WorldWideScience

Sample records for catalyzed transfer hydrogenative

  1. Hydrogen transfer reduction of polyketones catalyzed by iridium complexes: a novel route towards more biocompatible materials.

    Science.gov (United States)

    Milani, Barbara; Crottib, Corrado; Farnetti, Erica

    2008-09-14

    Transfer hydrogenation from 2-propanol to CO/4-methylstyrene and CO/styrene polyketones was catalyzed by [Ir(diene)(N-N)X] (N-N = nitrogen chelating ligand; X = halogen) in the presence of a basic cocatalyst. The reactions were performed using dioxane as cosolvent, in order to overcome problems due to low polyketone solubility. The polyalcohols were obtained in yields up to 95%, the conversions being markedly dependent on the nature of the ligands coordinated to iridium as well as on the experimental conditions.

  2. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    Science.gov (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    Science.gov (United States)

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  4. Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2

    International Nuclear Information System (INIS)

    Urban, P.; Lederer, F.

    1985-01-01

    Bakers yeast flavocytochrome b2 is a flavin-dependent L-2-hydroxy acid dehydrogenase which also exhibits transhydrogenase activity. When a reaction takes place between [2- 3 H]lactate and a halogenopyruvate, tritium is found in water and at the halogenolactate C2 position. When the halogenopyruvate undergoes halide ion elimination, tritium is also found at the C3 position of the resulting pyruvate. The amount tau of this intermolecular tritium transfer depends on the initial keto acid-acceptor concentration. At infinite acceptor concentration, extrapolation yields a maximal transfer of 97 +/- 11%. This indicates that the hydroxy acid-derived hydrogen resides transiently on enzyme monoprotic heteroatoms and that exchange with bulk solvent occurs only at the level of free reduced enzyme. Using a minimal kinetic scheme, the rate constant for hydrogen exchange between Ered and solvent is calculated to be on the order of 10(2) M-1 S-1, which leads to an estimated pK approximately equal to 15 for the ionization of the substrate-derived proton while on the enzyme. It is suggested that this hydrogen could be shared between the active site base and Flred N5 anion. It is furthermore shown that some tritium is incorporated into the products when the transhydrogenation is carried out in tritiated water. Finally, with [2-2H]lactate-reduced enzyme, a deuterium isotope effect is observed on the rate of bromopyruvate disappearance. Extrapolation to infinite bromopyruvate concentration yields DV = 4.4. An apparent inverse isotope effect is determined for bromide ion elimination. These results strengthen the idea that oxidoreduction and elimination pathways involve a common carbanionic intermediate

  5. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    Science.gov (United States)

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation

    Science.gov (United States)

    Patman, Ryan L.; Chaulagain, Mani Raj; Williams, Vanessa M.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient intramolecular coupling to deliver cyclic allylic alcohol 8a. PMID:19173651

  7. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2005-01-01

    A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24 nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393 Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1 Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D - ) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H

  8. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  9. Efficient Synthesis of Functionalized 1-oxo-1-phenyl-2-acetic Acids through Ru(II)-catalyzed Transfer Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaowei; Gong, Binwei; Meng, Yanqiu [Shenyang Univ. of Chemical Technology, Shenyang (Korea, Republic of); Yan, Yunnan [Gannan Medical Univ., Ganzhou (Korea, Republic of); Tang, Xiaobo; Eric Xu, H.; Yi, Wei [Chinese Academy of Sciences, Shanghai (China); Li, Qiu [Univ. of Science and Technology of China, Suzhou (China)

    2013-10-15

    A new and alternative method for the efficient synthesis of indanylacetic acid 2 has been developed. The methodology used RuCl(p-cymene)[(R,R)-TsDPEN] as the catalyst and formic acid-triethylamine as the hydrogen source at room temperature under solvent-free conditions, and the reactions have excellent chemoselectivity and good compatibility of substrates. Used our developed method as the starting step, gram scale synthesis of GR24 was achieved smoothly with an overall yield of 72%. All the results suggested that further development of such methodology may be of interest. Further work to establish the mechanistic reasons for selectivity and to further explore the synthetic scope of this mode of transfer hydrogenation is in progress. The synthetic SL analog, GR24 is a very potent germination stimulant, which is widely used in parasitic weed research to stimulate germination and as a standard for comparison of new germinating agents. Owing to the prevalence of GR24, its total synthesis constitutes a hot area of research. So far all known synthetic routes of GR24 used indanylacetic acid 2 as a key intermediate, for which very few methods of building compound 2 have been reported.

  10. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  11. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    International Nuclear Information System (INIS)

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  12. Chitosan catalyzes hydrogen evolution at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Římánková, Ludmila

    2014-01-01

    Roč. 44, JUL2014 (2014), s. 59-62 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Chitosan * Glucosamine-containing polymers * Catalytic hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  13. Base free N-alkylation of anilines with ArCH2OH and transfer hydrogenation of aldehydes/ketones catalyzed by the complexes of η5-Cp*Ir(iii) with chalcogenated Schiff bases of anthracene-9-carbaldehyde.

    Science.gov (United States)

    Dubey, Pooja; Gupta, Sonu; Singh, Ajai K

    2018-03-12

    The condensation of anthracene-9-carbaldehyde with 2-(phenylthio/seleno)ethylamine results in Schiff bases [PhS(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ](L1) and [PhSe(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ] (L2). On their reaction with [(η 5 -Cp*)IrCl(μ-Cl)] 2 and CH 3 COONa at 50 °C followed by treatment with NH 4 PF 6 , iridacycles, [(η 5 -Cp*)Ir(L-H)][PF 6 ] (1: L = L1; 2: L = L2), result. The same reaction in the absence of CH 3 COONa gives complexes [(η 5 -Cp*)Ir(L)Cl][PF 6 ] (3-4) in which L = L1(3)/L2(4) ligates in a bidentate mode. The ligands and complexes were authenticated with HR-MS and NMR spectra [ 1 H, 13 C{ 1 H} and 77 Se{ 1 H} (in the case of L2 and its complexes only)]. Single crystal structures of L2 and half sandwich complexes 1-4 were established with X-ray crystallography. Three coordination sites of Ir in each complex are covered with η 5 -Cp* and on the remaining three, donor atoms present are: N, S/Se and C - /Cl - , resulting in a piano-stool structure. The moisture and air insensitive 1-4 act as efficient catalysts under mild conditions for base free N-alkylation of amines with benzyl alcohols and transfer hydrogenation (TH) of aldehydes/ketones. The optimum loading of 1-4 as a catalyst is 0.1-0.5 mol% for both the activations. The best reaction temperature is 80 °C for transfer hydrogenation and 100 °C for N-alkylation. The mercury poisoning test supports a homogeneous pathway for both the reactions catalyzed by 1-4. The two catalytic processes are most efficient with 3 followed by 4 > 1 > 2. The mechanism proposed on the basis of HR-MS of the reaction mixtures of the two catalytic processes taken after 1-2 h involves the formation of an alkoxy and hydrido species. The real catalytic species proposed in the case of iridacycles results due to the loss of the Cp* ring.

  14. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  15. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  16. An optimized hydrogen target for muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.i [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-04-01

    This paper deals with the optimization of the processes involved in muon catalyzed fusion. Muon catalyzed fusion ({mu}CF) is studied in all layers of the solid hydrogen structure H/0.1%T+D{sub 2}+HD. The layer H/T acts as an emitter source of energetic t{mu} atoms, due to the so-called Ramsauer-Townsend effect. These t{mu} atoms are slowed down in the second layer (degrader) and are forced to take place nuclear fusion in HD. The degrader affects time evolution of t{mu} atomic beam. This effect has not been considered until now in {mu}CF-multilayered targets. Due to muon cycling and this effect, considerable reactions occur in the degrader. In our calculations, it is shown that the fusion yield equals 180{+-}1.5. It is possible to separate events that overlap in time.

  17. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  18. AB/sub 5/-catalyzed hydrogen evolution cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D E; Sawada, T; Shepard, V R; Tsujikawa, Y

    1984-01-01

    The AB/sub 5/ metal compounds are highly efficient hydrogen evolution electrocatalysts in alkaline electrolyte. Three types of AB/sub 5/-catalyzed cathode structures were made, using the hydride-forming AB/sub 5/ compounds in particulate form. Plastic-bonded cathodes containing >90 w/o AB/sub 5/ (finished-weight basis) were the most efficient, giving hydrogen evolution overpotentials (/eta/ /SUB H2/ ) of about 0.05 V at 200 mA cm/sup -2/. However, they tended to swell and shed material during electrolysis. Pressed, sintered cathodes containing 40-70 w/o catalyst in a nickel binder gave /eta/ /SUB H2/ about0.08 V; catalyst retention was excellent. Porous, sintered cathode coatings were made with 30-70 w/o AB/sub 5/ catalyst loadings. Their overpotentials were similar to those of the pressed, sintered cathodes. However, at catalyst loadings below about 40 w/o, high overpotentials characteristic of the nickel binder were observed. The structural and electrochemical properties of the three AB/sub 5/-catalyzed cathodes are discussed.

  19. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  20. Asymmetric transfer hydrogenation of ketones in aqueous solution catalyzed by Rhodium(III) complexes with C2-symmetric fluorene-ligands containing chiral (1R,2R)-cyclohexane-1,2-diamine

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo-Gonzalez, Ruben [Universidad Autonoma de Nayarit, Tepic, Nay (Mexico). Unidad Academica de Ciencias Quimico Biologicas y Farmaceuticas; Chavez, Daniel; Aguirre, Gerardo; Parra-Hake, Miguel; Somanathan, Ratnasamy, E-mail: somanatha@sundown.sdsu.ed [Instituto Tecnologico de Tijuana, B.C. (Mexico). Centro de Graduados e Investigacion

    2010-07-01

    Two C{sub 2}-symmetric bis(sulfonamide) ligands containing fluorene-chiral (1R, 2R)-cyclohexane-1,2-diamine were complexed to Rh{sup III}(Cp{sup *}) and used as catalyst to reduce aromatic ketones. The corresponding chiral secondary alcohols were obtained in 87-100% ee and 85-99% yield, under asymmetric transfer hydrogenation (ATH) conditions using aqueous sodium formate as the hydride source. With acetophenone, 94% ee and 86-97% yield was achieved with substrate/catalyst (S/C) ratio of 10,000. (author)

  1. Asymmetric transfer hydrogenation of ketones in aqueous solution catalyzed by Rhodium(III) complexes with C2-symmetric fluorene-ligands containing chiral (1R,2R)-cyclohexane-1,2-diamine

    International Nuclear Information System (INIS)

    Montalvo-Gonzalez, Ruben; Chavez, Daniel; Aguirre, Gerardo; Parra-Hake, Miguel; Somanathan, Ratnasamy

    2010-01-01

    Two C 2 -symmetric bis(sulfonamide) ligands containing fluorene-chiral (1R, 2R)-cyclohexane-1,2-diamine were complexed to Rh III (Cp * ) and used as catalyst to reduce aromatic ketones. The corresponding chiral secondary alcohols were obtained in 87-100% ee and 85-99% yield, under asymmetric transfer hydrogenation (ATH) conditions using aqueous sodium formate as the hydride source. With acetophenone, 94% ee and 86-97% yield was achieved with substrate/catalyst (S/C) ratio of 10,000. (author)

  2. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  3. 1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters

    International Nuclear Information System (INIS)

    Sun, Yingqiang; Cooke, Peter; Reddy, Harvind K.; Muppaneni, Tapaswy; Wang, Jun; Zeng, Zheling; Deng, Shuguang

    2017-01-01

    Highlights: • [Bmim][HSO_4] catalyzed in-situ transesterification of wet algae. • [Bmim][HSO_4] served as both effective solvent and excellent acid catalyst. • Proposed a mechanism for [Bmim][HSO_4] catalyzed in-situ transesterification. • Identified cell walls and lipid droplets in algae using confocal imaging tests. • Obtained crude biodiesel yield about 95% in 30 min at 200 °C. - Abstract: 1-Butyl-3-methylimidazolium hydrogen sulfate ([Bmim][HSO_4]) is used as a solvent and an acid catalyst for in-situ extractive transesterification of wet Nannochloropsis with methanol. The reaction is supposed to be a five-step process: (1) wet algae cell wall dissolves in ionic liquid at reaction temperatures; (2) hydrogen ions and sulfate ions release from the ionization of HSO_4"−. The hydrogen ions (H"+) act as catalysts for accelerating the reactive extraction of triglyceride from wet Nannochloropsis; (3) hydrogen ions and methanol molecules transfer from bulk to active site of cells without passing through cell wall that is dissolved by ionic liquid; (4) in-situ transesterification of lipid (mainly triglycerides) with methanol; and (5) products transfer from inside of algae cells to outside of cells. The crude biodiesel yield of [Bmim][HSO_4] catalyzed in-situ transesterification is about 95.28% at reaction temperature of 200 °C, reaction time of 30 min, mass ratio of [Bmim][HSO_4] to wet Nannochloropsis of 0.9:1, and a mass ratio of methanol to wet algae of 3:1. It decreases to 81.23% after [Bmim][HSO_4] is recycled for 4 times, which indicates that [Bmim][HSO_4] catalyzed in-situ transesterification is an economic approach for biodiesel production from wet algae.

  4. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  5. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.

    Science.gov (United States)

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu

    2014-08-04

    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Stereochemical course of enzyme-catalyzed aminopropyl transfer: spermidine synthase

    International Nuclear Information System (INIS)

    Kullberg, D.W.; Orr, G.R.; Coward, J.K.

    1986-01-01

    The R and S enantionmers of S-adenosyl-3-[ 2 H]3-(methylthio)-1-propylamine (decarboxylated S-adenosylmethionine), previously synthesized in this laboratory, were incubated with [1,4- 2 H 4 ]-putrescine in the presence of spermidine synthase from E. coli. The resulting chiral [ 2 H 5 ]spermidines were isolated and converted to their N 1 ,N 7 -dibocspermidine-N 4 -(1S,4R)-camphanamides. The derivatives were analyzed by 500 MHz 1 H-NMR and the configuration of the chiral center assigned by correlation with the spectra of synthetic chiral [ 2 H 3 ]dibocspermidine camphanamide standards. The enzyme-catalyzed aminopropyl transfer was shown to occur with net retention of configuration, indicative of a double-displacement mechanism. This result concurs with that of a previous steady-state kinetics study of spermidine synthase isolated from E. coli, but contradicts the single-displacement mechanism suggested by a stereochemical analysis of chiral spermidines biosynthesized in E. coli treated with chirally deuterated methionines. It also indicates that this aminopropyltransferase is mechanistically distinct from the methyltransferases, which have been shown to act via a single-displacement mechanism (net inversion at -CH 3 ) in all cases studied to date

  7. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    Science.gov (United States)

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    Science.gov (United States)

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan; Caps, Valerie; Tuel, Alain

    2010-01-01

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional

  10. Destabilized and catalyzed borohydride for reversible hydrogen storage

    Science.gov (United States)

    Mohtadi, Rana F [Northville, MI; Nakamura, Kenji [Toyota, JP; Au, Ming [Martinez, GA; Zidan, Ragaiy [Alken, SC

    2012-01-31

    A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

  11. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites

    NARCIS (Netherlands)

    Mrsic, Natasa; Lefort, Laurent; Boogers, Jeroen A. F.; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.; Mršić, Nataša

    The monodentate BINOL-derived phosphoramidite PipPhos is used as ligand for the iridium-catalyzed asymmetric hydrogenation of 2- and 2,6-substituted quinolines. If tri-ortho-tolylphosphine and/or chloride salts are used as additives enantioselectivities are strongly enhanced up to 89%. NMR indicates

  12. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  13. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  14. Asymmetric Hydrogenation of Quinoxalines Catalyzed by Iridium/PipPhos

    NARCIS (Netherlands)

    Mrsic, Natasa; Jerphagnon, Thomas; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.

    2009-01-01

    A catalyst made in situ from the (cyclooctadiene)iridium chloride dimer, [Ir(COD)Cl](2), and the monodentate phosphoramidite ligand (S)-PipPhos was used in the enantioselective hydrogenation of 2- and 2,6-substituted quinoxalines. In the presence of piperidine hydrochloride as additive full

  15. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Guan, Yanfei; Wheeler, Steven E

    2017-07-24

    A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C 2 -symmetric phosphorus ligand is designed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  17. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  18. Phospholipid transfer from vesicles to high density lipoproteins, catalyzed by human plasma phospholipid transfer protein

    International Nuclear Information System (INIS)

    Sweeny, S.A.

    1985-01-01

    Human plasma phospholipid transfer protein (PLTP) catalyzes the mass transfer of phosphatidylcholine (PC). Partial purification of PLTP yielded proteins with apparent M/sub r/ = 59,000 and 40,000 by SDS-PAGE. PLTP activity was measured by transfer of [ 14 C]L-α-dipalmitoyl PC from egg-PC vesicles to HDL. Activity was enhanced at low pH (4.5) upon addition of β-mercaptoethanol while Ca +2 and Na + had no effect. E/sub act/ for facilitated PC transfer was 18.2 +/- 2 kcal/mol. The donor specificity of PLTP was examined using vesicles containing egg-PC plus cholesterol or sphingomyelin. The fluidity of the donor membrane (measured by fluorescence polarization of diphenylhexatriene) correlated strongly with a decrease in PLTP activity. Phosphatidic acid did not affect activity. Increase in vesicle size reduced activity. The acceptor specificity of PLTP was examined using chemically modified HDL. PLTP activity increased up to 1.7-fold with an initial increase in negative charge and then decreased upon extensive modification. A mechanism is proposed where PLTP binds to vesicls and enhances the diffusion of PC into the medium where it is adsorbed by HDL

  19. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  20. Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions

    OpenAIRE

    José da Silva, Márcio; Faria dos Santos, Lidiane

    2013-01-01

    A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by ace...

  1. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    Science.gov (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  3. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  4. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.

    2016-01-01

    on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro...

  5. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  6. Insight into solid-liquid phase transfer catalyzed synthesis of ...

    Indian Academy of Sciences (India)

    Ganapati D Yadav

    2017-11-16

    Nov 16, 2017 ... Mecoprop ester using K2CO3 as base and development of new kinetic model ... acid family.1 Several salts and esters of Mecoprop are used as active ..... Influence of mass transfer was determined by varying the stirring speed ...

  7. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    Science.gov (United States)

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  8. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  9. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  10. Capture and transfer of pions in hydrogenous materials

    International Nuclear Information System (INIS)

    Armstrong, D.S.

    1990-05-01

    Pionic hydrogen is a short-lived exotic hydrogen isotope in which a negative pion replaces the atomic electron. The formation and subsequent interactions of pionic hydrogen are discussed, with emphasis on the process of pion transfer. Recent results using the pion charge-exchange reaction (π - , π 0 ) obtained at TRIUMF are reviewed. (Author) (35 refs., 3 tabs., 9 figs.)

  11. Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.

    Science.gov (United States)

    You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi

    2017-02-03

    A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.

  12. PipPhos and MorfPhos : Privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Bernsmann, Heiko; van den Berg, M; Hoen, Robert; Minnaard, AJ; Mehler, G; Reetz, MT; De Vries, JG; Feringa, BL

    2005-01-01

    A library of 20 monodentate phosphoramidite ligands has been prepared and applied in rhodium-catalyzed asymmetric hydrogenation. This resulted in the identification of two ligands, PipPhos and MorfPhos, that afford excellent and in several cases unprecedented enantioselectivities in the

  13. The use of phosphite-type ligands in the Ir-catalyzed asymmetric hydrogenation of heterocyclic compounds.

    Science.gov (United States)

    Lyubimov, Sergey E; Ozolin, Dmitry V; Ivanov, Pavel Yu; Melman, Artem; Velezheva, Valeriya S; Davankov, Vadim A

    2014-01-01

    A series of chiral phosphite-type ligands was tested in asymmetric Ir-catalyzed hydrogenation of quinolines and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% ee compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir-Ircatalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole yielding the antidepressant drug, pirlindole. © 2013 Wiley Periodicals, Inc.

  14. Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane

    Science.gov (United States)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2018-01-01

    The paper deals with hydrogen transfer through Pd-23%Ag alloy membrane, the surface of which is modified by the electrolytic deposition of highly dispersed palladium. The dependence between the density of hydrogen flow and its excess pressure on the input surface of membrane is well approximated by the first-order curve. This fact indicates that the process of hydrogen permeability is defined by its dissociation on the input surface. Activation energy of this process is 47.9 kJ/mol which considerably exceeds that of the process of hydrogen transfer through palladium (22-30 kJ/mol). This confirms the fact that the chemisorption is a rate-controlling step of the hydrogen transfer through membrane.

  15. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-01-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir

  16. Liquid hydrogen transfer pipes and level regulation systems

    International Nuclear Information System (INIS)

    Marquet, M.; Prugne, P.; Roubeau, P.

    1961-01-01

    Describes: 1) Transfer pipes - Plunging rods in liquid hydrogen Dewars; transfer pipes: knee-joint system for quick and accurate positioning of plunging Dewar rods; system's rods: combined valve and rod; valves are activated either by a bulb pressure or by a solenoid automatically or hand controlled. The latter allows intermittent filling. 2) Level regulating systems: Level bulbs: accurate to 1 or 4 m; maximum and minimum level bulbs: automatic control of the liquid hydrogen valve. (author) [fr

  17. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  18. Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies.

    Science.gov (United States)

    Dolan, Nicholas S; Scamp, Ryan J; Yang, Tzuhsiung; Berry, John F; Schomaker, Jennifer M

    2016-11-09

    The development of new catalysts for selective nitrene transfer is a continuing area of interest. In particular, the ability to control the chemoselectivity of intermolecular reactions in the presence of multiple reactive sites has been a long-standing challenge in the field. In this paper, we demonstrate examples of silver-catalyzed, nondirected, intermolecular nitrene transfer reactions that are both chemoselective and flexible for aziridination or C-H insertion, depending on the choice of ligand. Experimental probes present a puzzling picture of the mechanistic details of the pathways mediated by [( t Bu 3 tpy)AgOTf] 2 and (tpa)AgOTf. Computational studies elucidate these subtleties and provide guidance for the future development of new catalysts exhibiting improved tunability in group transfer reactions.

  19. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  20. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations

    Directory of Open Access Journals (Sweden)

    Ziemys Arturas

    2001-08-01

    Full Text Available Abstract Background Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs and N-aryl-N-hydroxy urethanes (AHUs revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar. Results To explain the unexpectedly low reactivity of AHAs and AHUs we made ab initio calculations of the molecular structure of the substrates following in silico docking in the active center of the enzyme. Conclusions AHAs and AHUs were docked at the distal side of heme in the sites formed by hydrophobic amino acid residues that retarded a proton transfer and finally the oxidation rate. The analogous phenol substrates were docked at different sites permitting fast proton transfer in the relay of distal His and water that helped fast substrate oxidation.

  2. Heterogeneously catalyzed deuterium separation processes: Hydrogen-water exchange studies at elevated temperatures and pressures

    International Nuclear Information System (INIS)

    Halliday, J.D.; Rolston, J.H.; Au, J.C.; Den Hartog, J.; Tremblay, R.R.

    1985-01-01

    New processes for the separation of hydrogen isotopes are required to produce heavy water for CANDU nuclear reactors and to extract tritium formed in the moderator during reactor operation. Wetproofed platinum catalysts capable of promoting rapid exchange of isotopes between countercurrent flows of hydrogen and liquid water in packed columns have been developed at CRNL over the past 15 years. These catalysts provide a catalystic surface for the gas phase exchange reaction H/sub 2/O/sub (v)/ + HD/sub (g)/ ↔ HDO/sub (v)/ + H/sub 2(g)/ as well as a large liquid surface for the liquid phase isotope transfer reaction HDO/sub (v)/ + H/sub 2/O/sub (iota)/↔HDO/sub (iota)/+H/sub 2/O/sub (v)/. Any economic stand-alone heavy water separation process, based on bithermal hydrogen-water exchange over wetproofed platinum catalysts, requires rapid overall exchange of isotopes between two phases at two temperatures. Catalysts developed for cold tower operation at 25-60 0 C are now being tested in a laboratory scale stainless steel trickle bed reactor for performance and stability at simulated hot tower conditions, 150 0 C and 2.0 MPa pressure. Catalytically active layers containing platinum supported on carbon or crystalline silica and wetproofed with Teflon have been prepared on ceramic spheres and stainless steel screening and tested in both random and ordered bed columns

  3. Muon transfer from hot muonic hydrogen atoms to neon

    International Nuclear Information System (INIS)

    Jacot-Guillarmod, R.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Kammel, P.; Zmeskal, J.; Petitjean, C.

    1992-01-01

    A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of μ -p atoms in each target. The rates λ ppμ and λ pd can be extracted

  4. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  5. Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic System

    KAUST Repository

    Ang, Eleanor Pei Ling

    2017-04-01

    Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.

  6. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  7. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  9. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.

    Science.gov (United States)

    Chu, Yuzhuo; Guo, Hong

    2015-09-01

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  10. Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-defined Manganese(II) Complex

    KAUST Repository

    Brzozowska, Aleksandra; Azofra, Luis Miguel; Zubar, Viktoriia; Atodiresei, Iuliana; Cavallo, Luigi; Rueping, Magnus; El-Sepelgy, Osama

    2018-01-01

    The first example of manganese catalyzed semihydrogenation of internal alkynes to (Z)-alkenes using ammonia borane as a hydrogen donor is reported. The reaction is catalyzed by a pincer complex of the earth abundant manganese(II) salt in the absence of any additives, base or super hydride. The ammonia borane smoothly reduces the manganese pre-catalyst [Mn(II)-PNP][Cl]2 to the catalytically active species [Mn(I)-PNP]-hydride in the triplet spin state. This manganese hydride is highly stabilized by complexation with the alkyne substrate. Computational DFT analysis studies of the reaction mechanism rationalizes the origin of stereoselectivity towards formation of (Z)-alkenes.

  11. Highly Chemo- and Stereoselective Transfer Semihydrogenation of Alkynes Catalyzed by a Stable, Well-defined Manganese(II) Complex

    KAUST Repository

    Brzozowska, Aleksandra

    2018-03-30

    The first example of manganese catalyzed semihydrogenation of internal alkynes to (Z)-alkenes using ammonia borane as a hydrogen donor is reported. The reaction is catalyzed by a pincer complex of the earth abundant manganese(II) salt in the absence of any additives, base or super hydride. The ammonia borane smoothly reduces the manganese pre-catalyst [Mn(II)-PNP][Cl]2 to the catalytically active species [Mn(I)-PNP]-hydride in the triplet spin state. This manganese hydride is highly stabilized by complexation with the alkyne substrate. Computational DFT analysis studies of the reaction mechanism rationalizes the origin of stereoselectivity towards formation of (Z)-alkenes.

  12. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  13. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    Science.gov (United States)

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  14. Current Topics in the Asymmetric Transfer Hydrogenation of Imines

    Czech Academy of Sciences Publication Activity Database

    Januščák, J.; Václavík, Jiří; Šot, P.; Pecháček, J.; Vilhanová, B.; Kuzma, Marek; Kačer, P.

    2015-01-01

    Roč. 109, č. 7 (2015), s. 492-498 ISSN 0009-2770 R&D Projects: GA ČR GAP106/12/1276; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : asymmetric transfer hydrogenation * ruthenium * isoquinoline Subject RIV: EE - Microbiology, Virology Impact factor: 0.279, year: 2015

  15. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  16. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    Science.gov (United States)

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    Science.gov (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  18. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme.

    Science.gov (United States)

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in (2)H(2)O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-(2)H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The (2)H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the (2)H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of (2)H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations

    International Nuclear Information System (INIS)

    Chen, Yongchang; Sun, Zhaolin; Song, Lijuan; Li, Qiang; Xu, Ming

    2012-01-01

    Ethene hydrogenation reaction, catalyzed by an iridium atom adsorbed on γ-Al 2 O 3 (001) surface, is studied via ab initio calculations based on density functional theory (DFT). The catalyzed reaction process and activation energy are compared with the counterparts of a reaction occurs in vacuum condition. It is found that the activation energy barrier is substantially lowered by the adsorbed Ir atom on the γ-Al 2 O 3 (001). The catalyzed reaction is modeled in two steps: (1) Hydrogen molecular dissolution and then bonded with C 2 H 4 molecular. (2) Desorption of the C 2 H 6 molecular from the surface. -- Highlights: ► The ethene hydrogenation reaction is simulated with nudged elastic band methods. ► The catalytic effect of the Ir atom on γ-Al 2 O 3 (001) surface is modeled. ► Details of the catalytic reaction are exhibited.

  1. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    Science.gov (United States)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  2. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11

  3. Oxidative desulfurization of dibenzothiophene with hydrogen peroxide catalyzed by selenium(IV)-containing peroxotungstate.

    Science.gov (United States)

    Hu, Yiwen; He, Qihui; Zhang, Zheng; Ding, Naidong; Hu, Baixing

    2011-11-28

    With stoichiometric H(2)O(2) as oxidant, dibenzothiophene (DBT) is oxidized to its corresponding sulfone with high efficiency, catalyzed by a sub-valence heteronuclear peroxotungstate, [C(18)H(37)N(CH(3))(3)](4)[H(2)Se(IV)(3)W(6)O(34)], under mild biphase conditions and the catalyst shows remarkable selectivity of catalytic oxidation towards DBT, cinnamyl alcohol and quinoline.

  4. Energy distribution and transfer in flowing hydrogen microwave plasmas

    International Nuclear Information System (INIS)

    Chapman, R.A.

    1987-01-01

    This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power

  5. Hydrogen transfer preventive device in FBR power plant

    International Nuclear Information System (INIS)

    Hoshi, Yuichi.

    1987-01-01

    Purpose: To prevent transfer of hydrogen, etc. in FBR power plant. Constitution: Since H 2 permeates heat conduction pipes in a steam generator, it is necessary to eliminate all of permeation hydrogen, etc. by primary cold traps particularly in the case of saving the intermediate heat exchange. In view of the above, the heat conduction pipes of the steam generator are constituted as a double pipe structure and helium gases are recycled through the gaps thereof and hydrogen traps are disposed to the recycling path. H 2 released into water flowing through the inside of the inner pipe is permeated through the inner pipe and leached into the gap, but the leached H 2 is carried by the helium recycling stream to the hydrogen trap and then the H 2 stream removed with H 2 is returned to the gaps. In this way, the capacity of the primary cold traps disposed in the liquid sodium recycling circuit can be reduced remarkably and the capacity of the purifying device, if an intermediate heat exchanger is disposed, is also reduced to decrease the plant cost. Further, diffusion of deleterious gases from the primary to the secondary circuits can be prevented as well. (Kamimura, M.)

  6. Charge transfer in proton-hydrogen collisions under Debye plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Arka [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India); Kamali, M. Z. M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ghoshal, Arijit, E-mail: arijit98@yahoo.com [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India); Department of Mathematics, Kazi Nazrul University, B.C.W. Campus, Asansol 713 304, West Bengal (India); Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ratnavelu, K. [Department of Mathematics, Kazi Nazrul University, B.C.W. Campus, Asansol 713 304, West Bengal (India)

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  7. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  8. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide.

    Science.gov (United States)

    Pekala, Katarzyna; Jurczakowski, Rafał; Lewera, Adam; Orlik, Marek

    2007-05-10

    The oscillatory oxidation of thiocyanate ions with hydrogen peroxide, catalyzed by Cu2+ ions in alkaline media, was so far observed as occurring simultaneously in the entire space of the batch or flow reactor. We performed this reaction for the first time in the thin-layer reactor and observed the spatiotemporal course of the above process, in the presence of luminol as the chemiluminescent indicator. A series of luminescent patterns periodically starting from the random reaction center and spreading throughout the entire solution layer was reported. For a batch-stirred system, the bursts of luminescence were found to correlate with the steep decreases of the oscillating Pt electrode potential. These novel results open possibilities for further experimental and theoretical investigations of those spatiotemporal patterns, including studies of the mechanism of this chemically complex process.

  9. Hydrogen transfer reactions of interstellar Complex Organic Molecules

    Science.gov (United States)

    Álvarez-Barcia, S.; Russ, P.; Kästner, J.; Lamberts, T.

    2018-06-01

    Radical recombination has been proposed to lead to the formation of complex organic molecules (COMs) in CO-rich ices in the early stages of star formation. These COMs can then undergo hydrogen addition and abstraction reactions leading to a higher or lower degree of saturation. Here, we have studied 14 hydrogen transfer reactions for the molecules glyoxal, glycoaldehyde, ethylene glycol, and methylformate and an additional three reactions where CHnO fragments are involved. Over-the-barrier reactions are possible only if tunneling is invoked in the description at low temperature. Therefore the rate constants for the studied reactions are calculated using instanton theory that takes quantum effects into account inherently. The reactions were characterized in the gas phase, but this is expected to yield meaningful results for CO-rich ices due to the minimal alteration of reaction landscapes by the CO molecules. We found that rate constants should not be extrapolated based on the height of the barrier alone, since the shape of the barrier plays an increasingly larger role at decreasing temperature. It is neither possible to predict rate constants based only on considering the type of reaction, the specific reactants and functional groups play a crucial role. Within a single molecule, though, hydrogen abstraction from an aldehyde group seems to be always faster than hydrogen addition to the same carbon atom. Reactions that involve heavy-atom tunneling, e.g., breaking or forming a C-C or C-O bond, have rate constants that are much lower than those where H transfer is involved.

  10. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  11. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves

    2012-01-01

    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  12. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: msimoes@ua.pt [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)

    2012-07-01

    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  13. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  14. Theoretical study on platinum-catalyzed isotope exchange reaction mechanism of hydrogen and liquid water

    International Nuclear Information System (INIS)

    Hu Sheng; Wang Heyi; Luo Shunzhong

    2009-04-01

    Based on electron and vibration approximate means and the density function theory B3LYP, the ΔG degree and equilibrium pressures of adsorption and dissociation reactions of H 2 and water vapor on Pt surface have been calculated. The adsorption, dissociation and coadsorption actions of H 2 and water were analyzed. According to the ΔG degree, hydrogen molecule combines with metal atoms in single atom, and water vapor molecule has no tendency to dissociate on Pt surface. The dissociation of hydrogen molecule would hold back the direct adsorption of water vapor molecules on Pt surface. The structures of Pt-H (OH 2 ) n + (n=1, 2, 3) hydroniums were optimized. According to the mulliken overlap populations, Pt-H (OH 2 ) + is not stable or produced. Hydrogen isotope exchange occurs between hydration layer and D atoms which adsorb on Pt surface via intermediates (H 2 O) n D + (ads) (n≥2). (authors)

  15. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  16. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  17. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao

    2014-08-11

    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  18. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  19. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Final technical report, September 1, 1988--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  20. Catalyzed Na2LiAlH6 for hydrogen storage

    International Nuclear Information System (INIS)

    Ma, X.Z.; Martinez-Franco, E.; Dornheim, M.; Klassen, T.; Bormann, R.

    2005-01-01

    In the present study, the complex alanate Na 2 LiAlH 6 is synthesized by high-energy milling of powder blends containing NaH and LiAlH 4 . The related thermodynamics are determined. In addition, a comprehensive study was performed to investigate the influence of different oxide and halide catalysts on the kinetics of hydrogen absorption and desorption, as well as their general drawback to decrease storage capacity

  1. Atom transfer radical polymerization of n-butyl acrylate catalyzed by atom transfer radical polymerization of n-butyl acrylate catalyzed by

    NARCIS (Netherlands)

    Zhang, H.; Linde, van der R.

    2002-01-01

    The homogeneous atom transfer radical polymerization (ATRP) of n-butyl acrylate with CuBr/N-(n-hexyl)-2-pyridylmethanimine as a catalyst and ethyl 2-bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different

  2. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.

    Science.gov (United States)

    Świderek, Katarzyna; Arafet, Kemel; Kohen, Amnon; Moliner, Vicent

    2017-03-14

    Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.

  3. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    Science.gov (United States)

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  4. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  5. Charge transfer of O3+ ions with atomic hydrogen

    International Nuclear Information System (INIS)

    Wang, J.G.; Stancil, P.C.; Turner, A.R.; Cooper, D.L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O 3+ (2s 2 2p 2 P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment

  6. Charge transfer of O3+ ions with atomic hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-01-01

    Charge transfer processes due to collisions of ground state O3+(2s22p 2P) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.

  7. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  8. Remediation of diesel-contaminated soils using catalyzed hydrogen peroxide: a laboratory evaluation

    International Nuclear Information System (INIS)

    Xu, P.; Achari, G.; Mahmoud, M.; Joshi, R.C.

    2002-01-01

    This paper presents the results of a laboratory investigation conducted to determine the optimum amount of Fenton's reagent that allows for effective treatment of diesel-contaminated soils. Two types of soils spiked with 5,000 mg/kg diesel fuel were treated in vial reactors with varying concentrations and volumes of hydrogen peroxide. Additionally, Ottawa sand spiked with 5,000 mg/kg of diesel was treated with different H 2 O 2 to iron ratios. The gases produced during the remediation process were measured and analyzed to evaluate the oxidation of diesel range organics. As much as 40 % of diesel range organics was removed when 5 grams of silty clay were treated with 20 mL of 20 % H 2 O 2 . The same concentration and volume of hydrogen peroxide removed about 63 % of diesel range organics from sandy silt. The optimal molar ratio of H 2 O 2 : iron catalyst was found to vary between 235:1 to 490:1. (author)

  9. Hydrogenation of intermediate products of furfural production at promoted nickel catalyzers

    Energy Technology Data Exchange (ETDEWEB)

    Beysekov, T.

    1980-01-01

    Examines activity of Ni-Al-Fe acids with additives Ti and W, as well as those promoted with chrome Nio-Al-Ti acids for a hydrogenation reaction of fufural condensate and raw material invarious conditions of production. It was shown that four-component acids demonstrate high activity and selectivity in tetrahydrofuryl alcohol. Hydrogenation rate of furfural condensate on more active compounds of acids is by 1.2-1.4 times higher than in non-promoted with the fourth component of acid. The promoting effect of fourth components, based on data of phase-structural analysis, is explained by changes in the number of correlations of known phases and eutectics, and formation of new presently undeciphered intermetallides, the destruction of which aids, apparently, in the formation of qualitatively new active centers on the surface. It was established that stationary acids also have high activity and stability. Changing leaching depths, H/sub 2/ pressure, temperature, rate of H/sub 2/ bubbling has a favorable effect on the end product.

  10. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan

    2016-07-18

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction involving transfer hydrogenation of fluoroarylketone to the corresponding alcohol and Suzuki-Miyaura cross coupling reaction of the resulting fluoroarylalcohol under moderate reaction conditions, to biaryl alcohol. The complex with the shortest Pd-Pd distance exhibits the highest tandem activity among its di-metallic analogues, and exceeds in terms of activity and selectivity the analogous mononuclear compound. The kinetics of the reaction indicates clearly that reductive transformation of haloarylketone into haloaryalcohol is the rate determining step in the tandem reaction. Interestingly while fluoroarylketone undergoes the multistep tandem catalysis, the chloro- and bromo-arylketones undergo only a single step C-C coupling reaction resulting in biarylketone as the final product. Unlike the pyrazole based Pd compounds, the precursor PdCl2 and the phosphine based relevant complexes (PPh3)2PdCl2 and (PPh3)4Pd are found to be unable to exhibit the tandem catalysis.

  11. Charge transfer between O6+ and atomic hydrogen

    Science.gov (United States)

    Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.

    2011-05-01

    The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.

  12. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Suria, Sabartanty [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  13. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  14. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    Science.gov (United States)

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.

  15. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  16. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  17. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  18. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells

    Science.gov (United States)

    Coverdale, James P. C.; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Clarkson, Guy J.; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J.

    2018-03-01

    Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.

  19. TEM analysis of the microstructure in TiF3-catalyzed and pure MgH2 during the hydrogen storage cycling

    International Nuclear Information System (INIS)

    Danaie, Mohsen; Mitlin, David

    2012-01-01

    We utilized transmission electron microscopy (TEM) analysis, with a cryogenically cooled sample stage, to detail the microstructure of partially transformed pure and titanium fluoride-catalyzed magnesium hydride powder during hydrogenation cycling. The TiF 3 -catalyzed MgH 2 powder demonstrated excellent hydrogen storage kinetics at various temperatures, whereas the uncatalyzed MgH 2 showed significant degradation in both kinetics and capacity. TEM analysis on the partially hydrogen absorbed and partially desorbed pure Mg(MgH 2 ) revealed a large fraction of particles that were either not transformed at all or were completely transformed. On the other hand, in the MgH 2 +TiF 3 system it was much easier to identify regions with both the hydride and the metal phase coexisting in the same particle. This enabled us to establish the metal hydride orientation relationship (OR) during hydrogen absorption. The OR was determined to be (1 1 0)MgH 2 || (−1 1 0 −1)Mg and [−1 1 1]MgH 2 || [0 1 −1 1]Mg. During absorption the number density of the hydride nuclei does not show a dramatic increase due the presence of TiF 3 . Conversely, during desorption the TiF 3 catalyst substantially increases the number of the newly formed Mg crystallites, which display a strong texture correlation with respect to the parent MgH 2 phase. Titanium fluoride also promotes extensive twinning in the hydride phase.

  20. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-01-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k cat . Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered

  1. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)

    2017-02-17

    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  2. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  3. Iron Phthalocyanine as New Efficient Catalyst for Catalytic Transfer Hydrogenation of Simple Aldehydes and Ketones

    Czech Academy of Sciences Publication Activity Database

    Bata, P.; Notheisz, F.; Klusoň, Petr; Zsigmond, A.

    2015-01-01

    Roč. 29, JAN 2015 (2015), s. 45-49 ISSN 0268-2605 Institutional support: RVO:67985858 Keywords : heterogenized complexes * catalytic transfer hydrogenation * reusable catalyst Subject RIV: CC - Organic Chemistry Impact factor: 2.452, year: 2015

  4. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Rueping, Magnus

    2017-01-01

    . By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high

  5. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    OpenAIRE

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinester...

  6. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods.

    Science.gov (United States)

    Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R

    2017-08-30

    Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.

  7. Pd0-Catalyzed Methyl Transfer on Nucleosides and Oligonucleotides, Envisaged as a PET Tracer

    Directory of Open Access Journals (Sweden)

    Eric Fouquet

    2013-11-01

    Full Text Available The methyl transfer reaction from activated monomethyltin, via a modified Stille coupling reaction, was studied under “ligandless” conditions on fully deprotected 5'-modified nucleosides and one dinucleotide. The reaction was optimized to proceed in a few minutes and quantitative yield, even under dilute conditions, thus affording a rapid and efficient new method for oligonucleotide labelling with carbon-11.

  8. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  10. Study on hydrogen transfer in coal liquefaction by tritium and carbon-14 tracers

    International Nuclear Information System (INIS)

    Nitoh, Osamu; Kabe, Toshiaki; Kabe, Yaeko.

    1985-01-01

    For the analysis of mechanism of hydrogenation and cracking of coal, the liquefaction of Taiheiyo coal using tritium labeled gaseous hydrogen and tritium labeled tetralin with small amounts of carbon-14 labeled naphthalene has been studied. Taiheiyo coal(25g) was thermally decomposed in tetralin or naphthalene solvent(75g) at 400--440 0 C under the initial hydrogen pressure of 5.9MPa for 30min with Ni-Mo-Al 2 O 3 catalyst(0--5g). The reaction mixture in an autoclave was separated by filtration, distillation and solvent extraction. Produced gas, oils and the solvent were analyzed by gas chromatography. The tritium and carbon-14 contents of separated reaction products were measured with a liquid scintilation counter to study the hydrogen transfer mechanism. The distribution of reaction products and the amount of hydrogen transfer from gas or solvent to the products were also determined. In hydrogen donor solvent such as tetralin, the coal liquefaction yield was independent from the catalyst, but the catalyst was effective in hydrocracking of preasphaltene and asphaltene. In naphthalene solvent, the coal liquefaction reaction hardly occured in the absence of the catalyst, because hydrogen transfer from both the solvent and gaseous hydrogen was scarce. Tritium distribution in the reaction products showed that complicated hydrogen exchange reactions between gaseous hydrogen, coal liquids and solvent came out by the presence of coal liquids and catalyst. The very small amounts of carbon-14 transferred to the liquefaction products showed that carbon exchange or transfer between solvent and coal did not take place. (author)

  11. Hydrogen-bond dynamics and proton transfer in nanoconfinement

    NARCIS (Netherlands)

    van der Loop, T.H.

    2015-01-01

    Proton transfer is of fundamental importance to both biology and chemistry. Much is known about proton transfer in large water volumes but often proton transfer reactions take place in very small nanometer sized volumes for example between lipid layers and in proton channels in mitochondria and

  12. Heat transfer comparison between methane and hydrogen in a spark ignited engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, Roger; Demuynck, Joachim; Paepe, Michel de; Verhelst, Sebastian [Ghent Univ. (Belgium)

    2010-07-01

    Hydrogen is one of the alternative fuels which are being investigated at Ghent University. NO{sub x} emissions will occur at high engine loads and they are a constraint for power and efficiency optimization. The formation of NO{sub x} emissions is temperature dependent. Consequently, the heat transfer from the burning gases to the cylinder walls has to be accurately modelled if precise computer calculations of the emissions are wanted. Several engine heat transfer models exist but they have been cited to be inaccurate for hydrogen. We have measured the heat flux in a spark ignited engine with a commercially available heat flux sensor. This paper investigates the difference between the heat transfer of hydrogen and a fossil fuel, in this case methane. Measurements with the same indicated power output are compared and the effect of the heat loss on the indicated efficiency is investigated. The power output of hydrogen combustion is lowered by burning lean in contrast to using a throttle in the case of methane. Although the peak in the heat flux of hydrogen is 3 times higher compared to methane for a high engine power output, the indicated efficiency is only 3% lower. The heat loss for hydrogen at a low engine load is smaller than that of methane which results in a higher indicated efficiency. The richness of the hydrogen-air mixture has a great influence on the heat transfer process in contrast to the in-cylinder mass in the case of methane. (orig.)

  13. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    Science.gov (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-04-19

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  14. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  15. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  16. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  17. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Isse, Abdirisak Ahmed; Bortolamei, Nicola; De Paoli, Patrizia; Gennaro, Armando

    2013-01-01

    The mechanism of activation of atom transfer radical polymerization (ATRP) has been analyzed by investigating the kinetics of dissociative electron transfer (ET) to alkyl halides (RX) in acetonitrile. Using a series of alkyl halides, including both bromides and chlorides, the rate constants of ET (k ET ) to RX by electrogenerated aromatic radical anions (A· − ) acting as outer-sphere donors have been measured and analyzed according to the current theories of dissociative ET. This has shown that the kinetic data fit very well the “sticky” dissociative ET model with the formation of a weak adduct held together by electrostatic interactions. The rate constants of activation, k act , of some alkyl halides, namely chloroacetonitrile, methyl 2-bromopropionate and ethyl chloroacetate, by [Cu I L] + (L = tris(2-dimethylaminoethyl)amine, tris(2-pyridylmethyl)amine, 1,1,4,7,7-pentamethyldiethylenetriamine) have also been measured in the same experimental conditions. Comparisons of the measured k act values with those predicted assuming an outer-sphere ET for the complexes have shown that activation by Cu(I) is 7–10 orders of magnitude faster than required by outer-sphere ET. Therefore, the mechanism of RX activation by Cu(I) complexes used as catalysts in ATRP occurs by an inner-sphere ET or more appropriately by a halogen atom abstraction

  18. Transfer of π- from hydrogen to deuterium in H2O + D2O mixtures

    International Nuclear Information System (INIS)

    Stanislaus, S.; Measday, D.F.; Vetterli, D.; Weber, P.; Aniol, K.A.; Harston, M.R.; Armstrong, D.S.

    1989-07-01

    The transfer of stopping π - mesons from hydrogen to deuterium has been investigated in mixtures of H 2 O+D 2 O as a function of D 2 O concentration. The concentration dependence of the transfer probability is similar to that observed for the gas mixtures of H 2 and D 2 but slightly more transfer is found for H 2 O+D 2 O. (Author) 17 refs., 2 tabs., 4 figs

  19. An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96.

    Science.gov (United States)

    Nagar, Rupa; Rao, Alka

    2017-05-12

    Glycosyltransferases are essential tools for in vitro-glycoengineering. Bacteria harbor an unexplored variety of protein glycosyltransferases. Here, we describe a peptide glycosyltransferase (EntS) encoded by ORF0417 of Enterococcus faecalis TX0104. EntS di-glycosylates linear peptide of enterocin 96- a known antibacterial, in vitro. It is capable of transferring as well as extending the glycan onto the peptide in an iterative sequential dissociative manner. It can catalyze multiple linkages: Glc/Gal(-O)Ser/Thr, Glc/Gal(-S)Cys and Glc/Gal(β)Glc/Gal(-O/S)Ser/Thr/Cys, in one pot. Using EntS generated glycovariants of enterocin 96 peptide, size and identity of the glycan are found to influence bioactivity of the peptide. The study identifies EntS as an enzyme worth pursuing, for in vitro peptide glycoengineering. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Reversible Interconversion between 2,5-Dimethylpyrazine and 2,5-Dimethylpiperazine by Iridium-Catalyzed Hydrogenation/Dehydrogenation for Efficient Hydrogen Storage.

    Science.gov (United States)

    Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi

    2017-08-28

    A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Energy Technology Data Exchange (ETDEWEB)

    Dupays, A

    2004-06-01

    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  2. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    Science.gov (United States)

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction.

    Science.gov (United States)

    Futer, Olga; Saadat, Ahmad R; Doran, John D; Raybuck, Scott A; Pazhanisamy, S

    2006-06-27

    Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From

  4. Inverting Steric Effects: Using "Attractive" Noncovalent Interactions To Direct Silver-Catalyzed Nitrene Transfer.

    Science.gov (United States)

    Huang, Minxue; Yang, Tzuhsiung; Paretsky, Jonathan D; Berry, John F; Schomaker, Jennifer M

    2017-12-06

    Nitrene transfer (NT) reactions represent powerful and direct methods to convert C-H bonds into amine groups that are prevalent in many commodity chemicals and pharmaceuticals. The importance of the C-N bond has stimulated the development of numerous transition-metal complexes to effect chemo-, regio-, and diastereoselective NT. An ongoing challenge is to understand how subtle interactions between catalyst and substrate influence the site-selectivity of the C-H amination event. In this work, we explore the underlying reasons why Ag(tpa)OTf (tpa = tris(pyridylmethyl)amine) prefers to activate α-conjugated C-H bonds over 3° alkyl C(sp 3 )-H bonds and apply these insights to reaction optimization and catalyst design. Experimental results suggest possible roles of noncovalent interactions (NCIs) in directing the NT; computational studies support the involvement of π···π and Ag···π interactions between catalyst and substrate, primarily by lowering the energy of the directed transition state and reaction conformers. A simple Hess's law relationship can be employed to predict selectivities for new substrates containing competing NCIs. The insights presented herein are poised to inspire the design of other catalyst-controlled C-H functionalization reactions.

  5. Transfer Hydrogenation in Open-Shell Nucleotides — A Theoretical Survey

    Directory of Open Access Journals (Sweden)

    Florian Achrainer

    2014-12-01

    Full Text Available The potential of a larger number of sugar models to act as dihydrogen donors in transfer hydrogenation reactions has been quantified through the calculation of hydrogenation energies of the respective oxidized products. Comparison of the calculated energies to hydrogenation energies of nucleobases shows that many sugar fragment radicals can reduce pyrimidine bases such as uracil in a strongly exothermic fashion. The most potent reducing agent is the C3' ribosyl radical. The energetics of intramolecular transfer hydrogenation processes has also been calculated for a number of uridinyl radicals. The largest driving force for such a process is found for the uridin-C3'-yl radical, whose rearrangement to the C2'-oxidized derivative carrying a dihydrouracil is predicted to be exothermic by 61.1 kJ/mol in the gas phase.

  6. Literature research on the production, loading, flow, and heat transfer of slush hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Moo [Dept. of Mechanical Engineering, Ajou University, Wonchon-dong san 5, Paldal-Gu, Suwon 442-749 (Korea, Republic of)

    2010-12-15

    This study summarizes the available information on slush hydrogen and answer pending engineering questions that arise in the design of slush hydrogen propellant systems. The four methods for the production of slush are discussed. For storage, slush hydrogen must be pressurized, free from impurities, and continuously upgraded. Slush flowing at low flow rates has a higher viscosity than the liquid, however at higher velocities it approaches the viscosity of neat liquid. For the entire range of natural convection and nucleate boiling, the heat transfer at the triple-point temperature and pressure is nearly the same for the liquid and slush. The natural convection from smooth surfaces for slush can be predicted using available correlations. However, for engineering analysis and design of a system involving a slush cryogenic propellant, reliable information is required on production, flow, heat transfer, and instrumentation of these fluids. Some relevant and important aspects of slush hydrogen which have not yet been fully answered are presented. (author)

  7. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    Science.gov (United States)

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An S-N2-model for proton transfer in hydrogen-bonded systems

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism of proton transfer in donor-acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce...... a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use...... of model molecular potentials, and with reference to the excess proton conductivity in aqueous solution....

  9. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    Science.gov (United States)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  10. Mass and heat transfer on B7 ordered packing in hydrogen isotope separation by distillation

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Pop, Floarea; Titescu, Gheorghe; Stefanescu, Ioan; Trancota, Dan; Peculea, Marius

    2002-01-01

    This work presents theoretical and experimental data referring to mass and heat transfer on B7 ordered packing in deuterium isotope separation by distillation. The first part is devoted to the study of mass transfer in hydrogen isotopic distillation while the second one treats the mass and heat transfer in water isotopic distillation. A stationary mathematical model for the mass and heat transfer was developed based on multitubular column model with wet wall. This model allowed the calculation starting from theoretical data of the ordered packing efficiency, expressed by the transfer unit height, TUH. Also, from theoretical data the mass and heat transfer coefficients were determined. A test of the mathematical model was performed with the experimental data obtained from two laboratory installations for hydrogen isotope separation by distillation. From the first installation, experimental data concerning the B7 ordered packing efficiency were obtained for the deuterium separation by cryogenic distillation at the - 250 deg C level. With the second one data referring to the mass and heat transfer on the same packing were obtained for the deuterium separation by water distillation under vacuum at the 60 deg C level. The values of TUH, mass and heat transfer coefficients as theoretically evaluate and experimentally checked are in agreement with the respective values obtained in separation processes in chemical industry. This is the fact which endorses utilization of the model of multitubular column with wet wall for describing the transfer processes in distillation columns equipped with B7 ordered packing

  11. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Á lvarez, Andrea; Bansode, Atul; Urakawa, Atsushi; Bavykina, Anastasiya V.; Wezendonk, Tim A.; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2017-01-01

    carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects

  12. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei

    2018-01-04

    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  13. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei; Guan, Chao; Pan, Yupeng; Hu, Jinsong; Li, Huaifeng

    2018-01-01

    invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain

  14. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vibrational energy transfer in hydrogen liquid and its isotopes

    International Nuclear Information System (INIS)

    Gale, G.M.; Delalande, C.

    1978-01-01

    The transfer of vibrational energy (V-V) from H 2 to isotopic impurities (HD or D 2 ) has been studied in the liquid state, between 15 and 30 K. The subsequent ralaxation (V-T) of the excited impurity by the H 2 liquid host has also been measured and contrasted with the vibrational relaxation behaviour of pure H 2 and D 2 liquids. The isothermal density dependence of both V-V and V-T transfer has been investigated in the fluid state at 30 K. High density relaxation rates are also compared to the data in the pure gases and to other available gas phase results. Measurements in the solid, near the triple-point temperature, are equally reported for each process studied. (Auth.)

  16. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  17. Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    NARCIS (Netherlands)

    Jerphagnon, Thomas; Haak, Robert; Berthiol, Florian; Gayet, Arnaud J.A.; Ritleng, Vincent; Holuigue, Alexandre; Pannetier, Nicolas; Pfeffer, Michel; Voelklin, Adeline; Lefort, Laurent; Verzijl, Gerard; Tarabiono, Chiara; Janssen, Dick B.; Minnaard, Adriaan J.; Feringa, Ben L.; Vries, Johannes G. de

    2010-01-01

    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with

  18. Charge transfer to the continuum by heavy ions in atomic hydrogen

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1981-01-01

    Design and installation of an atomic hydrogen target for measurements of charge transfer to the continuum by heavy ions are discussed. The design consists of a tungsten gas cell operated at temperatures of 2500 to 2600 0 K. Initial testing is underway

  19. Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives.

    Science.gov (United States)

    Coman, Simona M; Podolean, Iunia; Tudorache, Madalina; Cojocaru, Bogdan; Parvulescu, Vasile I; Puche, Marta; Garcia, Hermenegildo

    2017-09-14

    Modification of GO by organic molecules changes its catalytic activity in the hydrogen transfer from i-propanol to enones, affecting the selectivity to allyl alcohol and diastereoselectivity to the resulting stereoisomers. It is noteworthy the system does not contain metals and is recyclable.

  20. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  1. Momentum Transfer and Viscosity from Proton-Hydrogen Collisions Relevant to Shocks and Other Astrophysical Environments

    International Nuclear Information System (INIS)

    Schultz, David Robert; Krstic, Predrag S.; Lee, Teck G.; Raymond, J.C.

    2008-01-01

    The momentum transfer and viscosity cross sections for proton-hydrogen collisions are computed in the velocity range of ∼200-20,000 km s -1 relevant to a wide range of astrophysical environments such as SNR shocks, the solar wind, winds within young stellar objects or accretion disks, and the interstellar protons interacting with the heliosphere. A variety of theoretical approaches are used to arrive at a best estimate of these cross sections in this velocity range that smoothly connect with very accurate results previously computed for lower velocities. Contributions to the momentum transfer and viscosity cross sections from both elastic scattering and charge transfer are included

  2. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    Science.gov (United States)

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  3. Angular distribution in proton-hydrogen charge-transfer collisions

    International Nuclear Information System (INIS)

    Glembocki, O.; Halpern, A.M.

    1977-01-01

    Theoretical angular distributions for p-H charge transfer to the 1s state for energies of 1 keV and above have been examined and compared for three approximation schemes: the plane-wave Born approximation of Jackson and Schiff (JS), the Coulomb projected Born approximation of Geltman (G), and the distorted-wave eikonal approximation of one of the authors (D). The sharp dip in the forward distribution characteristic of JS is found to exist in G and D as well. As expected, G and D give identical results for all but the lowest energies. In the cases of G and D the dip, which is located close to that of JS, disappears and then reappears as the energy rises. Analytic high-energy limits for the angular dependence in both the JS and G cases have been found and are discussed

  4. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  5. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water.

    Science.gov (United States)

    Starkl Renar, K; Pečar, S; Iskra, J

    2015-09-28

    Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72-99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst. The reactions were more selective than with 100% H2O2 and due to neutral conditions also less stable products could be obtained.

  6. Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure

    International Nuclear Information System (INIS)

    Toet, D.; Smith, P. M.; Sigmon, T. W.; Thompson, M. O.

    2000-01-01

    We present investigations of the mechanisms of a laser-induced transfer technique, which can be used for the spatially selective deposition of materials such as Si. This transfer is effected by irradiating the backside of a hydrogenated amorphous silicon film, deposited on a transparent substrate with an excimer laser pulse. The resulting release and accumulation of hydrogen at the film/substrate interface propels the silicon onto an adjacent receptor wafer. Time-resolved infrared transmission measurements indicate that the amorphous film is melted by the laser pulse and breaks into droplets during ejection. These droplets travel towards the receptor substrate and coalesce upon arrival. The transfer velocity increases as a function of fluence, the rate of increase dropping noticeably around the full melt threshold of the film. At this fluence, the transfer velocity reaches values of around 1000 m/s for typical films. Atomic force microscopy reveals that films transferred below the full melt threshold only partially cover the receptor substrate, while uniform, well-adhering films, which can be smoothed by subsequent laser irradiation, are obtained above it. Transfer of hydrogen-free Si films, on the other hand, does not occur until much higher fluences. The dynamics of the process have been simulated using a semiquantitative numerical model. In this model, hydrogen released from the melt front is instantaneously accumulated at the interface with an initial kinetic energy given by the melting temperature of Si and the enthalpy of solution. The resulting pressure accelerates the Si film, the dynamics of which are modeled using Newtonian mechanics, and the gas cools adiabatically as its kinetic energy is converted to the film's momentum. The results of the calculations are in good agreement with the experimental data. (c) 2000 American Institute of Physics

  7. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  8. Transfer of hydrogen and helium through corrugated, flexible tubes

    International Nuclear Information System (INIS)

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  9. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  10. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  11. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  12. Muon transfer rates in collisions of hydrogen isotope mesic atoms on 'bare' nuclei. Multichannel adiabatic approach

    International Nuclear Information System (INIS)

    Korobov, V.I.; Melezhik, V.S.; Ponomarev, L.I.

    1992-01-01

    A numerical scheme for solving the problem of slow collisions in the three-body adiabatic approach is applied for calculation of muon transfer rates in collisions of hydrogen isotope atoms on bare nuclei. It is demonstrated that the multichannel adiabatic approach allows one to reach high accuracy results (∼3%) estimating the cross sections of charge transfer processes which are the best ones up to date. The method is appliable in a wide range of energies (0.001-50 eV) which is of interest for analysis of muon catalysed fusion experiments. 20 refs.; 3 figs.; 5 tabs

  13. Hydrogen transfer in Pb–Li forced convection flow with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp; Muneoka, Taiki; Kinjyo, Mao; Yoshimura, Rhosuke; Katayama, Kazunari

    2015-10-15

    Highlights: • The paper presents experimental and analytical results of Pb–Li eutectic alloy forced convection flow. • Analytical results are in good agreement with ones of hydrogen permeation in Pb–Li forced convection flow. • The results are useful for the design of liquid blanket of fusion reactors. - Abstract: Transient- or steady-state hydrogen permeation from a primary fluid of Li{sub 17}Pb{sub 83} (Pb–Li) through a permeable tube of Inconel-625 alloy to a secondary Ar purge is investigated experimentally under a forced convection flow in a dual cylindrical tube system. Results of the overall hydrogen permeation flux are correlated in terms of diffusivity, solubility and an average axial velocity of Pb–Li and diffusivity and solubility of the solid wall. Analytical solutions under proper assumptions are derived to simulate the transient- and steady-state rates of the overall hydrogen permeation, and close agreement is obtained between experiment and analysis. Two things are clarified from the comparison: (i) how the steady-state permeation rate is affected by the mass-transfer properties and the average velocity of Pb–Li and the properties of Inconel-625, and (ii) how its transient behavior is done by the diffusivity of the two materials. The results obtained here will give important information to estimate or to analyze the tritium transfer rate in fluidized Pb–Li blankets of DEMO or the future commercial fusion reactors.

  14. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides

    DEFF Research Database (Denmark)

    He, Jian; Li, Hu; Riisager, Anders

    2017-01-01

    A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties and morpho......A series of magnetic, acid/base bifunctional Al–Zr@Fe3O4 catalysts were successfully prepared by a facile coprecipitation method and utilized in the catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as hydrogen source. The physicochemical properties...... with a Al3+/Zr4+/Fe3O4 molar ratio of 21:9:3 was found to exhibit a high furfuryl alcohol yield of 90.5 % in the CTH from furfural at 180 °C after 4 h with a comparatively low activation energy of 45.3 kJ mol−1, as calculated from the Arrhenius equation. Moreover, leaching and recyclability tests confirmed...

  15. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  16. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  17. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.T. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Kao, C.M., E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)

    2009-10-15

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H{sub 2}O{sub 2}, BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., {alpha}-Fe{sub 2}O{sub 3} and {alpha}-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg{sup -1}), respectively, with the addition of 15% of H{sub 2}O{sub 2} and 100 g kg{sup -1} of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  18. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  19. Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains

    Energy Technology Data Exchange (ETDEWEB)

    OEztuerk, Yavuz; Yuecel, Meral; Guenduez, Ufuk [Department of Biology, Middle East Technical University, Ankara (Turkey); Daldal, Fevzi [Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104-6018 (United States); Mandaci, Sevnur [TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze Kocaeli 41470 (Turkey); Tuerker, Lemi [Department of Chemistry, Middle East Technical University, Ankara (Turkey); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, Ankara (Turkey)

    2006-09-15

    In Rhodobacter capsulatus excess reducing equivalents generated by organic acid oxidation is consumed to reduce protons into hydrogen by the activity of nitrogenase. Nitrogenase serves as a redox-balancing tool and is activated by the RegB/RegA global regulatory system during photosynthetic growth. The terminal cytochrome cbb{sub 3} oxidase and the redox state of the cyclic photosynthetic electron transfer chain serve redox signaling to the RegB/RegA regulatory systems in Rhodobacter. In this study, hydrogen production of various R. capsulatus strains harboring the genetically modified electron carrier cytochromes or lacking the cyt cbb{sub 3} oxidase or the quinol oxidase were compared with the wild type. The results indicated that hydrogen production of mutant strains with modified electron carrier cytochromes decreased 3- to 4-fold, but the rate of hydrogen production increased significantly in a cbb{sub 3}{sup -} mutant. Moreover, hydrogen production efficiency of various R. capsulatus strains further increased by inactivation of uptake hydrogenase genes. (author)

  20. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  1. Kinetic formulae for muon-catalyzed fusion of hydrogen isotopes and their application to the description of the data for pure deuterium

    International Nuclear Information System (INIS)

    Gula, A.

    1987-01-01

    The data on the time distributions of muon-catalyzed fusion (μCF) events in pure deuterium targets published before 1987 are analysed using the kinetic formalism developed by the author and collaborators in a series of papers. The formalism enables one to describe these time distributions in an arbitrary mixture of hydrogen isotopes with strict inclusion of registration efficiency and dead time. The kinetic formulae for such distributions can be readily obtained using a prescription based on the theory of signal-flow graphs even for very complicated kinetic situations, thus, allowing one to avoid the simplifying assumptions which have been usually made in earlier analyses. Practically all important processes forming the muon-catalysis chain can be strictly taken into account in the approximation of constant transition rates. Consecutive μCF cycles can be described separately, which provides a useful tool in data analysis. The developed formalism is applied to the existing data for pure deuterium. First cycle-by-cycle time distributions reported for room temperature by the Gatchina group are analysed. 93 refs., 14 figs. (author)

  2. Study of reactive transfer of hydrogen within intact clay-rock

    International Nuclear Information System (INIS)

    Didier, M.

    2012-01-01

    Hydrogen gas will be produced by anaerobic corrosion of radioactive waste containers in the geological repository. This gas could affect the geological layer (Callovo-Oxfordian) stability, first due to its reductive capacity and then also due to its continuous production for about 100,000 years. The local pressure increase could affect the properties of hydro-gaseous dynamic of hydrogen transfers. The reductive capacity of H 2 could change the redox properties of the Callovo-Oxfordian and the barrier hydraulic properties, and therefore (1) its mineralogy, (2) the speciation of outgoing radionuclides and (3) their transfer. Moreover, if the hydrogen gas transport is difficult within the geological layer, the pressure increase could cause cracking and create preferential pathways for radionuclides migration. An experimental device was developed to measure the entry pressure of H 2 (g) and transport parameters as permeability and diffusion coefficient through the CO x . The entry pressure is estimated to be between 49 and 63 bar. Knowing that the maximum expected pressure is about 80 bar, there may therefore be a displacement of hydrogen gas into the water saturated clay-rock. Moreover, for a saturation greater than 0.90 and at T = 23 C, permeability is measured to be close to 10 -23 m 2 and the diffusion coefficient to be as low as 10 -12 m 2 .s -1 . Therefore hydrogen gas will move slowly in the geological layer, for example it will take about 31,710 years to go through one meter of clay-rock by diffusion. These transport parameters are found to depend mainly on the sample water saturation and not much on temperature. Regarding hydrogen reactivity, under conditions close to those in the storage, H 2 will reduce up to 9 wt% of structural Fe (III) at 90 C and PH 2 = 5 bar. This reaction is not complete and hydrogen gas will mainly sorb on the material, with a sorption up to 0.05 wt% at 90 C and PH 2 = 0.45 bar. This process depends strongly on the water saturation of

  3. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  4. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M

    2009-01-01

    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  5. A forced convective heat transfer model for two-phase hydrogen systems

    International Nuclear Information System (INIS)

    Pasch, J.; Anghaie, S.

    2007-01-01

    A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)

  6. Specific features of hydrogen boiling heat transfer on the AMg-6 alloy massive heater

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Kozlov, S.M.; Rusanov, K.V.; Tyurina, E.G.

    1989-01-01

    Heat transfer and nucleate burns-out saturated with hydrogen at a plate heater (thickness-13 mm, diameter of heat-transferring surface - 30 mm) made of an aluminium alloy with the low value of a heat assimilation coefficient in the pressure range from 7.2x10 3 to 6x10 5 Pa is experimentally investigated. Value of start of boiling characteristics and heat transfer coefficients during nucleate burn-out, as well as the first critical densities of a heat flux and temperature heads are obtained. Existence of certain differrences of heat exchange during boiling is shown using a massive heater made of low-heat-conductive material in comparison with other cases of hydrogen boiling. Hypothesis concerning the existence of so-called mixed boiling on the heat transfer surface, which has been detected earlier only in helium boiling, as well as concerning possible reasons of stability of film boiling ficii in preburn-out region of heat duty is discussed

  7. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    Science.gov (United States)

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  8. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  9. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  10. Study of hydrogen consumption reaction catalyzed by Pd ions in the simulated high-level liquid waste

    International Nuclear Information System (INIS)

    Kodama, Takashi

    2013-01-01

    To ensure the safety for storage of high-level liquid waste (HLLW) in tanks is one of the most important safety issues in a reprocessing plant since almost all radioactive materials under processing are collected in these tanks. Accordingly the behavior of radiolytically formed hydrogen (H 2 ) in these tanks is one of key issues and has been studied by several researchers because it might cause an explosion. They reported that not all of H 2 formed in HLLW comes out in the gas phase because H 2 is consumed by some un-clarified secondary reaction which may be caused by the irradiation and/or by the catalytic effect of certain fission product (FP) in HLLW. In order to clarify such effect, we carried out the experiments using the simulated high level liquid waste (SHLLW) with and without palladium (Pd) group ions under irradiation and non-irradiation conditions. As a result, it was found that H 2 consumption reaction is not caused by radiation as was understood so far but is caused by a catalytic effect of Pd ion in SHLLW. That is, H 2 is reacting with HNO 3 and forming H 2 O and NOx. Using the catalytic reaction rate constant measured in the experiments, the analysis showed that the H 2 concentration in the gas phase of an HLLW tank does not reach its explosion limit of 4% even if the sweeping air stops for a long time. (authors)

  11. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    Energy Technology Data Exchange (ETDEWEB)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.; Shi, Hui; Gutierrez, Oliver Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-11-01

    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. The activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.

  12. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  13. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  14. Natural spectroscopic hydrogen isotope transfer in alcohol dehydrogenase-catalysed reduction

    International Nuclear Information System (INIS)

    Ben-Li Zhang; Pionnier, S.

    2002-01-01

    The enantiomeric purity of natural α-mono deuterated enantiomers, (R) and (S)ethanol-1-d 1 , in the alcohol produced by sugar fermentation with yeast was studied by 2 H NMR using their esters derived from optical mandelic acid. The results of isotope tracing experiments show that the transfer pathways of the two eantiotopic hydrogens of the methylene group are different. It was observed that (S)-deuterium comes only from the medium water. The (R)-deuterium transferred by NADH in alcohol dehydrogenase reduction of the acetaldehyde is complex origin. Some of them originates from carbon bound hydrogen of the sugar, especially from C(4) position of glucose and most of them comes from water. Only a small portion of the NADH deuterium is incorporated indirectly from water through enzyme catalysed exchange between the pro-S site of NADH and flavin. When a carbonyl compound (ethyl acetoacetate) was reduced under the same conditions during the alcoholic fermentation, among the NADH-transferred deuterium, only a small portion comes from water while most comes from the unexchangeable positions of the glucose. (author)

  15. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Science.gov (United States)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  16. Graphene Derivative in Magnetically Recoverable Catalyst Determines Catalytic Properties in Transfer Hydrogenation of Nitroarenes to Anilines with 2-Propanol.

    Science.gov (United States)

    Das, Vijay Kumar; Mazhar, Sumaira; Gregor, Lennon; Stein, Barry D; Morgan, David Gene; Maciulis, Nicholas A; Pink, Maren; Losovyj, Yaroslav; Bronstein, Lyudmila M

    2018-06-14

    Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag 0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp 2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.

  17. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM

  18. Mesoporous Silica-Supported Sulfonyldiamine Ligand for Microwave-Assisted Transfer Hydrogenation

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2015-01-01

    Full Text Available N-Sulfonyl-1,2-diamine ligands, derived from 1,2-diaminocyclohexane and 1,2-diaminopropane, were immobilized onto mesoporous SBA-15 silica. The SBA-15-supported sulfonyldiamine-Ru complex was prepared in situ under microwave heating at 60 W for 3 min. The prepared sulfonyldiamine-Ru complex was used as an efficient catalyst for the transfer hydrogenation of ketones to the corresponding secondary alcohols. The heterogeneous complex showed extremely high catalytic activity with 99% conversion rate under microwave heating condition. The complexes were regenerated by simple filtration and reused two times without significant loss of activity.

  19. Some recent results on μ-transfer in systems with bound hydrogen

    International Nuclear Information System (INIS)

    Knight, J.D.; Mausner, L.F.; Orth, C.J.; Schillaci, M.E.; Naumann, R.A.; Schmidt, G.

    1977-01-01

    Preliminary results are given for two sets of experiments conducted in order to obtain information on the role of bound hydrogen in possible μ transfer processes by comparisons of muonic Lyman spectra. Muonic x-ray intensity patterns of Cl in CCl 4 , CH 2 Cl 2 and a CCl 4 + C 8 H 18 mixture. Secondly the same type of experiment was performed but with F as the test element. Muonic x-ray spectra of the normal and deutero forms of a compound were compared

  20. State-selective charge transfer cross sections for light ion impact of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)

    2015-01-01

    Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.

  1. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  2. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...... of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor...... and acceptor. The short-range and long-range proton transfer as "structural diffusion" of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen...

  3. Estudio cinético de la descomposición catalizada de peróxido de hidrógeno sobre carbón activado Kinetic study of the catalyzed decomposition of hydrogen peroxide on activated carbon

    Directory of Open Access Journals (Sweden)

    Elihu Paternina

    2009-01-01

    Full Text Available The kinetic study of decomposition of hydrogen peroxide catalyzed by activated carbon was carried out. The effect of concentrations of reactants and temperature were experimentally studied. Kinetic data were evaluated using differential method of initial rates of reaction. When a typical kinetic law for reactions in homogeneous phase is used, first order of reaction is obtained for hydrogen peroxide and activated carbon, and activation energy of 27 kJ mol-1 for the reaction was estimated. Experimentally was observed that surface of activated carbon is chemically modified during decomposition of hydrogen peroxide, based on this result a scheme of reaction was proposed and evaluated. Experimental data fits very well to a Langmuir- Hinshelwood kinetic model and activation energy of 40 kJ mol-1 was estimated for reaction in heterogeneous phase.

  4. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  6. Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene

    Science.gov (United States)

    Papadakis, Raffaello; Li, Hu; Bergman, Joakim; Lundstedt, Anna; Jorner, Kjell; Ayub, Rabia; Haldar, Soumyajyoti; Jahn, Burkhard O.; Denisova, Aleksandra; Zietz, Burkhard; Lindh, Roland; Sanyal, Biplab; Grennberg, Helena; Leifer, Klaus; Ottosson, Henrik

    2016-10-01

    The first hydrogenation step of benzene, which is endergonic in the electronic ground state (S0), becomes exergonic in the first triplet state (T1). This is in line with Baird's rule, which tells that benzene is antiaromatic and destabilized in its T1 state and also in its first singlet excited state (S1), opposite to S0, where it is aromatic and remarkably unreactive. Here we utilized this feature to show that benzene and several polycyclic aromatic hydrocarbons (PAHs) to various extents undergo metal-free photochemical (hydro)silylations and transfer-hydrogenations at mild conditions, with the highest yield for naphthalene (photosilylation: 21%). Quantum chemical computations reveal that T1-state benzene is excellent at H-atom abstraction, while cyclooctatetraene, aromatic in the T1 and S1 states according to Baird's rule, is unreactive. Remarkably, also CVD-graphene on SiO2 is efficiently transfer-photohydrogenated using formic acid/water mixtures together with white light or solar irradiation under metal-free conditions.

  7. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  8. Muon catalyzed fusion at very low temperature: A new target system

    International Nuclear Information System (INIS)

    Mulhauser, F.; Beveridge, J.L.; Marshall, G.M.

    1994-10-01

    Muon catalyzed fusion (μCF) processes are usually studied in gases or liquids. A new target system allows experiments on muonic hydrogen isotopes in solid hydrogen layers at 3K, where processes of the μCF cycle can be separated and the energy dependence of reactions can be measured. Muonic tritium atomic beams with energy of the order of 1 eV have been produced via transfer and emission from solid hydrogen target containing small tritium concentrations. The μt energy distribution overlaps the predicted muonic molecular (dμt) formation resonances. Preliminary time of flight results are shown. (author). 9 refs., 5 figs

  9. Metallocene-catalyzed ethylene−α-olefin isomeric copolymerization: A perspective from hydrodynamic boundary layer mass transfer and design of MAO anion

    KAUST Repository

    Adamu, Sagir

    2015-11-28

    This study reports a novel conceptual framework that can be easily experimented to evaluate the effects of hydrodynamic boundary layer mass transfer, methylaluminoxane (MAO) anion design, and comonomer steric hindrance on metallocene-catalyzed ethylene polymerization. This approach was illustrated by conducting homo- and isomeric copolymerization of ethylene with 1-hexene and 4-methyl-1-pentene in the presence of bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, using (i) MAO anion 1 (unsupported [MAOCl2]−) and pseudo-homogeneous reference polymerization, and (ii) MAO anion 2 (supported Si−O−[MAOCl2]−) and in-situ heterogeneous polymerization. The measured polymer morphology, catalyst productivity, molecular weight distribution, and inter-chain composition distribution were related to the locus of polymerization, comonomer effect, in-situ chain transfer process, and micromixing effect, respectively. The peak melting and crystallization temperatures and %crystallinity were mathematically correlated to the parameters of microstructural composition distributions, melt fractionation temperatures, and average lamellar thickness. These relations showed to be insightful. The comonomer-induced enchainment defects and the eventual partial disruption of the crystal lattice were successfully modeled using Flory and Gibbs–Thompson equations. The present methodology can also be applied to study ethylene−α-olefin copolymerization, performed using MAO-activated non-metallocene precatalysts.

  10. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    Science.gov (United States)

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  11. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Directory of Open Access Journals (Sweden)

    Yehui Cui

    2018-06-01

    Full Text Available In this work a three-dimensional (3D hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized. Keywords: Hydrogen storage, ZrCo metal hydride, Heat transfer, Three-dimensional simulation

  12. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy

    International Nuclear Information System (INIS)

    Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Wang, Hongxin; Wang, Zhouping

    2013-01-01

    Graphical abstract: -- Highlights: •An ultrasensitive FRET aptasensor was developed for staphylococcal enterotoxin B determination. •SEB was recognized by SEB aptamer with high affinity and specificity. •The Mn 2+ doped NaYF 4 :Yb/Er UCNPs used as donor to quencher dye (BHQ 3 ) in new FRET. •The fluorescence intensity was prominently amplified using an exonuclease-catalyzed target recycling strategy. -- Abstract: An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA 1 –UCNPs) and fluorescence quencher probes (complementary DNA 2 –Black Hole Quencher 3 (BHQ 3 )) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL −1 and a lower detection limit (LOD) of 0.3 pg mL −1 SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a

  13. Effective oxidation of benzylic and alkane C-H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions.

    Science.gov (United States)

    Cui, Li-Qian; Liu, Kai; Zhang, Chi

    2011-04-07

    Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.

  14. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H. [Cornell University, Ithaca, New York 14853-1301 (United States); Krishnamoorthy, Kalyanaraman; Begley, Tadhg P., E-mail: begley@tamu.edu [Texas A& M University, College Station, TX 77842 (United States); Ealick, Steven E., E-mail: begley@tamu.edu [Cornell University, Ithaca, New York 14853-1301 (United States)

    2011-10-01

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  15. Theoretical and computational study of the energy dependence of the muon transfer rate from hydrogen to higher-Z gases

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Adamczak, Andrzej [Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Stoilov, Mihail [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko chaussée 72, Sofia 1784 (Bulgaria); Vacchi, Andrea [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via A. Valerio 2, 34127 Trieste (Italy)

    2015-01-23

    The recent PSI Lamb shift experiment and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen as an alternative possibility for comparing ordinary and muonic hydrogen spectroscopy data on proton electromagnetic structure. This measurement critically depends on the energy dependence of the muon transfer rate to heavier gases in the epithermal range. The available data provide only qualitative information, and the theoretical predictions have not been verified. We propose a new method by measurements of the transfer rate in thermalized target at different temperatures, estimate its accuracy and investigate the optimal experimental conditions. - Highlights: • Method for measuring the energy dependence of muon transfer rate to higher-Z gases. • Thermalization and depolarization of muonic hydrogen studied by Monte Carlo method. • Optimal experimental conditions determined by Monte Carlo simulations. • Mathematical model and for estimating the uncertainty of the experimental results.

  16. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  17. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    Science.gov (United States)

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for

  18. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  19. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Science.gov (United States)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  20. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    Science.gov (United States)

    Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.

    2008-06-01

    Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  1. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    Science.gov (United States)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When EMOCC cross sections with and without rotational coupling are small (400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  2. Low Energy Charge Transfer for Collisions of Si3+ with Atomic Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bruhns, H. [Columbia University; Kreckel, H. [Columbia University; Savin, D. W. [Columbia University; Seely, D. G. [Albion College; Havener, Charles C [ORNL

    2008-01-01

    Cross sections of charge transfer for Si{sup 3+} ions with atomic hydrogen at collision energies of {approx} 40-2500 eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  3. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    International Nuclear Information System (INIS)

    Turner, A.R.; Cooper, D.L.; Wang, J.G.; Stancil, P.C.

    2003-01-01

    Charge transfer processes due to collisions of ground state B 2+ (2s 2 S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E 400 eV/u, inclusion of rotational coupling increases the total cross section by 50%-80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work

  4. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  5. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions.

    Science.gov (United States)

    Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang

    2016-09-19

    Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silyl Ketene Acetals/B(C6F53 Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers

    Directory of Open Access Journals (Sweden)

    Lu Hu

    2018-03-01

    Full Text Available This work reveals the silyl ketene acetal (SKA/B(C6F53 Lewis pair-catalyzed room-temperature group transfer polymerization (GTP of polar acrylic monomers, including methyl linear methacrylate (MMA, and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL and α-methylene-γ-butyrolactone (MBL as well. The in situ NMR monitored reaction of SKA with B(C6F53 indicated the formation of Frustrated Lewis Pairs (FLPs, although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C6F53-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C6F53-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C6F53 is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS. Moreover, using this method, we have successfully synthesized well-defined PMMBL-b-PMBL, PMMBL-b-PMBL-b-PMMBL and random copolymers with the predicated molecular weights (Mn and narrow molecular weight distribution (MWD.

  7. On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide

    DEFF Research Database (Denmark)

    Sánchez, Marina; Alkorta, Ibon; Elguero, José

    2014-01-01

    for the hydrogen, oxygen and carbon atoms as well as for the methyl group at the level of time-dependent density functional theory with the B3LYP exchange-correlation functional employing a large Gaussian basis set. We find that the atomic or group contributions are not transferable among these three molecules....

  8. Strong isotope effects on the charge transfer in slow collisions of He2+ with atomic hydrogen, deuterium, and tritium

    NARCIS (Netherlands)

    Stolterfoht, N.; Cabrera-Trujillo, R.; Oehrn, Y.; Deumens, E.; Hoekstra, R.; Sabin, J. R.

    2007-01-01

    Probabilities and cross sections for charge transfer by He2+ impact on atomic hydrogen (H), deuterium (D), and tritium (T) at low collision energies are calculated. The results are obtained using an ab initio theory, which solves the time-dependent Schrodinger equation. For the H target, excellent

  9. Dinuclear Tetrapyrazolyl Palladium Complexes Exhibiting Facile Tandem Transfer Hydrogenation/Suzuki Coupling Reaction of Fluoroarylketone

    KAUST Repository

    Dehury, Niranjan; Maity, Niladri; Tripathy, Suman Kumar; Basset, Jean-Marie; Patra, Srikanta

    2016-01-01

    Herein, we report an unprecedented example of dinuclear pyrazolyl-based Pd complexes exhibiting facile tandem catalysis for fluoroarylketone: Tetrapyrazolyl di-palladium complexes with varying Pd-Pd distances efficiently catalyze the tandem reaction

  10. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    Science.gov (United States)

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  11. Preparation of deuterated heterocyclic five-membered ring compounds (furan, thiophene, pyrrole, and derivatives) by base-catalyzed hydrogen isotope exchange with deuterium oxide

    International Nuclear Information System (INIS)

    Heinrich, K.H.; Herrmann, M.; Moebius, G.; Sprinz, H.

    1984-01-01

    Several deuterated heterocyclic compounds of the type of furan,thiophene and pyrrole were prepared by base-catalyzed proton exchange with deuterium oxide at temperatures above 423 K in a closed system. The determination of deuterium and its distribution within the molecules was carried out by mass spectrometry and 1 H nmr spectrometry. (author)

  12. Eosin Y as a Direct Hydrogen Atom Transfer Photocatalyst for the Functionalization of C-H Bonds.

    Science.gov (United States)

    Fan, Xuan-Zi; Rong, Jia-Wei; Wu, Hao-Lin; Zhou, Quan; Deng, Hong-Ping; Tan, Jin Da; Xue, Cheng-Wen; Wu, Li-Zhu; Tao, Hai-Rong; Wu, Jie

    2018-05-02

    Eosin Y, a well-known economical alternative to metal catalysts in visible-light-driven single-electron transfer-based organic transformations, can behave as an effective direct hydrogen atom transfer catalyst for C-H activation. Using the alkylation of C-H bonds with electron-deficient alkenes as a model study revealed an extremely broad substrate scope, enabling easy access to a variety of important synthons. This eosin Y-based photocatalytic hydrogen atom transfer strategy is promising for diverse functionalization of a wide range of native C-H bonds in a green and sustainable manner. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  14. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  16. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen

    International Nuclear Information System (INIS)

    Fourmond, V.

    2007-04-01

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  17. Mass and heat transfer on B7 structured packing in the separation of hydrogen isotopes by distillation

    International Nuclear Information System (INIS)

    Croitoru, C.; Pop, F.; Titescu, Gh.; Culcer, M.; Iliescu, M.; Stefanescu, I.; Trancota, D.; Peculea, M.

    2002-01-01

    The paper presents theoretical and experimental data concerning mass and heat transfer on B7 ordered packing, at deuterium separation by distillation. The first section of the paper is dedicated to the mass transfer study of hydrogen distillation, while the second section deals with mass and heat transfer in water distillation. A mathematical model was worked out and compared with experimental data, obtained from two laboratory distillation plants for deuterium separation. From the first plant experimental data concerning B7 ordered packing efficiency of hydrogen cryogenic distillation at 250 deg. C level were obtained. Data concerning mass and heat transfer on the same packing in deuterium separation by water vacuum distillation at 60 deg. C level were obtained in the second plant. HUT values, mass and heat transfer coefficients both theoretically evaluated and experimentally determined were found to be comparable with those obtained from chemical industry separation processes. The fact justifies the use of multi-tubular column model for description of transfer processes in distillation columns equipped with B7 structured packing. (authors)

  18. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał; Kijak, Michał; Piwonski, Hubert Marek; Herbich, Jerzy; Waluk, Jacek

    2017-01-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  19. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  20. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Height determination at the transfer unit in isotopic distillation of hydrogen on type B7 ordered column packing

    International Nuclear Information System (INIS)

    Pop, F.; Croitoru, C.; Peculea, M.

    2001-01-01

    Owing to the low pressure drop implied by ordered column packings these are often utilized for vacuum distillations and separation of mixtures in which the important component occurs at a very low concentration, as for instance is the case of water, deuterium or oxygen isotopic distillation. The paper presents a model for determination of the height of transfer unit (HTU) in the hydrogen isotopic distillation installation, equipped with ordered column packing of B7 type. The computed values for HUT based on the analogy between heat, moment and mass transfer, were compared with the experimental data

  2. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    Science.gov (United States)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  3. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  4. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.

    Science.gov (United States)

    Zhang, Xiaheng; MacMillan, David W C

    2017-08-23

    A mechanism that enables direct aldehyde C-H functionalization has been achieved via the synergistic merger of photoredox, nickel, and hydrogen atom transfer catalysis. This mild, operationally simple protocol transforms a wide variety of commercially available aldehydes, along with aryl or alkyl bromides, into the corresponding ketones in excellent yield. This C-H abstraction coupling technology has been successfully applied to the expedient synthesis of the medicinal agent haloperidol.

  5. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  7. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  8. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  9. ARGAZ: a new device for experimental study of the coupling between hydrogen production and hydrogen transfer through saturated Callovian-Oxfordian argillite

    International Nuclear Information System (INIS)

    Imbert, C.; Bataillon, C.; Touze, G.; Vigier, P.; Talandier, J.

    2010-01-01

    Document available in extended abstract form only. A specific experimental device has been designed to produce hydrogen at the metal-argillite interface by electrochemistry. The target is for one hand to reproduce the production of hydrogen occurring when a metal is corroded by the water contained in the porosity of the mud-stone. On the other hand, the transfer of the hydrogen through the mud-stone can be studied. The specific features of the experiment are the following: - Hydrogen is generated inside a cell by electrochemistry, at the interface between the argillite and a metallic surface; no gas injection is required; - Electrochemistry gives the possibility to control the hydrogen production rate; - Hydrogen generation implies water consumption: the water comes from the porosity of the bulk argillite, near the interface; - That one-dimensional experiment has been built around a cylindrical sample of bulk and undamaged argillite coming from the Callovian-Oxfordian formation. Inside the device a cylindrical sample of argillite is placed above a nickel plate. Around the argillite, a ring of compacted bentonite ensures a mechanical confinement. When saturated, the bentonite will apply a swelling pressure close to the total pressure encountered by the sample in the geological formation. The hydrogen is generated at the interface nickel-argillite. The nickel plate is one of the two electrodes required for electrochemistry. At the top face of bentonite, iron electrode is used to close the electrical circuit. The hydrogen produced at the bottom face of the mud-stone is expected to go across the argillite towards the top face. A porous plate connected with a sampling bottle allows the capture of hydrogen. The argillite sample has a diameter of 50 mm, and a height of 50 mm. It is obtained by over-coring a core sample, and by a careful machining leading to a perfect geometry and surface quality. The production rate of hydrogen can be calculated from the current intensity

  10. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

    Czech Academy of Sciences Publication Activity Database

    Matuška, O.; Zápal, J.; Hrdličková, R.; Mikoška, M.; Pecháček, J.; Vilhanová, B.; Václavík, Jiří; Kuzma, M.; Kačer, P.

    2016-01-01

    Roč. 118, č. 1 (2016), s. 215-222 ISSN 1878-5190 Institutional support: RVO:61388963 Keywords : ruthenium * asymmetric transfer hydrogenation * dihydroisoquinolines * sulfonamide Subject RIV: CC - Organic Chemistry Impact factor: 1.264, year: 2016

  11. Heat transfer in pool boiling liquid neon, deuterium and hydrogen, and critical heat flux in forced convection of liquid neon

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1967-12-01

    In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author) [fr

  12. O-alkylation of disodium salt of diethyl 3,4-dihydroxythiophene-2,5-dicarboxylate with 1,2-dichloroethane catalyzed by ionic type phase transfer catalyst and potassium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huasheng; Yin, Hengbo; Wang, Aili; Shen, Jun; Yan, Xiaobo; Liu, Yumin; Zhang, Changhua [Jiangsu University, Zhenjiang (China)

    2014-01-15

    Diethyl 3,4-ethylenedioxy thiophene-2,5-dicarboxylate was efficiently synthesized via the O-alkylation of disodium salt of diethyl 3,4-dihydroxy thiophene-2,5-dicarboxylate with 1,2-dichloroethane over ionic type phase transfer catalysts, such as tetrabutyl ammonium bromide and benzyl triethyl ammonium chloride. The ionic type phase transfer catalysts showed higher catalytic activities than the nonionic type phase transfer catalysts, such as triethylamine, pyridine, 18-crown-6, and polyethylene glycol 400/600, in the O-alkylation reaction. The conversion of the disodium salt of more than 97% and the selectivity of diethyl 3,4-ethylenedioxy thiophene-2,5-dicarboxylate of more than 98% were achieved when the O-alkylation reaction was synergistically catalyzed by tetrabutyl ammonium bromide and potassium iodide.

  13. Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni-Cu catalysts using isopropanol

    Science.gov (United States)

    Transfer hydrogenation and hydrodeoxygenation of model bio-oil compounds (p-cresol and furfural) and bio-oils derived from biomass via traditional pyrolysis and tail-gas reactive pyrolysis (TGRP) were conducted. Mild batch reaction conditions were employed, using isopropanol as a hydrogen donor over...

  14. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  15. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede; Usman, Anwar; Alzayer, Maytham; Hamdi, Ghada A.; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  16. Metallocene-catalyzed ethylene−α-olefin isomeric copolymerization: A perspective from hydrodynamic boundary layer mass transfer and design of MAO anion

    KAUST Repository

    Adamu, Sagir; Atiqullah, Muhammad; Malaibari, Zuhair O.; Al-Harthi, Mamdouh A.; Emwas, Abdul-Hamid M.; Ul-Hamid, Anwar

    2015-01-01

    -catalyzed ethylene polymerization. This approach was illustrated by conducting homo- and isomeric copolymerization of ethylene with 1-hexene and 4-methyl-1-pentene in the presence of bis(n-butylcyclopentadienyl) zirconium dichloride (nBuCp)2ZrCl2, using (i) MAO anion

  17. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    Energy Technology Data Exchange (ETDEWEB)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani [Univ. of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO{sub 4}){sub 3}. Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance.

  18. Vanadium Hydrogen Sulfate Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and Bis-(indolyl) methanes

    International Nuclear Information System (INIS)

    Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D. Imani

    2010-01-01

    We have developed a mild, simple and efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones and bis-(indolyl) methanes catalyzed by V(HSO 4 ) 3 . Based on our studies, this method offers several adavantages including mild reaction conditions, good to high yields of the products, short reaction times, solvent-free reaction conditions and simple experimental procedure. 3,4-Dihydropyrimidin-2(1H)-ones and their derivatives have attracted increasing interest due to their wide range of therapeutical and pharmacological properties, such as antiviral, antitumor, antibacterial, and antiinflammatory properties. Some of them have been successfully used as calcium channel blockers, antihypertensive agents, and α1a-antagonists. Moreover, several marine alkaloids whose molecular structures contain the dihydropyrimidinone core also exhibit interesting biological activities. Therefore, synthesis of these type of compounds is still of great importance

  19. Multi-arrangement quantum dynamics in 6D: cis-trans isomerization and 1,3-hydrogen transfer in HONO

    International Nuclear Information System (INIS)

    Luckhaus, David

    2004-01-01

    The overtone spectrum and wave packet dynamics of nitrous acid (HONO) are studied with a global six-dimensional potential energy function interpolated directly from density functional calculations together with the corresponding dipole hypersurfaces. The quantum dynamics for the cis-trans isomerization and the symmetric 1,3-hydrogen transfer are treated in full dimensionality in terms of the generalized Z-matrix discrete variable representation. For the quantum mechanical description of complicated rearrangements a new approach to multi-arrangement quantum dynamics is introduced and applied to the symmetric hydrogen exchange tunneling in cis-HONO. The cis-trans isomerization is found to be dominated by adiabatic barrier crossing with only minor tunneling contributions, but with pronounced mode selectivity. The OH-stretching overtones of trans-HONO are adiabatically almost completely separated from the OH torsional dynamics with extremely slow intramolecular energy redistribution. The 1,3-hydrogen transfer, by contrast, proceeds largely via coherent tunneling even significantly below the barrier. The process is clearly non-adiabatic (at least in terms of valence coordinates) but remains highly state specific. While the absorption spectrum of trans-HONO remains largely unaffected, OH-stretching overtones of cis-HONO (above the barrier between 2ν OH and 3ν OH ) decompose into highly fragmented absorption patterns with corresponding tunneling periods on the picosecond time scale

  20. Self-Catalyzing Chemiluminescence of Luminol-Diazonium Ion and Its Application for Catalyst-Free Hydrogen Peroxide Detection and Rat Arthritis Imaging.

    Science.gov (United States)

    Zhao, Chunxin; Cui, Hongbo; Duan, Jing; Zhang, Shenghai; Lv, Jiagen

    2018-02-06

    We report the unique self-catalyzing chemiluminescence (CL) of luminol-diazonium ion (N 2 + -luminol) and its analytical potential. Visual CL emission was initially observed when N 2 + -luminol was subjected to alkaline aqueous H 2 O 2 without the aid of any catalysts. Further experimental investigations found peroxidase-like activity of N 2 + -luminol on the cleavage of H 2 O 2 into OH • radical. Together with other experimental evidence, the CL mechanism is suggested as the activation of N 2 + -luminol and its dediazotization product 3-hydroxyl luminol by OH • radical into corresponding intermediate radicals, and then further oxidation to excited-state 3-N 2 + -phthalic acid and 3-hydroxyphthalic acid, which finally produce 415 nm CL. The self-catalyzing CL of N 2 + -luminol provides us an opportunity to achieve the attractive catalyst-free CL detection of H 2 O 2 . Experiments demonstrated the 10 -8 M level detection sensitivity to H 2 O 2 as well as to glucose or uric acid if presubjected to glucose oxidase or uricase. With the exampled determination of serum glucose and uric acid, N 2 + -luminol shows its analytical potential for other analytes linking the production or consumption of H 2 O 2 . Under physiological condition, N 2 + -luminol exhibits highly selective and sensitive CL toward 1 O 2 among the common reactive oxygen species. This capacity supports the significant application of N 2 + -luminol for detecting 1 O 2 in live animals. By imaging the arthritis in LEW rats, N 2 + -luminol CL is demonstrated as a potential tool for mapping the inflammation-relevant biological events in a live body.

  1. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    Science.gov (United States)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  2. Evidence of quantum correlations in the H/D-transfer dynamics in the hydrogen bonds in partially deuterated benzoic acid crystals

    Science.gov (United States)

    Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.

    1992-10-01

    A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.

  3. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  4. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond; Zhong, Fangrui; Zheng, Bin; Meng, Yuezhong; Lu, Yixin; Huang, Kuo-Wei

    2013-01-01

    in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  5. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    Science.gov (United States)

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  6. Research and development on process components for hydrogen production. (1) Test-fabrication of sulfuric acid transfer pump

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Terada, Atsuhiko; Hino, Ryutaro; Kubo, Shinji; Onuki, Kaoru; Watanabe, Yutaka

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments to the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solutions of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components have been the crucial subjects of process development. This paper concerns the sulfuric acid transfer pump. The development has been implemented of a pump for transporting concentrated sulfuric acid at temperatures of higher than 300degC and at elevated pressure. Recent progress of these activities will be reported. (author)

  7. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions.

    Science.gov (United States)

    Bartocci, Silvia; Berrocal, José Augusto; Guarracino, Paola; Grillaud, Maxime; Franco, Lorenzo; Mba, Miriam

    2018-02-26

    The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and 1 H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light

  9. Poly(N-vinyl-2-pyrrolidone)-stabilized palladium-platinum nanoparticles-catalyzed hydrolysis of ammonia borane for hydrogen generation

    Science.gov (United States)

    Rakap, Murat

    2015-02-01

    The catalytic use of highly efficient poly(N-vinyl-2-pyrrolidone)-stabilized palladium-platinum nanoparticles (4.2 ± 1.9 nm) in the hydrolysis of ammonia-borane is reported. The catalyst is prepared by co-reduction of two metal ions in ethanol/water mixture by an alcohol reduction method and characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. They are recyclable and highly active for hydrogen generation from the hydrolysis of ammonia-borane even at very low concentrations and temperature, providing a record numbers of average turnover frequency value (125 mol H2/mol cat.min-1) and maximum hydrogen generation rate (3468 L H2 min-1 (mol cat)-1). They also provide activation energy of 51.7 ± 2 kJ/mol for the hydrolysis of ammonia borane.

  10. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  11. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Brett Kimball [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  12. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  13. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  14. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  15. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    Science.gov (United States)

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  16. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    Science.gov (United States)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  17. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Redox potential monitoring as a method to control unwanted noble metal-catalyzed hydrogen generation from formic acid treatment of simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.

    1998-01-01

    Simulants for the Hanford Waste Vitrification Plant feed containing the major nonradioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 - , and NO 2 - were used to study redox potential changes in reactions of formic acid at 90 C catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Such reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase and a redox electrode to follow redox potential changes as a function of time. In the initial phase of formic acid addition to nitrite-containing feed simulants, the redox potential of the reaction mixture rises typically to +400 mV relative to the Al/AgCl electrode because of the generation of the moderately strongly oxidizing nitrous acid. No H 2 production occurs at this stage of the reaction as long as free nitrous acid is present. After all of the nitrous acid has been destroyed by reduction to N 2 O and NO and disproportionation to NO/NO 3 - , the redox potential of the reaction mixture becomes more negative than the Ag/AgCl electrode. The experiments outlined in this paper suggest the feasibility of controlling the production of H 2 by limiting the amount of formic acid used and monitoring the redox potential during formic acid treatment

  19. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose.

    Science.gov (United States)

    Qian Tang, Xue; Dan Zhang, Yi; Wei Jiang, Zhong; Mei Wang, Dong; Zhi Huang, Cheng; Fang Li, Yuan

    2018-03-01

    In this work, Fe 3 O 4 and metal-organic framework MIL-101(Fe) composites (Fe 3 O 4 /MIL-101(Fe)) was demonstrated to possess excellent catalytic property to directly catalyze luminol chemiluminescence without extra oxidants. We utilized Fe 3 O 4 /MIL-101(Fe) to develop a ultra-sensitive quantitative analytical method for H 2 O 2 and glucose. The possible mechanism of the chemiluminescence reaction had been investigated. Under optimal conditions, the relative chemiluminescence intensity was linearly proportional to the logarithm of H 2 O 2 concentration in the range of 5-150nM with a limit of detection of 3.7nM (signal-to-noise ratio = 3), and glucose could be linearly detected in the range from 5 to 100nM and the detection limit was 4.9nM (signal-to-noise ratio = 3). Furthermore, the present approach was successfully applied to quantitative determination of H 2 O 2 in medical disinfectant and glucose in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhanced hydrogen production from water via a photo-catalyzed reaction using chalcogenide d-element nanoparticles induced by UV light.

    Science.gov (United States)

    El Naggar, Ahmed M A; Nassar, Ibrahim M; Gobara, Heba M

    2013-10-21

    Hydrogen has the potential to meet the requirements as a clean non-fossil fuel in the future. The photocatalytic production of H2 through water splitting has been demonstrated and enormous efforts have been published. The present work is an attempt to enhance the production of H2 during water splitting using synthesized nanoparticles based on chalcogenide d-element semiconductors via a photochemical reaction under UV-light in the presence of methanol as a hole-scavenger. In general, the enhanced activity of a semiconductor is most likely due to the effective charge separation of photo generated electrons and holes in the semiconductors. Hence, the utilization of different semiconductors in combination can consequently provide better hydrogen production. Accordingly in this research work, two different semiconductors, with different concentrations, either used individually or combined together were introduced. They in turn produced a high concentration of H2 as detected and measured using gas chromatography. Herein, data revealed that the nano-structured semiconductors prepared through this work are a promising candidate in the production of an enhanced H2 flux under visible UV radiation.

  1. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  2. CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation

    Science.gov (United States)

    Krishna Karuturi, Siva; Yew, Rowena; Reddy Narangari, Parvathala; Wong-Leung, Jennifer; Li, Li; Vora, Kaushal; Tan, Hark Hoe; Jagadish, Chennupati

    2018-03-01

    Cadmium sulfide (CdS) is a unique semiconducting material for solar hydrogen generation applications with a tunable, narrow bandgap that straddles water redox potentials. However, its potential towards efficient solar hydrogen generation has not yet been realized due to low photon-to-current conversions, high charge carrier recombination and the lack of controlled preparation methods. In this work, we demonstrate a highly efficient CdS/TiO2 heterostructured photoelectrode using atomic layer deposition and solution ion transfer reactions. Enabled by the well-controlled deposition of CdS nanocrystals on TiO2 inverse opal (TiIO) nanostructures using the proposed method, a saturation photocurrent density of 9.1 mA cm-2 is realized which is the highest ever reported for CdS-based photoelectrodes. We further demonstrate that the passivation of a CdS surface with an ultrathin amorphous layer (˜1.5 nm) of TiO2 improves the charge collection efficiency at low applied potentials paving the way for unassisted solar hydrogen generation.

  3. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    Science.gov (United States)

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  4. External Mass Transfer Model for Hydrogen Peroxide Decomposition by Terminox Ultra Catalase in a Packed-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Grubecki Ireneusz

    2017-06-01

    Full Text Available It is known that external diffusional resistances are significant in immobilized enzyme packed-bed reactors, especially at large scales. Thus, the external mass transfer effects were analyzed for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase in a packed-bed bioreactor. For this purpose the apparent reaction rate constants, kP, were determined by conducting experimental works at different superficial velocities, U, and temperatures. To develop an external mass transfer model the correlation between the Colburn factor, JD, and the Reynolds number, Re, of the type JD = K Re(n-1 was assessed and related to the mass transfer coefficient, kmL. The values of K and n were calculated from the dependence (am kp-1 - kR-1 vs. Re-1 making use of the intrinsic reaction rate constants, kR, determined before. Based on statistical analysis it was found that the mass transfer correlation JD = 0.972 Re-0.368 predicts experimental data accurately. The proposed model would be useful for the design and optimization of industrial-scale reactors.

  5. Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G⋅C Watson-Crick DNA Base Pairs in Solution.

    Science.gov (United States)

    Röttger, Katharina; Marroux, Hugo J B; Grubb, Michael P; Coulter, Philip M; Böhnke, Hendrik; Henderson, Alexander S; Galan, M Carmen; Temps, Friedrich; Orr-Ewing, Andrew J; Roberts, Gareth M

    2015-12-01

    Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron-driven proton transfer (EDPT) in Watson-Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine-cytosine (G⋅C) Watson-Crick base pairs by ultrafast time-resolved UV/visible and mid-infrared spectroscopy. The formation of an intermediate biradical species (G[-H]⋅C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G⋅C Watson-Crick pairs, but up to 10% of the initially excited molecules instead form a stable photoproduct G*⋅C* that has undergone double hydrogen-atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  7. Structural and Kinetic Evidence for an Extended Hydrogen-Bonding Network in Catalysis of Methyl Group Transfer

    International Nuclear Information System (INIS)

    Doukov, T.; Hemmi, H.; Drennan, C.; Ragsdale, S.

    2007-01-01

    The methyltetrahydrofolate (CH 3 -H 4 folate) corrinoid-ironsulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH3-H4folate to cob(I)amide. This key step in anaerobic CO and CO 2 fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH 3 -H 4 folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH 3 -H 4 folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH 3 -H 4 folate binding. An N199A variant exhibits only ∼20-fold weakened affinity for CH 3 -H 4 folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer

  8. A Bimetallic Nickel–Gallium Complex Catalyzes CO 2 Hydrogenation via the Intermediacy of an Anionic d 10 Nickel Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, Ryan C. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Vollmer, Matthew V. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Xie, Jing [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Ye, Jingyun [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Linehan, John C. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Burgess, Samantha A. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Appel, Aaron M. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Gagliardi, Laura [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Lu, Connie C. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States

    2017-09-28

    Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centred catalysts. The Lewis acidic Ga(III) ion plays a pivotal role by stabilizing reactive catalytic intermediates, including a rare anionic d10 Ni hydride. The structure of this reactive intermediate shows a terminal Ni-H, for which the hydride donor strength rivals those of precious metal-hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis. The work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award DE-SC0012702. R.C.C. and M.V.V. were supported by DOE Office of Science Graduate Student Research and National Science Foundation Graduate Research Fellowship programs, respectively. J.C.L., S.A.B., and A.M.A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  9. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  10. 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer

    International Nuclear Information System (INIS)

    Ni Meng

    2013-01-01

    Highlights: ► A heat and mass transfer model is developed for a compact reformer. ► Hydrogen production from methane steam reforming is simulated. ► Increasing temperature greatly increases the reaction rates at the inlet. ► Temperature in the downstream is increased at higher rate of heat supply. ► Larger permeability enhances gas flow and reaction rates in the catalyst layer. - Abstract: Compact reformers (CRs) are promising devices for efficient fuel processing. In CRs, a thin solid plate is sandwiched between two catalyst layers to enable efficient heat transfer from combustion duct to the reforming duct for fuel processing. In this study, a 2D heat and mass transfer model is developed to investigate the fundamental transport phenomenon and chemical reaction kinetics in a CR for hydrogen production by methane steam reforming (MSR). Both MSR reaction and water gas shift reaction (WGSR) are considered in the numerical model. Parametric simulations are performed to examine the effects of various structural/operating parameters, such as pore size, permeability, gas velocity, temperature, and rate of heat supply on the reformer performance. It is found that the reaction rates of MSR and WGSR are the highest at the inlet but decrease significantly along the reformer. Increasing the operating temperature raises the reaction rates at the inlet but shows very small influence in the downstream. For comparison, increasing the rate of heat supply raises the reaction rates in the downstream due to increased temperature. A high gas velocity and permeability facilitates gas transport in the porous structure thus enhances reaction rates in the downstream of the reformer.

  11. Kinetics and mechanisms of the oxidation of alcohols and hydroxylamines by hydrogen peroxide, catalyzed by methyltrioxorhenium, MTO, and the oxygen binding properties of cobalt Schiff base complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zauche, Timothy [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Catalysis is a very interesting area of chemistry, which is currently developing at a rapid pace. A great deal of effort is being put forth by both industry and academia to make reactions faster and more productive. One method of accomplishing this is by the development of catalysts. Enzymes are an example of catalysts that are able to perform reactions on a very rapid time scale and also very specifically; a goal for every man-made catalyst. A kinetic study can also be carried out for a reaction to gain a better understanding of its mechanism and to determine what type of catalyst would assist the reaction. Kinetic studies can also help determine other factors, such as the shelf life of a chemical, or the optimum temperature for an industrial scale reaction. An area of catalysis being studied at this time is that of oxygenations. Life on this earth depends on the kinetic barriers for oxygen in its various forms. If it were not for these barriers, molecular oxygen, water, and the oxygenated materials in the land would be in a constant equilibrium. These same barriers must be overcome when performing oxygenation reactions on the laboratory or industrial scale. By performing kinetic studies and developing catalysts for these reactions, a large number of reactions can be made more economical, while making less unwanted byproducts. For this dissertation the activation by transition metal complexes of hydrogen peroxide or molecular oxygen coordination will be discussed.

  12. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, Takao; Kataoka, Kunishige [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  13. Loss of ammonia during electron-transfer dissociation of deuterated peptides as an inherent gauge of gas-phase hydrogen scrambling

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2010-01-01

    detected by a depletion of deuterium when deuterated ammonia is lost from peptides during ETD. This straightforward method requires no modifications to the experimental workflow and has the great advantage that the occurrence of hydrogen scrambling can be directly detected in the actual peptides analyzed......The application of electron-transfer dissociation (ETD) to obtain single-residue resolution in hydrogen exchange-mass spectrometry (HX-MS) experiments has recently been demonstrated. For such measurements, it is critical to ensure that the level of gas-phase hydrogen scrambling is negligible. Here...... we utilize the abundant loss of ammonia upon ETD of peptide ions as a universal reporter of positional randomization of the exchangeable hydrogens (hydrogen scrambling) during HX-ETD experiments. We show that the loss of ammonia from peptide ions proceeds without depletion of deuterium when employing...

  14. Direct electron transfer biosensor for hydrogen peroxide carrying nanocomplex composed of horseradish peroxidase and Au-nanoparticle – Characterization and application to bienzyme systems

    Directory of Open Access Journals (Sweden)

    Yusuke Okawa

    2015-09-01

    Full Text Available A reagentless electrochemical biosensor for hydrogen peroxide was fabricated. The sensor carries a monolayer of nanocomplex composed of horseradish peroxidase and Au-nanoparticle, and responds to hydrogen peroxide through the highly efficient direct electron transfer at a mild electrode potential without any soluble mediator. Formation of the nanocomplex was studied with visible spectroscopy and size exclusion chromatography. The sensor performance was analyzed based on a hydrodynamic electrochemical technique and enzyme kinetics. The sensor was applied to fabrication of sensors for glucose and uric acid through further modification of the nanocomplex-carrying electrode with the corresponding hydrogen peroxide-generating oxidases, glucose oxidase and urate oxidase, respectively.

  15. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water

  16. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin....... The deuterium labeling pattern of beta2-microglobulin is retained in the gaseous fragment ions by employing mild declustering conditions for electrospray ionization. A recently developed model peptide is used to arrive at such ion source declustering conditions that prevent the occurrence of intramolecular gas...

  17. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  18. Deprotonation of flavonoids severely alters the thermodynamics of the hydrogen atom transfer

    Czech Academy of Sciences Publication Activity Database

    Klein, E.; Rimarčík, J.; Senajová, E.; Vagánek, A.; Lengyel, Jozef

    2016-01-01

    Roč. 1085, JUN 2016 (2016), s. 7-17 ISSN 2210-271X R&D Projects: GA ČR GA14-14082S Institutional support: RVO:61388955 Keywords : Primary antioxidant * Flavonoid * dft * Bond dissociation enthalpy * Sequential proton-loss electron-transfer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.549, year: 2016

  19. Heat transfer problems for the production of hydrogen from geothermal energy

    International Nuclear Information System (INIS)

    Sigurvinsson, J.; Mansilla, C.; Arnason, B.; Bontemps, A.; Marechal, A.; Sigfusson, T.I.; Werkoff, F.

    2006-01-01

    Electrolysis at low temperature is currently used to produce Hydrogen. From a thermodynamic point of view, it is possible to improve the performance of electrolysis while functioning at high temperature (high temperature electrolysis: HTE). That makes it possible to reduce energy consumption but requires a part of the energy necessary for the dissociation of water to be in the form of thermal energy. A collaboration between France and Iceland aims at studying and then validating the possibilities of producing hydrogen with HTE coupled with a geothermal source. The influence of the exit temperature on the cost of energy consumption of the drilling well is detailed. To vaporize the water to the electrolyser, it should be possible to use the same technology currently used in the Icelandic geothermal context for producing electricity by using a steam turbine cycle. For heating the steam up to the temperature needed at the entrance of the electrolyser three kinds of heat exchangers could be used, according to specific temperature intervals

  20. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    Science.gov (United States)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  1. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    Science.gov (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  2. Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles

    International Nuclear Information System (INIS)

    Vaessen, P.H.M.

    1984-01-01

    In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)

  3. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol

    DEFF Research Database (Denmark)

    Hansen, Thomas Søndergaard; Barta, Katalin; Anastas, Paul T.

    2012-01-01

    Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions. The hyd......Catalytic conversion of HMF to valuable chemicals was achieved over a Cu-doped porous metal oxide in supercritical methanol. The hydrotalcite catalyst precursor is prepared following simple synthetic procedures, using inexpensive and earth-abundant starting materials in aqueous solutions....... The hydrogen equivalents needed for the reductive deoxygenation of HMF originate from the solvent itself upon its reforming. Dimethylfuran, dimethyltetrahydrofuran and 2-hexanol were obtained in good yields. At milder reaction temperatures, a combined yield (DMF + DMTHF) of 58% was achieved. Notably...

  4. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  5. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  6. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang

    2014-11-07

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  7. Carrier gas effects on aluminum-catalyzed nanowire growth

    International Nuclear Information System (INIS)

    Ke, Yue; Hainey, Mel Jr; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-01-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor–solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor–solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH_4 adsorption thereby reducing vapor–solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH_4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. (paper)

  8. Analysis of the effects of explosion of a hydrogen cylinder on the transfer of radioactive liquid wastes at nuclear power stations

    International Nuclear Information System (INIS)

    Lopes, Karina B.; Melo, Paulo Fernando F.F. e

    2011-01-01

    This work presents a study of explosion effects of a stored hydrogen cylinder on the transfer of radioactive liquid wastes at nuclear power plants. The peak overpressure is calculated, as well as the strength of resulting fragments, thus confirming the main harmful effect of an explosion of flammable vapor cloud, based on the TNT equivalent method. The scenarios identified are calculated and compared with the overpressure ranges of 1%, 50% and 99% of structural damages, which were determined by the Eisenberg's vulnerability model. The results show that the overpressure and the resulting fragments from the explosion of a hydrogen gas cylinder are not able to cause the overturning of the tanker under study, and also show that a minimum distance of 30 meters between the hydrogen cylinder and the tanker can be considered a safe distance to the passage of this tanker during the transfer of radioactive liquid waste, in which the likelihood of occurrence of structural damages is less than 1%. (author)

  9. Time of flight spectroscopy with muonic hydrogen

    International Nuclear Information System (INIS)

    Marshall, G.M.; Bailey, J.M.; Beer, G.A.

    1993-01-01

    Time of flight techniques coupled with muonic deuterium and tritium atoms in vacuum can be used to measure parameters important in the understanding of muon catalyzed fusion interactions. Muonic deuterium atomic beams with energy of order 1 eV have been produced via transfer and emission from solid hydrogen containing small deuterium concentrations. Measurements of energy loss in pure deuterium are presented which test calculations of σ μd+D . Muonic tritium beams should be produced in a similar way, with an energy distribution which overlaps the predicted muonic molecular (dμt) formation resonances. The existence of resonances is crucial for high cycling rates in muon catalyzed fusion, but direct experimental verification of strengths and energies is not yet possible by other means. Results of simulations demonstrate how the resonance structure might be confirmed

  10. Transferring metallic nano-island on hydrogen passivated silicon surface for nano-electronics

    International Nuclear Information System (INIS)

    Deng, J; Troadec, C; Joachim, C

    2009-01-01

    In a planar configuration, precise positioning of ultra-flat metallic nano-islands on semiconductor surface opens a way to construct nanostructures for atomic scale interconnects. Regular triangular Au nano-islands have been grown on atomically flat MoS 2 substrates and manipulated by STM to form nanometer gap metal-pads connector for single molecule electronics study. The direct assembly of regular shaped metal nano-islands on H-Si(100) is not achievable. Here we present how to transfer Au triangle nano-islands from MoS 2 onto H-Si(100) in a clean manner. In this experiment, clean MoS 2 substrates are patterned as array of MoS 2 pillars with height of 8 μm. The Au triangle nano-islands are grown on top of the pillars. Successful printing transfer of these Au nano-islands from the MoS 2 pillars to the H-Si(100) is demonstrated.

  11. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen; Etudes electrochimiques de chaines de transfert d'electrons photosynthetiques ou vers une photoproduction biomimetique d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Fourmond, V

    2007-04-15

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  12. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  13. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    Science.gov (United States)

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  14. Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers

    International Nuclear Information System (INIS)

    Hoechbauer, T.; Misra, A.; Nastasi, M.; Henttinen, K.; Suni, T.; Suni, I.; Lau, S.S.; Ensinger, W.

    2004-01-01

    Hydrogen ion-implantation into Si and subsequent heat treatment has been shown to be an effective means of cleaving thin layer of Si from its parent wafer. This process has been called Smart Cut TM or ion-cut. We investigated the cleavage process in H-implanted silicon samples, in which the ion-cut was provoked thermally and mechanically, respectively. A oriented p-type silicon wafer was irradiated at room temperature with 100 keV H 2 + -ions to a dose of 5 x 10 16 H 2 /cm 2 and subsequently joined to a handle wafer. Ion-cutting was achieved by two different methods: (1) thermally by annealing to 350 deg. C and (2) mechanically by insertion of a razor blade sidewise into the bonded wafers near the bond interface. The H-concentration and the crystal damage depth profiles before and after the ion-cut were investigated through the combined use of elastic recoil detection analysis and Rutherford backscattering spectroscopy (RBS). The location at which the ion-cut occurred was determined by RBS in channeling mode and cross-section transmission electron spectroscopy. The ion-cut depth was found to be independent on the cutting method. The gained knowledge was correlated to the depth distribution of the H-platelet density in the as-implanted sample, which contains two separate peaks in the implantation zone. The obtained results suggest that the ion-cut location coincides with the depth of the H-platelet density peak located at a larger depth

  15. Furfural to Furfuryl Alcohol: Computational Study of the Hydrogen Transfer on Lewis Acidic BEA Zeolites and Effects of Cation Exchange and Tetravalent Metal Substitution.

    Science.gov (United States)

    Prasertsab, Anittha; Maihom, Thana; Probst, Michael; Wattanakit, Chularat; Limtrakul, Jumras

    2018-06-04

    The hydrogen transfer of furfural to furfuryl alcohol with i-propanol as the hydrogen source over cation-exchanged Lewis acidic BEA zeolite has been investigated by means of density functional calculations. The reaction proceeds in three steps. First the O-H bond of i-propanol is broken to form a propoxide intermediate. After that, the furylmethoxy intermediate is formed via hydrogen transfer process, and finally furylmethoxy abstracts the proton to form the furfuryl alcohol product. The second step is rate-determining by requiring the highest activation energy (23.8 kcal/mol) if the reaction takes place on Li-Sn-BEA zeolite. We find that the catalytic activity of various cation-exchanged Sn-BEA zeolites is in the order Li-Sn-BEA > Na-Sn-BEA > K-Sn-BEA. The lower activation energy for Li-Sn-BEA compared to Na-Sn-BEA and K-Sn-BEA can be explained by the larger charge transfer from the carbonyl bond to the catalyst, leading to its activation and to the attraction of the hydrogen being transferred. The larger charge transfer in turn is due to the smaller gap between the energies of furfural HOMO and the zeolite LUMO in Li-Sn-BEA, compared to both Na-Sn-BEA and K-Sn-BEA. In a similar way, we also compare the catalytic activity of tetravalent metal centers (Sn, Zr, and Hf) substituted into BEA and find in the order Zr ≥ Hf > Sn, based on activation energies. Finally we investigate statistically which property of the reactants is a suitable descriptor for an approximative prediction of the reaction rate in order to be able to quickly screen promising catalytic materials for this reaction.

  16. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  17. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  18. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide

    Science.gov (United States)

    Vadola, Paul A.; Sames, Dalibor

    2010-01-01

    We report a catalytic intramolecular coupling between terminal unactivated alkynes and sp3 C-H bonds via the through-space hydride transfer (HT-cyclization of alkynes). This method enables one-step preparation of complex heterocyclic compounds by α-alkenylation of readily available cyclic ethers and amines. We show that PtI4 is an effective Lewis acid catalyst for the activation of terminal alkynes for the hydride attack and subsequent C-C bond formation. In addition, we have shown that the activity of neutral platinum salts (PtXn) can be modulated by the halide ligands. This modulation in turn allows for fine-tuning of the platinum center reactivity to match the reactivity and stability of selected substrates and products. PMID:19852462

  19. The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone.

    Science.gov (United States)

    Wang, Yiming; Landry, Aaron P; Ding, Huangen

    2017-06-16

    Increasing evidence suggests that mitoNEET, a target of the type II diabetes drug pioglitazone, is a key regulator of energy metabolism in mitochondria. MitoNEET is anchored to the mitochondrial outer membrane via its N-terminal α helix domain and hosts a redox-active [2Fe-2S] cluster in its C-terminal cytosolic region. The mechanism by which mitoNEET regulates energy metabolism in mitochondria, however, is not fully understood. Previous studies have shown that mitoNEET specifically interacts with the reduced flavin mononucleotide (FMNH 2 ) and that FMNH 2 can quickly reduce the mitoNEET [2Fe-2S] clusters. Here we report that the reduced mitoNEET [2Fe-2S] clusters can be readily oxidized by oxygen. In the presence of FMN, NADH, and flavin reductase, which reduces FMN to FMNH 2 using NADH as the electron donor, mitoNEET mediates oxidation of NADH with a concomitant reduction of oxygen. Ubiquinone-2, an analog of ubiquinone-10, can also oxidize the reduced mitoNEET [2Fe-2S] clusters under anaerobic or aerobic conditions. Compared with oxygen, ubiquinone-2 is more efficient in oxidizing the mitoNEET [2Fe-2S] clusters, suggesting that ubiquinone could be an intrinsic electron acceptor of the reduced mitoNEET [2Fe-2S] clusters in mitochondria. Pioglitazone or its analog NL-1 appears to inhibit the electron transfer activity of mitoNEET by forming a unique complex with mitoNEET and FMNH 2 The results suggest that mitoNEET is a redox enzyme that may promote oxidation of NADH to facilitate enhanced glycolysis in the cytosol and that pioglitazone may regulate energy metabolism in mitochondria by inhibiting the electron transfer activity of mitoNEET. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution

    Science.gov (United States)

    Shi, Jian-Wen; Ma, Dandan; Zou, Yajun; Fan, Zhaoyang; Shi, Jinwen; Cheng, Linhao; Ji, Xin; Niu, Chunming

    2018-03-01

    The design of efficient and stable photocatalyst plays a critical role in the photocatalytic hydrogen evolution from water splitting. Herein, we develop a novel ZnS/CdS/ZnO ternary heterostructure by the in-situ sulfuration of CdS/ZnO, which includes four contact interfaces: CdS-ZnS interface, ZnS-ZnO interface, CdS-ZnO interface and ZnS-CdS-ZnO ternary interface, forming three charge carrier-transfer modes (type-I, type-II and direct Z-scheme) through five carrier-transfer pathways. As a result, the separation and transfer of photoexcited electron-hole pairs are promoted significantly, resulting in a high hydrogen evolution rate of 44.70 mmol h-1 g-1, which is 2, 3.7 and 8 times higher than those of binary heterostructures, CdS/ZnO, CdS/ZnS and ZnS/ZnO, respectively, and 26.5, 280 and 298 times higher than those of single CdS, ZnO and ZnS, respectively. As a counterpart ternary heterostructure, CdS/ZnS/ZnO contains only two interfaces: CdS-ZnS interface and ZnS-ZnO interface, which form two charge carrier-transfer modes (type-I and type-II) through two carrier-transfer pathways, leading to its much lower hydrogen evolution rate (27.25 mmol h-1 g-1) than ZnS/CdS/ZnO ternary heterostructure. This work is relevant for understanding the charge-transfer pathways between multi-interfaces in multicomponent heterojunctions.

  1. Low energy cross section data for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions with atoms and molecules

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    2007-04-01

    Systematic cross section measurements for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions in low energy collisions with atoms and molecules have been performed continuously by the identical apparatus installed with an octo-pole ion beam guide (OPIG) since 1980 till 2004. Recently, all of accumulated cross section data for a hundred collision systems has been entered into CMOL and CHART of the NIFS atomic and molecular numerical database together with some related cross section data. In this present paper, complicated ion-molecule reactions in hydrogen systems are revealed and the brief outlines of specific properties in low energy charge transfer collisions of multiply charged ions with atoms and molecules are introduced. (author)

  2. Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2'-biimidazole: hydrogen bonding and proton transfer.

    Science.gov (United States)

    Cui, Ying; Mo, Hao-Jun; Chen, Jin-Can; Niu, Yan-Li; Zhong, Yong-Rui; Zheng, Kang-Cheng; Ye, Bao-Hui

    2007-08-06

    A new anion sensor [Ru(bpy)2(H2biim)](PF6)2 (1) (bpy = 2,2'-bipyridine and H2biim = 2,2'-biimidazole) has been developed, in which the Ru(II)-bpy moiety acts as a chromophore and the H2biim ligand as an anion receptor via hydrogen bonding. A systematic investigation shows that 1 is an eligible sensor for various anions. It donates protons for hydrogen bonding to Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, and OAc- anions and further actualizes monoproton transfer to the OAc- anion, changing color from yellow to orange brown. The fluoride ion has a high affinity toward the N-H group of the H2biim ligand for proton transfer, rather than hydrogen bonding, because of the formation of the highly stable HF2- anion, resulting in stepwise deprotonation of the two N-H fragments. These processes are signaled by vivid color changes from yellow to orange brown and then to violet because of second-sphere donor-acceptor interactions between Ru(II)-H2biim and the anions. The significant color changes can be distinguished visually. The processes are not only determined by the basicity of anion but also by the strength of hydrogen bonding and the stability of the anion-receptor complexes. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of anion sensors.

  3. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines

    Czech Academy of Sciences Publication Activity Database

    Matuška, O.; Zápal, Jakub; Hrdličková, R.; Mikoška, M.; Pecháček, J.; Vilhanová, B.; Václavík, Jiří; Kuzma, Marek; Kačer, P.

    2016-01-01

    Roč. 118, č. 1 (2016), s. 215-222 ISSN 1878-5190 R&D Projects: GA ČR GAP106/12/1276; GA ČR(CZ) GA15-08992S; GA MŠk(CZ) LO1509 Institutional support: RVO:61388971 Keywords : Ruthenium * Asymmetric transfer hydrogenation * Dihydroisoquinolines Subject RIV: EE - Microbiology, Virology Impact factor: 1.264, year: 2016

  4. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  5. Studies on the Mechanism of Electron Bifurcation Catalyzed by Electron Transferring Flavoprotein (Etf) and Butyryl-CoA Dehydrogenase (Bcd) of Acidaminococcus fermentans*

    Science.gov (United States)

    Chowdhury, Nilanjan Pal; Mowafy, Amr M.; Demmer, Julius K.; Upadhyay, Vikrant; Koelzer, Sebastian; Jayamani, Elamparithi; Kahnt, Joerg; Hornung, Marco; Demmer, Ulrike; Ermler, Ulrich; Buckel, Wolfgang

    2014-01-01

    Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD+ complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH− is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH− by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD⨪, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH•, immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH− that converts crotonyl-CoA to butyryl-CoA. PMID:24379410

  6. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans.

    Science.gov (United States)

    Chowdhury, Nilanjan Pal; Mowafy, Amr M; Demmer, Julius K; Upadhyay, Vikrant; Koelzer, Sebastian; Jayamani, Elamparithi; Kahnt, Joerg; Hornung, Marco; Demmer, Ulrike; Ermler, Ulrich; Buckel, Wolfgang

    2014-02-21

    Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.

  7. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger.

    Science.gov (United States)

    Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L

    2015-11-15

    The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long

  8. Heat transfer characteristics evaluation of heat exchangers of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Shimizu, Akira; Ohashi, Hirofumi; Kato, Michio; Hayashi, Koji; Aita, Hideki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki; Inagaki, Yoshiyuki; Hanawa, Hiromi; Fujisaki, Katsuo; Yonekawa, Hideo

    2005-06-01

    Connection of hydrogen production system by steam reforming of methane to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been surveyed until now. Mock-up test facility of this steam reforming system with full-scale reaction tube was constructed in FY 2001 and hydrogen of 120 Nm 3 /h was successfully produced in overall performance test. Totally 7 times operational tests were performed from March 2002 to December 2004. A lot of operational test data on heat exchanges were obtained in these tests. In this report specifications and structures of steam reformer, steam superheater, steam generator, condenser, helium gas cooler, feed gas heater and feed gas superheater were described. Heat transfer correlation equations for inside and outside tube were chosen from references. Spreadsheet programs were newly made to evaluate heat transfer characteristics from measured test data such as inlet and outlet temperature pressure and flow-rate. Overall heat-transfer coefficients obtained from the experimental data were compared and evaluated with the calculated values with heat transfer correlation equation. As a result, actual measurement values of all heat exchangers gave close agreement with the calculated values with correlation equations. Thermal efficiencies of the heat exchangers were adequate as they were well accorded with design value. (author)

  9. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  10. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer.

    Science.gov (United States)

    Sibi, Mukund P; Sausker, Justin B

    2002-02-13

    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  11. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  12. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    Science.gov (United States)

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanotube Adsorption for the Capture and Re-liquefaction of Hydrogen Biol-Off During Tanker Transfer Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal discloses an innovative, economically feasible technique to capture and re-liquefy the hydrogen boil-off by using carbon nanotube adsorption prior to...

  14. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  15. Kinetic evidence for the formation of discrete 1,4-dehydrobenzene intermediates. Trapping by inter- and intramolecular hydrogen atom transfer and observation of high-temperature CIDNP

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Thomas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Comita, Paul B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Bergman, Robert G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)

    1981-07-01

    Upon heating, alkyl-substituted cis-1,2-diethynyl olefins undergo cyclization to yield reactive 1,4-dehydrobenzenes; the products isolated may be derived from either unimolecular or bimolecular reactions of the intermediate. (Z)-4,5-Diethynyl-4-octene (4) undergoes rearrangement to yield 2,3-di-n-propyl-1,4-dehydrobenzene (17). Solution pyrolysis of 4 in inert aromatic solvents produces three unimolecular products, (Z)-dodeca-4,8-diyn-6-ene (7), benzocyclooctene (9), and o-allyl-n-propylbenzene (10), in high yield. When 1,4-cyclohexadiene is added to the pyrolysis solution as a trapping agent, high yields of the reduced product o-di-n-propylbenzene (12) are obtained. The kinetics of solution pyrolysis of 4 in the presence and absence of trapping agent establish that 2,3-di-n-propyl-1,4-dehydrobenzene is a discrete intermediate on the pathway leading to products. When the reaction was run in the heated probe of an NMR spectrometer, CIDNP was observed in 10. This observation, along with kinetic and chemical trapping evidence, indicates the presence of two additional intermediates, formed from 17 by sequential intramolecular [1,5] hydrogen transfer, on the pathway to products. The observation of CIDNP, coupled with the reactivity exhibited by 17 and the other two intermediates, implicate a biradical description of these molecules. Biradical 17 has been estimated to have a lifetime of about 10-9 s at 200°C and to lie in a well of about 5 kcal/mol with respect to the lowest energy unimolecular pathway ([1,5] hydrogen transfer). Ring opening (expected to be the lowest energy process for 1,4-dehydrobenzenes in which intramolecular hydrogen transfer is unlikely) to the isomeric diethynyl olefin 7 appears to have an activation enthalpy of about 10 kcal/moL Upon thermal reaction in the gas phase (400°C) or in solution in inert solvents (Z)-hexa-2,3-diethyl-1,5-diyn-3-ene (5) rearranges in good yield to the isomeric diethynyl olefin (Z)-deca-3,7-diyn-5-ene (8

  16. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  17. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics

    DEFF Research Database (Denmark)

    Pinilla-Herrero, Irene; Borfecchia, Elisa; Holzinger, Julian

    2018-01-01

    suggest that catalytic activity is associated with [Zn(H2O)n(OH)]+ species located in the exchange positions of the materials with little or no contribution of ZnO or metallic Zn. The effect of Zn/Al ratio on their catalytic performance in methanol conversion to aromatics has been investigated. In all...... cases, higher Zn content causes an increase in the yield of aromatics while keeping the production of alkanes low. For similar Zn contents, high densities of Al sites favour the hydrogen transfer reactions and alkane formation whereas in samples with low Al contents, and thus higher Zn/Al ratio...

  18. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  19. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  20. Heat and Mass Transfer during Hydrogen Generation in an Array of Fuel Bars of a BWR Using a Periodic Unit Cell

    Directory of Open Access Journals (Sweden)

    H. Romero-Paredes

    2012-01-01

    Full Text Available This paper presents, the numerical analysis of heat and mass transfer during hydrogen generation in an array of fuel cylinder bars, each coated with a cladding and a steam current flowing outside the cylinders. The analysis considers the fuel element without mitigation effects. The system consists of a representative periodic unit cell where the initial and boundary-value problems for heat and mass transfer were solved. In this unit cell, we considered that a fuel element is coated by a cladding with steam surrounding it as a coolant. The numerical simulations allow describing the evolution of the temperature and concentration profiles inside the nuclear reactor and could be used as a basis for hybrid upscaling simulations.

  1. New efficient hydrogen process production from organosilane hydrogen carriers derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Jean Michel [Unite URMITE, UMR 6236 CNRS, Faculte de Medecine et de Pharmacie, Universite de la Mediterranee, 27 boulevard Jean Moulin, 13385 Marseille 05 (France)

    2010-04-15

    While the source of hydrogen constitutes a significant scientific challenge, addressing issues of hydrogen storage, transport, and delivery is equally important. None of the current hydrogen storage options, liquefied or high pressure H{sub 2} gas, metal hydrides, etc.. satisfy criteria of size, costs, kinetics, and safety for use in transportation. In this context, we have discovered a methodology for the production of hydrogen on demand, in high yield, under kinetic control, from organosilane hydrogen carriers derivatives and methanol as co-reagent under mild conditions catalyzed by a cheap ammonium fluoride salt. Finally, the silicon by-products can be efficiently recycle leading to an environmentally friendly source of energy. (author)

  2. Photochemically engineering the metal-semiconductor interface for room-temperature transfer hydrogenation of nitroarenes with formic acid.

    Science.gov (United States)

    Li, Xin-Hao; Cai, Yi-Yu; Gong, Ling-Hong; Fu, Wei; Wang, Kai-Xue; Bao, Hong-Liang; Wei, Xiao; Chen, Jie-Sheng

    2014-12-08

    A mild photochemical approach was applied to construct highly coupled metal-semiconductor dyads, which were found to efficiently facilitate the hydrogenation of nitrobenzene. Aniline was produced in excellent yield (>99 %, TOF: 1183) using formic acid as hydrogen source and water as solvent at room temperature. This general and green catalytic process is applicable to a wide range of nitroarenes without the involvement of high-pressure gases or sacrificial additives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Haisong [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Conjugated dienes were oxidized by hydrogen peroxide with methylrhenium trioxide (MTO) as catalyst. Methylrhenium bis-peroxide was the major reactive catalyst present. Hydroxyalkenes and trisubstituted silane were also tested. Mechanisms for each of these reactions are presented.

  4. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  5. Energy of Intramolecular Hydrogen Bonding in ortho-Hydroxybenzaldehydes, Phenones and Quinones. Transfer of Aromaticity from ipso-Benzene Ring to the Enol System(s

    Directory of Open Access Journals (Sweden)

    Danuta Rusinska-Roszak

    2017-03-01

    Full Text Available Intramolecular hydrogen bonding (HB is one of the most studied noncovalent interactions of molecules. Many physical, spectral, and topological properties of compounds are under the influence of HB, and there are many parameters used to notice and to describe these changes. Hitherto, no general method of measurement of the energy of intramolecular hydrogen bond (EHB has been put into effect. We propose the molecular tailoring approach (MTA for EHB calculation, modified to apply it to Ar-O-H∙∙∙O=C systems. The method, based on quantum calculations, was checked earlier for hydroxycarbonyl-saturated compounds, and for structures with resonance-assisted hydrogen bonding (RAHB. For phenolic compounds, the accuracy, repeatability, and applicability of the method is now confirmed for nearly 140 structures. For each structure its aromaticity HOMA indices were calculated for the central (ipso ring and for the quasiaromatic rings given by intramolecular HB. The comparison of calculated HB energies and values of estimated aromaticity indices allowed us to observe, in some substituted phenols and quinones, the phenomenon of transfer of aromaticity from the ipso-ring to the H-bonded ring via the effect of electron delocalization.

  6. Role of hydrogen-bonding and photoinduced electron transfer (PET) on the interaction of resorcinol based acridinedione dyes with Bovine Serum Albumin (BSA) in water

    International Nuclear Information System (INIS)

    Kumaran, Rajendran; Vanjinathan, Mahalingam; Ramamurthy, Perumal

    2015-01-01

    Resorcinol based acridinedione (ADDR) dyes are a class of laser dyes and have structural similarity with purine derivatives, nicotinamide adenine dinucleotide (NADH) analogs. These dyes are classified into photoinduced electron transfer (PET) and non-photoinduced electron transfer dyes, and the photophysical properties of family of these dyes exhibiting PET behavior are entirely different from that of non-PET dyes. The PET process in ADDR dyes is governed by the solvent polarity such that an ADDR dye exhibits PET process through space in an aprotic solvent like acetonitrile and does not exhibit the same in protic solvents like water and methanol. A comparison on the fluorescence emission, lifetime and nature of interaction of various ADDR dyes with a large globular protein like Bovine Serum Albumin (BSA) was carried out in aqueous solution. The interaction of PET based ADDR dyes with BSA in water is found to be largely hydrophobic, but hydrogen-bonding interaction of BSA with dye molecule influences the fluorescence emission of the dye and shifts the emission towards red region. Fluorescence spectral studies reveal that the excited state properties of PET based ADDR dyes are largely influenced by the addition of BSA. The microenvironment around the dye results in significant change in the fluorescence lifetime and emission. Fluorescence enhancement with a red shift in the emission results after the addition of BSA to ADDR dyes containing free amino hydrogen in the 10th position of basic acridinedione dye. The amino hydrogen (N–H) in the 10th position of ADDR dye is replaced by methyl group (N–CH 3 ), a significant decrease in the fluorescence intensity with no apparent shift in the emission maximum was observed after the addition of BSA. The nature of interaction between ADDR dyes with BSA is hydrogen-bonding and the dye remains unbound even at the highest concentration of BSA. Circular Dichroism (CD) studies show that the addition of dye to BSA results in a

  7. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  8. Asymmetric Transfer Hydrogenation of 1-Aryl-3,4-Dihydroisoquinolines Using a Cp*Ir(TsDPEN) Complex

    Czech Academy of Sciences Publication Activity Database

    Václavíková Vilhanová, B.; Budinská, Alena; Václavík, Jiří; Matoušek, V.; Kuzma, M.; Červený, L.

    2017-01-01

    Roč. 2017, č. 34 (2017), s. 5131-5134 ISSN 1434-193X Institutional support: RVO:61388963 Keywords : 1-aryl-3,4-dihydroisoquinolines * asymmetric synthesis * hydrogenation * iridium * phosphoric acid Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.834, year: 2016

  9. Differential cross sections for transfer into the 2S state of hydrogen: H+ + H2, H+ + D2

    International Nuclear Information System (INIS)

    Williams, D.G.; Lee, A.R.; Butcher, E.C.

    1986-01-01

    Differential cross sections for electron capture into the 2S state of hydrogen are presented for the reactions H + + H 2 and H + + D 2 . The results are for laboratory collision energies between 3.3 and 24 keV and scattering angles between 30 and 90'. The measurements expand on the results previously presented. (author)

  10. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  11. Electron-transfer reactions of extremely small AgI colloids

    International Nuclear Information System (INIS)

    Vucemilovic, M.I.; Micic, O.I.

    1988-01-01

    Small colloidal AgI particles (particle diameter 20-50 A) have been prepared in water and acetonitrile, and optical effects due to size quantization have been observed. Electron transfer reactions involving electron donors and electron acceptors with AgI have been studied by pulse radiolysis techniques. Both reduction and oxidation of the colloids led to transient bleaching of semiconductor absorption. The recovery of the bleaching has been attributed to corrosion processes. Electrons injected into AgI colloids produce metallic silver and hydrogen. Hydrogen evolution is catalyzed by metallic silver formation. (author)

  12. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu; Adhikari, Aniruddha; Parida, Manas R.; Aly, Shawkat Mohammede; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex

  13. Chirality Transfer and Modulation in LB Films Derived From the Diacetylene/Melamine Hydrogen-Bonded Complex.

    Science.gov (United States)

    Zhu, Yu; Xu, Yangyang; Zou, Gang; Zhang, Qijin

    2015-08-01

    Introduction of hydrogen-bonding interaction into π-conjugated systems is a promising strategy, since the highly selective and directional hydrogen-bonding can increase the binding strength, provide enhanced stability to the assemblies, and position the π-conjugated molecules in a desired arrangement. The helical packing of the rigid melamine cores seems to play a dominating role in the subsequent formation of the peripheral helical PDA backbone. The polymerized Langmuir-Blodgett (LB) films exhibited reversible colorimetric and chiroptical changes during repeated heating-cooling cycles, which should be ascribed to the strong hydrogen-bonding interaction between the carboxylic acid and the melamine core. Further, the closely helical packing of the melamine cores could be destroyed upon exposure to HCl or NH(3) gas, whereas the peripheral helical polyaniline and polydiacetylene (PDA) backbone exhibited excellent stability. Although similar absorption changes could be observed for the films upon exposure to HCl or NH(3) gas, their distinct circular dichroism (CD) responses enabled us to distinguish the above two stimuli. © 2015 Wiley Periodicals, Inc.

  14. Spectroscopic investigation and computational analysis of charge transfer hydrogen bonded reaction between 3-aminoquinoline with chloranilic acid in 1:1 stoichiometric ratio

    Science.gov (United States)

    Al-Ahmary, Khairia M.; Alenezi, Maha S.; Habeeb, Moustafa M.

    2015-10-01

    Charge transfer hydrogen bonded reaction between the electron donor (proton acceptor) 3-aminoquinoline with the electron acceptor (proton donor) chloranilic acid (H2CA) has been investigated experimentally and theoretically. The experimental work included the application of UV-vis spectroscopy to identify the charge transfer band of the formed complex, its molecular composition as well as estimating its formation constants in different solvent included acetonitrile (AN), methanol (MeOH), ethanol (EtOH) and chloroform (CHL). It has been recorded the presence of new absorption bands in the range 500-550 nm attributing to the formed complex. The molecular composition of the HBCT complex was found to be 1:1 (donor:acceptor) in all studied solvents based on continuous variation and photometric titration methods. In addition, the calculated formation constants from Benesi-Hildebrand equation recorded high values, especially in chloroform referring to the formation of stable HBCT complex. Infrared spectroscopy has been applied for the solid complex where formation of charge and proton transfer was proven in it. Moreover, 1H and 13C NMR spectroscopies were used to characterize the formed complex where charge and proton transfers were reconfirmed. Computational analysis included the use of GAMESS computations as a package of ChemBio3D Ultr12 program were applied for energy minimization and estimation of the stabilization energy for the produced complex. Also, geometrical parameters (bond lengths and bond angles) of the formed HBCT complex were computed and analyzed. Furthermore, Mullikan atomic charges, molecular potential energy surface, HOMO and LUMO molecular orbitals as well as assignment of the electronic spectra of the formed complex were presented. A full agreement between experimental and computational analysis has been found especially in the existence of the charge and proton transfers and the assignment of HOMO and LUMO molecular orbitals in the formed complex as

  15. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  16. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  17. Creating load for new hydrogen production

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    This presentation provides an update of the activities of the Hydrogen Village. The Hydrogen Village is a public-private partnership of approximately 40 companies with the goal of advancing awareness of the environmental, economic and social benefits of hydrogen and fuel cell technologies. The intent of the hydrogen village is to create a sustainable commercial market for these technologies within the Greater Toronto Area and to help to catalyze such markets in other areas

  18. Diffusion of Hydrogen in the beta-Phase of Pd-H Studied by Small Energy Transfer Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G; Skoeld, K

    1974-07-01

    The diffusion of hydrogen in beta-PdH has been studied by quasielastic neutron scattering. It is shown that the diffusion occurs through jumps between adjacent octahedral interstitial sites. The observed integrated quasielastic intensities cannot be described by a simple Debye-Waller factor. The phase transition from the beta-phase to the alpha-phase has also been studied. No dramatic changes in the scattering patterns were observed. It is concluded that the diffusion mechanism is remarkably similar between the low concentration alpha-phase and the high concentration beta-phase

  19. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Angelidaki, Irini

    2016-01-01

    in the biogas into CH4, via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized...

  20. Charge transfer incollisions of Li3+ and Be4+ ions with atomic hydrogen at low impact energy

    International Nuclear Information System (INIS)

    Ohyama, T.; Itikawa, Y.

    1981-08-01

    Total charge transfer cross sections are calculated for the collisions of Li 3+ and Be 4+ ions with H(1s) atoms in the low energy region (E 3+ -H system, a reasonable agreement is found between the present calculation and the recent experiment. (author)

  1. Fast approximate radiative transfer method for visualizing the fine structure of prominences in the hydrogen H alpha line

    Czech Academy of Sciences Publication Activity Database

    Heinzel, Petr; Gunár, S.; Anzer, U.

    2015-01-01

    Roč. 579, July (2015), A16/1-A16/6 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0906 EU Projects: European Commission(XE) 328138 Institutional support: RVO:67985815 Keywords : radiative transfer * Sun * filaments Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  2. Effect of polarized radiative transfer on the Hanle magnetic field determination in prominences: Analysis of hydrogen H alpha line observations at Pic-du-Midi

    Science.gov (United States)

    Bommier, V.; Deglinnocenti, E. L.; Leroy, J. L.; Sahal-Brechot, S.

    1985-01-01

    The linear polarization of the Hydrogen H alpha line of prominences has been computed, taking into account the effect of a magnetic field (Hanle effect), of the radiative transfer in the prominence, and of the depolarization due to collisions with the surrounding electrons and protons. The corresponding formalisms are developed in a forthcoming series of papers. In this paper, the main features of the computation method are summarized. The results of computation have been used for interpretation in terms of magnetic field vector measurements from H alpha polarimetric observations in prominences performed at Pic-du-Midi coronagraph-polarimeter. Simultaneous observations in one optically thin line (He I D(3)) and one optically thick line (H alpha) give an opportunity for solving the ambiguity on the field vector determination.

  3. The Third Dimension of a More O'Ferrall-Jencks Diagram for Hydrogen Atom Transfer in the Isoelectronic Hydrogen Exchange Reactions of (PhX)(2)H(•) with X = O, NH, and CH(2).

    Science.gov (United States)

    Cembran, Alessandro; Provorse, Makenzie R; Wang, Changwei; Wu, Wei; Gao, Jiali

    2012-11-13

    A critical element in theoretical characterization of the mechanism of proton-coupled electron transfer (PCET) reactions, including hydrogen atom transfer (HAT), is the formulation of the electron and proton localized diabatic states, based on which a More O'Ferrall-Jencks diagram can be represented to determine the step-wise and concerted nature of the reaction. Although the More O'Ferrall-Jencks diabatic states have often been used empirically to develop theoretical models for PCET reactions, the potential energy surfaces for these states have never been determined directly based on first principles calculations using electronic structure theory. The difficulty is due to a lack of practical method to constrain electron and proton localized diabatic states in wave function or density functional theory calculations. Employing a multistate density functional theory (MSDFT), in which the electron and proton localized diabatic configurations are constructed through block-localization of Kohn-Sham orbitals, we show that distinction between concerted proton-electron transfer (CPET) and HAT, which are not distinguishable experimentally from phenomenological kinetic data, can be made by examining the third dimension of a More O'Ferrall-Jencks diagram that includes both the ground and excited state potential surfaces. In addition, we formulate a pair of effective two-state valence bond models to represent the CPET and HAT mechanisms. We found that the lower energy of the CPET and HAT effective diabatic states at the intersection point can be used as an energetic criterion to distinguish the two mechanisms. In the isoelectronic series of hydrogen exchange reaction in (PhX)(2)H(•), where X = O, NH, and CH(2), there is a continuous transition from a CPET mechanism for the phenoxy radical-phenol pair to a HAT process for benzyl radical and toluene, while the reaction between PhNH(2) and PhNH(•) has a mechanism intermediate of CPET and HAT. The electronically nonadiabatic

  4. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  5. Efficient Synthesis of Differentiated syn-1,2-Diol Derivatives by Asymmetric Transfer Hydrogenation-Dynamic Kinetic Resolution of α-Alkoxy-Substituted β-Ketoesters.

    Science.gov (United States)

    Monnereau, Laure; Cartigny, Damien; Scalone, Michelangelo; Ayad, Tahar; Ratovelomanana-Vidal, Virginie

    2015-08-10

    Asymmetric transfer hydrogenation was applied to a wide range of racemic aryl α-alkoxy-β-ketoesters in the presence of well-defined, commercially available, chiral catalyst Ru(II) -(N-p-toluenesulfonyl-1,2-diphenylethylenediamine) and a 5:2 mixture of formic acid and triethylamine as the hydrogen source. Under these conditions, dynamic kinetic resolution was efficiently promoted to provide the corresponding syn α-alkoxy-β-hydroxyesters derived from substituted aromatic and heteroaromatic aldehydes with a high level of diastereoselectivity (diastereomeric ratio (d.r.)>99:1) and an almost perfect enantioselectivity (enantiomeric excess (ee)>99 %). Additionally, after extensive screening of the reaction conditions, the use of Ru(II) - and Rh(III) -tethered precatalysts extended this process to more-challenging substrates that bore alkenyl-, alkynyl-, and alkyl substituents to provide the corresponding syn α-alkoxy-β-hydroxyesters with excellent enantiocontrol (up to 99 % ee) and good to perfect diastereocontrol (d.r.>99:1). Lastly, the synthetic utility of the present protocol was demonstrated by application to the asymmetric synthesis of chiral ester ethyl (2S)-2-ethoxy-3-(4-hydroxyphenyl)-propanoate, which is an important pharmacophore in a number of peroxisome proliferator-activated receptor α/γ dual agonist advanced drug candidates used for the treatment of type-II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Finding furfural hydrogenation catalysts via predictive modelling

    NARCIS (Netherlands)

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  9. Anomalous H/D isotope effect in hydrogen bonded systems: H-bonded cyclic structures and transfers of protons

    International Nuclear Information System (INIS)

    Marechal, Y.

    1993-01-01

    The systematic H/D substitution is a precious tool to obtain information on the dynamics of H-bonds. It is particularly useful in IR spectroscopy where H-bonds are at the origin of particularly intense and specific bands and where the particularly great value for the m D /m H ratio ensures strongly marked effects. In most H-bonded systems the effects of these substitutions are normal, in the sense that they are at the origin of bands having intensities, centers (of intensity) and widths smaller in D-bonds by a factor close to √2 as compared to H-bonds. In some systems as carboxylic acid dimers, however, anomalous ratios of intensities are found upon such a substitution. Their origin is still obscure. Experimental results suggest that such anomalous ratios have much to do with the cyclic structure of these systems. It leads to stressing an important property of H-bonded cyclic structures which is that they seem necessary for having transfers of protons between molecules through H-bonds in a neutral aqueous medium (p H =7) at room temperature. The mechanism of such transfers of protons is still poorly known, but these transfers are now suspected to play a fundamental role in such widespread reactions as hydrolysis, peptide synthesis, etc... which may make them soon appear as being a crucial basic mechanism for reactivity of aqueous systems, particularly biological systems

  10. Hydrogen Peroxide Involved Anodic Charge Transfer and Electrochemiluminescence of All-Inorganic Halide Perovskite CsPbBr3 Nanocrystals in an Aqueous Medium.

    Science.gov (United States)

    Huang, Yan; Long, Xiaoyan; Shen, Dazhong; Zou, Guizheng; Zhang, Bin; Wang, Huaisheng

    2017-09-05

    Reactive oxygen species (ROS) involved anodic charge transfer and electrochemiluminescence (ECL) of all-inorganic halide perovskite CsPbBr 3 nanocrystals (NCs) were investigated in an aqueous medium with hydrogen peroxide (H 2 O 2 ) as the model. CsPbBr 3 NCs could be electrochemically oxidized to positively charged states by injecting holes onto the highest occupied molecular orbitals and could be chemically reduced to negatively charged states by injecting electrons onto the lowest unoccupied molecular orbitals by ROS. The charge transfer between CsPbBr 3 NCs of oxidative and reductive states could bring out monochromatic ECL with onset around +0.8 V, maximum emission around 519 nm, and a full width at half-maximum around 20 nm. H 2 O 2 could selectively enhance the anodic ECL of CsPbBr 3 NCs, which not only opened a way to design a bioprocess-involved photovoltaic device with CsPbBr 3 NCs but also was promising for color-selective ECL biosensing.

  11. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  12. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  13. Deuterium exchange between hydrogen and water in a trickle bed reactor

    International Nuclear Information System (INIS)

    Enright, J.T.; Chuang, T.T.

    1978-01-01

    The catalyzed exchange of deuterium between hydrogen and liquid water has been studied as the basis for a heavy water production process. Platinum catalyst which had been waterproofed with Teflon was tested in a 0.2 m diameter trickle bed reactor at pressures and temperatures up to 6 MPa and 440 K. Extensive experimental data were used to test a model of the system which was developed from fundamental principles. It was found that mass transfer plays a very important role in the overall exchange and the conventional theory of vapour/liquid mass transfer does not adequately describe the absorption process. Modelling of the data has resulted in the postulation of a second method of mass transfer whereby HDO transfers directly from the catalyst to the bulk liquid phase. (author)

  14. Charge-transfer collisions of multicharged ions with atomic and molecular hydrogen: measurements with low-energy accelerators

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Meyer, F.W.; Crandall, D.H.

    1977-01-01

    Electron-capture cross sections for O/sup +q/ + H → O/sup +q-1/ + H + and O/sup +q/ + H 2 → O/sup +q-1/ + H 2 + are shown for projectile energies from 10 to 1300 keV. At low energies the cross sections are determined by details of the quasi-molecule potential; at higher energies momentum transfer becomes the dominant mechanism, and the cross sections fall off similarly. Results with other projectiles are described briefly. 1 figure

  15. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.

    Science.gov (United States)

    Bassani, Ilaria; Kougias, Panagiotis G; Angelidaki, Irini

    2016-12-01

    Biological biogas upgrading coupling CO 2 with external H 2 to form biomethane opens new avenues for sustainable biofuel production. For developing this technology, efficient H 2 to liquid transfer is fundamental. This study proposes an innovative setup for in-situ biogas upgrading converting the CO 2 in the biogas into CH 4 , via hydrogenotrophic methanogenesis. The setup consisted of a granular reactor connected to a separate chamber, where H 2 was injected. Different packing materials (rashig rings and alumina ceramic sponge) were tested to increase gas-liquid mass transfer. This aspect was optimized by liquid and gas recirculation and chamber configuration. It was shown that by distributing H 2 through a metallic diffuser followed by ceramic sponge in a separate chamber, having a volume of 25% of the reactor, and by applying a mild gas recirculation, CO 2 content in the biogas dropped from 42 to 10% and the final biogas was upgraded from 58 to 82% CH 4 content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    Science.gov (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  17. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Chien [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250, Wuxing St., Taipei 11031, Taiwan (China); Tu, Yi-Ming; Hou, Chung-Che [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Tao-Yuan 33302, Taiwan (China); Lin, Yu-Chen [Wah Hong industrial Co. Ltd., 6 Lixing St., Guantian Dist., Tainan City 72046,Taiwan (China); Chen, Ching-Hsiang [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec. 4, Taipei 10607, Taiwan (China); Yang, Kuang-Hsuan, E-mail: khy@mail.vnu.edu.tw [Department of Food and Beverage Management, Vanung University, 1, Van Nung Rd., Shuei-Wei Li, Chung-Li City 32061, Taiwan (China)

    2015-03-31

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H{sub 2}O{sub 2}) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H{sub 2}O{sub 2} in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H{sub 2}O{sub 2} in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10{sup −9} mol cm{sup −2}) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM{sup −1} cm{sup −2}) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H{sub 2}O{sub 2} and glucose, thus owning high selectivity and reliability.

  18. Efficient Electron Transfer across a ZnO-MoS2 -Reduced Graphene Oxide Heterojunction for Enhanced Sunlight-Driven Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Kumar, Suneel; Reddy, Nagappagari Lakshmana; Kushwaha, Himmat Singh; Kumar, Ashish; Shankar, Muthukonda Venkatakrishnan; Bhattacharyya, Kaustava; Halder, Aditi; Krishnan, Venkata

    2017-09-22

    The development of noble metal-free catalysts for hydrogen evolution is required for energy applications. In this regard, ternary heterojunction nanocomposites consisting of ZnO nanoparticles anchored on MoS 2 -RGO (RGO=reduced graphene oxide) nanosheets as heterogeneous catalysts show highly efficient photocatalytic H 2 evolution. In the photocatalytic process, the catalyst dispersed in an electrolytic solution (S 2- and SO 3 2- ions) exhibits an enhanced rate of H 2 evolution, and optimization experiments reveal that ZnO with 4.0 wt % of MoS 2 -RGO nanosheets gives the highest photocatalytic H 2 production of 28.616 mmol h -1  g cat -1 under sunlight irradiation; approximately 56 times higher than that on bare ZnO and several times higher than those of other ternary photocatalysts. The superior catalytic activity can be attributed to the in situ generation of ZnS, which leads to improved interfacial charge transfer to the MoS 2 cocatalyst and RGO, which has plenty of active sites available for photocatalytic reactions. Recycling experiments also proved the stability of the optimized photocatalyst. In addition, the ternary nanocomposite displayed multifunctional properties for hydrogen evolution activity under electrocatalytic and photoelectrocatalytic conditions owing to the high electrode-electrolyte contact area. Thus, the present work provides very useful insights for the development of inexpensive, multifunctional catalysts without noble metal loading to achieve a high rate of H 2 generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative

    International Nuclear Information System (INIS)

    Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan

    2015-01-01

    Highlights: • Dual hydrogen peroxide and glucose sensor. • Direct electrochemistry of glucose oxidase used MWCNT-Py/GC electrode. • Change sensing function by adjusting pH value. - Abstract: A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H 2 O 2 ) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H 2 O 2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H 2 O 2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10 −9 mol cm −2 ) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM −1 cm −2 ) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H 2 O 2 and glucose, thus owning high selectivity and reliability

  20. Hydrogen maser clocks in space for solid-Earth research and time-transfer applications: Experiment overview and evaluation of Russian miniature sapphire loaded cavity

    Science.gov (United States)

    Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.

    1994-05-01

    The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.

  1. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  2. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  3. Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions

    Science.gov (United States)

    Bozkaya, Uǧur; Sherrill, C. David

    2013-08-01

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal

  4. Nanomaterials for Hydrogen Storage

    Indian Academy of Sciences (India)

    concepts transferred from the gaseous state. Separation of a ... molecular mass to that calculated by colligative methods. It is important in ... namics is vital in the design and optimization of the materials for hydrogen ... vehicular applications.

  5. Organic transformations catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolin [Iowa State Univ., Ames, IA (United States)

    1995-10-06

    Methylrhenium trioxide (MTO), CH3ReO3, was first prepared in 1979. MTO forms stable or unstable adducts with electron-rich ligands, such as amines (quinuclidine, 1,4-diazabicyclo-octane, pyridine, aniline, 2,2'-bipyridine), alkynes, olefins, 1,2-diols, catechols, hydrogen peroxide, water, thiophenols, 1,2-dithiols, triphenylphosphine, 2-aminophenols, 2-aminothiophenols, 8-hydroxyquinoline and halides (Cl-, Br-, I-). After coordination, different further reactions will occur for different reagents. Reactions described in this report include the dehydration of alcohols, direct amination of alcohols, activation of hydrogen peroxide, oxygen transfer, and decomposition of ethyl diazoacetate.

  6. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electron transfer processes in ion collisions with atomic hydrogen. Final report for period February 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Bayfield, J.E.

    1976-07-01

    Results of experiments completed with Yale equipment coupled to the Oak Ridge Test Bench and Tandem Accelerator facilities are presented. Electron transfer cross sections have been measured at keV collision energies for B, C, N and O ions colliding with H, H 2 , Ar and He gas targets. The ion charge states studied range from +2 through +5. Also reported are cross sections for Si and Fe ions on H, H 2 and Ar at energies between 1.5 and 14 MeV, with charge states varying between +5 and +13. Also measured were the cross sections for H + collisions with H, H 2 and Ar for energies between 0.8 and 2.5 MeV. At keV energies the cross sections for highly charged B, C, N and O ions are found to be 1 x 10 -14 cm 2 . The cross sections for 4 MeV Fe ions scale roughly with the square of the ion charge, and have values as high as 0.5 x 10 -14 cm 2 for Fe 10+ + H collisions. A strong energy dependence is found for Fe ion collisions between 4 and 14 MeV. Previous results for MeV H + + Ar collisions are nicely reproduced, while our first results for the fundamental MeV H + - H collision problem are cross sections higher than many theoretical predictions

  8. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  9. Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative.

    Science.gov (United States)

    Chen, Hsiao-Chien; Tu, Yi-Ming; Hou, Chung-Che; Lin, Yu-Chen; Chen, Ching-Hsiang; Yang, Kuang-Hsuan

    2015-03-31

    A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel-Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5×10(-9) mol cm(-2)) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM(-1) cm(-2)) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability. Copyright © 2015. Published by Elsevier B.V.

  10. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Bonfio, Claudia; Mansy, Sheref S; Cowan, J A

    2018-03-01

    Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

  11. Sites involved in intra- and interdomain allostery associated with the activation of factor VIIa pinpointed by hydrogen-deuterium exchange and electron transfer dissociation mass spectrometry.

    Science.gov (United States)

    Song, Hongjian; Olsen, Ole H; Persson, Egon; Rand, Kasper D

    2014-12-19

    Factor VIIa (FVIIa) is a trypsin-like protease that plays an important role in initiating blood coagulation. Very limited structural information is available for the free, inactive form of FVIIa that circulates in the blood prior to vascular injury and the molecular details of its activity enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form, as induced either by its cofactor tissue factor or a covalent active site inhibitor. Identified regulatory residues are situated at key sites across one continuous surface of the protease domain spanning the TF-binding helix across the activation pocket to the calcium binding site and are embedded in elements of secondary structure and at the base of flexible loops. Thus these residues are optimally positioned to mediate crosstalk between functional sites in FVIIa, particularly the cofactor binding site and the active site. Our results unambiguously show that the conformational allosteric activation signal extends to the EGF1 domain in the light chain of FVIIa, underscoring a remarkable intra- and interdomain allosteric regulation of this trypsin-like protease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Synthesis and characterization of rhodium(I) complexes with P-N donor ligands and their catalytic application in transfer hydrogenation of carbonyl group

    Energy Technology Data Exchange (ETDEWEB)

    Barah, Geetika; Sarmah, Podma Poliov; Boruah, Devajani [Dept. of Chemistry, Dibrugarh University, Dibrugarh (India)

    2015-04-15

    Three rhodium(I) complexes of the types [Rh(COE)Cl(η{sup 2}-L)] (1a,1b) and [RhCl(η{sup 2}-L) (η{sup 1}-L)] (1c), where L = P⁓N donor ligands 2-[2-(diphenylphosphino) ethyl]pyridine, (PPh{sub 2}Etpy) (a), 2-(diphenylphosphino)pyridine (PPh{sub 2}py) (b), and 3-(diphenylphosphino)-1-propylamine (PPh{sub 2}(CH{sub 2}){sub 3}NH{sub 2}) (c), have been synthesized by reacting [Rh(coe){sub 2}Cl]{sub 2} with the respective ligands in 1:2 molar ratio for 1a, 1b and 1:4 molar ratio for 1c in DCM under refluxing condition. The complexes were characterized using different analytical techniques such as FT-IR, ESI(+) mass spectrometry, {sup 1}H and {sup 31}P{"1H} NMR spectrometry, conductivity measurements, and melting point determination. The synthesized complexes were found to exhibit good catalytic activity for the transfer hydrogenation of carbonyl compounds to corresponding alcohols with high conversion rate.

  13. Coumarin or benzoxazinone bearing benzimidazolium and bis(benzimidazolium salts; involvement in transfer hydrogenation of acetophenone derivatives and hCA inhibition

    Directory of Open Access Journals (Sweden)

    Mert Olgun Karataş

    2015-10-01

    Full Text Available Four new salts of benzimidazolium and bis(benzimidazolium which include coumarin or benzoxazinone moieties were synthesized and the structures of the newly synthesized compounds were elucidated on the basis of spectral analyses such as 1H-NMR, 13C-NMR, HSQC, IR, LC-MS and elemental analysis. Benzimidazolium salts were used intensively as N-heterocyclic carbene (NHC precursors in the various catalytic reactions such as transfer hydrogenation (TH, C-H bond activation, Heck, Suzuki reaction etc. With the prospect of potential NHC precursor properties of the synthesized compounds, they were employed in the (TH reaction of p-substitute acetophenones (acetophenone, p-methyl acetophenone, p-chloro acetophenone and good yields were observed. Coumarin compounds are known as inhibitor of carbonic anhydrase and inhibition effects of the synthesized compounds on human carbonic anhydrases (hCA were investigated as in vitro. The in vitro results demonstrated that all compounds inhibited hCA I and hCA II activity. Among the synthesized compounds 1,4-bis(1-((6,8-dimethyl-2H-chromen-2-one-4-ylmethylbenzimidazolium-3-ylbutane dichloride was found to be the most active IC50= 5.55 mM and 6.06 mM for hCA I and hCA II, respectively.

  14. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  15. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  16. N-Alkylation by Hydrogen Autotransfer Reactions.

    Science.gov (United States)

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  17. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    Science.gov (United States)

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  18. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  19. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate.

    Science.gov (United States)

    Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).

  20. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants

    International Nuclear Information System (INIS)

    Boudier, Ariane; Tournebize, Juliana; Bartosz, Grzegorz; El Hani, Safae; Bengueddour, Rachid; Sapin-Minet, Anne; Leroy, Pierre

    2012-01-01

    Highlights: ► Both 1,1-diphenyl-2-picrylhydrazyl radical and its product measurement by HPLC. ► Lowest limit of detection by monitoring 1,1-diphenyl-2-picryl-hydrazine. ► Adsorption problem of the radical on HPLC parts have been pointed out. - Abstract: 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH· absorbance at 515 nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH· quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH· resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH· and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH· and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile–10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH· onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH· was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH· using standards (0.02 and 14 μM, respectively). The method was applied to three commonly used AOs, i.e. Trolox ® , ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of higher selectivity than colorimetry, and (ii) its help to investigate the mechanisms occurring with the free radical.

  1. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Leon, M.

    1988-01-01

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H 2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec. 1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  2. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  3. Activation of the C-H bond: catalytic hydroxylation of hydrocarbons by new cobaltic alkylperoxydic complexes; selective and catalytic cycloalkane dehydrogenation in presence of uranium for hydrogen transfer

    International Nuclear Information System (INIS)

    Brazi, E.

    1987-01-01

    The aim of the thesis is to improve efficiency and selectivity of chemical reactions for alkane transformations. In the first part decomposition of hydroperoxides and hydrocarbon hydroxylation by cobalt complexes is studied. In the second part cycloalkanes are dehydrogenated into aromatics with a Pt catalyst, trapping hydrogen by uranium. Uranium hydride UH 3 can yield very pure hydrogen at reasonable temperature [fr

  4. Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis

    Science.gov (United States)

    Klinman, Judith P.; Kohen, Amnon

    2014-01-01

    The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C–H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial. PMID:23746260

  5. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  6. Iridium‐Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols with the Liberation of Syngas

    DEFF Research Database (Denmark)

    Olsen, Esben Paul Krogh; Madsen, Robert

    2012-01-01

    A new iridium‐catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)2Cl]2 (coe=cyclooct......A new iridium‐catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)2Cl]2 (coe...... to excellent yields. Ethers, esters, imides, and aryl halides are stable under the reaction conditions, whereas olefins are partially saturated. The reaction is believed to proceed by two consecutive organometallic transformations that are catalyzed by the same iridium(I)–BINAP species. First, dehydrogenation...

  7. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.

  8. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  9. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Boudier, Ariane; Tournebize, Juliana [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France); Bartosz, Grzegorz [Department of Molecular Biophysics, University of Lodz, Lodz (Poland); El Hani, Safae; Bengueddour, Rachid [Laboratoire de Nutrition et Sante, Biology Department, Faculty of Sciences, Ibn Tofail University, Kenitra (Morocco); Sapin-Minet, Anne [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France); Leroy, Pierre, E-mail: pierre.leroy@pharma.uhp-nancy.fr [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Both 1,1-diphenyl-2-picrylhydrazyl radical and its product measurement by HPLC. Black-Right-Pointing-Pointer Lowest limit of detection by monitoring 1,1-diphenyl-2-picryl-hydrazine. Black-Right-Pointing-Pointer Adsorption problem of the radical on HPLC parts have been pointed out. - Abstract: 1,1-Diphenyl-2-picrylhydrazyl (DPPH{center_dot}) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH{center_dot} absorbance at 515 nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH{center_dot} quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH{center_dot} resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH{center_dot} and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH{center_dot} and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile-10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH{center_dot} onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH{center_dot} was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH{center_dot} using standards (0.02 and 14 {mu}M, respectively). The method was applied to three commonly used AOs, i.e. Trolox{sup Registered-Sign }, ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of

  10. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, Roman Vladimirovich [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a β-hydrogen in the vinylic halide results in β-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the α-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  11. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  12. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  13. Adsorption of hydrogen on clean and modified magnesium films

    DEFF Research Database (Denmark)

    Johansson, Martin; Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    films at H/Mg ratios less than 2% is developed. The activation barrier for hydrogen dissociation is 72 +/- 15 kJ/mole H-2, and a stagnant hydrogen uptake is observed. For platinum-catalyzed films, the barrier is significantly reduced, and there is no stagnation in the uptake rate....

  14. Theoretical study on the N-demethylation mechanism of theobromine catalyzed by P450 isoenzyme 1A2.

    Science.gov (United States)

    Tao, Jing; Kang, Yuan; Xue, Zhiyu; Wang, Yongting; Zhang, Yan; Chen, Qiu; Chen, Zeqin; Xue, Ying

    2015-09-01

    Theobromine, a widely consumed pharmacological active substance, can cause undesirable muscle stiffness, nausea and anorexia in high doses ingestion. The main N-demethylation metabolic mechanism of theobromine catalyzed by P450 isoenzyme 1A2 (CYP1A2) has been explored in this work using the unrestricted hybrid density functional method UB3LYP in conjunction with the LACVP(Fe)/6-31G (H, C, N, O, S, Cl) basis set. Single-point calculations including empirical dispersion corrections were carried out at the higher 6-311++G** basis set. Two N-demethylation pathways were characterized, i.e., 3-N and 7-N demethylations, which involve the initial N-methyl hydroxylation to form carbinolamines and the subsequent carbinolamines decomposition to yield monomethylxanthines and formaldehydes. Our results have shown that the rate-limiting N-methyl hydroxylation occurs via a hydrogen atom transfer (HAT) mechanism, which proceeds in a spin-selective mechanism (SSM) in the gas phase. The carbinolamines generated are prone to decomposition via the contiguous heteroatom-assisted proton-transfer. Strikingly, 3-N demethylation is more favorable than 7-N demethylation due to its lower free energy barrier and 7-methylxanthine therefore is the optimum product reported for the demethylation of theobromine catalyzed by CYP1A2, which are in good agreement with the experimental observation. This work has first revealed the detail N-demethylation mechanisms of theobromine at the theoretical level. It can offer more significant information for the metabolism of purine alkaloid. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers.

    Science.gov (United States)

    Bachmeier, Andreas; Esselborn, Julian; Hexter, Suzannah V; Krämer, Tobias; Klein, Kathrin; Happe, Thomas; McGrady, John E; Myers, William K; Armstrong, Fraser A

    2015-04-29

    Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.

  16. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    Science.gov (United States)

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  17. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  18. Kinetics of the excited muonic hydrogen in the mixtures of hydrogen isotopes in helium

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Kravtsov, A.V.; Popov, N.P.

    1989-01-01

    De-excitation of the excited muonic hydrogen in the mixture of hydrogen isotopes and helium is considered. The method is proposed which allows one to determine the rates of the muon transfer from the excited muonic hydrogen to helium nuclei, as well as the probability of the direct muon atomic capture by nuclei of hydrogen isotopes. 20 refs.; 4 figs

  19. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt

    Science.gov (United States)

    Cai, Weidong; Xiong, Haiying; Su, Xiaodong; Zhou, Hao; Shen, Mingrong; Fang, Liang

    2017-11-01

    Black silicon (Si) photoelectrodes are promising for improving the performance of photoelectrochemical (PEC) water splitting. Here, we report the fabrication of p-black Si and n+p-black Si photocathodes via a controllable copper-assisted catalyzed etching method. The etching process affects only the topmost less than 200 nm of Si and is independent of the surface doping. The synergistic effects of the excellent light harvesting of the black Si and the improved charge transfer properties of the p-n junction boost the production and utilization of photogenerated carriers. The mean reflectance of the pristine Si samples is about 10% from 400 to 950 nm, while that of the black Si samples is reduced as low as 5%. In addition, the PEC properties of the n+p-black Si photocathode can be further enhanced by depositing a cobalt (Co) layer. Compared with the p-Si sample, the onset potential of the Co/n+p-black Si photocathode is positively shifted by 560 mV to 0.33 V vs. reversible hydrogen electrode and the saturation photocurrent density is increased from 22.7 to 32.6 mA/cm2. The design of the Co/n+p-black Si photocathode offers an efficient strategy for preparing PEC solar energy conversion devices.

  20. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  1. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  2. Exploring possible reaction pathways for the o-atom transfer reactions to unsaturated substrates catalyzed by a [Ni-NO2 ] ↔ [Ni-NO] redox couple using DFT methods.

    Science.gov (United States)

    Tsipis, Athanassios C

    2017-07-15

    The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] ↔ Ni(NO 2 )(S 2 CNHMe)(PMe 3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex, followed by a β H-atom migration toward the C α carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO 2 )(S 2 CNHMe)(PMe 3 )] ⇌ [Ni( κO,O2-ONO)(S 2 CNHMe)(PMe 3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  4. Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee Intermediate Isomerization: Multistructural Anharmonicity and Atmospheric Implications

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-29

    We performed a theoretical study on the double hydrogen shift isomerization reaction of a six carbon atom Criegee intermediate (C6-CI), catalyzed by formic acid (HCOOH), to produce vinylhydroperoxide (VHP), C6-CI+HCOOH→VHP+HCOOH. This Criegee intermediate can serve as a surrogate for larger CIs derived from important volatile organic compounds like monoterpenes, whose reactivity is not well understood and are difficult to handle computationally. The reactant HCOOH exerts a pronounced catalytic effect on the studied reaction by lowering the barrier height, but the kinetic enhancement is hindered by the multistructural anharmonicity. First, the rigid ring-structure adopted by the saddle point to facilitate simultaneous transfer of two atoms does not allow formation of as many conformers as those formed by the reactant C6-CI. And second, the flexible carbon chain of C6-CI facilitates the formation of stabilizing intramolecular C–H···O hydrogen bonds; this stabilizing effect is less pronounced in the saddle point structure due to its tightness and steric effects. Thus, the contribution of the reactant C6-CI conformers to the multistructural partition function is larger than that of the saddle point conformers. The resulting low multistructural anharmonicity factor partially cancels out the catalytic effect of the carboxylic acid, yielding in a moderately large rate coefficient, k(298 K) = 4.9·10-13 cm3 molecule-1 s-1. We show that carboxylic acids may promote the conversion of stabilized Criegee intermediates into vinylhydroperoxides in the atmosphere, which generates OH radicals and leads to secondary organic aerosol, thereby affecting the oxidative capacity of the atmosphere and ultimately the climate.

  5. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  6. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  7. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  8. Differential charge transfer and continuum electron capture studies for ions in atomic hydrogen. Final report, August 1, 1979-September 31, 1983

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.

    1983-01-01

    A final technical narrative is given of progress and results obtained during the period August 1, 1979 through September 30, 1983 in a project designed to test existing theories of electron capture to continuum states of fully stripped nuclei traversing atomic hydrogen targets. 5 references

  9. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites

  10. Novel big-bang element synthesis catalyzed by supersymmetric particle stau

    International Nuclear Information System (INIS)

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-01-01

    The extremely low isotope ratio of 6 Li had remained as a drawback of the Big-Bang Nucleosynthesis (BBN) until Pospelov proposed the 6 Li synthesis reaction catalyzed by negatively charged electroweak-scale particle X - in 2006. He remarked the catalytic enhancement of 6 Li production by about 10 8 times, as well as the life and initial abundance of X - . The present authors classified BBN catalyzed reaction into six types, i.e. (1) non-resonant transfer, (2) resonant transfer, (3) non-resonant radiative capture, (4) resonant radiative capture, (5) three-body breakup and (6) charge transfer reactions to predict absolute values of cross sections which cannot be observed experimentally. Starting from the three-body treatment for those reactions, 6 Li problems, the life-time and abundance of stau are discussed. Large change of element composition at 'late-time' big bang, generation of 9 Be by stau catalyzed reaction, 7 Li problem and stau catalyzed reactions are also discussed. Finally their relations with the supersymmetry theory and dark matter are mentioned. The basic nuclear calculations are providing quantitative base for the 'effect of nuclear reactions catalyzed by the supersymmetric particle stau on big bang nucleosynthesis'. (S. Funahashi)

  11. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  12. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions

    DEFF Research Database (Denmark)

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-01-01

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are kno...

  14. The rate of second electron transfer to QB(-) in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect.

    Science.gov (United States)

    Maróti, Ágnes; Wraight, Colin A; Maróti, Péter

    2015-02-01

    The 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB(-) precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB(-)/QBH: 4.5 (native), 3.9 (L210DN), 3.7 (M17DN) and 3.1 (H173EQ) at pH7. On the other hand, the proton transfer variants where the proton transfer is rate limiting demonstrate solvent isotope effect of pH-independent moderate magnitude (2.11±0.26 (WT+Ni(2+)), 2.16±0.35 (WT+Cd(2+)) and 2.34±0.44 (L210DN/M17DN)) or pH-dependent large magnitude (5.7 at pH4 (L213DN)). Upon deuteration, the free energy and the enthalpy of activation increase in all proton transfer variants by about 1 kcal/mol and the entropy of activation becomes negligible in L210DN/M17DN mutant. The results are interpreted as manifestation of equilibrium and kinetic solvent isotope effects and the structural, energetic and kinetic possibility of alternate proton delivery pathways are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 41 CFR 50-204.68 - Hydrogen.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Hydrogen. 50-204.68..., Vapors, Fumes, Dusts, and Mists § 50-204.68 Hydrogen. The in-plant transfer, handling, storage, and utilization of hydrogen shall be in accordance with Compressed Gas Association Pamphlets G-5.1-1961 and G-5.2...

  16. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  17. Probing the Conformational and Functional Consequences of Disulfide Bond Engineering in Growth Hormone by Hydrogen-Deuterium Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation

    DEFF Research Database (Denmark)

    Seger, Signe T; Breinholt, Jens; Faber, Johan H

    2015-01-01

    Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass spectrom......Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass...

  18. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  19. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy

    International Nuclear Information System (INIS)

    Bloch, J.; Brill, M.; Ben-Eliahu, Y.; Gavra, Z.

    1998-01-01

    The development of hydride phase on the surface of ZrCo under 1 bar of hydrogen was investigated at temperatures between 75 and 300 C. Both surface modifications of the parent alloy and the nucleation and growth of hydride phase were observed. Surface modifications included: grain boundary outgrowth, intra-granular precipitation in the form of fine lamellar hydride phase and micro cracks. It is suggested that the surface modifications result from a combination of hydrogen solubility and the parent metal ductility. These modifications were enhanced near areas which had been previously transformed. The nucleation was self catalyzed, with new nuclei preferentially formed at the vicinity of growing former nuclei. All this suggested that the transport of hydrogen through the hydride phase is faster than its transfer through the surface passivation layer. The growth rate of the nuclei was similar to that of uranium. The activation energy for the growth was E a =24±3 kJ/mol. The results were compared with several other metal-hydrogen systems. It is suggested that the important physical factors controlling the mechanism of the initial hydriding reaction are hydrogen solubility and the brittleness of the parent metal/alloy. These parameters are responsible to the different changes observed during the initial hydriding stages which include: surface modifications, cracking, nucleation and growth. (orig.)

  20. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    Science.gov (United States)

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  1. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin; Sarawade, Pradip; Albert, Matthias; D'Elia, Valerio; Hedhili, Mohamed Nejib; Kö hler, Klaus; Basset, Jean-Marie

    2015-01-01

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  2. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin

    2015-01-09

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  3. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: substrate scope and mechanistic insights.

    Science.gov (United States)

    Liu, Xin-Yuan; Guo, Zhen; Dong, Sijia S; Li, Xiao-Hua; Che, Chi-Ming

    2011-11-11

    An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)(2)(o-biphenyl)P}AuCl]/AgBF(4) (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  5. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer

  6. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).

    Science.gov (United States)

    Breton, Jacques; Lavergne, Jérôme; Wakeham, Marion C; Nabedryk, Eliane; Jones, Michael R

    2007-06-05

    In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the

  7. New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review

    Directory of Open Access Journals (Sweden)

    Georgiy B. Shul’pin

    2016-03-01

    Full Text Available This review describes new reactions catalyzed by recently discovered types of metal complexes and catalytic systems (catalyst + co-catalyst. Works of recent years (mainly 2010–2016 devoted to the oxygenations of saturated, aromatic hydrocarbons and other carbon–hydrogen compounds are surveyed. Both soluble metal complexes and solid metal compounds catalyze such transformations. Molecular oxygen, hydrogen peroxide, alkyl peroxides, and peroxy acids were used in these reactions as oxidants.

  8. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  9. Lactam hydrolysis catalyzed by mononuclear metallo-beta-lactamases: A density functional study

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Olsen, L.; Antony, J.

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  10. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  11. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian

    2014-01-01

    The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...... of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversions into the resulting amide were observed within a few hours in the presence of equimolar amounts of thiophenol. Ab initio calculations showed that the reaction mechanism in DMF is similar to the well-known aqueous...... reaction mechanism. The energy barrier of the catalyzed amidation reaction is approximately 40 kJ mol(-1) lower than the non-catalyzed amidation reaction. At least partially this can be explained by a hydrogen bond from the amine to the π-electrons of the thiophenol, stabilizing the transition state...

  12. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system.

    Science.gov (United States)

    Pylaeva, Svetlana; Allolio, Christoph; Koeppe, Benjamin; Denisov, Gleb S; Limbach, Hans-Heinrich; Sebastiani, Daniel; Tolstoy, Peter M

    2015-02-14

    We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

  13. COPPER(I)-CATALYZED ATOM TRANSFER RADICAL POLYMERIZATIONS. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. TRANSITION METAL CATALYZED ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xiaopeng [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH+3- and mechanisms of ligand displacement and oxidation were proposed.

  16. MECHANISTIC STUDIES OF SURFACE CATALYZED H2O2 DECOMPOSITION AND CONTAMINANT DEGRADATION IN THE PRESENCE OF SAND. (R823402)

    Science.gov (United States)

    This study examined the mechanism and kinetics of surface catalyzed hydrogen peroxide decomposition and degradation of contaminants in the presence of sand collected from an aquifer and a riverbed. Batch experiments were conducted using variable sand concentrations (0.2 to 1.0&nb...

  17. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride...

  18. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction

    KAUST Repository

    Chua, Ming Hui; Huang, Kuo-Wei; Xu, Jianwei; Wu, Jishan

    2015-01-01

    The straightforward synthesis of 3,5-di(triphenylethylenyl) BODIPYs 1–3 from the condensation of 2-(triphenylethylenyl) pyrrole with aryl aldehydes are surprisingly found to produce side products that are hydrogenated at one of the two triphenylethylene substituents. It was also observed that the subsequent Scholl type reaction of 1 resulted in a “1,2-migratory shift” of one triphenylethylene substituent in addition to a ring closing reaction. Preliminary investigations, including DFT calculations and isolation of intermediates, were conducted to study these unusual observations on BODIPY chemistry.

  19. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction

    KAUST Repository

    Chua, Ming Hui

    2015-08-17

    The straightforward synthesis of 3,5-di(triphenylethylenyl) BODIPYs 1–3 from the condensation of 2-(triphenylethylenyl) pyrrole with aryl aldehydes are surprisingly found to produce side products that are hydrogenated at one of the two triphenylethylene substituents. It was also observed that the subsequent Scholl type reaction of 1 resulted in a “1,2-migratory shift” of one triphenylethylene substituent in addition to a ring closing reaction. Preliminary investigations, including DFT calculations and isolation of intermediates, were conducted to study these unusual observations on BODIPY chemistry.

  20. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.; Xiao, Dequan; Batista, Victor S.; Nibbering, Erik Theodorus Johannes

    2014-01-01

    of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ

  1. Three-dimensional Radiative Transfer Simulations of the Scattering Polarization of the Hydrogen Lyalpha Line in a Magnetohydrodynamic Model of the Chromosphere-Corona Transition Region

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.

    2015-01-01

    Roč. 803, č. 2 (2015), 65/1-65/15 ISSN 0004-637X R&D Projects: GA ČR GPP209/12/P741 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : polarization * radiative transfer * scattering Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  2. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  3. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pd(II)-Catalyzed Olefination of sp3 C–H Bonds

    Science.gov (United States)

    Wasa, Masayuki; Engle, Keary M.; Yu, Jin-Quan

    2010-01-01

    The first Pd(II)-catalyzed sp3 C–H olefination reaction has been developed using N-arylamide directing groups. Following olefination, the resulting intermediates were found to undergo rapid 1,4-addition to give the corresponding γ lactams. Notably, this method was effective with substrates containing α-hydrogen atoms and could be applied to effect methylene C–H olefination of cyclopropane substrates. PMID:20187642

  5. Hydrogen storage via polyhydride complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Zidan, R.A. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titanium doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.

  6. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    Vu, T.H.

    2009-10-01

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  7. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  8. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  9. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France)] [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Berge, Mathieu; Roques, Christine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France); Bergel, Alain [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Delia, Marie-Line, E-mail: marieline.delia@ensiacet.f [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France)

    2010-07-01

    Pseudomonas aeruginosa has already been shown to catalyze oxidation processes in the anode compartment of a microbial fuel cell. The present study focuses on the reverse capacity of the bacterium, i.e. reduction catalysis. Here we show that P. aeruginosa is able to catalyze the electrochemical reduction of oxygen. The use of cyclic voltammetry showed that, for a given range of potential values, the current generated in the presence of bacteria could reach up to four times the current obtained without bacteria. The adhesion of bacteria to the working electrode was necessary for the catalysis to be observed but was not sufficient. The electron transfer between the working electrode and the bacteria did not involve mediator metabolites like phenazines. The transfer was by direct contact. The catalysis required a certain contact duration between electrodes and live bacteria but after this delay, the metabolic activity of cells was no longer necessary. Membrane-bound proteins, like catalase, may be involved. Various strains of P. aeruginosa, including clinical isolates, were tested and all of them, even catalase-defective mutants, presented the same catalytic property. P. aeruginosa offers a new model for the analysis of reduction catalysis and the protocol designed here may provide a basis for developing an interesting tool in the field of bacterial adhesion.

  10. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  11. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  12. Nitroreductase catalyzed biotransformation of CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-01-01

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C 6 H 6 N 12 O 12 ) and produced a key metabolite with mol. wt. 346Da corresponding to an empirical formula of C 6 H 6 N 10 O 8 which spontaneously decomposed in aqueous medium to produce N 2 O, NH4+, and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20 - ) which upon initial N-denitration also produced metabolite C 6 H 6 N 10 O 8 . The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e] pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01nmolmin -1 mg of protein -1 , respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20

  13. Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution.

    Science.gov (United States)

    Belkova, Natalia V; Filippov, Oleg A; Shubina, Elena S

    2018-02-01

    The ability of neutral transition-metal hydrides to serve as a source of hydride ion H - or proton H + is well appreciated. The hydride ligands possessing a partly negative charge are proton accepting sites, forming a dihydrogen bond, M-H δ- ⋅⋅⋅ δ+ HX (M=transition metal or metalloid). On the other hand, some metal hydrides are able to serve as a proton source and give hydrogen bond of M-H δ+ ⋅⋅⋅X type (X=organic base). In this paper we analyse recent works on transition-metal and boron hydrides showing i) how formation of an intermolecular complex between the reactants changes the Z-H (M-H and X-H) bond polarity and ii) what is the implication of such activation in the mechanisms of hydrides reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen-deuterium exchange of the anionic group 6B transition-metal hydrides. Convenient, in-situ-deuterium transfer reagents

    International Nuclear Information System (INIS)

    Gaus, P.L.; Kao, S.C.; Darensbourg, M.Y.; Arndt, L.W.

    1984-01-01

    The facile exchange of hydrogen for detuerium in the anionic group 6B carbonyl hydrides HM(CO) 4 L - (M = Cr, W; L = CO P(OMe) 3 ) has been studied in THF 4 (tetrahydrofuran) with CH 3 OD, D 2 O, and CH 3 CO 2 D. This has provided a synthesis of the deuterides, DM(CO) 4 L - , as well as a convenient in situ source of deuteride reducing reagents for organic halides. A number of such reductions are described, using 2 H NMR to demonstrate both selectivity and stereospecificity for certain systems. The carbonyl region of the infrared spectra of the hydrides is not affected by deuteration of the hydrides, suggesting that the M-H or M-D vibrational modes are not coupled significantly to CO vibrations in these hydrides. The mechanism of the H/D exchange and of a related H 2 elimination reaction is discussed

  15. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  16. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  17. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  18. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  19. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  20. A 1.5--4 Kelvin detachable cold-sample transfer system: Application to inertially confined fusion with spin-polarized hydrogens fuels

    International Nuclear Information System (INIS)

    Alexander, N.; Barden, J.; Fan, Q.; Honig, A.

    1990-01-01

    A compact cold-transfer apparatus for engaging and retrieving samples at liquid helium temperatures (1.5--4K), maintaining the samples at such temperatures for periods of hours, and subsequently inserting them in diverse apparatuses followed by disengagement, is described. The properties of several thermal radiation-insulating shrouds, necessary for very low sample temperatures, are presented. The immediate intended application is transportable target-shells containing highly spin-polarized deuterons in solid HD or D 2 for inertially confined fusion (ICF) experiments. The system is also valuable for unpolarized high-density fusion fuels, as well as for other applications which are discussed. 9 refs., 6 figs

  1. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    Science.gov (United States)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  2. Charge-transfer energy in the water-hydrogen molecular aggregate revealed by molecular-beam scattering experiments, charge displacement analysis, and ab initio calculations.

    Science.gov (United States)

    Belpassi, Leonardo; Reca, Michael L; Tarantelli, Francesco; Roncaratti, Luiz F; Pirani, Fernando; Cappelletti, David; Faure, Alexandre; Scribano, Yohann

    2010-09-22

    Integral cross-section measurements for the system water-H(2) in molecular-beam scattering experiments are reported. Their analysis demonstrates that the average attractive component of the water-H(2) intermolecular potential in the well region is about 30% stronger than dispersion and induction forces would imply. An extensive and detailed theoretical analysis of the electron charge displacement accompanying the interaction, over several crucial sections of the potential energy surface (PES), shows that water-H(2) interaction is accompanied by charge transfer (CT) and that the observed stabilization energy correlates quantitatively with CT magnitude at all distances. Based on the experimentally determined potential and the calculated CT, a general theoretical model is devised which reproduces very accurately PES sections obtained at the CCSD(T) level with large basis sets. The energy stabilization associated with CT is calculated to be 2.5 eV per electron transferred. Thus, CT is shown to be a significant, strongly stereospecific component of the interaction, with water functioning as electron donor or acceptor in different orientations. The general relevance of these findings for water's chemistry is discussed.

  3. Fe(CO)5-catalyzed coprocessing of coal and heavy oil vacuum residue using syngas-water as a hydrogen source; Fe(CO)5 shokubai ni yoru gosei gas-mizu wo suisogen to suru sekitan-jushitsuyu no coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Wada, K.; Mitsudo, T. [Kyoto University, Kyoto (Japan)

    1996-10-28

    Improvement in efficiency and profitability of hydrogenation reaction of heavy hydrocarbon resources is the most important matter to be done. In this study, coprocessing of coal and heavy oil vacuum residue was conducted using syngas-water as a hydrogen source. For the investigation of effect of the reaction temperature during the coprocessing of Wandoan coal and Arabian heavy vacuum residue using Fe(CO)5 as a catalyst, the conversion, 66.0% was obtained at 425{degree}C. For the investigation of effect of reaction time, the yield of light fractions further increased during the two stage reaction at 400{degree}C for 60 minutes and at 425{degree}C for 60 minutes. Finally, almost 100% of THF-soluble matter was obtained through the reaction using 2 mmol of Fe(CO)5 catalyst at 400{degree}C for 60 minutes, and hydrogenation of heavy oil was proceeded simultaneously. When comparing coprocessing reactions using three kinds of hydrogen sources, i.e., hydrogen, CO-water, and syngas-water, the conversion yield and oil yield obtained by using syngas-water were similar to those obtained by using hydrogen, which demonstrated the effectiveness of syngas-water. 2 refs., 2 figs., 2 tabs.

  4. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay.

    Science.gov (United States)

    Lee, Joon Seok; Joung, Hyou-Arm; Kim, Min-Gon; Park, Chan Beum

    2012-04-24

    We report on chemiluminescence resonance energy transfer (CRET) between graphene nanosheets and chemiluminescent donors. In contrast to fluorescence resonance energy transfer, CRET occurs via nonradiative dipole-dipole transfer of energy from a chemiluminescent donor to a suitable acceptor molecule without an external excitation source. We designed a graphene-based CRET platform for homogeneous immunoassay of C-reactive protein (CRP), a key marker for human inflammation and cardiovascular diseases, using a luminol/hydrogen peroxide chemiluminescence (CL) reaction catalyzed by horseradish peroxidase. According to our results, anti-CRP antibody conjugated to graphene nanosheets enabled the capture of CRP at the concentration above 1.6 ng mL(-1). In the CRET platform, graphene played a key role as an energy acceptor, which was more efficient than graphene oxide, while luminol served as a donor to graphene, triggering the CRET phenomenon between luminol and graphene. The graphene-based CRET platform was successfully applied to the detection of CRP in human serum samples in the range observed during acute inflammatory stress.

  5. A windowless frozen hydrogen target system

    International Nuclear Information System (INIS)

    Knowles, P.E.; Beer, G.A.; Beveridge, J.L.

    1995-06-01

    A cryogenic target system has been constructed in which gaseous mixtures of all three hydrogen isotopes have been frozen onto a thin, 65 mm diameter gold foil. The foil is cooled to 3 K while inside a 70 K radiation shield, all of which is mounted in a vacuum system maintained at 10 -9 torr. Stable multi-layer hydrogen targets of known uniformity and thickness have been maintained for required measurement times of up to several days. To date, hundreds of targets have been successfully used in muon-catalyzed fusion experiments at TRIUMF. (author). 12 refs., 6 figs

  6. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  7. Alcohols as hydrogen-donor solvents for treatment of coal

    Science.gov (United States)

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  8. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    Science.gov (United States)

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  9. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  10. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation

    International Nuclear Information System (INIS)

    Riedl, C; Coletti, C; Starke, U

    2010-01-01

    can be increased up to more than double its initial value. The hole doping allows the Fermi level to shift into the energy band gap. The impact of the interface layer can be completely eliminated by decoupling the graphene from the SiC substrate by a hydrogen intercalation technique. We demonstrate that hydrogen can migrate under the interface layer and passivate the underlying SiC substrate. The interface layer alone transforms into a quasi-free standing monolayer. Epitaxial monolayer graphene turns into a decoupled bilayer. In combination with atmospheric pressure graphitization, the intercalation process allows the production of quasi-free standing epitaxial graphene on large SiC wafers and represents a highly promising route towards epitaxial graphene based nanoelectronics.

  11. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    DEFF Research Database (Denmark)

    Shao, Lidong; Huang, Xing; Teschner, Detre

    2014-01-01

    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...

  12. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. The generation of molecular hydrogen by cyanobacteria. Die Gewinnung von molekularem Wasserstoff durch Cyanobakterien

    Energy Technology Data Exchange (ETDEWEB)

    Kentemich, T.; Haverkamp, G.; Bothe, H. (Koeln Univ. (Germany, F.R.). Botanisches Inst.)

    1990-01-01

    Currently there is renewed interest in projects on solar-energy conversion by microorganisms. Among all organisms, cyanobacteria are first choice for such projects. Hydrogen production by cyanobacteria is light-dependent and catalyzed by the enzyme complex nitrogenase which concomitantly catalyzes the reduction of N{sub 2} to ammonia. The cyanobacterium Anabaena variabilis can express an alternative, vanadium-containing nitrogenase which produces more hydrogen than the conventional, molybdenum-containing enzyme. In intact cells, most of the H{sub 2} produced by nitrogenase is immediatley reutilized by the hydrogenase enzymes. Maximal hydrogen production requires the genetic blockage of H{sub 2} utilization by the hydrogenases. (orig.).

  14. Formation of a hydrogen-bonded barbiturate [2]-rotaxane.

    Science.gov (United States)

    Tron, Arnaud; Thornton, Peter J; Rocher, Mathias; Jacquot de Rouville, Henri-Pierre; Desvergne, Jean-Pierre; Kauffmann, Brice; Buffeteau, Thierry; Cavagnat, Dominique; Tucker, James H R; McClenaghan, Nathan D

    2014-03-07

    Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.

  15. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations.

    Science.gov (United States)

    Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2018-02-28

    The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.

  16. Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN3–Pincer Ligand Containing a Phenanthroline Backbone

    KAUST Repository

    Li, Huaifeng; Wang, Yuan; Lai, Zhiping; Huang, Kuo-Wei

    2017-01-01

    Selective catalytic hydrogenation of aromatic compounds is extremely challenging using transition-metal catalysts. Hydrogenation of arenols to substituted tetrahydronaphthols or cyclohexanols has been reported only with heterogeneous catalysts. Herein, we demonstrate the selective hydrogenation of arenols to the corresponding tetrahydronaphthols or cyclohexanols catalyzed by a phenanthroline-based PN3-ruthenium pincer catalyst.

  17. Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN3–Pincer Ligand Containing a Phenanthroline Backbone

    KAUST Repository

    Li, Huaifeng

    2017-05-30

    Selective catalytic hydrogenation of aromatic compounds is extremely challenging using transition-metal catalysts. Hydrogenation of arenols to substituted tetrahydronaphthols or cyclohexanols has been reported only with heterogeneous catalysts. Herein, we demonstrate the selective hydrogenation of arenols to the corresponding tetrahydronaphthols or cyclohexanols catalyzed by a phenanthroline-based PN3-ruthenium pincer catalyst.

  18. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  20. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    OpenAIRE

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...