WorldWideScience

Sample records for catalyzed selective methanolysis

  1. Heterogeneous base-catalyzed methanolysis of vegetable oils: State of art

    Directory of Open Access Journals (Sweden)

    Miladinović Marija R.

    2010-01-01

    Full Text Available Today, homogeneous base-catalyzed methanolysis is most frequently used method for industrial biodiesel production. High requirements for the quality of feedstocks and the problems related to a huge amount of wastewaters have led to the development of novel biodiesel production technologies. Among them, the most important is heterogeneous base-catalyzed methanolysis, which has been intensively investigated in the last decade in order to develop new catalytic systems, to optimize the reaction conditions and to recycle catalysts. These studies are a base for developing continuous biodiesel production on industrial scale in near future. The present work summarizes up-to-date studies on biodiesel production by heterogeneous base-catalyzed methanolysis. The main goals were to point out the application of different base compounds as catalysts, the methods of catalyst preparation, impregnation on carriers and recycling as well as the possibilities to improve existing base-catalyzed biodiesel production processes and to develop novel ones.

  2. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  3. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Tran, Dang-Thuan; Lin, Yi-Jan; Chen, Ching-Lung; Chang, Jo-Shu

    2014-01-01

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min −1 , whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  4. Simple method for fast deprotection of nucleosides by triethylamine-catalyzed methanolysis of acetates in aqueous medium

    International Nuclear Information System (INIS)

    Meier, Lidiane; Monteiro, Gustavo C.; Baldissera, Rodrigo A.M.; Sa, Marcus Mandolesi

    2010-01-01

    A straightforward methodology for deacetylation of protected ribonucleosides was developed based on triethylamine-catalyzed solvolysis in aqueous methanol. Reactions are completed in a few minutes under microwave irradiation and the free nucleosides are obtained in high yield after simple evaporation of volatiles. Other important features include the involvement of readily available reagents and the compatibility with diverse functional groups, which make this process very attractive for broad application. (author)

  5. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    Science.gov (United States)

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  6. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  7. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  8. Highly selective cobalt-catalyzed hydrovinylation of styrene

    NARCIS (Netherlands)

    Grutters, M.M.P.; Müller, C.; Vogt, D.

    2006-01-01

    The hydrovinylation reaction is a codimerization of a 1,3-diene or vinyl arene and ethene with great potential for fine chemicals and pharmaceuticals. For the first time, enantioselective cobalt-catalyzed hydrovinylations of styrene were achieved with a cobalt-based system bearing a chiral

  9. Methanolysis of triolein by low frequency ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Starvarache, Carmen; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokuro [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2008-02-15

    Methanolysis of triolein was investigated at room temperature by 40 kHz ultrasonic irradiation to make biodiesel fuel as methyl esters. It was found that the yield of methyl esters strongly depended on the amount of KOH and the molar ratio of methanol to triolein (M/T) and was highest at the M/T molar ratio of 6/1, KOH concentration of 1 wt% and irradiation time of 30 min. In addition, the effects of sonication on the methanolysis of triolein were discussed in comparison to the effects of stirring experiments. The optimum condition under stirring experiments showed that the molar ratio of M/T, KOH concentration and reaction time were 6/1, 1.5 wt% and 4 h, respectively. These results clearly indicated that the ultrasonic irradiation method would be a promising one compared to the conventional stirring method. The high yield under the ultrasonic irradiation condition would be due to high speed mixing and mass transfer between the methanol and triolein as well as the formation of a microemulsion resulting from the ultrasonic cavitation phenomenon. (author)

  10. Methanolysis of triolein by low frequency ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Duc Hanh [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)], E-mail: hoangduchanh75@yahoo.com; Nguyen The Dong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Starvarache, Carmen; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokuro [Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)

    2008-02-15

    Methanolysis of triolein was investigated at room temperature by 40 kHz ultrasonic irradiation to make biodiesel fuel as methyl esters. It was found that the yield of methyl esters strongly depended on the amount of KOH and the molar ratio of methanol to triolein (M/T) and was highest at the M/T molar ratio of 6/1, KOH concentration of 1 wt% and irradiation time of 30 min. In addition, the effects of sonication on the methanolysis of triolein were discussed in comparison to the effects of stirring experiments. The optimum condition under stirring experiments showed that the molar ratio of M/T, KOH concentration and reaction time were 6/1, 1.5 wt% and 4 h, respectively. These results clearly indicated that the ultrasonic irradiation method would be a promising one compared to the conventional stirring method. The high yield under the ultrasonic irradiation condition would be due to high speed mixing and mass transfer between the methanol and triolein as well as the formation of a microemulsion resulting from the ultrasonic cavitation phenomenon.

  11. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides

    International Nuclear Information System (INIS)

    Ponedel'kina, I Yu; Khaibrakhmanova, E A; Odinokov, Viktor N

    2010-01-01

    The use of nitroxide radicals in the selective oxidation of alcohols is considered. Attention is focused on the oxidation of polysaccharides as a method of preparation of polyuronic acids, aldehydes and hemiacetals.

  12. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Borylation of Phenol and Aniline Derivatives.

    Science.gov (United States)

    Li, Hong-Liang; Kanai, Motomu; Kuninobu, Yoichiro

    2017-11-03

    An iridium-catalyzed ortho-selective C-H borylation of phenol and aniline derivatives has been successfully developed. Iridium/bipyridine-catalyzed C-H borylation generally occurred at the meta- and para-positions of aromatic substrates. Introduction of an electron-withdrawing substituent on the bipyridine-type ligand and a methylthiomethyl group on the hydroxy and amino groups of the phenol and aniline substrates, however, dramatically altered the regioselectivity, affording exclusively ortho-borylated products. The reaction proceeded in good to excellent yields with good functional group tolerance. C-H borylation was applied to the synthesis of a calcium receptor modulator.

  13. Copper-catalyzed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  14. Palladium catalyzed selective distal C-H olefination of biaryl systems.

    Science.gov (United States)

    Maity, Soham; Hoque, Ehtasimul; Dhawa, Uttam; Maiti, Debabrata

    2016-11-29

    Palladium catalyzed selective distal C-H activation with nitrile based templates has been of significant research interest in recent times. In this report, we disclose the distal C-H olefination of biphenyl systems with high regio- and stereo-selectivity and useful synthetic yields. The utility of this method has been demonstrated through its wide olefin scope, its operation at the gram scale and the easy removal/recovery of the directing group.

  15. Beta-galactosidase catalyzed selective galactosylation of aromatic compounds.

    Science.gov (United States)

    Bridiau, Nicolas; Taboubi, Selma; Marzouki, Nejib; Legoy, Marie Dominique; Maugard, Thierry

    2006-01-01

    A new approach to galacto-oligosaccharides and galacto-conjugates synthesis performed by the beta-galactosidase from Kluyveromyces lactis is reported. The enzymatic galactosylation of eight kinds of adsorbed aromatic primary alcohols, in particular the two drugs guaifenesin and chlorphenesin, gave the corresponding beta-D-galacto-pyranosides in yields ranging between approximately 10% and 96%. For the first time, we have showed that the adsorption of acceptor substrates onto solid supports such as silica gel influences the yield and the selectivity of galacto-conjugates synthesis. In particular, we observed that adsorption of acceptor favored the synthesis of digalactosylated compounds.

  16. Selectivity control in pd-catalyzed c-h functionalization reactions

    OpenAIRE

    Flores Gaspar, Areli

    2013-01-01

    Benzocyclobutenones are an intriguing four-membered ring ketone. In the present thesis, we have developed a new protocol for selectively preparing benzocyclobutenones through intramolecular acylation of aryl bromides via palladium catalyzed C-H bond functionalization reactions based on rac-BINAP ligand. We also found that a subtle modification on the ligand backbone lead to a new catalytic manifold for preparing configurationally-pure styrene derivatives, when using dcpp (bis-dicyclohexylphos...

  17. Novel Role of Carbon Dioxide as a Selective Agent in Palladium-Catalyzed Cyclotrimerization of Alkynes

    Institute of Scientific and Technical Information of China (English)

    李金恒; 谢叶香

    2004-01-01

    Carbon dioxide was found as a selective agent to promote the palladium-catalyzed cyclotrimerization of alkynes in water. Both aryl and alkylacetylenes afforded the corresponding cyclotrimerization products regioselectively in high yields using PdCl2, CuCl2, and CO2 as the catalytic system. However, tert-butylacetylene bearing a bulky group gave a dimerization product. Mechanism of this reaction was also discussed.

  18. Facile and Selective Synthesis of 2-Substituted Benzimidazoles Catalyzed by FeCl3/ Al2O3

    Directory of Open Access Journals (Sweden)

    Guo-Feng Chen

    2012-01-01

    Full Text Available 2-Substituted benzimidazoles were synthesized in a single pot from aromatic aldehydes and o-phenylenediamine catalyzed by FeCl3/ Al2O3 in DMF at ambient temperature attained good yields and high selectivity.

  19. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  20. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  1. Ti-Catalyzed Selective Isomerization of Terminal Mono-substituted Olefins

    International Nuclear Information System (INIS)

    Lee, Hyung Soo; Lee, Gab Yong

    2005-01-01

    The isomerization of olefins occurs either by a metal hydride addition-elimination or by a π-allyl metal hydride intermediate. HCo(CO) 4 , [(C 2 H 4 ) 2 RhCl] 2 , Ni[P(OEt) 3 ] 4 , and PtCl 2 (PPh 3 ) 2 -SnCl 2 are effective catalysts for isomerization of olefins via a metal hydride addition-elimination mechanism, 3,4 and Fe 3 (CO) 12 catalyzed isomerization of 3-ethyl-1-pentene and isomerization of 1-heptene catalyzed by (PhCN) 2 PdCl 2 occur via a π-allyl metal hydride mechanism. The cis/trans ratio of 2-butene obtained from isomerization of 1-butene by RhH(CO)(PPh 3 ) 3 has also been investigated. The skeletal isomerization of olefins catalyzed by (R 3 P) 2 NiCl 2 is developed such as conversion of cis-1,4-hexadiene to trans-2-methyl-1,3-pentadiene. Titanium complexes serve as an effective catalysts for a variety of reactions such as hydroalumination, hydroboration, and hydrogenation of unsaturated hydrocarbons. We have been interested in the selective reactions of unsaturated hydrocarbons by using titanium and zirconium compounds. The reagent system composed of LiAlH 4 /Cp 2 TiCl 2 ≤ 2 in the molar ratio promotes the isomerization of 1-octene, but the detailed reaction for isomerization of olefins has not been reported. We report here a selective isomerization of olefins with low valent titanium complex generated from Cp 2 TiCl 2 (Cp=cyclopentadienyl) and LiAlH 4

  2. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  3. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  4. Cost analysis of simulated base-catalyzed biodiesel production processes

    International Nuclear Information System (INIS)

    Tasić, Marija B.; Stamenković, Olivera S.; Veljković, Vlada B.

    2014-01-01

    Highlights: • Two semi-continuous biodiesel production processes from sunflower oil are simulated. • Simulations were based on the kinetics of base-catalyzed methanolysis reactions. • The total energy consumption was influenced by the kinetic model. • Heterogeneous base-catalyzed process is a preferable industrial technology. - Abstract: The simulation and economic feasibility evaluation of semi-continuous biodiesel production from sunflower oil were based on the kinetics of homogeneously (Process I) and heterogeneously (Process II) base-catalyzed methanolysis reactions. The annual plant’s capacity was determined to be 8356 tonnes of biodiesel. The total energy consumption was influenced by the unit model describing the methanolysis reaction kinetics. The energy consumption of the Process II was more than 2.5 times lower than that of the Process I. Also, the simulation showed the Process I had more and larger process equipment units, compared with the Process II. Based on lower total capital investment costs and biodiesel selling price, the Process II was economically more feasible than the Process I. Sensitivity analysis was conducted using variable sunflower oil and biodiesel prices. Using a biodiesel selling price of 0.990 $/kg, Processes I and II were shown to be economically profitable if the sunflower oil price was 0.525 $/kg and 0.696 $/kg, respectively

  5. Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Poreddy, Raju; Engelbrekt, Christian

    2014-01-01

    The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied. The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines. The reactions were performed under mild conditions......-2 in the gas phase. The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B...... and afforded the imines in high yield (up to 99%) without any byproducts other than H2O. The highest activity was obtained over 5 wt% Ag/Al2O3 in toluene with air as oxidant. The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H...

  6. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  7. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    Science.gov (United States)

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanism, reactivity, and selectivity of nickel-catalyzed [4 + 4 + 2] cycloadditions of dienes and alkynes.

    Science.gov (United States)

    Hong, Xin; Holte, Dane; Götz, Daniel C G; Baran, Phil S; Houk, K N

    2014-12-19

    Density functional theory (DFT) calculations with B3LYP and M06 functionals elucidated the reactivities of alkynes and Z/E selectivity of cyclodecatriene products in the Ni-catalyzed [4 + 4 + 2] cycloadditions of dienes and alkynes. The Ni-mediated oxidative cyclization of butadienes determines the Z/E selectivity. Only the oxidative cyclization of one s-cis to one s-trans butadiene is facile and exergonic, leading to the observed 1Z,4Z,8E-cyclodecatriene product. The same step with two s-cis or s-trans butadienes is either kinetically or thermodynamically unfavorable, and the 1Z,4E,8E- and 1Z,4Z,8Z-cyclodecatriene isomers are not observed in experiments. In addition, the competition between the desired cooligomerization and [2 + 2 + 2] cycloadditions of alkynes depends on the coordination of alkynes. With either electron-deficient alkynes or alkynes with free hydroxyl groups, the coordination of alkynes is stronger than that of dienes, and alkyne trimerization prevails. With alkyl-substituted alkynes, the generation of alkyne-coordinated nickel complex is much less favorable, and the [4 + 4 + 2] cycloaddition occurs.

  9. Optimization of sunflower oil methanolysis for the production of biodiesel and its characterization with spectroscopic techniques (abstract)

    International Nuclear Information System (INIS)

    Tariq, M.; Ali, S.; Khalid, N.; Naureen, R.; Rafique, U.

    2011-01-01

    Esters from vegetable oils have attracted a great deal of interest as substitute for petrodiesel to reduce dependence on imported petroleum and provide an alternate and sustainable source for fuel with more benign environmental properties. In the present study biodiesel was prepared from sunflower seed oil by transesterification by alkali-catalyzed methanolysis. The fuel properties like kinematic viscosity, density, specific gravity, flash point, pour point, cloud point, acid number and colour comparison of sunflower oil biodiesel (SOB) were determined and discussed in the light of ASTM D6751 standards for biodiesel. The SOB was chemically characterized with analytical techniques like FT-IR, NMR (/sup 1/H and /sup 13/C). The chemical composition of SOB was determined by GC-MS. Various fatty acid methyl esters (FAMEs) were identified by retention time data and verified by mass fragmentation patterns. The identified FAMEs were methyl dodecanoate (C/sub 12:0/), methyl tetradecanoate(C/sub 14:0/), methyl hexadecanoate (C/sub 16:0/), methyl 8,11-octadecadienoate (C/sub 18:2/), methyl 9-octadecenoate (C/sub 18:1/), methyl octadecanoate (C/sub 18:0/), methyl 11-eicosenoate (C/sub 20:1/), methyl eicosanoate (C/sub 20:0/), methyl 13-docosenoate(C/sub 22:1/), methyl docosenoate(C/sub 22:0/) and methyl tetracosanoate (C/sub 24:0/). The percentage conversion of triglycerides to corresponding methyl esters determined by /sup 1/H-NMR was 87.33 % which was quite in good agreement with the practically observed yield of 85.1 %. (author)

  10. Gold(I)-catalyzed diazo cross-coupling: a selective and ligand-controlled denitrogenation/cyclization cascade.

    Science.gov (United States)

    Xu, Guangyang; Zhu, Chenghao; Gu, Weijin; Li, Jian; Sun, Jiangtao

    2015-01-12

    An unprecedented gold-catalyzed ligand-controlled cross-coupling of diazo compounds by sequential selective denitrogenation and cyclization affords N-substituted pyrazoles in a position-switchable mode. This novel transformation features selective decomposition of one diazo moiety and simultaneous preservation of the other one from two substrates. Notably, the choice of the ancillary ligand to the gold complex plays a pivotal role on the chemo- and regioselectivity of the reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pd-catalyzed Z-selective semihydrogenation of alkynes: determining the type of active species

    NARCIS (Netherlands)

    Drost, R.M.; Rosar, V.; Marta, S.D.; Lutz, M.; Demitri, N.; Milani, B.; de Bruin, B.; Elsevier, C.J.

    2015-01-01

    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of

  12. Pd-Catalyzed Z-Selective Semihydrogenation of Alkynes : Determining the Type of Active Species

    NARCIS (Netherlands)

    Drost, Ruben M.; Rosar, Vera; Marta, Silvia Dalla; Lutz, Martin; Demitri, Nicola; Milani, Barbara; De Bruin, Bas; Elsevier, Cornelis J.

    2015-01-01

    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of

  13. Rh(III-Catalyzed, Highly Selectively Direct C–H Alkylation of Indoles with Diazo Compounds

    Directory of Open Access Journals (Sweden)

    Kang Wan

    2016-06-01

    Full Text Available Rh(III-catalyzed regioselective alkylation of indoles with diazo compounds as a highly efficient and atom-economic protocol for the synthesis of alkyl substituted indoles has been developed. The reaction could proceed under mild conditions and afford a series of desired products in good to excellent yields.

  14. Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones

    Directory of Open Access Journals (Sweden)

    Tanuja Bisht

    2007-11-01

    Full Text Available A facile and efficient protocol is reported for the synthesis of calix[4]pyrrolesand N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl orcycloalkyl ketones with pyrrole catalyzed by reusable AmberlystTM-15 under eco-friendlyconditions.

  15. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling

    Science.gov (United States)

    Wang, Guangwei; Mohan, Swathi; Negishi, Ei-ichi

    2011-01-01

    All four stereoisomers (7–10) of ethyl undeca-2,4-dienoate were prepared in ≥98% isomeric purity by Pd-catalyzed alkenylation (Negishi coupling) using ethyl (E)- and (Z)-β-bromoacrylates. Although the stereoisomeric purity of the 2Z,4E-isomer (8) prepared by Suzuki coupling using conventional alkoxide and carbonate bases was ≤ 95%, as reported earlier, the use of CsF or nBu4NF as a promoter base has now been found to give all of 7–10 in ≥98% selectivity. Other widely known methods reveal considerable limitations. Heck alkenylation was satisfactory for the syntheses of the 2E,4E and 2E,4Z isomers of ≥98% purity, but the purity of the 2Z,4E isomer was ≤ 95%. Mutually complementary Horner–Wadsworth–Emmons and Still–Gennari (SG) olefinations are also of considerably limited scopes. Neither 2E,4Z nor 2Z,4Z isomer is readily prepared in ≥90% selectivity. In addition to (2Z,4E)-dienoic esters, some (2Z,4E,6E)- and (2Z,4E,6Z)-trienoic esters have been prepared in ≥98% selectivity by a newly devised Pd-catalyzed alkenylation–SG olefination tandem process. As models for conjugated higher oligoenoic esters, all eight stereoisomers for ethyl trideca-2,4,6-trienoate (23–30) have been prepared in ≥98% overall selectivity. PMID:21709262

  16. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Radiolytic and photochemical reduction of carbon dioxide in solution catalyzed by transition metal complexes with some selected macrocycles

    International Nuclear Information System (INIS)

    Grodkowski, J.

    2004-01-01

    The main goal of the work presented in this report is an explanation of the mechanism of carbon dioxide (CO 2 ) reduction catalyzed by transition metal complexes with some selected macrocycles. The catalytic function of two electron exchange centers in the reduction of CO 2 , an inner metal and a macrocycle ring, was defined. Catalytic effects of rhodium, iron and cobalt porphyrins, cobalt and iron phthalocyanines and corroles as well as cobalt corrins have been investigated. CO 2 reduction by iron ions without presence of macrocycles and also in presence of copper compounds in aqueous solutions have been studied as well

  18. Solvent- and ligand-induced switch of selectivity in gold(I-catalyzed tandem reactions of 3-propargylindoles

    Directory of Open Access Journals (Sweden)

    Roberto Sanz

    2011-06-01

    Full Text Available The selectivity of our previously described gold-catalyzed tandem reaction, 1,2-indole migration followed by aura-iso-Nazarov cyclization, of 3-propargylindoles bearing (heteroaromatic substituents at both the propargylic and terminal positions, was reversed by the proper choice of the catalyst and the reaction conditions. Thus, 3-(inden-2-ylindoles, derived from an aura-Nazarov cyclization (instead of an aura-iso-Nazarov cyclization, were obtained in moderate to good yields from a variety of 3-propargylindoles.

  19. Dynamic Modeling of Reversible Methanolysis of Jatropha curcas Oil to Biodiesel

    Science.gov (United States)

    Syam, Azhari M.; Hamid, Hamidah A.; Yunus, Robiah; Rashid, Umer

    2013-01-01

    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol−1. PMID:24363616

  20. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    Science.gov (United States)

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  1. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  2. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim F.; Errico, Massimiliano

    :1 methanol-to-oil molar ratio, 5 wt% of enzymes, 7.5 wt% of water, 50 wt% n-hexane, at 50 °C. The fatty acid methyl esters content was 96.8 % and 1.0 % FFA. Regarding the reactions with ethanol, 98.0 % fatty acid ethyl ester was obtained and 1.3 % FFA, when the reaction was carried out at 60 °C, 4:1 ethanol......As an alternative to the use of chemical catalysts, immobilized enzyme Lipozyme 435 was evaluated as catalyst for biodiesel production, comparing its efficiency in the castor oil transesterification with methanol and ethanol. Different reaction conditions were assessed and optimized, including...... the reaction temperature (35 – 60 °C), alcohol-to-oil molar ratio (from 3:1 to 6:1), amount of catalyst (from 3 to 15 wt% by weight of oil), addition of water (0 – 15 wt%), and use of n-hexane as a solvent (0 – 75 wt%). For the transesterification with methanol, the optimal reaction conditions were 3...

  3. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim; Errico, Massimiliano

    This study aims to compare the efficiency of the transesterification of castor oil with methanol and ethanol as part of the biodiesel production, using immobilized enzyme Lipozyme IM as catalyst. Different reaction conditions were evaluated and optimized, including the reaction temperature, alcohol...

  4. Selective coke combustion by oxygen pulsing during Mo/ZSM‐5‐catalyzed methane dehydroaromatization

    NARCIS (Netherlands)

    Kosinov, N.; Coumans, F.J.A.G.; Uslamin, E.A.; Kapteijn, F.; Hensen, E.J.M.

    2016-01-01

    Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation

  5. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    International Nuclear Information System (INIS)

    Yu, Chao

    2017-01-01

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu 36 Ni 64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 mol H2 mol CuNi -1 min -1 and E a = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-free catalyst for hydrogenation reactions in a green environment without using pure hydrogen.

  6. Selective coupling reaction between 2,6-diiodoanisoles and terminal alkynes catalyzed by Pd(PPh32Cl2 and CuI

    Directory of Open Access Journals (Sweden)

    Allan F. C. Rossini

    2012-06-01

    Full Text Available The cross-coupling reaction between aryl halides and terminal alkynes, catalyzed by palladium complexes and copper (I salts, consists in an efficient synthetic tool for the formation of C-C bonds, resulting in disubstituted acetylenic compounds. Accordingly, in this work we present our preliminary results involving the selective cross-coupling reaction between 2,6-diiodoanisoles and terminal alkynes, catalyzed by Pd(PPh32Cl2 and CuI, in the formation of 2-iodo-alkynylanisoles (scheme 1.

  7. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C-H Activation.

    Science.gov (United States)

    Tran, Gaël; Confair, Danielle; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A

    2017-09-01

    Herein, we report a Rh(I)/bisphosphine/K 3 PO 4 catalytic system allowing for the first time the selective branched C-H alkylation of benzimidazoles with Michael acceptors. Branched alkylation with N,N-dimethyl acrylamide was successfully applied to the alkylation of a broad range of benzimidazoles incorporating a variety of N-substituents and with both electron-rich and -poor functionality displayed at different sites of the arene. Moreover, the introduction of a quaternary carbon was achieved by alkylation with ethyl methacrylate. The method was also shown to be applicable to the C2-selective branched alkylation of azabenzimidazoles.

  8. Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface: Structural sensitivity

    International Nuclear Information System (INIS)

    Campbell, C.T.

    1984-01-01

    The selective oxidation of ethylene to ethylene epoxide (C 2 H 4 +1/2O 2 →C 2 H 4 O) over Ag is the simplest example of kinetically controlled, selective heterogeneous catalysis. We have studied the steady-state kinetics and selectivity of this reaction for the first time on a clean, well-characterized Ag(110) surface by using a special apparatus which allows rapid (approx.20 s) transfer between a high-pressure catalytic microreactor and an ultrahigh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The effects of temperature and reactant pressures upon the rate and selectivity are virtually identical on Ag(110) and supported, high surface area Ag catalysts. The absolute specific rate (per Ag surface atom) is, however, some 100-fold higher for Ag(110) than for high surface area catalysts. This is related to the well-known structural sensitivity of this reaction. It is postulated that a small percentage of (110) planes (or [110]-like sites) are responsible for most of the catalytic activity of high surface area catalysts. The high activity of the (110) plane is attributed to its high sticking probability for dissociative oxygen adsorption, since the rate of ethylene epoxidation is shown in a related work [Ref. 1: C. T. Campbell and M. T. Paffett, Surf. Sci. (in press)] to be proportional to the coverage of atomically adsorbed oxygen at constant temperature and ethylene pressure

  9. The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    Gold does not induce visible light activity of anatase Hombikat UV100 in the selective photo-oxidation of cyclohexane, as can be concluded from in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements. Extremely small conductance values measured at 530 nm in Time

  10. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    Science.gov (United States)

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Comparative study of the methanolysis and ethanolysis of maize oils using alkaline catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, U.; Ibrahim, M.; Ali, S.; Adil, M.; Hina, S.; Bukhari, I. H.; Yunus, R.

    2012-11-01

    With an increasing population and economic development, fuel from renewable resources needs to be widely explored in order to fulfill the future energy demand. In the present study, bio diesel from maize oil using transesterification reactions with methanol and ethanol was evaluated in the presence of NaOCH{sub 3}, KOCH{sub 3}, NaOCH{sub 2}CH{sub 3}, KOCH{sub 2}CH{sub 3}, NaOH and KOH as catalysts. The influence of reaction variables such as the alcohol to oil molar ratio (3:1-15:1), catalyst concentration (0.25-1.50%) and reaction time (20-120 min) to achieve the maximum yield was determined at fixed reaction temperatures. The optimized variables in the case of methanolysis were 6:1 methanol to oil molar ratio (mol/ mol), 0.75% sodium methoxide concentration (wt%) and 90 min reaction time at 65 degree centigrade, which produced a yield of 97.1% methyl esters. A 9:1 ethanol to oil molar ratio (mol/mol), 1.00% sodium ethoxide concentration (wt%) and 120 min reaction time at 75 degree centigrade were found to produce the maximum ethyl ester yield of up to 85%. The methanolysis of maize oil was depicted more rapidly as compared to the ethanolysis of maize oil. Gas chromatography of the produced bio diesel from maize oil showed high levels of linoleic acid (up to 50.89%) followed by oleic acid (up to 36.00%), palmitic acid (up to 9.98%), oleic acid (up to 1.80%) and linolenic acid (up to 0.98%). The obtained fatty acid esters were further analyzed by fourier transform infrared spectroscopy (FTIR) to ensure the completion of transesterification. The fuel properties of the produced bio diesels i.e. kinematic viscosity, cetane number, oxidative stability, pour point, cloud point, cold filter plugging point, ash content, flash point, acid value, sulfur content, higher heating value, density, methanol content, free glycerol and bound glycerol were determined. The analyses were performed using the FTIR method and the results were compared to the bio diesel standards ASTM and

  12. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  13. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway.

    Science.gov (United States)

    Wurtzler, Elizabeth M; Wendell, David

    2016-01-01

    For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

  15. Potassium permanganate-glutaraldehyde chemiluminescence system catalyzed by gold nanoprisms toward selective determination of fluoride.

    Science.gov (United States)

    Abolhasani, Jafar; Hassanzadeh, Javad; Ghorbani-Kalhor, Ebrahim

    2016-02-01

    Gold and silver nanoparticles (NPs) are shown to exert a positive effect on the chemiluminescence (CL) reaction of permanganate aldehydes. Interestingly, between various shapes examined, Au nanoprisms have the highest beneficial effect. This effect is even more notable in the presence of sodium dodecyl sulfate (SDS) surfactant. UV-vis spectra and transmission electron microscopy were used to characterize the NP shapes and sizes. Furthermore, it was observed that iron(III) ions can slightly increase CL emission of this system. This intensification is very effective in the presence of fluoride ions (F(-)). These observations form the basis of the method for the high sensitive determination of F(-) in the 6-1200 nmol L(-1) concentration range, with a detection limit of 2.1 nmol L(-1). The proposed method has good precision and was satisfactorily used in the selective determination of low concentrations of fluoride ion in real samples. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rationalization of the selectivity between 1,3- and 1,2-migration: a DFT study on gold(i)-catalyzed propargylic ester rearrangement.

    Science.gov (United States)

    Jiang, Jingxing; Liu, Yan; Hou, Cheng; Li, Yinwu; Luan, Zihong; Zhao, Cunyuan; Ke, Zhuofeng

    2016-04-14

    Gold catalyzed rearrangement of propargylic esters can undergo 1,3-acyloxy migration to form allenes, or undergo 1,2-acyloxy migration to access gold-carbenoids. The variation in migration leads to different reactivities and diverse cascade transformations. The effect of terminal substituents is very important for the rearrangement. However, it remains ambiguous how terminal substituents govern the selectivity of the rearrangement. This study presents a theoretical model based on the resonance structure of gold activated propargylic ester complexes to rationalize the rearrangement selectivity. Substrates with a major resonance contributor A prefer 5-exo-dig cyclization (1,2-migration), while those with a major resonance contributor B prefer 6-endo-dig cyclization (1,3-migration). This concise model would be helpful in understanding and tuning the selectivity of the metal catalyzed rearrangement of propargylic esters.

  19. METHANOLYSIS AND ETHANOLYSIS OF ANIMAL FATS: A COMPARATIVE STUDY OF THE INFLUENCE OF ALCOHOLS

    Directory of Open Access Journals (Sweden)

    MANUEL GARCÍA

    2011-03-01

    Full Text Available Biodiesel from animal fats with methanol and ethanol was produced in the presence of sodium methoxide and sodium ethoxide as catalysts. Two samples of pork fats and one natural beef tallow were directly transesterified with a good final product yield: 87.7, 86.7 and 86.3% for methanolysis, and 78.4, 82.6 and 82.7% for ethanolysis, respectively. Methyl ester content was also determined, being higher than 96.5 mass% for all the samples prepared. The presence of natural C17:0 in animal fats makes it necessary to correct the method pro¬posed in the standard EN 14103 (2003. Biodiesel density at 15 C of the samples was between 870 and 876 kg/m3, within the acceptance range of standard EN 14214, and the dynamic viscosity at 40 °C of the produced biodiesels was in the range of 4.5 to 5.16 mm2/s, also fulfilling requirements of EN 14214 standard. The iodine value is much lower than the superior limit established by EN 14214 standard but oxidation stability (OSI is lower than the required limit, 6 h, of the standard, which can be attributed to the lack of natural antioxidants in tallows.

  20. Cobaltoporphyrin-Catalyzed CO 2 /Epoxide Copolymerization: Selectivity Control by Molecular Design

    KAUST Repository

    Anderson, Carly E.; Vagin, Sergei I.; Xia, Wei; Jin, Hanpeng; Rieger, Bernhard

    2012-01-01

    A series of cobalt(III) chloride porphyrin complexes of the general formula 5,10,15,20-tetra(p-alkoxy)phenylporphyrin cobalt chloride (4b-e) and the related 5,10,15,20-tetra(p-nitro)phenylporphyrin cobalt chloride (4f) are presented and their reactivity toward propylene oxide (PO)/CO 2 coupling/copolymerization is explored. While the nitro-substituted complex (4f), in conjunction with an onium salt, shows moderate activity toward cyclization, the 4b-e/onium systems show superior copolymerization activity in comparison to tetraphenylporphyrin Co(III) chloride (4a) with high selectivity and conversion to poly(propylene carbonate) (PPC). A comprehensive copolymerization behavior study of the alkoxy-substituted porphyrin complexes 4b-e in terms of reaction temperature and CO 2 pressure is presented. Complexes bearing longer alkoxy-substituents demonstrate the highest polymerization activity and molecular weights, however all substituted catalyst systems display a reduced tolerance to increased temperature with respect to PPC formation. Studies of the resulting polymer microstructures show excellent head-to-tail epoxide incorporation and near perfectly alternating poly(carbonate) character at lower polymerization temperatures. © 2012 American Chemical Society.

  1. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Wurtzler

    Full Text Available For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

  2. Cobaltoporphyrin-Catalyzed CO 2 /Epoxide Copolymerization: Selectivity Control by Molecular Design

    KAUST Repository

    Anderson, Carly E.

    2012-09-11

    A series of cobalt(III) chloride porphyrin complexes of the general formula 5,10,15,20-tetra(p-alkoxy)phenylporphyrin cobalt chloride (4b-e) and the related 5,10,15,20-tetra(p-nitro)phenylporphyrin cobalt chloride (4f) are presented and their reactivity toward propylene oxide (PO)/CO 2 coupling/copolymerization is explored. While the nitro-substituted complex (4f), in conjunction with an onium salt, shows moderate activity toward cyclization, the 4b-e/onium systems show superior copolymerization activity in comparison to tetraphenylporphyrin Co(III) chloride (4a) with high selectivity and conversion to poly(propylene carbonate) (PPC). A comprehensive copolymerization behavior study of the alkoxy-substituted porphyrin complexes 4b-e in terms of reaction temperature and CO 2 pressure is presented. Complexes bearing longer alkoxy-substituents demonstrate the highest polymerization activity and molecular weights, however all substituted catalyst systems display a reduced tolerance to increased temperature with respect to PPC formation. Studies of the resulting polymer microstructures show excellent head-to-tail epoxide incorporation and near perfectly alternating poly(carbonate) character at lower polymerization temperatures. © 2012 American Chemical Society.

  3. Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity.

    Science.gov (United States)

    Yang, Yun-Fang; Cheng, Gui-Juan; Liu, Peng; Leow, Dasheng; Sun, Tian-Yu; Chen, Ping; Zhang, Xinhao; Yu, Jin-Quan; Wu, Yun-Dong; Houk, K N

    2014-01-08

    Density functional theory investigations have elucidated the mechanism and origins of meta-regioselectivity of Pd(II)-catalyzed C-H olefinations of toluene derivatives that employ a nitrile-containing template. The reaction proceeds through four major steps: C-H activation, alkene insertion, β-hydride elimination, and reductive elimination. The C-H activation step, which proceeds via a concerted metalation-deprotonation (CMD) pathway, is found to be the rate- and regioselectivity-determining step. For the crucial C-H activation, four possible active catalytic species-monomeric Pd(OAc)2, dimeric Pd2(OAc)4, heterodimeric PdAg(OAc)3, and trimeric Pd3(OAc)6-have been investigated. The computations indicated that the C-H activation with the nitrile-containing template occurs via a Pd-Ag heterodimeric transition state. The nitrile directing group coordinates with Ag while the Pd is placed adjacent to the meta-C-H bond in the transition state, leading to the observed high meta-selectivity. The Pd2(OAc)4 dimeric mechanism also leads to the meta-C-H activation product but with higher activation energies than the Pd-Ag heterodimeric mechanism. The Pd monomeric and trimeric mechanisms require much higher activation free energies and are predicted to give ortho products. Structural and distortion energy analysis of the transition states revealed significant effects of distortions of the template on mechanism and regioselectivity, which provided hints for further developments of new templates.

  4. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    Although generally considered competitive, the alkenylation and carbonyl olefination routes to alkenes are also complementary. In this Account, we focus on these approaches for the synthesis of regio- and stereodefined di- and trisubstituted alkenes and a few examples of tetrasubstituted alkenes. We also discuss the subset of regio- and stereodefined dienes and oligoenes that are conjugated. Pd-catalyzed cross-coupling using alkenyl metals containing Zn, Al, Zr, and B (Negishi coupling and Suzuki coupling) or alkenyl halides and related alkenyl electrophiles provides a method of alkenylation with the widest applicability and predictability, with high stereo- and regioselectivity. The requisite alkenyl metals or alkenyl electrophiles are most commonly prepared through highly selective alkyne addition reactions including (i) conventional polar additions, (ii) hydrometalation, (iii) carbometalation, (iv) halometalation, and (v) other heteroatom-metal additions. Although much more limited in applicability, the Heck alkenylation offers an operationally simpler, viable alternative when it is highly selective and satisfactory. A wide variety of carbonyl olefination reactions, especially the Wittig olefination and its modifications represented by the E-selective HWE olefination and the Z-selective Still-Gennari olefination, collectively offer the major alternative to the Pd-catalyzed alkenylation. However, the carbonyl olefination method fundamentally suffers from more limited stereochemical options and generally lower stereoselectivity levels than the Pd-catalyzed alkenylation. In a number of cases, however, very high (>98%) stereoselectivity levels have been attained in the syntheses of both E and Z isomers. The complementarity of the alkenylation and carbonyl olefination routes provide synthetic chemists with valuable options. While the alkenylation involves formation of a C-C single bond to a CC bond, the carbonyl olefination converts a CO bond to a CC bond. When a

  5. Acidic methanolysis v. alkaline saponification in gas chromatographic characterization of mycobacteria: differentiation between Mycobacterium avium-intracellulare and Mycobacterium gastri.

    Science.gov (United States)

    Larsson, L

    1983-08-01

    Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.

  6. α-Selective Ni-Catalyzed Hydroalumination of Aryl- and Alkyl-Substituted Terminal Alkynes. Practical Syntheses of Internal Vinyl Aluminums, Halides or Boronates

    Science.gov (United States)

    Gao, Fang; Hoveyda, Amir H.

    2010-01-01

    Methods for Ni-catalyzed hydroalumination of terminal alkynes, leading to the formation of α-vinylaluminum isomers efficiently (>98% conv in 2–12 h) and with high selectivity (95% to >98% α), are described. Catalytic α-selective hydroalumination reactions proceed in the presence of a reagent (diisobutylaluminum hydride; dibal–H) and 3.0 mol % metal complex (Ni(dppp)Cl2) that are commercially available and inexpensive. Under the same conditions, but with Ni(PPh3)2Cl2, hydroalumination becomes highly β-selective, and, unlike uncatalyzed transformations with dibal–H, generates little or no alkynylaluminum byproducts. All hydrometallation reactions are reliable, operationally simple and practical, and afford an assortment of vinylaluminums that are otherwise not easily accessible. The derived α-vinyl halides and boronates can be synthesized through direct treatment with the appropriate electrophiles [e.g., Br2 and methoxy(pinacolato)boron, respectively]. Ni-catalyzed hydroaluminations can be performed with as little as 0.1 mol % catalyst and on gram scale with equally high efficiency and selectivity. PMID:20698643

  7. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  8. Comparative study of the methanolysis and ethanolysis of Maize oil using alkaline catalysts

    Directory of Open Access Journals (Sweden)

    Rashid, U.

    2012-03-01

    Full Text Available With an increasing population and economic development, fuel from renewable resources needs to be widely explored in order to fulfill the future energy demand. In the present study, biodiesel from maize oil using transesterification reactions with methanol and ethanol was evaluated in the presence of NaOCH3, KOCH3, NaOCH2CH3, KOCH2CH3, NaOH and KOH as catalysts. The influence of reaction variables such as the alcohol to oil molar ratio (3:1-15:1, catalyst concentration (0.25-1.50% and reaction time (20-120 min to achieve the maximum yield was determined at fixed reaction temperatures. The optimized variables in the case of methanolysis were 6:1 methanol to oil molar ratio (mol/ mol, 0.75% sodium methoxide concentration (wt% and 90 min reaction time at 65°C, which produced a yield of 97.1% methyl esters. A 9:1 ethanol to oil molar ratio (mol/mol, 1.00% sodium ethoxide concentration (wt% and 120 min reaction time at 75°C were found to produce the maximum ethyl ester yield of up to 85%. The methanolysis of maize oil was depicted more rapidly as compared to the ethanolysis of maize oil. Gas chromatography of the produced biodiesel from maize oil showed high levels of linoleic acid (up to 50.89% followed by oleic acid (up to 36.00%, palmitic acid (up to 9.98%, oleic acid (up to 1.80% and linolenic acid (up to 0.98%. The obtained fatty acid esters were further analyzed by fourier transform infrared spectroscopy (FTIR to ensure the completion of transesterification. The fuel properties of the produced biodiesels i.e. kinematic viscosity, cetane number, oxidative stability, pour point, cloud point, cold filter plugging point, ash content, flash point, acid value, sulfur content, higher heating value, density, methanol content, free glycerol and bound glycerol were determined. The analyses were performed using the FTIR method and the results were compared to the biodiesel

  9. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  10. Efficient and Selective Syntheses of (all-E)- and (6E,10Z)-2′-O-Methylmyxalamides D via Pd-Catalyzed Alkenylation—Carbonyl Olefination Synergy

    Science.gov (United States)

    Wang, Guangwei; Huang, Zhihong; Negishi, Ei-ichi

    2008-01-01

    Highly efficient and selective syntheses of both (all-E) and (6E,10Z)-isomers of 2′-O-methylmyxalamide D (2 and 3), in which the crucial conjugated pentaene moieties were assembled in ≥98% stereoselectivity through the use of two Pd-catalyzed alkenylation reactions, the Horner—Wadsworth—Emmons (HWE) olefination, and either the Corey—Schlessinger—Mills modified (CSM-modified) Peterson olefination for 2 or the Still—Gennari olefination for 3, are reported. Either 2 or 3 was prepared in 16% yield in seven steps from propargyl alcohol. PMID:18593171

  11. Vicinal Diboronates in High Enantiomeric Purity through Tandem Site-Selective NHC–Cu-Catalyzed Boron-Copper Additions to Terminal Alkynes

    Science.gov (United States)

    Lee, Yunmi; Jang, Hwanjong; Hoveyda, Amir H.

    2009-01-01

    A Cu-catalyzed protocol for conversion of terminal alkynes to enantiomerically enriched diboronates is reported. In a single vessel, a site-selective hydroboration of an alkyne leads to the corresponding terminal vinylboronate, which undergoes a second site-selective and enantioselective hydroboration. Reactions proceed in the presence of two equivalents of commercially available bis(pinacolato)diboron [B2(pin)2] and 5–7.5 mol % of a chiral bidentate imidazolinium salt, affording diboronates in 60–93% yield and up to 97.5:2.5 enantiomeric ratio (er). The enantiomerically enriched products can be functionalized to afford an assortment of versatile organic molecules. Enynes are converted to unsaturated diboronates with high chemo- (>98% reaction of alkyne; <2% at alkene) and enantioselectivity (e.g., 94.5:5.5 er). PMID:19968273

  12. Differential Selectivity of the Escherichia coli Cell Membrane Shifts the Equilibrium for the Enzyme-Catalyzed Isomerization of Galactose to Tagatose▿

    Science.gov (United States)

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-01-01

    An Escherichia coli galactose kinase gene knockout (ΔgalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the ΔgalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37°C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A ΔmglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions. PMID:18263746

  13. Differential selectivity of the Escherichia coli cell membrane shifts the equilibrium for the enzyme-catalyzed isomerization of galactose to tagatose.

    Science.gov (United States)

    Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun

    2008-04-01

    An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.

  14. Cp*Co(III) Catalyzed Site-Selective C-H Activation of Unsymmetrical O-Acyl Oximes: Synthesis of Multisubstituted Isoquinolines from Terminal and Internal Alkynes.

    Science.gov (United States)

    Sun, Bo; Yoshino, Tatsuhiko; Kanai, Motomu; Matsunaga, Shigeki

    2015-10-26

    The synthesis of isoquinolines by site-selective C-H activation of O-acyl oximes with a Cp*Co(III) catalyst is described. In the presence of this catalyst, the C-H activation of various unsymmetrically substituted O-acyl oximes selectively occurred at the sterically less hindered site, and reactions with terminal as well as internal alkynes afforded the corresponding products in up to 98 % yield. Whereas the reactions catalyzed by the Cp*Co(III) system proceeded with high site selectivity (15:1 to 20:1), use of the corresponding Cp*Rh(III) catalysts led to low selectivities and/or yields when unsymmetrical O-acyl oximes and terminal alkynes were used. Deuterium labeling studies indicate a clear difference in the site selectivity of the C-H activation step under Cp*Co(III) and Cp*Rh(III) catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling.

    Science.gov (United States)

    Deb, Arghya; Hazra, Avijit; Peng, Qian; Paton, Robert S; Maiti, Debabrata

    2017-01-18

    Directing group-assisted regioselective C-H olefination with electronically biased olefins is well studied. However, the incorporation of unactivated olefins has remained largely unsuccessful. A proper mechanistic understanding of olefination involving unactivated alkenes is therefore essential for enhancing their usage in future. In this Article, detailed experimental and computational mechanistic studies on palladium catalyzed C-H olefination with unactivated, aliphatic alkenes are described. The isolation of Pd(II) intermediates is shown to be effective for elucidating the elementary steps involved in catalytic olefination. Reaction rate and order determination, control experiments, isotopic labeling studies, and Hammett analysis have been used to understand the reaction mechanism. The results from these experimental studies implicate β-hydride elimination as the rate-determining step and that a mechanistic switch occurs between cationic and neutral pathway. Computational studies support this interpretation of the experimental evidence and are used to uncover the origins of selectivity.

  16. Enantioselective Rhodium-Catalyzed [2+2+2] Cycloadditions of Terminal Alkynes and Alkenyl Isocyanates: Mechanistic Insights Lead to a Unified Model that Rationalizes Product Selectivity

    Science.gov (United States)

    Dalton, Derek M.; Oberg, Kevin M.; Yu, Robert T.; Lee, Ernest E.; Perreault, Stéphane; Oinen, Mark Emil; Pease, Melissa L.; Malik, Guillaume; Rovis, Tomislav

    2009-01-01

    This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2+2+2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity. PMID:19817441

  17. A computational study on Lewis acid-catalyzed diastereoselective acyclic radical allylation reactions with unusual selectivity dependence on temperature and epimer precursor.

    Science.gov (United States)

    Georgieva, Miglena K; Santos, A Gil

    2014-12-05

    In stereoselective radical reactions, it is accepted that the configuration of the radical precursor has no impact on the levels of stereoinduction, as a prochiral radical intermediate is planar, with two identical faces, independently of its origin. However, Sibi and Rheault (J. Am. Chem. Soc. 2000, 122, 8873-8879) remarkably obtained different selectivities in the trapping of radicals originated from two epimeric bromides, catalyzed by chelating Lewis acids. The selectivity rationalization was made on the basis of different conformational properties of each epimer. However, in this paper we show that the two epimers have similar conformational properties, which implies that the literature proposal is unable to explain the experimental results. We propose an alternative mechanism, in which the final selectivity is dependent on different reaction rates for radical formation from each epimer. By introducing a different perspective of the reaction mechanism, our model also allows the rationalization of different chemical yields obtained from each epimer, a result not rationalized by the previous model. Adaptation to other radical systems, under different reaction conditions, is also possible.

  18. Ligand-controlled reactivity, selectivity, and mechanism of cationic ruthenium-catalyzed hydrosilylations of alkynes, ketones, and nitriles: a theoretical study.

    Science.gov (United States)

    Yang, Yun-Fang; Chung, Lung Wa; Zhang, Xinhao; Houk, K N; Wu, Yun-Dong

    2014-09-19

    Density functional theory calculations with the M06 functional have been performed on the reactivity, selectivity, and mechanism of hydrosilylations of alkynes, ketones, and nitriles catalyzed by cationic ruthenium complexes [CpRu(L)(MeCN)2](+), with L = P(i)Pr3 or MeCN. The hydrosilylation of alkynes with L = P(i)Pr3 involves an initial silyl migration mechanism to generate the anti-Markovnikov product, in contrast to the Markovnikov product obtained with L = MeCN. The bulky phosphine ligand directs the silyl group to migrate to Cβ of the alkyne. This explains the anti-Markovnikov selectivity of the catalyst with L = P(i)Pr3. By contrast, the silane additions to either ketone or nitrile proceed through an ionic SN2-Si outer-sphere mechanism, in which the substrate attacks the Si center. The P(i)Pr3 ligand facilitates the activation of the Si-H bond to furnish a η(2)-silane complex, whereas a η(1)-silane complex is formed for the MeCN ligand. This property of the phosphine ligand enables the catalytic hydrosilylation of ketones and nitriles in addition to that of alkynes.

  19. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Lu, Liang-Qiu; Junge, Kathrin; Beller, Matthias

    2016-05-17

    This article describes a selective reduction of functionalized amides, including N-acyl amino esters and dipeptides, to the corresponding amines using simple [Rh(acac)(cod)]. The catalyst shows excellent chemoselectivity in the presence of different sensitive functional moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Xiang, Ling; Lin, Yuqing; Yu, Ping; Su, Lei; Mao, Lanqun

    2007-01-01

    This study demonstrates a new electrochemical method for the selective determination of dopamine (DA) with the coexistence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) with laccase/multi-walled carbon nanotube (MWNT)-based biosensors prepared by cross-linking laccase into MWNT layer confined onto glassy carbon electrodes. The method described here is essentially based on the chemical reaction properties of DA including oxidation, intramolecular cyclization and disproportionation reactions to finally give 5,6-dihydroxyindoline quinone and on the uses of the two-electron and two-proton reduction of the formed 5,6-dihydroxyindoline quinone to constitute a method for the selective determination of DA at a negative potential that is totally separated from those for the redox processes of AA and DOPAC. Instead of the ECE reactions of DA with the first oxidation of DA being driven electrochemically, laccase is used here as the biocatalyst to drive the first oxidation of DA into its quinone form and thus initialize the sequential reactions of DA finally into 5,6-dihydroxyindoline quinone. In addition, laccase also catalyzes the oxidation of AA and DOPAC into electroinactive species with the concomitant reduction of O 2 . As a consequence, a combinational exploitation of the chemical properties inherent in DA and the multifunctional catalytic properties of laccase as well as the excellent electrochemical properties of carbon nanotubes substantially enables the prepared laccase/MWNT-based biosensors to be well competent for the selective determination of DA with the coexistence of physiological levels of AA and DOPAC. This demonstration offers a new method for the selective determination of DA, which could be potentially employed for the determination of DA in biological systems

  1. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  2. Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III Complex

    Directory of Open Access Journals (Sweden)

    Gongde Wu

    2015-11-01

    Full Text Available A series of layered double hydroxides (LDHs –hosted sulphonato-salen Cr(III complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR, ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM and elemental analysis. Additionally, their catalytic performances were investigated in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that all the LDH-hosted Cr(III complexes exhibited significantly enhanced catalytic performance compared to the homogeneous Cr(III complex. Additionally, it was worth mentioning that the metal composition of LDH plates played an important role in the catalytic performances of LDH-hosted Cr(III complex catalysts. Under the optimal reaction conditions, the highest GLY conversion reached 85.5% with 59.3% of the selectivity to 1,3-dihydroxyacetone (DHA. In addition, the catalytic activity remained after being recycled five times.

  3. The major/minor concept: dependence of the selectivity of homogeneously catalyzed reactions on reactivity ratio and concentration ratio of the intermediates.

    Science.gov (United States)

    Schmidt, Thomas; Dai, Zhenya; Drexler, Hans-Joachim; Hapke, Marko; Preetz, Angelika; Heller, Detlef

    2008-07-07

    The homogeneously catalyzed asymmetric hydrogenation of prochiral olefins with cationic Rh(I) complexes is one of the best-understood selection processes. For some of the catalyst/substrate complexes, experimental proof points out the validation of the major/minor principle; the concentration-deficient minor substrate complex, which has very high reactivity, yields the excess enantiomer. As exemplified by the reaction system of [Rh(dipamp)(MeOH)2]+/methyl (Z)-alpha-acetamidocinnamate (dipamp=1,2-bis((o-methoxyphenyl)phenylphosphino)ethane), all six of the characteristic reaction rate constants have been previously identified. Recently, it was found that the major substrate complex can also yield the major enantiomer (lock-and-key principle). The differential equation system that results from the reaction sequence can be solved numerically for different hydrogen partial pressures by including the known equilibrium constants. The result displays the concentration-time dependence of all species that exist in the catalytic cycle. On the basis of the known constants as well as further experimental evidence, this work focuses on the examination of all principal possibilities resulting from the reaction sequence and leading to different results for the stereochemical outcome. From the simulation, the following conclusions can be drawn: 1) When an intermediate has extreme reactivity, its stationary concentration can become so small that it can no longer be the source of product selectivity; 2) in principle, the major/minor and lock-and-key principles can coexist depending on the applied pressure; 3) thermodynamically determined intermediate ratios can be completely converted under reaction conditions for a selection process; and 4) the increase in enantioselectivity with increasing hydrogen partial pressure, a phenomenon that is experimentally proven but theoretically far from being well-understood, can be explained by applying both the lock-and-key as well as the major

  4. Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom-Doped Hierarchical Porous Carbon Derived from Bamboo Shoots.

    Science.gov (United States)

    Ji, Guijie; Duan, Yanan; Zhang, Shaochun; Fei, Benhua; Chen, Xiufang; Yang, Yong

    2017-09-11

    Highly dispersed palladium nanoparticles (Pd NPs) immobilized on heteroatom-doped hierarchical porous carbon supports (N,O-carbon) with large specific surface areas are synthesized by a wet chemical reduction method. The N,O-carbon derived from naturally abundant bamboo shoots is fabricated by a tandem hydrothermal-carbonization process without assistance of any templates, chemical activation reagents, or exogenous N or O sources in a simple and ecofriendly manner. The prepared Pd/N,O-carbon catalyst shows extremely high activity and excellent chemoselectivity for semihydrogenation of a broad range of alkynes to versatile and valuable alkenes under ambient conditions. The catalyst can be readily recovered for successive reuse with negligible loss in activity and selectivity, and is also applicable for practical gram-scale reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    Science.gov (United States)

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  6. Spiro(phosphoamidite) ligand (SIPHOS)/Cu(OTf)2-catalyzed highly regio-and stereo-selective hydroborations of internal alkynes with diborane in water

    Institute of Scientific and Technical Information of China (English)

    Qing-Qing Xuan; Ya-Hui Wei; Qiu-Ling Song

    2017-01-01

    The highly regio-and stereoselective hydroborations of unactivated internal alkynes with diboron compound catalyzed by Cu(OTf)2 with spiro(phosphoamidite) as ligand in the presence of Cs2CO3 in water was developed.This protocol was applied efficiently in the aqueous synthesis of multi-substituted vinylboranes.

  7. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.

    Science.gov (United States)

    Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V

    2010-09-01

    Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

  8. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    Science.gov (United States)

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  10. Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology

    International Nuclear Information System (INIS)

    Miladinović, Marija R.; Stamenković, Olivera S.; Banković, Predrag T.; Milutinović-Nikolić, Aleksandra D.; Jovanović, Dušan M.; Veljković, Vlada B.

    2016-01-01

    Highlights: • Sunflower oil methanolysis in a continuous packed bed reactor was optimized. • Thermally-activated, low-cost quicklime bits were used as a catalyst. • Process was optimized by 3"3 full factorial design and Box-Behnken design. • Box-Behnken design is recommended for optimizing biodiesel production processes. • FAME content in the ester phase obtained under the optimum conditions was >98%. - Abstract: The effect of the residence time (i.e. liquid flow rate through the reactor), methanol-to-oil molar ratio and reaction temperature on the fatty acid methyl esters (FAMEs) content at the output of a continuous packed bed tubular reactor was modeled by the response surface methodology (RSM) combined with the 3"3 full factorial design (FFD) with replication or the Box-Behnken design (BBD) with five center points. The methanolysis of sunflower oil was carried out at the residence time of 1.0, 1.5 and 2.0 h, the methanol-to-oil molar ratios of 6:1, 12:1 and 18:1 and the reaction temperature of 40, 50 and 60 °C under the atmospheric pressure. Based on the used experimental designs, the model equations containing only linear and two-factor interaction terms were developed for predicting the FAME content, which were validated through the use of the unseen data. Applying the analysis of variance (ANOVA), all three factors were shown to have a significant influence on the FAME content. Acceptable statistical predictability and accuracy resulted from both designs since the values of the coefficient of determination were close to unity while the values of the mean relative percentage deviation were relatively low (<±10%). In addition, both designs predicted the maximum FAME content of above 99%, which agreed closely with the actual FAME content (98.8%). The same optimal reaction temperature (60 °C) and residence time (2.0 h) were determined by both designs while the BBD model suggested a slightly lower methanol-to-oil molar ratio (12.2:1) than the 3"3 FFD

  11. Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide

    KAUST Repository

    Tan, Hua

    2016-04-18

    Pt supported on KOH-activated mesoporous carbon (K-AMC) was used to catalyze glycerol oxidation under base-free conditions at room temperature. To study the relationship between the carbon surface chemistry and the catalytic performance of the K-AMC-based Pt catalysts, different levels of surface oxygen functional groups (SOFGs) on the AMC supports were induced by thermal treatment at different temperatures under inert or H2 gas. A strong effect of the surface chemistry was observed on AMC-supported Pt catalysts for glycerol oxidation. The presence of carboxylic acid groups impedes the adsorption of glycerol, which leads to the reduction of catalytic activity, whereas the presence of high-desorption-temperature SOFGs, such as phenol, ether, and carbonyl/quinone groups, provide hydrophilicity to the carbon surface that improves the adsorption of glycerol molecules on Pt metal surface, which is beneficial for the catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin.

    Science.gov (United States)

    Pan, Xue; Siloto, Rodrigo M P; Wickramarathna, Aruna D; Mietkiewska, Elzbieta; Weselake, Randall J

    2013-08-16

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3(cis)(Δ9,12,15)) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications.

  13. Identification of a Pair of Phospholipid:Diacylglycerol Acyltransferases from Developing Flax (Linum usitatissimum L.) Seed Catalyzing the Selective Production of Trilinolenin*

    Science.gov (United States)

    Pan, Xue; Siloto, Rodrigo M. P.; Wickramarathna, Aruna D.; Mietkiewska, Elzbieta; Weselake, Randall J.

    2013-01-01

    The oil from flax (Linum usitatissimum L.) has high amounts of α-linolenic acid (ALA; 18:3cisΔ9,12,15) and is one of the richest sources of omega-3 polyunsaturated fatty acids (ω-3-PUFAs). To produce ∼57% ALA in triacylglycerol (TAG), it is likely that flax contains enzymes that can efficiently transfer ALA to TAG. To test this hypothesis, we conducted a systematic characterization of TAG-synthesizing enzymes from flax. We identified several genes encoding acyl-CoA:diacylglycerol acyltransferases (DGATs) and phospholipid:diacylglycerol acyltransferases (PDATs) from the flax genome database. Due to recent genome duplication, duplicated gene pairs have been identified for all genes except DGAT2-2. Analysis of gene expression indicated that two DGAT1, two DGAT2, and four PDAT genes were preferentially expressed in flax embryos. Yeast functional analysis showed that DGAT1, DGAT2, and two PDAT enzymes restored TAG synthesis when produced recombinantly in yeast H1246 strain. The activity of particular PDAT enzymes (LuPDAT1 and LuPDAT2) was stimulated by the presence of ALA. Further seed-specific expression of flax genes in Arabidopsis thaliana indicated that DGAT1, PDAT1, and PDAT2 had significant effects on seed oil phenotype. Overall, this study indicated the existence of unique PDAT enzymes from flax that are able to preferentially catalyze the synthesis of TAG containing ALA acyl moieties. The identified LuPDATs may have practical applications for increasing the accumulation of ALA and other polyunsaturated fatty acids in oilseeds for food and industrial applications. PMID:23824186

  14. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.

    Science.gov (United States)

    Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen

    2012-01-01

    A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  15. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  16. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2H4·H2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  17. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.

    Science.gov (United States)

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Molina Grima, Emilio

    2016-09-01

    In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mechanochemical synthesis of CaO•ZnO.K2CO3 catalyst: Characterization and activity for methanolysis of sunflower oil

    Directory of Open Access Journals (Sweden)

    Kesić Željka

    2015-01-01

    Full Text Available The goal of this study was to prepare CaO.ZnO catalyst which contain small amount of K2CO3 and analyze its activity for biodiesel synthesis. Catalyst was prepared using the following procedure: CaO and ZnO (molar ratio of 1:2, water and K2CO3 (in various amounts were mechanochemically treated and after milling heated at 700 oC in air atmosphere for obtaining mixed CaO•ZnO/xK2CO3 oxides (x = 0, 1, 2 and 4; mole of K2CO3 per 10 mole of CaO. All the samples were characterized by X-ray diffraction (XRD, inductively coupled plasma (ICP, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TGA, infrared spectroscopy (FTIR, scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS, particle size laser diffraction (PSLD distribution, solubility measurement of Ca, Zn and K ions in methanol as well as by determination of their alkalinity (Hammett indicator method. Prepared CaO•ZnO/xK2CO3 composite powders were tested as catalysts for methanolysis of sunflower oil at 70ºC using molar ratio of sunflower oil to methanol of 1:10 and with 2 mas% of catalyst based on oil weight. The presence of K2CO3 in prepared samples was found to increase the activity of catalyst, and that such effect is caused by homogeneous-heterogeneous catalysis of biodiesel synthesis. [Projekat Ministarstva nauke Republike Srbije, br. 45001

  19. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus–nitrogen PN3-pincer cobalt(ii) complexes

    KAUST Repository

    Gong, Dirong; Zhang, Xuequan; Huang, Kuo-Wei

    2016-01-01

    ligand through the pyridinyl nitrogen, the pyrazol nitrogen and the phosphorus donor, with a long Co-P bond distance indicating a labile character. On activation with AlEt2Cl, Al2Et3Cl3, MAO, [Ph3C]+[B(C6F5)4]-/AliBu3 or AliBu3, cis-1,4 selective

  20. Dimerization of Terminal Aryl Alkynes Catalyzed by Iron(II) Amine-Pyrazolyl Tripodal Complexes with E/Z Selectivity Controlled by tert-Butoxide

    KAUST Repository

    Xue, Fei

    2018-05-09

    The catalytic activity of iron(II) complexes with functionalized amine-pyrazolyl tripodal ligands toward dimerization of terminal alkynes in the presence a base (KOtBu or NaOtBu) has been studied. An unusual E/Z selectivity of the reaction determined by tert-butoxide was observed.

  1. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling.

    Science.gov (United States)

    Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin

    2018-04-26

    An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.

  2. Dimerization of Terminal Aryl Alkynes Catalyzed by Iron(II) Amine-Pyrazolyl Tripodal Complexes with E/Z Selectivity Controlled by tert-Butoxide

    KAUST Repository

    Xue, Fei; Song, Xiaolu; Lin, Ting Ting; Munkerup, Kristin; Albawardi, Saad Fahad; Huang, Kuo-Wei; Hor, T. S. Andy; Zhao, Jin

    2018-01-01

    The catalytic activity of iron(II) complexes with functionalized amine-pyrazolyl tripodal ligands toward dimerization of terminal alkynes in the presence a base (KOtBu or NaOtBu) has been studied. An unusual E/Z selectivity of the reaction determined by tert-butoxide was observed.

  3. Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface

    International Nuclear Information System (INIS)

    Xie, Yunfeng; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-01

    A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb 2+ by exploiting the catalytic effect of Pb 2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb 2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb 2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb 2+ in real samples. (author)

  4. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  5. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus–nitrogen PN3-pincer cobalt(ii) complexes

    KAUST Repository

    Gong, Dirong

    2016-11-11

    A new family of cobalt complexes (CoCl2-H, CoCl2-Me, CoCl2-iPr, CoBr2-H, CoBr2-Me, CoBr2-iPr, CoI2-H, CoI2-Me, and CoI2-iPr) supported by a PN3 ligand (6-(N,N′-di-t-butylphosphino)-2-pyrazol-yl-aminopyridine) have been prepared and fully characterized by FT-IR, elemental analysis, and X-ray analysis. The X-ray analysis reveals a trigonal bipyramidal conformation in the solid state for all representative complexes, CoCl2-H, CoBr2-H, CoBr2-iPr and CoI2-Me. The cobalt center is chelated by the PN3 ligand through the pyridinyl nitrogen, the pyrazol nitrogen and the phosphorus donor, with a long Co-P bond distance indicating a labile character. On activation with AlEt2Cl, Al2Et3Cl3, MAO, [Ph3C]+[B(C6F5)4]-/AliBu3 or AliBu3, cis-1,4 selective butadiene polymerization was achieved with up to 98.6% selectivity. The polymerization results show that the cis-1,4 selectivity is influenced by the steric hindrance, increasing with the bulkiness of the substituent groups (CoX2-iPr > CoX2-Me > CoX2-H) at the 3,5-positions of the pyrazole moiety, together with a slight decrease in activity. The activity changes in the order CoCl2L ≈ CoBr2L > CoI2L (for the same ligand L) when MAO is used as the activator, while the high level of cis-1,4 selectivity is maintained. It is possible to switch the selectivity from cis-1,4 to syndiotactic-1,2 by adding PPh3 © The Royal Society of Chemistry.

  6. Selective and Orthogonal Post-Polymerization Modification using Sulfur(VI) Fluoride Exchange (SuFEx) and Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) Reactions

    International Nuclear Information System (INIS)

    Oakdale, James S.; Kwisnek, Luke; Fokin, Valery V.

    2016-01-01

    Functional polystyrenes and polyacrylamides, containing combinations of fluorosulfate, aromatic silyl ether, and azide side chains, were used as scaffolds to demonstrate the postpolymerization modification capabilities of sulfur(VI) fluoride exchange (SuFEx) and CuAAC chemistries. Fluorescent dyes bearing appropriate functional groups were sequentially attached to the backbone of the copolymers, quantitatively and selectively addressing their reactive partners. Furthermore, this combined SuFEx and CuAAC approach proved to be robust and versatile, allowing for a rare accomplishment: triple orthogonal functionalization of a copolymer under essentially ambient conditions without protecting groups.

  7. Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials

    Directory of Open Access Journals (Sweden)

    Zen Maeno

    2015-02-01

    Full Text Available Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine (PPI dendrimer and magadiite for the selective C–C coupling of 2,6-dimethylphenol (DMP to 3,3',5,5'-tetramethyldiphenoquinone (DPQ with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C–C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis, Fourier transform infrared (FTIR, electronic spin resonance (ESR, and X-ray absorption fine structure (XAFS spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  8. NHC-Ag/Pd-Catalyzed Reductive Carboxylation of Terminal Alkynes with CO2 and H2 : A Combined Experimental and Computational Study for Fine-Tuned Selectivity.

    Science.gov (United States)

    Yu, Dingyi; Zhou, Feng; Lim, Diane S W; Su, Haibin; Zhang, Yugen

    2017-03-09

    Reductive carboxylation of terminal alkynes utilizing CO 2 and H 2 as reactants is an interesting and challenging transformation. Theoretical calculations indicated it would be kinetically possible to obtain cinnamic acid, the reductive carboxylation product, from phenylacetylene in a CO 2 /H 2 system with an N-heterocyclic carbene (NHC)-supported Ag/Pd bimetallic catalysts through competitive carboxylation/hydrogenation cascade reactions in one step. These calculations were verified experimentally with a poly-NHC-supported Ag/Pd catalyst. By tuning the catalyst composition and reaction temperature, phenylacetylene was selectively converted to cinnamic acid, hydrocinnamic acid, or phenylpropiolic acid in excellent yields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective Oxidation of Cyclohexene, Toluene and Ethyl Benzene Catalyzed by Bis-(L-tyrosinatocopper(II, Immersed in a Magnetite-Infused Silica Matrix

    Directory of Open Access Journals (Sweden)

    Massomeh Ghorbanloo

    2016-01-01

    Full Text Available Bis-(L-tyrosinatocopper(II was reacted with 3-(chloropropyl-trimethoxysilane functionalized silica that has infused magnetite to yield a magnetically separable catalyst in which the copper carboxylate is covalently linked to the silica matrix through the silane linkage. The immobilized catalyst has been characterized by spectroscopic studies (such as FT-IR, EPR, Magnetic Measurement, SEM and chemical analyses. The immobilized catalytic system functions as an efficient heterogeneous catalyst for oxidation of cyclohexene, toluene and ethyl benzene in the presence of hydrogen peroxide (as an oxidant and sodium bicarbonate (a co-catalyst. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst. The immobilized catalyst could be readily recovered from the reaction mixture by using a simple magnet, and  reused up to five times without any loss of activity.

  10. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  12. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes.

    Science.gov (United States)

    Yamamoto, Yoshihiko

    2014-03-07

    Transition-metal (TM)-catalyzed hydroarylation reactions of alkynes have received much attention, because they enable the net insertion of alkyne C-C triple bonds into C-H bonds of aromatic precursors, resulting in regio- and stereo-selective formation of synthetically useful arylalkenes. Taking advantage of this feature, TM-catalyzed alkyne hydroarylations have been successfully used for the synthesis of heterocycles. TM-catalyzed alkyne hydroarylations can be classified into three major categories depending on the type of reaction and precursors involved: (1) palladium-catalyzed reductive Heck reactions of alkynes with aryl halides, (2) TM-catalyzed conjugate arylation reactions of activated alkynes with arylboronic acids, and (3) TM-catalyzed aromatic C-H alkenylations with alkynes. This review surveys heterocycle synthesis via TM-catalyzed hydroarylation of alkynes according to the above classification, with an emphasis on the scope and limitations, as well as the underlying mechanisms.

  13. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  14. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to alkynes.

    Science.gov (United States)

    Li, Changkun; Grugel, Christian P; Breit, Bernhard

    2016-04-30

    A highly efficient rhodium-catalyzed chemo- and regioselective addition of β-ketoacids to alkynes is reported. Applying a Rh(i)/(S,S)-DIOP catalyst system, γ,δ-unsaturated ketones were prepared with exclusively branched selectivity under mild conditions. This demonstrates that readily available alkynes can be an alternative entry to allyl electrophiles in transition-metal catalyzed allylic alkylation reactions.

  15. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  16. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    Energy Technology Data Exchange (ETDEWEB)

    Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-12

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.

  17. Straightforward uranium-catalyzed dehydration of primary amides to nitriles

    International Nuclear Information System (INIS)

    Enthaler, Stephan

    2011-01-01

    The efficient uranium-catalyzed dehydration of a variety of primary amides, using N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) as a dehydration reagent, to the corresponding nitriles has been investigated. With this catalyst system, extraordinary catalyst activities and selectivities were feasible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Hydroformylation of methyl oleate catalyzed by rhodium complexes

    International Nuclear Information System (INIS)

    Mendes, Ana Nery Furlan; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro

    2012-01-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H 2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  19. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming

    2018-05-08

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  20. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming; Maity, Bholanath; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  1. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  2. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  3. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  4. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    Science.gov (United States)

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  5. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  6. Diastereoselective Au-Catalyzed Allene Cycloisomerizations to Highly Substituted Cyclopentenes.

    Science.gov (United States)

    Reeves, Ryan D; Phelps, Alicia M; Raimbach, William A T; Schomaker, Jennifer M

    2017-07-07

    Site- and regiocontrolled Au-catalyzed allene carbocyclizations furnish highly substituted cyclopentenes in >1:1 dr. Significant substitution on the substrate is tolerated, with potential to install five contiguous stereocenters after alkene functionalization. Major challenges include identifying a Au/Cu catalyst that controls both the relative rates of allene epimerization/cyclization and the facial selectivity in addition of a metal enolate to the allene. Experiments to achieve stereodivergent cyclizations and transform key cyclopentenes into useful synthetic building blocks are described.

  7. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  8. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  9. Identification of Critical Parameters in Liquid Enzyme-Catalyzed Biodiesel Production

    DEFF Research Database (Denmark)

    Nordblad, Mathias; Silva, Vanessa T. L.; Nielsen, Per Munk

    2014-01-01

    CalleraTM Trans L, a liquid formulation of Thermomyces lanuginosus lipase, has recently shown great promise as a cost-efficient catalyst for methanolysis of triglyceride substrates, specifically in the BioFAME process. However, identifying the right combination of temperature and concentrations o...

  10. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  11. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  12. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  13. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    Science.gov (United States)

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  14. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  15. Study of selective oxidation of methane catalyzed by solid superacid in unique reaction field; Tokushu hannoba no kotai chokyosan wo mochiiru methane no sentaku sanka hanno ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Misonoo, M; Tatsumi, T; Mizuno, T; Inumaru, T [The University of Tokyo, Tokyo (Japan)

    1997-02-01

    Selective oxidation of lower alkanes by use of heteropolymeric compounds is studied. Alkanes are activated on Cs2.5H0.5PW12O40 serving as catalyst, and their activity and selectivity improve when the catalyst is developed into a dual function catalyst in which Cs and Pt are combined. A success is reported of the synthesis of a heteropolymeric acid in which two molecules of the coordination element wolfram are replaced with a transition metal of the first period, on which acid the oxidation of cyclohexane is enhanced. Cs2.5Ni0.08H1.34PVMo11O40 as a metal/heteropolymeric acid dual function catalyst enables the direct oxidation (9% recovered at 340{degree}C) of isobutane into a methacrylic acid, which is attributed to the harmonious coordination of the oxidizing work of the catalyst and acidity. It is possible to oxidize propane into the acrylic acid, but not ethane into the acetic acid. In the case of Pd/Cs2.5H1.5PVMo11O40, the formic acid, methanol, etc., are produced upon addition of hydrogen to the system. This reaction in the hydrogen/oxygen system is supposed to take place via activated oxygen seeds as in the case of oxidation by hydrogen peroxide. 10 refs.

  16. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  17. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Iron(II)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines.

    Science.gov (United States)

    Liu, Guan-Sai; Zhang, Yong-Qiang; Yuan, Yong-An; Xu, Hao

    2013-03-06

    A diastereoselective aminohydroxylation of olefins with a functionalized hydroxylamine is catalyzed by new iron(II) complexes. This efficient intramolecular process readily affords synthetically useful amino alcohols with excellent selectivity (dr up to > 20:1). Asymmetric catalysis with chiral iron(II) complexes and preliminary mechanistic studies reveal an iron nitrenoid is a possible intermediate that can undergo either aminohydroxylation or aziridination, and the selectivity can be controlled by careful selection of counteranion/ligand combinations.

  19. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Guo, Lin; Rueping, Magnus

    2018-01-01

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  20. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.

    2016-01-01

    on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro...

  1. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian

    2018-05-09

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  2. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  3. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    Science.gov (United States)

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF 3 -substituted allylic carbonate is described. This reaction provides direct access to linear CF 3 -allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF 3 -allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  4. Promotion of selective pathways in isomerizing functionalization of plant oils by rigid framework substituents

    KAUST Repository

    Christl, Josefine T.

    2014-10-14

    The 1,2-(CH2P(1-adamantyl)2)2C6H4 (dadpx) coordinated palladium complex [(dadpx)Pd(OTf)2] (1) is a catalyst precursor for the isomerizing methoxycarbonylation of the internal double bond of methyl oleate, with an unprecedented selectivity (96%) for the linear diester 1,19-dimethyl nonadecanedioate. Rapid formation of the catalytically active solvent-coordinated hydride species [(dadpx)PdH(MeOH)]+ (3-MeOH) is evidenced by NMR spectroscopy, and further isolation and X-ray crystal structure analysis of [(dadpx)PdH(PPh3)]+ (3-PPh3). DFT calculations of key steps of the catalytic cycle unravel methanolysis as the decisive step for enhanced selectivity and the influence of the rigid adamantyl framework on this step by destabilization of transition states of unselective pathways.

  5. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    Science.gov (United States)

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  6. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  7. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  8. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  9. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  10. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  11. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  12. Palladium-catalyzed Reppe carbonylation.

    Science.gov (United States)

    Kiss, G

    2001-11-01

    PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter

  13. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  14. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  15. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  16. Degradation of Akt using protein-catalyzed capture agents.

    Science.gov (United States)

    Henning, Ryan K; Varghese, Joseph O; Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M; Heath, James R

    2016-04-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare proteolysis targeting chimeric molecules that are shown to promote the rapid degradation of Akt in live cancer cells. These novel proteolysis targeting chimeric molecules demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Diversification of indoles via microwave-assisted ligand-free copper-catalyzed N-arylation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Kwan; Lee, Jin Hee; Kim, Tae Sung; Yum, Eul Kgun [Dept. of Chemistry, Chu ngnam National University, Daejon (Korea, Republic of); Park, Jee Jung [Western Seoul Center Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    A simple, efficient Cu{sub 2}O catalyst system under microwave irradiation was developed for N-arylation of various indoles without ligands and additives. Diverse N-heteroarylated indoles were prepared by coupling indoles with various heteroaryl halides within 1 h. The selective reactivity of bromoindole with aryl iodide provided N-aryl bromoindoles, which could be useful intermediates for palladium-catalyzed Heck and Suzuki coupling reactions.

  18. Sterically directed iridium-catalyzed hydrosilylation of alkenes in the presence of alkynes.

    Science.gov (United States)

    Muchnij, Jill A; Kwaramba, Farai B; Rahaim, Ronald J

    2014-03-07

    A selective iridium catalyzed hydrosilylation of alkenes in the presence of more reactive alkynes is described. By utilizing [IrCl(COD)]2 in the presence of excess COD, hydrosilylation of alkenes and alkynes with ethynylsilanes is achieved with good chemo- and regioselectivity. This approach goes against the traditional reactivity trends of platinum and rhodium catalysts and allows access to highly substituted silicon alkyne tethers.

  19. Oxidative desulfurization of dibenzothiophene with hydrogen peroxide catalyzed by selenium(IV)-containing peroxotungstate.

    Science.gov (United States)

    Hu, Yiwen; He, Qihui; Zhang, Zheng; Ding, Naidong; Hu, Baixing

    2011-11-28

    With stoichiometric H(2)O(2) as oxidant, dibenzothiophene (DBT) is oxidized to its corresponding sulfone with high efficiency, catalyzed by a sub-valence heteronuclear peroxotungstate, [C(18)H(37)N(CH(3))(3)](4)[H(2)Se(IV)(3)W(6)O(34)], under mild biphase conditions and the catalyst shows remarkable selectivity of catalytic oxidation towards DBT, cinnamyl alcohol and quinoline.

  20. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    Science.gov (United States)

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  1. Constructing Multiply Substituted Arenes Using Sequential Pd(II)-Catalyzed C–H Olefination**

    Science.gov (United States)

    Engle, Keary M.; Wang, Dong-Hui; Yu, Jin-Quan

    2011-01-01

    Complementary catalytic systems have been developed in which the reactivity/selectivity balance in Pd(II)-catalyzed ortho-C–H olefination can be modulated through ligand control. This allows for sequential C–H functionalization for the rapid preparation of 1,2,3-trisubstituted arenes. Additionally, a rare example of iterative C–H activation, in which a newly installed functional group directs subsequent C–H activation has been demonstrated. PMID:20632344

  2. Ester versus polyketone formation in the palladium-diphosphine catalyzed carbonylation of ethene.

    Science.gov (United States)

    Zuidema, Erik; Bo, Carles; van Leeuwen, Piet W N M

    2007-04-04

    The origin of the chemoselectivity of palladium catalysts containing bidentate phosphine ligands toward either methoxycarbonylation of ethene or the copolymerization of ethene and carbon monoxide was investigated using density functional theory based calculations. For a palladium catalyst containing the electron-donating bis(dimethylphosphino)ethane (dmpe) ligand, the rate determining step for chain propagation is shown to be the insertion of ethene into the metal-acyl bond. The high barrier for chain propagation is attributed to the low stability of the ethene intermediate, (dmpe)Pd(ethene)(C(O)CH3). For the competing methanolysis process, the most likely pathway involves the formation of (dmpe)Pd(CH3OH)(C(O)CH3) via dissociative ligand exchange, followed by a solvent mediated proton-transfer/reductive- elimination process. The overall barrier for this process is higher than the barrier for ethene insertion into the palladium-acetyl bond, in line with the experimentally observed preference of this type of catalyst toward the formation of polyketone. Electronic bite angle effects on the rates of ethene insertion and ethanoyl methanolysis were evaluated using four electronically and sterically related ligands (Me)2P(CH2)nP(Me)2 (n = 1-4). Steric effects were studied for larger tert-butyl substituted ligands using a QM/MM methodology. The results show that ethene coordination to the metal center and subsequent insertion into the palladium-ethanoyl bond are disfavored by the addition of steric bulk around the metal center. Key intermediates in the methanolysis mechanism, on the other hand, are stabilized because of electronic effects caused by increasing the bite angle of the diphosphine ligand. The combined effects explain successfully which ligands give polymer and which ones give methyl propionate as the major products of the reaction.

  3. The Pd-catalyzed semihydrogenation of alkynes to Z-alkenes: Catalyst systems and the type of active species

    NARCIS (Netherlands)

    Drost, R.M.

    2014-01-01

    In this thesis studies have been performed on the Pd-catalyzed Z-selective semihydrogenation of alkynes. In Chapter one a general introduction is given. In Chapter two a new NHC-based, easy-to-use catalyst system is developed. The performance of the system is evaluated for a range of alkynes. In

  4. Intermolecular rhodium-catalyzed [2 + 2 + 2] carbocyclization reactions of 1,6-enynes with symmetrical and unsymmetrical alkynes†

    Science.gov (United States)

    Andrew Evans, P.; Sawyer, James R.; Lai, Kwong Wah; Huffman, John C.

    2006-01-01

    The crossed intermolecular rhodium-catalyzed [2 + 2 + 2] carbocyclization of carbon and heteroatom tethered 1,6-enynes can be accomplished with symmetrical and unsymmetrical alkynes, to afford the corresponding bicyclohexadienes in an efficient and highly selective manner. PMID:16075089

  5. Hydroformylation of methyl oleate catalyzed by rhodium complexes; Hidroformilacao do oleato de metila catalisada por complexos de rodio

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Nery Furlan [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Ciencias Naturais; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro, E-mail: jrg@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2012-07-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H{sub 2} ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  6. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  7. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Leon, M.

    1988-01-01

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H 2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec. 1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  8. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  10. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    Science.gov (United States)

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  11. Rhodium(III)- and iridium(III)-catalyzed C7 alkylation of indolines with diazo compounds.

    Science.gov (United States)

    Ai, Wen; Yang, Xueyan; Wu, Yunxiang; Wang, Xuan; Li, Yuanchao; Yang, Yaxi; Zhou, Bing

    2014-12-22

    A Rh(III)-catalyzed procedure for the C7-selective C-H alkylation of various indolines with α-diazo compounds at room temperature is reported. The advantages of this process are: 1) simple, mild, and pH-neutral reaction conditions, 2) broad substrate scope, 3) complete regioselectivity, 4) no need for an external oxidant, and 5) N2 as the sole byproduct. Furthermore, alkylation and bis-alkylation of carbazoles at the C1 and C8 positions have also been developed. More significantly, for the first time, a successful Ir(III)-catalyzed intermolecular insertion of arene C-H bonds into α-diazo compounds is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Iodine-catalyzed diazo activation to access radical reactivity.

    Science.gov (United States)

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  13. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    Science.gov (United States)

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  15. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, Flynn William [Univ. of Arizona, Tucson, AZ (United States)

    1992-01-01

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using 14C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  16. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  17. RNA-Catalyzed Polymerization and Replication of RNA

    Science.gov (United States)

    Horning, D. P.; Samantha, B.; Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    In an effort to reconstruct RNA-based life, in vitro evolution was used to obtain an RNA polymerase ribozyme that can synthesize a variety of complex functional RNAs and can catalyze the exponential amplification of short RNAs.

  18. FeBr3-catalyzed dibromination of alkenes and alkynes

    Institute of Scientific and Technical Information of China (English)

    Yun Fa Zheng; Jian Yu; Guo Bing Yan; Xu Li; Song Luo

    2011-01-01

    The dibromination of alkenes and alkynes with bromosuccinimide and sodium bromide catalyzed by FeBr3 under mild conditions has been developed. The trans-dibromo compounds were exclusively obtained with excellent yields.

  19. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III

    Indian Academy of Sciences (India)

    triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction ...

  20. Biodiesel production from Jatropha curcas oil catalyzed by whole ...

    African Journals Online (AJOL)

    my mord

    2013-07-03

    Jul 3, 2013 ... catalyzed by whole cells of Aureobasidium pullulans var. melanogenum ... friendly and renewable fuel that can be used directly in diesel engines ... methanol (or supercritical ethanol) transesterification is not commercially ...

  1. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  2. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III)

    Indian Academy of Sciences (India)

    Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas ... The rate laws associated with the reaction mechanisms ... activation and thermodynamic parameters have been computed and discussed.

  3. Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis.

    Science.gov (United States)

    Bisz, Elwira; Szostak, Michal

    2017-10-23

    Oxygen-based electrophiles have emerged as some of the most valuable cross-coupling partners in organic synthesis due to several major strategic and environmental benefits, such as abundance and potential to avoid toxic halide waste. In this context, iron-catalyzed C-O activation/cross-coupling holds particular promise to achieve sustainable catalytic protocols due to its natural abundance, inherent low toxicity, and excellent economic and ecological profile. Recently, tremendous progress has been achieved in the development of new methods for functional-group-tolerant iron-catalyzed cross-coupling reactions by selective C-O cleavage. These methods establish highly attractive alternatives to traditional cross-coupling reactions by using halides as electrophilic partners. In particular, new easily accessible oxygen-based electrophiles have emerged as substrates in iron-catalyzed cross-coupling reactions, which significantly broaden the scope of this catalysis platform. New mechanistic manifolds involving iron catalysis have been established; thus opening up vistas for the development of a wide range of unprecedented reactions. The synthetic potential of this sustainable mode of reactivity has been highlighted by the development of new strategies in the construction of complex motifs, including in target synthesis. The most recent advances in sustainable iron-catalyzed cross-coupling of C-O-based electrophiles are reviewed, with a focus on both mechanistic aspects and synthetic utility. It should be noted that this catalytic manifold provides access to motifs that are often not easily available by other methods, such as the assembly of stereodefined dienes or C(sp 2 )-C(sp 3 ) cross-couplings, thus emphasizing the synthetic importance of this mode of reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  5. Nitroreductase catalyzed biotransformation of CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-01-01

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C 6 H 6 N 12 O 12 ) and produced a key metabolite with mol. wt. 346Da corresponding to an empirical formula of C 6 H 6 N 10 O 8 which spontaneously decomposed in aqueous medium to produce N 2 O, NH4+, and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20 - ) which upon initial N-denitration also produced metabolite C 6 H 6 N 10 O 8 . The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e] pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01nmolmin -1 mg of protein -1 , respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20

  6. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Boffa, Giusi; Sá nchez, Sheila Ortega; Caporaso, Lucia; Grassi, Alfonso; Mecking, Stefan

    2016-01-01

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively

  7. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    Science.gov (United States)

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX

    Directory of Open Access Journals (Sweden)

    Gergely L. Tolnai

    2016-04-01

    Full Text Available The selective functionalization of peptides containing only natural amino acids is important for the modification of biomolecules. In particular, the installation of an alkyne as a useful handle for bioconjugation is highly attractive, but the use of a carbon linker is usually required. Herein, we report the gold-catalyzed direct alkynylation of tryptophan in peptides using the hypervalent iodine reagent TIPS-EBX (1-[(triisopropylsilylethynyl]-1,2-benziodoxol-3(1H-one. The reaction proceeded in 50–78% yield under mild conditions and could be applied to peptides containing other nucleophilic and aromatic amino acids, such as serine, phenylalanine or tyrosine.

  10. Nickel-Catalyzed Phosphine Free Direct N-Alkylation of Amides with Alcohols.

    Science.gov (United States)

    Das, Jagadish; Banerjee, Debasis

    2018-03-16

    Herein, we developed an operational simple, practical, and selective Ni-catalyzed synthesis of secondary amides. Application of renewable alcohols, earth-abundant and nonprecious nickel catalyst facilitates the transformations, releasing water as byproduct. The catalytic system is tolerant to a variety of functional groups including nitrile, allylic ether, and alkene and could be extended to the synthesis of bis-amide, antiemetic drug Tigan, and dopamine D2 receptor antagonist Itopride. Preliminary mechanistic studies revealed the participation of a benzylic C-H bond in the rate-determining step.

  11. Rhodium-catalyzed C-H alkynylation of arenes at room temperature.

    Science.gov (United States)

    Feng, Chao; Loh, Teck-Peng

    2014-03-03

    The rhodium(III)-catalyzed ortho C-H alkynylation of non-electronically activated arenes is disclosed. This process features a straightforward and highly effective protocol for the synthesis of functionalized alkynes and represents the first example of merging a hypervalent iodine reagent with rhodium(III) catalysis. Notably, this reaction proceeds at room temperature, tolerates a variety of functional groups, and more importantly, exhibits high selectivity for monoalkynylation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cooperative Metal–Ligand Catalyzed Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a Stable Iron Catalyst

    KAUST Repository

    El-Sepelgy, Osama

    2018-01-18

    A new iron-catalyzed chemoselective intramolecular hydroamination and hydroalkoxylation of the readily available α-allenic amines and alcohols to valuable unsaturated 5-membered heterocycles, 2,3-dihydropyrrole and 2,3-dihydrofuran, is reported. Effective selectivity control is achieved by a metal–ligand cooperative activation of the substrates. The mild reaction conditions and the use of low amounts of an air and moisture stable iron catalyst allow for the hydrofunctionalization of a wide range of allenes bearing different functional groups in good yields in the absence of base or any sensitive additives.

  13. Photoassisted Oxidation of Sulfides Catalyzed by Artificial Metalloenzymes Using Water as an Oxygen Source †

    Directory of Open Access Journals (Sweden)

    Christian Herrero

    2016-12-01

    Full Text Available The Mn(TpCPP-Xln10A artificial metalloenzyme, obtained by non-covalent insertion of Mn(III-meso-tetrakis(p-carboxyphenylporphyrin [Mn(TpCPP, 1-Mn] into xylanase 10A from Streptomyces lividans (Xln10A as a host protein, was found able to catalyze the selective photo-induced oxidation of organic substrates in the presence of [RuII(bpy3]2+ as a photosensitizer and [CoIII(NH35Cl]2+ as a sacrificial electron acceptor, using water as oxygen atom source.

  14. Cooperative Metal–Ligand Catalyzed Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a Stable Iron Catalyst

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Sklyaruk, Jan; Jang, Yoon Kyung; Zubar, Viktoriia; Rueping, Magnus

    2018-01-01

    A new iron-catalyzed chemoselective intramolecular hydroamination and hydroalkoxylation of the readily available α-allenic amines and alcohols to valuable unsaturated 5-membered heterocycles, 2,3-dihydropyrrole and 2,3-dihydrofuran, is reported. Effective selectivity control is achieved by a metal–ligand cooperative activation of the substrates. The mild reaction conditions and the use of low amounts of an air and moisture stable iron catalyst allow for the hydrofunctionalization of a wide range of allenes bearing different functional groups in good yields in the absence of base or any sensitive additives.

  15. Ruthenium-catalyzed reactions--a treasure trove of atom-economic transformations.

    Science.gov (United States)

    Trost, Barry M; Frederiksen, Mathias U; Rudd, Michael T

    2005-10-21

    The demand for new chemicals spanning the fields of health care to materials science combined with the pressure to produce these substances in an environmentally benign fashion pose great challenges to the synthetic chemical community. The maximization of synthetic efficiency by the conversion of simple building blocks into complex targets remains a fundamental goal. In this context, ruthenium complexes catalyze a number of non-metathesis conversions and allow the rapid assembly of complex molecules with high selectivity and atom economy. These complexes often exhibit unusual reactivity. Careful consideration of the mechanistic underpinnings of the transformations can lead to the design of new reactions and the discovery of new reactivity.

  16. Support Effects in the Gold-Catalyzed Preferential Oxidation of CO

    KAUST Repository

    Ivanova, S.

    2010-04-08

    The study of support effects on the gold-catalyzed preferential oxidation of carbon monoxide in the presence of hydrogen (PROX reaction) is possible only with careful control of the gold particle size, which is facilitated by the application of the direct anionic exchange method. Catalytic evaluation of thermally stable gold nanoparticles, with an average size of around 3 nm on a variety of supports (alumina, titania, zirconia, or ceria), clearly shows that the influence of the support on the CO oxidation rate is of primary importance under CO+O 2 conditions and that this influence becomes secondary in the presence of hydrogen. The impact of the support surface structure on the oxidation rates, catalyst selectivity, and catalyst activation/deactivation is investigated in terms of oxygen vacancies, oxygen mobility, OH groups, and surface area on the oxidation rates, catalyst selectivity and catalyst activation/deactivation. It allows the identification of key morphological and structural features of the support to ensure high activity and selectivity in the gold-catalyzed PROX reaction. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gó mez-Herrera, Alberto; Nahra, Fady; Brill, Marcel; Nolan, Steven P.; Cazin, Catherine S. J.

    2016-01-01

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  18. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gómez-Herrera, Alberto

    2016-08-22

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  19. A review on biodiesel production using catalyzed transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Dennis Y.C.; Wu, Xuan; Leung, M.K.H. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2010-04-15

    Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats. (author)

  20. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    Science.gov (United States)

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  1. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  2. Zinc-Catalyzed Synthesis of Conjugated Dienoates through Unusual Cross-Couplings of Zinc Carbenes with Diazo Compounds.

    Science.gov (United States)

    Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén

    2017-01-23

    Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  4. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  5. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2013-07-01

    Full Text Available This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether, and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran (PTHF in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactides, also appeared in the vine-twining polymerization.

  6. Controlled Rh-Catalyzed Mono- and Double-decarbonylation of Alkynyl α-Diones To Form Conjugated Ynones and Disubstituted Alkynes.

    Science.gov (United States)

    Whittaker, Rachel E; Dong, Guangbin

    2015-11-06

    A Rh-catalyzed controlled decarbonylation of alkynyl α-diones is described. By using different ligand and solvent combinations, mono- and double-decarbonylation can be selectively achieved to give conjugated ynones and disubstituted alkynes, respectively. A fundamental study on catalytic activation of unstrained C-C bonds under nonoxidative conditions is presented.

  7. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    Science.gov (United States)

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  8. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  9. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  10. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...... oven (Scheme ii). A limitation of the heterocoupling process is the concomitant dehalogenation of the aryl halide and homocoupling of the Grignard reagent leading low to moderate yields of the desired heterocoupling product. The mechanism of the cross-coupling process was investigated by performing two...

  11. Muon-catalyzed fusion theory - introduction and review

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1990-01-01

    Muon-catalyzed fusion (μCF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dtμ molecules in mixtures of deuterium and tritium. After a brief review of the subject's history, the dtμ catalysis cycle and the principle relations used in its analysis are described. Some of the important processes in the μCF cycle are then discussed. Finally, the status of current research is appraised. (author)

  12. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  13. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  14. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  15. Process limitations of a whole-cell P450 catalyzed reaction using a CYP153A-CPR fusion construct expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Lundemo, M. T.; Notonier, S.; Striedner, G.

    2016-01-01

    fatty acids at the terminal position. ω-Hydroxylated fatty acids can be used in the field of high-end polymers and in the cosmetic and fragrance industry. Here, we have identified the limitations for implementation of a whole-cell P450-catalyzed reaction by characterizing the chosen biocatalyst as well......Cytochrome P450s are interesting biocatalysts due to their ability to hydroxylate non-activated hydrocarbons in a selective manner. However, to date only a few P450-catalyzed processes have been implemented in industry due to the difficulty of developing economically feasible processes...

  16. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  17. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  18. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.; Bagdanoff, Jeffreyâ T.; Ferreira, Ericâ M.; McFadden, Ryanâ M.; Caspi, Danielâ D.; Trend, Raissaâ M.; Stoltz, Brianâ M.

    2009-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  19. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  20. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    dium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H ... compounds. Its use- fulness may be due to its unequivocal stability, water. ∗ ... metals are known to catalyze many oxidation–reduction reactions because they ... prepared by dissolving potassium hexacyanoferrate(II). (SD Fine ...

  1. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    NARCIS (Netherlands)

    Kloosterman, Wouter M.J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and

  2. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  3. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  4. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  5. Manganese-Catalyzed Aerobic Heterocoupling of Aryl Grignard Reagents

    DEFF Research Database (Denmark)

    Ghaleshahi, Hajar Golshahi; Antonacci, Giuseppe; Madsen, Robert

    2017-01-01

    An improved protocol has been developed for the MnCl2-catalyzed cross-coupling reaction of two arylmagnesium bromides under dioxygen. The reaction was achieved by using the Grignard reagents in a 2:1 ratio and 20 % of MnCl2. Very good yields of the heterocoupling product were obtained when the li...

  6. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  7. UDP-glucuronyltransferase-catalyzed deconjugation of bilirubin monoglucuronide

    NARCIS (Netherlands)

    Cuypers, H. T.; ter Haar, E. M.; Jansen, P. L.

    1984-01-01

    Bilirubin monoglucuronide is rapidly deconjugated when incubated with UDP and rat liver microsomal preparations at pH 5.1. The following evidence was found that this reaction is catalyzed by UDP-glucuronyltransferase: (i) unconjugated bilirubin and UDP-glucuronic acid were identified as the reaction

  8. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  9. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Science.gov (United States)

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.

  10. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  11. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    Science.gov (United States)

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  12. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  13. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.

    Science.gov (United States)

    Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth

    2013-09-01

    A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    Science.gov (United States)

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  15. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  16. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy

    2016-01-01

    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...

  17. Method for predicting enzyme-catalyzed reactions

    Science.gov (United States)

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  18. Influence of hydroxylamine conformation on stereocontrol in Pd-catalyzed isoxazolidine-forming reactions.

    Science.gov (United States)

    Lemen, Georgia S; Giampietro, Natalie C; Hay, Michael B; Wolfe, John P

    2009-03-20

    Palladium-catalyzed carboamination reactions between N-Boc-O-(but-3-enyl)hydroxylamine derivatives and aryl or alkenyl bromides afford cis-3,5- and trans-4,5-disubstituted isoxazolidines in good yield with up to >20:1 dr. The diastereoselectivity observed in the formation of cis-3,5-disubstituted isoxazolidines is superior to selectivities typically obtained in other transformations, such as 1,3-dipolar cycloaddition reactions, that provide these products. In addition, the stereocontrol in the C-N bond-forming Pd-catalyzed carboamination reactions of N-Boc-O-(but-3-enyl)hydroxylamines is significantly higher than that of related C-O bond-forming carboetherification reactions of N-benzyl-N-(but-3-enyl)hydroxylamine derivatives. This is likely due to a stereoelectronic preference for cyclization via transition states in which the Boc group is placed in a perpendicular orientation relative to the plane of the developing ring, which derives from the conformational equilibria of substituted hydroxylamines.

  19. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  1. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  2. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  3. Iron-catalyzed diboration and carboboration of alkynes.

    Science.gov (United States)

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-09

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An optimized hydrogen target for muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.i [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-04-01

    This paper deals with the optimization of the processes involved in muon catalyzed fusion. Muon catalyzed fusion ({mu}CF) is studied in all layers of the solid hydrogen structure H/0.1%T+D{sub 2}+HD. The layer H/T acts as an emitter source of energetic t{mu} atoms, due to the so-called Ramsauer-Townsend effect. These t{mu} atoms are slowed down in the second layer (degrader) and are forced to take place nuclear fusion in HD. The degrader affects time evolution of t{mu} atomic beam. This effect has not been considered until now in {mu}CF-multilayered targets. Due to muon cycling and this effect, considerable reactions occur in the degrader. In our calculations, it is shown that the fusion yield equals 180{+-}1.5. It is possible to separate events that overlap in time.

  5. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  6. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  7. Copper-Catalyzed Synthesis of Trifluoroethylarenes from Benzylic Bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Zhu, Lingui; Altman, Ryan A

    2015-08-21

    Trifluoroethylarenes are found in a variety of biologically active molecules, and strategies for accessing this substructure are important for developing therapeutic candidates and biological probes. Trifluoroethylarenes can be directly accessed via nucleophilic trifluoromethylation of benzylic electrophiles; however, current catalytic methods do not effectively transform electron-deficient substrates and heterocycles. To address this gap, we report a Cu-catalyzed decarboxylative trifluoromethylation of benzylic bromodifluoroacetates. To account for the tolerance of sensitive functional groups, we propose an inner-sphere mechanism of decarboxylation.

  8. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    Science.gov (United States)

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Joern [The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste (Italy); Schmidt-Hoberg, Kai, E-mail: jkersten@ictp.it, E-mail: kai.schmidt-hoberg@ph.tum.de, E-mail: kai.schmidt.hoberg@desy.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  11. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    Science.gov (United States)

    Kersten, Jörn; Schmidt-Hoberg, Kai

    2008-01-01

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m1/2. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  12. The gravitino–stau scenario after catalyzed big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Kersten, Jörn; Schmidt-Hoberg, Kai

    2008-01-01

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m 1/2 . As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints

  13. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  14. Carrier gas effects on aluminum-catalyzed nanowire growth

    International Nuclear Information System (INIS)

    Ke, Yue; Hainey, Mel Jr; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-01-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor–solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor–solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH_4 adsorption thereby reducing vapor–solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH_4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. (paper)

  15. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  16. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  17. Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds with Hypervalent Iodine Reagents.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2016-02-24

    Alkynes have found widespread applications in synthetic chemistry, biology, and materials sciences. In recent years, methods based on electrophilic alkynylation with hypervalent iodine reagents have made acetylene synthesis more flexible and efficient, but they lead to the formation of one equivalent of an iodoarene as side-product. Herein, a more efficient strategy involving a copper-catalyzed oxy-alkynylation of diazo compounds with ethynylbenziodoxol(on)e (EBX) reagents is described, which proceeds with generation of nitrogen gas as the only waste. This reaction is remarkable for its broad scope in both EBX reagents and diazo compounds. In addition, vinyl diazo compounds gave enynes selectively as single geometric isomers. The functional groups introduced during the transformation served as easy handles to access useful building blocks for synthetic and medicinal chemistry.

  18. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose-fructose mixtures

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Ringborg, Rolf Hoffmeyer; Grotkjær, Thomas

    2015-01-01

    allowing the use of the cheapest available source of fructose: high fructose corn syrup. The dehydration was catalyzed by hydrochloric acid and conducted in acetone-water mixtures, which ensured good selectivity towards HMF and eliminated precipitation of polymer by-products (insoluble humins). Through......Synthesis of 5-hydroxymethylfurfural (HMF) from hexoses has been studied extensively in the scientific literature. However, a process has yet to be implemented at industrial scale. In this paper the simultaneous dehydration of glucose and fructose was investigated, in order to develop a process......-products: soluble humins, glucose dimers, anhydroglucose, and formic acid. The reaction conditions in four different reactor configurations were optimized and compared using the kinetic model. It was found that a recirculating reactor setup is preferable, where the equilibrium controlled by-products (anhydroglucose...

  19. Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies.

    Science.gov (United States)

    Dolan, Nicholas S; Scamp, Ryan J; Yang, Tzuhsiung; Berry, John F; Schomaker, Jennifer M

    2016-11-09

    The development of new catalysts for selective nitrene transfer is a continuing area of interest. In particular, the ability to control the chemoselectivity of intermolecular reactions in the presence of multiple reactive sites has been a long-standing challenge in the field. In this paper, we demonstrate examples of silver-catalyzed, nondirected, intermolecular nitrene transfer reactions that are both chemoselective and flexible for aziridination or C-H insertion, depending on the choice of ligand. Experimental probes present a puzzling picture of the mechanistic details of the pathways mediated by [( t Bu 3 tpy)AgOTf] 2 and (tpa)AgOTf. Computational studies elucidate these subtleties and provide guidance for the future development of new catalysts exhibiting improved tunability in group transfer reactions.

  20. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  2. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark

    1997-01-08

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  3. Manganese-catalyzed Dehydrogenative Alkylation or α-Olefination of Alkyl-N-Heteroaromatics by Alcohols.

    Science.gov (United States)

    Kempe, Rhett; Zhang, Guoying; Irrgang, Torsten; Dietel, Thomas; Kallmeier, Fabian

    2018-05-02

    Catalysis involving earth-abundant transition metals is an option to help save our rare noble metal resources and is especially interesting if novel reactivity or selectivity patterns are observed. We report here on a novel reaction: the dehydrogenative alkylation or α-olefination of alkyl-N-heteroaromatics by alcohols. Manganese complexes developed in our laboratory catalyze the reaction efficiently. Fe and Co complexes stabilized by such ligands are essentially inactive. Hydrogen is liberated during the reaction and bromo or iodo functional groups and olefins can be tolerated. A variety of alkyl-N-heteroaromatics can be functionalized, and benzyl and aliphatic alcohols undergo the reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"

    Science.gov (United States)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2018-07-01

    Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.

  5. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu; Al-Misba'a, Zahra; Huang, Kuo-Wei

    2014-01-01

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  6. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu

    2014-02-07

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  7. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  8. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stacking...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  9. Transition metal-catalyzed couplings of alkynes to 1,3-enynes: modern methods and synthetic applications.

    Science.gov (United States)

    Trost, Barry M; Masters, James T

    2016-04-21

    The metal-catalyzed coupling of alkynes is a powerful method for the preparation of 1,3-enynes, compounds that are of broad interest in organic synthesis. Numerous strategies have been developed for the homo- and cross coupling of alkynes to enynes via transition metal catalysis. In such reactions, a major issue is the control of regio-, stereo-, and, where applicable, chemoselectivity. Herein, we highlight prominent methods for the selective synthesis of these valuable compounds. Further, we illustrate the utility of these processes through specific examples of their application in carbocycle, heterocycle, and natural product syntheses.

  10. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    Science.gov (United States)

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...

  12. Selective copper catalysed aromatic N-arylation in water

    DEFF Research Database (Denmark)

    Engel-Andreasen, Jens; Shimpukade, Bharat; Ulven, Trond.

    2013-01-01

    4,7-Dipyrrolidinyl-1,10-phenanthroline (DPPhen) was identified as an efficient ligand for copper catalyzed selective arom. N-arylation in water. N-Arylation of indoles, imidazoles and purines proceeds with moderate to excellent yields and complete selectivity over aliph. amines. Aq. medium...

  13. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    Science.gov (United States)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  14. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  15. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines.

    Science.gov (United States)

    Liu, Pei; Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2017-09-26

    We report here an unprecedented iron-catalyzed cycloaddition reaction of diazo surrogates with hexahydro-1,3,5-triazines, providing five-membered heterocycles in moderate to high yields under mild reaction conditions. This cycloaddition features C-N and C-C bond formation using a cheap iron catalyst. Importantly, different to our former report on a gold-catalyzed system, both donor/donor and donor/acceptor diazo substrates are tolerated in this iron-catalyzed protocol.

  16. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    Science.gov (United States)

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  17. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    International Nuclear Information System (INIS)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F.

    2013-01-01

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  18. Stability and dynamics of reactors with heterogeneously catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Eigenberger, G [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-12-01

    Our knowledge of causes and consequences of problems arising from instability and dynamic effects in reactors with heterogeneously catalyzed reactions has increased remarkably in recent years. Especially thermal effects, caused by the self-acceleration of an exothermic reaction in combination with heat and mass transport, are now well understood. In addition, kinetic effects, i.e. phenomena which have to be explained by the kinetic peculiarities of surface reactions, have attracted increasing interest. For both cases the state of the art will be reviewed, highlighting the physical and chemical causes of the observed phenomena.

  19. Some thoughts on the muon catalyzed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.

    1986-01-01

    The design of the muon catalyzed fusion reactor is discussed. Some of the engineering challenges and critical research areas such as ..pi../sup -/ meson transport, beam entry single crystal window and coherent x-ray for stripping the muon from ..cap alpha.. particle, are considered. In order to reduce the tritium inventory and neutron wall loading, use of the laser technique for manipulating the d-t mixture is considered. The heterogeneous d-t mixture using the droplet or jet is discussed. 39 refs., 6 figs.

  20. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  1. Copper-catalyzed decarboxylative trifluoromethylation of allylic bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Altman, Ryan A

    2013-11-01

    The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.

  2. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...... no effect on their reactivity: both electron-rich and electron-poor aryl chlorides and bromides or triflates led to good yields. Ortho-substituted aryl halides and heteroaryl halides, however, did not undergo the title reaction....

  3. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  4. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  5. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  6. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, Roman Vladimirovich [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a β-hydrogen in the vinylic halide results in β-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the α-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  7. Neutrino decay catalyzed by the Mikheyev-Smirnov-Wolfenstein effect

    International Nuclear Information System (INIS)

    Raghavan, R.S.; He, X.; Pakvasa, S.

    1988-01-01

    A new mechanism for neutrino (ν) decay in the Mikheyev-Smirnov-Wolfenstein (MSW) regime of weak mixing and small ν mass differences is pointed out. Even though electron-neutrinos (ν/sub e/) in this regime are practically stable, in solar matter, conversion of the ν/sub e/ to a ''heavier'' flavor by the MSW effect can catalyze ν decay. MSW+ν decay into Majorons can lead to a strong solar antineutrino signal in proposed experiments, directly probing ν-Majoron couplings ∼700 times smaller than the present laboratory bound of g 2 <4.5 x 10/sup -5/

  8. Ruthenium-Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Madsen, Robert

    2017-01-01

    Dehydrogenative decarbonylation of a primary alcohol involves the release of both dihydrogen and carbon monoxide to afford the one-carbon shorter product. The transformation has now been achieved with a ruthenium-catalyzed protocol by using the complex Ru(COD)Cl2 and the hindered monodentate ligand...... P(o-tolyl)3 in refluxing p-cymene. The reaction can be applied to both benzylic and long chain linear aliphatic alcohols. The intermediate aldehyde can be observed during the transformation, which is therefore believed to proceed through two separate catalytic cycles involving first dehydrogenation...... of the alcohol and then decarbonylation of the resulting aldehyde....

  9. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  10. Electrochemical Cobalt-Catalyzed C-H Activation.

    Science.gov (United States)

    Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz

    2018-06-19

    Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  12. Experimental and Computational Study of an Unexpected Iron-Catalyzed Carboetherification by Cooperative Metal and Ligand Substrate Interaction and Proton Shuttling

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Azofra, Luis Miguel; Jang, Yoon Kyung; Cavallo, Luigi; Rueping, Magnus

    2017-01-01

    An iron-catalyzed cycloisomerization of allenols to deoxygenated pyranose glycals has been developed. Combined experimental and computational studies show that the iron complex exhibits a dual catalytic role in that the non-innocent cyclopentadienone ligand acts as proton shuttle by initial hydrogen abstraction from the alcohol and by facilitating protonation and deprotonation events in the isomerization and demetalation steps. Molecular orbital analysis provides insight into the unexpected and selective formation of the 3,4-dihydro-2H-pyran.

  13. Experimental and Computational Study of an Unexpected Iron-Catalyzed Carboetherification by Cooperative Metal and Ligand Substrate Interaction and Proton Shuttling

    KAUST Repository

    El-Sepelgy, Osama

    2017-09-26

    An iron-catalyzed cycloisomerization of allenols to deoxygenated pyranose glycals has been developed. Combined experimental and computational studies show that the iron complex exhibits a dual catalytic role in that the non-innocent cyclopentadienone ligand acts as proton shuttle by initial hydrogen abstraction from the alcohol and by facilitating protonation and deprotonation events in the isomerization and demetalation steps. Molecular orbital analysis provides insight into the unexpected and selective formation of the 3,4-dihydro-2H-pyran.

  14. Enzymatically-Catalyzed Polymerization (ECP)- Derived Polymer Electrolyte for Rechargeable Li-Ion Batteries

    National Research Council Canada - National Science Library

    Chua, David

    1998-01-01

    Report developed under SBIR contract covers the syntheses and electrochemical characterizations of novel polymer electrolytes derived from compounds synthesized via enzyme-catalyzed polymerization(ECP) techniques...

  15. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

    Science.gov (United States)

    Kumar, A; Gross, R A

    2000-01-01

    Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

  16. AB/sub 5/-catalyzed hydrogen evolution cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D E; Sawada, T; Shepard, V R; Tsujikawa, Y

    1984-01-01

    The AB/sub 5/ metal compounds are highly efficient hydrogen evolution electrocatalysts in alkaline electrolyte. Three types of AB/sub 5/-catalyzed cathode structures were made, using the hydride-forming AB/sub 5/ compounds in particulate form. Plastic-bonded cathodes containing >90 w/o AB/sub 5/ (finished-weight basis) were the most efficient, giving hydrogen evolution overpotentials (/eta/ /SUB H2/ ) of about 0.05 V at 200 mA cm/sup -2/. However, they tended to swell and shed material during electrolysis. Pressed, sintered cathodes containing 40-70 w/o catalyst in a nickel binder gave /eta/ /SUB H2/ about0.08 V; catalyst retention was excellent. Porous, sintered cathode coatings were made with 30-70 w/o AB/sub 5/ catalyst loadings. Their overpotentials were similar to those of the pressed, sintered cathodes. However, at catalyst loadings below about 40 w/o, high overpotentials characteristic of the nickel binder were observed. The structural and electrochemical properties of the three AB/sub 5/-catalyzed cathodes are discussed.

  17. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  19. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    Science.gov (United States)

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  20. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  1. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  2. Acid base catalyzed transesterification kinetics of waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P.; Rajvanshi, Shalini [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee (India)

    2011-01-15

    The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 C and 50 C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H{sub 2}SO{sub 4} and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min{sup -1} and 0.0078 min{sup -1} respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield. (author)

  3. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  4. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  5. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France)] [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Berge, Mathieu; Roques, Christine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France); Bergel, Alain [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Delia, Marie-Line, E-mail: marieline.delia@ensiacet.f [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France)

    2010-07-01

    Pseudomonas aeruginosa has already been shown to catalyze oxidation processes in the anode compartment of a microbial fuel cell. The present study focuses on the reverse capacity of the bacterium, i.e. reduction catalysis. Here we show that P. aeruginosa is able to catalyze the electrochemical reduction of oxygen. The use of cyclic voltammetry showed that, for a given range of potential values, the current generated in the presence of bacteria could reach up to four times the current obtained without bacteria. The adhesion of bacteria to the working electrode was necessary for the catalysis to be observed but was not sufficient. The electron transfer between the working electrode and the bacteria did not involve mediator metabolites like phenazines. The transfer was by direct contact. The catalysis required a certain contact duration between electrodes and live bacteria but after this delay, the metabolic activity of cells was no longer necessary. Membrane-bound proteins, like catalase, may be involved. Various strains of P. aeruginosa, including clinical isolates, were tested and all of them, even catalase-defective mutants, presented the same catalytic property. P. aeruginosa offers a new model for the analysis of reduction catalysis and the protocol designed here may provide a basis for developing an interesting tool in the field of bacterial adhesion.

  6. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  7. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  8. Development of target capsules for muon catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Watts, K.D.; Jones, S.E.; Caffrey, A.J.

    1983-01-01

    A series of Muon Catalyzed Fusion experiments has been conducted at the Los Alamos Meson Physics Facility to determine how many fusion reactions one muon would catalyze under various temperature, pressure, contamination, and tritium concentration conditions. Target capsules to contain deuterium and tritium at elevated temperatures and pressures were engineered for a maximum temperature of 540 K (512 0 F) and a maximum pressure of 103 MPa (15,000 psig). Experimental data collected with these capsules indicated that the number of fusion reactions per muon continued to increase with temperature up to the 540-K design limit. Theory had indicated that the reaction rate should peak at approximately 540 K, but this was not confirmed during the experiments. A second generation of capsules which have a maximum design temperature of 800 K (980 0 F) and a maximum design pressure of 103 MPa (15,000 psig) has now been engineered. These new capsules will be used to further study the muon catalysis rate versus deuterium-tritium mixture temperature

  9. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  10. Selective Tandem Synthesis of Oximes from Benzylic Alcohols Catalyzed with 2, 3-Dichloro-5, 6-dicyanobenzoquinone

    Energy Technology Data Exchange (ETDEWEB)

    Aghapour, Ghasem; Mohamadian, Samaneh [Damghan University, Damghan (Iran, Islamic Republic of)

    2012-04-15

    In spite of many reports in the literature concerning with oxidation of benzylic alcohols to carbonyl compounds with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in stoichiometric amounts or even more, we surprisingly found that benzylic alcohols are directly oxidized to oximes using a catalytic amount of DDQ in the presence of hydroxylamine hydrochloride under solvent-free conditions. The present tandem catalytic method can be efficiently used for preparation of oximes in the presence of some other functional groups with excellent chemoselectivity

  11. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    Science.gov (United States)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  12. An efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite

    CSIR Research Space (South Africa)

    Giri, S

    2017-07-01

    Full Text Available Silver nanocomposites (AgNCs) were produced by adsorption onto an electron-rich polypyrrole-mercaptoacetic acid (PPy-MAA) composite, known to be a highly efficient adsorbent for the removal of Ag+ ions from aqueous media in the remediation of metal...

  13. Enhancement of Activity and Selectivity in Acid-Catalyzed Reactions by Dealuminated Hierarchical Zeolites

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Sobalík, Zdeněk; Dědeček, Jiří; Jakubec, Ivo; Parvulescu, V. I.; Bastl, Zdeněk; Rathouský, Jiří; Jirglová, Hana

    2013-01-01

    Roč. 52, č. 7 (2013), s. 2038-2041 ISSN 1433-7851 R&D Projects: GA ČR GAP106/11/0624; GA MPO FR-TI3/316 Institutional support: RVO:61388955 ; RVO:61388980 Keywords : alkylation * cracking * dealumination Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 11.336, year: 2013

  14. Elucidation of structural isomers from the homogeneous rhodium-catalyzed isomerization of vegetable oils.

    Science.gov (United States)

    Andjelkovic, Dejan D; Min, Byungrok; Ahn, Dong; Larock, Richard C

    2006-12-13

    The structural isomers formed by the homogeneous rhodium-catalyzed isomerization of several vegetable oils have been elucidated. A detailed study of the isomerization of the model compound methyl linoleate has been performed to correlate the distribution of conjugated isomers, the reaction kinetics, and the mechanism of the reaction. It has been shown that [RhCl(C8H8)2]2 is a highly efficient and selective isomerization catalyst for the production of highly conjugated vegetable oils with a high conjugated linoleic acid (CLA) content, which is highly desirable in the food industry. The combined fraction of the two major CLA isomers [(9Z,11E)-CLA and (10E,12Z)-CLA] in the overall CLA mixture is in the range from 76.2% to 93.4%. The high efficiency and selectivity of this isomerization method along with the straightforward purification process render this approach highly promising for the preparation of conjugated oils and CLA. Proposed improvements in catalyst recovery and reusability will only make this method more appealing to the food, paint, coating, and polymer industries in the future.

  15. Preparation and Applications of Amylose Supramolecules by Means of Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2012-01-01

    Full Text Available This paper reviews preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. When the enzymatic polymerization of α-d-glucose 1-phosphate (G-1-P as a monomer was carried out in the presence of poly(tetrahydrofuran (PTHF of a hydrophobic polyether as a guest polymer, the supramolecule, i.e., an amylose-PTHF inclusion complex, was formed in the process of polymerization. Because the representation of propagation in the polymerization is similar to the way that vines of plants grow twining around rods, this polymerization method for the preparation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. Various hydrophobic polyethers, polyesters, poly(ester-ether, and polycarbonates were also employed as the guest polymer in the vine-twining polymerization to produce the corresponding inclusion complexes. To obtain the inclusion complex from a strongly hydrophobic guest polymer, the parallel enzymatic polymerization system was developed as an advanced extension of the vine-twining polymerization. In addition, it was found that amylose selectively includes one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest PTHF. Amylose also exhibited selective inclusion behavior toward stereoisomers of poly(lactides. Moreover, the preparation of hydrogels through the formation of inclusion complexes of amylose in vine-twining polymerization was achieved.

  16. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Yongvanich, Tikamporn [Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Chulalaksananukul, Warawut [Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-12-15

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity ({eta}) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and {eta} were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst. (author)

  17. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Chulalaksananukul, Warawut; Yongvanich, Tikamporn

    2008-01-01

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity (η) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and η were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst

  18. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is

  19. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  20. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  1. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  2. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  3. FBH1 Catalyzes Regression of Stalled Replication Forks

    Directory of Open Access Journals (Sweden)

    Kasper Fugger

    2015-03-01

    Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

  4. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  5. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Decomposition of peracetic acid catalyzed by vanadium complexes

    International Nuclear Information System (INIS)

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-01-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0 2 and small amounts of CO 2 , the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO 2 is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V 5+ ions and peracetic acid and the slow conversion of this complex into the observed products

  7. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  9. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    Science.gov (United States)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  10. Glycolysis of poly (3-hydroxybutyrate) catalyzed by an enzyme system

    International Nuclear Information System (INIS)

    Campos, T.F.; Mano, V.

    2010-01-01

    In this work we report the studies of PHB glycolysis catalyzed by lipase Amano PS (Pseudomonas cepacia) in the presence of 1,2-ethanediol (ethylene glycol). The reactions were performed in toluene:dichloroethane 3:1 (v/v) at 60 deg C, varying reaction time and concentration of ethylene glycol. PHB and the products of glycolysis (polyols) were characterized by FTIR, 1 H-NMR, and TG. The FTIR spectra of polyols showed no significant change compared to the spectrum of PHB. The 1 H-NMR spectra of the products of glycolysis showed signs of interest between 3 and 4.7 ppm, related to the ethylene glycol protons inserted in the polymer chain. By analyzing the thermograms we observed that the polyols are more thermally stable than PHB. (author)

  11. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  12. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  13. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  14. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  15. Pd(OAc2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles

    Directory of Open Access Journals (Sweden)

    Dominik Kellner

    2017-08-01

    Full Text Available The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero-Diels–Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  16. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: Incineration and base catalyzed decomposition

    International Nuclear Information System (INIS)

    Hu Xintao; Zhu Jianxin; Ding Qiong

    2011-01-01

    Highlights: → We study the environmental impacts of two kinds of remediation technologies including Infrared High Temperature Incineration(IHTI) and Base Catalyzed Decomposition(BCD). → Combined midpoint/damage approaches were calculated for two technologies. → The results showed that major environmental impacts arose from energy consumption. → BCD has a lower environmental impact than IHTI in the view of single score. - Abstract: Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and

  17. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    Science.gov (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-04-19

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  18. Blending “Hard” and “Soft” Science: the “Follow-the-Technology” Approach to Catalyzing and Evaluating Technology Change

    Directory of Open Access Journals (Sweden)

    Boru Douthwaite

    2002-01-01

    Full Text Available The types of technology change catalyzed by research interventions in integrated natural resource management (INRM are likely to require much more social negotiation and adaptation than are changes related to plant breeding, the dominant discipline within the system of the Consultative Group on International Agricultural Research (CGIAR. Conceptual models for developing and delivering high-yielding varieties have proven inadequate for delivering natural resource management (NRM technologies that are adopted in farmers' fields. Successful INRM requires tools and approaches that can blend the technical with the social, so that people from different disciplines and social backgrounds can effectively work and communicate with each other. This paper develops the "follow-the-technology" (FTT approach to catalyzing, managing, and evaluating rural technology change as a framework that both "hard" and "soft" scientists can work with. To deal with complexity, INRM needs ways of working that are adaptive and flexible. The FTT approach uses technology as the entry point into a complex situation to determine what is important. In this way, it narrows the research arena to achievable boundaries. The methodology can also be used to catalyze technology change, both within and outside agriculture. The FTT approach can make it possible to channel the innovative potential of local people that is necessary in INRM to "scale up" from the pilot site to the landscape. The FTT approach is built on an analogy between technology change and Darwinian evolution, specifically between "learning selection" and natural selection. In learning selection, stakeholders experiment with a new technology and carry out the evolutionary roles of novelty generation, selection, and promulgation. The motivation to participate is a "plausible promise" made by the R&D team to solve a real farming problem. Case studies are presented from a spectrum of technologies to show that repeated

  19. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  20. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  1. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  2. Characterization of a Flavoprotein Oxidase from Opium Poppy Catalyzing the Final Steps in Sanguinarine and Papaverine Biosynthesis*

    Science.gov (United States)

    Hagel, Jillian M.; Beaudoin, Guillaume A. W.; Fossati, Elena; Ekins, Andrew; Martin, Vincent J. J.; Facchini, Peter J.

    2012-01-01

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The Km values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism. PMID:23118227

  3. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis.

    Science.gov (United States)

    Hagel, Jillian M; Beaudoin, Guillaume A W; Fossati, Elena; Ekins, Andrew; Martin, Vincent J J; Facchini, Peter J

    2012-12-14

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The K(m) values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism.

  4. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    Directory of Open Access Journals (Sweden)

    Ioannis Metaxas

    2017-12-01

    Full Text Available A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12% from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

  5. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  6. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  7. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    2015-04-16

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acid and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.

  8. Norcoclaurine Synthase: Mechanism of an Enantioselective Pictet-Spengler Catalyzing Enzyme

    Directory of Open Access Journals (Sweden)

    Alberto Macone

    2010-03-01

    Full Text Available The use of bifunctional catalysts in organic synthesis finds inspiration in the selectivity of enzymatic catalysis which arises from the specific interactions between basic and acidic amino acid residues and the substrate itself in order to stabilize developing charges in the transition state. Many enzymes act as bifunctional catalysts using amino acid residues at the active site as Lewis acids and Lewis bases to modify the substrate as required for the given transformation. They bear a clear advantage over non-biological methods for their ability to tackle problems related to the synthesis of enantiopure compounds as chiral building blocks for drugs and agrochemicals. Moreover, enzymatic synthesis may offer the advantage of a clean and green synthetic process in the absence of organic solvents and metal catalysts. In this work the reaction mechanism of norcoclaurine synthase is described. This enzyme catalyzes the Pictet-Spengler condensation of dopamine with 4-hydroxyphenylacetaldehyde (4-HPAA to yield the benzylisoquinoline alkaloids central precursor, (S-norcoclaurine. Kinetic and crystallographic data suggest that the reaction mechanism occurs according to a typical bifunctional catalytic process.

  9. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  10. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  11. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)

    2007-12-15

    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  12. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Stereochemical course of enzyme-catalyzed aminopropyl transfer: spermidine synthase

    International Nuclear Information System (INIS)

    Kullberg, D.W.; Orr, G.R.; Coward, J.K.

    1986-01-01

    The R and S enantionmers of S-adenosyl-3-[ 2 H]3-(methylthio)-1-propylamine (decarboxylated S-adenosylmethionine), previously synthesized in this laboratory, were incubated with [1,4- 2 H 4 ]-putrescine in the presence of spermidine synthase from E. coli. The resulting chiral [ 2 H 5 ]spermidines were isolated and converted to their N 1 ,N 7 -dibocspermidine-N 4 -(1S,4R)-camphanamides. The derivatives were analyzed by 500 MHz 1 H-NMR and the configuration of the chiral center assigned by correlation with the spectra of synthetic chiral [ 2 H 3 ]dibocspermidine camphanamide standards. The enzyme-catalyzed aminopropyl transfer was shown to occur with net retention of configuration, indicative of a double-displacement mechanism. This result concurs with that of a previous steady-state kinetics study of spermidine synthase isolated from E. coli, but contradicts the single-displacement mechanism suggested by a stereochemical analysis of chiral spermidines biosynthesized in E. coli treated with chirally deuterated methionines. It also indicates that this aminopropyltransferase is mechanistically distinct from the methyltransferases, which have been shown to act via a single-displacement mechanism (net inversion at -CH 3 ) in all cases studied to date

  14. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  15. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  16. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    Science.gov (United States)

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    Science.gov (United States)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  18. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  20. A review on production of biodiesel using catalyzed transesterification

    Science.gov (United States)

    Dash, Santosh Kumar; Lingfa, Pradip

    2017-07-01

    Biodiesel is arguably an important fuel for compression ignition engine as far as sustainability and environmental issues are concerned. It can be produced from both edible and non-edible vegetable oils and animal fats. Owing to higher viscosity, the utilization of crude vegetable oil is not advisable as it results engine failure. For reducing the viscosity and improving the other fuel characteristics comparable to that of diesel fuel, different approaches have been developed. However, transesterification process is very reliable, less costly and easy method compared to other methods. Due to more free fatty acids content in most of the non-edible vegetable oils, a pretreatment is employed to convert the acids to ester, then transesterified with suitable alcohol. Primarily yield of biodiesel depends upon the molar ratio of oil/alcohol, reaction temperature, reaction time, amount of catalyst, type of catalyst, stirring speed. Both homogeneous and heterogeneous catalysts are used for synthesis purposes. Heterogeneous catalysts are less costly, environmental benign and can be derived from natural resources. Enzymatic catalysts are more environmental benign than heterogeneous catalysts but are costly, which hinders its widespread research and utilization. This article reviews the results of prominent works and researches in the field of production of biodiesel via catalyzed transesterification process.

  1. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  2. Out of the fog: Catalyzing integrative capacity in interdisciplinary research.

    Science.gov (United States)

    Piso, Zachary; O'Rourke, Michael; Weathers, Kathleen C

    2016-04-01

    Social studies of interdisciplinary science investigate how scientific collaborations approach complex challenges that require multiple disciplinary perspectives. In order for collaborators to meet these complex challenges, interdisciplinary collaborations must develop and maintain integrative capacity, understood as the ability to anticipate and weigh tradeoffs in the employment of different disciplinary approaches. Here we provide an account of how one group of interdisciplinary fog scientists intentionally catalyzed integrative capacity. Through conversation, collaborators negotiated their commitments regarding the ontology of fog systems and the methodologies appropriate to studying fog systems, thereby enhancing capabilities which we take to constitute integrative capacity. On the ontological front, collaborators negotiated their commitments by setting boundaries to and within the system, layering different subsystems, focusing on key intersections of these subsystems, and agreeing on goals that would direct further investigation. On the methodological front, collaborators sequenced various methods, anchored methods at different scales, validated one method with another, standardized the outputs of related methods, and coordinated methods to fit a common model. By observing the process and form of collaborator conversations, this case study demonstrates that social studies of science can bring into critical focus how interdisciplinary collaborators work toward an integrated conceptualization of study systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  4. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2012-01-01

    Full Text Available Linoleic acid (LA is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435. This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12-10(13-monoepoxy 12(9-octadecanoic acid (MEOA was optimized using D-optimal design. At optimum conditions, higher yield% (82.14 and medium oxirane oxygen content (OOC (4.91% of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP, flash point (FP, viscosity index (VI, and oxidative stability (OT were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively.

  5. Sticking in muon catalyzed D-T fusion

    International Nuclear Information System (INIS)

    Petitjean, C.; Sherman, R.H.; Bossy, H.; Daniel, H.; Hartmann, F.J.; Neumann, W.; Schmidt, G.; Egidy, T. von

    1986-10-01

    The issue of μα sticking after muon catalyzed DT fusion is controversial, since a number of theoretical and experimental results came out recently with sticking values ω s varying over a large range. After a review of this situation, our measurements at SIN and methods of sticking analysis from neutron time structures are presented in detail. The important point is the correct understanding of the experimentally observed time distributions. At high density (liquid DT) we find, after correction for other fusion channels, for DT sticking ω s (0.45 +- 0.05)%, not dependent on tritium concentration c t and in accordance with our X-ray observations. At low density (DT gas, φ 3% - 8%) our preliminary result is 0.50 +- 0.10%, giving a ratio 1.1 +- 0.2 in agreement with conventional theories, but strongly disagreeing with the LAMPF experiment of S.E. Jones et al. Our result sets the maximum fusion output per muon to less than 220 +- 20. (author)

  6. Thinking Differently: Catalyzing Innovation in Healthcare and Beyond.

    Science.gov (United States)

    Samet, Kenneth A; Smith, Mark S

    2016-01-01

    Convenience, value, access, and choice have become the new expectations of consumers seeking care. Incorporating these imperatives and navigating an expanded competitive landscape are necessary for the success of healthcare organizations-today and in the future-and require thinking differently than in the past.Innovation must be a central strategy for clinical and business operations to be successful. However, the currently popular concept of innovation is at risk of losing its power and meaning unless deliberate and focused action is taken to define it, adopt it, embrace it, and embed it in an organization's culture. This article details MedStar Health's blueprint for establishing the MedStar Institute for Innovation (MI2), which involved recognizing the sharpened need for innovation, creating a single specific entity to catalyze innovation across the healthcare organization and community, discovering the untapped innovation energy already residing in its employee base, and moving nimbly into the white space of possibility.Drawing on MedStar's experience with MI2, we offer suggestions in the following areas for implementing an innovation institute in a large healthcare system:We offer healthcare and business leaders a playbook for identifying and unleashing innovation in their organizations, at a time when innovation is at an increased risk of being misunderstood or misdirected but remains absolutely necessary for healthcare systems and organizations to flourish in the future.

  7. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  8. Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia.

    Science.gov (United States)

    Wang, Liliang; Kong, Lingbing; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2015-08-11

    Gold-catalyzed hydroimination of terminal alkynes, giving rise to anti-Markovnikov adducts concomitant with unstable Markovnikov adducts is described. The elementary step can be applied for the construction of pyridine derivatives from ammonia and alkynes.

  9. Synthesis of pyrrolo(2,3-b)quinolines by palladium-catalyzed heteroannulation

    International Nuclear Information System (INIS)

    Gee, Moon Bae; Lee, Won Jung; Yum, Eul Kgun

    2003-01-01

    Palladium-catalyzed heteroannulation of 2-amino-3-iodoquinoline derivatives and 1-trimethylsilyl internal alkynes provided highly regioselective pyrrolo(2,3-b)quinolines with trimethylsilyl group next to the nitrogen atom in the pyrrole ring

  10. Heterogeneously catalyzed reactive extraction for biomass valorization into chemicals and fuels

    NARCIS (Netherlands)

    Ordomskiy, V.; Khodakov, A.Y.; Nijhuis, T.A.; Schouten, J.C.

    2015-01-01

    This paper focuses on the heterogeneously catalyzed reactive extraction and separation in reaction steps in organic and aqueous phases during the transformation of biomass derived products. Two approaches are demonstrated for decomposing and preserving routes for biomass transformation into valuable

  11. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  12. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  13. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates

    KAUST Repository

    Fang, Xin; Huang, Yuanyuan; Chen, Xiaoqing; Lin, Xiaoxi; Bai, Zhengshuai; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2013-01-01

    The direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates gave the desired products of fluorinated biaryls in good to excellent yields. A diverse set of important functional groups including methoxy, aldehyde, ester

  14. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-06-01

    Full Text Available Effective production of hexitols (sorbitol and mannitol was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite. The presence of aluminium hydroxide caused a high dispersion Ni metal species. The average Ni crystallite sizes that derived from the Scherrer`s equation for former R-Ni and NiNPs/AlOH were 8.6 nm and 4.1 nm, respectively. The catalyst exhibited high activity and selectivity both hydrogenolysis of disaccharides (sucrose and cellobiose and monosaccharides (glucose, fructose, and xylose at 403 K for 24 h. The NiNPs/AlOH catalyst was found to be reusable for at least five consecutive runs without any significant loss of activity and selectivity. © 2013 BCREC UNDIP. All rights reservedReceived: 21st December 2012; Revised: 7th February 2013; Accepted: 10th February 2013[How to Cite: Rodiansono, R., Shimazu, S. (2013. Effective Production of Sorbitol and Mannitol from Sug-ars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 40-46. (doi:10.9767/bcrec.8.1.4290.40-46][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4290.40-46] | View in  |

  15. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2012-01-01

    A method for the preparation of NiO and Nb-NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb-Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb 2O 6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb-NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3-4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb-NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst. © 2011 Elsevier Inc. All rights reserved.

  16. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    Science.gov (United States)

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. CuO-Nanoparticles Catalyzed Synthesis of 1,4-Disubstituted-1,2,3 ...

    Indian Academy of Sciences (India)

    John Paul Raj

    2018-04-13

    Apr 13, 2018 ... has been developed for the synthesis of 1,2,3-triazoles. A library of 1 ... Kuang et al., described Cu-catalyzed synthesis of 1H-. 1,2,3-triazoles from 1 ..... Tornøe C W, Christensen C and Meldal M 2002 Peptido- triazoles on solid ... 2015 Copper-catalyzed [3+2] cycloaddition/oxidation reactions between ...

  18. Influence of the catalyzer in the esterification of the sugarcane bagasse fibers

    International Nuclear Information System (INIS)

    Maia, Tatiana F.; Mulinari, Daniella R.; Suzuki, Paulo A.

    2011-01-01

    In this work chemical modification of the sugarcane bagasse fibers by anhydride system using amount Abstract: In this work chemical modification of the sugarcane bagasse fibers by anhydride system using amount different of catalyze was studied. The chemical modification of the fibers was evaluated by techniques of X-Ray Diffractometry (XRD) and Infrared Spectrophotometer (FTIR). Results showed that the amount of catalyze influenced in the chemical modification of the fibers. (author)

  19. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    Science.gov (United States)

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rhodium(III)-Catalyzed Activation of C(sp3)-H Bonds and Subsequent Intermolecular Amidation at Room Temperature.

    Science.gov (United States)

    Huang, Xiaolei; Wang, Yan; Lan, Jingbo; You, Jingsong

    2015-08-03

    Disclosed herein is a Rh(III)-catalyzed chelation-assisted activation of unreactive C(sp3)-H bonds, thus enabling an intermolecular amidation to provide a practical and step-economic route to 2-(pyridin-2-yl)ethanamine derivatives. Substrates with other N-donor groups are also compatible with the amidation. This protocol proceeds at room temperature, has a relatively broad functional-group tolerance and high selectivity, and demonstrates the potential of rhodium(III) in the promotive functionalization of unreactive C(sp3)-H bonds. A rhodacycle having a SbF6(-) counterion was identified as a plausible intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  2. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  3. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    International Nuclear Information System (INIS)

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan

    2017-01-01

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiple modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and

  4. Nickel-Catalyzed Alkoxy-Alkyl Interconversion with Alkylborane Reagents through C−O Bond Activation of Aryl and Enol Ethers

    KAUST Repository

    Guo, Lin

    2016-11-07

    A nickel-catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B-alkyl 9-BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)−OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)−C(sp3) bonds that does not suffer from β-hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C−O bonds is presented to demonstrate the advantage of this method.

  5. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  6. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  7. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  8. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary.

    Science.gov (United States)

    Yao, Qi-Jun; Zhang, Shuo; Zhan, Bei-Bei; Shi, Bing-Feng

    2017-06-01

    Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C-H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Palladium(II)-Catalyzed meta-C-H Olefination: Constructing Multisubstituted Arenes through Homo-Diolefination and Sequential Hetero-Diolefination.

    Science.gov (United States)

    Bera, Milan; Maji, Arun; Sahoo, Santosh K; Maiti, Debabrata

    2015-07-13

    Divinylbenzene derivatives represent an important class of molecular building blocks in organic chemistry and materials science. Reported herein is the palladium-catalyzed synthesis of divinylbenzenes by meta-C-H olefination of sulfone-based arenes. Successful sequential olefinations in a position-selective manner provided a novel route for the synthesis of hetero-dialkenylated products, which are difficult to access using conventional methods. Additionally, 1,3,5-trialkenylated compounds can be generated upon successful removal of the directing group. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs.

    Science.gov (United States)

    Eklund, Birgitta I; Gunnarsdottir, Sjofn; Elfarra, Adnan A; Mannervik, Bengt

    2007-06-01

    cis-6-(2-Acetylvinylthio)purine (cAVTP) and trans-6-(2-acetylvinylthio)guanine (tAVTG) are thiopurine prodrugs provisionally inactivated by an alpha,beta-unsaturated substituent on the sulfur of the parental thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). The active thiopurines are liberated intracellularly by glutathione (GSH) in reactions catalyzed by glutathione transferases (GSTs) (EC 2.5.1.18). Catalytic activities of 13 human GSTs representing seven distinct classes of soluble GSTs have been determined. The bioactivation of cAVTP and tAVTG occurs via a transient addition of GSH to the activated double bond of the S-substituent of the prodrug, followed by elimination of the thiopurine. The first of these consecutive reactions is rate-limiting for thiopurine release, but GST-activation of this first addition is shifting the rate limitation to the subsequent elimination. Highly active GSTs reveal the transient intermediate, which is detectable by UV spectroscopy and HPLC analysis. LC/MS analysis of the reaction products demonstrates that the primary GSH conjugate, 4-glutathionylbuten-2-one, can react with a second GSH molecule to form the 4-(bis-glutathionyl)butan-2-one. GST M1-1 and GST A4-4 were the most efficient enzymes with tAVTG, and GST M1-1 and GST M2-2 had highest activity with cAVTP. The highly efficient GST M1-1 is polymorphic and is absent in approximately half of the human population. GST P1-1, which is overexpressed in many cancer cells, had no detectable activity with cAVTP and only minor activity with tAVTG. Other GST-activated prodrugs have targeted GST P1-1-expressing cancer cells. Tumors expressing high levels of GST M1-1 or GST A4-4 can be predicted to be particularly vulnerable to chemotherapy with cAVTP or tAVTG.

  11. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    Science.gov (United States)

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  12. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  13. Zinc catalyzed Guanylation reaction of Amines with Carbodiimides ...

    Indian Academy of Sciences (India)

    We report the highly chemo-selective catalytic addition of N–H bonds from ... an important class of compounds present in biologi- cally and pharmaceutically active molecules. They have received considerable attention due to their electronic.

  14. Synthesis of E-Alkyl Alkenes from Terminal Alkynes via Ni-Catalyzed Cross-Coupling of Alkyl Halides with B-Alkenyl-9-borabicyclo[3.3.1]nonanes.

    Science.gov (United States)

    Di Franco, Thomas; Epenoy, Alexandre; Hu, Xile

    2015-10-02

    The first Ni-catalyzed Suzuki-Miyaura coupling of alkyl halides with alkenyl-(9-BBN) reagents is reported. Both primary and secondary alkyl halides including alkyl chlorides can be coupled. The coupling method can be combined with hydroboration of terminal alkynes, allowing the expedited synthesis of functionalized alkyl alkenes from readily available alkynes with complete (E)-selectivity in one pot. The method was applied to the total synthesis of (±)-Recifeiolide, a natural macrolide.

  15. Preparation of biodiesel from waste cooking oil via two-step catalyzed process

    International Nuclear Information System (INIS)

    Wang Yong; Liu Pengzhan; Ou Shiyi; Zhang Zhisen

    2007-01-01

    Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. In this research, a two step catalyzed process was adopted to prepare biodiesel from waste cooking oil whose acid value was 75.92 ± 0.036 mgKOH/g. The free fatty acids of WCO were esterified with methanol catalyzed by ferric sulfate in the first step, and the triglycerides (TGs) in WCO were transesterified with methanol catalyzed by potassium hydroxide in the second step. The results showed that ferric sulfate had high activity to catalyze the esterification of free fatty acids (FFA) with methanol, The conversion rate of FFA reached 97.22% when 2 wt% of ferric sulfate was added to the reaction system containing methanol to TG in10:1 (mole ratio) composition and reacted at 95 deg. C for 4 h. The methanol was vacuum evaporated, and transesterification of the remained triglycerides was performed at 65 deg. C for 1 h in a reaction system containing 1 wt% of potassium hydroxide and 6:1 mole ratio of methanol to TG. The final product with 97.02% of biodiesel, obtained after the two step catalyzed process, was analyzed by gas chromatography. This new process has many advantages compared with the old processes, such as no acidic waste water, high efficiency, low equipment cost and easy recovery of the catalyst

  16. Novel big-bang element synthesis catalyzed by supersymmetric particle stau

    International Nuclear Information System (INIS)

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-01-01

    The extremely low isotope ratio of 6 Li had remained as a drawback of the Big-Bang Nucleosynthesis (BBN) until Pospelov proposed the 6 Li synthesis reaction catalyzed by negatively charged electroweak-scale particle X - in 2006. He remarked the catalytic enhancement of 6 Li production by about 10 8 times, as well as the life and initial abundance of X - . The present authors classified BBN catalyzed reaction into six types, i.e. (1) non-resonant transfer, (2) resonant transfer, (3) non-resonant radiative capture, (4) resonant radiative capture, (5) three-body breakup and (6) charge transfer reactions to predict absolute values of cross sections which cannot be observed experimentally. Starting from the three-body treatment for those reactions, 6 Li problems, the life-time and abundance of stau are discussed. Large change of element composition at 'late-time' big bang, generation of 9 Be by stau catalyzed reaction, 7 Li problem and stau catalyzed reactions are also discussed. Finally their relations with the supersymmetry theory and dark matter are mentioned. The basic nuclear calculations are providing quantitative base for the 'effect of nuclear reactions catalyzed by the supersymmetric particle stau on big bang nucleosynthesis'. (S. Funahashi)

  17. Solvable Catalyzed Birth-Death-Exchange Competition Model of Three Species

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Zhang Heng; Lin Zhenquan

    2009-01-01

    A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj ν and kj ω respectively, where ν(Ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A-species a k (t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of μ ≤ 0, the form of a k (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν > 0, the form of a k (t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A. (interdisciplinary physics and related areas of science and technology)

  18. Theoretical study on the N-demethylation mechanism of theobromine catalyzed by P450 isoenzyme 1A2.

    Science.gov (United States)

    Tao, Jing; Kang, Yuan; Xue, Zhiyu; Wang, Yongting; Zhang, Yan; Chen, Qiu; Chen, Zeqin; Xue, Ying

    2015-09-01

    Theobromine, a widely consumed pharmacological active substance, can cause undesirable muscle stiffness, nausea and anorexia in high doses ingestion. The main N-demethylation metabolic mechanism of theobromine catalyzed by P450 isoenzyme 1A2 (CYP1A2) has been explored in this work using the unrestricted hybrid density functional method UB3LYP in conjunction with the LACVP(Fe)/6-31G (H, C, N, O, S, Cl) basis set. Single-point calculations including empirical dispersion corrections were carried out at the higher 6-311++G** basis set. Two N-demethylation pathways were characterized, i.e., 3-N and 7-N demethylations, which involve the initial N-methyl hydroxylation to form carbinolamines and the subsequent carbinolamines decomposition to yield monomethylxanthines and formaldehydes. Our results have shown that the rate-limiting N-methyl hydroxylation occurs via a hydrogen atom transfer (HAT) mechanism, which proceeds in a spin-selective mechanism (SSM) in the gas phase. The carbinolamines generated are prone to decomposition via the contiguous heteroatom-assisted proton-transfer. Strikingly, 3-N demethylation is more favorable than 7-N demethylation due to its lower free energy barrier and 7-methylxanthine therefore is the optimum product reported for the demethylation of theobromine catalyzed by CYP1A2, which are in good agreement with the experimental observation. This work has first revealed the detail N-demethylation mechanisms of theobromine at the theoretical level. It can offer more significant information for the metabolism of purine alkaloid. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    Science.gov (United States)

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  20. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    Directory of Open Access Journals (Sweden)

    Hsiao-Ching Chen

    2011-01-01

    Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  1. Catalyzing Transdisciplinarity: A Systems Ethnography of Cancer-Obesity Comorbidity and Risk Coincidence.

    Science.gov (United States)

    Graham, S Scott; Harley, Amy; Kessler, Molly M; Roberts, Laura; DeVasto, Dannielle; Card, Daniel J; Neuner, Joan M; Kim, Sang-Yeon

    2017-05-01

    Effectively addressing wicked health problems, that is, those arising from complex multifactorial biological and socio-economic causes, requires transdisciplinary action. However, a significant body of research points toward substantial difficulties in cultivating transdisciplinary collaboration. Accordingly, this article presents the results of a study that adapts Systems Ethnography and Qualitative Modeling (SEQM) in response to wicked health problems. SEQM protocols were designed to catalyze transdisciplinary responses to national defense concerns. We adapted these protocols to address cancer-obesity comorbidity and risk coincidence. In so doing, we conducted participant-observations and interviews with a diverse range of health care providers, community health educators, and health advocacy professionals who target either cancer or obesity. We then convened a transdisciplinary conference designed to catalyze a coordinated response. The findings offer productive insights into effective ways of catalyzing transdisciplinarity in addressing wicked health problems action and demonstrate the promise of SEQM for continued use in health care contexts.

  2. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  3. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1989-01-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D 2 O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed

  4. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2010-03-01

    Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24 h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.

  5. Iridium‐Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols with the Liberation of Syngas

    DEFF Research Database (Denmark)

    Olsen, Esben Paul Krogh; Madsen, Robert

    2012-01-01

    A new iridium‐catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)2Cl]2 (coe=cyclooct......A new iridium‐catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)2Cl]2 (coe...... to excellent yields. Ethers, esters, imides, and aryl halides are stable under the reaction conditions, whereas olefins are partially saturated. The reaction is believed to proceed by two consecutive organometallic transformations that are catalyzed by the same iridium(I)–BINAP species. First, dehydrogenation...

  6. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    Science.gov (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2015-05-01

    Full Text Available A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22 of silychristin was accomplished by lipase PS (Pseudomonas cepacia immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.

  8. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  9. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases ‡

    Science.gov (United States)

    Vavříková, Eva; Gavezzotti, Paolo; Purchartová, Kateřina; Fuksová, Kateřina; Biedermann, David; Kuzma, Marek; Riva, Sergio; Křen, Vladimír

    2015-01-01

    A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule. PMID:26016503

  10. Kinetic Behavior of Aggregation-Exchange Growth Process with Catalyzed-Birth

    International Nuclear Information System (INIS)

    Han Anjia; Chen Yu; Lin Zhenquan; Ke Jianhong

    2007-01-01

    We propose an aggregation model of a two-species system to mimic the growth of cities' population and assets, in which irreversible coagulation reactions and exchange reactions occur between any two aggregates of the same species, and the monomer-birth reactions of one species occur by the catalysis of the other species. In the case with population-catalyzed birth of assets, the rate kernel of an asset aggregate B k of size k grows to become an aggregate B k+1 through a monomer-birth catalyzed by a population aggregate A j of size j is J(k,j) = Jkj λ . And in mutually catalyzed birth model, the birth rate kernels of population and assets are H(k,j) = Hkj η and J(k,j) = Jkj λ , respectively. The kinetics of the system is investigated based on the mean-field theory. In the model of population-catalyzed birth of assets, the long-time asymptotic behavior of the assets aggregate size distribution obeys the conventional or modified scaling form. In mutually catalyzed birth system, the asymptotic behaviors of population and assets obey the conventional scaling form in the case of η = λ = 0, and they obey the modified scaling form in the case of η = 0,λ = 1. In the case of η = λ = 1, the total mass of population aggregates and that of asset aggregates both grow much faster than those in population-catalyzed birth of assets model, and they approaches to infinite values in finite time.

  11. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings

    Science.gov (United States)

    Jackson, Evan P.; Malik, Hasnain A.; Sormunen, Grant J.; Baxter, Ryan D.; Liu, Peng; Wang, Hengbin; Shareef, Abdur-Rafay; Montgomery, John

    2015-01-01

    CONSPECTUS The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions play a key role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the

  12. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides

    Directory of Open Access Journals (Sweden)

    Christelle Boléa

    2001-02-01

    Full Text Available The Cu-catalyzed intramolecular CH insertion of phenyliodonium ylide 5b has been investigated at 0° C in the presence of several chiral ligands. Enantioselectivities vary in the range of 38–72 %, and are higher than those resulting from reaction of the diazo compound 5c at 65° C. The results are consistent with a carbenoid mechanism for Cu-catalyzed decomposition of phenyliodonium ylides.

  13. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  14. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    Transition metal‐catalyzed decarbonylative coupling reactions have emerged as a powerful alternative to conventional cross‐coupling protocols due to the advantages associated with the use of carbonyl‐containing functionalities as coupling electrophiles instead of commonly used organohalides or sulfates. A wide variety of novel transformations based on this concept have been successfully achieved, including decarbonylative carbon–carbon and carbon–heteroatom bond forming reactions. In this Review, we summarize the recent progress in this field and present a comprehensive overview of metal‐catalyzed decarbonylative coupling reactions with carbonyl derivatives.

  15. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications

    KAUST Repository

    Guo, Lin

    2018-05-14

    Transition metal‐catalyzed decarbonylative coupling reactions have emerged as a powerful alternative to conventional cross‐coupling protocols due to the advantages associated with the use of carbonyl‐containing functionalities as coupling electrophiles instead of commonly used organohalides or sulfates. A wide variety of novel transformations based on this concept have been successfully achieved, including decarbonylative carbon–carbon and carbon–heteroatom bond forming reactions. In this Review, we summarize the recent progress in this field and present a comprehensive overview of metal‐catalyzed decarbonylative coupling reactions with carbonyl derivatives.

  16. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Guan, Yanfei; Wheeler, Steven E

    2017-07-24

    A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C 2 -symmetric phosphorus ligand is designed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat

    2015-08-17

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  18. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  19. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  20. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  1. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat; Parveen, Shehla; Emwas, Abdul-Hamid M.; Sioud, Salim; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2015-01-01

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  2. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  3. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  4. Selective and reactive hydration of nitriles to amides in water using silver nanoparticles stabilized by organic ligands

    International Nuclear Information System (INIS)

    Kawai, Koji; Kawakami, Hayato; Narushima, Takashi; Yonezawa, Tetsu

    2015-01-01

    Water-dispersible silver nanoparticles stabilized by silver–carbon covalent bonds were prepared. They exhibited high catalytic activities for the selective hydration of nitriles to amides in water. The activation of a nitrile group by the functional groups of the substrates and the hydrophobic layer on the nanoparticles influenced the catalyzed reaction were confirmed. Alkyl nitriles could also be selectively hydrated

  5. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    Science.gov (United States)

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oxidative Heck Reaction as a Tool for Para-selective Olefination of Aniline: A DFT Supported Mechanism.

    Science.gov (United States)

    Moghaddam, Firouz Matloubi; Pourkaveh, Raheleh; Karimi, Ashkan

    2017-10-06

    This study describes the first para-selective palladium-catalyzed alkenylation of tertiary amines. This regioselective C-H activation was conducted without any chelation moieties. A series of olefins were reacted under mild reaction conditions at 60 °C, and the corresponding products were obtained in good yields with high selectivity.

  7. Evaluation of Pulp and Paper Properties obtained from Maple Juvenile Wood through Organosolv Alcohol Method Catalyzed by Calcium and Magnesium Salts

    Directory of Open Access Journals (Sweden)

    Reza Naghdi

    2015-05-01

    Full Text Available The properties of catalyzed organosolv pulp obtained from maple juvenile wood were studied. The physical properties of fiber (e.g. length, width, and cell membrane thickness and chemical composition of maple juvenile wood (e.g. average cellulose, lignin, extractives, and ash content were determined. The variables were cooking temperature (190 and 200 ºC and time (40, 60, and 80 minutes. Chemical charge ( 280 ml methanol, 70 ml water, and 0.025 mols of Calcium Chloride and Magnesium Nitrate was kept constant. Pulp screen yields (54.9 to 60.91% and Kappa No. (15.5 to 18.4 were measured. Pulp freeness was reduced to 350 ml CSF in PFI mill, and ten 60 g/m2 handsheets were made from the selected pulps. The strength properties of catalyzed organosolv handsheets including tear length (3.83 to 4.25 km, tear index (10.22 to 12.81 mN.m2/g, and burst index (1.74 to 2.15 kPa.m2/g were compared with those of the conventional Kraft handsheets of maple juvenile wood. The least allowed values of the mentioned properties in the Indian (IS and Japanese international standards (JIS reveal that while the tear length value is slightly below that of the standards, the values of tear and burst indices are well beyond the given standards, and the environmentally-friendly catalyzed organosolv pulping process (higher yield and lower Kappa No. compared to Kraft can be recommended to produce paper pulp from maple juvenile wood.

  8. Palladium-Catalyzed, N-(2-Aminophenyl)acetamide-Assisted Ortho-Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7.

    Science.gov (United States)

    Reddy, M Damoder; Blanton, Alexandra N; Watkins, E Blake

    2017-05-19

    Pd-catalyzed, selective, monoarylation of ortho-C-H bonds of various benzamides with aryl/heteroaryl iodides has been realized using N-(2-aminophenyl)acetamide (APA) as a new bidentate directing group for the first time. The reaction was tolerant of a wide range of functional groups, and a variety of biaryl amide derivatives were successfully prepared in good to moderate yield. The utilization of N-(2-aminophenyl)acetamide as a novel directing group, Mn(OAc) 2 as a co-oxidant (silver free reaction conditions), and absolute ortho-monoaryl selectivity are notable features of this reaction. In addition, the obtained monoarylated products could be further transformed into the bioactive natural products and human microflora metabolites of dietary ellagic acid derivatives, urolithin B, urolithin M6, and urolithin M7.

  9. Sequential Au(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    2011-05-01

    Full Text Available The gold(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates provides 1H-isochromene derivatives in good yields. The reaction follows a catalytic sequence of gold carbene formation/water O–H insertion/alcohol-alkyne cyclization. The gold(I complex is the only catalyst in each of these steps.

  10. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  11. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...

  12. The Extension Storyteller: Using Stories to Enhance Meaning and Catalyze Change

    Science.gov (United States)

    Franz, Nancy

    2016-01-01

    Many cultures share and pass on norms through storytelling. Extension as a culture also creates and shares stories to pass on history, provide information about Extension work and experiences, and develop the organization. However, Extension as a culture less frequently uses storytelling to enhance meaning and catalyze related change. This article…

  13. Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO.

    Science.gov (United States)

    Pramanik, Mukund M D; Rastogi, Namrata

    2016-06-30

    The visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO is illustrated. This is the first example of DMSO being used as the source of the methylsulfinyl group. The procedure tolerates a wide range of functional groups on (het)aryl diazonium salts and provides aryl methyl sulfoxides in excellent yields under mild reaction conditions.

  14. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

    Science.gov (United States)

    2011-01-01

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952

  15. Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Jensen, Thomas; Rodríguez-Rodríguez, Sergio

    2013-01-01

    The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE...

  16. Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates

    KAUST Repository

    Zheng, Huidong

    2012-12-01

    A new method for the synthesis of trifluoromethylated acetylenes is developed which involves the copper-catalyzed trifluoromethylation of alkynyltrifluoroborates with an electrophilic trifluoromethylating reagent. This method offers significant advantages such as efficiency and mild and base-free reaction conditions. A plausible mechanism is proposed. © 2012 Elsevier Ltd. All rights reserved.

  17. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    Science.gov (United States)

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  18. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  19. Beckmann rearrangement of aldoximes catalyzed by transition metal salts: mechanical aspects

    NARCIS (Netherlands)

    Leusink, A.J.; Meerbeek, T.G.; Noltes, J.G.

    1977-01-01

    The Beckmann rearrangement of aldoximes catalyzed by transition metal salts like palladium and nickel acetylacetonates is shown to be a dehydration‐hydration reaction in which the anti‐oxime is converted into nitrile and the nitrile is converted into amide.

  20. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones.

    Science.gov (United States)

    Takaki, Ken; Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  1. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

    Directory of Open Access Journals (Sweden)

    Ken Takaki

    2017-08-01

    Full Text Available Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  2. Zn(OTf)2 catalyzed indolylation and pyrrolylation of isatins: Efficient ...

    Indian Academy of Sciences (India)

    praveenithya

    Zn(OTf)2 catalyzed indolylation and pyrrolylation of isatins: Efficient synthesis and biochemical assay of 3,3- di(heteroaryl)oxindoles. C PRAVEEN a. , S NARENDIRAN b. , P DHEENKUMAR a,c and P T PERUMAL a,. * a. Organic Chemistry Division, Central Leather Research Institute (CSIR), Adyar, Chennai. 600020 ...

  3. Chalcogen-containing oxazolines in the palladium-catalyzed asymmetric allylic alkylation

    Directory of Open Access Journals (Sweden)

    Braga Antonio L.

    2006-01-01

    Full Text Available A comparative study about the ability of chiral chalcogen-containing oxazolines to act as chiral ligands in the palladium-catalyzed allylic alkylation of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate is reported. Differences in the catalytic performance are observed with sulfur, selenium and tellurium analogues.

  4. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    DEFF Research Database (Denmark)

    Zhuravlev, Fedor

    2006-01-01

    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b...

  5. The Manganese-Catalyzed Cross-Coupling Reaction and the Influence of Trace Metals

    DEFF Research Database (Denmark)

    Santilli, Carola; Beigbaghlou, Somayyeh Sarvi; Ahlburg, Andreas

    2017-01-01

    The substrate scope of the MnCl2-catalyzed cross-coupling between aryl halides and Grignard reagents has been extended to several methyl-substituted aryl iodides by performing the reaction at elevated temperature in a microwave oven. A radical clock experiment revealed the presence of an aryl...

  6. Mild and Efficient Nickel-Catalyzed Heck Reactions with Electron-Rich Olefins

    DEFF Research Database (Denmark)

    Gøgsig, Thomas; Kleimark, Jonatan; Lill, Sten O. Nilsson

    2012-01-01

    proved compatible, and the corresponding aryl methyl ketone could be secured after hydrolysis in yields approaching quantitative. Good functional group tolerance was observed matching the characteristics of the analogous Pd-catalyzed Heck reaction. The high levels of catalytic activity were explained...

  7. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus; Lee, Shao-Chi; Guo, Lin; Yue, Huifeng; Liao, Hsuan-Hung

    2017-01-01

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  8. The Isomerization of (-)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin

    Science.gov (United States)

    Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D.

    2014-01-01

    A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…

  9. Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction

    NARCIS (Netherlands)

    de Macedo-Ribeiro, S.; Renirie, R.; Wever, R.; Messerschmidt, A.

    2008-01-01

    The crystal structure of the apo form of vanadium chloroperoxidase from Curvularia inaequalis reacted with para-nitrophenylphosphate was determined at a resolution of 1.5 Å. The aim of this study was to solve structural details of the dephosphorylation reaction catalyzed by this enzyme. Since the

  10. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Science.gov (United States)

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  11. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  12. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus

    2017-10-23

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  13. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  14. Lactam hydrolysis catalyzed by mononuclear metallo-beta-lactamases: A density functional study

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Olsen, L.; Antony, J.

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  15. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.

    2006-01-01

    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpected...

  16. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  17. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  18. Gold-catalyzed heterocyclizations in alkynyl- and allenyl-β-lactams

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-05-01

    Full Text Available New gold-catalyzed methods using the β-lactam scaffold have been recently developed for the synthesis of different sized heterocycles. This overview focuses on heterocyclization reactions of allenic and alkynic β-lactams which rely on the activation of the allene and alkyne component. The mechanism as well as the regio- and stereoselectivity of the cyclizations are also discussed.

  19. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  20. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  1. Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Mirfeizi, Leila; Dierckx, Rudi A.; Elsinga, Philip H.; Feringa, Ben L.

    2009-01-01

    Monodentate phosphoramidite ligands are used to accelerate the copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) rapidly yielding a wide variety of functionalized 1,4-disubstituted-1,2,3-triazoles; Cu(I) and Cu(II) salts both function as the copper source in aqueous

  2. Au-Catalyzed Synthesis of 2-Alkylindoles from N-Arylhydroxylamines and Terminal Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Ye, Longwu

    2012-01-01

    The first gold-catalyzed addition of N-arylhydroxylamines to aliphatic terminal alkynes is developed to access O-alkenyl-N-arylhydroxylamines, which undergo facile in situ sequential 3,3-rearrangements and cyclodehydrations to afford 2-alkylindoles with regiospecificity and under exceptionally mild reaction conditions. PMID:21637891

  3. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  4. Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones.

    Science.gov (United States)

    Manoharan, Ramasamy; Jeganmohan, Masilamani

    2015-09-21

    A regioselective synthesis of substituted pyrroloquinolinones via a ruthenium-catalyzed oxidative cyclization of substituted N-carbamoyl indolines with alkynes is described. The cyclization reaction was compatible with various symmetrical and unsymmetrical alkynes including substituted propiolates. Later, we performed the aromatization of pyrroloquinolinones into indole derivatives in the presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ).

  5. Gold-catalyzed Alkyne Hydroxylation: Synthesis of 2-Substituted Benzo[b]furan Compounds

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan; XIN Zhi-Jun; XUE Ji-Jun; LI Ying

    2008-01-01

    A strategy concerning the synthesis of 2-substituted benzo[b]furan compounds from o-alkynyl phenols via a gold-catalyzed alkyne hydroxylation is described, which allows the rapid synthesis of various 2-substituted benzo[b]furan derivatives in excellent yields under mild conditions. The o-alkynyl phenol precursors were readily prepared with a Sonogashira coupling reaction.

  6. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    Science.gov (United States)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  7. Synthesis of a novel chemotype via sequential metal-catalyzed cycloisomerizations

    Directory of Open Access Journals (Sweden)

    Bo Leng

    2012-08-01

    Full Text Available Sequential cycloisomerizations of diynyl o-benzaldehyde substrates to access novel polycyclic cyclopropanes are reported. The reaction sequence involves initial Cu(I-mediated cycloisomerization/nucleophilic addition to an isochromene followed by diastereoselective Pt(II-catalyzed enyne cycloisomerization.

  8. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    NARCIS (Netherlands)

    Munk, L.; Punt, A.M.; Kabel, M.A.; Meyer, A.S.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators by

  9. Large acceleration of a-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    The effects of 18-crown-6 on the synthesis of peptides catalyzed by α-chymotrypsin are reported. Lyophilization of the enzyme in the presence of 50 equivalents of 18-crown-6 results in a 425-fold enhanced activity when the reaction between the 2-chloroethylester of N-acetyl-L-phenylalanine and

  10. Microsomal UDP-glucuronyltransferase-catalyzed bilirubin diglucuronide formation in human liver

    NARCIS (Netherlands)

    Peters, W. H.; Jansen, P. L.

    1986-01-01

    Human liver microsomal bilirubin UDP-glucuronyltransferase catalyzes formation of bilirubin mono- and diglucuronide. KmUDPGA and Vmax of the enzyme are 0.6 mM and 1.69 nmol/mg protein X min. In vitro, bilirubin readily dissolves in the microsomal lipid phase. Taking this into account a Kmbilirubin

  11. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  12. Enzyme-Catalyzed Synthesis of Saccharide Acrylate Monomers from Nonedible Biomass

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Brouwer, Sander; Loos, Katja

    Various cellulase preparations were found to catalyze the transglycosidation between cotton linters and 2-hydroxyethyl acrylate. The conversion and enzyme activity were found to be optimal in reaction mixtures that contained 5 vol% of the acrylate. The structures of the products were revealed by

  13. $MNO_2$ catalyzed carbon electrodes for dioxygen reduction in concentrated alkali

    OpenAIRE

    Manoharan, R; Shulka, AK

    1984-01-01

    A process to deposit $\\gamma-MnO_2$ catalytic oxide onto coconut-shell charcoal substrate is described. Current-potential curves for electroreduction of dioxygen with electrodes fabricated from this catalyzed substrate are obtained in 6M KOH under ambient conditions. The performance of these electrodes is competitive with platinized carbon electrodes.

  14. Manganese-Catalyzed C−H Functionalizations: Hydroarylations and Alkenylations Involving an Unexpected Heteroaryl Shift

    KAUST Repository

    Wang, Chengming

    2017-06-24

    A manganese-catalyzed regio- and stereoselective hydroarylation of allenes is reported. The C−H functionalization method provides access to various alkenylated indoles in excellent yields. Moreover, a hydroarylation/cyclization cascade involving an unexpected C−N bond cleavage and aryl shift has been developed, which provides a new synthetic approach to substituted pyrroloindolones.

  15. Ruthenium-Catalyzed Transformations of Alcohols: Mechanistic Investigations and Methodology Development

    DEFF Research Database (Denmark)

    Makarov, Ilya; Madsen, Robert; Fristrup, Peter

    with dimethoxyisopropylidene and pyridilidene ligands could be more active than RuCl2(IiPr)(p-cymene) used in the mechanistic investigation. Two analogs of the calculated complexes were synthesized but were not isolated in a pure form. The amidation reaction catalyzed by a mixture containing the N-ethyl pyridilidene...

  16. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill

    2013-01-16

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  17. Glutathiolactaldehyde as a probe of the overall stereochemical course of glyoxalase-I catalyzed reactions

    International Nuclear Information System (INIS)

    Brush, E.J.; Kozarich, J.W.

    1986-01-01

    The overall stereochemical course of the reactions catalyzed by glyoxalase-I (GX-I) has remained elusive as the substrates are equilibrium mixtures of rapidly interconverting diastereomeric thiohemiacetals. However, with the discovery of inverse substrate processing by Kozarich and coworkers, it is possible to design GX-I substrate analogs that are intrinsically more stable than the thiohemiacetals. Hence, Chari and Kozarich reported that glutathiohydroxyacetone (GHA, GSCH 2 COCH 2 OH) undergoes GX-I catalyzed exchange of the pro-S hydroxymethyl proton with solvent deuterium. Their data suggest that GX-I processes a single diastereomeric thiohemiacetal, and are consistent with a cis-enediol intermediate. To test this hypothesis and to follow the overall stereochemistry on a single substrate, they have prepared glutathiolactaldehyde (GLA, GSCH 2 CHOHCHO) as a potential inverse substrate. Human erythrocyte GX-I catalyzes the isomerization of GLA to GHA as evidenced by UV and NMR spectra of the product. Solvent deuterium is incorporated into the hydroxymethyl position, and NMR data suggest that incorporation is stereospecific. Furthermore, 50% of the expected amount of GHA is produced indicating that only one diastereomer of GLA is processed by GX-I. Identification of the absolute stereochemistry of the substrate diastereomer will lead to a clarification of the overall stereochemical and mechanistic course of GX-I catalyzed reactions

  18. Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes

    Science.gov (United States)

    Wang, Hai-Feng; Lin, Zhen-Quan; Kong, Xiang-Mu

    2006-12-01

    Two catalyzed-birth models of n-species (n>=2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Amk and Amj of the same species with the rate kernels Km(k,j) = Kmkj (m = 1,2,...,n, n>=2), and aggregates of An species catalyze a monomer-birth of Al species (l = 1,2,...,n-1) with the catalysis rate kernel Jl(k,j) = Jlkjυ. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution alk(t) of Al species depends crucially on the value of the catalysis rate parameter υ: (i) alk(t) obeys the conventional scaling law in the case of υ0. In the second model, the mechanism of monomer-birth of An-species catalyzed by Al species is added on the basis of the first model, that is, the aggregates of Al and An species catalyze each other to cause monomer-birth. The kinetic behaviors of Al and An species are found to fall into two categories for the different υ: (i) growth obeying conventional scaling form with υ0.

  19. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  20. Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction.

    Science.gov (United States)

    Fayol, Aude; Fang, Yuan-Qing; Lautens, Mark

    2006-09-14

    A novel one-step synthesis of valuable 2-vinylic indoles and their tricycle derivatives is described. This reaction, which utilizes a gem-dibromovinyl unit as a readily available starting material, occurs via an efficient Pd-catalyzed tandem Buchwald-Hartwig/Heck reaction.

  1. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites

    NARCIS (Netherlands)

    Mrsic, Natasa; Lefort, Laurent; Boogers, Jeroen A. F.; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.; Mršić, Nataša

    The monodentate BINOL-derived phosphoramidite PipPhos is used as ligand for the iridium-catalyzed asymmetric hydrogenation of 2- and 2,6-substituted quinolines. If tri-ortho-tolylphosphine and/or chloride salts are used as additives enantioselectivities are strongly enhanced up to 89%. NMR indicates

  2. Mechanism of Brønsted acid catalyzed conversion of carbohydrates

    NARCIS (Netherlands)

    Yang, G.; Pidko, E.A.; Hensen, E.J.M.

    2012-01-01

    A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and

  3. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  4. An Efficient Green Synthesis of 3-Amino-1 H -chromenes Catalyzed ...

    African Journals Online (AJOL)

    An Efficient Green Synthesis of 3-Amino-1 H -chromenes Catalyzed by ZnO Nanoparticles Thin-film. ... South African Journal of Chemistry ... The mild reaction conditions, reusability of the catalyst, easy work-up and high yields of products make the present protocol sustainable and advantageous compared to conventional ...

  5. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan; Fang, Xin; Lin, Xiaoxi; Li, Huaifeng; He, Weiming; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  6. Rh(III-catalyzed directed C–H bond amidation of ferrocenes with isocyanates

    Directory of Open Access Journals (Sweden)

    Satoshi Takebayashi

    2012-10-01

    Full Text Available [RhCp*(OAc2(H2O] [Cp* = pentamethylcyclopentadienyl] catalyzed the C–H bond amidation of ferrocenes possessing directing groups with isocyanates in the presence of 2 equiv/Rh of HBF4·OEt2. A variety of disubstituted ferrocenes were prepared in high yields, or excellent diastereoselectivities.

  7. Rhodium Catalyzed Annulation of N-Benzoylsulfonamide with Isocyanide via C-H Activation

    Science.gov (United States)

    Zhu, Chen; Xie, Weiqing; Falck, John R.

    2012-01-01

    Isocyanide insertion: the first rhodium-catalyzed annulation of N-benzoylsulfonamide incorporating with isocyanide via C-H activation is described. The transformation is broadly compatible with N-benzoylsulfonamides bearing various electron-properties as well as isocyanides. From practical point of view, this methodology provides the most straightforward approach to a series of 3-(imino)isoindolinones. PMID:21972033

  8. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  9. Novel Platinum-Catalyzed Ring-Opening of 1,2-Cyclopropanated Sugars with Alcohols

    DEFF Research Database (Denmark)

    Beyer, Jürgen; Madsen, Robert

    1998-01-01

    Reaction of 1,2-cyclopropanated sugars with a catalytic amount ofZeise's dimer [Pt(C2H4)Cl2]2 and an alcohol gives 2-C-branched glycosides by a novel platinum catalyzed ring-opening. A wide variety of alcohols can participate in this ring-opening reaction giving 2-C-branched glycosides ranging from...

  10. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates

    KAUST Repository

    Fang, Xin

    2013-07-01

    The direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates gave the desired products of fluorinated biaryls in good to excellent yields. A diverse set of important functional groups including methoxy, aldehyde, ester, nitro and halide can be well tolerated in the protocol. © 2013 Elsevier B.V. All rights reserved.

  11. Copper-catalyzed trifluoromethylation of arylsulfinate salts using an electrophilic trifluoromethylation reagent

    KAUST Repository

    Lin, Xiaoxi

    2013-03-01

    A copper-catalyzed method for the trifluoromethylation of arylsulfinates with Togni\\'s reagent has been developed, affording aryltrifluoromethylsulfones in moderate to good yields. A wide range of functional groups in arylsulfinates are compatible with the reaction conditions. © 2013 Elsevier Ltd. All rights reserved.

  12. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan

    2012-12-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates

    KAUST Repository

    Zheng, Huidong; Huang, Yuanyuan; Wang, Zhiwei; Li, Huaifeng; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    A new method for the synthesis of trifluoromethylated acetylenes is developed which involves the copper-catalyzed trifluoromethylation of alkynyltrifluoroborates with an electrophilic trifluoromethylating reagent. This method offers significant advantages such as efficiency and mild and base-free reaction conditions. A plausible mechanism is proposed. © 2012 Elsevier Ltd. All rights reserved.

  14. Human myeloperoxidase (MPO) and horseradish peroxidase (HRP) catalyzed oxidation of phenol

    International Nuclear Information System (INIS)

    Ross, D.; Eastmond, D.A.; Ruzo, L.O.; Smith, M.T.

    1986-01-01

    MPO-catalyzed conversion of phenolic metabolites of benzene may be involved in benzene-induced myelotoxicity. The authors have studied the metabolism and protein binding of phenol - the major metabolite of benzene - during peroxidatic oxidation. The major metabolite observed during MPO- and HRP- catalyzed oxidation was characterized as 4,4 biphenol using HPLC and combined GC-MS. When glutathione (GSH) was added to the incubation mixtures, two additional compounds were observed during HPLC analysis which were characterized as GSH-conjugates of 4,4-diphenoquinone by fast atom bombardment MS and by NMR. ESR spectroscopy showed that both MPO-and HRP-catalyzed oxidation of phenol proceeded via the generation of free radical intermediates. Using 14 C-phenol, both MPO- and HRP-catalyzed oxidations resulted in the production of species which bound covalently to boiled liver microsomal protein. The increase in binding correlated well with removal of substrate. Thus, peroxidatic oxidation of phenolic metabolites of benzene in the bone marrow may be involved in benzene-induced myelotoxicity

  15. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    OpenAIRE

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  16. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    DEFF Research Database (Denmark)

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06...

  17. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    Science.gov (United States)

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  18. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    Science.gov (United States)

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  19. Monitoring lipase-catalyzed butterfat interesterification with rapesee oil by Fourier transform near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Hong; Mu, Huiling; Xu, Xuebing

    2006-01-01

    This work demonstrates the application of FT-NIR spectroscopy to monitor the enzymatic interesterification process for butterfat modification. The reactions were catalyzed by Lipozyme TL IM at 70 C for the blend of butterfat/rapeseed oil (70/30, w/w) in a packed-bed reactor. The blend and intere...

  20. Manganese-Catalyzed C−H Functionalizations: Hydroarylations and Alkenylations Involving an Unexpected Heteroaryl Shift

    KAUST Repository

    Wang, Chengming; Wang, Ai; Rueping, Magnus

    2017-01-01

    A manganese-catalyzed regio- and stereoselective hydroarylation of allenes is reported. The C−H functionalization method provides access to various alkenylated indoles in excellent yields. Moreover, a hydroarylation/cyclization cascade involving an unexpected C−N bond cleavage and aryl shift has been developed, which provides a new synthetic approach to substituted pyrroloindolones.