveiled in modern cosmological surveys as: i) would be required enormous telescope time to perform the spectroscopic follow-ups and ii) spectra remain unattainable for the fainter detected population. In the past decade, the typical accuracy of photometric redshift (photo-z) determination has drastically improved. Nowdays, it has become a perfect complement to spectroscopy, closing the gap between photometric surveys and their spectroscopic follow-ups. The photo-z precision for active galactic nuclei (AGN) has always lagged behind that for the galaxy population owing to the lack of proper templates and their intrinsic variability. Aims: Our goal is to characterize the ability of the Advanced Large, Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey in assigning accurate photo-z's to broad-line AGN (BLAGN) and quasi-stellar objects (QSOs) based on their ALHAMBRA very-low-resolution optical-near-infrared (NIR) spectroscopy. This will serve as a benchmark for any future compilation of ALHAMBRA selected QSOs and the basis for the statistical analysis required to derive luminosity functions up to z ~ 5. Methods: We selected a sample of spectroscopically identified BLAGN and QSOs and used a library of templates (including the SEDs of AGN and both normal and starburst galaxies, as well as stars) to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). Results: We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ~88% of the 170 spectroscopically identified BLAGN/QSOs over 2.5 deg2 in different areas of the survey and brighter than m678 = 23.5 (equivalent to rSLOAN ~ 24.0). The derived photo-z accuracy is below 1% and is comparable to the most recent results in

  13. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    Science.gov (United States)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  14. The ASTRODEEP Frontier Fields Catalogues: II - Photometric redshifts and rest-frame properties in Abell-2744 and MACS-J0416

    CERN Document Server

    Castellano, M; Merlin, E; Fontana, A; McLure, R J; Mármol-Queraltó, E; Mortlock, A; Parsa, S; Dunlop, J S; Elbaz, D; Balestra, I; Boucaud, A; Bourne, N; Boutsia, K; Brammer, G; Bruce, V A; Buitrago, F; Capak, P; Cappelluti, N; Ciesla, L; Comastri, A; Cullen, F; Derriere, S; Faber, S M; Giallongo, E; Grazian, A; Grillo, C; Mercurio, A; Michalowski, M; Nonino, M; Paris, D; Pentericci, L; Pilo, S; Rosati, P; Santini, P; Schreiber, C; Shu, X; Wang, T

    2016-01-01

    We present the first public release of photometric redshifts, galaxy rest-frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. We exploit a multi-wavelength catalogue ranging from HST to ground-based K and Spitzer IRAC which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multi-band information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone or from a stack of four WFC3 bands. To minimize systematics median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State of the art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. We show that photometric redshifts reach a rema...

  15. Accurate PSF-matched photometry and photometric redshifts for the Extreme Deep Field with the Chebyshev-Fourier functions

    CERN Document Server

    Jiménez-Teja, Y; Molino, A; Fernandes, C A C

    2015-01-01

    Photometric redshifts, which have become the cornerstone of several of the largest astronomical surveys like PanStarrs, DES, J-PAS or the LSST, require precise measurements of galaxy photometry in different bands using a consistent physical aperture. This is not trivial, due to the variation in the shape and width of the Point Spread Function (PSF) introduced by wavelength differences, instrument positions and atmospheric conditions. Current methods to correct for this effect rely on a detailed knowledge of the PSF characteristics as a function of the survey coordinates, which can be difficult due to the relative paucity of stars tracking the PSF behaviour. Here we show that it is possible to measure accurate, consistent multicolour photometry without knowing the shape of PSF. The Chebyshev-Fourier Functions (CHEFs) can fit the observed profile of each object and produce high signal-to-noise integrated flux measurements unaffected by the PSF. These total fluxes, which encompass all the galaxy populations, are...

  16. Measuring the Dark Matter Halo Mass of X-ray AGN at z~1 using photometric redshifts

    CERN Document Server

    Mountrichas, G; Finoguenov, A; Erfanianfar, G; Cooper, M C; Coil, A L; Laird, E S; Nandra, K; Newman, J A

    2012-01-01

    Data from the AEGIS, COSMOS and ECDFS surveys are combined to infer the bias and dark matter halo mass of moderate luminosity [LX(2-10 keV) = 42.9 erg s-1] X-ray AGN at z~1 via their cross-correlation function with galaxies. In contrast to standard cross-correlation function estimators, we present a method that requires spectroscopy only for the AGN and uses photometric redshift probability distribution functions for galaxies to determine the projected real-space AGN/galaxy cross-correlation function. The estimated dark matter halo mass of X-ray AGN in the combined AEGIS, COSMOS and ECDFS fields is ~13h-1M_solar, in agreement with previous studies at similar redshift and luminosity ranges. Removing from the sample the 5 per cent of the AGN associated with X-ray selected groups results in a reduction by about 0.5 dex in the inferred AGN dark matter halo mass. The distribution of AGN in dark matter halo mass is therefore skewed and the bulk of the population lives in moderate mass haloes. This result favour col...

  17. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    CERN Document Server

    Leung, Andrew S; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Zeimann, Gregory R; Bridge, Joanna S; Feldmeier, John J; Finkelstein, Steven L; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J; Schneider, Donald P

    2015-01-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift ${\\rm Ly{\\alpha}}$-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width $(W_{\\rm Ly\\alpha})$ greater than $20 {\\rm \\,\\AA}$. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and equivalent width distributions for the galaxy populations in question, and it returns the probability that an object is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify $\\sim$$10^6$ emission-line galaxies into LAEs and low-redshift [O II] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers $86\\%$ of LAEs missed by the traditional $W_{\\rm Ly\\alpha} > 20 {\\rm...

  18. Photometric Selection of High-Redshift Type Ia SupernovaCandidates

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.; Howell, D.A.; Perrett, K.; Nugent, P.E.; Astier,P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Conley, A.; Fabbro,S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J.D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C.J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop,R.A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100 percent of the identified SNe II as non-SNe Ia with only a 1 percent-2 percent false rejection rate. The predicted parameterization of the SNe Ia has a precision of bar DELTA z bar/(1+zspec)<0.09 in redshift and +-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and OMEGA M) and find any effect to be negligible.

  19. Redshift

    CERN Document Server

    Clark, Stuart

    1997-01-01

    The light emitted by celestial objects can have its wavelength "stretched" in different ways before it is observed by astronomers. These stretching phenomena are collectively called "redshift". They influence virtually all aspects of astronomy and even underpin the "Big Bang" theory of the creation of the universe. This book details the types of redshift and explains their myriad of uses. It begins by introducing the nature of light and the problems involved in measuring its properties. After explaining the redshift phenomena and their uses, the book touches on the age and size of the universe; two subjects embroiled in controversy because of our current interpretation of the redshift. Less conventional theories are then expressed. As a by-product of the explanation of redshift, the book offers the reader a basic understanding of Einstein's theory of relativity. Mathematical treatments of the concepts introduced in the text are boxed off and should not detract from the book's readibility, but allow it to be u...

  20. Photometric properties of intermediate redshift Type Ia Supernovae observed by SDSS-II Supernova Survey

    CERN Document Server

    Takanashi, Naohiro; Yasuda, Naoki; Kuncarayakti, Hanindyo; Konishi, Kohki; Schneider, Donald P; Cinabro, David; Marriner, John

    2016-01-01

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) have a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.

  1. Photometric Selection of High-Redshift Type Ia SupernovaCandidates

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M.; Howell, D.A.; Perrett, K.; Nugent, P.E.; Astier,P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Conley, A.; Fabbro,S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J.D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C.J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop,R.A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Iasupernovae (SNe Ia) located via rolling SN searches. The technique, usingboth color and magnitude information of events from only two to threeepochs of multiband real-time photometry, is able to discriminate betweenSNe Ia and core-collapse SNe. Furthermore, for SNe Ia the methodaccurately predicts the redshift, phase, and light-curve parameterizationof these events based only on pre-maximum-light data. We demonstrate theeffectiveness of the technique on a simulated survey of SNe Ia andcore-collapse SNe, where the selection method effectively rejects mostcore-collapse SNe while retaining SNe Ia. We also apply the selectioncode to real-time data acquired as part of the Canada-France-HawaiiTelescope Supernova Legacy Survey (SNLS). During the period 2004 May to2005 January in the SNLS, 440 SN candidates were discovered, of which 70were confirmed spectroscopically as SNe Ia and 15 as core-collapseevents. For this test data set, the selection technique correctlyidentifies 100 percent of the identified SNe II as non-SNe Ia with only a1 percent-2 percent false rejection rate. The predicted parameterizationof the SNe Ia has a precision of bar DELTAz bar/(1+zspec)<0.09 inredshift and +-2-3 rest-frame days in phase, providing invaluableinformation for planning spectroscopic follow-up observations. We alsoinvestigate any bias introduced by this selection method on the abilityof surveys such as SNLS to measure cosmological parameters (e.g., w andOMEGA M) and find any effect to be negligible.

  2. Feature importance for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Hoyle, Ben; Zitlau, Roman; Steiz, Stella; Weller, Jochen

    2014-01-01

    We present an analysis of importance feature selection applied to photometric redshift estimation using the machine learning architecture Random Decision Forests (RDF) with the ensemble learning routine Adaboost. We select a list of 85 easily measured (or derived) photometric quantities (or 'features') and spectroscopic redshifts for almost two million galaxies from the Sloan Digital Sky Survey Data Release 10. After identifying which features have the most predictive power, we use standard artificial Neural Networks (aNN) to show that the addition of these features, in combination with the standard magnitudes and colours, improves the machine learning redshift estimate by 18% and decreases the catastrophic outlier rate by 32%. We further compare the redshift estimate from RDF using the ensemble learning routine Adaboost with those from two different aNNs, and with photometric redshifts available from the SDSS. We find that the RDF requires orders of magnitude less computation time than the aNNs to obtain a m...

  3. Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data

    Science.gov (United States)

    Crocce, M.; Carretero, J.; Bauer, A. H.; Ross, A. J.; Sevilla-Noarbe, I.; Giannantonio, T.; Sobreira, F.; Sanchez, J.; Gaztanaga, E.; Kind, M. Carrasco; Sánchez, C.; Bonnett, C.; Benoit-Lévy, A.; Brunner, R. J.; Rosell, A. Carnero; Cawthon, R.; Fosalba, P.; Hartley, W.; Kim, E. J.; Leistedt, B.; Miquel, R.; Peiris, H. V.; Percival, W. J.; Rosenfeld, R.; Rykoff, E. S.; Sánchez, E.; Abbott, T.; Abdalla, F. B.; Allam, S.; Banerji, M.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Neto, A. Fausti; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Santiago, B.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zuntz, J.; DES Collaboration

    2016-02-01

    We study the clustering of galaxies detected at i errors is assessed by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. We test a `linear bias' model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 per cent accuracy down to scales at least 4-10 times smaller than those on which linear theory is expected to be sufficient.

  4. Using the 2-MASS Photometric Redshift Survey to optimize LIGO Follow-Up Observations

    CERN Document Server

    Antolini, Elisa

    2016-01-01

    The initial discovery of LIGO on 14 September 2015 was the in-spiral merger and ring-down of the black hole binary at a distance of about 500~Mpc or a redshift of about 0.1. The search for electromagnetic counterparts for the in-spiral of binary black holes is impeded by poor initial source localizations and a lack of a compelling model for the counterpart; therefore, rapid electromagnetic follow-up is required to understand the astrophysical context of these sources. Because astrophysical sources of gravitational radiation are likely to reside in galaxies, it would make sense to search first in regions where the LIGO-Virgo probability is large and where the density of galaxies is large as well. Under the Bayesian prior assumption that the probability of a gravitational-wave event from a given region of space is proportional to the density of galaxies within the probed volume, one can calculate an improved localization of the position of the source simply by multiplying the LIGO-Virgo skymap by the density of...

  5. Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey.

    Science.gov (United States)

    Thomas, Shaun A; Abdalla, Filipe B; Lahav, Ofer

    2010-07-16

    We present a new limit of ∑m(v) ≤ 0.28 (95% CL) on the sum of the neutrino masses assuming a flat ΛCDM cosmology. This relaxes slightly to ∑m(ν) ≤ 0.34 and ∑m(v) ≤ 0.47 when quasinonlinear scales are removed and w≠ -1, respectively. These are derived from a new photometric catalogue of over 700,000 luminous red galaxies (MegaZ DR7) with a volume of 3.3  (Gpc h(-1))(3) and redshift range 0.45 baryon acoustic oscillations, supernovae, and a Hubble Space Telescope prior on h. When combined with WMAP these data are as constraining as adding all supernovae and baryon oscillation data available. The upper limit is one of the tightest constraints on the neutrino from cosmology or particle physics. Further, if these bounds hold, they all predict that current-to-next generation neutrino experiments, such as KATRIN, are unlikely to obtain a detection. PMID:20867754

  6. Robust photometric redshift determinations of gamma-ray burst afterglows at z greater than or similar to 2

    NARCIS (Netherlands)

    P.A. Curran; R.A.M.J. Wijers; M.H.M. Heemskerk; R.L.C. Starling; K. Wiersema; A.J. van der Horst

    2008-01-01

    Context. Theory suggests that about 10% of Swift-detected gamma-ray bursts (GRBs) will originate at redshifts, z, greater than 5 yet a number of high redshift candidates may be left unconfirmed due to the lack of measured redshifts. Aims. Here we introduce our code, GRBz, a method of simultaneous mu

  7. The DAFT/FADA survey. I.Photometric redshifts along lines of sight to clusters in the z=[0.4,0.9] interval

    Energy Technology Data Exchange (ETDEWEB)

    Guennou, L.; /Northwestern U. /Marseille, Lab. Astrophys.; Adami, C.; /Marseille, Lab. Astrophys.; Ulmer, M.P.; /Northwestern U. /Marseille, Lab. Astrophys.; LeBrun, V.; /Marseille, Lab. Astrophys.; Durret, F.; /Paris, Inst. Astrophys.; Johnston, D.; /Fermilab; Ilbert, O.; /Marseille, Lab. Astrophys.; Clowe, D.; /Ohio U.; Gavazzi, R.; /Paris, Inst. Astrophys.; Murphy, K.; /Ohio U.; Schrabback, T.; /Leiden Observ. /Fermilab

    2010-08-01

    As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. Aims. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z {ge} 0.4), massive ({approx}> 3 x 10{sup 14} M{sub {circle_dot}}) clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I{sub AB} = 24./24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2 {le} z {le} 1.5. We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photo-z accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photo-z accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photo-z accuracy, interpreted as the standard used Spectral Energy Distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight.

  8. A new (2+1)D cluster finding algorithm based on photometric redshifts: large scale structure in the Chandra Deep Field South

    CERN Document Server

    Trevese, D; Fontana, A; Giallongo, E; Trevese, Dario; Castellano, Marco; Fontana, Adriano; Giallongo, Emanuele

    2006-01-01

    Aims: We study galaxy clustering and explore the dependence of galaxy properties on the the environment up to a redshift z~1, on the basis of a deep multi-band survey in the Chandra Deep Field South. Methods: We have developed a new method which combines galaxy angular positions and photometric redshifts to estimate the local galaxy number-density. This allows both the detection of overdensities in the galaxy distribution and the study of the properties of the galaxy population as a function of the environmental density. Results: We detect two moderate overdensities at z~0.7 and z~1 previously identified spectroscopically. We find that the fraction of red galaxies within each structure increases with volume density, extending to z~1 previous results. We measure ``red sequence'' slopes consistent with the values found in X-ray selected clusters, supporting the notion that the mass-metallicity relation hold constant up to z~1. Conclusions: Our method based on photometric redshifts allows to extend structure det...

  9. High-precision Photometric Redshifts from Spitzer/IRAC: Extreme [3.6]-[4.5] Colors Identify Galaxies in the Redshift Range z~6.6-6.9

    CERN Document Server

    Smit, Renske; Franx, Marijn; Oesch, Pascal A; Ashby, Matthew L N; Willner, S P; Labbe, Ivo; Holwerda, Benne; Fazio, Giovanni G; Huang, J -S

    2014-01-01

    One of the most challenging aspects of studying galaxies in the z>~7 universe is the infrequent confirmation of their redshifts through spectroscopy, a phenomenon thought to occur from the increasing opacity of the intergalactic medium to Lya photons at z>6.5. The resulting redshift uncertainties inhibit the efficient search for [C II] in z~7 galaxies with sub-mm instruments such as ALMA, given their limited scan speed for faint lines. One means by which to improve the precision of the inferred redshifts is to exploit the potential impact of strong nebular emission lines on the colors of z~4-8 galaxies as observed by Spitzer/IRAC. At z~6.8, galaxies exhibit IRAC colors as blue as [3.6]-[4.5] ~-1, likely due to the contribution of [O III]+Hb to the 3.6 mum flux combined with the absence of line contamination in the 4.5 mum band. In this paper we explore the use of extremely blue [3.6]-[4.5] colors to identify galaxies in the narrow redshift window z~6.6-6.9. When combined with an I-dropout criterion, we demons...

  10. The Subaru-XMM-Newton Deep Survey (SXDS) VIII.: Multi-wavelength Identification, Optical/NIR Spectroscopic Properties, and Photometric Redshifts of X-ray Sources

    CERN Document Server

    Akiyama, Masayuki; Watson, Mike G; Furusawa, Hisanori; Takata, Tadafumi; Simpson, Chris; Morokuma, Tomoki; Yamada, Toru; Ohta, Kouji; Iwamuro, Fumihide; Yabe, Kiyoto; Tamura, Naoyuki; Moritani, Yuuki; Takato, Naruhisa; Kimura, Masahiko; Maihara, Toshinori; Dalton, Gavin; Lewis, Ian; Lee, Hanshin; Lake, Emma Curtis; Macaulay, Edward; Clarke, Frazer; Silverman, John D; Croom, Scott; Ouchi, Masami; Hanami, Hitoshi; Tello, J Diaz; Yoshikawa, Tomohiro; Fujishiro, Naofumi; Sekiguchi, Kazuhiro

    2015-01-01

    We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i'-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65\\% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, w...

  11. The DAFT/FADA survey. I.Photometric redshifts along lines of sight to clusters in the z=[0.4,0.9] interval

    CERN Document Server

    Guennou, L; Ulmer, M P; LeBrun, V; Durret, F; Johnston, D; Ilbert, O; Clowe, D; Gavazzi, R; Murphy, K; Schrabback, T; Allam, S; Annis, J; Basa, S; Benoist, C; Biviano, A; Cappi, A; Kubo, J M; Marshall, P; Mazure, A; Rostagni, F; Russeil, D; Slezak, E

    2010-01-01

    As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z>0.4), massive clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I_AB=24/24.5 with the LePhare s...

  12. Baryon acoustic oscillations with the cross-correlation of spectroscopic and photometric samples

    CERN Document Server

    Nishizawa, Atsushi J; Takada, Masahiro

    2013-01-01

    The baryon acoustic oscillation (BAO) experiment requires a sufficiently dense sampling of large-scale structure tracers with spectroscopic redshift, which is observationally expensive especially at high redshifts $z\\simgt 1$. Here we present an alternative route of the BAO analysis that uses the cross-correlation of sparse spectroscopic tracers with a much denser photometric sample, where the spectroscopic tracers can be quasars or bright, rare galaxies that are easier to access spectroscopically. We show that measurements of the cross-correlation as a function of the transverse comoving separation rather than the angular separation avoid a smearing of the BAO feature without mixing the different scales at different redshifts in the projection, even for a wide redshift slice $\\Delta z\\simeq 1$. The bias, scatter, and catastrophic redshift errors of the photometric sample affect only the overall normalization of the cross-correlation which can be marginalized over when constraining the angular diameter distan...

  13. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    International Nuclear Information System (INIS)

    We present deep optical 18-medium-band photometry from the Subaru telescope over the ∼30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find ∼40,000 galaxies with R AB 3.5. For 0.1 < z < 1.2, we find a 1σ scatter in Δz/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that ∼20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.

  14. The VIPERS Multi-Lambda Survey - I: UV and NIR Observations, multi-color catalogs and photometric redshifts

    CERN Document Server

    Moutard, T; Ilbert, O; Coupon, J; Hudelot, P; Vibert, D; Comte, V; Conseil, S; Davidzon, I; Guzzo, L; Llebaria, A; Martin, C; McCracken, H J; Milliard, B; Morrison, G E; Schiminovich, D; Treyer, M; Van Werbaeke, L

    2016-01-01

    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the near infrared with the CFHT/WIRCam camera ($K_s$-band) over an area of 22 and 27 deg$^2$, respectively. The depth of the photometry was optimized to measure the physical properties (e.g., SFR, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 < z < 1.2). In this paper, we present the observations, the data reductions and the build-up of the multi-color catalogs. The CFHTLS-T0007 (gri-{\\chi}^2) images are used as reference to detect and measure the $K_s$-band photometry, while the T0007 u-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches $NUV_{AB}$~25 (at 5{\\sigma})...

  15. AzTEC/ASTE 1.1 mm survey of SSA22: Counterpart identification and photometric redshift survey of submillimeter galaxies

    CERN Document Server

    Umehata, H; Kohno, K; Hatsukade, B; Scott, K S; Kubo, M; Yamada, T; Ivison, R J; Cybulski, R; Aretxaga, I; Austermann, J; Hughes, D H; Ezawa, H; Hayashino, T; Ikarashi, S; Iono, D; Kawabe, R; Matsuda, Y; Matsuo, H; Nakanishi, K; Oshima, T; Perera, T; Takata, T; Wilson, G W; Yun, M S

    2014-01-01

    We present the results from a 1.1 mm imaging survey of the SSA22 field, known for having an overdensity of z=3.1 Lyman-alpha emitting galaxies (LAEs), taken with the AzTEC camera on the Atacama Submillimeter Telescope Experiment (ASTE). We imaged a 950 arcmin$^2$ field down to a 1 sigma sensitivity of 0.7-1.3 mJy/beam to find 125 submillimeter galaxies (SMGs) with a signal to noise ratio >= 3.5. Counterpart identification using radio and near/mid-infrared data was performed and one or more counterpart candidates were found for 59 SMGs. Photometric redshifts based on optical to near-infrared images were evaluated for 45 SMGs of these SMGs with Spitzer/IRAC data, and the median value is found to be z=2.4. By combining these estimation with estimates from the literature we determined that 10 SMGs might lie within the large-scale structure at z=3.1. The two-point angular cross-correlation function between LAEs and SMGs indicates that the positions of the SMGs are correlated with the z=3.1 protocluster. These resu...

  16. A direct probe of cosmological power spectra of the peculiar velocity field and the gravitational lensing magnification from photometric redshift surveys

    International Nuclear Information System (INIS)

    The cosmological peculiar velocity field (deviations from the pure Hubble flow) of matter carries significant information on dark energy, dark matter and the underlying theory of gravity on large scales. Peculiar motions of galaxies introduce systematic deviations between the observed galaxy redshifts z and the corresponding cosmological redshifts zcos. A novel method for estimating the angular power spectrum of the peculiar velocity field based on observations of galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is presented. This method exploits the fact that a mean relation between zcos and m of galaxies can be derived from all galaxies in a redshift-magnitude survey. Given a galaxy magnitude, it is shown that the zcos(m) relation yields its cosmological redshift with a 1σ error of σz ∼ 0.3 for a survey like Euclid ( ∼ 109 galaxies at z∼cos(m) with a high signal-to-noise ratio. At large angular separations corresponding to l∼cos(m) relation caused by gravitational lensing magnification dominate, allowing us to probe the line-of-sight integral of the gravitational potential. Effects related to the environmental dependence in the luminosity function can easily be computed and their contamination removed from the estimated power spectra. The amplitude of the combined velocity and lensing power spectra at z ∼ 1 can be measured with ∼<5% accuracy

  17. The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9photometric redshift Probability Distribution Functions

    CERN Document Server

    Allevato, V; Finoguenov, A; Marchesi, S; Zamorani, G; Hasinger, G; Salvato, M; Miyaji, T; Gilli, R; Cappelluti, N; Brusa, M; Suh, H; Lanzuisi, G; Trakhtenbrot, B; Griffiths, R; Vignali, C; Schawinski, K; Karim, A

    2016-01-01

    We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$\\leq$z$\\leq$5.5 ($\\langle L_{bol} \\rangle \\sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $\\pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$\\sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{\\odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $\\sigma_z$ = 0.052 of our sample at z$\\geq$2.9. Once we integrate the projected 2pcf up to $\\pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and \\textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only...

  18. Climate catastrophes

    Science.gov (United States)

    Budyko, Mikhail

    1999-05-01

    Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.

  19. Resounding Catastrophe

    DEFF Research Database (Denmark)

    Kristensen, Thomas Bjørnsten

    2012-01-01

    The article discusses specific aesthetic strategies for articulating and describing the catastrophic event of 9/11 by focusing on its auditory aspects. This is done through a reading of the American media- and sound artist Stephen Vitiello’s work and novelist Don DeLillo’s Falling Man....

  20. Bayesian photometric redshifts with empirical training sets

    CERN Document Server

    Wolf, Christian

    2009-01-01

    We combine in a single framework the two complementary benefits of chi^2-template fits and empirical training sets used e.g. in neural nets: chi^2 is more reliable when its probability density functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate when calibration and priors of query data and training set match. We present a chi^2-empirical method that derives PDFs from empirical models as a subclass of kernel regression methods, and apply it to the SDSS DR5 sample of >75,000 QSOs, which is full of ambiguities. Objects with single-peak PDFs show 2.5, these figures are 2x better. Outliers result purely from the discrete nature and limited size of the model, and rms errors are dominated by the instrinsic variety of object colours. PDFs classed as ambiguous provide accurate probabilities for alternative solutions and thus weights for using both solutions and avoiding needless outliers. E.g., the PDFs predict 78.0% of the stronger peaks to be correct, which is true for 77.9% ...

  1. New Approaches To Photometric Redshift Prediction

    Data.gov (United States)

    National Aeronautics and Space Administration — Expanding upon the work of Way & Srivastava (2006) we demonstrate how the use of training sets of comparable size continue to make Gaussian Process Regression a...

  2. Seizing Catastrophes

    DEFF Research Database (Denmark)

    Kublitz, Anja

    2013-01-01

    Based on fieldwork among Palestinians in Denmark the article investigates the Palestinian temporality of Nakba that is equivalent to a time of security in the sense that it is concerned with existential threats and emergency action. The Arabic term Nakba literally means catastrophe and is in Pale......Based on fieldwork among Palestinians in Denmark the article investigates the Palestinian temporality of Nakba that is equivalent to a time of security in the sense that it is concerned with existential threats and emergency action. The Arabic term Nakba literally means catastrophe...... and is in Palestinian national discourse used to designate the Arab-Israeli war of 1948, when more than half of the Palestinian population were expelled from their homeland – a reverse national myth about how Palestine failed to come into being. Yet, according to Palestinians in Denmark, the Nakba cannot be relegated...... of the Nakba in 2008 and clashes between the police and young Palestinians in 2006, the article demonstrates how Palestinians in Denmark seek to reverse the reverse myth of 1948 by seizing contemporary catastrophes to enact not only past and present Nakbas, but also potential futures. The article concludes...

  3. Reconstructing the galaxy redshift distribution from angular cross power spectra

    CERN Document Server

    Sun, L; Tao, C

    2015-01-01

    The control of photometric redshift (photo-$z$) errors is a crucial and challenging task for precision weak lensing cosmology. The spacial cross-correlations (equivalently, the angular cross power spectra) of galaxies between tomographic photo-$z$ bins are sensitive to the true redshift distribution $n_i(z)$ of each bin and hence can help calibrate the photo-$z$ error distribution for weak lensing surveys. Using Fisher matrix analysis, we investigate the contributions of various components of the angular power spectra to the constraints of $n_i(z)$ parameters and demonstrate the importance of the cross power spectra therein, especially when catastrophic photo-$z$ errors are present. We further study the feasibility of reconstructing $n_i(z)$ from galaxy angular power spectra using Markov Chain Monte Carlo estimation. Considering an LSST-like survey with $10$ photo-$z$ bins, we find that the underlying redshift distribution can be determined with a fractional precision ($\\sigma(\\theta)/\\theta$ for parameter $\\...

  4. Astrometric Redshifts for Quasars

    CERN Document Server

    Kaczmarczik, Michael C; Mehta, Sajjan S; Schlegel, David J

    2009-01-01

    The wavelength dependence of atmospheric refraction causes differential chromatic refraction (DCR), whereby objects imaged at different optical/UV wavelengths are observed at slightly different positions in the plane of the detector. Strong spectral features induce changes in the effective wavelengths of broad-band filters that are capable of producing significant positional offsets with respect to standard DCR corrections. We examine such offsets for broad-emission-line (type 1) quasars from the Sloan Digital Sky Survey (SDSS) spanning 0redshift and airmass. This astrometric information can be used to break degeneracies in photometric redshifts of quasars (or other emission-line sources) and, for extreme cases, may be suitable for determining "astrometric redshifts". On the SDSS's southern equatorial stripe, where it is pos...

  5. Catastrophe medicine; Medecine de catastrophe

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, A. [Service Technique de l`Energie Electrique et des Grands Barrages (STEEGB), (France)

    1996-12-31

    The `Catastrophe Medicine` congress which took place in Amiens (France) in December 5 to 7 1996 was devoted to the assessment and management of risks and hazards in natural and artificial systems. The methods of risk evaluation and prevision were discussed in the context of dams accidents with the analysis of experience feedbacks and lessons gained from the organisation of emergency plans. Three round table conferences were devoted to the importance of psychological aspects during such major crises. (J.S.)

  6. Cosmic Catastrophes

    Science.gov (United States)

    Wheeler, J. Craig

    2014-08-01

    Preface; 1. Setting the stage: star formation and hydrogen burning in single stars; 2. Stellar death: the inexorable grip of gravity; 3. Dancing with stars: binary stellar evolution; 4. Accretion disks: flat stars; 5. White Dwarfs: quantum dots; 6. Supernovae: stellar catastrophes; 7. Supernova 1987A: lessons and enigmas; 8. Neutron stars: atoms with attitude; 9. Black holes in theory: into the abyss; 10. Black holes in fact: exploring the reality; 11. Gamma-ray bursts, black holes and the universe: long, long ago and far, far away; 12. Supernovae and the universe; 13. Worm holes and time machines: tunnels in space and time; 14. Beyond: the frontiers; Index.

  7. Cosmological Constraints with Clustering-Based Redshifts

    CERN Document Server

    Kovetz, Ely D; Rahman, Mubdi

    2016-01-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference dataset with known redshifts. Applying this method to the existing SDSS photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation-of-state and on local non-gaussianity parameters. We explore several pertinent issues, including the tradeoff between including more sources versus minimizing the overlap between bins, the shot-noise limitations on binning, and the predicted performance of the method at high redshifts. Remarkably, we find that, once this ...

  8. SPIDERz: SuPport vector classification for IDEntifying Redshifts

    Science.gov (United States)

    Jones, Evan; Singal, J.

    2016-08-01

    SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.

  9. Probing the sparse tails of redshift distributions with Voronoi tessellations

    CERN Document Server

    Granett, Benjamin R

    2016-01-01

    We introduce an algorithm to estimate the redshift distribution of a sample of galaxies selected photometrically given a subsample with measured spectroscopic redshifts. The approach uses a non-parametric Voronoi tessellation density estimator to interpolate the galaxy distribution in the redshift and photometric color space. We test the method on a mock dataset with a known color-redshift distribution. We find that the Voronoi tessellation estimator performs well at reconstructing the tails of the redshift distribution of individual galaxies and gives unbiased estimates of the first and second moments. The source code is publicly available at http://bitbucket.org/bengranett/tailz.

  10. Coherent catastrophism

    Science.gov (United States)

    Asher, D. J.; Clube, S. V. M.; Napier, W. M.; Steel, D. I.

    We review the theoretical and observational evidence that, on timescales relevant to mankind, the prime collision hazard is posed by temporally correlated impacts (coherent catastrophism, Δt ˜ 10 2-10 4 yr) rather than random ones (stochastic catastrophism, Δt ˜ 10 5-10 8 yr). The mechanism whereby coherent incursions into and through the terrestrial atmosphere occur is described as being the result of giant cometary bodies arriving in orbits with perihelia in the inner solar system. Hierarchical fragmentation of such large (100 km-plus) bodies — due to thermal stresses near perihelion, collisions in the asteroid belt, or passages through the Jovian Roche radius — results in numerous ˜kilometre-sized objects being left in short-period orbits, and appearing in telescopic searches as Apollo-type asteroids. Many more smaller objects, in the 10-100 metre size range and only recently observed, by the Spacewatch team, are expected to be in replenished clusters in particular orbits as a result of continuing disintegrations of large, differentiated, cometary objects. Gravitational perturbations by Jupiter bring these clusters around to have a node at 1 AU in a cyclic fashion, leading to impacts at certain times of year every few years during active periods lasting a few centuries, such periods being separated by intervals of a few millennia. Furthermore, fragmentations within the hierarchy result in significant bombardment commensurabilities ( Δt ˜ 10-10 2 yr) during active periods occurring at random intervals ( Δt ˜ 10 2-10 3 yr). It appears that the Earth has been subject to such impacts since the break-up of such a comet ˜2×10 4 years ago; currently we are not passing through a high-risk epoch, although some phenomena originating in the products of this break-up have been observed in the 20th century. This most recent hierarchical disintegration, associated with four well-known meteor showers and termed the Taurid Complex, is now recognized as resulting

  11. Catastrophic volcanism

    Science.gov (United States)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  12. Reverse Catastrophe

    Directory of Open Access Journals (Sweden)

    Przemysław Czapliński

    2015-01-01

    Full Text Available The principal notion of the article–a “backward catastrophe”– stands for a catastrophe which occurs unseen until it becomes recognized and which broadens its destructive activity until it has been recognized. This concept in the article has been referred to the Shoah. The main thesis is that the recognition of the actual influence of the Holocaust began in Polish culture in the mid-1980s (largely it started with the film by Claude Lanzmann Shoah and the essay by Jan Błoński Biedni Polacy patrzą na getto [“The Poor Poles Look at the Ghetto”], that is when the question: “What happened to the Jews”, assumes the form: “Did the things that happened to the Jews, also happened to the Poles?”. Cognitive and ethical reorientation leads to the revealing of the hidden consequences of the Holocaust reaching as far as the present day and undermining the foundations of collective identity. In order to understand this situation (and adopt potentially preventive actions Polish society should be recognized as a postcatastrophic one.

  13. Anomaly detection for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Hoyle, Ben; Paech, Kerstin; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-01-01

    We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million 'clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 'anomalous' galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed 'anomaly-removed' sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured stat...

  14. Correcting cosmological parameter biases for all redshift surveys induced by estimating and reweighting redshift distributions

    CERN Document Server

    Rau, Markus Michael; Paech, Kerstin; Seitz, Stella

    2016-01-01

    Photometric redshift uncertainties are a major source of systematic error for ongoing and future photometric surveys. We study different sources of redshift error caused by common suboptimal binning techniques and propose methods to resolve them. The selection of a too large bin width is shown to oversmooth small scale structure of the radial distribution of galaxies. This systematic error can significantly shift cosmological parameter constraints by up to $6 \\, \\sigma$ for the dark energy equation of state parameter $w$. Careful selection of bin width can reduce this systematic by a factor of up to 6 as compared with commonly used current binning approaches. We further discuss a generalised resampling method that can correct systematic and statistical errors in cosmological parameter constraints caused by uncertainties in the redshift distribution. This can be achieved without any prior assumptions about the shape of the distribution or the form of the redshift error. Our methodology allows photometric surve...

  15. Cosmological forecasts from photometric measurements of the angular correlation function

    International Nuclear Information System (INIS)

    We study forecasts for the accuracy of the determination of cosmological parameters from future large-scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift Gaussian errors, galaxy bias and nonlinearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density Ωcdm with a precision of the order of 20% and 13%, respectively, from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4%, respectively.

  16. Cosmological forecasts from photometric measurements of the angular correlation function

    CERN Document Server

    Sobreira, F; Rosenfeld, R; da Costa, L A N; Maia, M A G; Makler, M

    2011-01-01

    We study forecasts for the accuracy of the determination of cosmological parameters from future large scale photometric surveys obtained using the full shape of the 2-point galaxy angular correlation function. The effects of linear redshift-space distortion, photometric redshift gaussian errors, galaxy bias and non-linearities in the power spectrum are included on our analysis. The Fisher information matrix is constructed with the full covariance matrix, including the correlation between nearby redshift shells arising from the photometric redshift error. We show that under some reasonable assumptions, a survey such as the imminent Dark Energy Survey should be able to constrain the dark energy equation of state parameter w and the cold dark matter density \\Omega_{cdm} with a precison of the order of 20% and 13% respectively from the full shape of the angular correlation function alone. When combined with priors from other observations the precision in the determination of these parameters improve to 8% and 4% ...

  17. The FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z~3.5

    CERN Document Server

    Straatman, Caroline M S; Quadri, Ryan F; Labbe, Ivo; Glazebrook, Karl; Persson, S Eric; Papovich, Casey; Tran, Kim-Vy H; Brammer, Gabriel B; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G; Kawinwanichakij, Lalitwadee; Kelson, Daniel D; Lee, Janice; McCarthy, Patrick J; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E

    2016-01-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of $400\\ \\mathrm{arcmin}^2$ in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising $>70,000$ galaxies, selected from ultradeep $K_s$-band detection images ($25.5-26.5$ AB mag, $5\\sigma$, total), and $>80\\%$ complete to $K_s\\times15$.

  18. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ∼ 3.5

    Science.gov (United States)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5–26.5 AB mag, 5σ, total), and >80% complete to K s ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  19. High-Redshift Galaxies The HDF and More

    CERN Document Server

    Fernández-Soto, A; Yahil, A

    1998-01-01

    We review our present knowledge of high-redshift galaxies, emphasizing particularly their physical properties and the ways in which they relate to present-day galaxies. We also present a catalogue of photometric redshifts of galaxies in the Hubble Deep Field and discuss the possibilities that this kind of study offers to complete the standard spectroscopically based surveys.

  20. Estimating Redshifts for Long Gamma-Ray Bursts

    OpenAIRE

    Xiao, Limin; Schaefer, Bradley E.

    2009-01-01

    We are constructing a program to estimate the redshifts for GRBs from the original Swift light curves and spectra, aiming to get redshifts for the Swift bursts \\textit{without} spectroscopic or photometric redshifts. We derive the luminosity indicators from the light curves and spectra of each burst, including the lag time between low and high photon energy light curves, the variability of the light curve, the peak energy of the spectrum, the number of peaks in the light curve, and the minimu...

  1. Bayesian redshift-space distortions correction from galaxy redshift surveys

    Science.gov (United States)

    Kitaura, Francisco-Shu; Ata, Metin; Angulo, Raul E.; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Monteagudo, Carlos Hernández; Prada, Francisco; Yepes, Gustavo

    2016-03-01

    We present a Bayesian reconstruction method which maps a galaxy distribution from redshift- to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood modelling non-linear stochastic bias. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift- to real-space according to the peculiar motions derived from the recovered density field using linear theory. The virialized distortions are corrected by sampling candidate real-space positions along the line of sight, which are compatible with the bulk flow corrected redshift-space position adding a random dispersion term in high-density collapsed regions (defined by the eigenvalues of the Hessian). This approach presents an alternative method to estimate the distances to galaxies using the three-dimensional spatial information, and assuming isotropy. Hence the number of applications is very broad. In this work, we show the potential of this method to constrain the growth rate up to k ˜ 0.3 h Mpc-1. Furthermore it could be useful to correct for photometric redshift errors, and to obtain improved baryon acoustic oscillations (BAO) reconstructions.

  2. The-wiZZ: Clustering redshift estimation for everyone

    CERN Document Server

    Morrison, Christopher B; Schmidt, Samuel J; Baldry, Ivan K; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Schneider, Peter

    2016-01-01

    We present The-wiZZ, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of The-wiZZ is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an "expert". It allows the end user of a given survey to select any sub-sample of photometric galaxies with unknown redshifts, match this sample's catalog indices into a value-added data file, and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly (GAMA) survey ...

  3. The Angular Power Spectra of Photometric SDSS LRGs

    CERN Document Server

    Thomas, Shaun A; Lahav, Ofer

    2010-01-01

    We construct new galaxy angular power spectra based on the extended, updated and final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey: MegaZ DR7. Encapsulating 7746 deg^{2} we utilise 723,556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h^{-1})^3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins we find preliminary parameter constraints of f_{b} = \\Omega_{b}/\\Omega_{m} = 0.173 +/- 0.046 and \\Omega_{m} = 0.260 +/- 0.035 assuming H_{0} = 75 km s^{-1} Mpc^{-1}, n_{s}=1 and \\Omega_{k} = 0. These limits are consistent with the CMB and the previous data release (DR4). The C_{\\ell} are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of \\beta ~ \\Omega_{m}^{0.55}/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined...

  4. The Ongoing Catastrophe

    DEFF Research Database (Denmark)

    Kublitz, Anja

    2016-01-01

    as camps. Based on fieldwork among Palestinians in the Danish camps, this article explores why my interlocutors describe their current lives as a catastrophe. Al-Nakba literally means the catastrophe and, in Palestinian national discourse, it is used to designate the event of 1948, when the Palestinians...

  5. The Ongoing Catastrophe

    DEFF Research Database (Denmark)

    Kublitz, Anja

    for the girl talk is centred on catastrophes or Nakbas, as they are referred to in Arabic. Not only al-Nakba of 1948 when the Palestinians were displaced from their homeland, but also the many recurring wars and the individual catastrophes that involve dead family members, rapes, loss of children and abusive...

  6. High redshift galaxies in the ALHAMBRA survey: I. selection method and number counts based on redshift PDFs

    CERN Document Server

    Viironen, K; López-Sanjuan, C; Varela, J; Chaves-Montero, J; Cristóbal-Hornillos, D; Molino, A; Fernández-Soto, A; Ascaso, B; Cenarro, A J; Cerviño, M; Cepa, J; Ederoclite, A; Márquez, I; Masegosa, J; Moles, M; Oteo, I; Pović, M; Aguerri, J A L; Alfaro, E; Aparicio-Villegas, T; Benítez, N; Broadhurst, T; Cabrera-Caño, J; Castander, J F; Del Olmo, A; Delgado, R M González; Husillos, C; Infante, L; Martínez, V J; Perea, J; Prada, F; Quintana, J M

    2015-01-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in the study of the brightest, less frequent, high redshift galaxies. Methods. The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reach...

  7. Habitability and cosmic catastrophes

    CERN Document Server

    Hanslmeier, Arnold; McKay, Christopher P

    2008-01-01

    Catastrophic cosmic events such as asteroid impacts appear in the range of some 100 million years and have drastically affected evolution. The author discusses whether and how such events could have occurred in recently found extrasolar planetary systems.

  8. Catastrophic Antiphospholipid Syndrome.

    Science.gov (United States)

    El-Shereef, Rawhya R; El-Abedin, Zein; Abdel Aziz, Rashad; Talat, Ibrahim; Saleh, Mohammed; Abdel-Samia, Hanna; Sameh, Amro; Sharha, Mahmoud

    2016-01-01

    This paper reports one case of successfully treated patients suffering from a rare entity, the catastrophic antiphospholipid syndrome (CAPS). Management of this patient is discussed in detail. PMID:27375916

  9. Catastrophic Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    Rawhya R. El-Shereef

    2016-01-01

    Full Text Available This paper reports one case of successfully treated patients suffering from a rare entity, the catastrophic antiphospholipid syndrome (CAPS. Management of this patient is discussed in detail.

  10. Entanglement in quantum catastrophes

    CERN Document Server

    Emary, C; Brandes, T; Emary, Clive; Lambert, Neill; Brandes, Tobias

    2005-01-01

    We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the non-linearity parameter, and discuss the role of mixing entropies in more complex systems.

  11. Catastrophes in surface scattering

    International Nuclear Information System (INIS)

    Theoretical and experimental studies concerning atom-surface interactions in the energy range from hyperthermal to approximately 100 eV are reported. An extended study of the interaction of low energetic alkalis (sodium and potassium) with a silver crystal is presented. Finally the ultimate experimental result in this research, the first observation of catastrophes in surface scattering, is shown. The results clearly indicate the strength of the catastrophe analysis in gas-surface scattering. 218 refs.; 40 figs.; 170 schemes; 4 tabs

  12. Statistical Classification Techniques for Photometric Supernova Typing

    CERN Document Server

    Newling, James; Bassett, Bruce; Campbell, Heather; Hlozek, Renée; Kunz, Martin; Lampeitl, Hubert; Martin, Bryony; Nichol, Robert; Parkinson, David; Smith, Mathew

    2010-01-01

    Future photometric supernova surveys will produce vastly more candidates than can be followed up spectroscopically, highlighting the need for effective classification methods based on lightcurves alone. Here we introduce boosting and kernel density estimation techniques which have minimal astrophysical input, and compare their performance on 20,000 simulated Dark Energy Survey lightcurves. We demonstrate that these methods are comparable to the best template fitting methods currently used, and in particular do not require the redshift of the host galaxy or candidate. However both methods require a training sample that is representative of the full population, so typical spectroscopic supernova subsamples will lead to poor performance. To enable the full potential of such blind methods, we recommend that representative training samples should be used and so specific attention should be given to their creation in the design phase of future photometric surveys.

  13. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    CERN Document Server

    Möller, A; Leloup, C; Neveu, J; Palanque-Delabrouille, N; Rich, J; Carlberg, R; Lidman, C; Pritchet, C

    2016-01-01

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts ($0.2redshift from photometry and estimating light-curve shape parameters) and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia sa...

  14. Probing the bias of radio sources at high redshift

    CERN Document Server

    Passmoor, Sean; Faltenbacher, Andreas; Johnston, Russell; Smith, Mathew; Ratsimbazafy, Ando; Hoyle, Ben

    2012-01-01

    The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate to high-redshift radio continuum sources for which no redshift information is available. We matched radio sources from the Faint Images of the Radio Sky at Twenty centimetres (FIRST) survey data to their optical counterparts in the Sloan Digital Sky Survey (SDSS) to obtain photometric redshifts for the matched radio sources. We then use the publicly available semi-empirical simulation of extragalactic radio continuum sources (S3) to infer the redshift distribution for all FIRST sources and estimate the redshift distribution of unmatched sources by subtracting the matched distribution from the distribution of all sources. We infer that the majority of unmatched sources are at higher redshifts than the optically matched sources and demonstrate how the angular scales of the angular two-point correlation function can be used...

  15. Dusty Quasars at High Redshifts

    CERN Document Server

    Weedman, Daniel

    2016-01-01

    A population of quasars at z ~ 2 is determined based on dust luminosities vLv(7.8 um) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio vLv(0.25 um)/vLv(7.8 um) = UV/IR, assumed to measure obscuration of UV luminosity by the dust which produces IR luminosity. Quasar counts at rest frame 7.8 um are determined for quasars in the Bootes field of the NOAO Deep Wide Field Survey using 24 um sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest frame 7.8 um, but the ratio Lv(100 um)/Lv(7.8 um) is about three times high...

  16. SDSS DR6 Data for Photometric Redshift Calculations

    Data.gov (United States)

    National Aeronautics and Space Administration — Subject Area: Astronomical data Description: The Sloan Digital Sky Survey (SDSS) is a multi-organization effort to gather deep, multi-color images covering more...

  17. High Redshift Lyman-α Hunt

    DEFF Research Database (Denmark)

    Kochiashvili, Ia

    .85.I used the near-infrared data from NB1060, Y and J filters to perform colour-colourand colour-magnitude selections. With the broad-band data from CANDELS catalogue,I performed SED fitting and derived photometric redshifts and other physical propertiesfor the candidate emission-line galaxies....... Significant differences between the two selectionmethods have been found. The colour-colour selection method, tends to pick galaxieswith high colour excess and can leave some strong emission-line candidates with relativelylower colour excess out of the sample. The populations of selected galaxies can also...... constitute the backbone of thisthesis, I investigated the nature of almost 100 emission-line galaxies selected with thenarrow-band selection method. These candidates can be: galaxies with Hα emissionlines at redshift z ∼ 0.6, [Oiii]/Hβ emission-line galaxies at redshift z ∼ 1.15 and [Oii]emitters at z ∼ 1...

  18. Optimising Spectroscopic and Photometric Galaxy Surveys: Same-sky Benefits for Dark Energy and Modified Gravity

    CERN Document Server

    Kirk, Donnacha; Bridle, Sarah; Jouvel, Stephanie; Abdalla, Filipe B; Frieman, Joshua A

    2013-01-01

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a...

  19. Catastrophic Medical Expenditure Risk

    NARCIS (Netherlands)

    G. Flores (Gabriela); O.A. O'Donnell (Owen)

    2012-01-01

    textabstractMedical expenditure risk can pose a major threat to living standards. We derive decomposable measures of catastrophic medical expenditure risk from reference-dependent utility with loss aversion. We propose a quantile regression based method of estimating risk exposure from cross-section

  20. The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies

    Science.gov (United States)

    Thomas, Shaun A.; Abdalla, Filipe B.; Lahav, Ofer

    2011-04-01

    We construct new galaxy angular power spectra Cℓ based on the extended, updated and final Sloan Digital Sky Survey (SDSS) II luminous red galaxy (LRG) photometric redshift survey - MegaZ (DR7). Encapsulating 7746 deg2 we utilize 723 556 photometrically determined LRGs between 0.45 preliminary parameter constraints of fb≡Ωb/Ωm= 0.173 ± 0.046 and Ωm= 0.260 ± 0.035 assuming H0= 75 km s-1 Mpc-1, ns= 1 and Ωk= 0. These limits are consistent with the cosmic microwave background and the previous data release (DR4). The Cℓ are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of β≈Ω0.55m/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined. The latter includes a cosmological comparison of available photometric redshift estimation codes where we find excellent agreement between template and empirical estimation methods. MegaZ DR7 represents a methodological prototype to next generation surveys such as the Dark Energy Survey and, furthermore, is a photometric precursor to the spectroscopic BOSS survey. Our galaxy catalogue and all power spectra data can be found at .

  1. Dusty Quasars at High Redshifts

    Science.gov (United States)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  2. Catastrophic primary antiphospholipid syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hun; Byun, Joo Nam [Chosun University Hospital, Gwangju (Korea, Republic of); Ryu, Sang Wan [Miraero21 Medical Center, Gwangju (Korea, Republic of)

    2006-09-15

    Catastrophic antiphospholipid syndrome (CAPLS) was diagnosed in a 64-year-old male who was admitted to our hospital with dyspnea. The clinical and radiological examinations showed pulmonary thromboembolism, and so thromboembolectomy was performed. Abdominal distension rapidly developed several days later, and the abdominal computed tomography (CT) abdominal scan revealed thrombus within the superior mesenteric artery with small bowel and gall bladder distension. Cholecystectomy and jejunoileostomy were performed, and gall bladder necrosis and small bowel infarction were confirmed. The anticardiolipin antibody was positive. Anticoagulant agents and steroids were administered, but the patient expired 4 weeks after surgery due to acute respiratory distress syndrome (ARDS). We report here on a case of catastrophic APLS with manifestations of pulmonary thromboembolism, rapidly progressing GB necrosis and bowel infarction.

  3. The ALHAMBRA survey: Accurate photometric merger fractions from PDF analysis

    Science.gov (United States)

    López-Sanjuan, C.; Cenarro, A. J..; Varela, J.; Viironen, K.; ALHAMBRA Team

    2015-05-01

    The estimation of the merger fraction in photometric surveys is limited by the large uncertainty in the photometric redshift compared with the velocity difference in kinematical close pairs (less than 500 km s^{-1}). Several efforts have conducted to deal with this limitation and we present the latest improvements. Our new method (i) provides a robust estimation of the merger fraction by using full probability distribution functions (PDFs) instead of Gaussian distributions, as in previous work; (ii) takes into account the dependence of the luminosity on redshift in both the selection of the samples and the definition of major/minor mergers; and (iii) deals with partial PDFs to define ``red" (E/S0 templates) and ``blue" (spiral/starburst templates) samples without apply any colour selection. We highlight our new method with the estimation of the merger fraction at z SHARDS, J-PAS, or LSST.

  4. Valuing Catastrophic Citrus Losses

    OpenAIRE

    Adams, Damian C.; Kilmer, Richard L.; Moss, Charles B.; Schmitz, Andrew

    2004-01-01

    Courts are often required to estimate changes in welfare to agricultural operations from catastrophic events. For example, courts must assign damages in lawsuits, such as with pesticide drift cases, or determine "just compensation" when the government takes private land for public use, as with the removal of dairy farms from environmentally sensitive land or destruction of canker-contaminated citrus trees. In economics, the traditional method of quantifying producer losses is estimating chang...

  5. New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies

    CERN Document Server

    de Putter, Roland; Giusarma, Elena; Ho, Shirley; Cuesta, Antonio; Seo, Hee-Jong; Ross, Ashley; White, Martin; Bizyaev, Dmitry; Brewington, Howard; Kirkby, David; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Percival, Will J; Ross, Nicholas P; Schneider, Donald P; Shelden, Alaina; Simmons, Audrey; Snedden, Stephanie

    2012-01-01

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release Eight (SDSS DR8). The galaxies have photometric redshifts between $z = 0.45$ and $z = 0.65$, and cover 10,000 square degrees and thus probe a volume of 3$h^{-3}$Gpc$^3$, enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses $\\sum m_\

  6. CATASTROPHIC EVENTS MODELING

    Directory of Open Access Journals (Sweden)

    Ciumas Cristina

    2013-07-01

    Full Text Available This paper presents the emergence and evolution of catastrophe models (cat models. Starting with the present context of extreme weather events and features of catastrophic risk (cat risk we’ll make a chronological illustration from a theoretical point of view of the main steps taken for building such models. In this way the importance of interdisciplinary can be observed. The first cat model considered contains three modules. For each of these indentified modules: hazard, vulnerability and financial losses a detailed overview and also an exemplification of a potential case of an earthquake that measures more than 7 on Richter scale occurring nowadays in Bucharest will be provided. The key areas exposed to earthquake in Romania will be identified. Then, based on past catastrophe data and taking into account present conditions of housing stock, insurance coverage and the population of Bucharest the impact will be quantified by determining potential losses. In order to accomplish this work we consider a scenario with data representing average values for: dwelling’s surface, location, finishing works. On each step we’ll make a reference to the earthquake on March 4 1977 to see what would happen today if a similar event occurred. The value of Bucharest housing stock will be determined taking firstly the market value, then the replacement value and ultimately the real value to quantify potential damages. Through this approach we can find the insurance coverage of potential losses and also the uncovered gap. A solution that may be taken into account by public authorities, for example by Bucharest City Hall will be offered: in case such an event occurs the impossibility of paying compensations to insured people, rebuilding infrastructure and public buildings and helping the suffering persons should be avoided. An actively public-private partnership should be created between government authorities, the Natural Disaster Insurance Pool, private

  7. Measuring galaxy environment with the synergy of future photometric and spectroscopic surveys

    Science.gov (United States)

    Cucciati, O.; Marulli, F.; Cimatti, A.; Merson, A. I.; Norberg, P.; Pozzetti, L.; Baugh, C. M.; Branchini, E.

    2016-10-01

    We exploit the synergy between low-resolution spectroscopy and photometric redshifts to study environmental effects on galaxy evolution in slitless spectroscopic surveys from space. As a test case, we consider the future Euclid Deep survey (˜40 deg2), which combines a slitless spectroscopic survey limited at Hα flux ≥5 × 10-17 erg cm-2 s-1 and a photometric survey limited in H band (H ≤ 26). We use Euclid-like galaxy mock catalogues, in which we anchor the photometric redshifts to the 3D galaxy distribution of the available spectroscopic redshifts. We then estimate the local density contrast by counting objects in cylindrical cells with radius from 1 to 10 h-1Mpc, over the redshift range 0.9 < z < 1.8. We compare this density field with the one computed in a mock catalogue with the same depth as the Euclid Deep survey (H = 26) but without redshift measurement errors. We find that our method successfully separates high- from low-density environments (the last from the first quintile of the density distribution), with higher efficiency at low redshift and large cells: the fraction of low-density regions mistaken by high-density peaks is <1 per cent for all scales and redshifts explored, but for scales of 1 h-1Mpc for which is a few per cent. These results show that we can efficiently study environment in photometric samples if spectroscopic information is available for a smaller sample of objects that sparsely samples the same volume. We demonstrate that these studies are possible in the Euclid Deep survey, i.e. in a redshift range in which environmental effects are different from those observed in the local Universe, hence providing new constraints for galaxy evolution models.

  8. Optimal Redshift Weighting For Redshift Space Distortions

    CERN Document Server

    Ruggeri, Rossana; Gil-Marín, Héctor; Zhu, Fangzhou; Zhao, Gongbo; Wang, Yuting

    2016-01-01

    The low statistical errors on cosmological parameters promised by future galaxy surveys will only be realised with the development of new, fast, analysis methods that reduce potential systematic problems to low levels. We present an efficient method for measuring the evolution of the growth of structure using Redshift Space Distortions (RSD), that removes the need to make measurements in redshift shells. We provide sets of galaxy-weights that cover a wide range in redshift, but are optimised to provide differential information about cosmological evolution. These are derived to optimally measure the coefficients of a parameterisation of the redshift-dependent matter density, which provides a framework to measure deviations from the concordance $\\Lambda$CDM cosmology, allowing for deviations in both geometric and/or growth. We test the robustness of the weights by comparing with alternative schemes and investigate the impact of galaxy bias. We extend the results to measure the combined anisotropic Baryon Acoust...

  9. Sky Mining - Application to Photomorphic Redshift Estimation

    Science.gov (United States)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  10. THE LOW-REDSHIFT CARNEGIE SUPERNOVA PROJECT

    Directory of Open Access Journals (Sweden)

    G. Folatelli

    2009-01-01

    Full Text Available We present the low-redshift Carnegie Supernova Project (CSP, an undergoing program to follow up about 250 nearby supernovae (SNe of all types. We brie y describe the observations which yield well-sampled, highly precise optical and near-infrared light curves in a well-understood photometric system, complemented with optical spectroscopy. As one of the main goals of the CSP, we preliminarily present the rst Hubble diagram using a sample of 30 Type-Ia SNe (SNe Ia.

  11. Catastrophic pediatric sports injuries.

    Science.gov (United States)

    Luckstead, Eugene F; Patel, Dilip R

    2002-06-01

    The high school sports of wrestling, gymnastics, ice hockey, baseball, track, and cheerleading should receive closer attention to prevent injury. Safer equipment and sport-specific conditioning should be provided and injuries strictly monitored. Greater attention must also be paid to swimming and diving techniques, and continued observation is needed for heat stroke and heat intolerance in sports such as football, wrestling, basketball, track and field, and cross-country. An increased awareness of commotio cordis in sports other than baseball should include ice hockey, football, track field events, and lacrosse. American football because of the sheer numbers and associated catastrophic injury potential must continue to be monitored at the highest medical levels! PMID:12119866

  12. Catastrophic medical expenditure risk.

    Science.gov (United States)

    Flores, Gabriela; O'Donnell, Owen

    2016-03-01

    We propose a measure of household exposure to particularly onerous medical expenses. The measure can be decomposed into the probability that medical expenditure exceeds a threshold, the loss due to predictably low consumption of other goods if it does and the further loss arising from the volatility of medical expenses above the threshold. Depending on the choice of threshold, the measure is consistent with a model of reference-dependent utility with loss aversion. Unlike the risk premium, the measure is only sensitive to particularly high expenses, and can identify households that expect to incur such expenses and would benefit from subsidised, but not actuarially fair, insurance. An empirical illustration using data from seven Asian countries demonstrates the importance of taking account of informal insurance and reveals clear differences in catastrophic medical expenditure risk across and within countries. In general, risk is higher among poorer, rural and chronically ill populations.

  13. Measuring and Modelling the Redshift Evolution of Clustering the Hubble Deep Field North

    CERN Document Server

    Arnouts, S; Moscardini, L; Matarrese, S; Lucchin, F; Fontana, A; Giallongo, E; Arnouts, Stephane; Cristiani, Stefano; Moscardini, Lauro; Matarrese, Sabino; Lucchin, Francesco; Fontana, Adriano; Giallongo, Emanuele

    1999-01-01

    (abridged) The evolution of galaxy clustering from z=0 to z=4.5 is analyzed using the angular correlation function and the photometric redshift distribution of galaxies brighter than I_{AB}\\le 28.5 in the HDF North. The reliability of the photometric redshift estimates is discussed on the basis of the available spectroscopic redshifts, comparing different codes and investigating the effects of photometric errors. The redshift bins in which the clustering properties are measured are then optimized to take into account the uncertainties of the photometric redshifts. The results show that the comoving correlation length has a small decrease in the range 0redshift galaxies are biased tracers of the dark matter with an effective bias b strongly i...

  14. Probing Neutrinos from Planck and Forthcoming Galaxy Redshift Surveys

    CERN Document Server

    Takeuchi, Yoshitaka

    2013-01-01

    We investigate how much the constraints on the neutrino properties can be im- proved by combining the CMB, the photometric and spectroscopic galaxy redshift surveys which include the CMB lensing, galaxy lensing tomography, galaxy clustering and redshift space distortion observables. We pay a particular attention to the con- straint on the neutrino mass in view of the forthcoming redshift surveys such as the Euclid satellite and the LSST survey along with the Planck CMB lensing measure- ments. Combining the transverse mode information from the angular power spectrum and the longitudinal mode information from the spectroscopic survey with the redshift space distortion measurements can determine the total neutrino mass with the pro- jected error of O(0.02)eV. Our analysis fixes the mass splittings among the neutrino species to be consistent with the neutrino oscillation data, and we accordingly study the sensitivity of our parameter estimations on the minimal neutrino mass. The cos- mological measurement of the ...

  15. The Photometric Classification Server for Pan-STARRS1

    CERN Document Server

    Saglia, R P; Bender, R; Greisel, N; Seitz, S; Senger, R; Snigula, J; Phleps, S; Wilman, D; Bailer-Jones, C A L; Klement, R J; Rix, H -W; Smith, K; Green, P J; Burgett, W S; Chambers, K C; Heasley, J N; Kaiser, N; Magnier, E A; Morgan, J S; Price, P A; Stubbs, C W; Wainscoat, R J

    2011-01-01

    The Pan-STARRS1 survey is obtaining multi-epoch imaging in 5 bands (gps rps ips zps yps) over the entire sky North of declination -30deg. We describe here the implementation of the Photometric Classification Server (PCS) for Pan-STARRS1. PCS will allow the automatic classification of objects into star/galaxy/quasar classes based on colors, the measurement of photometric redshifts for extragalactic objects, and constrain stellar parameters for stellar objects, working at the catalog level. We present tests of the system based on high signal-to-noise photometry derived from the Medium Deep Fields of Pan-STARRS1, using available spectroscopic surveys as training and/or verification sets. We show that the Pan-STARRS1 photometry delivers classifications and photometric redshifts as good as the Sloan Digital Sky Survey (SDSS) photometry to the same magnitude limits. In particular, our preliminary results, based on this relatively limited dataset down to the SDSS spectroscopic limits and therefore potentially improv...

  16. A Fourteen-Band Photometric Study of A2443

    Institute of Scientific and Technical Information of China (English)

    Zhong-Lue Wen; Yan-Bin Yang; Qi-Rong Yuan; Xu Zhou; Jun Ma; Zhao-Ji Jiang

    2007-01-01

    We present a multi-color photometric study of the galaxy cluster A2443 (z = 0.108) with the Beijing-Arizona-Taiwan-Connecticut (BATC) system. The spectral energy distributions (SEDs) in 14 intermediate bands are obtained for 5975 detected from ~1deg2 of the BATC images. Color-color diagrams are used for star-galaxy separation, then a photometric redshift technique is applied to the galaxy sample for cluster membership determination. There are 301 galaxies with photometric redshifts between 0.08 and 0.14 determined as member candidates of A2443, including 289 new ones. Based on this enlarged sample, the luminosity function and color magnitude relation of the cluster are studied. With an evolutionary synthesis model, we find that the fainter galaxies tend to have longer time scales of star formation than the brighter ones. Morphologically, we show an elongated spatial distribution associating with the galaxy cluster ZwCl 2224.2+ 1651, which contains more blue galaxies. This result indicates that galaxy cluster ZwCl 2224.2+1651 may be falling into A2443, and cluster-cluster interaction could have triggered star formation activities in ZwCl 2224.2+1651.

  17. Photometric Selection of a Luminous Red Galaxy Catalog with $z\\geq0.55$

    CERN Document Server

    Núñez, Carolina; Ho, Shirley

    2016-01-01

    We present the development of a photometrically selected Luminous Red Galaxy (LRG) catalog at redshift $z\\geq 0.55$. LRG candidates are selected using infrared/optical color-color cuts, optimized using ROC curve analysis, with optical data from Sloan Digital Sky Survey (SDSS) and infrared data from "unWISE" forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalogs is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe $U-B$ colors from DEEP2 are used to estimate LRG selection efficiency. In DEEP2, the resulting catalog has average redshift $z=0.65$, with standard deviation $\\sigma = 2.0$, and average restframe $U-B=1.0$, with $\\sigma=0.27$. In COSMOS, the resulting catalog has average redshift $z=0.60$, with standard deviation $\\sigma = 1.8$. We allow for 35% contamination from bl...

  18. The number density of quiescent compact galaxies at intermediate redshift

    Energy Technology Data Exchange (ETDEWEB)

    Damjanov, Ivana [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor, E-mail: idamjanov@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2014-09-20

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ∼200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ∼ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  19. Measuring galaxy environment with the synergy of future photometric and spectroscopic surveys

    CERN Document Server

    Cucciati, O; Cimatti, A; Merson, A I; Norberg, P; Pozzetti, L; Baugh, C M; Branchini, E

    2016-01-01

    [Abridged] We exploit the synergy between low-resolution spectroscopy and photometric redshifts to study environmental effects on galaxy evolution in slitless spectroscopic surveys from space. As a test case, we consider the future Euclid Deep survey (~40deg$^2$), which combines a slitless spectroscopic survey limited at H$\\alpha$ flux $\\leq5\\times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ and a photometric survey limited in H-band ($H\\leq26$). To test the power of the method, we use Euclid-like galaxy mock catalogues, in which we anchor the photometric redshifts to the 3D galaxy distribution of the available spectroscopic redshifts. We then estimate the local density contrast by counting objects in cylindrical cells with radius ranging from 1 to 10 h$^{-1}$Mpc over the redshift range 0.9redshift measurement errors. We find that our method is successful in separating hi...

  20. Discovery of Nine Intermediate Redshift Compact Quiescent Galaxies in the Sloan Digital Sky Survey

    CERN Document Server

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J

    2013-01-01

    We identify nine galaxies with dynamical masses of M_dyn>10^10 M_sol as photometric point sources, but with redshifts between z=0.2 and z=0.6, in the Sloan Digital Sky Survey (SDSS) spectro-photometric database. All nine galaxies have archival Hubble Space Telescope (HST) images. Surface brightness profile fitting confirms that all nine galaxies are extremely compact (with circularized half-light radii between 0.4 and 6.6 kpc and the median value of 0.74 kpc) for their velocity dispersion (1101 galaxies and the other eight objects follow the high-redshift dynamical size-mass relation.

  1. Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    CERN Document Server

    Denneau, Larry; Fitzsimmons, Alan; Hsieh, Henry; Kleyna, Jan; Granvik, Mikael; Micheli, Marco; Spahr, T; Vereš, Peter; Wainscoat, Richard; Burgett, W S; Chambers, K C; Draper, P W; Flewelling, H; Huber, M E; Kaiser, N; Morgan, J S; Tonry, J L

    2014-01-01

    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due ...

  2. Redshift estimation from low-resolution prism SEDs with an NGST MOS

    OpenAIRE

    Teplitz, Harry I.; Malumuth, Eliot; Woodgate, Bruce E.; Moseley, S. Harvey; Gardner, Jonathan P.; Kimble, Randy A.; Bowers, Charles W.; Kutyrev, Alexander S.; Fettig, Rainer K.; Wesenberg, Richard P.; Mentzell, John E.

    2000-01-01

    We discuss the utility of a low resolution prism as a component of a Multi-Object Spectrometer for NASA's proposed Next Generation Space Telescope (NGST). Low resolution prism spectroscopy permits simultaneous observation of the 0.6-5micron wavelength regime at R~50. To such data we can apply the modern techniques in spectral energy distribution (SED) fitting to determine source redshifts, sometimes called ``photometric redshifts''. Low resolution prism observations of galaxy SED's provide a ...

  3. Photometric stereo endoscopy

    Science.gov (United States)

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.

    2013-01-01

    Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015

  4. GTC Photometric Calibration

    Science.gov (United States)

    di Cesare, M. A.; Hammersley, P. L.; Rodriguez Espinosa, J. M.

    2006-06-01

    We are currently developing the calibration programme for GTC using techniques similar to the ones use for the space telescope calibration (Hammersley et al. 1998, A&AS, 128, 207; Cohen et al. 1999, AJ, 117, 1864). We are planning to produce a catalogue with calibration stars which are suitable for a 10-m telescope. These sources will be not variable, non binary and do not have infrared excesses if they are to be used in the infrared. The GTC science instruments require photometric calibration between 0.35 and 2.5 microns. The instruments are: OSIRIS (Optical System for Imaging low Resolution Integrated Spectroscopy), ELMER and EMIR (Espectrógrafo Multiobjeto Infrarrojo) and the Acquisition and Guiding boxes (Di Césare, Hammersley, & Rodriguez Espinosa 2005, RevMexAA Ser. Conf., 24, 231). The catalogue will consist of 30 star fields distributed in all of North Hemisphere. We will use fields containing sources over the range 12 to 22 magnitude, and spanning a wide range of spectral types (A to M) for the visible and near infrared. In the poster we will show the method used for selecting these fields and we will present the analysis of the data on the first calibration fields observed.

  5. A New Redshift Interpretation

    CERN Document Server

    Gentry, R V

    1997-01-01

    A nonhomogeneous universe with vacuum energy, but without spacetime expansion, is utilized together with gravitational and Doppler redshifts as the basis for proposing a new interpretation of the Hubble relation and the 2.7K Cosmic Blackbody Radiation.

  6. Photometric Supernova Classification with Machine Learning

    Science.gov (United States)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  7. On the Number of Galaxies at High Redshift

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2015-09-01

    Full Text Available The number of galaxies at a given flux as a function of the redshift, z, is derived when the z-distance relation is non-standard. In order to compare different models, the same formalism is also applied to the standard cosmology. The observed luminosity function for galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity function for galaxies, which is derived by the truncated beta probability density function. Three astronomical tests, which are the photometric maximum as a function of the redshift for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function for galaxies as a function of the redshift, compare the theoretical values of the standard and non-standard model with the observed value. The tests are performed on the FORS Deep Field (FDF catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending beyond z = 4. These three tests show minimal differences between the standard and the non-standard models.

  8. Is there a redshift cutoff for submillimetre galaxies?

    CERN Document Server

    Raymond, G; Dye, S; Carlberg, R; Sullivan, M

    2008-01-01

    We present new optical and infrared photometry for a statistically complete sample of seven 1.1 mm selected sources with accurate Submillimetre Array coordinates. We determine photometric redshifts for four of the seven sources of 4.47, 4.50, 1.49 and 0.64. Of the other three sources two are undetected at optical wavelengths down to the limits of very deep Subaru and Canada-France-Hawaii Telescope images ($\\sim$27 mag AB, i band) and the photometry of the remaining source is corrupted by a bright nearby galaxy. The sources with the highest redshifts are at higher redshifts than all but one of the $\\sim$200 sources taken from the largest recent 850 $\\mu$m surveys, which may indicate that 1.1 mm surveys are more efficient at finding sources at very high redshifts than 850 $\\mu$m surveys. We investigate the evolution of the number density with redshift of our sample using a banded $V_{e}/V_{a}$ analysis and find no evidence for a redshift cutoff, although the number of sources is very small. We also perform the ...

  9. Radio-loud high-redshift protogalaxy canidates in Bootes

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  10. The K20 survey. III. Photometric and spectroscopic properties of the sample

    CERN Document Server

    Cimatti, A; Daddi, E; Pozzetti, L; Fontana, A; Saracco, P; Poli, F; Renzini, A; Zamorani, G; Broadhurst, T J; Cristiani, S; D'Odorico, S; Giallongo, E; Gilmozzi, R; Menci, N

    2002-01-01

    The K20 survey is an ESO VLT optical and near-infrared spectroscopic survey aimed at obtaining spectral information and redshifts of a complete sample of about 550 objects to K_s\\leq20.0 over two independent fields with a total area of 52 arcmin^2. In this paper we discuss the scientific motivation of such a survey, we describe the photometric and spectroscopic properties of the sample, and we release the $K_s$-band photometric catalog. Extensive simulations showed that the sample is photometrically highly complete to K_s=20. The observed galaxy counts and the R-K_s color distribution are consistent with literature results. We observed spectroscopically 94% of the sample, reaching a spectroscopic redshift identification completeness of 92% to K_s\\leq20.0 for the observed targets, and of 87% for the whole sample (i.e. counting also the unobserved targets). Deep spectroscopy was complemented with multi-band deep imaging in order to derive tested and reliable photometric redshifts for the galaxies lacking spectr...

  11. Pain catastrophizing: a critical review.

    Science.gov (United States)

    Quartana, Phillip J; Campbell, Claudia M; Edwards, Robert R

    2009-05-01

    Pain catastrophizing is conceptualized as a negative cognitive-affective response to anticipated or actual pain and has been associated with a number of important pain-related outcomes. In the present review, we first focus our efforts on the conceptualization of pain catastrophizing, highlighting its conceptual history and potential problem areas. We then focus our discussion on a number of theoretical mechanisms of action: appraisal theory, attention bias/information processing, communal coping, CNS pain processing mechanisms, psychophysiological pathways and neural pathways. We then offer evidence to suggest that pain catastrophizing represents an important process factor in pain treatment. We conclude by offering what we believe represents an integrated heuristic model for use by researchers over the next 5 years; a model we believe will advance the field most expediently. PMID:19402782

  12. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    Science.gov (United States)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  13. On the gravitational redshift

    CERN Document Server

    Wilhelm, Klaus

    2013-01-01

    The study of the gravitational redshift -- a relative wavelength increase of $\\approx 2 \\times 10^{-6}$ was predicted for solar radiation by Einstein in 1908 -- is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect -- we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the gravitational force acting on an electron in a hydrogen atom situated in the Sun's photosphere to the electrostatic force between the proton and the electron is approximately $3 \\times 10^{-21}$. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. Here we show, with Einstein's early assumption of the frequency of spe...

  14. The Climate Catastrophe as Blockbuster

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2013-01-01

    Modern disaster films constitute a specific cultural form that speaks to the anxieties of the “risk society.” This essay looks at how risks like climate change is presented and constructed in popular culture. It regards blockbuster representations as part of a wider discourse of “catastrophism...

  15. THE CATASTROPHIC RISK REINSURANCE: FOREIGN EXPERIENCE

    Directory of Open Access Journals (Sweden)

    T. Tatarina

    2014-03-01

    Full Text Available The article deals with foreign experience of catastrophic risks reinsurance. The directions to ensure savings and increase capitalization of insurance companies under reinsurance protection. The necessary of catastrophic risk reinsurance in Ukraine has brought.

  16. Redshift Measurement and Spectral Classification for eBOSS Galaxies with the Redmonster Software

    CERN Document Server

    Hutchinson, Timothy A; Dawson, Kyle S; Prieto, Carlos Allende; Bailey, Stephen; Bautista, Julian E; Brownstein, Joel R; Conroy, Charlie; Guy, Julien; Myers, Adam D; Newman, Jeffrey A; Prakash, Abhishek; Carnero-Rosell, Aurelio; Seo, Hee-Jong; Vivek, M; Zhu, Guangtun Ben

    2016-01-01

    We describe the redmonster automated redshift measurement and spectral classification software designed for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). We describe the algorithms, the template standard and requirements, and the newly developed galaxy templates to be used on eBOSS spectra. We present results from testing on early data from eBOSS, where we have found a 90.5% automated redshift and spectral classification success rate for the luminous red galaxy sample (redshifts 0.6 $\\lesssim$ $z$ $\\lesssim$ 1.0). The \\texttt{redmonster} performance meets the eBOSS cosmology requirements for redshift classification and catastrophic failures, and represents a significant improvement over the previous pipeline. We describe the empirical processes used to determine the optimum number of additive polynomial terms in our models and an acceptable $\\Delta\\chi_r^2$ threshold for declaring statistical confidence. Statistical errors on redshift measurement du...

  17. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Davis, Marc [Department of Astronomy and Physics, University of California, 601 Campbell Hall, Berkeley, CA 94720 (United States); Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson [UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Dutton, Aaron A. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States); Gerke, Brian F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 90R4000, Berkeley, CA 94720 (United States); Rosario, David J. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Weiner, Benjamin J.; Willmer, C. N. A. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721-0065 (United States); Yan Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Kassin, Susan A. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Konidaris, N. P., E-mail: janewman@pitt.edu, E-mail: djm70@pitt.edu, E-mail: m.cooper@uci.edu, E-mail: mdavis@berkeley.edu, E-mail: faber@ucolick.org, E-mail: koo@ucolick.org, E-mail: raja@ucolick.org, E-mail: phillips@ucolick.org [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-09-15

    other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z {approx} 1, approaching {approx}5%-10% at z > 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z {approx} 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far.

  18. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Science.gov (United States)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Wilmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Kirby, Evan N.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than

  19. The high redshift Integrated Sachs-Wolfe effect

    International Nuclear Information System (INIS)

    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z > 1.5 and low z 1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the Λ CDM and Early Dark Energy cosmologies, when the dark energy is substantially unconstrained by observations. At present, the inclusion of the ISW data results in a poor improvement compared to the obtained constraints from other cosmological datasets. We study the capabilities of future high-redshift QSO survey and find that the ISW signal can improve the constraints on the most important cosmological parameters derived from Planck CMB data, including the high redshift dark energy abundance, by a factor ∼ 1.5

  20. Measuring the Redshift Evolution of Clustering the Hubble Deep Field South

    CERN Document Server

    Arnouts, S; Cristiani, S; Fontana, A; Giallongo, E; Matarrese, S; Moscardini, L; Saracco, P; Vanzella, E

    2002-01-01

    We present an analysis of the evolution of galaxy clustering in the redshift interval 0photometric redshifts are used for all the galaxies brighter than I_AB<27.5. The clustering signal is obtained in different redshift bins using two different approaches: a standard one, which uses the best redshift estimate of each object, and a second one, which takes into account the redshift probability function of each object. This second method makes it possible to improve the information in the redshift intervals where contamination from objects with insecure redshifts is important. With both methods, we find that the clustering strength up to z~3.5 in the HDF-S is consistent with the previous results in the HDF-N. While at redshift lower than z~1 the HDF galaxy population is un/anti-biased (b<1) with respect to the underlying dark matter, at high redshift the bias increases up to b~2-3, depending on the cosmol...

  1. The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

    Science.gov (United States)

    López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

  2. Coping with ecological catastrophe: crossing major thresholds

    Directory of Open Access Journals (Sweden)

    John Cairns, Jr.

    2004-08-01

    Full Text Available The combination of human population growth and resource depletion makes catastrophes highly probable. No long-term solutions to the problems of humankind will be discovered unless sustainable use of the planet is achieved. The essential first step toward this goal is avoiding or coping with global catastrophes that result from crossing major ecological thresholds. Decreasing the number of global catastrophes will reduce the risks associated with destabilizing ecological systems, which could, in turn, destabilize societal systems. Many catastrophes will be local, regional, or national, but even these upheavals will have global consequences. Catastrophes will be the result of unsustainable practices and the misuse of technology. However, avoiding ecological catastrophes will depend on the development of eco-ethics, which is subject to progressive maturation, comments, and criticism. Some illustrative catastrophes have been selected to display some preliminary issues of eco-ethics.

  3. Catastrophic events and older adults.

    Science.gov (United States)

    Cloyd, Elizabeth; Dyer, Carmel B

    2010-12-01

    The plight of older adults during catastrophic events is a societal concern. Older persons have an increased prevalence of cognitive disorders, chronic illnesses, and mobility problems that limit their ability to cope. These disorders may result in a lack of mental capacity and the ability to discern when they should evacuate or resolve problems encountered during a catastrophe. Some older persons may have limited transportation options, and many of the elderly survivors are at increased risk for abuse, neglect, and exploitation. Recommendations for future catastrophic events include the development of a federal tracking system for elders and other vulnerable adults, the designation of separate shelter areas for elders and other vulnerable adults, and involvement of gerontological professionals in all aspects of emergency preparedness and care delivery, including training of frontline workers. Preparation through preevent planning that includes region-specific social services, medical and public health resources, volunteers, and facilities for elders and vulnerable adults is critical. Elders need to be protected from abuse and fraud during catastrophic events. A public health triage system for elders and other vulnerable populations in pre- and postdisaster situations is useful, and disaster preparedness is paramount. Communities and members of safety and rescue teams must address ethical issues before an event. When older adults are involved, consideration needs to be given to triage decision making, transporting those who are immobile, the care of older adults who receive palliative care, and the equitable distribution of resources. Nurses are perfectly equipped with the skills, knowledge, and training needed to plan and implement disaster preparedness programs. In keeping with the tradition of Florence Nightingale, nurses can assume several crucial roles in disaster preparedness for older adults. Nurses possess the ability to participate and lead community

  4. Low X-Ray Luminosity Galaxy Clusters: Main goals, sample selection, photometric and spectroscopic observations

    CERN Document Server

    Castellón, J L Nilo; Lambas, D García; Valotto, Carlos; Mill, A L O'; Cuevas, H; Carrasco, E R; Ramírez, A; Astudillo, J M; Ramos, F; Jaque, M; Ulloa, N; Órdenes, Y

    2016-01-01

    We present the study of nineteen low X-ray luminosity galaxy clusters (L$_X \\sim$ 0.5--45 $\\times$ $10^{43}$ erg s$^{-1}$), selected from the ROSAT Position Sensitive Proportional Counters (PSPC) Pointed Observations (Vikhlinin et al. 1998) and the revised version of Mullis et al. (2003) in the redshift range of 0.16 to 0.7. This is the introductory paper of a series presenting the sample selection, photometric and spectroscopic observations and data reduction. Photometric data in different passbands were taken for eight galaxy clusters at Las Campanas Observatory; three clusters at Cerro Tololo Interamerican Observatory; and eight clusters at the Gemini Observatory. Spectroscopic data were collected for only four galaxy clusters using Gemini telescopes. With the photometry, the galaxies were defined based on the star-galaxy separation taking into account photometric parameters. For each galaxy cluster, the catalogues contain the PSF and aperture magnitudes of galaxies within the 90\\% completeness limit. They...

  5. On the gravitational redshift

    Science.gov (United States)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    The study of the gravitational redshift-a relative wavelength increase of ≈2×10-6 was predicted for solar radiation by Einstein in 1908-is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect-we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the ratio of the gravitational force acting on an electron in a hydrogen atom situated in the Sun’s photosphere to the electrostatic force between the proton and the electron in such an atom is approximately 3×10-21. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. With Einstein’s early assumption that the frequencies of spectral lines depend only on the generating ions themselves as starting point, we show that a solution can be formulated based on a two-step process in analogy with Fermi’s treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.

  6. The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

    CERN Document Server

    López-Sanjuan, C; Varela, J; Viironen, K; Molino, A; Benítez, N; Arnalte-Mur, P; Ascaso, B; Díaz-García, L A; Fernández-Soto, A; Jiménez-Teja, Y; Márquez, I; Masegosa, J; Moles, M; Pović, M; Aguerri, J A L; Alfaro, E; Aparicio-Villegas, T; Broadhurst, T; Cabrera-Caño, J; Castander, J F; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Del Olmo, A; Delgado, R M González; Husillos, C; Infante, L; Martínez, V J; Perea, J; Prada, F; Quintana, J M

    2014-01-01

    Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than fo...

  7. Photometric Variability in Earthshine Observations

    CERN Document Server

    Langford, Sally V; Turner, Edwin L

    2009-01-01

    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23 % per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum, and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.

  8. Photometric study of IC 2156

    CERN Document Server

    Tadross, A L

    2015-01-01

    The optical UBVRI photometric analysis has been established using SLOAN DIGITAL SKY SURVEY (SDSS database) in order to estimate the astrophysical parameters of poorly studied open star cluster IC 2156. The results of the present study are compared with a previous one of ours, which relied on the 2MASS JHK infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine the geometrical structure; limited radius, core and tidal radii, the distances from the Sun, from the Galactic plane and from the Galactic center. Also, the main photometric parameters; age, distance modulus, color excesses, membership, total mass, luminosity, mass functions and relaxation time; have been estimated.

  9. Photometrics at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.Y.; Hill, R.A.; Hughes, R.L. (eds.)

    1990-07-01

    This report highlights Sandia National Laboratories' work in the following areas: photometrics and optical development; still and time-lapse photography; real-time motion photography; high-speed photography; image-motion photography; schlieren photography; ultra-high-speed photography; electronic imaging; shuttered video and high-speed video; infrared imaging radiometry; exoatmospheric photography and videography; microdensitometry and image analysis; and optical system design and development.

  10. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    CERN Document Server

    Lee, Benjamin C G; Basu, Amitabh

    2016-01-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on their celestial coordinates. Techniques from integer linear programming are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but is also readily implementable in off-the-shelf solvers. We adopt Gurobi and use Python to dynamically build the cost function. The preliminary results on simulated data show great promise for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first use of linear programming in astronomy.

  11. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    Science.gov (United States)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  12. The Diseconomies of Environmental Catastrophes

    OpenAIRE

    Cairns, John

    2006-01-01

    Four factors are almost certain to lead to one or more catastrophes unless major remedial measures are taken. (1) China has replaced the United States as the world s leading consumer of resources, except for oil (Brown, 2006a), but China is already a major factor in the world market in this area also. Together, China and the United States consume approximately half the world s resources and the global population is still increasing on a finite planet. (2) The over 20% global ecological oversh...

  13. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    CERN Document Server

    Damjanov, Ivana; Geller, Margaret J; Chilingarian, Igor

    2014-01-01

    Massive compact systems at 0.2redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the BOSS spectroscopic dataset by identifying point-like SDSS photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z~0. We use the completeness-corrected numbers of BOSS compacts to compute low...

  14. Identifying high-redshift gamma-ray bursts with RATIR

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohns, O. M.; Butler, N. R. [School of Earth and Space Exploration, Arizona State University, AZ 85287 (United States); Cucchiara, A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, D. F. (Mexico); Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klein, C. R.; Fox, O. D.; Bloom, J. S. [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); Prochaska, J. X.; Ramirez-Ruiz, E. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  15. Catastrophic Evaporation of Rocky Planets

    CERN Document Server

    Perez-Becker, Daniel

    2013-01-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative-hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses 2000 K are found to disintegrate entirely in 0.1 M_Earth/Gyr --- our model yields a present-day planet mass of < 0.02 M_Earth or less than about twice the mass of the Moon. Mass loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyrs with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few percent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10--100 close-in quiescent progenitors with sub-da...

  16. Extensional rheometer based on viscoelastic catastrophes outline

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according to...... the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....

  17. Combining Spectroscopic and Photometric Surveys: Same or different sky?

    CERN Document Server

    Eriksen, Martin

    2014-01-01

    This article looks at the combined constraints from a photometric and spectroscopic survey. These surveys will measure cosmology using weak lensing (WL), galaxy cluster- ing, baryon acoustic oscillations (BAO) and redshift space distortions (RSD). We find, contrary to some findings in the recent literature, that overlapping surveys can give important benefits when measuring dark energy. We therefore try to clarify the status of this issue with a full forecast of two stage-IV surveys using a new approach to prop- erly account for covariance between the different probes in the overlapping samples. The benefit of the overlapping survey can be traced back to two factors: additional observables and sample variance cancellation. Both needs to be taken into account and contribute equally when combining 3D power spectrum and 2D correlations for lensing. With an analytic example we also illustrate that for optimal constraints, one should minimize the (Pearson) correlation coefficient between cosmological and nui- sanc...

  18. Quasar redshifts: the intrinsic component

    Science.gov (United States)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  19. High redshift blazars

    CERN Document Server

    Ghisellini, G

    2013-01-01

    Blazars are sources whose jet is pointing to us. Since their jets are relativistic, the flux is greatly amplified in the direction of motion, making blazars the most powerful persistent objects in the Universe. This is true at all frequencies, but especially where their spectrum peaks. Although the spectrum of moderate powerful sources peaks in the ~GeV range, extremely powerful sources at high redshifts peak in the ~MeV band. This implies that the hard X-ray band is the optimal one to find powerful blazars beyond a redshift of ~4. First indications strongly suggest that powerful high-z blazars harbor the most massive and active early black holes, exceeding a billion solar masses. Since for each detected blazars there must exist hundreds of similar, but misaligned, sources, the search for high-z blazars is becoming competitive with the search of early massive black holes using radio-quiet quasars. Finding how the two populations of black holes (one in jetted sources, the other in radio-quiet objects) evolve i...

  20. Getting started With Amazon Redshift

    CERN Document Server

    Bauer, Stefan

    2013-01-01

    Getting Started With Amazon Redshift is a step-by-step, practical guide to the world of Redshift. Learn to load, manage, and query data on Redshift.This book is for CIOs, enterprise architects, developers, and anyone else who needs to get familiar with RedShift. The CIO will gain an understanding of what their technical staff is working on; the technical implementation personnel will get an in-depth view of the technology, and what it will take to implement their own solutions.

  1. Catastrophe mechanism & classification of discontinuity behavior in thermal science (Ⅰ) --Fold catastrophe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of discontinuity behavior has important significance in the study of thermal science,such as fire,combustion,explosion and heat transfer.This sort of discontinuity behavior and the catastrophe caused by system nonlinearity may be equivalently classified according to the catastrophe model promulgated by catastrophe theory.Under the conditions of uniform temperature and thermal isolation,the self-ignition behavior of a Semenov System can be viewed as a result of the fold catastrophe of the system.

  2. Photometric selection of emission-line galaxies, clustering analysis and a search for the integrated Sachs-Wolfe effect

    Science.gov (United States)

    Bielby, Rich; Shanks, T.; Sawangwit, U.; Croom, S. M.; Ross, Nicholas P.; Wake, D. A.

    2010-04-01

    We investigate the use of simple colour cuts applied to the Sloan Digital Sky Survey (SDSS) optical imaging to perform photometric selections of emission-line galaxies (ELGs) out to z S11). We thus perform colour cuts using the SDSS g, r and i bands and obtain mean photometric redshifts of and . We further calibrate our high-redshift selection using spectroscopic observations with the AAOmega spectrograph on the 4-m Anglo-Australian Telescope, observing ~50-200 galaxy candidates in four separate fields. With just 1h of integration time and seeing of ~ 1.6arcsec, we successfully determined redshifts for ~65 per cent of the targeted candidates. We compare our spectroscopic redshifts to the photometric redshifts from the COMBO-17 survey and find reasonable agreement between the two. We calculate the angular correlation functions of these samples and find correlation lengths of r0 = 2.78 +/- 0.08, 3.71 +/- 0.11 and 5.50 +/- 0.13h-1Mpc for the low-, mid- and high-redshift samples, respectively. Comparing these results with predicted dark matter clustering, we estimate the bias parameter for each sample to be b = 0.72 +/- 0.02, b = 0.93 +/- 0.03 and b = 1.43 +/- 0.03. We calculate the two-point redshift-space autocorrelation function at z ~ 0.6 and find a clustering amplitude of so = 6.4 +/- 0.8h-1Mpc. Finally, we use our photometric sample to search for the integrated Sachs-Wolfe signal in the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr data. We cross-correlate our three redshift samples with the WMAP W, V, Q and K bands and find an overall trend for a positive signal similar to that expected from models. However, the signal in each is relatively weak, with the results in the WMAP W band being wTg(<100arcmin) = 0.25 +/- 0.27, 0.17 +/- 0.20 and 0.17 +/- 0.16μK for the low-, mid- and high-redshift samples, respectively. Combining all three galaxy samples, we find a signal of wTg(<100arcmin) = 0.20 +/- 0.12μK in the WMAP W band, a significance of 1.7σ. However, in

  3. Photometric Study of IC 2156

    Science.gov (United States)

    Tadross, A. L.; Hendy, Y. H. M.

    2016-04-01

    We present an optical UBVRI photometric analysis of the poorly studied open star cluster IC 2156 using Sloan Digital Sky Survey data in order to estimate its astrophysical properties. We compare these with results from our previous studies that relied on the 2MASS JHK near-infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine its geometrical structure, real radius, core and tidal radii, and its distance from the Sun, the Galactic plane, and the Galactic center. We also estimate, the age, color excesses, reddening-free distance modulus, membership, total mass, luminosity function, mass function, and relaxation time of the cluster.

  4. Colour Dynamic Photometric Stereo for Textured Surfaces

    OpenAIRE

    Janko, Zsolt; Delaunoy, Amael; Prados, Emmanuel

    2010-01-01

    International audience In this paper we present a novel method to apply photometric stereo on textured dynamic surfaces. We aim at exploiting the high accuracy of photometric stereo and reconstruct local surface orientation from illumination changes. The main difficulty derives from the fact that photometric stereo requires varying illumination while the object remains still, which makes it quite impractical to use for dynamic surfaces. Using coloured lights gives a clear solution to this ...

  5. Academic Training: Predicting Natural Catastrophes

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15, 16 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Predicting Natural Catastrophes E. OKAL / Northwestern University, Evanston, USA 1. Tsunamis -- Introduction Definition of phenomenon - basic properties of the waves Propagation and dispersion Interaction with coasts - Geological and societal effects Origin of tsunamis - natural sources Scientific activities in connection with tsunamis. Ideas about simulations 2. Tsunami generation The earthquake source - conventional theory The earthquake source - normal mode theory The landslide source Near-field observation - The Plafker index Far-field observation - Directivity 3. Tsunami warning General ideas - History of efforts Mantle magnitudes and TREMOR algorithms The challenge of 'tsunami earthquakes' Energy-moment ratios and slow earthquakes Implementation and the components of warning centers 4. Tsunami surveys Principles and methodologies Fifteen years of field surveys and re...

  6. Catastrophic disruption experiments: Recent results

    Science.gov (United States)

    Martelli, G.; Ryan, E. V.; Nakamura, A. M.; Giblin, I.

    1994-01-01

    This paper presents a review of the progress in the field of catastrophic disruption experiments over the past 4 years, since the publication of the review paper by Fujiwara et al. (1989). We describe the development of new techniques to produce shattering impacts relevant to the study of the collisional evolution of the asteroids, and summarize the results from numerous experiments which have been performed to date, using a variety of materials for both the impactor and the targets. Some of these, such as ice-on-ice, loose aggregates and pressurized targets, are quite new and have provided novel and exciting results. Some of the gaps existing previously in the data on fragment ejection-angle distributions, as well as translational and rotational velocity fields (including fine fragments) have been filled, and these new results will be surveyed.

  7. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

    Science.gov (United States)

    Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

    2008-01-01

    Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

  8. Sloan Digital Sky Survey Photometric Calibration Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  9. Sloan Digital Sky Survey Photometric Calibration Revisited

    Science.gov (United States)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  10. Climate Catastrophe - The Giant Swindle

    International Nuclear Information System (INIS)

    Energy is the life-blood of civilization. More than 80% of global energy is supplied by fossil fuels. And this will continue for the foreseeable future - if an implementation of the Kyoto Protocol does not lead to a dramatic decrease of these fuels causing worldwide turmoil of unprecedented dimensions. However, the scaremongering with a 'climate catastrophe' allegedly caused by 'greenhouse gas' emissions from the burning of fossil fuels is a huge hoax. Its only 'scientific' base is the IPCC management's enigmatic assessment: 'The balance of evidence suggests a discernable human influence on climate'. But even IPCC had to admit at the World Energy Conference in Tokyo in 1996: 'We have no evidence'. And all the scaremongering assertions of the protagonists of 'global warming' have been convincingly refuted by the world elite of scientists. This paper will: - show how the whole anti-CO2 campaign has been manipulated from the very beginning till today; - give great many scientific and logical reason why the arguments of the scaremongers are incorrect; - outline the catastrophic economic and social consequences of the proposed anti-CO2 measures - without any benefit for the environment of climate; - name the driving forces behind this campaign and their interests. The witchhunt against CO2 is an incredible scientific and political scandal, CO2 does not damage the environment at all, and labelling it a 'climate killer' is absurd. On the contrary, this gas is vital for the life on our plant, and a stronger concentration of CO2 will be beneficial by doubling plant growth and with this combatting global famine. And to pretend that we could influence - with a CO2 tax - the climate, is insane arrogance. Man is absolutely helpless when confronted with the forces of nature. The squandering of multimillions USD of taxpayer's money for the travelling circus of 'Climate summits' and the stultification of the population must stop. The 'global warming' lie is the biggest

  11. Stacking for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Zitlau, Roman; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When appl...

  12. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called `stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We show how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organizing maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9 per cent and 21 per cent on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4 per cent and 2.5 per cent for the explored metrics and comes at almost no additional computational cost.

  13. Adaptation to and Recovery from Global Catastrophe

    Directory of Open Access Journals (Sweden)

    Seth D. Baum

    2013-03-01

    Full Text Available Global catastrophes, such as nuclear war, pandemics and ecological collapse threaten the sustainability of human civilization. To date, most work on global catastrophes has focused on preventing the catastrophes, neglecting what happens to any catastrophe survivors. To address this gap in the literature, this paper discusses adaptation to and recovery from global catastrophe. The paper begins by discussing the importance of global catastrophe adaptation and recovery, noting that successful adaptation/recovery could have value on even astronomical scales. The paper then discusses how the adaptation/recovery could proceed and makes connections to several lines of research. Research on resilience theory is considered in detail and used to develop a new method for analyzing the environmental and social stressors that global catastrophe survivors would face. This method can help identify options for increasing survivor resilience and promoting successful adaptation and recovery. A key point is that survivors may exist in small isolated communities disconnected from global trade and, thus, must be able to survive and rebuild on their own. Understanding the conditions facing isolated survivors can help promote successful adaptation and recovery. That said, the processes of global catastrophe adaptation and recovery are highly complex and uncertain; further research would be of great value.

  14. Catastrophizing delays the analgesic effect of distraction.

    Science.gov (United States)

    Campbell, Claudia M; Witmer, Kenny; Simango, Mpepera; Carteret, Alene; Loggia, Marco L; Campbell, James N; Haythornthwaite, Jennifer A; Edwards, Robert R

    2010-05-01

    Behavioral analgesic techniques such as distraction reduce pain in both clinical and experimental settings. Individuals differ in the magnitude of distraction-induced analgesia, and additional study is needed to identify the factors that influence the pain relieving effects of distraction. Catastrophizing, a set of negative emotional and cognitive processes, is widely recognized to be associated with increased reports of pain. We sought to evaluate the relationship between catastrophizing and distraction analgesia. Healthy participants completed three sessions in a randomized order. In one session (Pain Alone), pain was induced by topical application of a 10% capsaicin cream and simultaneous administration of a tonic heat stimulus. In another session (Pain+Distraction), identical capsaicin+heat application procedures were followed, but subjects played video games that required a high level of attention. During both sessions, verbal ratings of pain were obtained and participants rated their degree of catastrophizing. During the other session (Distraction Alone) subjects played the video games in the absence of any pain stimulus. Pain was rated significantly lower during the distraction session compared to the "Pain Alone" session. In addition, high catastrophizers rated pain significantly higher regardless of whether the subjects were distracted. Catastrophizing did not influence the overall degree of distraction analgesia; however, early in the session high catastrophizers had little distraction analgesia, though later in the session low and high catastrophizers rated pain similarly. These results suggest that both distraction and catastrophizing have substantial effects on experimental pain in normal subjects and these variables interact as a function of time.

  15. Environmental Catastrophes Under Time-inconsistent Preferences

    NARCIS (Netherlands)

    Michielsen, T.O.

    2013-01-01

    Abstract I analyze optimal natural resource use in an intergenerational model with the risk of a catastrophe. Each generation maximizes a weighted sum of discounted utility (positive) and the probability that a catastrophe will occur at any point in the future (negative). The model generates time-in

  16. Fracto—emissions in Catastrophic Cleavage Process

    Institute of Scientific and Technical Information of China (English)

    HonglaiTAN; WeiYANG

    1996-01-01

    Fracto-emissions accompanying crack propagation are observed in the recent experiments.The energy impulses during and after fracture stimulate the fracto-emissions.Model concerning atomic scale cleavage processes is proposed to formulate a catastrophic fracure theory relevant to these phenomena.A criterion for catastrophic jump of the cleavage potential is applied to representative crystals.

  17. Redshift Survey Strategies

    Science.gov (United States)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  18. Catastrophe mechanism and classification of discontinuity behavior in thermal science (Ⅱ) -- Cusp catastrophe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The catastrophe mechanisms of thermal performance characteristics of the firebox gas combustion system were analyzed from the viewpoint of catastrophe theory. The mathematical models of cusp catastrophe were established. The relationship between the thermal performance characteristics and the changing of system control variables was studied. The cusp catastrophe mechanisms of typical performance characteristics, such as kicking and lagging, and those of transition from quenching to igniting were explained. It was illustrated that discontinuity behavior of thermal systems with an "S" motion feature curve and lagging feature may be equivalently classified according to the topology of cusp catastrophe, influenced by two groups of independent control variables.

  19. The Compared Number Density of High-Redshift Galaxies and Lyman $\\alpha$ Clouds

    CERN Document Server

    Fernández-Soto, A; Chen, A Y

    1997-01-01

    We use our catalog of photometric redshifts in the Hubble Deep Field (HDF) to estimate the Luminosity Function (LF) of galaxies up to z=2. Using the obtained LF and a relationship between luminosity and halo size, we calculate the expected density of galactic halo crossings for any arbitrary line of sight. This density is then compared with the known one of Lyman \\alpha lines, showing that the observed density of galaxies is enough to account for the observed absorption lines.

  20. Bayesian redshift-space distortions correction from galaxy redshift surveys

    CERN Document Server

    Kitaura, Francisco-Shu; Angulo, Raul E; Chuang, Chia-Hsun; Rodriguez-Torres, Sergio; Monteagudo, Carlos Hernandez; Prada, Francisco; Yepes, Gustavo

    2015-01-01

    We present a Bayesian reconstruction method which maps a galaxy distribution from redshift-space to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood given by the negative binomial distribution function modelling stochastic bias. We assume a deterministic bias given by a power law relating the dark matter density field to the expected halo or galaxy field. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift-space to real-space according to the peculiar motions derived from the recovered density field using linear theory with the option to include tidal field corrections from second order Lagrangian perturbation theory. The virialised distortions are corrected by sampling candidate real-space positions (being in the neighbourhood of the observations along the line of sight), which are compatible with the bulk flow corrected redshift-space posi...

  1. High redshift radio galaxies

    CERN Document Server

    Fosbury, R A E

    2000-01-01

    There is considerable evidence that powerful radio quasars and radio galaxies are orientation-dependent manifestations of the same parent population: massive spheroids containing correspondingly massive black holes. Following the recognition of this unification, research is directed to the task of elucidating the structure and composition of the active nuclei and their hosts to understand the formation and evolution of what we expect to become the most massive of galaxies. In contrast to the quasars, where the nucleus can outshine the galaxy at optical/near infrared wavelengths by a large factor, the radio galaxies contain a 'built-in coronograph' that obscures our direct view to the nucleus. These objects present our best opportunity to study the host galaxy in detail. Of particular interest are those sources with redshifts greater than about 2 that represent an epoch when nuclear activity was much more common that it is now and when we believe these objects were in the process of assembly. In combination wi...

  2. Dust Attenuation in High Redshift Galaxies -- 'Diamonds in the Sky'

    CERN Document Server

    Scoville, Nick; Capak, Peter; Kakazu, Yuko; Li, Gongjie; Steinhardt, Charles

    2014-01-01

    We use observed optical to near infrared spectral energy distributions (SEDs) of 266 galaxies in the COSMOS survey to derive the wavelength dependence of the dust attenuation at high redshift. All of the galaxies have spectroscopic redshifts in the range z = 2 to 6.5. The presence of the CIV absorption feature, indicating that the rest-frame UV-optical SED is dominated by OB stars, is used to select objects for which the intrinsic, unattenuated spectrum has a well-established shape. Comparison of this intrinsic spectrum with the observed broadband photometric SED then permits derivation of the wavelength dependence of the dust attenuation. The derived dust attenuation curve is similar in overall shape to the Calzetti curve for local starburst galaxies. We also see the 2175 \\AA~bump feature which is present in the Milky Way and LMC extinction curves but not seen in the Calzetti curve. The bump feature is commonly attributed to graphite or PAHs. No significant dependence is seen with redshift between sub-sample...

  3. The High Redshift Integrated Sachs-Wolfe Effect

    CERN Document Server

    Xia, Jun-Qing; Baccigalupi, Carlo; Matarrese, Sabino

    2009-01-01

    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z>1.5 and low z1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the \\LambdaCDM and Early Dark Energy cosmologies, when the dark energy is substantially unco...

  4. Combining spectroscopic and photometric surveys using angular cross-correlations II: Parameter constraints from different physical effects

    OpenAIRE

    Eriksen, Martin; Gaztanaga, Enrique

    2015-01-01

    Future spectroscopic and photometric surveys will measure accurate positions and shapes of an increasing number of galaxies. In the previous paper of this series we studied the effects of Redshift Space Distortions (RSD), baryon acoustic oscillations (BAO) and Weak gravitational Lensing (WL) using angular cross-correlation. Here, we provide a new forecast that explores the contribution of including different observables, physical effects (galaxy bias, WL, RSD, BAO) and approximations (non-lin...

  5. Very high redshift radio galaxies

    Energy Technology Data Exchange (ETDEWEB)

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  6. Atom gravimeters and gravitational redshift

    CERN Document Server

    Wolf, Peter; Borde, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude; 10.1038/nature09340

    2010-01-01

    In a recent paper, H. Mueller, A. Peters and S. Chu [A precision measurement of the gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010)] argued that atom interferometry experiments published a decade ago did in fact measure the gravitational redshift on the quantum clock operating at the very high Compton frequency associated with the rest mass of the Caesium atom. In the present Communication we show that this interpretation is incorrect.

  7. Catastrophes in Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; WANG Bing-Hong

    2005-01-01

    @@ An alternative model about cascading occurrences caused by perturbation is established to search the mechanism because catastrophes in networks occur. We investigate the avalanche dynamics of our model on two-dimensional Euclidean lattices and scale-free networks and find that the avalanche dynamic behaviour is sensitive to the topological structure of networks. The simulation results show that the catastrophes occur much more frequently in scale-free networks than those in Euclidean lattices, and the greatest catastrophe in scale-free networks is much more serious than that in Euclidean lattices. Furthermore, we have studied how to reduce the catastrophes'degree, and have schemed out an effective strategy, called the targeted safeguard strategy for scale-free networks.

  8. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  9. Insuring catastrophes and the role of governments

    Directory of Open Access Journals (Sweden)

    M. M. Boyer

    2013-08-01

    Full Text Available In this paper we model the cost of providing insurance coverage against natural and man-made hazards. We propose an insurance market model that explains (1 the use of reinsurance to help finance the cost of catastrophic events and (2 the implicit (or explicit presence of government entities acting as (reinsurers of last resort. Using an economic model, we show how insurance programmes should be designed to cover the losses due to a possible catastrophic natural hazard. Our results show that the optimal structure of a reinsurance programme minimizes the cost of offering insurance protection. We also show how government intervention can reduce the cost of insurance against natural catastrophes and increase policyholders' welfare. Our paper therefore offers public policy implications as to the role and presence of government as an insurer of last resort and the minimum insurance premium necessary to cover the cost of catastrophic events.

  10. Exploiting the full potential of photometric quasar surveys: Optimal power spectra through blind mitigation of systematics

    CERN Document Server

    Leistedt, Boris

    2014-01-01

    We present optimal measurements of the angular power spectrum of the XDQSOz catalogue of photometric quasars from the Sloan Digital Sky Survey. These measurements rely on a quadratic maximum likelihood estimator that simultaneously measures the auto- and cross-power spectra of four redshift samples, and provides minimum-variance, unbiased estimates even at the largest angular scales. Since photometric quasars are known to be strongly affected by systematics such as spatially-varying depth and stellar contamination, we introduce a new framework of extended mode projection to robustly mitigate the impact of systematics on the power spectrum measurements. This technique involves constructing template maps of potential systematics, decorrelating them on the sky, and projecting out modes which are significantly correlated with the data. Our method is able to simultaneously process several thousands of nonlinearly-correlated systematics, and mode projection is performed in a blind fashion. Using our final power spe...

  11. Valuing Catastrophe Bonds Involving Credit Risks

    OpenAIRE

    Jian Liu; Jihong Xiao; Lizhao Yan; Fenghua Wen

    2014-01-01

    Catastrophe bonds are the most important products in catastrophe risk securitization market. For the operating mechanism, CAT bonds may have a credit risk, so in this paper we consider the influence of the credit risk on CAT bonds pricing that is different from the other literature. We employ the Jarrow and Turnbull method to model the credit risks and get access to the general pricing formula using the Extreme Value Theory. Furthermore, we present an empirical pricing study of the Property C...

  12. The Economic and Policy Consequences of Catastrophes

    OpenAIRE

    Robert S. Pindyck; Neng Wang

    2013-01-01

    How likely is a catastrophic event that would substantially reduce the capital stock, GDP, and wealth? How much should society be willing to pay to reduce the probability or impact of a catastrophe? We answer these questions and provide a framework for policy analysis using a general equilibrium model of production, capital accumulation, and household preferences. Calibrating the model to economic and financial data, we estimate the mean arrival rate of shocks and their size distribution, the...

  13. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva

    2014-01-01

    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  14. Redshift distributions of galaxies in the DES Science Verification shear catalogue and implications for weak lensing

    CERN Document Server

    Bonnett, C; Amara, A; Leistedt, B; Becker, M R; Bernstein, G M; Bridle, S; Bruderer, C; Busha, M T; Kind, M Carrasco; Childress, M J; Castander, F J; Chang, C; Crocce, M; Davis, T M; Eifler, T F; Frieman, J; Gangkofner, C; Gaztanaga, E; Glazebrook, K; Gruen, D; Kacprzak, T; King, A; Kwan, J; Lahav, O; Lewis, G; Lidman, C; Lin, H; MacCrann, N; Miquel, R; O'Neill, C R; Palmese, A; Peiris, H V; Refregier, A; Rozo, E; Rykoff, E S; Sadeh, I; Sánchez, C; Sheldon, E; Uddin, S; Wechsler, R H; Zuntz, J; Abbott, T; Abdalla, F B; Allam, S; Armstrong, R; Banerji, M; Bauer, A H; Benoit-Lévy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Carretero, J; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Neto, A Fausti; Fernandez, E; Flaugher, B; Fosalba, P; Gerdes, D W; Gruendl, R A; Honscheid, K; Jain, B; James, D J; Jarvis, M; Kim, A G; Kuehn, K; Kuropatkin, N; Li, T S; Lima, M; Maia, M A G; March, M; Marshall, J L; Martini, P; Melchior, P; Miller, C J; Neilsen, E; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Reil, K; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Santiago, B; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Vikram, V; Walker, A R

    2015-01-01

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods -- ANNZ2, BPZ calibrated against BCC-Ufig simulations, SkyNet, and TPZ -- are analysed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift $0.72\\pm0.01$ over the range $0.3redshift distributi...

  15. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  16. Mindfulness, acceptance and catastrophizing in chronic pain.

    Directory of Open Access Journals (Sweden)

    Maaike J de Boer

    Full Text Available OBJECTIVES: Catastrophizing is often the primary target of the cognitive-behavioral treatment of chronic pain. Recent literature on acceptance and commitment therapy (ACT suggests an important role in the pain experience for the concepts mindfulness and acceptance. The aim of this study is to examine the influence of mindfulness and general psychological acceptance on pain-related catastrophizing in patients with chronic pain. METHODS: A cross-sectional survey was conducted, including 87 chronic pain patients from an academic outpatient pain center. RESULTS: The results show that general psychological acceptance (measured with the AAQ-II is a strong predictor of pain-related catastrophizing, independent of gender, age and pain intensity. Mindfulness (measured with the MAAS did not predict levels of pain-related catastrophizing. DISCUSSION: Acceptance of psychological experiences outside of pain itself is related to catastrophizing. Thus, acceptance seems to play a role in the pain experience and should be part of the treatment of chronic pain. The focus of the ACT treatment of chronic pain does not necessarily have to be on acceptance of pain per se, but may be aimed at acceptance of unwanted experiences in general. Mindfulness in the sense of "acting with awareness" is however not related to catastrophizing. Based on our research findings in comparisons with those of other authors, we recommend a broader conceptualization of mindfulness and the use of a multifaceted questionnaire for mindfulness instead of the unidimensional MAAS.

  17. Photometrical Observations "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.

    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  18. Galaxy And Mass Assembly (GAMA): Curation and reanalysis of 17.5k redshifts in the G10/COSMOS region

    CERN Document Server

    Davies, L J M; Robotham, A S G; Baldry, I K; Lange, R; Liske, J; Meyer, M; Popping, A; Wright, A H; Wilkins, S M

    2014-01-01

    We discuss the construction of the Galaxy And Mass Assembly (GAMA) 10h region (G10) using publicly available data in the Cosmic Evolution Survey region (COSMOS) in order to extend the GAMA survey to z~1 in a single ~1deg$^2$. In order to obtain the maximum number of high precision spectroscopic redshifts we re-reduce all archival zCOSMOS-bright data and use the GAMA automatic cross-correlation redshift fitting code autoz. We combine autoz redshifts with all other available redshift information (zCOSMOS-bright 10k, PRIMUS, VVDS, SDSS and photometric redshifts) to calculate robust best-fit redshifts for all galaxies and visually inspect all 1D and 2D spectra to confirm automatically assigned redshifts. In total, we obtain 17,466 robust redshifts in the full COSMOS region. We then define the G10 region to be the central ~1deg$^2$ of COSMOS, which has relatively high spectroscopic completeness, and encompasses the CHILES VLA region. We define a combined r < 23.0 mag & i < 22.0 mag G10 sample (selected t...

  19. The Redshift Distribution of the TOUGH Survey

    OpenAIRE

    Jakobsson, P.; Chapman, R; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Milvang-Jensen, B.; Kruhler, T.; Tanvir, N. R.

    2013-01-01

    We present the redshift results from a Very Large Telescope program aimed at optimizing the legacy value of the Swift mission: to characterize a homogeneous, X-ray selected, sample of 69 GRB host galaxies. 19 new redshifts have been secured, resulting in a 83% (57/69) redshift completion, making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, available to date. We present the cumulative redshift distribution and derive a conservative,...

  20. Research on catastrophe control in 1-D system

    Institute of Scientific and Technical Information of China (English)

    SUN Yao; TANG Li-ping; LI Xue-lian

    2003-01-01

    A new method of catastrophe control is described in one dimension nonlinear system. Catastrophe control based on catastrophe theory is a brand new area for control theory. A certain catastrophe is created at a desired location by appropriate control, which has preferred properties. Washout filter is presented and applied to preserve the original equilibrium of a system. Washout filter aided dynamic feedback controller is developed for the creation of catastrophe, and an example is given to illustrate the process. Catastrophe control may provide a new way of designing warning signals of impending collapse or catastrophe for monitoring and control purposes.

  1. Machine learning techniques for astrophysical modelling and photometric redshift estimation of quasars in optical sky surveys

    CERN Document Server

    Kumar, N Daniel

    2008-01-01

    Machine learning techniques are utilised in several areas of astrophysical research today. This dissertation addresses the application of ML techniques to two classes of problems in astrophysics, namely, the analysis of individual astronomical phenomena over time and the automated, simultaneous analysis of thousands of objects in large optical sky surveys. Specifically investigated are (1) techniques to approximate the precise orbits of the satellites of Jupiter and Saturn given Earth-based observations as well as (2) techniques to quickly estimate the distances of quasars observed in the Sloan Digital Sky Survey. Learning methods considered include genetic algorithms, particle swarm optimisation, artificial neural networks, and radial basis function networks. The first part of this dissertation demonstrates that GAs and PSOs can both be efficiently used to model functions that are highly non-linear in several dimensions. It is subsequently demonstrated in the second part that ANNs and RBFNs can be used as ef...

  2. Pricing for Catastrophe Bonds Based on Expected-value Model

    Directory of Open Access Journals (Sweden)

    Junfei Chen

    2013-02-01

    Full Text Available As the catastrophes cannot be avoided and result in huge economic losses, therefore the compensation issue for catastrophe losses become an important research topic. Catastrophe bonds can effectively disperse the catastrophe risks which mainly undertaken by the government and the insurance companies currently and focus on capital more effectively in broad capital market, therefore to be an ideal catastrophe securities product. This study adopts Expectancy Theory to supplement and improve the pricing of catastrophe bonds based on Value Theory. A model of expected utility is established to determine the conditions of the expected revenue R of catastrophe bonds. The pricing model of the value function is used to get the psychological value of R,U (R-R‾, for catastrophe bonds. Finally, the psychological value is improved by the value according to expected utility and this can more accurately evaluate catastrophe bonds at a reasonable price. This research can provide decision-making for the pricing of catastrophe bonds.

  3. Downward Catastrophe of Solar Magnetic Flux Ropes

    Science.gov (United States)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui

    2016-07-01

    2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.

  4. Severe catastrophes and public reactions

    International Nuclear Information System (INIS)

    nuclear opposition. Economical basis of nuclear energy stagnation is in not very successful competition of nuclear engineering with fossil energy production technologies. Much money has been spent for improvement of safety of NPPs. Social roots of the opposition are linked with a bad experience of the public with demonstration of the nuclear energy- The explosion of atomic bombs, some contamination of the territories after nuclear arm tests, misfortunes with TMI-2 and Chernobyl have created a stable enmity and non-acceptance of the all connected with 'atom'. The mass media have strongly promoted the dissemination of the fear of radiation exposures. There is also an influence on that attitude the radiation protection regulation via the declaration of the linear no-threshold dependence of the radiation detriments and dose of exposure. Such concept ignores the adoptive features of all living. But modem studies have showed that protracted irradiation at the same dose is much less dangerous compared with sharp one. It could change public attitude to nuclear energy in the society. Role of nuclear communication for public informing: The reactions of public on various technological and man-made events differ significantly and are being determined not scales of catastrophes but the mental impression and a multiplication of psychological stresses in the society by mass -media. In present situation a nuclear community has to improve the contacts with the pubic, to launch more effective campaign for explanation of real adventures of nuclear power. It needs to compare the risks of climate warming and health detriments from different electricity production technologies and to show that nuclear power is a single alternative all fossil burning techniques of electricity production. It's the truth the nuclear power is a real method of fight for suppression of emission the greenhouse gases, isn't it? (author)

  5. Direct determination of quasar redshifts

    CERN Document Server

    De Bruijne, J H J; Perryman, M; Peacock, A; Favata, F; Rando, N; Martin, D; Verhoeve, P; Christlieb, N; Bruijne, Jos de; Reynolds, Alastair P; Perryman, Michael; Peacock, Anthony; Favata, Fabio; Rando, Nicola; Martin, Didier; Verhoeve, Peter; Christlieb, Norbert

    2001-01-01

    We present observations of 11 quasars, selected in the range z = 2.2-4.1, obtained with ESA's Superconducting Tunnel Junction (STJ) camera on the WHT. Using a single template quasar spectrum, we show that we can determine the redshifts of these objects to about 1%. A follow-up spectroscopic observation of one QSO for which our best-fit redshift (z = 2.976) differs significantly from the tentative literature value (z ~ 2.30) confirms that the latter was incorrect.

  6. Recovering galaxy stellar population properties from broad-band spectral energy distribution fitting II. The case with unknown redshift

    CERN Document Server

    Pforr, Janine; Tonini, Chiara

    2013-01-01

    (Abridged) In a recent work we explored the dependence of galaxy stellar population properties derived from broad-band spectral energy distribution fitting on the fitting parameters, e.g. SFHs, age grid, metallicity, IMF, dust reddening, reddening law, filter setup and wavelength coverage. In this paper we consider also redshift as a free parameter in the fit and study whether one can obtain reasonable estimates of photometric redshifts and stellar population properties at once. We use mock star-forming as well as passive galaxies placed at various redshifts (0.5 to 3) as test particles. Mock star-forming galaxies are extracted from a semi-analytical galaxy formation model. We show that for high-z star-forming galaxies photometric redshifts, stellar masses and reddening can be determined simultaneously when using a broad wavelength coverage and a wide template setup in the fit. Masses are similarly well recovered (median ~ 0.2 dex) as at fixed redshift. For old galaxies with little recent star formation masse...

  7. Are GRBs the same at high redshift and low redshift?

    CERN Document Server

    Littlejohns, O M; Willingale, R; Evans, P A; O'Brien, P T; Levan, A J

    2013-01-01

    The majority of Swift gamma-ray bursts (GRBs) observed at z > 6 have prompt durations of T90 < 30s, which, at first sight, is surprising given that cosmological time-dilation means this corresponds to < 5s in their rest frames. We have tested whether these high-redshift GRBs are consistent with being drawn from the same population as those observed at low-redshift by comparing them to an artificially red-shifted sample of 114 z < 4 bursts. This is accomplished using two methods to produce realistic high-z simulations of light curves based on the observed characteristics of the low-z sample. In Method 1 we use the Swift/BAT data directly, taking the photons detected in the harder bands to predict what would be seen in the softest energy band if the burst were seen at higher-z. In Method 2 we fit the light curves with a model, and use that to extrapolate the expected behaviour over the whole BAT energy range at any redshift. Based on the results of Method 2, a K-S test of their durations finds a ~1% pr...

  8. Evolutionary Catastrophes and the Goldilocks Problem

    CERN Document Server

    Cirkovic, Milan M

    2007-01-01

    One of the mainstays of the controversial "rare Earth" hypothesis is the "Goldilocks problem" regarding various parameters describing a habitable planet, partially involving the role of mass extinctions and other catastrophic processes in biological evolution. Usually, this is construed as support for the uniqueness of the Earth's biosphere and intelligent human life. Here I argue that this is a misconstrual and that, on the contrary, observation-selection effects, when applied to catastrophic processes, make it very difficult for us to discern whether the terrestrial biosphere and evolutionary processes which created it are exceptional in the Milky Way or not. In particular, an anthropic overconfidence bias related to the temporal asymmetry of evolutionary processes appears when we try to straightforwardly estimate catastrophic risks from the past records on Earth. This agnosticism, in turn, supports the validity and significance of practical astrobiological and SETI research.

  9. On a new global catastrophic ICT model

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Bhalerao, Dipashree M.; Madsen, Ole Brun;

    2011-01-01

    Many parts of India are prone to natural disasters, particularly caused by earthquakes and floods because of its geographical location. The Catastrophic areas can be rural, remote or urban anywhere in the world. It has been understood that earthquakes directly do not cause causalities but instead...... of the world's population suffers from affordable ICT solutions and the presence of sufficient ICT infrastructure. The main goal of this paper is to create a framework to define catastrophic areas from an ICT point of view. QOS features like packet loss rate, delay, throughput and delivery ratio for 50 nodes...... coverage before and after calamities. This definition of catastrophic area from ICT point of view has no one tried before. Network parameters behavioural graphs are also important. This paper presents only behavioural part....

  10. Valuing Catastrophe Bonds Involving Credit Risks

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Catastrophe bonds are the most important products in catastrophe risk securitization market. For the operating mechanism, CAT bonds may have a credit risk, so in this paper we consider the influence of the credit risk on CAT bonds pricing that is different from the other literature. We employ the Jarrow and Turnbull method to model the credit risks and get access to the general pricing formula using the Extreme Value Theory. Furthermore, we present an empirical pricing study of the Property Claim Services data, where the parameters in the loss function distribution are estimated by the MLE method and the default probabilities are deduced by the US financial market data. Then we get the catastrophe bonds value by the Monte Carlo method.

  11. Three-dimensional stereo by photometric ratios

    International Nuclear Information System (INIS)

    We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy

  12. Photometric Study of Kepler Asteroseismic Targets

    CERN Document Server

    Molenda-Zakowicz, J; Frasca, A

    2009-01-01

    Reported are UBV and uvbybeta observations of 15 candidates for Kepler primary astero- seismic targets and 14 other stars in the Kepler field, carried out at the M.G. Fracastoro station of the Catania Astrophysical Observatory. These data serve to plot the 29 stars in two-parameter diagrams with the photometric indices (such as B-V or delta m1 and the atmospheric parameters (such as the MK type or [Fe/H]) as coordinates. The two-parameter diagrams show no evidence of interstellar reddening. The photometric indices B-V and beta are then used to derive photometric effective temperatures, Teff(B-V) and Teff(beta). For Teff(B-V) > 6400 K, the photometric effective temperatures turn out to be systematically higher than spectroscopic effective temperatures by 311 +/- 34 K and 346 +/- 91 K for Teff(B-V) and Teff(beta), respectively. For T_eff(B-V) < 6250 K, the agreement between Teff(B-V) and the spectroscopic effective temperatures is very good. The photometric surface gravities, derived from c_1 and beta, show ...

  13. Photometric Variability of the Be Star Population

    CERN Document Server

    Labadie-Bartz, Jonathan; McSwain, M Virginia; Bjorkman, J E; Bjorkman, K S; Lund, Michael B; Rodriguez, Joseph E; Stassun, Keivan G; Stevens, Daniel J; Gaudi, B Scott; James, David J; Kuhn, Rudolf B; Siverd, Robert J; Beatty, Thomas G

    2016-01-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, baseline of up to ten years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the Northern and Southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fracti...

  14. The Weyl Definition of Redshifts

    Science.gov (United States)

    Harvey, Alex

    2012-01-01

    In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…

  15. The redshift-distance relation.

    Science.gov (United States)

    Segal, I E

    1993-06-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered.

  16. Obscured AGN at High Redshift

    Science.gov (United States)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  17. The VLT LBG Redshift Survey - V. Characterising the z = 3.1 Lyman Alpha Emitter Population

    CERN Document Server

    Bielby, R M; Shanks, T; Francke, H; Crighton, N H M; Bañados, E; González-López, Jorge; Infante, L; Orsi, A

    2016-01-01

    We present a survey of Ly$\\alpha$ emitting galaxies in the fields of the VLT LBG Redshift Survey, incorporating the analysis of narrow band number counts, the rest frame UV luminosity function and the two-point correlation function of Ly$\\alpha$ emitters at $z\\approx3.1$. Our photometric sample consists of 750 LAE candidates, over an area of 1.07 deg$^2$, with estimated equivalent widths of $\\gtrsim65$ \\AA, from 5 fields based on deep Subaru Suprime-Cam imaging data. Added to this we have obtained spectroscopic follow-up observations, which successfully detected Ly$\\alpha$ emission in 35 galaxies. Based on the spectroscopic results, we refined our photometric selection constraints, with the resulting sample having a success rate of $78\\pm18\\%$. We calculate the narrow band number counts for our photometric sample and find these to be consistent with previous studies of LAEs at this redshift. We find the $R$-band continuum luminosity function to be $\\sim10\\times$ lower than the equivalent luminosity function o...

  18. First Measurement of the Clustering Evolution of Photometrically-Classified Quasars

    CERN Document Server

    Myers, A D; Richards, G T; Nichol, R C; Schneider, D P; Vanden Berk, Daniel E; Scranton, R; Gray, A G; Brinkmann, J; Myers, Adam D.; Brunner, Robert J.; Richards, Gordon T.; Nichol, Robert C.; Schneider, Donald P.; Berk, Daniel E. Vanden; Scranton, Ryan; Gray, Alexander G.; Brinkmann, Jon

    2006-01-01

    We present new measurements of the quasar autocorrelation from a sample of \\~80,000 photometrically-classified quasars taken from SDSS DR1. We find a best-fit model of $\\omega(\\theta) = (0.066\\pm^{0.026}_{0.024})\\theta^{-(0.98\\pm0.15)}$ for the angular autocorrelation, consistent with estimates from spectroscopic quasar surveys. We show that only models with little or no evolution in the clustering of quasars in comoving coordinates since z~1.4 can recover a scale-length consistent with local galaxies and Active Galactic Nuclei (AGNs). A model with little evolution of quasar clustering in comoving coordinates is best explained in the current cosmological paradigm by rapid evolution in quasar bias. We show that quasar biasing must have changed from b_Q~3 at a (photometric) redshift of z=2.2 to b_Q~1.2-1.3 by z=0.75. Such a rapid increase with redshift in biasing implies that quasars at z~2 cannot be the progenitors of modern L* objects, rather they must now reside in dense environments, such as clusters. Simil...

  19. GRB 070714B-DISCOVERY OF THE HIGHEST SPECTROSCOPICALLY CONFIRMED SHORT BURST REDSHIFT

    International Nuclear Information System (INIS)

    We detect the optical afterglow and host galaxy of GRB 070714B. Our observations of the afterglow show an initial plateau in the light curve for approximately the first 5-25 minutes, and then steepening to a power-law decay with index α = 0.86 ± 0.10 for the period between 1 and 24 hr postburst. This is consistent with the X-ray light curve which shows an initial plateau followed by a similar subsequent decay. At late time, we detect a host galaxy at the location of the optical transient. Gemini Nod and Shuffle spectroscopic observations of the host show a single emission line at 7167 A which, based on a griz JHK photometric redshift, we conclude is the 3727 A [O II] line. We therefore find a redshift of z = 0.923. This redshift, as well as a subsequent probable spectroscopic redshift determination of GRB 070429B at z = 0.904 by two other groups significantly exceeds the previous highest spectroscopically confirmed short burst redshift of z = 0.546 for GRB 051221. This dramatically moves back the time at which we know short bursts were being formed and suggests that the present evidence for an old progenitor population may be observationally biased.

  20. Sonneberg Sky Patrol Archive - Photometric Analysis

    CERN Document Server

    Spasovic, Milan; Lange, Christian; Jovanovic, Dragan; Schrimpf, Andreas

    2016-01-01

    The Sonneberg Sky Patrol archive so far has not yet been analyzed systematically. In this paper we present first steps towards an automated photometric analysis aiming at the search for variable stars and transient phenomena like novae. Early works on the sky patrol plates showed that photometric accuracy can be enhanced with fitting algorithms. The procedure used was a manually supported click-and-fit-routine, not suitable for automatic analysis of vast amount of photographic plates. We will present our progress on deconvolution of overlapping sources on the plates and compare photometric analysis using different methods. Our goal is to get light curves of sufficient quality from sky patrol plates, which can be classified with machine learning algorithms. The development of an automated scheme for finding transient events is in progress and the first results are very promising.

  1. Zernike polynomials for photometric characterization of LEDs

    International Nuclear Information System (INIS)

    We propose a method based on Zernike polynomials to characterize photometric quantities and descriptors of light emitting diodes (LEDs) from measurements of the angular distribution of the luminous intensity, such as total luminous flux, BA, inhomogeneity, anisotropy, direction of the optical axis and Lambertianity of the source. The performance of this method was experimentally tested for 18 high-power LEDs from different manufacturers and with different photometric characteristics. A small set of Zernike coefficients can be used to calculate all the mentioned photometric quantities and descriptors. For applications not requiring a great accuracy such as those of lighting design, the angular distribution of the luminous intensity of most of the studied LEDs can be interpolated with only two Zernike polynomials. (paper)

  2. Defining photometric peculiar type Ia supernovae

    International Nuclear Information System (INIS)

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  3. Mindfulness, Acceptance and Catastrophizing in Chronic Pain

    NARCIS (Netherlands)

    de Boer, Maaike J.; Steinhagen, Hannemike E.; Versteegen, Gerbrig J.; Struys, Michel M. R. F.; Sanderman, Robbert

    2014-01-01

    Objectives: Catastrophizing is often the primary target of the cognitive-behavioral treatment of chronic pain. Recent literature on acceptance and commitment therapy (ACT) suggests an important role in the pain experience for the concepts mindfulness and acceptance. The aim of this study is to exami

  4. Novel percolation transitions and coupled catastrophes

    Science.gov (United States)

    D'Souza, Raissa

    Collections of interdependent networks are at the core of modern society, spanning physical, biological and social systems. Simple mathematical models of the structure and function of networks can provide important insights into real-world systems, enhancing our ability to steer and control them. Here our focus is on abrupt changes in networks, due both to phase transitions and to jumping between bi-stable equilibria. We begin with an overview of novel classes of percolation phase transitions that result from repeated, small interventions intended to delay the transition. These new phenomena allow us to extend percolation approaches to modular networks, Brownian motion, and cluster growth dynamics. We then focus on abrupt transitions due to a system jumping between bi-stable equilibria, modeled as a cusp catastrophe in nonlinear dynamics. We show that when systems that each undergo a cusp catastrophe interact, we can observe a new phenomena of catastrophe-hopping leading to non-local cascading failures. Here an intermediate system facilitates the propagation of a sudden change or collapse, and we show that catastrophe hopping is consistent with the outbreak of protests observed during the Arab Spring of 2011.

  5. The Pain Catastrophizing Scale: Development and Validation.

    Science.gov (United States)

    Sullivan, Michael J. L.; And Others

    1995-01-01

    A series of 4 studies involving 547 college students and community adults report the development of the Pain Catastrophizing Scale, its validity with clinical and nonclinical samples, and its correlation with measures of related constructs. The scale provides information about heightened responses to aversive procedures or events. (SLD)

  6. 78 FR 52832 - Catastrophic Risk Protection Endorsement

    Science.gov (United States)

    2013-08-27

    .... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24, 1983... the Federal Register at 76 FR 50929-50931. The public was afforded 60 days to submit written comments... Federal Crop Insurance Corporation 7 CFR Part 402 RIN 0563-AC31 Catastrophic Risk Protection...

  7. Probing the dark ages: Observations of the high-redshift universe

    Science.gov (United States)

    Stevens, Daniel Keith

    This thesis attempts to describe some of the earliest phases in the collapse of galaxies from an observational standpoint. The work is composed of an assortment of projects which sample objects at very high redshift, probing the Universe 1-3 Gyr after the Big Bang. The first section of the thesis concerns high-redshift galaxies. Search techniques for identifying distant galaxies are extensively reviewed. Radio selection was once the primary vehicle to targeting the early Universe. Keck spectroscopy of high-redshift radio galaxies from the MIT-Greenbank radio catalog (S5GHz >~ 50 mJy) are discussed. We synthesize a composite radio galaxy spectrum, which we compare with other composite active galaxy spectra. Our data suggests a correlation between radio power and ionization state in high-redshift radio galaxies. The following three chapters detail individual galaxies confirmed at z > 5. These galaxies are among the half-dozen most distant sources known at the close of the 20th Century. Two of the galaxies were photometrically-selected from the Hubble Deep Field (HDF 4-473.0 at z = 5.60 and HDF 3-951.0 at z = 5.34 +/- 0.01). The third is TN J0924-2201, a radio galaxy at z = 5.19 selected on the basis of steep radio spectral index and faint K-band brightness. This source contains the most distant active galactic nucleus currently known, requiring early formation of supermassive blackholes within a Gyr after the Big Bang. The second section of the thesis concerns searches for high-redshift Lyα emission, identified either from deep, narrow-band imaging surveys or deep slit spectra. We discuss in detail one faint, high equivalent width line-emitter. Conventional wisdom would suggest identifying the 9185 Å line with Lyα at z = 6.55. We argue [O II] λ3727 at z = 1.46 is the more likely identification and discuss observational tests to distinguish Lyα-emitters at high redshift from foreground (active) sources. The final section of the thesis concerns high-redshift

  8. The redshift distribution of the TOUGH survey

    DEFF Research Database (Denmark)

    Jakobsson, P.; Hjorth, J.; Malesani, D.;

    2013-01-01

    We present the redshift results from a Very Large Telescope (VLT) program aimed at optimizing the legacy value of the Swift mission: to characterize a homogeneous, X-ray selected, sample of 69 GRB host galaxies. Fifteen new redshifts have been secured, resulting in a 77% (53/69) redshift completion...

  9. Cosmology with Photometrically-Classified Type Ia Supernovae from the SDSS-II Supernova Survey

    CERN Document Server

    Campbell, Heather; Nichol, Robert C; Sako, Masao; Smith, Mathew; Lampeitl, Hubert; Olmstead, Matthew D; Bassett, Bruce; Biswas, Rahul; Brown, Peter; Cinabro, David; Dawson, Kyle S; Dilday, Ben; Foley, Ryan J; Frieman, Joshua A; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W; Kuhlmann, Steve; Kunz, Martin; Marriner, John; Miquel, Ramon; Richmond, Michael; Riess, Adam; Schneider, Donald P; Sollerman, Jesper; Taylor, Matt; Zhao, Gong-Bo

    2012-01-01

    We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05photometric sample alone gives omega_m=0.24+0.07-0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint stati...

  10. Large-scale analysis of the SDSS-III DR8 photometric luminous galaxies angular correlation function

    CERN Document Server

    de Simoni, Fernando; Carnero, Aurelio; Ross, Ashley J; Camacho, Hugo O; Rosenfeld, Rogerio; Lima, Marcos; da Costa, Luiz A N; Maia, Marcio A G

    2013-01-01

    We analyze the large-scale angular correlation function (ACF) of the CMASS Luminous Galaxies (LGs), a photometric-redshift catalog based on the 8th data release (DR8) of the SDSS-III. This catalog contains over 600,000 LGs in the range $0.45 \\leq z \\leq 0.65$, which was split into four redshift shells of constant width. First, we estimate the constraints on the redshift space distortion (RSD) parameters $b\\sigma_8$ and $f\\sigma_8$, where $b$ is the galaxy bias, $f$ the growth rate and $\\sigma_8$ is the normalization of the perturbations, finding that they vary appreciably among different redshift shells, in agreement with previous results using DR7 data. When assuming constant RSD parameters over the survey redshift range, we obtain $f\\sigma_8 = 0.69 \\pm 0.21$, which agrees at the $1.5\\sigma$ level with BOSS DR9 spectroscopic results. Next, we performed two cosmological analyses, where relevant parameters not fitted were kept fixed at their fiducial values. In the first analysis, we extracted the BAO peak pos...

  11. CATASTROPHE FRACTURE OF THIN-WALL PRESSURE TUBES

    Institute of Scientific and Technical Information of China (English)

    魏德敏; 杨桂通

    2002-01-01

    Catastrophe theory was used to investigate the fracture behavior of thin-wall cylindrical tubes subjected to nternal explosive pressure. Based on the energy theory and catastrophe theory, a cusp catastrophe model for the fracture was established, and a critical condition associated with the model is given.

  12. Personality and temperament correlates of pain catastrophizing in young adolescents

    NARCIS (Netherlands)

    P.E.H.M. Muris (Peter); C.M.G. Meesters (Cor); M.F.C.M. Van Den Hout (Mari F. C. M.); S. Wessels (Sylvia); I.H.A. Franken (Ingmar); E.G.C. Rassin (Eric)

    2007-01-01

    textabstractPain catastrophizing is generally viewed as an important cognitive factor underlying chronic pain. The present study examined personality and temperament correlates of pain catastrophizing in a sample of young adolescents (N = 132). Participants completed the Pain Catastrophizing Scale f

  13. System for clinical photometric stereo endoscopy

    Science.gov (United States)

    Durr, Nicholas J.; González, Germán.; Lim, Daryl; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.; Parot, Vicente

    2014-02-01

    Photometric stereo endoscopy is a technique that captures information about the high-spatial-frequency topography of the field of view simultaneously with a conventional color image. Here we describe a system that will enable photometric stereo endoscopy to be clinically evaluated in the large intestine of human patients. The clinical photometric stereo endoscopy system consists of a commercial gastroscope, a commercial video processor, an image capturing and processing unit, custom synchronization electronics, white light LEDs, a set of four fibers with diffusing tips, and an alignment cap. The custom pieces that come into contact with the patient are composed of biocompatible materials that can be sterilized before use. The components can then be assembled in the endoscopy suite before use. The resulting endoscope has the same outer diameter as a conventional colonoscope (14 mm), plugs into a commercial video processor, captures topography and color images at 15 Hz, and displays the conventional color image to the gastroenterologist in real-time. We show that this system can capture a color and topographical video in a tubular colon phantom, demonstrating robustness to complex geometries and motion. The reported system is suitable for in vivo evaluation of photometric stereo endoscopy in the human large intestine.

  14. Old Galaxies at High Redshift

    CERN Document Server

    Dunlop, J

    1997-01-01

    The most passive galaxies at high redshift are unlikely to be identified by either narrow-band emission-line searches, or by Lyman limit searches (both techniques which have been highlighted at this meeting) simply because such selection methods rely on the presence of a strong ultraviolet component. Selection on the basis of extreme radio power has also proved to yield optically active objects with the majority of high-redshift objects studied to date displaying complex elongated optical/UV morphologies, relatively blue optical-ultraviolet continuum colours, and strong emission lines. These features, coupled with the failure to detect any spectral signatures of old stars at $z > 1$, has led to the suggestion that these galaxies are being observed close to or even during a general epoch of formation. However, we have recently demonstrated that radio selection at significantly fainter (mJy) flux densities can be used to identify apparently passively evolving elliptical galaxies at high redshift. Deep Keck spec...

  15. Philosophy and updating of the asteroid photometric catalogue

    Science.gov (United States)

    Magnusson, Per; Barucci, M. Antonietta; Capria, M. T.; Dahlgren, Mats; Fulchignoni, Marcello; Lagerkvist, C. I.

    1992-01-01

    The Asteroid Photometric Catalogue now contains photometric lightcurves for 584 asteroids. We discuss some of the guiding principles behind it. This concerns both observers who offer input to it and users of the product.

  16. The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints

    CERN Document Server

    Guy, J; Conley, A; Regnault, N; Astier, P; Balland, C; Basa, S; Carlberg, R G; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Palanque-Delabrouille, N; Perrett, K M; Pritchet, C J; Rich, J; Ruhlmann-Kleider, V; Balam, D; Baumont, S; Ellis, R S; Fabbro, S; Fakhouri, H K; Fourmanoit, N; Gonzalez-Gaitan, S; Graham, M L; Hsiao, E; Kronborg, T; Lidman, C; Mourao, A M; Perlmutter, S; Ripoche, P; Suzuki, N; Walker, E S

    2010-01-01

    We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometri...

  17. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...... data. A constant nonzero catastrophe rare, identical for both microtubule ends, is predicted at large growth rates. The delay time for dilution-induced catastrophes is stochastic with a simple distribution that fits the experimental one and, like the experimental one, does not depend on the rate of....... A recent experimental result for the size of the minimal cap that can stabilize a microtubule is shown to agree with the result predicted by the cap model, after its parameters have been extracted from previous experimental results. Thus the effective theory and cap model presented here provide a...

  18. On Catastrophe and Cavitation for Spherical Cavity

    Institute of Scientific and Technical Information of China (English)

    MingJIN; KefuHUANG; 等

    1999-01-01

    This work deals with catastrophe of a spherical cavity and cavitation of a spherical cavity for Hooke material with 1/2 Poisson's ratio.A nonlinear problem.which is the Cauchy traction problem,is solved analytically.The governing equations are written on the deformed region or on the present configuration.And the conditions are described on moving boundary.A closed form solution is found.Furthermore,a bifurcation solution in closed form is given from the trivial homogeneous solution of a solid sphere.The results indicate that there is a tangent bifurcation on the displacement-load curve for a sphere with a cavity.On the tangent bifurcation point,the cavity grows up suddenly,which is a kind of catastrophe,And there is a pitchfork bifurcation on the displacement-load curve for a solid sphere.On the pitchfork bifurcation point.there is a cavitation in the solid sphere.

  19. Discovery of six high-redshift quasars with the Lijiang 2.4 m telescope and the Multiple Mirror Telescope

    Institute of Scientific and Technical Information of China (English)

    Xue-Bing Wu; Wen-Wen Zuo; Qian Yang; Wei-Min Yi; Chen-Wei Yang; Wen-Juan Liu; Peng Jiang; Xin-Wen Shu; Hong-Yan Zhou

    2012-01-01

    Quasars with redshifts greater than 4 are rare,and can be used to probe the structure and evolution of the early universe.Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from spectroscopy with the Yunnan Faint Object Spectrograph and Camera (YFOSC) at the Lijiang 2.4m telescope in February,2012.These quasars are in the list of z > 3.6 quasar candidates selected by using our proposed J - K/i - Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data.Nine candidates were observed by YFOSC,and five among six new quasars were identified as z > 3.6 quasars.One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra.This is the first time that z > 4 quasars have been discovered using a telescope in China.Thanks to the Chinese Telescope Access Program (TAP),the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy.The continuum and emission line properties of these six quasars,as well as their central black hole masses and Eddington ratios,were obtained.

  20. Supernovae in the Subaru Deep Field: An Initial Sample, and Type Ia Rate, out to Redshift 1.6

    CERN Document Server

    Poznanski, Dovi; Yasuda, Naoki; Foley, Ryan J; Doi, Mamoru; Filippenko, Alexei V; Fukugita, Masataka; Gal-Yam, Avishay; Jannuzi, Buell T; Morokuma, Tomoki; Oda, Takeshi; Schweiker, Heidi; Sharon, Keren; Silverman, Jeffrey M; Totani, Tomonori

    2007-01-01

    Large samples of high-redshift supernovae (SNe) are potentially powerful probes of cosmic star formation, metal enrichment, and SN physics. We present initial results from a new deep SN survey, based on re-imaging in the R, i', z' bands, of the 0.25 deg2 Subaru Deep Field (SDF), with the 8.2-m Subaru telescope and Suprime-Cam. In a single new epoch consisting of two nights of observations, we have discovered 33 SNe, down to a z'-band magnitude of 26.3 (AB). We have measured the photometric redshifts of the SN host galaxies, obtained Keck spectroscopic redshifts for 17 of the host galaxies, and classified the SNe using the Bayesian photometric algorithm of Poznanski et al. (2007) that relies on template matching. After correcting for biases in the classification, 55% of our sample consists of Type Ia supernovae and 45% of core-collapse SNe. The redshift distribution of the SNe Ia reaches z ~ 1.6, with a median of z ~ 1.2. The core-collapse SNe reach z ~ 1.0, with a median of z ~ 0.5. Our SN sample is comparabl...

  1. Recent catastrophic landslides and mitigation in China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Increasing population density and development of mountainous terrain have brought human settlements within reach of landslide hazards.In recent years,due to the shortening of return period for severe natural events such as heavy rainfall,snowline retreating,great earthquake together with human activities,catastrophic landslides happened more frequently than before,resulting in large-scale casualties due to the increasing occurrences of rapid long-runout rock avalanches,especially in China.This paper present...

  2. Catastrophic health expenditure and impoverishment in Mongolia

    OpenAIRE

    Dorjdagva, Javkhlanbayar; Batbaatar, Enkhjargal; Svensson, Mikael; Dorjsuren, Bayarsaikhan; Kauhanen, Jussi

    2016-01-01

    Background The social health insurance coverage is relatively high in Mongolia; however, escalation of out-of-pocket payments for health care, which reached 41 % of the total health expenditure in 2011, is a policy concern. The aim of this study is to analyse the incidence of catastrophic health expenditures and to measure the rate of impoverishment from health care payments under the social health insurance scheme in Mongolia. Methods We used the data from the Household Socio-Economic Survey...

  3. Valuing Catastrophic Losses for Perennial Agricultural Crops

    OpenAIRE

    Adams, Damian C.; Kilmer, Richard L.; Moss, Charles B.; Schmitz, Andrew

    2003-01-01

    Courts are often required to estimate changes in welfare to agricultural operations from catastrophic events. For example, courts must assign damages in lawsuits, such as with pesticide drift cases, or determine 'just compensation' when the government takes private land for public use, as with the removal of dairy farms from environmentally sensitive land or destruction of canker-contaminated citrus trees. In economics, the traditional method of estimating changes in producer welfare is the c...

  4. Catastrophic Consequences of Kicking the Chameleon

    OpenAIRE

    Erickcek, Adrienne L.; Barnaby, Neil; Burrage, Clare; Huang, Zhiqi

    2013-01-01

    The physics of the "dark energy" that drives the current cosmological acceleration remains mysterious, and the dark sector may involve new light dynamical fields. If these light scalars couple to matter, a screening mechanism must prevent them from mediating an unacceptably strong fifth force locally. Here we consider a concrete example: the chameleon mechanism. We show that the same coupling between the chameleon field and matter employed by the screening mechanism also has catastrophic cons...

  5. Catastrophic Natural Disasters and Economic Growth

    OpenAIRE

    Cavallo, Eduardo; Galiani, Sebastian; Noy, Ilan; Pantano, Juan

    2010-01-01

    We examine the short and long run average causal impact of catastrophic natural disasters on economic growth by combining information from comparative case studies. We assess the counterfactual of the cases studied by constructing synthetic control groups taking advantage of the fact that the timing of large sudden natural disasters is an exogenous event. We find that only extremely large disasters have a negative effect on output both in the short and long run. However, we also show that thi...

  6. A critical look at catastrophe risk assessments

    CERN Document Server

    Kent, A

    2004-01-01

    Recent papers by Busza et al. (BJSW) and Dar et al. (DDH) argue that astrophysical data can be used to establish bounds on the risk of a catastrophe in forthcoming collider experiments. The safety case set out by BJSW does not rely on these bounds, but on theoretical arguments, which BJSW find sufficiently compelling. However, DDH and other commentators (initially including BJSW) have suggested that the astrophysical bounds alone do give sufficient reassurance. This seems unsupportable when the bounds are expressed in terms of expected cost. For example, DDH's main bound, $p_{\\rm catastrophe} < 2 \\times 10^{-8}$, implies only that the expectation value of the number of deaths is bounded by 120. We thus reappraise the DDH and BJSW risk bounds by comparing risk policy in other areas. We find that requiring a catastrophe risk of no higher than 10^{-15} is necessary to be consistent with established policy for risk optimisation from radiation hazards, even if highly risk tolerant assumptions are made. A respec...

  7. Prediction of Catastrophes: an experimental model

    CERN Document Server

    Peters, Randall D; Pomeau, Yves

    2012-01-01

    Catastrophes of all kinds can be roughly defined as short duration-large amplitude events following and followed by long periods of "ripening". Major earthquakes surely belong to the class of 'catastrophic' events. Because of the space-time scales involved, an experimental approach is often difficult, not to say impossible, however desirable it could be. Described in this article is a "laboratory" setup that yields data of a type that is amenable to theoretical methods of prediction. Observations are made of a critical slowing down in the noisy signal of a solder wire creeping under constant stress. This effect is shown to be a fair signal of the forthcoming catastrophe in both of two dynamical models. The first is an "abstract" model in which a time dependent quantity drifts slowly but makes quick jumps from time to time. The second is a realistic physical model for the collective motion of dislocations (the Ananthakrishna set of equations for creep). Hope thus exists that similar changes in the response to ...

  8. Downward catastrophe of solar magnetic flux ropes

    CERN Document Server

    Zhang, Quanhao; Hu, Youqiu; Liu, Rui

    2016-01-01

    2.5D time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump is here referred to as upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free. The system still experiences an upward catastrophe with an increase in each control parameter. Secondly, under the force-free approximation, there also exists a downward catastrophe, characterized by a jump of a solution from the u...

  9. Catastrophic fragmentation of asteroids: Evidence from meteorites

    Science.gov (United States)

    Keil, K.; Haack, H.; Scott, E. R. D.

    1994-01-01

    Meteorites are impact-derived fragments from approximately 85 parent bodies. For seven of these bodies, the meteorites record evidence suggesting that they may have been catastrophically fragmented. We identify three types of catastrophic events: (1) impact and reassemble events greater than 4.4 Gy ago, involving molten or very hot parent bodies (greater than 1200 C); this affected the parent bodies of the ureilites, Shallowater, and the mesosiderites. In each case, the fragments cooled rapidly (approximately 1-1000 C/day) and then reassembled. (2) Later impacts involving cold bodies which, in some cases, reassembled; this occurred on the H and L ordinary chondrite parent bodies. The L parent body probably suffered another catastrophic event about 500 My ago. (3) Recent impacts of cold, multi-kilometer-sized bodies that generated meter-sized meteoroids; this occurred on the parent bodies of the IIIAB irons (650 My ago), the IVA irons (400 My ago), and the H ordinary chondrite (7 My ago).

  10. The Accelerated Build-up of the Red Sequence in High Redshift Galaxy Clusters

    CERN Document Server

    Cerulo, P; Lidman, C; Demarco, R; Huertas-Company, M; Mei, S; Sánchez-Janssen, R; Barrientos, L F; Muñoz, R P

    2016-01-01

    We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts $0.8 11.5$) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than $z=0.8$. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range $0.8

  11. Catastrophe theory and its application status in mechanical engineering

    Directory of Open Access Journals (Sweden)

    Jinge LIU

    Full Text Available Catastrophe theory is a kind of mathematical method which aims to apply and interpret the discontinuous phenomenon. Since its emergence, it has been widely used to explain a variety of emergent phenomena in the fields of natural science, social science, management science and some other science and technology fields. Firstly, this paper introduces the theory of catastrophe in several aspects, such as its generation, radical principle, basic characteristics and development. Secondly, it summarizes the main applications of catastrophe theory in the field of mechanical engineering, focusing on the research progress of catastrophe theory in revealing catastrophe of rotor vibration state, analyzing friction and wear failure, predicting metal fracture, and so on. Finally, it advises that later development of catastrophe theory should pay more attention to the combination of itself with other traditional nonlinear theories and methods. This paper provides a beneficial reference to guide the application of catastrophe theory in mechanical engineering and related fields for later research.

  12. Redshift Distributions of Galaxies in the DES Science Verification Shear Catalogue and Implications for Weak Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Bonnett, C. [Universitat Autonoma de Barcelona (Spain). et al.

    2015-07-21

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σcrit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

  13. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  14. The Space Density of High-Redshift QSOs in the GOODS Survey

    CERN Document Server

    Cristiani, S; Bauer, F; Brandt, W N; Chatzichristou, E T; Fontanot, F; Grazian, A; Koekemoer, A M; Lucas, R A; Monaco, P; Nonino, M; Padovani, P; Stern, D; Tozzi, P; Treister, E; Urry, C M; Vanzella, E

    2004-01-01

    We present a sample of 17 high-redshift (3.5photometric redshifts we estimate that the final sample will contain between two and four QSOs with 4redshift, moderate-luminosity (M_{145}=~-23) QSOs is observed with respect to predictions based on a) the extrapolation of the z~2.7 luminosity function (LF), according to a pure luminosity evolution calibrated by the results of the Sloan Digital Sky Survey; and b) a constant universal efficiency in the formation of super-massive black holes (SMBHs) in dark-matter halos. Evidence is gathered in favor of a density evolution of the LF at high redshift and of a suppress...

  15. The redshift distribution of dusty star forming galaxies from the SPT survey

    CERN Document Server

    Strandet, M L; Vieira, J D; de Breuck, C; Aguirre, J E; Aravena, M; Ashby, M L N; Béthermin, M; Bradford, C M; Carlstrom, J E; Chapman, S C; Crawford, T M; Everett, W; Fassnacht, C D; Furstenau, R M; Gonzalez, A H; Greve, T R; Gullberg, B; Hezaveh, Y; Kamenetzky, J R; Litke, K; Ma, J; Malkan, M; Marrone, D P; Menten, K M; Murphy, E J; Nadolski, A; Rotermund, K M; Spilker, J S; Stark, A A; Welikala, N

    2016-01-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3mm spectral scans between 84-114GHz for 15 galaxies and targeted ALMA 1mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI] , [NII] , H_2O and NH_3. We further present APEX [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new mm/submm line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redsh...

  16. Morphological number-count and redshift distributions to I < 26 from the Hubble Deep Field Implications for the evolution of Ellipticals, Spirals and Irregulars

    CERN Document Server

    Driver, S P; Couch, W J; Odewahn, S C; Windhorst, R A; Phillipps, S; Lanzetta, K; Yahil, A

    1998-01-01

    We combine the photometric redshift data of Fernandez-Soto et al. (1997) with the morphological data of Odewahn et al. (1996) for all galaxies with I 24. (2) Spiral galaxies are present in numbers consistent with zero- evolution predictions to I = 22. Beyond this magnitude some net- positive evolution is required. Although the number-counts are consistent with the passive-evolution predictions to I=26.0 the redshift distributions favor number AND luminosity evolution. (3) There is no obvious explanation for the late-type/irregular class and this category requires further subdivision. While a small fraction of the population lies at low redshift (i.e. true irregulars), the majority lie at redshifts, 1 1.5 mergers are frequent and, taken in conjunction with the absence of normal spirals at z > 2, the logical inference is that they represent the progenitors of normal spirals forming via hierarchical merging.

  17. Stellar physics with the ALHAMBRA photometric system

    International Nuclear Information System (INIS)

    The ALHAMBRA photometric system was specifically designed to perform a tomography of the Universe in some selected areas. Although mainly designed for extragalactic purposes, its 20 contiguous, equal-width, medium-band photometric system in the optical wavelength range, shows a great capacity for stellar classification. In this contribution we propose a methodology for stellar classification and physical parameter estimation (Teff, log g, [Fe/H], and color excess E(B – V)) based on 18 independent reddening-free Q-values from the ALHAMBRA photometry. Based on the theoretical Spectral library BaSeL 2.2, and applied to 288 stars from the Next Generation spectral Library (NGSL), we discuss the reliability of the method and its dependence on the extinction law used.

  18. Photometric Standards for Non-Standard Filters

    Science.gov (United States)

    Hoot, John E.

    2015-05-01

    The AAVSO, professional collaborators, and research consortiums are increasingly requesting that photometric observations be submitted after they have been transformed onto 'standard' photometric systems. This greatly reduces the burden on the principal investigators in managing and merging data from many disparate contributors, but discourages many potential contributors who are unaware that their present equipment can make a valuable contribution. Many potential observers, amateurs, students and instructors are confused over what filters are required and what standards are best. This paper focuses on the best standards and observation methods for observers with one shot color cameras and those possessing monochrome CCD cameras with LRGB filter sets, the two most common configurations used in amateur and educational observatories. This paper examines which current standards best match common equipment and present effective ways for amateurs and students to reduce data to standard systems with common tools and a minimum of mathematical rigor.

  19. Photometric and spectroscopic investigation of TW Draconis

    CERN Document Server

    Zejda, M; Harmanec, P; Slechta, M; Mikulasek, Z; Zverko, J; Svoboda, P; Krticka, J

    2010-01-01

    Context. TW Draconis is one of the best studied Algol-type eclipsing binaries. There is significant evidence for miscellaneous physical processes between interacting binary components manifesting themselves by period and light curve changes. Aims. Obtaining new set of photometric and spectroscopic observations, we analysed them together with the older spectroscopic and photometric data to build model of this eclipsing system with respect to observed changes of O-C diagram and light curve. Methods. Reduction of new spectra was carried out in the IRAF and SPEFO programs. Radial velocities were determined manually using SPEFO, by CCF using the Zverko's code and from the program KOREL. Orbital elements were derived with the FOTEL program and via disentangling with KOREL. The final combined solution was obtained with the programs PHOEBE and FOTEL. Results. Photometry shows small irregularities in light curves as a results of pulsating of one component and spot activity. Using net of KOREL outputs we found the mass...

  20. Photometric Variability of Four Coronally Active Stars

    Indian Academy of Sciences (India)

    J. C. Pandey; K. P. Singh; R. Sagar; S. A. Drake

    2002-03-01

    We present photometric observations of four stars that are optical counterparts of soft X-ray/EUV sources, namely 1ES 0829+15.9, 1ES0920-13.6, 2RE J110159+223509 and 1ES 1737+61.2. We have discovered periodic variability in two of the stars, viz., MCC 527 (1ES 0829+15.9; Period = 0.828 ± 0.0047) and HD 81032 (1ES 0920-13.6; Period = ∼ 57.02 ± 0.560 days). HD 95559 (2RE J110159+223509) is found to show a period of 3. HD 160934 (1ES1737+61.2) also shows photometric variability but needs to be monitored further for finding its period. These stars most likely belong to the class of chromospherically active stars.

  1. Redshift uncertainties and baryonic acoustic oscillations

    CERN Document Server

    Chaves-Montero, Jonás; Hernández-Monteagudo, Carlos

    2016-01-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of uncertain redshift estimators on cosmological observables. In this paper we present a detailed exploration of the galaxy clustering and baryonic acoustic oscillation (BAO) signal under the presence of redshift errors. We provide analytic expressions for how the monopole and the quadrupole of the redshift-space power spectrum (together with their covariances) are affected. Additionally, we discuss the modifications in the shape, signal to noise, and cosmological constraining power of the BAO signature. We show how and why the BAO contrast is $\\mathit{enhanced}$ with small redshift uncertainties, and explore in detail how the cosmological information is modulated by the interplay of redshift-space distortions, redshift errors, and the number density of the sample. We validate our results by comparing them with measurements from a ensemble of $N$-body simulations with $8100h^{-3}\\text{Gpc}^3$ aggregated volume....

  2. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Heather; D' Andrea, Chris B; Nichol, Robert C.; Smith, Mathew; Lampeitl, Hubert [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Olmstead, Matthew D.; Brown, Peter; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112 (United States); Bassett, Bruce [Mathematics Department, University of Cape Town, Rondebosch, Cape Town (South Africa); Biswas, Rahul; Kuhlmann, Steve [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48126 (United States); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frieman, Joshua A. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Kunz, Martin, E-mail: Heather.Campbell@port.ac.uk [African Institute for Mathematical Sciences, Muizenberg, 7945, Cape Town (South Africa); and others

    2013-02-15

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat {Lambda}CDM cosmological model, we find that our photometric sample alone gives {Omega} {sub m} = 0.24{sup +0.07} {sub -0.05} (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on {Omega} {sub m} and {Omega}{sub {Lambda}}, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H {sub 0}, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96{sup +0.10} {sub -0.10}, {Omega} {sub m} = 0.29{sup +0.02} {sub -0.02}, and {Omega} {sub k} = 0.00{sup +0.03} {sub -0.02} (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving

  3. Optimal Redshift Weighting For Baryon Acoustic Oscillations

    OpenAIRE

    Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin

    2014-01-01

    Future baryon acoustic oscillation (BAO) surveys will survey very large volumes, covering wide ranges in redshift. We derive a set of redshift weights to compress the information in the redshift direction to a small number of modes. We suggest that such a compression preserves almost all of the signal for most cosmologies, while giving high signal-to-noise measurements for each combination. We present some toy models and simple worked examples. As an intermediate step, we give a precise meani...

  4. The New Physics of Cosmic Redshift

    CERN Document Server

    Hebel, Wolfgang

    2011-01-01

    Light rays received on earth from distant stars show redshift, being attributed conventionally to the well-known Doppler-effect of wave dynamics. The present study concludes that cosmic redshift rather is an effect of the quantum mechanical propagation of photons as explained by Nobel Laureate Richard FEYNMAN in his book on QED {2}. This alternative physics of cosmic redshift is fundamentally different from the conventional velocity argument and can therefore do without the controversial big bang idea.

  5. A Blind Test of Hapke's Photometric Model

    Science.gov (United States)

    Helfenstein, P.; Shepard, M. K.

    2003-01-01

    Hapke's bidirectional reflectance equation is a versatile analytical tool for predicting (i.e. forward modeling) the photometric behavior of a particulate surface from the observed optical and structural properties of its constituents. Remote sensing applications of Hapke s model, however, generally seek to predict the optical and structural properties of particulate soil constituents from the observed photometric behavior of a planetary surface (i.e. inverse-modeling). Our confidence in the latter approach can be established only if we ruthlessly test and optimize it. Here, we summarize preliminary results from a blind-test of the Hapke model using laboratory measurements obtained with the Bloomsburg University Goniometer (B.U.G.). The first author selected eleven well-characterized powder samples and measured the spectrophotometric behavior of each. A subset of twenty undisclosed examples of the photometric measurement sets were sent to the second author who fit the data using the Hapke model and attempted to interpret their optical and mechanical properties from photometry alone.

  6. Photometric defocus observations of transiting extrasolar planets

    CERN Document Server

    Hinse, Tobias C; Yoon, Jo-Na; Lee, Chung-Uk; Kim, Yong-Gi; Kim, Chun-Hwey

    2015-01-01

    We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of order sub-millimagnitude over several hours for a V $\\sim$ 10 host star typical for transiting planets detected from ground-based survey facilities. We compare our results with transit observations with the telescope operated in in-focus mode. High photometric precision is obtained due to the collection of a larger amount of photons resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by probing the same pixels on the CCD. Furthermore, a longer exposure time helps reducing the eff...

  7. Improving LSST Photometric Calibration with Gaia Data

    CERN Document Server

    Axelrod, Tim

    2014-01-01

    We consider the possibility that the Gaia mission can supply data which will improve the photometric calibration of LSST. After outlining the LSST calibra- tion process and the information that will be available from Gaia, we explore two options for using Gaia data. The first is to use Gaia G-band photometry of selected stars, in conjunction with knowledge of the stellar parameters Teff, log g, and AV, and in some cases Z, to create photometric standards in the LSST u, g, r, i, z, and y bands. The accuracies of the resulting standard magnitudes are found to be insufficient to satisfy LSST requirements when generated from main sequence (MS) stars, but generally adequate from DA white dwarfs (WD). The second option is combine the LSST bandpasses into a synthetic Gaia G band, which is a close approximation to the real Gaia G band. This allows synthetic Gaia G photometry to be directly compared with actual Gaia G photometry at a level of accuracy which is useful for both verifying and improving LSST photometric c...

  8. A unified approach of catastrophic events

    Directory of Open Access Journals (Sweden)

    S. Nikolopoulos

    2004-01-01

    Full Text Available Although there is an accumulated charge of theoretical, computational, and numerical work, like catastrophe theory, bifurcation theory, stochastic and deterministic chaos theory, there is an important feeling that these matters do not completely cover the physics of real catastrophic events. Recent studies have suggested that a large variety of complex processes, including earthquakes, heartbeats, and neuronal dynamics, exhibits statistical similarities. Here we are studying in terms of complexity and non linear techniques whether isomorphic signatures emerged indicating the transition from the normal state to the both geological and biological shocks. In the last 15 years, the study of Complex Systems has emerged as a recognized field in its own right, although a good definition of what a complex system is, actually is eluded. A basic reason for our interest in complexity is the striking similarity in behaviour close to irreversible phase transitions among systems that are otherwise quite different in nature. It is by now recognized that the pre-seismic electromagnetic time-series contain valuable information about the earthquake preparation process, which cannot be extracted without the use of important computational power, probably in connection with computer Algebra techniques. This paper presents an analysis, the aim of which is to indicate the approach of the global instability in the pre-focal area. Non-linear characteristics are studied by applying two techniques, namely the Correlation Dimension Estimation and the Approximate Entropy. These two non-linear techniques present coherent conclusions, and could cooperate with an independent fractal spectral analysis to provide a detection concerning the emergence of the nucleation phase of the impending catastrophic event. In the context of similar mathematical background, it would be interesting to augment this description of pre-seismic electromagnetic anomalies in order to cover biological

  9. Catastrophic volcanic collapse: relation to hydrothermal processes.

    Science.gov (United States)

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  10. Bankruptcy by catastrophes for major multi-nationals: stock exchange sensitivity for three catastrophes

    NARCIS (Netherlands)

    Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    This paper investigates the effect of major catastrophes have on stock exchange values for the major multi-nationals. The paper demonstrates that the Sharpe analysis is more sensitive in identifying effects than just following the daily stock values for assessing market response. It was found that m

  11. Multiple Sclerosis and Catastrophic Health Expenditure in Iran

    Science.gov (United States)

    Juyani, Yaser; Hamedi, Dorsa; Hosseini Jebeli, Seyede Sedighe; Qasham, Maryam

    2016-01-01

    Background: There are many disabling medical conditions which can result in catastrophic health expenditure. Multiple Sclerosis is one of the most costly medical conditions through the world which encounter families to the catastrophic health expenditures. This study aims to investigate on what extent Multiple sclerosis patients face catastrophic costs. Method: This study was carried out in Ahvaz, Iran (2014). The study population included households that at least one of their members suffers from MS. To analyze data, Logit regression model was employed by using the default software STATA12. Results: 3.37% of families were encountered with catastrophic costs. Important variables including brand of drug, housing, income and health insurance were significantly correlated with catastrophic expenditure. Conclusions: This study suggests that although a small proportion of MS patients met the catastrophic health expenditure, mechanisms that pool risk and cost (e.g. health insurance) are required to protect them and improve financial and access equity in health care.

  12. DISCOVERY OF NINE INTERMEDIATE-REDSHIFT COMPACT QUIESCENT GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    We identify nine galaxies with dynamical masses of M dyn ∼> 1010 M ☉ as photometric point sources, but with redshifts between z = 0.2 and z = 0.6, in the Sloan Digital Sky Survey (SDSS) spectro-photometric database. All nine galaxies have archival Hubble Space Telescope images. Surface brightness profile fitting confirms that all nine galaxies are extremely compact (0.4 e,c e,c = 0.74 kpc) for their velocity dispersion (110 –1; median σ = 178 km s–1). From the SDSS spectra, three systems are dominated by very young stars; the other six are older than ∼1 Gyr (two are E+A galaxies). The three young galaxies have disturbed morphologies and the older systems have smooth profiles consistent with a single-Sérsic function. All nine lie below the z ∼ 0 velocity dispersion-half-light radius relation. The most massive system—SDSSJ123657.44+631115.4—lies right within the locus for massive compact z > 1 galaxies and the other eight objects follow the high-redshift dynamical size-mass relation

  13. Inside money, procyclical leverage, and banking catastrophes.

    Science.gov (United States)

    Brummitt, Charles D; Sethi, Rajiv; Watts, Duncan J

    2014-01-01

    We explore a model of the interaction between banks and outside investors in which the ability of banks to issue inside money (short-term liabilities believed to be convertible into currency at par) can generate a collapse in asset prices and widespread bank insolvency. The banks and investors share a common belief about the future value of certain long-term assets, but they have different objective functions; changes to this common belief result in portfolio adjustments and trade. Positive belief shocks induce banks to buy risky assets from investors, and the banks finance those purchases by issuing new short-term liabilities. Negative belief shocks induce banks to sell assets in order to reduce their chance of insolvency to a tolerably low level, and they supply more assets at lower prices, which can result in multiple market-clearing prices. A sufficiently severe negative shock causes the set of equilibrium prices to contract (in a manner given by a cusp catastrophe), causing prices to plummet discontinuously and banks to become insolvent. Successive positive and negative shocks of equal magnitude do not cancel; rather, a banking catastrophe can occur even if beliefs simply return to their initial state. Capital requirements can prevent crises by curtailing the expansion of balance sheets when beliefs become more optimistic, but they can also force larger price declines. Emergency asset price supports can be understood as attempts by a central bank to coordinate expectations on an equilibrium with solvency.

  14. Inside money, procyclical leverage, and banking catastrophes.

    Directory of Open Access Journals (Sweden)

    Charles D Brummitt

    Full Text Available We explore a model of the interaction between banks and outside investors in which the ability of banks to issue inside money (short-term liabilities believed to be convertible into currency at par can generate a collapse in asset prices and widespread bank insolvency. The banks and investors share a common belief about the future value of certain long-term assets, but they have different objective functions; changes to this common belief result in portfolio adjustments and trade. Positive belief shocks induce banks to buy risky assets from investors, and the banks finance those purchases by issuing new short-term liabilities. Negative belief shocks induce banks to sell assets in order to reduce their chance of insolvency to a tolerably low level, and they supply more assets at lower prices, which can result in multiple market-clearing prices. A sufficiently severe negative shock causes the set of equilibrium prices to contract (in a manner given by a cusp catastrophe, causing prices to plummet discontinuously and banks to become insolvent. Successive positive and negative shocks of equal magnitude do not cancel; rather, a banking catastrophe can occur even if beliefs simply return to their initial state. Capital requirements can prevent crises by curtailing the expansion of balance sheets when beliefs become more optimistic, but they can also force larger price declines. Emergency asset price supports can be understood as attempts by a central bank to coordinate expectations on an equilibrium with solvency.

  15. Catastrophizing and Parental Response to Child Symptom Complaints

    OpenAIRE

    Langer, Shelby L.; Romano, Joan M.; Levy, Rona L; Walker, Lynn S.; Whitehead, William E.

    2009-01-01

    This study investigated whether catastrophic thinking about pain by children with functional abdominal pain or by their parents is associated with health outcomes in the child. Subjects were 132 parent-child dyads. Child catastrophizing predicted child depression, anxiety and functional disability. Parents’ catastrophizing cognitions about their own pain predicted self-reported protective responses to their children’s abdominal pain (responding in ways that encourage illness behavior). Protec...

  16. Averting Catastrophes: The Strange Economics of Scylla and Charybdis

    OpenAIRE

    Martin, Ian; Pindyck, R. S.

    2014-01-01

    How should we evaluate public policies or projects to avert, or reduce the likelihood of, a catastrophic event? Examples might include inspection and surveillance programs to avert nuclear terrorism, investments in vaccine technologies to help respond to a "mega-virus," or the construction of levees to avert major flooding. A policy to avert a particular catastrophe considered in isolation might be evaluated in a cost-benefit framework. But because society faces multiple potential catastrophe...

  17. Mutation accumulation and the catastrophic senescence of Pacific salmon

    CERN Document Server

    Penna, T J P; Stauffer, D; Stauffer, Dietrich

    1995-01-01

    The bit-string model of biological aging is used to simulate the catastrophic senescence of Pacific Salmon. We have shown that reproduction occuring only once and at a fixed age is the only ingredient needed to explain the catastrophic senescence according the mutation accumulation theory. Several results are presented, some of them with up to 10^8 fishes, showing how the survival rates in catastrophic senescence are affected by changes in the parameters of the model.

  18. Lost Baryons at Low Redshift

    CERN Document Server

    Mathur, Smita; Williams, Rik J

    2007-01-01

    We review our attempts to discover lost baryons at low redshift with ``X-ray forest'' of absorption lines from the warm-hot intergalactic medium. We discuss the best evidence to date along the Mrk 421 sightline. We then discuss the missing baryons in the Local Group and the significance of the z=0 absorption systems in X-ray spectra. We argue that the debate over the Galactic vs. extragalactic origin of the z=0 systems is premature as these systems likely contain both components. Observations with next generation X-ray missions such as Constellation-X and XEUS will be crucial to map out the warm-hot intergalactic medium.

  19. The Redshift Distribution of the TOUGH Survey

    CERN Document Server

    Jakobsson, P; Malesani, D; Chapman, R; Fynbo, J P U; Milvang-Jensen, B; Kruhler, T; Tanvir, N R

    2013-01-01

    We present the redshift results from a Very Large Telescope program aimed at optimizing the legacy value of the Swift mission: to characterize a homogeneous, X-ray selected, sample of 69 GRB host galaxies. 19 new redshifts have been secured, resulting in a 83% (57/69) redshift completion, making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, available to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 10% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be > 2.2. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z > 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. T...

  20. Sirius B and the gravitational redshift

    International Nuclear Information System (INIS)

    An historical account is given of studies of the spectrum of Sirius B; in particular of the measurements reported by Adams, by Moore and by later workers, of the differences between the redshifts of Sirius and Sirius B. The measurements are discussed in the context of the search for the gravitational redshift predicted by Einstein from relativity theory. (U.K.)

  1. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    R.A.M.J. Wijers

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive stars

  2. The kinematic component of the cosmological redshift

    CERN Document Server

    Chodorowski, Michał

    2009-01-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to settle properly this problem, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant COSMIC TIME. We find that the resulting relation between the transported velocity and the redshift of arriving photons is NOT given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational component. We perform such a decomposition for arbitrar...

  3. The Evolution of Cluster Substructure with Redshift

    CERN Document Server

    Jeltema, T E; Bautz, M W; Buote, D A; Jeltema, Tesla E.; Canizares, Claude R.; Bautz, Mark W.; Buote, David A.

    2003-01-01

    Using Chandra archival data, we quantify the evolution of cluster morphology with redshift. To quantify cluster morphology, we use the power ratio method developed by Buote and Tsai (1995). Power ratios are constructed from moments of the two-dimensional gravitational potential and are, therefore, related to a cluster's dynamical state. Our sample will include 40 clusters from the Chandra archive with redshifts between 0.11 and 0.89. These clusters were selected from two fairly complete flux-limited X-ray surveys (the ROSAT Bright Cluster Sample and the Einstein Medium Sensitivity Survey), and additional high-redshift clusters were selected from recent ROSAT flux-limited surveys. Here we present preliminary results from the first 28 clusters in this sample. Of these, 16 have redshifts below 0.5, and 12 have redshifts above 0.5.

  4. Unsupervised self-organised mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys

    CERN Document Server

    Geach, James E

    2011-01-01

    We present an application of unsupervised machine learning - the self-organised map (SOM) - as a tool for visualising, exploring and mining the catalogues of large astronomical surveys. Self-organisation culminates in a low-resolution representation of the 'topology' of a parameter volume, and this can be exploited in various ways pertinent to astronomy. Using data from the Cosmological Evolution Survey (COSMOS), we demonstrate two key astronomical applications of the SOM: (i) object classification and selection, using the example of galaxies with active galactic nuclei as a demonstration, and (ii) photometric redshift estimation, illustrating how SOMs can be used as totally empirical predictive tools. With a training set of ~3800 galaxies with z_spec<1, we achieve photometric redshift accuracies competitive with other (mainly template fitting) techniques that use a similar number of photometric bands (sigma(Dz)=0.03 with a ~2% outlier rate when using u*-band to 8um photometry). We also test the SOM as a p...

  5. Photometric quantities for solar irradiance modeling

    Science.gov (United States)

    Preminger, D. G.; Walton, S. R.; Chapman, G. A.

    2002-11-01

    We analyze photometric quantities for the modeling of the total solar irradiance, S. These quantities are derived from full-disk solar images taken at the San Fernando Observatory. We introduce a new quantity, the photometric sum, Σ, which is the sum over an entire image of each pixel's contribution to the irradiance in that image. Σ combines both bright and dark features; and because the sum is over the entire image, it will include low contrast features that cannot be identified directly. Specifically, we examine Σr, Σb, and ΣK, the photometric sums over broadband red, broadband blue, and 1-nm bandpass Ca II K images, respectively. Σr and Σb measure the effects of solar features on the variability in S at two different continuum wavelengths. ΣK measures the variability in spectral lines due to solar features. We find that Σr and Σb have no long-term trend. ΣK, however, varies in phase with the solar cycle. We carry out several multiple linear regressions on the value of S from cycle 22; the best fit uses Σr and ΣK and reproduces the observed composite S with a multiple regression coefficient R = 0.96. We conclude that the long-term change in S over the solar cycle can be accounted for by the variability in the spectral lines as measured by ΣK, assuming no change in the quiet Sun; the contribution of the continuum to the variations in S is only on active region timescales.

  6. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: comparing techniques to restore homogeneous sky coverage

    CERN Document Server

    Cucciati, O; Branchini, E; Marulli, F; Iovino, A; Moscardini, L; Bel, J; Cappi, A; Peacock, J A; de la Torre, S; Bolzonella, M; Guzzo, L; Polletta, M; Fritz, A; Adami, C; Bottini, D; Coupon, J; Davidzon, I; Franzetti, P; Fumana, M; Garilli, B; Krywult, J; Malek, K; Paioro, L; Pollo, A; Scodeggio, M; Tasca, L A M; Vergani, D; Zanichelli, A; Di Porto, C; Zamorani, G

    2014-01-01

    [Abridged] Non-uniform sampling and gaps in sky coverage are common in galaxy redshift surveys but these effects can degrade galaxy counts-in-cells and density estimates. We carry out a comparison of methods that aim to fill the gaps to correct for the systematic effects. Our study is motivated by the analysis of the VIMOS Extragalactic Redshift Survey (VIPERS), a flux-limited survey (i<22.5) based on one-pass observations with VIMOS, with gaps covering 25% of the surveyed area and a mean sampling rate of 35%. Our findings are applicable to other surveys with similar observing strategies. We compare 1) two algorithms based on photometric redshift, that assign redshifts to galaxies based on the spectroscopic redshifts of the nearest neighbours, 2) two Bayesian methods, the Wiener filter and the Poisson-Lognormal filter. Using galaxy mock catalogues we quantify the accuracy of the counts-in-cells measurements on scales of R=5 and 8 Mpc/h after applying each of these methods. We also study how they perform to...

  7. Photometric Solutions of Some Contact ASAS Binaries

    CERN Document Server

    Gezer, I

    2015-01-01

    We present the first light curve solution of 6 contact binary systems which are chosen from the ASAS catalog. The photometric elements and the estimated absolute parameters of all systems are obtained with the light curve analyses. We calculated the values of degree of contact for the systems. The location of the targets on the Hertzsprung-Russell diagram and the mass-radius plane is compared to the other well-known contact binaries and the evolutionary status of the systems are also discussed.

  8. Photometric solutions of some contact ASAS binaries

    Science.gov (United States)

    Gezer, İ.; Bozkurt, Z.

    2016-04-01

    We present the first light curve solution of 6 contact binary systems which are chosen from the ASAS catalog. The photometric elements and the estimated absolute parameters of all systems are obtained with the light curve analyses. We calculated the values of degree of contact for the systems. The location of the targets on the Hertzsprung-Russell diagram and the mass-radius plane is compared to the other well-known contact binaries and the evolutionary status of the systems are also discussed.

  9. Revised photometric elements of eight eclipsing binaries

    Science.gov (United States)

    Mezzetti, M.; Predolin, F.; Giuricin, G.; Mardirossian, F.

    1980-10-01

    Photoelectric lightcurves of eight eclipsing binaries, known as detached systems, have been reanalysed by means of Wood's model in order to obtain homogeneous photometric elements. All binaries are confirmed to be detached. TU Cam, CW CMa, YZ Cas, CW Eri, CO Lac and EE Peg appear to be normal main-sequence (or near main-sequence) detached systems, but only the absolute elements of CO Lac are well-known. The detached binaries EK Cep and IQ Per are shown to be anomalous.

  10. Photometric normalization of LROC WAC images

    Science.gov (United States)

    Sato, H.; Boyd, A. K.; Denevi, B. W.; Robinson, M. S.; Hapke, B. W.; McEwen, A. S.; Humm, D. C.; LROC Science Operations Team

    2011-12-01

    Monthly global Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) observations of the Moon, acquired with varying emission and incidence angles, enable the precise derivation of spatially resolved Hapke photometric parameters [1]. The WAC global mosaics are stacked in a time series to enable phase curve fitting using a tile-by-tile method, with a wide range of phase angle in each tile. Tile-by-tile calculations provide photometric parameters for each tile (currently 1° by 1° from 80° to -80° latitude), resulting in resolved near-global photometric parameter maps (w, xi, Bco, and hc)[2]. Incidence, emission, and phase angles are computed using a new WAC stereometric digital terrain model (100 m/pixel)[3]. In the tile-by-tile method, we obtain low phase observations only near the equator resulting in an inability to accurately estimate Bco at higher latitudes (Hapke parameter controls the y-intercept of phase curve). We interpolated Bco poleward of +/- 5° latitudes, using a negative correlation between w and Bco observed in the equator +/- 5° latitudes. This interpolation method can decrease one free parameter, resulting in short calculation time and much less failed tiles. The normalized image using this parameter map shows almost no tile boundary, which shows that the tile-by-tile method works well. After the tile-by-tile method was applied with twenty months of data over a full range of beta angle, we observed an I/F offset with time. This offset results in reflectance differences at month-to-month boundaries in a global mosaic constructed from sequences acquired over different months (constructed to minimize incidence angle differences as a function of latitude). After significant tests of any possible parameters controlling the residual I/F value, incidence angle was revealed to be a dominant factor, indicating that the photometry model may not completely accounting for incidence angle. The main function dealing with incidence angle is the Lommel

  11. Madame Bovary and Catastrophism: Revolving narratives

    Directory of Open Access Journals (Sweden)

    Ruth Morris

    2011-07-01

    Full Text Available Cet article relie Madame Bovary au contexte scientifique français des années 1850, en lisant le roman de Flaubert à la lumière des théories de Cuvier. Le savant français Georges Cuvier, avec nombre de ses contemporains, explique les origines du monde à l’aide de la théorie des catastrophes. D’après cette théorie, le monde est divisé en périodes très courtes ponctuées de grandes catastrophes ou, en termes cuviériens, de « révolutions » qui ont éradiqué toute vie et ont permis au monde d’être entièrement repeuplé. Une telle conception affecte l’idée même du « temps ». Cuvier pense que la formation de la Terre est relativement récente, l’époque présente n’étant vieille que de cinq mille ans. Cette compression temporelle peut être rapportée à Madame Bovary dont le « tempo » s’accroît au fur et à mesure qu’on se rapproche du dénouement. Dans la théorie des catastrophes comme dans le roman, le temps ne suit pas une ligne chronologique. Les « révolutions » viennent briser le fil continu du temps et Emma est souvent incapable de distinguer entre le passé, le présent et le futur. Les « révolutions » servent aussi à ponctuer et à perturber le cours de la vie sur Terre en produisant des événements majeurs dans l’histoire du globe. Il en est de même dans la vie d’Emma. Son existence est marquée par des événements majeurs, comme le bal, qui créent un éclatement et une fragmentation de la temporalité, comme dans la théorie de Cuvier. Je défendrai aussi l’idée d’un lien entre la soudaineté et la violence des « révolutions » et les crises nerveuses d’Emma, qui surviennent brusquement et relèvent de l’hystérie. La conception cuviérienne de la temporalité doit enfin être envisagée au regard des théories de l’évolution, ce qui implique de réévaluer les notions d’adaptation, d’hérédité et de mort dans le roman de Flaubert.This paper locates Madame

  12. Supercal: Cross-Calibration of Multiple Photometric Systems to Improve Cosmological Measurements with Type Ia Supernovae

    CERN Document Server

    Scolnic, D; Riess, A G; Rest, A; Schlafly, E; Foley, R J; Finkbeiner, D; Tang, C; Burgett, W S; Chambers, K C; Draper, P W; Hodapp, K W; Huber, M E; Kaiser, N; Kudritzki, R P; Magnier, E A; Metcalfe, N; Stubbs, C W

    2015-01-01

    Current cosmological analyses which use Type Ia supernova (SN Ia) observations combine SN samples to expand the redshift range beyond that of a single sample and increase the overall sample size. The inhomogeneous photometric calibration between different SN samples is one of the largest systematic uncertainties of the cosmological parameter estimation. To place these different samples on a single system, analyses currently use observations of a small sample of very bright flux standards on the $HST$ system. We propose a complementary method, called `Supercal', in which we use measurements of secondary standards in each system, compare these to measurements of the same stars in the Pan-STARRS1 (PS1) system, and determine offsets for each system relative to PS1, placing all SN observations on a single, consistent photometric system. PS1 has observed $3\\pi$ of the sky and has a relative calibration of better than 5 mmag (for $\\sim15

  13. Simple, Fast and Accurate Photometric Estimation of Specific Star Formation Rate

    CERN Document Server

    Stensbo-Smidt, Kristoffer; Igel, Christian; Zirm, Andrew; Pedersen, Kim Steenstrup

    2015-01-01

    Large-scale surveys make huge amounts of photometric data available. Because of the sheer amount of objects, spectral data cannot be obtained for all of them. Therefore it is important to devise techniques for reliably estimating physical properties of objects from photometric information alone. These estimates are needed to automatically identify interesting objects worth a follow-up investigation as well as to produce the required data for a statistical analysis of the space covered by a survey. We argue that machine learning techniques are suitable to compute these estimates accurately and efficiently. This study considers the task of estimating the specific star formation rate (sSFR) of galaxies. It is shown that a nearest neighbours algorithm can produce better sSFR estimates than traditional SED fitting. We show that we can obtain accurate estimates of the sSFR even at high redshifts using only broad-band photometry based on the u, g, r, i and z filters from Sloan Digital Sky Survey (SDSS). We addtional...

  14. Photometric Identification of Objects from Galaxy Evolution Explorer Survey and Sloan Digital Sky Survey

    CERN Document Server

    Preethi, K; Bubbly, S G; Murthy, Jayant; Brosch, Noah

    2013-01-01

    We have used GALEX and SDSS observations to extract 7 band photometric magnitudes for over 80,000 objects in the vicinity of the North Galactic Pole. Although these had been identified as stars by the SDSS pipeline, we found through fitting with model SEDs that most were, in fact, of extragalactic origin. Only about 9% of these objects turned out to be main sequence stars and about 11% were white dwarfs and red giants collectively, while galaxies and quasars contributed to the remaining 80% of the data. We have classified these objects into different spectral types (for the stars) and into different galactic types (for the galaxies). As part of our fitting procedure, we derive the distance and extinction to each object and the photometric redshift towards galaxies and quasars. This method easily allows for the addition of any number of observations to cover a more diverse range of wavelengths, as well as the addition of any number of model templates. The primary objective of this work is to eventually derive ...

  15. Photometric study of the eclipsing binary ET Psc

    Science.gov (United States)

    Özalp, G. Z.; Özkardeş, B.

    2016-03-01

    We present the photometric solution of the eclipsing binary ET Psc (GSC 00608-00490). The ASAS V-band photometric data of the system was modelled using the Wilson-Devinney method. The result shows that the eclipsing pair could be classified as A-subtype of W UMa-type binary system. The absolute dimensions of the system were also estimated based on the photometric solution.

  16. Photometric study of Galactic star clusters in the VVV survey

    CERN Document Server

    Mauro, F; Geisler, D

    2012-01-01

    We show the preliminary analysis of some Galactic stellar clusters (GSCls) candidates and the results of the analysis of two new interesting GSCls found in the "VISTA Variables in the Via Lactea" (VVV) Survey. The VVV photometric data are being used also to improve the knowledge of the Galactic structure. The photometric data are obtained with the new automatic photometric pipeline VVV-SkZ_pipeline.

  17. Quest for COSMOS submillimeter galaxy counterparts using CARMA and VLA: Identifying three high-redshift starburst galaxies

    CERN Document Server

    Smolcic, V; Aravena, M; Ilbert, O; Yun, M S; Sheth, K; Salvato, M; McCracken, H J; Diener, C; Aretxaga, I; Riechers, D A; Finoguenov, A; Bertoldi, F; Capak, P; Hughes, D; Karim, A; Schinnerer, E; Scoville, N Z; Wilson, G

    2012-01-01

    We report on interferometric observations at 1.3 mm at 2"-3" resolution using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F(1mm)>5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ~10"-30", resolution. All three sources -- AzTEC/C1, Cosbo-3 and Cosbo-8 -- are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but that further away from it. This illustrates the need for intermediate-resolution (~2") mm-observations to identify the correct counterparts of single-dish detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z>~2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric-red...

  18. Three candidate clusters of galaxies at redshift ~1.8: the "missing link" between protoclusters and local clusters?

    CERN Document Server

    Chiaberge, M; Macchetto, F D; Rosati, P; Tozzi, P; Tremblay, G R

    2010-01-01

    We present three candidate clusters of galaxies at redshifts most likely between 1.7 and 2.0, which corresponds to a fundamentally unexplored epoch of clusters evolution. The candidates were found by studying the environment around our newly selected sample of "beacons" low-luminosity (FRI) radio galaxies in the COSMOS field. In this way we intend to use the fact that FRI at low z are almost invariably located in clusters of galaxies. We use the most accurate photometric redshifts available to date, derived by the COSMOS collaboration using photometry with a set of 30 filters, to look for three-dimensional space over-densities around our objects. Three out of the five FRIs in our sample which possess reliable photometric redshifts between z_phot = 1.7 and 2.0 display overdensities that together are statistically significant at the 4-sigma level, compared to field counts, arguing for the presence of rich clusters of galaxies in their Mpc environment. These first results show that the new method for finding hig...

  19. SCREEN photometric property detection system based on area CCD

    Science.gov (United States)

    Yan, Fu-cai; Ye, Wei; Xu, Yu; Wang, Chao; Zhang, Yu-wei

    2011-08-01

    The photometric property detection of screen display is crucial for screen display quality test. Traditional photometry detection technologies were based on photoelectric sensors such as silicon photocell, photo-electric multiplier and CdS, which can detect only some isolated points. To break the limitation of randomness, incompleteness and detection accuracy in current technologies, we designed a screen photometric detection system based on area CCD. The system consists of photometric image sensor, photometric image acquisition hardware and photometric image analyzing software. The photometric image sensor, which adopts optical lens, optical filters and area CCD, adapts its spectrum response property to fit the spectrum luminous efficiency curve V (λ) by adjusting the thickness and quantity of appropriate optical filters. photometric image acquisition hardware adopts the DSP as a core processor to drive the area CCD, to sample, acquire , process and save the image from image sensor, to transmit the image to computer. For real-time performance of transmitting, the hardware system adopts the transmission protocol of USB2.0. The uploaded image will be processed by photometric image analyzing software, and then displayed in real time with detection results. The screen photometric detection technology based on area CCD can detect specifications of the whole screen such as luminance, contrast, onoff ratio and uniformity, breaks the limitation of randomness and incompleteness in current detection technology, exactly and fully reflects the integrated display quality of the whole screen. According to the test results, the accuracy of this system has reached the accuracy level one in China.

  20. Spectro-photometric calibration of the SuperNova Integral Field Spectrograph in the Nearby Supernova Factory collaboration framework

    International Nuclear Information System (INIS)

    Ten years ago, type Ia supernovae used as distances indicators led to the discovery of the accelerating expansion of the universe. Today, a second generation of surveys has significantly increased the high-redshift type Ia supernovae sample. The low-redshift sample was however still limiting the cosmological analysis using SNe. In this framework, the Nearby Supernova Factory has followed 200 nearby type Ia supernovae using the dedicated Supernovae Integral Field Spectrograph with spectro-photometric capacities. My PhD thesis has been carried out at the Institut de Physique Nucleaire de Lyon and at the Lawrence Berkeley National Laboratory in the framework of the international cosmological project SNfactory. In order to reach the design spectrophotometric accuracy, attention has been focused on several key aspects of the calibration procedure, including: determination of a dedicated point spread function for 3D point source extraction, estimating the nightly photometric quality, derivation of the nightly sky extinction over the extended optical domain, its modeling in terms of physical components and its variability within a given night. A full multi-standards calibration pipeline has been implemented using approximately 4000 observations of spectrophotometric standard stars taken throughout the night over nearly 500 individual nights. Preliminary scientific results of the whole SNfactory collaboration will be presented at the end of this thesis. (author)

  1. The fate of high-redshift massive compact galaxies

    CERN Document Server

    de la Rosa, Ignacio G; Ferreras, Ignacio; Almeida, Jorge Sánchez; Vecchia, Claudio Dalla; Martínez-Valpuesta, Inma; Stringer, Martin

    2016-01-01

    Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge-disk decomposition catalogues based on the Sloan Digital Sky Survey (SDSS) to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or disks of present-day massive galaxies. In this study, we designate a "compact core" as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass-size and mass-density relations are used to show that, in the inner regions of galaxies at z ~ 0.1, there are "abundant" compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ~ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red ...

  2. The Luminosity Function of Low-Redshift Abell Galaxy Clusters

    CERN Document Server

    Barkhouse, Wayne A; López-Cruz, Omar

    2007-01-01

    We present the results from a survey of 57 low-redshift Abell galaxy clusters to study the radial dependence of the luminosity function (LF). The dynamical radius of each cluster, r200, was estimated from the photometric measurement of cluster richness, Bgc. The shape of the LFs are found to correlate with radius such that the faint-end slope, alpha, is generally steeper on the cluster outskirts. The sum of two Schechter functions provides a more adequate fit to the composite LFs than a single Schechter function. LFs based on the selection of red and blue galaxies are bimodal in appearance. The red LFs are generally flat for -22 -18. The blue LFs contain a larger contribution from faint galaxies than the red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc > -21, with a weaker dependence on radius than the red LFs. The dispersion of M* was determined to be 0.31 mag, which is comparable to the median measurement uncertainty of 0.38 mag. This suggests that the bright-end of the LF is...

  3. Application of catastrophe theory to nuclear structure

    International Nuclear Information System (INIS)

    Three two-parameter models, one describing an A-body system (the atomic nucleus) and two describing many-body systems (the van der Waals gas and the ferroelectric (perovskite) system) are compared within the framework of catastrophe theory. It is shown that each has a critical point (second-order phase transition) when the two counteracting forces controlling it are in balance; further, each undergoes a first-order phase transition when one of the forces vanishes (the deforming force for the nucleus, the attractive force for the van der Waals gas, and the dielectric constant for the perovskite). Finally, when both parameters are kept constant, a kind of phase transition may occur at a critical angular momentum, critical pressure, and critical electric field. 3 figures, 1 table

  4. Asteroid models from the Lowell Photometric Database

    CERN Document Server

    Durech, J; Oszkiewicz, D; Vanco, R

    2016-01-01

    We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. From the analysis of Lowell photometric data of the first 100,000 numbered asteroids, we derived 328 new ...

  5. Grasshopper Population Ecology: Catastrophe, Criticality, and Critique

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Lockwood

    2008-06-01

    Full Text Available Grasshopper population dynamics are an important part of the North American rangeland ecosystem and an important factor in the economies that derive from the rangeland. Outbreak dynamics have plagued management strategies in the rangeland, and attempts to find simple, linear and mechanistic solutions to both understanding and predicting the dynamics have proved fruitless. These efforts to ground theory in a correspondence with the “real” world, including whether the population dynamics are ultimately density dependent or density independent, have generated abundant heat but little light. We suggest that a pragmatic approach, in which theories are taken to be “tools” rather than competing claims of truth, has greater promise to move ecological research in a constructive direction. Two recent non-linear approaches exploiting the tools of complexity science provide insights relevant to explaining and forecasting population dynamics. Observation and data collection were used to structure models derived from catastrophe theory and self-organized criticality. These models indicate that nonlinear processes are important in the dynamics of the outbreaks. And the conceptual structures of these approaches provide clear, albeit constrained or contingent, implications for pest managers. We show that, although these two frameworks, catastrophe theory and self-organized criticality, are very different, the frequency distributions of time series from both systems result in power law relationships. Further, we show that a simple lattice-based model, similar to SOC but structured on the biology of the grasshoppers gives a spatial time series similar to data over a 50-year span and the frequency distribution is also a power law relationship. This demonstration exemplifies how a “both–and” rather than an “either–or” approach to ecological modeling, in which the useful elements of particular theories or conceptual structures are extracted, may

  6. Experiments on Mixotrophic Protists and Catastrophic Darkness

    Science.gov (United States)

    Jones, Harriet; Cockell, Charles S.; Goodson, Claire; Price, Nicola; Simpson, Annika; Thomas, Benjamin

    2009-08-01

    Catastrophically darkened photic zone conditions in water bodies are postulated to be induced by a diversity of mechanisms that are recorded in the geological record, including asteroid and comet impacts and large-scale volcanic eruptions. Giant wildfires, such as those that followed the great fires in Siberia in 1915, have been directly shown to cause large reductions in sunlight penetrating to the ground. Previous studies on the response of phototrophs to s udden prolonged darkness have focused on the survival of axenic strains. In this paper, we describe laboratory experiments to investigate the survival and growth of isolated and mixed cultures of freshwater and marine mixotrophs after 6 months of darkness and in the low light that would follow these events. Mixotrophs could survive 6 months of darkness. Some species used dissolved organic carbon, which can be released from dead biomass after loss of light and was shown to improve feeding rates. Mixotrophs also improved the survival and subsequent growth of obligate phototrophs at low light levels when grown in mixed cultures. The ability of mixotrophs to switch from photosynthesis to heterotrophy following sudden darkening would not only allow them to survive but to grow and contribute to active food chains. The experiments suggest that, following the return of light, resumption of photosynthesis can be rapid. These experiments improve our understanding of the collapse of photosynthesis following catastrophic darkening and emphasize the important role of mixotrophy in the resilience of the photosynthetic biosphere during such periods. We speculate on the implications for the Cretaceous-Tertiary impact event and periods of global freezing.

  7. Gravitational Redshifts in Simulated Galaxy Clusters

    CERN Document Server

    Kim, Y R; Kim, Young-Rae; Croft, Rupert

    2004-01-01

    We predict the amplitude of the gravitational redshift of galaxies in galaxy clusters using an N-body simulation of a Lambda CDM universe. We examine if it might be possible to detect the gravitational effect on the total redshift observed for galaxies. For clusters of mass M ~10^15 m_sun, the difference in gravitational redshift between the brightest galaxy and the rest of the cluster members is ~10 km/s. The most efficient way to detect gravitational redshifts using information from galaxies only involves using the full gravitational redshift profile of clusters. Massive clusters, while having the largest gravitational redshift suffer from large galaxy peculiar velocities and substructure, which act as a source of noise. This and their low number density make it more reasonable to try averaging over many clusters and groups of relatively low mass. We examine publicly available data for 107 rich clusters from the ESO Nearby Abell Clusters Survey (ENACS), finding no evidence for gravitational redshifts. Test ...

  8. Thermodynamics Insights for the Redshift Drift

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  9. Giving cosmic redshift drift a whirl

    Science.gov (United States)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  10. Purchase of Catastrophe Insurance by Dutch Dairy and Arable Farmers

    NARCIS (Netherlands)

    Ogurtsov, V.; Asseldonk, van M.A.P.M.; Huirne, R.B.M.

    2009-01-01

    This article analyzed the impact of risk perception, risk attitude, and other farmer personal and farm characteristics on the actual purchase of catastrophe insurance by Dutch dairy and arable farmers. The specific catastrophe insurance types considered were hail–fire–storm insurance for buildings,

  11. Cell death by mitotic catastrophe: a molecular definition

    NARCIS (Netherlands)

    Castedo, M.; Perfettini, J.-L.; Roumier, T.; Andreau, K.; Medema, R.H.; Kroemer, G.

    2004-01-01

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle ass

  12. Can a stochastic cusp catastrophe model explain housing market crashes?

    NARCIS (Netherlands)

    C. Diks; J. Wang

    2016-01-01

    Like stock market prices, housing prices often exhibit temporary booms and busts. A possible explanation for the observed abrupt changes is offered by the stochastic catastrophe model. This paper addresses the question whether the catastrophe model can describe and predict the dynamics of housing ma

  13. Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications

    CERN Document Server

    Ho, Shirley; Seo, Hee-Jong; de Putter, Roland; Ross, Ashley J; White, Martin; Padmanabhan, Nikhil; Saito, Shun; Schlegel, David J; Schlafly, Eddie; Seljak, Uros; Hernandez-Monteagudo, Carlos; Sanchez, Ariel G; Percival, Will J; Blanton, Michael; Skibba, Ramin; Schneider, Don; Reid, Beth; Mena, Olga; Viel, Matteo; Eisenstein, Daniel J; Prada, Francisco; Weaver, Benjamin; Bahcall, Neta; Bizyaev, Dimitry; Brewinton, Howard; Brinkman, Jon; da Costa, Luiz Nicolaci; Gott, John R; Malanushenko, Elena; Malanushenko, Viktor; Nichol, Bob; Oravetz, Daniel; Pan, Kaike; Palanque-Delabrouille, Nathalie; Ross, Nicholas P; Simmons, Audrey; de Simoni, Fernando; Snedden, Stephanie; Yeche, Christophe

    2012-01-01

    The Sloan Digital Sky Survey (SDSS) surveyed 14,555 square degrees, and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between $z=0.45$ and $z=0.65$, constructed from the SDSS using methods described in Ross et al. (2011). This data-set spans 11,000 square degrees and probes a volume of $3h^{-3} \\rm{Gpc}^3$, making it the largest volume ever used for galaxy clustering measurements. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at 4 redshift slices with an accuracy of ~15% with bin size of delta_l = 10 on scales of the Baryon Acoustic Oscillations (BAO) (at l~40-400). We derive cosmological constraints using the full-shape of the power-spectra. For a flat Lambda CDM model, when combined with Cosmic Microwave Background Wilkinson Microw...

  14. The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey

    CERN Document Server

    Moles, M; López-Aguerri, J A; Alfaro, E J; Broadhurst, T; Cabrera-Caño, J; Castander, F J; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Fernández-Soto, A; Delgado, R M González; Infante, L; Márquez, I; Martínez, V J; Masegosa, J; del Olmo, A; Perea, J; Prada, F; Quintana, J M; Sánchez, S F

    2008-01-01

    (ABRIDGED) We describe the first results of the ALHAMBRA survey which provides cosmic tomography of the evolution of the contents of the Universe over most of Cosmic history. Our approach employs 20 contiguous, equal-width, medium-band filters covering from 3500 to 9700 A, plus the JHKs bands, to observe an area of 4 sqdeg on the sky. The optical photometric system has been designed to maximize the number of objects with accurate classification by SED and redshift, and to be sensitive to relatively faint emission lines. The observations are being carried out with the Calar Alto 3.5m telescope using the cameras LAICA and O-2000. The first data confirm that we are reaching the expected magnitude limits of AB<~25 mag in the optical filters from the blue to 8300 A, and from AB=24.7 to 23.4 for the redder ones. The limit in the NIR is (Vega) K_s~20, H~21, J~22. We expect to obtain accurate redshift values, Delta z/(1+z) <~ 0.03 for about 5x10^5 galaxies with I<~25 (60% complete), and z_med=0.74. This accu...

  15. Observations of GRBs at High Redshift

    CERN Document Server

    Tanvir, N R

    2007-01-01

    The extreme luminosity of gamma-ray bursts (GRBs) and their afterglows means they are detectable, in principle, to very high redshifts. Although the redshift distribution of GRBs is difficult to determine, due to incompleteness of present samples, we argue that for Swift-detected bursts the median redshift is between 2.5 and 3, with a few percent likely at z > 6. Thus, GRBs are potentially powerful probes of the era of reionization, and the sources responsible for it. Moreover, it seems likely that they can provide constraints on the star formation history of the universe, and may also help in the determination of the cosmological parameters.

  16. Hubble Space Telescope studies of low-redshift Type Ia supernovae: Evolution with redshift and ultraviolet spectral trends

    CERN Document Server

    Maguire, K; Ellis, R S; Nugent, P E; Howell, D A; Gal-Yam, A; Cooke, J; Mazzali, P; Pan, Y-C; Dilday, B; Thomas, R C; Arcavi, I; Ben-Ami, S; Bersier, D; Bianco, F B; Fulton, B J; Hook, I; Horesh, A; Hsiao, E; James, P A; Podsiadlowski, P; Walker, E S; Yaron, O; Kasliwal, M M; Laher, R R; Law, N M; Ofek, E O; Poznanski, D; Surace, J

    2012-01-01

    We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500 A) spectra of 32 low redshift (0.001photometric parameters, such as stretch, optical colour, and brightness. By comparing our data to a comparable sample of SNe Ia at intermediate-z (0.4

  17. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    Science.gov (United States)

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias

  18. Psychological resilience predicts decreases in pain catastrophizing through positive emotions.

    Science.gov (United States)

    Ong, Anthony D; Zautra, Alex J; Reid, M Carrington

    2010-09-01

    The study used a daily process design to examine the role of psychological resilience and positive emotions in the day-to-day experience of pain catastrophizing. A sample of 95 men and women with chronic pain completed initial assessments of neuroticism, psychological resilience, and demographic data, and then completed short diaries regarding pain intensity, pain catastrophizing, and positive and negative emotions every day for 14 consecutive days. Multilevel modeling analyses indicated that independent of level of neuroticism, negative emotions, pain intensity, income, and age, high-resilient individuals reported greater positive emotions and exhibited lower day-to-day pain catastrophizing compared with low-resilient individuals. Mediation analyses revealed that psychologically resilient individuals rebound from daily pain catastrophizing through experiences of positive emotion. Implications for research on psychological resilience, pain catastrophizing, and positive emotions are discussed.

  19. Grey forewarning and prediction for mine water inflowing catastrophe periods

    Institute of Scientific and Technical Information of China (English)

    MA Qi-hua; CAO Jian-jun

    2007-01-01

    Based on the theory of grey system, established GM (1, 1) grey catastrophe predict model for the first time in order to forecast the catastrophe periods of mine water inflowing (not the volume of water inflowing). After establishing the grey predict system of the catastrophe regularity of 10 month-average volume of water inflowing, the grey forewarning for mine water inflowing catastrophe periods was established which was used to analyze water disaster in -400 meter level of Wennan Colliery. Based on residual analysis,it shows that the result of grey predict system is almost close to the actual value. And the scene actual result also shows the reliability of prediction. Both the theoretical analysis and the scene actual result indicate feasibility and reliability of the method of grey catastrophe predict system.

  20. The New Redshift Interpretation Affirmed

    CERN Document Server

    Gentry, R V

    1998-01-01

    In late 1997 I reported (Mod. Phys. Lett. A 12 (1997) 2919; astro-ph/9806280) the discovery of A New Redshift Interpretation (NRI) of the Hubble relation and the 2.7K CBR, which showed for the first time that it was possible to explain these phenomena within the framework of a universe governed by Einstein's static-spacetime general relativity (GR) instead of the Friedmann-Lemaitre expanding-spacetime paradigm. More recently Carlip and Scranton (astro-ph/9808021; C&S) claim to find flaws in this discovery, while also claiming the standard cosmology is error free. Their analysis assumes the NRI represents a static cosmological model of the universe. This is wrong. My MPLA report clearly states the NRI encompasses an expanding universe wherein galaxies are undergoing Doppler recession due to vacuum density repulsion. C&S's confusion on this crucial point leads to serious errors in their analysis. Next, in claiming the standard cosmology is error free, C&S fail to respond to the contradictory evidenc...

  1. Molecular Gas at High Redshift

    CERN Document Server

    Solomon, P M

    2005-01-01

    The Early Universe Molecular Emission Line Galaxies (EMGs) are a population of galaxies with only 36 examples that hold great promise for the study of galaxy formation and evolution at high redshift. The classification, luminosity of molecular line emission, molecular mass, far-infrared (FIR) luminosity, star formation efficiency, morphology, and dynamical mass of the currently known sample are presented and discussed. The star formation rates derived from the FIR luminosity range from about 300 to 5000 M(sun)per year and the molecular mass from 4 x 10^9 to 1 x 10^{11} M(sun). At the lower end, these star formation rates, gas masses, and diameters are similar to those of local ultraluminous infrared galaxies, and represent starbursts in centrally concentrated disks, sometimes, but not always, associated with active galactic nuclei. The evidence for large (> 5 kpc) molecular disks is limited. Morphology and several high angular resolution images suggest that some EMGs are mergers with a massive molecular inter...

  2. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. S. [et al.

    2016-05-27

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

  3. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.S.; et al.

    2016-01-01

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

  4. Manipulation of pain catastrophizing: An experimental study of healthy participants

    Directory of Open Access Journals (Sweden)

    Joel E Bialosky

    2008-11-01

    Full Text Available Joel E Bialosky1*, Adam T Hirsh2,3, Michael E Robinson2,3, Steven Z George1,3*1Department of Physical Therapy; 2Department of Clinical and Health Psychology; 3Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida, USAAbstract: Pain catastrophizing is associated with the pain experience; however, causation has not been established. Studies which specifically manipulate catastrophizing are necessary to establish causation. The present study enrolled 100 healthy individuals. Participants were randomly assigned to repeat a positive, neutral, or one of three catastrophizing statements during a cold pressor task (CPT. Outcome measures of pain tolerance and pain intensity were recorded. No change was noted in catastrophizing immediately following the CPT (F(1,84 = 0.10, p = 0.75, partial η2 < 0.01 independent of group assignment (F(4,84 = 0.78, p = 0.54, partial η2 = 0.04. Pain tolerance (F(4 = 0.67, p = 0.62, partial η2 = 0.03 and pain intensity (F(4 = 0.73, p = 0.58, partial η2 = 0.03 did not differ by group. This study suggests catastrophizing may be difficult to manipulate through experimental pain procedures and repetition of specific catastrophizing statements was not sufficient to change levels of catastrophizing. Additionally, pain tolerance and pain intensity did not differ by group assignment. This study has implications for future studies attempting to experimentally manipulate pain catastrophizing.Keywords: pain, catastrophizing, experimental, cold pressor task, pain catastrophizing scale

  5. Spectroscopic confirmation of two Lyman break galaxies at redshift beyond 7

    CERN Document Server

    Vanzella, E; Fontana, A; Grazian, A; Castellano, M; Boutsia, K; Cristiani, S; Dickinson, M; Gallozzi, S; Giallongo, E; Giavalisco, M; Maiolino, R; Moorwood, A; Paris, D; Santini, P

    2010-01-01

    We report the spectroscopic confirmation of two Lyman break galaxies at redshift > 7. The galaxies were observed as part of an utra-deep spectroscopic campaign with FORS2 at the ESO/VLT for the confirmation of z~7 "z--band dropout'' candidates selected from our VLT/Hawk-I imaging survey. Both galaxies show a prominent emission line at 9735A and 9858A respectively: the lines have fluxes around ~ 1-1.2 x 10^(-17) erg/s/cm2 and exhibit a sharp decline on the blue side and a tail on the red side. The asymmetry is quantitatively comparable to the observed asymmetry in z~6 Lya lines, where absorption by neutral hydrogen in the IGM truncates the blue side of the emission line profile. We carefully evaluate the possibility that the galaxies are instead at lower redshift and we are observing either [OII], [OIII] or Ha emission: however from the spectroscopic and the photometric data we conclude that there are no other plausible identifications, except for Lya at redshift > 7, making these the first robust Lyman break ...

  6. The Quest for Dusty Star-forming Galaxies at High Redshift z>4

    CERN Document Server

    Mancuso, C; Shi, J; Gonzalez-Nuevo, J; Aversa, R; Danese, L

    2016-01-01

    We exploit the continuity equation approach and the `main sequence' star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population featuring large star formation rates (SFRs) > 10^2 M_sun/yr in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z30 M_sun/yr cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data...

  7. Subluminous Type Ia Supernovae at High Redshift from the Supernova Legacy Survey

    CERN Document Server

    Gonzalez-Gaitan, S; Sullivan, M; Conley, A; Howell, D A; Carlberg, R G; Astier, P; Balam, D; Balland, C; Basa, S; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Pain, R; Pritchet, C J; Regnault, N; Rich, J

    2010-01-01

    The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: $r(z)=A\\times M_g$, with $A=(1.1\\pm0.3)\\times10^{-14}$ SNe per year and solar mass.

  8. GRB 130606A within a sub-DLA at redshift 5.91

    CERN Document Server

    Castro-Tirado, A J; Ellison, S L; Jelínek, M; Martín-Carrillo, A; Bromm, V; Gorosabel, J; Bremer, M; Winters, J M; Hanlon, L; Meegan, S; Topinka, M; Pandey, S B; Guziy, S; Jeong, S; Sonbas, E; Pozanenko, A S; Cunniffe, R; Fernández-Muñoz, R; Ferrero, P; Gehrels, N; Hudec, R; Kubánek, P; Lara-Gil, O; Muñoz-Martínez, V F; Pérez-Ramírez, D; Štrobl, J; Álvarez-Iglesias, C; Inasaridze, R; Rumyantsev, V; Volnova, A; Hellmich, S; Mottola, S; Cerón, J M Castro; Cepa, J; Göğüş, E; Güver, T; Taş, Ö Önal; Park, I H; Sabau-Graziati, L; Tejero, A

    2013-01-01

    Events such as GRB130606A at z=5.91, offer an exciting new window into pre-galactic metal enrichment in these very high redshift host galaxies. We study the environment and host galaxy of GRB 130606A, a high-z event, in the context of a high redshift population of GRBs. We have obtained multiwavelength observations from radio to gamma-ray, concentrating particularly on the X-ray evolution as well as the optical photometric and spectroscopic data analysis. With an initial Lorentz bulk factor in the range \\Gamma_0 ~ 65-220, the X-ray afterglow evolution can be explained by a time-dependent photoionization of the local circumburst medium, within a compact and dense environment. The host galaxy is a sub-DLA (log N (HI) = 19.85+/-0.15), with a metallicity content in the range from ~1/7 to ~1/60 of solar. Highly ionized species (N V and Si IV) are also detected. This is the second highest redshift burst with a measured GRB-DLA metallicity and only the third GRB absorber with sub-DLA HI column density. GRB ' lightho...

  9. The Las Campanas IR Survey Early Type Galaxy Progenitors Beyond Redshift One

    CERN Document Server

    McCarthy, P J; Chen, H W; Marzke, R O; Firth, A E; Ellis, Richard S; Persson, S E; McMahon, R G; Lahav, O; Wilson, J; Martini, P; Abraham, R G; Sabbey, C N; Oemler, A E; Murphy, D C; Somerville, R S; Beckett, M G; Lewis, J R; MacKay, C D

    2001-01-01

    (Abridged) We have identified a population of faint red galaxies from a 0.62 square degree region of the Las Campanas Infrared Survey whose properties are consistent with their being the progenitors of early-type galaxies. The optical and IR colors, number-magnitude relation and angular clustering together indicate modest evolution and increased star formation rates among the early-type field population at redshifts between one and two. The counts of red galaxies with $H$ magnitudes between 17 and 20 rise with a slope that is much steeper than that of the total H sample. The surface density of red galaxies drops from roughly 3000 per square degree at H = 20.5, I-H > 3 to ~ 20 per square degree at H = 20, I-H > 5. The V-I colors are approximately 1.5 magnitudes bluer on average than a pure old population and span a range of more than three magnitudes. The colors, and photometric redshifts derived from them, indicate that the red galaxies have redshift distributions adequately described by Gaussians with sigma_...

  10. NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    De Putter, Roland [ICC, University of Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Mena, Olga; Giusarma, Elena [Instituto de Fisica Corpuscular, University of Valencia-CSIC (Spain); Ho, Shirley; Seo, Hee-Jong; White, Martin; Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cuesta, Antonio [Yale University, New Haven, CT (United States); Ross, Ashley J.; Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Kirkby, David [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2012-12-10

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg{sup 2}, thus probing a volume of 3 h {sup -3} Gpc{sup 3} and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses {Sigma}m{sub {nu}} < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call ''CMASS'', with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small ({approx}1{sigma}-1.5{sigma}) bias in {Omega}{sub DM} h {sup 2}. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g., {Sigma}m{sub {nu}} < 0.38 eV (95% CL) for WMAP+HST+CMASS (l{sub max} = 200). We also study the dependence of the neutrino bound on the multipole range (l{sub max} = 150 versus l{sub max} = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial

  11. Asteroid models from the Lowell photometric database

    Science.gov (United States)

    Ďurech, J.; Hanuš, J.; Oszkiewicz, D.; Vančo, R.

    2016-03-01

    Context. Information about shapes and spin states of individual asteroids is important for the study of the whole asteroid population. For asteroids from the main belt, most of the shape models available now have been reconstructed from disk-integrated photometry by the lightcurve inversion method. Aims: We want to significantly enlarge the current sample (~350) of available asteroid models. Methods: We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. Results: From the analysis of Lowell photometric data of the first 100 000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high

  12. Applications of modelling historical catastrophic events with implications for catastrophe risk management

    Science.gov (United States)

    Sorby, A.; Grossi, P.; Pomonis, A.; Williams, C.; Nyst, M.; Onur, T.; Seneviratna, P.; Baca, A.

    2009-04-01

    The management of catastrophe risk is concerned with the quantification of financial losses, and their associated probabilities, for potential future catastrophes that might impact a region. Modelling of historical catastrophe events and, in particular, the potential consequences if a similar event were to occur at the present day can provide insight to help bridge the gap between what we know can happen from historical experience and what potential losses might be out there in the "universe" of potential catastrophes. The 1908 Messina Earthquake (and accompanying local tsunami) was one of the most destructive earthquakes to have occurred in Europe and by most accounts remains Europe's most fatal with over 70,000 casualties estimated. However, what would the potential consequences be, in terms of financial and human losses, if a similar earthquake were to occur at the present day? Exposures, building stock and populations can change over time and, therefore, the consequences of a similar earthquake at the present day may sensibly differ from those observed in 1908. The city of Messina has been reconstructed several times in its history, including following the 1908 earthquake and again following the Second World War. The 1908 earthquake prompted the introduction of the first seismic design regulations in Italy and since 1909 parts of the Messina and Calabria regions have been in the zones of highest seismic coefficient. Utilizing commercial catastrophe loss modelling technology - which combines the modelling of hazard, vulnerability, and financial losses on a database of property exposures - a modelled earthquake scenario of M7.2 in the Messina Straits region of Southern Italy is considered. This modelled earthquake is used to assess the potential consequences in terms of financial losses that an earthquake similar to the 1908 earthquake might have if it were to occur at the present day. Loss results are discussed in the context of applications for the financial

  13. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.;

    2013-01-01

    This paper describes the processing applied to the HFI cleaned time-ordered data to produce photometrically calibrated maps. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To get the best accuracy on the calibration on such a large range, two different photometric ca...

  14. Decoding quasars: gravitationally redshifted spectral lines !

    CERN Document Server

    Kantharia, Nimisha G

    2016-01-01

    Further investigation of data on quasars, especially in the ultraviolet band, yields an amazingly coherent narrative which we present in this paper. Quasars are characterised by strong continuum emission and redshifted emission and absorption lines which includes the famous Lyman $\\alpha$ forest. We present irrefutable evidence in support of (1) the entire line spectrum arising in matter located inside the quasar system, (2) the range of redshifts shown by the lines being due to the variable contribution of the gravitational redshift in the observed line velocity, (3) existence of rotating black holes and of matter inside its ergosphere, (4) quasars located within cosmological redshifts $\\sim 3$, (5) $\\gamma$ ray bursts being explosive events in a quasar. These results are significant and a game-changer when we realise that the absorbing gas has been postulated to exist along the line-of-sight to the quasar and observations have accordingly been interpreted. In light of these definitive results which uniquely...

  15. Local gravitational redshifts can bias cosmological measurements

    CERN Document Server

    Wojtak, Radoslaw; Wiis, Jophiel

    2015-01-01

    Measurements of cosmological parameters via the distance-redshift relation usually rely on models that assume a homogenous universe. It is commonly presumed that the large-scale structure evident in our Universe has a negligible impact on the measurement if distances probed in observations are sufficiently large (compared to the scale of inhomogeneities) and are averaged over different directions on the sky. This presumption does not hold when considering the effect of the gravitational redshift caused by our local gravitational potential, which alters light coming from all distances and directions in the same way. Despite its small magnitude, this local gravitational redshift gives rise to noticeable effects in cosmological inference using SN Ia data. Assuming conservative prior knowledge of the local potential given by sampling a range of gravitational potentials at locations of Milky-Way-like galaxies identified in cosmological simulations, we show that ignoring the gravitational redshift effect in a stand...

  16. Giving Cosmic Redshift Drift a Whirl

    CERN Document Server

    Kim, Alex G; Edelstein, Jerry; Erskine, David

    2014-01-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of $10^{-9}$ require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 hour exposure on a 10-meter telesc...

  17. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    International Nuclear Information System (INIS)

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ∼ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z ∼< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well described

  18. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gonzalez, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Victor; Cardiel, Nicolas; Espino, Nestor; Gallego, Jesus [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ferreras, Ignacio [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Rodriguez-Espinosa, Jose Miguel; Balcells, Marc; Cepa, Jordi [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Cenarro, Javier [Centro de Estudios de Fisica del Cosmos de Aragon, Plaza San Juan 1, Planta 2, E-44001 Teruel (Spain); Charlot, Stephane [Institut d' Astrophysique de Paris, CNRS, Universite Pierre and Marie Curie, UMR 7095, 98bis bd Arago, F-75014 Paris (France); Cimatti, Andrea [Dipartimento di Astronomia, Universita degli Studi di Bologna, I-40127 Bologna (Italy); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Daddi, Emmanuele; Elbaz, David [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Donley, Jennifer [Los Alamos National Laboratory, Los Alamos, NM (United States); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); and others

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin{sup 2} at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R {approx} 50). The data reach an AB magnitude of 26.5 (at least at a 3{sigma} level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z {approx}< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at

  19. Photometrical research geostationary satellite "SBIRS GEO-2"

    Science.gov (United States)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  20. Retroreflectance measurements of photometric standards and coatings.

    Science.gov (United States)

    Egan, W G; Hilgeman, T

    1976-07-01

    Using a technique that we have developed, the opposition effect (brightening in the retroreflection direction) has been measured for MgCO(3), BaSO(4) paint, and sulfur in the visual region with incandescent illumination and found to be 1.3,1.5, and 1.3, respectively, independent of wavelength. Nextel red, blue, white, and black paints are generally similar. However, in comparison to incoherent illumination, 0.6328-microM laser illumination shows a reduction in diffuse reflectance for angles less than 40 degrees from the incident direction. In addition, the coherent opposition effect may be very large for dark paints. The opposition effect in photometric standards can lead to calibration errors at near opposition and spurious responses in integrating spheres coated with such materials. PMID:20165275

  1. Photometric Supernova Classification With Machine Learning

    CERN Document Server

    Lochner, Michelle; Peiris, Hiranya V; Lahav, Ofer; Winter, Max K

    2016-01-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Telescope (LSST), given that spectroscopic confirmation of type for all supernovae discovered with these surveys will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks and boosted decision trees. We test the pipeline on simulated multi-ba...

  2. Redshift drift constraints on holographic dark energy

    OpenAIRE

    He, Dong-Ze; Zhang, Jing-Fei; Xin ZHANG

    2016-01-01

    The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-$\\alpha$ forest of distant quasars, covering the "redshift desert" of $2\\lesssim z\\lesssim5$, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holograp...

  3. QUASAR SELECTION BASED ON PHOTOMETRIC VARIABILITY

    International Nuclear Information System (INIS)

    We develop a method for separating quasars from other variable point sources using Sloan Digital Sky Survey (SDSS) Stripe 82 light-curve data for ∼ 10,000 variable objects. To statistically describe quasar variability, we use a damped random walk model parametrized by a damping timescale, τ, and an asymptotic amplitude (structure function), SF∞. With the aid of an SDSS spectroscopically confirmed quasar sample, we demonstrate that variability selection in typical extragalactic fields with low stellar density can deliver complete samples with reasonable purity (or efficiency, E). Compared to a selection method based solely on the slope of the structure function, the inclusion of the τ information boosts E from 60% to 75% while maintaining a highly complete sample (98%) even in the absence of color information. For a completeness of C = 90%, E is boosted from 80% to 85%. Conversely, C improves from 90% to 97% while maintaining E = 80% when imposing a lower limit on τ. With the aid of color selection, the purity can be further boosted to 96%, with C = 93%. Hence, selection methods based on variability will play an important role in the selection of quasars with data provided by upcoming large sky surveys, such as Pan-STARRS and the Large Synoptic Survey Telescope (LSST). For a typical (simulated) LSST cadence over 10 years and a photometric accuracy of 0.03 mag (achieved at i ∼ 22), C is expected to be 88% for a simple sample selection criterion of >100 days. In summary, given an adequate survey cadence, photometric variability provides an even better method than color selection for separating quasars from stars.

  4. Redshift Distribution of Extragalactic 24 micron Sources

    CERN Document Server

    Desai, Vandana; Dey, Arjun; Jannuzi, Buell T; Floc'h, Emeric Le; Bian, Chao; Brand, Kate; Brown, Michael J I; Armus, Lee; Weedman, Dan W; Cool, Richard; Stern, Daniel; Brodwin, Mark

    2008-01-01

    We present the redshift distribution of a complete, unbiased sample of 24 micron sources down to fnu(24 micron) = 300 uJy (5-sigma). The sample consists of 591 sources detected in the Bootes field of the NOAO Deep Wide-Field Survey. We have obtained optical spectroscopic redshifts for 421 sources (71%). These have a redshift distribution peaking at z~0.3, with a possible additional peak at z~0.9, and objects detected out to z=4.5. The spectra of the remaining 170 (29%) exhibit no strong emission lines from which to determine a redshift. We develop an algorithm to estimate the redshift distribution of these sources, based on the assumption that they have emission lines but that these lines are not observable due to the limited wavelength coverage of our spectroscopic observations. The redshift distribution derived from all 591 sources exhibits an additional peak of extremely luminous (L(8-1000 micron) > 3 x 10^{12} Lsun) objects at z~2, consisting primarily of sources without observable emission lines. We use ...

  5. The Redshift Evolution of the High-Mass End of the Red Sequence Luminosity Function from the SDSS-III/BOSS CMASS Sample

    CERN Document Server

    Montero-Dorta, Antonio D; Brownstein, Joel R; Swanson, Molly; Dawson, Kyle; Prada, Francisco; Eisenstein, Daniel; Maraston, Claudia; Thomas, Daniel; Comparat, Johan; Chuang, Chia-Hsun; McBride, Cameron K; Favole, Ginevra; Guo, Hong; Rodriguez, Sergio; Schneider, Donald P

    2014-01-01

    We present the redshift evolution of the high-mass end of the ^{0.55}i-band Red Sequence Luminosity Function (RS LF) within the redshift range 0.52photometric errors and accounting for selection effects. This procedure requires modeling the covariance matrix for the i-band magnitude, g-r color and r-i color using Stripe 82 multi-epoch data. The error-deconvolved intrinsic RS distribution is consistent with a single point in the color-color plane, which implies that the great majority of the observed scatter is due to photometric errors. We estimate that RS completeness is ~0.80-0.85 at z\\geq0.52 in the CMASS sample, dropping drastically below that redshift. Approximately 37% of all objects in the CMASS sample belong intrinsically to the blue cloud. Within the redshift and absolu...

  6. Mass Calibration of Galaxy Clusters at Redshift 0.1-1.0 using Weak Lensing in the Sloan Digital Sky Survey Stripe 82 Co-add

    CERN Document Server

    Wiesner, Matthew P; Soares-Santos, Marcelle

    2015-01-01

    We present mass-richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass-richness relations are presented for four redshift bins, $0.1 < z \\leq 0.4$, $0.4 < z \\leq 0.7$, $0.7 < z \\leq 1.0$ and $0.1 < z \\leq 1.0$. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi Tessellation cluster finder. We fit an NFW profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass $(M_{200})$. We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass-richness relations using richness measure $N_{VT}$ with each of these effects considered separately as well as considered altogether. We present values fo...

  7. Herschel-ATLAS: Dust temperature and redshift distribution of SPIRE and PACS detected sources using submillimetre colours

    OpenAIRE

    Amblard, A.; Blain, A.; Bock, J.; Frayer, D; Vieira, J.

    2010-01-01

    We present colour–colour diagrams of detected sources in the Herschel-ATLAS science demonstration field from 100 to 500 μm using both PACS and SPIRE. We fit isothermal modified black bodies to the spectral energy distribution (SED) to extract the dust temperature of sources with counterparts in Galaxy And Mass Assembly (GAMA) or SDSS surveys with either a spectroscopic or a photometric redshift. For a subsample of 330 sources detected in at least three FIR bands with a significance greater th...

  8. The VIMOS Ultra Deep Survey First Data Release: spectra and spectroscopic redshifts of 698 objects up to z~6 in CANDELS

    CERN Document Server

    Tasca, L A M; Ribeiro, B; Thomas, R; Moreau, C; Cassata, P; Garilli, B; Brun, V Le; Lemaux, B C; Maccagni, D; Pentericci, L; Schaerer, D; Vanzella, E; Zamorani, G; Zucca, E; Amorin, R; Bardelli, S; Cassara, L P; Castellano, M; Cimatti, A; Cucciati, O; Durkalec, A; Fontana, A; Giavalisco, M; Grazian, A; Hathi, N P; Ilbert, O; Paltani, S; Pforr, J; Scodeggio, M; Sommariva, V; Talia, M; Tresse, L; Vergani, D; Capak, P; Charlot, S; Contini, T; de la Torre, S; Dunlop, J; Fotopoulou, S; Guaita, L; Koekemoer, A; Lopez-Sanjuan, C; Mellier, Y; Salvato, M; Scoville, N; Taniguchi, Y; Wang, P W

    2016-01-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The DR1 includes all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECFDS survey areas, including accurate spectroscopic redshifts z_spec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have z_spec>2, 48 with z_spec>4, and the highest reliable redshifts reach beyond z_spec=6. This dataset approximately doubles the number of galaxies with spectroscopic redshifts at z>3 in these fields. We discuss the general properties of the sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-alpha equivalent widths, and physical properties including stellar m...

  9. Avoiding Environmental Catastrophes: Varieties of Principled Precaution

    Directory of Open Access Journals (Sweden)

    Alan R. Johnson

    2012-09-01

    Full Text Available The precautionary principle is often proposed as a guide to action in environmental management or risk assessment, and has been incorporated in various legal and regulatory contexts. For many, it reflects the common sense notion of being safe rather than sorry, but it has attracted numerous critics. At times, proponents and critics talk at cross purposes, due to the multiplicity of ways the precautionary principle has been formulated. The approach taken here is to examine four general varieties of precaution, relating each to arguments made in various contexts by others. First, I examine the parallel between the precautionary principle and an argument referred to as Pascal's wager. Critics are right to dismiss versions of the precautionary principle that follow the logic of Pascal's wager, because that argument requires assumption of an infinite catastrophe, which is seldom the case in environmental decisions. Second, I explore precaution viewed as an instance of the phenomenon of ambiguity aversion as described by Daniel Ellsberg. Third, I evaluate precautionary perspectives on our duties to future generations, drawing inspiration from the views of Gifford Pinchot. Fourth, I consider the precautionary principle as an instance of Aldo Leopold's notion of intelligent tinkering. Although controversy persists, I find that a legitimate theoretical foundation exists to implement Ellsbergian, Pinchotian and Leopoldean varieties of precaution in environmental decision making. Additionally, I remark on the role of adaptive management and maintaining resilience in ecological and social systems as an approach to implementing the precautionary principle.

  10. Catastrophic Cracking Courtesy of Quiescent Cavitation

    CERN Document Server

    Daily, D Jesse; Thomson, Scott L; Truscott, Tadd T

    2012-01-01

    A popular party trick is to fill a glass bottle with water and hit the top of the bottle with an open hand, causing the bottom of the bottle to break open. We investigate the source of the catastrophic cracking through the use of high-speed video and an accelerometer attached to the bottom of a glass bottle. Upon closer inspection, it is obvious that the acceleration caused by hitting the top of the bottle is followed by the formation of bubbles near the bottom. The nearly instantaneous acceleration creates an area of low pressure on the bottom of the bottle where cavitation bubbles form. Moments later, the cavitation bubbles collapse at roughly 10 times the speed of formation, causing the bottle to break. The accelerometer data shows that the bottle is broken after the bubbles collapse and that the magnitude of the bubble collapse is greater than the initial impact. The fluid dynamics video highlights that this trick will not work if the bottle is empty nor if it is filled with a carbonated fluid because the...

  11. Risk Measure and Premium Distribution on Catastrophe Reinsurance

    Institute of Scientific and Technical Information of China (English)

    XUN LI; WANG DE-HUI

    2012-01-01

    In this paper,we propose a new risk measure which is based on the Orlicz premium principle to characterize catastrophe risk premium.The intention is to develop a formulation strategy for Catastrophe Fund.The logarithm equivalent form of reinsurance premium is regarded as the retention of reinsurer,and the differential earnings between the reinsurance premium and the reinsurer's retention is accumulated as a part of Catastrophe Fund.We demonstrate that the aforementioned risk measure has some good properties,which are further confirmed by numerical simulations in R environment.

  12. Photometric Properties of Poor Cluster Galaxies

    Science.gov (United States)

    Sharma, M.; Prabhu, T. P.

    2002-12-01

    We study several statistical properties of galaxies in four poor clusters of galaxies using multi-color optical photometry obtained at the Vainu Bappu Telescope, India. The clusters, selected from the EMSS Catalog, are at moderate redshifts (0.08 composite luminosity functions (LFs) in B, V, and R bands are flat at the faint end, similar to the V-band LF derived by Yamagata & Maehara for other (MKW/AWM) poor clusters but steeper than the R-band field LF derived by Lin et al. In terms of the statistical properties of their member galaxies, poor clusters appear to be lower-mass extensions of their rich counterparts. The brightest galaxies of three of these poor clusters appear to be luminous ellipticals with no incontrovertible signatures of a halo. It is likely that they were formed from multiple mergers early in the history of the clusters.

  13. Searching High Redshift Large-Scale Structures: Photomety of Four Fields Around Quasar Pairs at $z \\sim 1$

    CERN Document Server

    Boris, N V; Cypriano, E S; Santos, W A; De Oliveira, C M; West, M

    2007-01-01

    We have studied the photometric properties of four fields around the high-redshift quasar pairs QP1310+0007, QP1355-0032, QP0110-0219, and QP0114-3140 at z $\\sim$ 1 with the aim of identifying large-scale structures- galaxy clusters or groups- around them. This sample was observed with GMOS in Gemini North and South telescopes in the $g'$, $r'$, $i'$, and $z'$ bands, and our photometry is complete to a limiting magnitude of $i' \\sim 24$ mag (corresponding to $\\sim M_{i'}^* + 2$ at the redshift of the pairs). Our analysis shows that QP1310+0007, QP1355-0032 and QP0110-0219 are probably in rich clusters environments. For the pair QP0114-3140, the evidence for existence of galaxy clustering at the pair redshift is less compeling. This work suggest that $z \\sim 1$ quasar pairs are excellent tracers of high density environments and this same technique may be useful to find clusters at higher redshifts.

  14. Herschel-ATLAS: Dust Temperature and Redshift Distribution of SPIRE and PACS Detected Sources Using Submillimetre Colours

    Science.gov (United States)

    Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; Blain, A.; Bock, J.; Bonfield, D.; Burgarella, D.; Buttiglione, S.; Cameron, E.; Cava, A.; Clements, D.; Croom, S.; Dariush, A.; deZotti, G.; Driver, S.; Dunlop, J.; Dunne, L.; Dye, S.

    2010-01-01

    We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.

  15. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  16. One Moon, many measurements 2: Photometric corrections

    Science.gov (United States)

    Besse, S.; Yokota, Y.; Boardman, J.; Green, R.; Haruyama, J.; Isaacson, P.; Mall, U.; Matsunaga, T.; Ohtake, M.; Pieters, C.; Staid, M.; Sunshine, J.; Yamamoto, S.

    2013-09-01

    Observations of the lunar surface within the past 10 years have been made with various lunar remote sensing instruments, the Moon Mineralogy Mapper (M3) onboard the Chandrayaan-1 mission, the Spectral Profiler (SP), the Multiband Imager (MI), the Terrain Camera (TC) onboard the SELENE mission, and the ground based USGS Robotic Lunar Observatory (ROLO) for some of them. The lunar phase functions derived from these datasets, which are used in the photometric modeling to correct for the various illumination conditions of the data, are compared to assess their differences and similarity in order to improve interpretations of lunar surface spectra. The phase functions are found to be similar across various phase angles except in the 0-20° range. Differences across the 0-20° range likely result from two different inputs in the photometric modeling of the M3 and SP data: (1) M3 has larger emission angles due to the characteristics of the instrument and the attitude of the spacecraft, and (2) M3 viewing geometry was derived from the local topography whereas SP used a spherical Moon (no topography). The combination of these two different inputs affects the phase function at small phase angles where shadows play a more substantial role, with spatial resolution differences between M3 and SP being another possible source for the differences. SP data are found to be redder (i.e., steeper slope with increasing wavelengths) than MI, M3 and ROLO. Finally, the M3 overall reflectance is also found to be lower than that the other instruments (i.e., MI, SP, and ROLO), generally at least 10% darker than MI. These differences can be observed at local scales in specific examples at hundreds of meters resolutions. At regional and global scales, the same differences are found, which demonstrates the overall stability of the various datasets. The observations from M3, TC, SP and MI are very stable and agree well; however caution should be used when making interpretations based on the

  17. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N;

    Catastrophic storms and storm surges induce rapid and substantial changes along sandy barrier coasts, potentially causing severe environmental and economic damage. Coastal impacts of modern storms are associated with washover deposition, dune erosion, barrier breaching, and coastline and shoreface...

  18. Pain frequency moderates the relationship between pain catastrophizing and pain

    Science.gov (United States)

    Kjøgx, Heidi; Zachariae, Robert; Pfeiffer-Jensen, Mogens; Kasch, Helge; Svensson, Peter; Jensen, Troels S.; Vase, Lene

    2014-01-01

    Background: Pain frequency has been shown to influence sensitization, psychological distress, and pain modulation. The present study examined if pain frequency moderates the relationship between pain catastrophizing and pain. Method: A non-clinical (247 students) and a clinical (223 pain patients) sample completed the Danish versions of the Pain Catastrophizing Scale (PCS), Beck Depression Inventory, and the State Trait Anxiety Inventory and rated pain intensity, unpleasantness and frequency. Results: In both samples, high pain frequency was found to moderate the association between pain catastrophizing and pain intensity, whereas low pain frequency did not. The psychometric properties and the factor structure of the Danish version of the PCS were confirmed. Conclusions: This is the first study to validate the Danish version of the PCS and to show that pain frequency moderates the relationship between pain catastrophizing and reported pain in both non-clinical and clinical populations. PMID:25646089

  19. Pain frequency moderates the relationship between pain catastrophizing and pain

    Directory of Open Access Journals (Sweden)

    Heidi eKjøgx

    2014-12-01

    Full Text Available Background Pain frequency has been shown to influence sensitization, psychological distress and pain modulation. The present study examined if pain frequency moderates the relationship between pain catastrophizing and pain. Method A non-clinical (247 students and a clinical (223 pain patients sample completed the Danish versions of the Pain Catastrophizing Scale, Beck Depression Inventory and the State Trait Anxiety Inventory and rated pain intensity, unpleasantness and frequency Results In both samples, high pain frequency was found to moderate the association between pain catastrophizing and pain intensity, whereas low pain frequency did not. The psychometric properties and the factor structure of the Danish version of the PCS were confirmed.Conclusions This is the first study to validate the Danish version of the PCS and to show that pain frequency moderates the relationship between pain catastrophizing and reported pain in both non-clinical and clinical populations.

  20. Catastrophic Events and Mass Extinctions: Impacts and Beyond

    Science.gov (United States)

    2000-01-01

    This volume contains extended abstracts that have been accepted for presentation at the conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, July 9-12, 2000, in Vienna, Austria.

  1. UKRAINIAN EVENTS AS HISTORICAL, INTERNATIONAL CATASTROPHE

    Directory of Open Access Journals (Sweden)

    V. V. Kasyanov

    2016-01-01

    Full Text Available In the scientific article fully examines current events in Ukraine in 2014-2015. The author believes that the causal and comparative historical analysis of the current Ukrainian crisis allows characterizing it as a major historical and ethnic catastrophe on a global scale after the collapse of the USSR in 1991. Obvious microand macroeffects inevitably impact on the history of relations between Ukrainian and Russian brotherly nations, lead (and has led to freeze their contacts, projects and links. It causes a feeling of well-founded anxiety for the fate of not only bilateral relations between Ukraine and Russia and the state of Post-Soviet space, but also for the development of all Slavic ethnic groups in the world. According to the author, it is necessary to review quickly realized Ukrainian direction of Russian state policy. It is necessary, as quickly as possible to get away from officiously promotional activities, technologies and techniques of information war and bring aid all the diversity of cultural cooperation. It is only a means of soft power, understood by us in the manner of the approach of its founder, American political scientist Joseph Nye, are able to restore the broken trust and interaction structures. Only the culture, and more specifically it such areas as language, traditions, generation feats, faith, can gradually normalize, and then to improve the bilateral relations, the each other perception, to restore a sense of respect, friendship and mutual assistance between Ukraine and Russia. It is obvious that bilateral cultural project able to change the existing negative situation.

  2. Xray observations of high redshift radio galaxies

    CERN Document Server

    Carilli, C L

    2003-01-01

    I summarize Xray properties of high redshift radio galaxies, beginning with a brief review of what has been learned from Xray observations of low redshift powerful radio galaxies (in particular, Cygnus A), and then turning to Chandra observations of four high redshift radio galaxies. Hot Xray emitting atmospheres of the type seen in low redshift clusters are not detected in the high redshift sources, suggesting that these systems are not yet virialized massive clusters, but will likely evolve into such. Xray emission from highly obscured AGN is detected in all cases. Extended Xray emission is also seen, and the extended emission is clearly aligned with the radio source, and on a similar spatial scale. Multiple mechanisms are proposed for this radio-Xray alignment, including inverse Compton scattering of photons from the AGN (the 'Brunetti mechanism'), and thermal emission from ambient gas that is shocked heated by the expanding radio source. The pressure in the high filling factor shocked gas is adequate to c...

  3. Measuring Gravitational Redshifts in Galaxy Clusters

    CERN Document Server

    Kaiser, Nick

    2013-01-01

    Wojtak {\\it et al} have stacked 7,800 clusters from the SDSS survey in redshift space. They find a small net blue-shift for the cluster galaxies relative to the brightest cluster galaxies, which agrees quite well with the gravitational redshift from GR. Zhao {\\it et al.} have pointed out that, in addition to the gravitational redshift, one would expect to see transverse Doppler (TD) redshifts, and that these two effects are generally of the same order. Here we show that there are other corrections that are also of the same order of magnitude. The fact that we observe galaxies on our past light cone results in a bias such that more of the galaxies observed are moving away from us in the frame of the cluster than are moving towards us. This causes the observed average redshift to be $\\langle \\delta z \\rangle = -\\langle \\Phi \\rangle + \\langle \\beta^2 \\rangle / 2 + \\langle \\beta_x^2 \\rangle$, with $\\beta_x$ is the line of sight velocity. That is if we average over galaxies with equal weight. If the galaxies in ea...

  4. Pain frequency moderates the relationship between pain catastrophizing and pain

    OpenAIRE

    Heidi eKjøgx; Robert eZachariae; Mogens ePfeiffer-Jensen; Helge eKasch; Peter eSvensson; Troels Staehelin Jensen; Lene eVase

    2014-01-01

    Background Pain frequency has been shown to influence sensitization, psychological distress and pain modulation. The present study examined if pain frequency moderates the relationship between pain catastrophizing and pain. Method A non-clinical (247 students) and a clinical (223 pain patients) sample completed the Danish versions of the Pain Catastrophizing Scale, Beck Depression Inventory and the State Trait Anxiety Inventory and rated pain intensity, unpleasantness and frequency Results In...

  5. Psychological Resilience Predicts Decreases in Pain Catastrophizing Through Positive Emotions

    OpenAIRE

    Ong, Anthony D.; Zautra, Alex J.; Reid, M. Carrington

    2010-01-01

    The study used a daily process design to examine the role of psychological resilience and positive emotions in the day-to-day experience of pain catastrophizing. A sample of 95 men and women with chronic pain completed initial assessments of neuroticism, psychological resilience, and demographic data, and then completed short diaries regarding pain intensity, pain catastrophizing, and positive and negative emotions every day for 14 consecutive days. Multilevel modeling analyses indicated that...

  6. Mathematical modeling of human behaviors during catastrophic events

    OpenAIRE

    Verdière, Nathalie; Lanza, Valentina; Charrier, Rodolphe; Provitolo, Damienne; Dubos-Paillard, Edwige; Bertelle, Cyrille; Aziz-Alaoui, Moulay

    2014-01-01

    In this paper, we introduce a new approach for modeling the human collective behaviors in the speci c scenario of a sudden catastrophe, this catastrophe can be natural (i.e. earthquake, tsunami) or technological (nuclear event). The novelty of our work is to propose a mathematical model taking into account di erent concurrent behaviors in such situation and to include the processes of transition from one behavior to the other during the event. Here, we focus more on the sequence of behaviors ...

  7. Climate change policy in a growing economy under catastrophic risks

    OpenAIRE

    Tsur, Yacov; Zemel, Amos

    2007-01-01

    Under risk of catastrophic climate change, the occurrence hazard is added to the social discount rate. As a result, the social discount rate (i) increases and (ii) turns endogenous to the global warming policy. The second effect bears profound policy implications that are magnifed by economic growth. In particular, it implies that green- house gases (GHG) emission should gradually be brought to a halt. Due to the public bad nature of the catastrophic risk, the second effect is ignored in a co...

  8. Some Aspects of the Economics of Catastrophe Risk Insurance

    OpenAIRE

    Gollier, Christian

    2005-01-01

    The ability to share risk efficiently in the economy is essential to welfare and growth. However, the increased frequency of natural catastrophes over the last decade has raised once again questions associated to the limits of insurability in a free-market economy, and to the relevance of public interventions on risk-sharing markets. In this paper, we explore the potential reasons for the lack of insurance specifically associated to catastrophe environmental risks. Our final aim is to link ea...

  9. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome.

    Science.gov (United States)

    Chaput, Geneviève; Lajoie, Susanne P; Naismith, Laura M; Lavigne, Gilles

    2016-01-01

    Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI) is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1) and 8 weeks (Time 2) after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r = .31 to .44), number of postconcussion symptoms reported (r = .35 to .45), psychological distress (r = .57 to .67), and level of functionality (r = -.43 to -.29). Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2). Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms. PMID:27445604

  10. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    Directory of Open Access Journals (Sweden)

    Geneviève Chaput

    2016-01-01

    Full Text Available Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1 and 8 weeks (Time 2 after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r=.31 to .44, number of postconcussion symptoms reported (r=.35 to .45, psychological distress (r=.57 to .67, and level of functionality (r=-.43 to -.29. Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2. Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms.

  11. Results from the Supernova Photometric Classification Challenge

    CERN Document Server

    Kessler, Richard; Belov, Pavel; Bhatnagar, Vasudha; Campbell, Heather; Conley, Alex; Frieman, Joshua A; Glazov, Alexandre; Hlozek, Santiago Gonzalez-Gaitan Renee; Jha, Saurabh; Kuhlmann, Stephen; Kunz, Martin; Lampeitl, Hubert; Mahabal, Ashish; Newling, James; Nichol, Robert C; Parkinson, David; Philip, Ninan Sajeeth; Poznanski, Dovi; Richards, Joseph W; Rodney, Steven A; Sako, Masao; Schneider, Donald P; Smith, Mathew; Stritzinger, Maximilian; Varughese, Melvin

    2010-01-01

    We report results from the Supernova Photometric Classification Challenge (SNPCC), a publicly released mix of simulated SNe, with types (Ia, Ibc, II) selected in proportion to their expected rate. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host galaxy photo-z for each SN, and 9 entries for the sample that had no redshi...

  12. ASTEP South: a first photometric analysis

    CERN Document Server

    Crouzet, N; Mékarnia, D; Szulágyi, J; Abe, L; Agabi, A; Fanteï-Caujolle, Y; Gonçalves, I; Barbieri, M; Schmider, F -X; Rivet, J -P; Bondoux, E; Challita, Z; Pouzenc, C; Fressin, F; Valbousquet, F; Blazit, A; Bonhomme, S; Daban, J -B; Gouvret, C; Bayliss, D; Zhou, G

    2012-01-01

    The ASTEP project aims at detecting and characterizing transiting planets from Dome C, Antarctica, and qualifying this site for photometry in the visible. The first phase of the project, ASTEP South, is a fixed 10 cm diameter instrument pointing continuously towards the celestial South pole. Observations were made almost continuously during 4 winters, from 2008 to 2011. The point-to-point RMS of 1-day photometric lightcurves can be explained by a combination of expected statistical noises, dominated by the photon noise up to magnitude 14. This RMS is large, from 2.5 mmag at R=8 to 6% at R=14, because of the small size of ASTEP South and the short exposure time (30 s). Statistical noises should be considerably reduced using the large amount of collected data. A 9.9-day period eclipsing binary is detected, with a magnitude R=9.85. The 2-season lightcurve folded in phase and binned into 1000 points has a RMS of 1.09 mmag, for an expected photon noise of 0.29 mmag. The use of the 4 seasons of data with a better d...

  13. Measuring our Universe from Galaxy Redshift Surveys

    Directory of Open Access Journals (Sweden)

    Lahav Ofer

    2004-07-01

    Full Text Available Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant. We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  14. Imaging Redshift Estimates for Fermi BL Lacs

    CERN Document Server

    Stadnik, Matt

    2014-01-01

    We have obtained WIYN and SOAR i' images of BL Lacertae objects (BL Lacs) and used these to detect or constrain the flux of the host galaxy. Under common standard candle assumptions these data provide estimates of, or lower bounds on, the redshift. Our targets are a set of flat-spectrum radio counterparts of high flux Fermi Large Area Telescope (LAT) sources, with sensitive spectral observations showing them to be continuum-dominated BL Lacs. In this sample 5 of 11 BL Lacs yielded significant host detections, with standard candle redshifts z=0.13-0.58. Our estimates and lower bounds are generally in agreement with other redshifts estimates, although our z=0.374 estimate for J0543-5532 implies a significantly sub-luminous host.

  15. Testing the Gravitational Redshift with Atomic Gravimeters?

    CERN Document Server

    Wolf, Peter; Bordé, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2011-01-01

    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, M\\"uller, Peters and Chu [Nature {\\bf 463}, 926-929 (2010)] argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In the present paper we analyze this claim in the frame of general relativity and of different alternative theories, and conclude that the interpretation of atom interferometers as testing the gravitational redshift ...

  16. Dust Emission from High Redshift QSOs

    CERN Document Server

    Carilli, C L; Menten, K M; Rupen, M P; Kreysa, E; Fan, X; Strauss, M A; Schneider, D P; Bertarini, A; Yun, M S; Zylka, R; Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.

    2000-01-01

    We present detections of emission at 250 GHz (1.2 mm) from two high redshiftQSOs from the Sloan Digital Sky Survey sample using the bolometer array at theIRAM 30m telescope. The sources are SDSSp 015048.83+004126.2 at z = 3.7, andSDSSp J033829.31+002156.3 at z = 5.0, which is the third highest redshift QSOknown, and the highest redshift mm emitting source yet identified. We alsopresent deep radio continuum imaging of these two sources at 1.4 GHz using theVery Large Array. The combination of cm and mm observations indicate that the250 GHz emission is most likely thermal dust emission, with implied dust massesof 1e8 M_solar. We consider possible dust heating mechanisms, including UVemission from the active nucleus (AGN), and a massive starburst concurrent withthe AGN, with implied star formation rates > 1e3 M_solar/year.

  17. Submillimeter Imaging of RCS022434-0002.5: Intense Activity in a High-Redshift Cluster?

    CERN Document Server

    Webb, T M A; Ivison, R J; Hoekstra, H; Gladders, M D; Barrientos, L F; Hsieh, B C

    2005-01-01

    We present deep 850micron imaging of the z=0.773 strong lensing galaxy cluster RCSJ022434-0002.5 from the Red-Sequence Cluster Survey (RCS). These data are part of a larger submillimeter survey of RCS clusters, with SCUBA on the JCMT. We find five objects at 850micron, all of which are also detected at either 1.4-GHz, 450micron or both. The number density of objects in this field is in general agreement with the blank-field source counts; however, when combined with other cluster surveys a general tendency of cluster fields towards higher submm number densities is seen, which may be the result of unrecognized submillimeter luminous cluster galaxies. Primarily employing optical photometric redshifts we show that two of the five submillimeter galaxies in this field are consistent with being cluster members, while two are more likely background systems.

  18. Photometrical studies on natural microbial community structure in aquatic environments

    OpenAIRE

    Saida, Haruo

    2001-01-01

    An original evaluation system for characterizing a stainability of Gram stain as a numerical index(GSI: Gram stain index) has been established with the photometrical equipment. Eschertchia colt and Bacillus subtilis were used as the standards of typical ...

  19. -Rays Radiation of High Redshift Fermi Blazars

    Indian Academy of Sciences (India)

    W. G. Liu; S. H. Fu; X. Zhang; L. Ma; Y. B. Li; D. R. Xiong

    2014-09-01

    Based on the 31 high redshift ( > 2) Flat Spectral Radio Quasars (FSRQs), which is from the second Fermi-LAT AGNs catalogue (2LAC), we studied the correlation between flux densities (R, K, ) in the radio, infrared and -ray wave bands. We found that there is a significant positive correlation between and R, and a weak anticorrelation between and K in the average state. For high redshift blazars, we argue that the seed photon of -ray emission mainly comes from the jet itself and partially from the dusty torus.

  20. Anomalous Redshift of Some Galactic Objects

    CERN Document Server

    Zheng, Yi-Jia

    2013-01-01

    Anomalous redshifts of some galactic objects such as binary stars, early-type stars in the solar neighborhood, and O stars in a star clusters are discussed. It is shown that all these phenomena have a common characteristic, that is, the redshifts of stars increase as the temperature rises. This characteristic cannot be explained by means of the Doppler Effect but can by means of the soft-photon process proposed by Yijia Zheng (arXiv:1305.0427 [astro-ph.HE]).