WorldWideScience

Sample records for catalyzed hydrogen generation

  1. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  2. Laboratory Studies of Hydrogen Gas Generation Using the Cobalt Chloride Catalyzed Sodium Borohydride-Water Reaction

    Science.gov (United States)

    2015-07-01

    used. We believe that the chloramine in tap water and dissolved organics in seawater form complexes with the catalyst impeding its ability to...resulted in a very viscous sludge due to the precipitation of NaBO2 hydrate crystals, foaming, and reaction temperatures approaching 90 °C. We used...laced a hose connected to the outlet of the reaction vessel inside the cylinder from the bottom . As hydrogen gas is generated, it bubbles inside the

  3. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.

    Science.gov (United States)

    Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias; Grabow, Kathleen; Boddien, Albert; Kammer, Anja; Sponholz, Peter; Bentrup, Ursula; Jackstell, Ralf; Junge, Henrik; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias

    2014-10-13

    The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei

    2018-01-04

    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  5. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    Science.gov (United States)

    Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  6. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    Science.gov (United States)

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  7. Ir-Catalyzed Asymmetric and Regioselective Hydrogenation of Cyclic Allylsilanes and Generation of Quaternary Stereocenters via the Hosomi-Sakurai Allylation.

    Science.gov (United States)

    Rabten, Wangchuk; Margarita, Cristiana; Eriksson, Lars; Andersson, Pher G

    2018-02-01

    A number of cyclic dienes containing the allylsilane moiety were prepared by a Birch reduction and subjected to iridium-catalyzed regioselective and asymmetric hydrogenation, which provided chiral allylsilanes in high conversion and enantiomeric excess (up to 99 % ee). The compounds were successively used in the Hosomi-Sakurai allylation with various aldehydes employing TiCl 4 as Lewis acid, providing adducts with two additional stereogenic centers in excellent diastereoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  9. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  10. Chitosan catalyzes hydrogen evolution at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Římánková, Ludmila

    2014-01-01

    Roč. 44, JUL2014 (2014), s. 59-62 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Chitosan * Glucosamine-containing polymers * Catalytic hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  11. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  12. Diastereoselective Hydrogenation and Kinetic Resolution of Imines Using Rhodium/Diphosphine Catalyzed Hydrogenation.

    NARCIS (Netherlands)

    Lensink, Cornelis; Vries, Johannes G. de

    1993-01-01

    Kinetic resolution of racemic α-methylbenzyl amine can be achieved with 98% ee. of the remaining amine at 70% conversion using the Rhodium/2S,4S-BDPP catalyzed asymmetric hydrogenation of imines. The same catalyst will hydrogenate optically pure α-methylbenzyl amines with a diastereoselectivity of

  13. Homogenous Pd-catalyzed asymmetric hydrogenation of unprotected indoles: scope and mechanistic studies.

    Science.gov (United States)

    Duan, Ying; Li, Lu; Chen, Mu-Wang; Yu, Chang-Bin; Fan, Hong-Jun; Zhou, Yong-Gui

    2014-05-28

    An efficient palladium-catalyzed asymmetric hydrogenation of a variety of unprotected indoles has been developed that gives up to 98% ee using a strong Brønsted acid as the activator. This methodology was applied in the facile synthesis of biologically active products containing a chiral indoline skeleton. The mechanism of Pd-catalyzed asymmetric hydrogenation was investigated as well. Isotope-labeling reactions and ESI-HRMS proved that an iminium salt formed by protonation of the C═C bond of indoles was the significant intermediate in this reaction. The important proposed active catalytic Pd-H species was observed with (1)H NMR spectroscopy. It was found that proton exchange between the Pd-H active species and solvent trifluoroethanol (TFE) did not occur, although this proton exchange had been previously observed between metal hydrides and alcoholic solvents. Density functional theory calculations were also carried out to give further insight into the mechanism of Pd-catalyzed asymmetric hydrogenation of indoles. This combination of experimental and theoretical studies suggests that Pd-catalyzed hydrogenation goes through a stepwise outer-sphere and ionic hydrogenation mechanism. The activation of hydrogen gas is a heterolytic process assisted by trifluoroacetate of Pd complex via a six-membered-ring transition state. The reaction proceeds well in polar solvent TFE owing to its ability to stabilize the ionic intermediates in the Pd-H generation step. The strong Brønsted acid activator can remarkably decrease the energy barrier for both Pd-H generation and hydrogenation. The high enantioselectivity arises from a hydrogen-bonding interaction between N-H of the iminium salt and oxygen of the coordinated trifluoroacetate in the eight-membered-ring transition state for hydride transfer, while the active chiral Pd complex is a typical bifunctional catalyst, effecting both the hydrogenation and hydrogen-bonding interaction between the iminium salt and the coordinated

  14. Hydrogen Generation From Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of today’s technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available

  15. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  16. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  17. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene.

    Science.gov (United States)

    Chan, Bun; Radom, Leo

    2008-07-30

    Ab initio molecular orbital theory and density functional theory calculations have been used to study the three-stage zeolite-catalyzed hydrogenation of CO2 to methanol and the hydrogenation of C2H 4 to ethane, with the aim of designing an effective zeolite catalyst for these reactions. Both Brønsted acid (XH) and alkali metal (XM) sites in model zeolites (-X-Al-XH- or -X-Al-XM-) have been examined. It is found that appropriately designed zeolites can provide excellent catalysis for these reactions, particularly for the hydrogenation of CO2, HCO2H and CH2O, with uncatalyzed barriers of more than 300 kJ mol(-1) being reduced to as little as 17 kJ mol(-1) (in the case of CH2O). The reaction barrier depends on the acidity of the XH moiety or the nature of the metal cation M in the XM moiety, and the basicity of the adjacent X group in the catalyst. For a catalyst based on alkali metal zeolites (XM), the catalytic activity is relatively insensitive to the nature of X in the XM group. As a result, the catalytic activity for these types of zeolites increases as X becomes more basic. We propose that alkali metal zeolites with Ge and N incorporated into the framework could be very effective catalysts for hydrogenation processes.

  18. The application of monodentate secondary phosphine oxide ligands in rhodium- and iridium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Jiang, Xiao-bin; van den Berg, Michel; Minnaard, Adriaan J.; Vries, Johannes G. de; Feringa, Bernard

    2004-01-01

    Enantiopure secondary phosphine oxides have been tested as ligands in the rhodium- and iridium-catalyzed asymmetric hydrogenation of functionalized olefins. tert-Butylphosphinoyl benzene turned out to be a versatile ligand in the iridium-catalyzed hydrogenation of β-branched dehydroamino esters and

  19. Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation: Sustainable Chemistry to Access Bioactive Molecules.

    Science.gov (United States)

    Ayad, Tahar; Phansavath, Phannarath; Ratovelomanana-Vidal, Virginie

    2016-12-01

    Over the last few decades, the development of new and highly efficient synthetic methods to obtain chiral compounds has become an increasingly important and challenging research area in modern synthetic organic chemistry. In this account, we review recent work from our laboratory toward the synthesis of valuable chiral building blocks through transition-metal-catalyzed asymmetric hydrogenation and transfer hydrogenation of C=O, C=N and C=C bonds. Application to the synthesis of biologically relevant products is also described. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  1. Acid-catalyzed hydrogenation of olefins. A theoretical study of the HF- and H/sub 3/O/sup +/-catalyzed hydrogenation of ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Siria, J.C.; Duran, M.; Lledos, A.; Bertran, J.

    1987-12-09

    The HF- and H/sub 3/O/sup +/-catalyzed hydrogenation of ethylene and the direct addition of molecular hydrogen to ethylene have been studied theoretically by means of ab initio MO calculations using different levels of theory. The main results are that catalysis by HF lowers the potential energy barrier to a large extent, while catalysis by H/sub 3/O/sup +/ diminishes dramatically the barrier for the reaction. Entropic contributions leave these results unchanged. The mechanisms of the two acid-catalyzed hydrogenations are somewhat different. While catalysis by HF exhibits bifunctional characteristics, catalysis by H/sub 3/O/sup +/ proceeds via an initial formation of a carbocation. It is shown that catalysis by strong acids may be an alternate way for olefin hydrogenation.

  2. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  3. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.

    Science.gov (United States)

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu

    2014-08-04

    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High purity hydrogen generator for on-site hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jaesung Han; Il-Su Kim; Keun-Seob Choi [Taedok Institute of Technology, Taejon (Korea)

    2002-10-01

    We report a compact on-site hydrogen generator, which produces 10 Nm{sup 3}/h of 99.9995% or higher purity hydrogen from methanol water mixture. This system consists of a methanol steam reformer to get hydrogen rich reformed gas and a metal membrane purification module to recover high purity hydrogen from the reformed gas. It can be used either as the on-site hydrogen supplier for industries or as the fuel processor for fuel cells. The hydrogen recovery by the metal membrane is about 75%, and the remaining 25% of hydrogen is recycled and burned in the catalytic combustion zone to supply heat for the endothermic steam reforming reaction. The overall thermal efficiency of the system is calculated to be 82% based on high heating values of methanol feed and product hydrogen. (author)

  5. Nanostructured Ti-catalyzed MgH2 for hydrogen storage.

    Science.gov (United States)

    Shao, H; Felderhoff, M; Schüth, F; Weidenthaler, C

    2011-06-10

    Nanocrystalline Ti-catalyzed MgH(2) can be prepared by a homogeneously catalyzed synthesis method. Comprehensive characterization of this sample and measurements of hydrogen storage properties are discussed and compared to a commercial MgH(2) sample. The catalyzed MgH(2) nanocrystalline sample consists of two MgH(2) phases-a tetrahedral β-MgH(2) phase and an orthorhombic high-pressure modification γ-MgH(2). Transmission electron microscopy was used for the observation of the morphology of the samples and to confirm the nanostructure. N(2) adsorption measurement shows a BET surface area of 108 m(2) g(-1) of the nanostructured material. This sample exhibits a hydrogen desorption temperature more than 130 °C lower compared to commercial MgH(2). After desorption, the catalyzed nanocrystalline sample absorbs hydrogen 40 times faster than commercial MgH(2) at 300 °C. Both the Ti catalyst and the nanocrystalline structure with correspondingly high surface area are thought to play important roles in the improvement of hydrogen storage properties. The desorption enthalpy and entropy values of the catalyzed MgH(2) nanocrystalline sample are 77.7 kJ mol(-1) H(2) and 138.3 J K(-1) mol(-1) H(2), respectively. Thermodynamic properties do not change with the nanostructure.

  6. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Science.gov (United States)

    Durndell, Lee J.; Parlett, Christopher M. A.; Hondow, Nicole S.; Isaacs, Mark A.; Wilson, Karen; Lee, Adam F.

    2015-01-01

    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C = O over C = C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C = O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes. PMID:25800551

  7. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    Science.gov (United States)

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Step into an eco-Compatible Future: Iron- and Cobalt-catalyzed Borrowing Hydrogen Transformation.

    Science.gov (United States)

    Quintard, Adrien; Rodriguez, Jean

    2016-01-08

    Living on borrowed hydrogen: Recent developments in iron- and cobalt-catalyzed borrowing hydrogen have shown that economically reliable catalysts can be used in this type of waste-free reactions. By using well-defined inexpensive catalysts, known reactions can now be run efficiently without the necessary use of noble metals; however, in addition new types of reactivity can also be discovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed H-Transfer Hydrogenation of Quinoline.

    Science.gov (United States)

    Pastor, Julien; Rezabal, Elixabete; Voituriez, Arnaud; Betzer, Jean-François; Marinetti, Angela; Frison, Gilles

    2018-03-02

    The enantioselective H-transfer hydrogenation of quinoline by Hantzsch ester is a relevant example of Brønsted acid catalyzed cascade reactions, with phosphoric acid being a privileged catalyst. The generally accepted mechanism points out the hydride transfer step as the rate- and stereodetermining step, however computations based on these models do not totally fit with experimental observations. We hereby present a computational study that enlightens the stereochemical outcome and quantitatively reproduces the experimental enantiomeric excesses in a series of H-transfer hydrogenations. Our calculations suggest that the high stereocontrol usually attained with BINOL-derived phosphoric acids results mostly from the steric constraints generated by an aryl substituent of the catalyst, which hinders the access of the Hantzsch ester to the catalytic site and enforces approach through a specific way. It relies on a new model involving the preferential assembly of one of the stereomeric complexes formed by the chiral phosphoric acid and the two reaction partners. The stereodetermining step thus occurs prior to the H-transfer step.

  10. Enantioselective Synthesis of α-Acetal-β'-Amino Ketone Derivatives by Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Llopis, Quentin; Guillamot, Gérard; Phansavath, Phannarath; Ratovelomanana-Vidal, Virginie

    2017-12-01

    A range of β-keto-γ-acetal enamides has been synthesized and transformed into the corresponding enantioenriched α-acetal-β'-amino ketones with enantioinductions of up to 99% by using rhodium/QuinoxP*-catalyzed enantioselective hydrogenation under mild conditions. This method also proved to be highly chemoselective toward the reduction of the C-C double bond.

  11. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites

    NARCIS (Netherlands)

    Mrsic, Natasa; Lefort, Laurent; Boogers, Jeroen A. F.; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.; Mršić, Nataša

    The monodentate BINOL-derived phosphoramidite PipPhos is used as ligand for the iridium-catalyzed asymmetric hydrogenation of 2- and 2,6-substituted quinolines. If tri-ortho-tolylphosphine and/or chloride salts are used as additives enantioselectivities are strongly enhanced up to 89%. NMR indicates

  12. Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.

    Science.gov (United States)

    Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J

    2010-12-01

    The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.

  13. Transition-metal-catalyzed hydrogen-transfer annulations: access to heterocyclic scaffolds.

    Science.gov (United States)

    Nandakumar, Avanashiappan; Midya, Siba Prasad; Landge, Vinod Gokulkrishna; Balaraman, Ekambaram

    2015-09-14

    The ability of hydrogen-transfer transition-metal catalysts, which enable increasingly rapid access to important structural scaffolds from simple starting materials, has led to a plethora of research efforts on the construction of heterocyclic scaffolds. Transition-metal-catalyzed hydrogen-transfer annulations are environmentally benign and highly atom-economical as they release of water and hydrogen as by-product and utilize renewable feedstock alcohols as starting materials. Recent advances in this field with respect to the annulations of alcohols with various nucleophilic partners, thus leading to the formation of heterocyclic scaffolds, are highlighted herein. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  15. Transfer hydrogenation reactions catalyzed by chiral half-sandwich ...

    Indian Academy of Sciences (India)

    Chiral ruthenium half-sandwich complexes were prepared using a chelating diamine made from proline with a phenyl, ethyl, or benzyl group, instead of hydrogen on one of the coordinating arms. Three of these complexes were obtained as single diastereoisomers and their configuration identified by X-ray crystallography.

  16. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Guan, Yanfei; Wheeler, Steven E

    2017-07-24

    A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C 2 -symmetric phosphorus ligand is designed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polylysine-catalyzed hydrogen evolution at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Živanovic, Marko; Aleksić, M.; Ostatná, Veronika; Doneux, Thomas; Paleček, Emil

    2010-01-01

    Roč. 22, 17-18 (2010), s. 2064-2070 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) KJB100040901; GA MŠk(CZ) ME09038; GA MŠk(CZ) LC06035 Grant - others:GA AV ČR(CZ) KAN400310651 Program:KA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : catalytic hydrogen evolution * constant current chronopotentiometric stripping * polylysine Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  18. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  19. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  20. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl (α-Cyclopropyl)allylation via Transfer Hydrogenation.

    Science.gov (United States)

    Tsutsumi, Ryosuke; Hong, Suckchang; Krische, Michael J

    2015-09-07

    The first examples of diastereo- and enantioselective carbonyl α-(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)-Ir-I modified by SEGPHOS, carbonyl α-(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane-containing architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrogen generation from steam reaction with tungsten

    Science.gov (United States)

    Smolik, G. R.; McCarthy, K. A.; Petti, D. A.; Coates, K.

    1998-10-01

    A LOCA in a fusion reactor involving an ingress of steam presents a safety concern due to hydrogen generated from steam reactions with plasma facing components. Hydrogen concentrations must be maintained below explosive levels. To support safety evaluations we have experimentally determined hydrogen generation rates when a tungsten alloy is exposed to steam from 400°C to 1200°C. We studied effects of steam pressure between 2.8 × 10 4 and 8.5 × 10 4 Pa, i.e., (0.28-0.84 atm) and gas velocity between 0.011 and 0.063 m/s. We present relationships for the reaction rates, oxidation phases, and mechanisms associated with the hydrogen generation.

  2. Understanding the mechanisms of cobalt-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Zhang, Guoqi; Vasudevan, Kalyan V; Scott, Brian L; Hanson, Susan K

    2013-06-12

    Cobalt(II) alkyl complexes of aliphatic PNP pincer ligands have been synthesized and characterized. The cationic cobalt(II) alkyl complex [(PNHP(Cy))Co(CH2SiMe3)]BAr(F)4 (4) (PNHP(Cy) = bis[(2-dicyclohexylphosphino)ethyl]amine) is an active precatalyst for the hydrogenation of olefins and ketones and the acceptorless dehydrogenation of alcohols. To elucidate the possible involvement of the N-H group on the pincer ligand in the catalysis via a metal-ligand cooperative interaction, the reactivities of 4 and [(PNMeP(Cy))Co(CH2SiMe3)]BAr(F)4 (7) were compared. Complex 7 was found to be an active precatalyst for the hydrogenation of olefins. In contrast, no catalytic activity was observed using 7 as a precatalyst for the hydrogenation of acetophenone under mild conditions. For the acceptorless dehydrogenation of 1-phenylethanol, complex 7 displayed similar activity to complex 4, affording acetophenone in high yield. When the acceptorless dehydrogenation of 1-phenylethanol with precatalyst 4 was monitored by NMR spectroscopy, the formation of the cobalt(III) acetylphenyl hydride complex [(PNHP(Cy))Co(III)(κ(2)-O,C-C6H4C(O)CH3)(H)]BAr(F)4 (13) was detected. Isolated complex 13 was found to be an effective catalyst for the acceptorless dehydrogenation of alcohols, implicating 13 as a catalyst resting state during the alcohol dehydrogenation reaction. Complex 13 catalyzed the hydrogenation of styrene but showed no catalytic activity for the room temperature hydrogenation of acetophenone. These results support the involvement of metal-ligand cooperativity in the room temperature hydrogenation of ketones but not the hydrogenation of olefins or the acceptorless dehydrogenation of alcohols. Mechanisms consistent with these observations are presented for the cobalt-catalyzed hydrogenation of olefins and ketones and the acceptorless dehydrogenation of alcohols.

  3. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  4. A new type of hydrogen generator-HHEG (high-compressed hydrogen energy generator)

    International Nuclear Information System (INIS)

    Harada, H.; Tojima, K.; Takeda, M.; Nakazawa, T.

    2004-01-01

    'Full text:' We have developed a new type of hydrogen generator named HHEG (High-compressed Hydrogen Energy Generator). HHEG can produce 35 MPa high-compressed hydrogen for fuel cell vehicle without any mechanical compressor. HHEG is a kind of PEM(proton exchange membrane)electrolysis. It was well known that compressed hydrogen could be generated by water electrolysis. However, the conventional electrolysis could not generate 35 MPa or higher pressure that is required for fuel cell vehicle, because electrolysis cell stack is destroyed in such high pressure. In HHEG, the cell stack is put in high-pressure vessel and the pressure difference of oxygen and hydrogen that is generated by the cell stack is always kept at nearly zero by an automatic compensator invented by Mitsubishi Corporation. The cell stack of HHEG is not so special one, but it is not broken under such high pressure, because the automatic compensator always offsets the force acting on the cell stack. Hydrogen for fuel cell vehicle must be produce by no emission energy such as solar and atomic power. These energies are available as electricity. So, water electrolysis is the only way of producing hydrogen fuel. Hydrogen fuel is also 35 MPa high-compressed hydrogen and will become 70 MPa in near future. But conventional mechanical compressor is not useful for such high pressure hydrogen fuel, because of the short lifetime and high power consumption. Construction of hydrogen station network is indispensable in order to come into wide use of fuel cell vehicles. For such network contraction, an on-site type hydrogen generator is required. HHEG can satisfy above these requirements. So we can conclude that HHEG is the only way of realizing the hydrogen economy. (author)

  5. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    OpenAIRE

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any com...

  6. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.

    2009-07-10

    hydrogen generation in the SME cycle when the hydrogen levels are high enough to be noteworthy. Mercury has a role in catalytic hydrogen generation. Two potentially distinct roles have been identified. The most dramatic effect of Hg on hydrogen generation occurs between runs with and without any Hg. When a small amount of Hg is present, it has a major inhibiting effect on Rh-catalyzed H{sub 2} generation. The Rh-Ru-Hg matrix study showed that increasing mercury from 0.5 to 2.5 wt% in the SRAT receipt total solids did not improve the inhibiting effect significantly. The next most readily identified role for Hg is the impact it has on accelerating NO production from nitrite ion. This reaction shifts the time that the ideal concentration of nitrite relative to Rh occurs, and consequently causes the most active nitro-Rh species to form sooner. The potential consequences of this shift in timing are expected to be a function of other factors such as amount of excess acid, Rh concentration, etc. Graphical data from the Rh-Ru-Hg study suggested that Hg might also be responsible for partially inhibiting Ru-catalysis initially, but that the inhibition was not sustained through the SRAT and SME cycles. Continued processing led to a subsequent increase in hydrogen generation that was often abrupt and that frequently more than doubled the hydrogen generation rate. This phenomenon may have been a function of the extent of Hg stripping versus the initial Ru concentration in these tests. Palladium is an active catalyst, and activates during (or prior to) nitrite destruction to promote N{sub 2}O formation followed by a very small amount of hydrogen. Pd then appears to deactivate. Data to date indicate that Pd should not be a species of primary concern relative to Rh and Ru for hydrogen generation. Pd was a very mild catalyst for hydrogen generation compared to Rh and Ru in the simulated waste system. Pd was comparable to Rh in enhancing N{sub 2}O production when present at equal

  7. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  8. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    Science.gov (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  10. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology.

    Science.gov (United States)

    Liu, Huihui; Chuah, Gaik Khuan; Jaenicke, Stephan

    2015-06-14

    Supported silver catalysts were reported for the first time to be able to catalyze the coupling reaction between nitroarenes and alcohols via the borrowing hydrogen scheme. The recyclable, non-leaching catalyst is synthesized by the entrapment method, which allows entrapping of silver nanoparticles in an alumina matrix. Alcohols, acting as the reducing agents for nitro-groups, alkylated the resultant amines smoothly over these silver catalysts giving a yield of >98% towards the N-substituted amines. In this process, multiple steps were realized in one-pot over a single catalyst with very high efficiency. It offers another clean and economic way to achieve amination of alcohols.

  11. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  12. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  13. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions.

    Science.gov (United States)

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2012-08-21

    Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral

  14. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  15. PipPhos and MorfPhos : Privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Bernsmann, Heiko; van den Berg, M; Hoen, Robert; Minnaard, AJ; Mehler, G; Reetz, MT; De Vries, JG; Feringa, BL

    2005-01-01

    A library of 20 monodentate phosphoramidite ligands has been prepared and applied in rhodium-catalyzed asymmetric hydrogenation. This resulted in the identification of two ligands, PipPhos and MorfPhos, that afford excellent and in several cases unprecedented enantioselectivities in the

  16. Ruthenium-catalyzed hydrogen isotope exchange of C(sp3)-H bonds directed by a sulfur atom.

    Science.gov (United States)

    Gao, Longhui; Perato, Serge; Garcia-Argote, Sébastien; Taglang, Céline; Martínez-Prieto, Luis Miguel; Chollet, Céline; Buisson, David-Alexandre; Dauvois, Vincent; Lesot, Philippe; Chaudret, Bruno; Rousseau, Bernard; Feuillastre, Sophie; Pieters, Grégory

    2018-03-25

    We present here the first example of C(sp 3 )-H activation directed by a sulfur atom. Based on this transformation catalyzed by Ru/C, we have developed a hydrogen isotope exchange reaction for the deuterium and tritium labelling of thioether substructures in complex molecules.

  17. Iridium-catalyzed hydrogen production from monosaccharides, disaccharide, cellulose, and lignocellulose.

    Science.gov (United States)

    Li, Yang; Sponholz, Peter; Nielsen, Martin; Junge, Henrik; Beller, Matthias

    2015-03-01

    Hydrogen constitutes an important feedstock for clean-energy technologies as well as for production of bulk and fine chemicals. Hence, the development of novel processes to convert easily available biomass into H2 is of general interest. Herein, we demonstrate a one-pot protocol hydrogen generation from monosaccharides, disaccharide, and extremely demanding cellulose and lignocellulose substrates by using a pincer-type iridium catalyst. Applying ppm amounts of this catalyst, hydrogen is produced at temperatures lower than 120 °C. More specifically, catalyst turnover numbers (TONs) for lignocellulose from bamboo reached up to about 3000. Interestingly, even (used) cigarette filters, which are composed of cellulose acetate, produce hydrogen under optimized conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems.

    Science.gov (United States)

    Zhang, Wei; Lai, Wenzhen; Cao, Rui

    2017-02-22

    Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.

  19. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles

  20. Monte Carlo Fitting Of Data From Muon Catalyzed Fusion Experiments In Solid Hydrogen

    Directory of Open Access Journals (Sweden)

    M. Filipowicz

    2008-01-01

    Full Text Available Applying the classical chi-square fitting procedure for multiparameter systems is in somecases extremely difficult due to the lack of an analytical expression for the theoretical functionsdescribing the system. This paper presents an analysis procedure for experimental datausing theoretical functions generated by Monte Carlo method, each corresponding to definitevalues of the minimization parameters. It was applied for the E742 experiment (TRIUMF,Vancouver, Canada data analysis with the aim to analyze data from Muon Catalyzed Fusionexperiments (extraction muonic atom scattering parameters and parameters of pd fusion inpdμ molecule.

  1. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions.

    Science.gov (United States)

    Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa; Milstein, David

    2013-06-17

    Hydrogen liberation: An attractive approach to reversible hydrogen storage applications is based on the decomposition of formic acid. The efficient and selective hydrogen liberation from formic acid is catalyzed by an iron pincer complex in the presence of trialkylamine. Turnover frequencies up to 836 h⁻¹ and turnover numbers up to 100,000 were achieved at 40 °C. A mechanism including well-defined intermediates is suggested on the basis of experimental and computational data. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The use of phosphite-type ligands in the Ir-catalyzed asymmetric hydrogenation of heterocyclic compounds.

    Science.gov (United States)

    Lyubimov, Sergey E; Ozolin, Dmitry V; Ivanov, Pavel Yu; Melman, Artem; Velezheva, Valeriya S; Davankov, Vadim A

    2014-01-01

    A series of chiral phosphite-type ligands was tested in asymmetric Ir-catalyzed hydrogenation of quinolines and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% ee compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir-Ircatalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole yielding the antidepressant drug, pirlindole. © 2013 Wiley Periodicals, Inc.

  3. A Selective and Functional Group-Tolerant Ruthenium-Catalyzed Olefin Metathesis/Transfer Hydrogenation Tandem Sequence Using Formic Acid as Hydrogen Source.

    Science.gov (United States)

    Zieliński, Grzegorz K; Majtczak, Jarosława; Gutowski, Maciej; Grela, Karol

    2018-03-02

    A ruthenium-catalyzed transfer hydrogenation of olefins utilizing formic acid as a hydrogen donor is described. The application of commercially available alkylidene ruthenium complexes opens access to attractive C(sp3)-C(sp3) bond formation in an olefin metathesis/transfer hydrogenation sequence under tandem catalysis conditions. High chemoselectivity of the developed methodology provides a remarkable synthetic tool for the reduction of various functionalized alkenes under mild reaction conditions. The developed methodology is applied for the formal synthesis of the drugs pentoxyverine and bencyclane.

  4. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.

    Science.gov (United States)

    Zhang, Pan; Ni, Shao-Fei; Dang, Li

    2016-09-20

    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  6. Suppression of superoxide anion generation catalyzed by xanthine oxidase with alkyl caffeates and the scavenging activity.

    Science.gov (United States)

    Masuoka, Noriyoshi; Kubo, Isao

    2016-01-01

    Alkyl caffeates are strong antioxidants and inhibitors of xanthine oxidase. However, it is unclear about the effect of caffeic acid and alkyl caffeates on superoxide anion (O2(-)) generation catalyzed by xanthine oxidase. Effects of caffeic acid and alkyl caffeates on the uric acid formation and O2(-) generation catalyzed by xanthine oxidase were analyzed. The scavenging activities of 1,1-diphenyl-2-picryhydrazyl (DPPH) radical and O2(-) generated with phenazine methosulfate (PMS) and NADH were examined. Caffeic acid derivatives equally suppressed O2(-) generation, and the suppression is stronger than inhibition of xanthine oxidase. Scavenging activity of O2(-) is low compared to the suppression of O2(-) generation. Suppression of O2(-) generation catalyzed by xanthine oxidase with caffeic acid derivatives was not due to enzyme inhibition or O2(-) scavenging but due to the reduction of xanthine oxidase molecules. Alkyl caffeates are effective inhibitors of uric acid and O2(-) catalyzed by xanthine oxidase as well as antioxidants for edible oil.

  7. Dynamic kinetic resolution of allylic sulfoxides by Rh-catalyzed hydrogenation: a combined theoretical and experimental mechanistic study.

    Science.gov (United States)

    Dornan, Peter K; Kou, Kevin G M; Houk, K N; Dong, Vy M

    2014-01-08

    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In nonpolar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O-coordination throughout the catalytic cycle for hydrogenation.

  8. Photocatalysis in Generation of Hydrogen from Water

    KAUST Repository

    Takanabe, Kazuhiro

    2015-04-18

    Solar energy can be converted by utilizing the thermal or photoelectric effects of photons. Concentrated solar power systems utilize thermal energy from the sun by either making steam and then generating power or shifting the chemical equilibrium of a reaction (e.g., water splitting or CO2 reduction) that occurs at extremely high temperatures. The photocatalytic system contains powder photocatalysts. Each photocatalyst particle should collect sufficient photons from the solar flux to cause the required multielectron reactions to occur. The band gap and band edge positions of semiconductors are the most critical parameters for assessing the suitability of photocatalysts for overall water splitting. The most important requirement when selecting photocatalyst materials is the band positions relative to hydrogen and oxygen evolution potentials. For most photocatalysts, surface modification by cocatalysts was found to be essential to achieve overall water splitting.

  9. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  10. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  11. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  12. On-board hydrogen generation for PEM fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vanderborgh, N. E.; Tafoya, J.; Inbody, M. [Los Alamos National Laboratory, Fuel Cell Engineering, Los Alamos, NM (United States)

    1999-10-01

    Hydrogen powered fuel cell vehicles are considered by many as the transportation technology for the 21. century, primarily because of hydrogen`s high efficiency and zero, or near-zero emission of pollutants to the atmosphere. First generation hydrogen technology demonstrated the feasibility of using compressed hydrogen as automotive fuel, but these vehicles can also be operated with fuel utilized for on-board hydrogen generation. Available evidence suggest that perfecting this new technology would result in simplified refueling and extended vehicle range. This paper reviews the present state of the technology of generating hydrogen on-board, and concludes that at present, there is no clear `winner` between vehicles using stored hydrogen as fuel or vehicles which incorporate on-board hydrogen generation from stored fuel. Both approaches have specific merit, and both may be broadly employed. Indeed, valid economic arguments can be made that centralized hydrogen generation could be more attractive than on-board generation, however, in the view of this author, these arguments are not convincing. His view of the various suggestions about potential fuel sources for transportation in the 21. century (petroleum, liquid natural gas) is that each of these fuels involve having to deal with carbon, which means that new pathways must be invented for managing carbon dioxide. The challenge then is to develop technologies which will result in methane energy production without concurrent carbon dioxide emissions. 13 refs., 2 figs.

  13. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  14. Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Miele, P. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-09-15

    Acid-catalyzed hydrolysis of sodium borohydride (NaBH{sub 4}) has been studied (reactivity and kinetics) at high acid concentration (0.32 M). A mineral (hydrochloric acid, HCl) and an organic benign (acetic acid, CH{sub 3}COOH) acid have been chosen. Our study has three distinct objectives, namely: (i) combining the simplicity of the storage of solid NaBH{sub 4} with the simplicity of the aqueous solution of acid; (ii) showing CH{sub 3}COOH can be as reactive as HCl in specific well-chosen operating conditions; and (iii) emphasizing the relative greenness of the CH{sub 3}COOH-based process. All of these objectives have been fulfilled and show that CH{sub 3}COOH is a benign relatively green acid catalyst of choice for catalyzing hydrogen generation from NaBH{sub 4}, the acid-water-NaBH{sub 4} system being quite simple. (author)

  15. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  16. Review of Catalytic Hydrogen Generation in the DWPF Chemical Processing Cell, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David C.; Lambert, Daniel P.; Baich, Mark A.

    2005-08-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Defense Waste Processing Facility, DWPF, Chemical Process Cell, CPC. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Catalytic hydrogen generation data from 2002-2005 were reviewed. The data came from process simulations of the DWPF Sludge Receipt and Adjustment Tank, SRAT, and Slurry Mix Evaporator, SME. Most of the data was from the development work for the Sludge Batch 3 process flowsheet. This included simulant and radioactive waste testing. Preliminary Sludge Batch 4 data were also reviewed. A statistical analysis of SB3 simulant hydrogen generation data was performed. One factor considered in the statistical analysis was excess acid. Excess acid was determined experimentally as the acid added beyond that required to achieve satisfactory nitrite destruction.

  17. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  18. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  19. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)

    2017-02-17

    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  20. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  1. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  2. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  3. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  4. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    Science.gov (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  5. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  6. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    Science.gov (United States)

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  8. Efficient Electrochemical Hydrogen Peroxide Generation in Water, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical cell is proposed for the efficient generation of 3% hydrogen peroxide (H2O2) in pure water using only power, oxygen and water. H2O2 is an...

  9. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.

    Science.gov (United States)

    Hohn, Keith L; Lin, Yu-Chuan

    2009-01-01

    Hydrogen-powered fuel cell vehicles feature high energy efficiency and minor environmental impact. Liquid fuels are ideal hydrogen carriers, which can catalytically be converted into syngas or hydrogen to power vehicles. Among the potential liquid fuels, alcohols have several advantages. The hydrogen/carbon ratio is higher than that of other liquid hydrocarbons or oxygenates, especially in the case of methanol. In addition, alcohols can be derived from renewable biomass resources. Catalytic partial oxidation of methanol or ethanol offers immense potential for onboard hydrogen generation due to its rapid reaction rate and exothermic nature. These benefits stimulate a burgeoning research community in catalyst design, reaction engineering, and mechanistic investigation. The purpose of this Minireview is to provide insight into syngas and hydrogen production from methanol and ethanol partial oxidation, particularly highlighting catalytic chemistry.

  10. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Tryptophanase-Catalyzed L-Tryptophan Synthesis from D-Serine in the Presence of Diammonium Hydrogen Phosphate

    Directory of Open Access Journals (Sweden)

    Fujii Noriko

    2009-06-01

    Full Text Available Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of L-tryptophan from L-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on D-serine. We previously reported that tryptophanase changed its stereospecificity to degrade D-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH42HPO4 solution. The present study provided the same stereospecific change seen in the D-tryptophan degradation reaction also occurs in tryptophan synthesis from D-serine. Tryptophanase became active to D-serine to synthesize L-tryptophan in the presence of diammonium hydrogen phosphate. This reaction has never been reported before. D-serine seems to undergo β-replacement via an enzyme-bonded α-aminoacylate intermediate to yield L-tryptophan.

  13. Synergistic effect of polyoxometalate solution and TiO2 under UV irradiation to catalyze formic acid degradation and their application in the fuel cell and hydrogen evolution

    Directory of Open Access Journals (Sweden)

    Congmin Liu

    2017-10-01

    Full Text Available The synergistic effect of H3PMo12O40 or H3PW12O40 polyoxometalate solution (POM and TiO2 to catalyze formic acid oxidation was investigated. Under UV irradiation, hole and electron were photogenerated by TiO2. Formic acid was oxided by the photogenerated hole and photogenerated electron was transferred to reduce polyoxometalate. With this design, formic acid can be converted into electricity in the fuel cell and hydrogen can be generated in the electrolysis cell without noble metal catalyst. Unlike other noble metal catalysts applied in the fuel cells and electrolysis cell, POM and TiO2 are stable and low cost. The maximum output power density of liquid formic acid fuel cell after 12 h UV irradiation is 5.21 mW/cm2 for phosphmolybdic acid and 22.81 mW/cm2 for phosphotungstic acid respectively. The applied potential for the hydrogen evolution is as low as 0.8 V for phosphmolybdic acid and 0.6 V for phosphotungstic acid. Keywords: TiO2, UV, Polyoxometalate solution (POM, Fuel cell, Hydrogen evolution

  14. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    Science.gov (United States)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  15. Partial Hydrogenation of Sunflower Oil-derived FAMEs Catalyzed by the Efficient and Recyclable Palladium Nanoparticles in Polyethylene Glycol.

    Science.gov (United States)

    Liu, Wei; Lu, Guanghui

    2017-10-01

    One approach to improve the oxidative stability of biodiesel is the partial hydrogenation of carbon-carbon double bonds. In the current work, an efficient catalytic system using Pd(OAc) 2 dissolved in polyethylene glycol (PEG) which in situ generates palladium nanoparticles was developed in order to promote a selective partial hydrogenation reaction of sunflower oil FAMEs into mono-hydrogenated products avoiding the formation of saturated compounds or trans-isomers. High content of methyl oleate (85.0±1.4%) was obtained by hydrogenation of sunflower oil biodiesel with only 7.0±0.2% stearic acid. Through evaluating the palladium nanoparticles by TEM analysis, it is observed that 4 nm palladium nanoparticles generated in situ in PEG4000 are highly selective for the partial hydrogenation of sunflower oil biodiesel. And the Pd-PEG4000 catalyst can be resued for five times without obvious loss of activity or methyl oleate selectivity.

  16. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  17. Orientation in metal-catalyzed hydrogen exchange between alkanes, naphthalene, or biphenyl and deuterium or deuterium oxide

    International Nuclear Information System (INIS)

    Long, M.A.; Moyes, R.B.; Wells, P.B.; Garnett, J.L.

    1978-01-01

    Hydrogen isotope exchange between deuterium gas and protium in hexane, pentane, 2-methyl-butane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, and 2,4-dimethylpentane has been catalyzed by clean platinum films (70--100 0 C). A selection of these reactions has been catalyzed by films of rhodium and iridium (typically -13 to -35 0 C). In all cases, multiple exchange occurred. Product analysis by mass and proton NMR spectroscopy showed that exchange in methylene and methine groups was more rapid than that in methyl groups. A similar orientation effect was observed in reactions over platinum powder but not over platinum-alumina. For exchange between deuterium oxide and hexane catalyzed by platinum films at 200 0 C, the rate of exchange in methyl groups exceeded that in methylene groups. It is proposed that preferential exchange in methylene and methine groups is normal behavior during alkane exchange with molecular deuterium over these platinum metals when their surfaces (i) are initially clean or (ii) contain several adjacent sites which are unperturbed by the presence of any electronegative adsorbed species. Preferential exchange in the methyl groups of hexane results from contamination of the surface by adsorbed D 2 O, OD, or O; this may be a geometric effect or an electronic effect, depending on the magnitude of the surface coverage of water, which is unknown. Orientation in the exchange between deuterium gas and naphthalene or biphenyl catalyzed by films of platinum and iridium does not differ from that observed in exchanges where the isotope source is deuterium oxide or deuterated solvent, but the M value calculated for exchange in naphthalene is higher than that previously reported

  18. Kinetic and spectroscopic studies of the [palladium(Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne.

    Science.gov (United States)

    Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J

    2005-11-09

    The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.

  19. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.

    Science.gov (United States)

    Zhu, Fengxiang; Zhu-Ge, Ling; Yang, Guangfu; Zhou, Shaolin

    2015-02-01

    The catalytic hydrogenation of carbon dioxide and bicarbonate to formate has been explored extensively. The vast majority of the known active catalyst systems are based on precious metals. Herein, we describe an effective, phosphine-free, air- and moisture-tolerant catalyst system based on Knölker's iron complex for the hydrogenation of bicarbonate and carbon dioxide to formate. The catalyst system can hydrogenate bicarbonate at remarkably low hydrogen pressures (1-5 bar). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Insight into the electronic effect of phosphine ligand on Rh catalyzed CO2 hydrogenation by investigating the reaction mechanism.

    Science.gov (United States)

    Ni, Shao-Fei; Dang, Li

    2016-02-14

    Improving the catalytic efficiency of CO2 hydrogenation is a big challenge in catalysed CO2 recycling and H2 conservation. The detailed mechanism of [Rh(PCH2X(R)CH2P)2](+) (X(R) = CH2, N-CH3, CF2) catalyzed CO2 hydrogenation is studied to obtain insights into the electronic effect of the substituents at diphosphine ligand on the catalytic efficiency. The most favorable reaction mechanism is found to be composed of three steps: (1) oxidative addition of dihydrogen onto the Rh center of the catalyst; (2) the first hydride abstraction by base from the Rh dihydride complexes; (3) the second hydride transfer from the Rh hydride complexes to CO2. It was found that the transition state for the first hydride abstraction from the Rh dihydride complex is the TOF-determining transition state (TDTS) in the most favorable mechanism. The energetic span (δE) of the cycle is suggested related to the thermodynamic hydricity of the Rh dihydride complex. Model catalyst [Rh(PCH2CF2CH2P)2](+) with a strong σ electron withdrawing group on the diphosphine ligand provides higher hydricity in the Rh dihydride complex and lower activation energy when compared with the other two catalysts. Our study shows that it is the σ electron withdrawing ability rather than the electron donating ability that enhances the catalytic efficiency in catalyzed CO2 hydrogenation. This finding will benefit ligand design in transition metal catalysts and lead to more efficient methods for CO2 transformation.

  1. Catalytic gasification of automotive shredder residues with hydrogen generation

    Science.gov (United States)

    Lin, Kuen-Song; Chowdhury, Sujan; Wang, Ze-Ping

    Hydrogen is a clean and new energy carrier to generate power through the Proton exchange membrane fuel cell (PEMFC) system. Hydrogen can be effectively turned out through the catalytic gasification of organic material such as automotive shredder residues (ASR). The main objective of this manuscript is to present an analysis of the catalytic gasification of ASR for the generation of high-purity hydrogen in a lab-scale fixed-bed downdraft gasifier using 15 wt.% NiO/Al 2O 3 catalysts at 760-900 K. In the catalytic gasification process, reduction of Ni(II) catalyst into Ni(0) has been confirmed through XANES spectra and consequently EXAFS data shows that the central Ni atoms have Ni-O and Ni-Ni bonds with bond distances of 2.03 ± 0.05 and 2.46 ± 0.05 Å, respectively. ASR is partially oxidized and ultimately converts into hydrogen rich syngas (CO and H 2) and increases of the reaction temperature are favored the generation of hydrogen with decomposition of the CO. As well, approximately 220 kg h -1 of ASR would be catalytically gasified at 760-900 K and 46.2 atm with the reactor volume 0.27 m 3 to obtain approximately 3.42 × 10 5 kcal h -1 of thermal energy during over 87% syngas generation with the generation of 100 kW electric powers.

  2. Hydrogen generation from glycerol in batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, K.; Waligorska, M.; Wojtowski, M.; Laniecki, M. [Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan (Poland)

    2009-05-15

    The influence of concentration of glycerol, inoculum and total nitrogen on hydrogen generation, in batch dark fermentation process in the presence of digested sludge (at 37 C and at initial pH = 6) was studied. Changes in substrate and products concentrations were modeled with modified Gompertz equations (correlation coefficient R{sup 2} = 0.9015). The 1,3-propandiol, butyric acid, acetic acid, lactic acid and ethanol were found as the main liquid metabolites. Maximal substrate yield for hydrogen was 0.41 mol H{sub 2}/mol glycerol and was obtained for medium containing 10 g/l of glycerol with the lowest amount of inoculum - 1.16 g volatile suspended solid (VSS)/l. Increase of glycerol concentration from 5 to 30 g/l resulted in much better hydrogen generation, namely from 0.345 to 0.715 l H{sub 2}/l. Further increase of glycerol concentration did not cause any changes. The H{sub 2}:CO{sub 2} ratio in biogas in system with the highest substrate yield was always 1. The initial concentration of glycerol does not influence the rate of hydrogen generation. The increase of initial concentration of inoculum from 1.2 to 11.6 g VSS/l results in the decrease of specific hydrogen yield. Nitrogen concentration in medium does not influence the hydrogen production. (author)

  3. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity.

    Science.gov (United States)

    Sadeghmoghaddam, Elham; Gu, Hanmo; Shon, Young-Seok

    2012-09-07

    Our previous work has shown that alkanethiolate-capped Pd nanoparticles generated from sodium S -dodecylthiosulfate are excellent catalysts for selective isomerization of various allyl alcohols to the carbonyl analogues. The present work focuses on understanding the mechanism and the regioselectivity of Pd nanoparticles in different environments. First, the presence of H 2 gas has turned out to be essential for the efficient catalytic isomerization reaction. This suggests that the mechanism likely involves the Pd-alkyl intermediate rather than the η 3 π-allyl Pd hydride intermediate. Second, the Pd nanoparticles are found to convert allyl alcohol selectively to either propanal or 1-propanol depending on the type of solvent used for the catalytic reactions. The reaction pathway is most likely determined by steric hindrance, which is the result of the interaction between substrate and alkylthiolate ligands on Pd nanoparticles. Presumably, the conformation of alkylthiolate ligands changes upon the type of solvents, resulting in varying degree of available space close to the nanoparticle surface. In general, nonpolar or weakly polar solvents such as benzene and chloroform, respectively, promote the isomerization of allyl alcohol to propanal via the formation of the branched Pd-alkyl intermediate. On the other hand, polar protic solvents such as methanol and water foster the hydrogenation of allyl alcohol to 1-propanol involving the steric induced formation of a linear Pd-alkyl intermediate. Third, the use of sodium S -hexylthiosulfate instead of sodium S -dodecylthiosulfate for the synthesis of Pd nanoparticles results in nanoparticle catalysts with a lower regioselectivity toward isomerization over hydrogenation. This is due to the higher surface ligand density of hexanethiolate-capped Pd nanoparticles, which negatively impacts the formation of branched Pd-alkyl intermediate. The results clearly indicate that controlling the structure and surface density of

  4. Enantioselective Iridium Catalyzed Carbonyl Allylation from the Alcohol Oxidation Level via Transfer Hydrogenation: Minimizing Pre-Activation for Synthetic Efficiency

    Science.gov (United States)

    Han, Soo Bong; Kim, In Su; Krische, Michael J.

    2010-01-01

    Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C,O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level. PMID:20024203

  5. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  6. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  7. Ruthenium-Catalyzed Selective Hydrogenation of bis-Arylidene Tetramic Acids. Application to the Synthesis of Novel Structurally Diverse Pyrrolidine-2,4-diones

    Directory of Open Access Journals (Sweden)

    Olga Igglessi-Markopoulou

    2011-07-01

    Full Text Available Catalytic hydrogenation of 3,5-bis-arylidenetetramic acids, known for their biological activity, has been developed. The chemoselective ruthenium-catalyzed reduction of the exocyclic carbon-carbon double bonds on pyrrolidine-2,4-dione ring system, containing other reducible functions, has been investigated. Depending on the substrate the yield of the hydrogenation process can reach up to 95%. The structural elucidation has been established using NMR and HRMS spectral data.

  8. Development of a low cost, portable solar hydrogen generation device

    Science.gov (United States)

    Rose, Kyle; Aggarwal, M. D.; Batra, Ashok; Wingo, Dennis

    2014-10-01

    Hydrogen is a clean energy source that is environmentally friendly and safe. It is well known that electrolysis is a common method used to produce hydrogen. Other high cost methods for hydrogen production can be countered by the development of this low cost pulse width modulated circuit, using direct current provided by naturally existing solar energy as a power source. Efforts are being made in the scientific community to produce a low cost, portable, solar hydrogen generating device for a number of clean energy applications such as fuel cells and energy storage. Proof of concept has already been tested in the laboratory and a small prototype system is being designed and fabricated in the workshop at Alabama A&M University. Our results of this study and details of the electronic circuit and the prototype are presented.

  9. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality.

    Science.gov (United States)

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A

    2014-11-03

    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.

    Science.gov (United States)

    Ge, Hongyu; Chen, Xiangyang; Yang, Xinzheng

    2017-07-03

    Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H 2 . The total free energy barrier of the formation of methanol from CO 2 and H 2 catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe 3 ) 2 -3,4-(CH 2 ) 4 (η 5 -C 4 COH)]Fe(CO) 2 H, is 26.0 kcal mol -1 in the methanol solvent. We also evaluated the catalytic activities of 8 other experimentally reported iron cyclopentadienone complexes and 37 iron, cobalt, and manganese cyclopentadienone complexes proposed in this study. In general, iron and manganese complexes have relatively higher catalytic activities. Among all calculated complexes, [2,5-(SiMe 3 ) 2 -3,4-CH 3 CHSCH 2 (η 5 -C 4 COH)]Fe(CO) 2 H (1 Fe-Casey-S-CH3 ) is the most active one with a total free energy barrier of 25.1 kcal mol -1 in the methanol solvent. Such a low barrier indicates that 1 Fe-Casey-S-CH3 is a very promising low-cost and high efficiency catalyst for the conversion of CO 2 and H 2 to methanol under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    Science.gov (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  13. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves

    2012-01-01

    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  14. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: msimoes@ua.pt [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)

    2012-07-01

    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  15. Solar photocatalytic generation of hydrogen under ultraviolet-visible ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Solar photocatalytic generation of hydrogen under ultraviolet-visible light irradiation on (CdS/ZnS)/Ag2S + (RuO2/TiO2) photocatalysts. R Priya S Kanmani. Catalysis Volume 33 Issue 1 February 2010 pp 85-88 ...

  16. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  17. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen.

    Science.gov (United States)

    Thenert, Katharina; Beydoun, Kassem; Wiesenthal, Jan; Leitner, Walter; Klankermayer, Jürgen

    2016-09-26

    The synthesis of dimethoxymethane (DMM) by a multistep reaction of methanol with carbon dioxide and molecular hydrogen is reported. Using the molecular catalyst [Ru(triphos)(tmm)] in combination with the Lewis acid Al(OTf)3 resulted in a versatile catalytic system for the synthesis of various dialkoxymethane ethers. This new catalytic reaction provides the first synthetic example for the selective conversion of carbon dioxide and hydrogen into a formaldehyde oxidation level, thus opening access to new molecular structures using this important C1 source. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  19. Understanding the role of water in aqueous ruthenium-catalyzed transfer hydrogenation of ketones

    NARCIS (Netherlands)

    Pavlova, A.; Meijer, E.J.

    2012-01-01

    We report an accurate computational study of the role of water in transfer hydrogenation of formaldehyde with a ruthenium-based catalyst using a water-specific model. Our results suggest that the reaction mechanism in aqueous solution is significantly different from that in the gas phase or in

  20. Hydrogenation of Low Molar Mass OH-Telechelic Polybutadienes Catalyzed by Homogeneous Ziegler Nickel Catalysts

    Czech Academy of Sciences Publication Activity Database

    Šabata, Stanislav; Hetflejš, Jiří

    2002-01-01

    Roč. 85, č. 6 (2002), s. 1185-1193 ISSN 0021-8995 R&D Projects: GA AV ČR IAA4072902 Keywords : telechelic OH-polybutadienes * homogeneous hydrogenation * liquid polybutadiene rubber Subject RIV: CC - Organic Chemistry Impact factor: 0.927, year: 2002

  1. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao

    2014-08-11

    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  2. Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Cajthaml, Tomáš; Merhautová, Věra; Gabriel, Jiří; Nerud, František; Stopka, P.; Hrubý, Martin; Beneš, Milan J.

    2005-01-01

    Roč. 59, - (2005), s. 267-274 ISSN 0926-3373 R&D Projects: GA AV ČR IBS5020306; GA ČR GA203/01/0944 Institutional research plan: CEZ:AV0Z7090911 Keywords : degradation * polycyclic aromatic hydrocarbon * hydrogen peroxide Subject RIV: EE - Microbiology, Virology Impact factor: 3.809, year: 2005

  3. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    Science.gov (United States)

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  4. Monitoring of hydrogen generated by corrosion reactions of steel

    Energy Technology Data Exchange (ETDEWEB)

    Abbassi, A.; Mihi, A.; Benbouta, R. [Corrosion Laboratory, Department of Mechanical Engineering, Faculty of Engineering Science, University of Batna, 05000 Batna (Algeria)

    2008-12-15

    A solid-state sensor has been constructed and used for the detection of hydrogen generated during corrosion of steel in pH2 solutions. In addition to that, weight loss, AC impedance measurements and selected slow strain rate tests were performed under the same conditions as the hydrogen measurements in order to ascertain the degree of embrittlement of steel. The use of such a device in cathodic protection by impressed current in artificial seawater was also investigated. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Perspectives for generation companies and the emerging hydrogen economy

    International Nuclear Information System (INIS)

    Cowan, N.

    2004-01-01

    'Full text:' Canadian and global power generation supply is evolving towards inclusion of emerging types of technologies for electricity production. Although much of Canadian electricity supply will continue to be derived from traditional sources in the foreseeable future the band for capital cost competitiveness is narrowing between the once clear-cut technological winners and emerging generation technologies creating opportunity for new technologies to commercialize in the market. OPG has been active in the development and commercialization of stationary high temperature fuel cells for several years. The major activity has been a partnering initiative to engineer and implement Solid Oxide Fuel Cell (SOFC) demonstration installations. The relationship with SOFC developer Siemens-Westinghouse out of Pittsburgh has allowed OPG to maintain an ongoing involvement in the emerging fuel cell industry, while exploring the broader implications of this technology for the power industry business model. OPG is part of the 'Hydrogen Village Partnership'. The Hydrogen Village will demonstrate and deploy various hydrogen production, storage and delivery techniques as well as applications of hydrogen such as fuel cells for stationary, transportation (mobile) and portable applications. OPG maintains an active role in the demonstration of emerging technologies for a number of reasons: 1) advancing commercialization of emerging generation technologies, 2) 'hands-on' participation in the deployment of such technology in order to gather and apply market knowledge 3) Involvement in developing technology as a part of commitment to sustainable development. (author)

  6. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  7. Marrying gas power and hydrogen energy: A catalytic system for combining methane conversion and hydrogen generation

    NARCIS (Netherlands)

    Beckers, J.; Gaudillère, C.; Farrusseng, D.; Rothenberg, G.

    2009-01-01

    Ceria-based catalysts are good candidates for integrating methane combustion and hydrogen generation. These new, tuneable catalysts are easily prepared. They are robust inorganic crystalline materials, and perform well at the 400 °C-550 °C range, in some cases even without precious metals. This

  8. New Gateways to the Platinum Group Metal-Catalyzed Direct Deuterium-Labeling Method Utilizing Hydrogen as a Catalyst Activator.

    Science.gov (United States)

    Sawama, Yoshinari; Park, Kwihwan; Yamada, Tsuyoshi; Sajiki, Hironao

    2018-01-01

    Deuterium-labeled compounds are widely utilized in various scientific fields. We summarize the recent advances in the direct deuteration of sugar, saturated fatty acid, and arene derivatives using heterogeneous platinum group metal on carbon catalysts by our research group. Hydrogen gas is a key catalyst-activator to facilitate the present H-D exchange reactions. In this review, the direct activation method of catalysts using in situ-generated hydrogen based on the dehydrogenation of alcohols is introduced. The obtained multiple deuterium-labeled products, including bioactive compounds, are expected to contribute to the development of many scientific investigations.

  9. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  10. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.

    Science.gov (United States)

    Meric, Pascal; Yu, Kai Man K; Tsang, Shik Chi

    2004-09-28

    A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO2 is therefore carried out in a stainless steel batch reactor at 40 degrees C and in a 150 bar CO2/H2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO2 is observed through a sapphire window reactor at W0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.

  11. Synthesis of (±)-myo-inositol 4-methylenephosphonate via Rh-Catalyzed hydrogenation of vinylphosphonate.

    Science.gov (United States)

    Okauchi, Tatsuo; Nakamura, Shuya; Tsubaki, Kouta; Asakawa, Momoko; Kitamura, Mitsuru

    2017-08-07

    Phosphatidylinositol phosphate (PIP) synthetase is a promising target for the development of new anti-mycobacterium compounds. We previously reported that myo-inositol 1-methylenephosphonate showed inhibitory activity against PIP synthetase. Herein, we report the synthesis of unprotected myo-inositol 4-methylenephosphonate, a constitutional isomer of myo-inositol 1-methylenephosphonate and found that the stereoselective hydrogenation of vinylphosphonate proceeded via Rh catalysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transition Metal-Catalyzed Regioselective Asymmetric Mono-hydrogenation of Dienes and Polyenes.

    Science.gov (United States)

    Margarita, Cristiana; Rabten, Wangchuk; Andersson, Pher G

    2018-02-28

    Organic compounds containing multiple C=C bonds are attractive substrates for catalytic asymmetric hydrogenation. The full saturation of prochiral double bonds, controlling the creation of two or more stereocenters in one step, is obviously a remarkable goal. However, another fascinating and useful option is to selectively introduce a new defined stereogenic center, while leaving other double bonds untouched. Thus, the retained functionalities can be further exploited in synthesis. Examples of regio- and enantioselective mono-hydrogenations of polyolefins are highlighted in this Concept article, and are divided according to the nature of the reduced double bond and the transition-metal catalyst used. Alkenes bearing coordinating functional groups are often preferentially hydrogenated by Rh- and Ru-complexes, while the more recently developed Ir-based catalysts promote the selective saturation on alkyl-substituted olefins. Relevant applications of this effective methodology in the synthesis of natural products are included to demonstrate its value in organic synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly Efficient Carbon Dioxide Hydrogenation to Methanol Catalyzed by Zigzag Platinum-Cobalt Nanowires.

    Science.gov (United States)

    Bai, Shuxing; Shao, Qi; Feng, Yonggang; Bu, Lingzheng; Huang, Xiaoqing

    2017-06-01

    Carbon dioxide (CO 2 ) hydrogenation is an effective strategy for CO 2 utilization, while unsatisfied conversion efficiencies remain great challenges. It is reported herein that zigzag Pt-Co nanowires (NWs) with Pt-rich surfaces and abundant steps/edges can perform as highly active and stable CO 2 hydrogenation catalysts. It is found that tuning the Pt/Co ratio of the Pt-Co NWs, solvents, and catalyst supports could well optimize the CO 2 hydrogenation to methanol (CH 3 OH) with the Pt 4 Co NWs/C exhibiting the best performance, outperforming all the previous catalysts. They are also very durable with limited activity decays after six catalytic cycles. The diffuse reflectance infrared Fourier transform spectroscopy result of CO 2 adsorption shows that the Pt 4 Co NWs/C undergoes the adsorption/activation of CO 2 by forming appropriate carboxylate intermediates, and thus enhancing the CH 3 OH production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  15. Chloride ion-catalyzed generation of difluorocarbene for efficient preparation of gem-difluorinated cyclopropenes and cyclopropanes

    KAUST Repository

    Wang, Fei

    2011-01-01

    A chloride ion-catalyzed generation of difluorocarbene from a relatively non-toxic and inexpensive precursor, Me3SiCF2Cl (1), under mild and neutral conditions leads to an efficient preparation of gem-difluorocyclopropenes and difluorocyclopropanes through [2 + 1] cycloaddition reactions with alkynes and alkenes, respectively. © 2011 The Royal Society of Chemistry.

  16. Sensitivity analyses on in-vessel hydrogen generation for KNGR

    International Nuclear Information System (INIS)

    Kim, See Darl; Park, S.Y.; Park, S.H.; Park, J.H.

    2001-03-01

    Sensitivity analyses for the in-vessel hydrogen generation, using the MELCOR program, are described in this report for the Korean Next Generation Reactor. The typical accident sequences of a station blackout and a large LOCA scenario are selected. A lower head failure model, a Zircaloy oxidation reaction model and a B 4 C reaction model are considered for the sensitivity parameters. As for the base case, 1273.15K for a failure temperature of the penetrations or the lower head, an Urbanic-Heidrich correlation for the Zircaloy oxidation reaction model and the B 4 C reaction model are used. Case 1 used 1650K as the failure temperature for the penetrations and Case 2 considered creep rupture instead of penetration failure. Case 3 used a MATPRO-EG and G correlation for the Zircaloy oxidation reaction model and Case 4 turned off the B 4 C reaction model. The results of the studies are summarized below : (1) When the penetration failure temperature is higher, or the creep rupture failure model is considered, the amount of hydrogen increases for two sequences. (2) When the MATPRO-EG and G correlation for a Zircaloy oxidation reaction is considered, the amount of hydrogen is less than the Urbanic-Heidrich correlation (Base case) for both scenarios. (3) When the B 4 C reaction model turns off, the amount of hydrogen decreases for two sequences

  17. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  18. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  19. Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2

    International Nuclear Information System (INIS)

    Urban, P.; Lederer, F.

    1985-01-01

    Bakers yeast flavocytochrome b2 is a flavin-dependent L-2-hydroxy acid dehydrogenase which also exhibits transhydrogenase activity. When a reaction takes place between [2- 3 H]lactate and a halogenopyruvate, tritium is found in water and at the halogenolactate C2 position. When the halogenopyruvate undergoes halide ion elimination, tritium is also found at the C3 position of the resulting pyruvate. The amount tau of this intermolecular tritium transfer depends on the initial keto acid-acceptor concentration. At infinite acceptor concentration, extrapolation yields a maximal transfer of 97 +/- 11%. This indicates that the hydroxy acid-derived hydrogen resides transiently on enzyme monoprotic heteroatoms and that exchange with bulk solvent occurs only at the level of free reduced enzyme. Using a minimal kinetic scheme, the rate constant for hydrogen exchange between Ered and solvent is calculated to be on the order of 10(2) M-1 S-1, which leads to an estimated pK approximately equal to 15 for the ionization of the substrate-derived proton while on the enzyme. It is suggested that this hydrogen could be shared between the active site base and Flred N5 anion. It is furthermore shown that some tritium is incorporated into the products when the transhydrogenation is carried out in tritiated water. Finally, with [2-2H]lactate-reduced enzyme, a deuterium isotope effect is observed on the rate of bromopyruvate disappearance. Extrapolation to infinite bromopyruvate concentration yields DV = 4.4. An apparent inverse isotope effect is determined for bromide ion elimination. These results strengthen the idea that oxidoreduction and elimination pathways involve a common carbanionic intermediate

  20. Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack

    Science.gov (United States)

    Arzac, G. M.; Fernández, A.; Justo, A.; Sarmiento, B.; Jiménez, M. A.; Jiménez, M. M.

    Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min -1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.

  1. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  2. Remediation of diesel-contaminated soils using catalyzed hydrogen peroxide: a laboratory evaluation

    International Nuclear Information System (INIS)

    Xu, P.; Achari, G.; Mahmoud, M.; Joshi, R.C.

    2002-01-01

    This paper presents the results of a laboratory investigation conducted to determine the optimum amount of Fenton's reagent that allows for effective treatment of diesel-contaminated soils. Two types of soils spiked with 5,000 mg/kg diesel fuel were treated in vial reactors with varying concentrations and volumes of hydrogen peroxide. Additionally, Ottawa sand spiked with 5,000 mg/kg of diesel was treated with different H 2 O 2 to iron ratios. The gases produced during the remediation process were measured and analyzed to evaluate the oxidation of diesel range organics. As much as 40 % of diesel range organics was removed when 5 grams of silty clay were treated with 20 mL of 20 % H 2 O 2 . The same concentration and volume of hydrogen peroxide removed about 63 % of diesel range organics from sandy silt. The optimal molar ratio of H 2 O 2 : iron catalyst was found to vary between 235:1 to 490:1. (author)

  3. Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals.

    Science.gov (United States)

    Schwartz, Thomas J; Johnson, Robert L; Cardenas, Javier; Okerlund, Adam; Da Silva, Nancy A; Schmidt-Rohr, Klaus; Dumesic, James A

    2014-11-17

    It is shown that microenvironments formed around catalytically active sites mitigate catalyst deactivation by biogenic impurities that are present during the production of biorenewable chemicals from biologically derived species. Palladium and ruthenium catalysts are inhibited by the presence of sulfur-containing amino acids; however, these supported metal catalysts are stabilized by overcoating with poly(vinyl alcohol) (PVA), which creates a microenvironment unfavorable for biogenic impurities. Moreover, deactivation of Pd catalysts by carbon deposition from the decomposition of highly reactive species is suppressed by the formation of bimetallic PdAu nanoparticles. Thus, a PVA-overcoated PdAu catalyst was an order of magnitude more stable than a simple Pd catalyst in the hydrogenation of triacetic acid lactone, which is the first step in the production of biobased sorbic acid. A PVA-overcoated Ru catalyst showed a similar improvement in stability during lactic acid hydrogenation to propylene glycol in the presence of methionine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Inverted supercritical carbon dioxide/aqueous biphasic media for rhodium-catalyzed hydrogenation reactions.

    Science.gov (United States)

    Burgemeister, Katja; Franciò, Giancarlo; Gego, Volker H; Greiner, Lasse; Hugl, Herbert; Leitner, Walter

    2007-01-01

    An inverted supercritical carbon dioxide (scCO(2))/aqueous biphasic system has been used as reaction media for Rh-catalysed hydrogenation of polar substrates. Chiral and achiral CO(2)-philic catalysts were efficiently immobilised in scCO(2) as the stationary phase, while the polar substrates and products were contained in water as the mobile phase. Notably, product separation and catalyst recycling were conducted without depressurisation of the autoclave. The catalyst phase was reused several times with high conversion and product recovery of more than 85 %. Loss of rhodium and phosphorus by leaching were found to be below the detection limit after the first two cycles in the majority of repetitive experiments. The reaction conditions were optimised with a minimum of experiments by using a simplex algorithm in a sequential optimisation. Total turnover numbers (TTNs) of up to 1600, turnover frequencies (TOFs) of up to 340 h(-1) and ee's up to 99 % were obtained in repetitive batch operations. The scope of the devised catalytic system has been investigated and a semicontinuous reaction setup has been implemented. The chiral ligand (R,S)-3-H(2)F(6)-BINAPHOS allowed highly enantioselective hydrogenation of itaconic acid and methyl-2-acetamidoacrylate combined with a considerable catalyst stability in these reaction media.

  5. Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism.

    Science.gov (United States)

    Wang, Yulei; Huang, Zhidao; Leng, Xuebing; Zhu, Huping; Liu, Guixia; Huang, Zheng

    2018-03-28

    The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex ( BQ -NC O P)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C-C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O- or N-containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the ( BQ -NC O P)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with C 2 D 5 OD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has ( BQ -NC O P)Ir I (alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of ( BQ -NC O P)Ir III (H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium

  6. Method of generating hydrogen by catalytic decomposition of water

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  7. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  8. A theoretically-guided optimization of a new family of modular P,S-ligands for iridium-catalyzed hydrogenation of minimally functionalized olefins.

    Science.gov (United States)

    Margalef, Jèssica; Caldentey, Xisco; Karlsson, Erik A; Coll, Mercè; Mazuela, Javier; Pàmies, Oscar; Diéguez, Montserrat; Pericàs, Miquel A

    2014-09-15

    A library of modular iridium complexes derived from thioether-phosphite/phosphinite ligands has been evaluated in the asymmetric iridium-catalyzed hydrogenation of minimally functionalized olefins. The modular ligand design has been shown to be crucial in finding highly selective catalysts for each substrate. A DFT study of the transition state responsible for the enantiocontrol in the Ir-catalyzed hydrogenation is also described and used for further optimization of the crucial stereodefining moieties. Excellent enantioselectivities (enantiomeric excess (ee) values up to 99 %) have been obtained for a range of substrates, including E- and Z-trisubstituted and disubstituted olefins, α,β-unsaturated enones, tri- and disubstituted alkenylboronic esters, and olefins with trifluoromethyl substituents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DFT Methods to Study the Reaction Mechanism of Iridium-Catalyzed Hydrogenation of Olefins: Which Functional Should be Chosen?

    Science.gov (United States)

    Sun, Yihua; Chen, Hui

    2016-01-04

    To enable the selection of more accurate computational methods for the future theoretical exploration of the reaction mechanism of Ir-catalyzed olefin hydrogenation, we compared high-level ab initio coupled cluster and DFT calculations with a simplified model of Pfaltz's Ir/P,N-type catalyst for all four previously proposed Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. Through the systematic assessment of the DFT performances, the DFT empirical dispersion correction (DFT-D3) is found to be indispensable for improving the accuracy of relative energies between the Ir(I) /Ir(III) and Ir(III) /Ir(V) mechanisms. After including the DFT-D3 correction, the three best performing density functionals (DFs) are B2-PLYP, BP86, and TPSSh. In these recommended DFs, the computationally more expensive double-hybrid functional B2-PLYP-D3 has a balanced and outstanding performance for calculations of the reaction barriers, reaction energies, and energy gaps between different mechanisms, whereas the less costly BP86-D3 and TPSSh-D3 methods have outstanding, but relatively less uniform performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  11. One Step Hydrogen Generation Through Sorption Enhanced Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Jeff [Gas Technology Inst., Des Plaines, IL (United States)

    2017-08-03

    One-step hydrogen generation, using Sorption Enhanced Reforming (SER) technology, is an innovative means of providing critical energy and environmental improvements to US manufacturing processes. The Gas Technology Institute (GTI) is developing a Compact Hydrogen Generator (CHG) process, based on SER technology, which successfully integrates previously independent process steps, achieves superior energy efficiency by lowering reaction temperatures, and provides pathways to doubling energy productivity with less environmental pollution. GTI’s prior CHG process development efforts have culminated in an operational pilot plant. During the initial pilot testing, GTI identified two operating risks- 1) catalyst coating with calcium aluminate compounds, 2) limited solids handling of the sorbent. Under this contract GTI evaluated alternative materials (one catalyst and two sorbents) to mitigate both risks. The alternate catalyst met performance targets and did not experience coating with calcium aluminate compounds of any kind. The alternate sorbent materials demonstrated viable operation, with one material enabling a three-fold increase in sorbent flow. The testing also demonstrated operation at 90% of its rated capacity. Lastly, a carbon dioxide co-production study was performed to assess the advantage of the solid phase separation of carbon dioxide- inherent in the CHG process. Approximately 70% lower capital cost is achievable compared to SMR-based hydrogen production with CO2 capture, as well as improved operating costs.

  12. Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions.

    Science.gov (United States)

    Fujita, Ken-ichi; Kawahara, Ryoko; Aikawa, Takuya; Yamaguchi, Ryohei

    2015-07-27

    An efficient catalytic system for the production of hydrogen from a methanol-water solution has been developed using a new anionic iridium complex bearing a functional bipyridonate ligand as a catalyst. This system can be operated under mild conditions [weakly basic solution (0.046 mol L(-1) NaOH) below 100 °C] without the use of an additional organic solvent. Long-term continuous hydrogen production from a methanol-water solution catalyzed by the anionic iridium complex was also achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  14. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  15. Understanding the role of water in aqueous ruthenium-catalyzed transfer hydrogenation of ketones.

    Science.gov (United States)

    Pavlova, Anna; Meijer, Evert Jan

    2012-10-22

    We report an accurate computational study of the role of water in transfer hydrogenation of formaldehyde with a ruthenium-based catalyst using a water-specific model. Our results suggest that the reaction mechanism in aqueous solution is significantly different from that in the gas phase or in methanol solution. Previous theoretical studies have shown a concerted hydride and proton transfer in the gas phase (M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466-1478;J.-W. Handgraaf, J. N. H. Reek, E. J. Meijer, Organometallics 2003, 22, 3150-3157; D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999, 121, 9580-9588; D. G. I. Petra, J. N. H. Reek, J.-W. Handgraaf, E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E. Schoemaker, P. W. N. M. van Leeuwen, Chem. Eur. J. 2000, 6, 2818-2829), whereas a delayed, solvent-mediated proton transfer has been observed in methanol solution (J.-W. Handgraaf, E. J. Meijer, J. Am. Chem. Soc. 2007, 129, 3099-3103). In aqueous solution, a concerted transition state is observed, as in the previous studies. However, only the hydride is transferred at that point, whereas the proton is transferred later by a water molecule instead of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrogen Generation from Photocatalytic Silver|Zinc Oxide Nanowires: Towards Multifunctional Multisegmented Nanowire Devices

    NARCIS (Netherlands)

    Maijenburg, A.W.; Rodijk, E.J.B.; Maas, M.G.; Enculescu, Monica; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    Photoactive nanowires: A novel photo-electrochemical nanowire diode that catalyzes the conversion of methanol and water to hydrogen under UV light is demonstrated. The wire consists of a metal and a metal oxide segment that are connected via a Schottky barrier. Other functions, such as remote-

  17. Ex Situ Generation of Stoichiometric and Substoichiometric 12CO and 13CO and Its Efficient Incorporation in Palladium Catalyzed Aminocarbonylations

    DEFF Research Database (Denmark)

    Hermange, Philippe; Lindhardt, Anders Thyboe; Taaning, Rolf Hejle

    2011-01-01

    aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all...... is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment...

  18. Reforming water to generate hydrogen using mechanical alloy

    International Nuclear Information System (INIS)

    Pena F, D. L.

    2016-01-01

    The objective of this research was to generate a hydrogen production system by means of mechanical milling, in which 0.1 g of magnesium were weighed using a volume of 300 μL for each water solvent (H 2 O) and methanol (CH 3 OH) in a container to start mechanical milling for 2, 4 and 6 h. Once the mechanical milling was finished, the hydrogen that was produced every two hours was measured to determine the appropriate milling time in the production, also in each period of time samples of the powders produced during the milling of Mg were taken, in this process we used characterization techniques such as: X-ray diffraction at an angle of 2θi 5 and 2θf 90 degrees and scanning electron microscopy, taking micrographs of 100, 500, 1000 and 5000 magnifications. According to the mechanical milling results hydrogen was obtained when using water, as well as with methanol. In the techniques of X-ray diffraction characterization different results were obtained before and after the milling, since by the diffractogram s is possible to observe how the magnesium to be put in the mechanical milling along with the water and methanol was diminishing to be transformed into hydroxide and magnesium oxide, as well as in the micrographs taken with scanning electron microscopy the change in the magnesium morphology to hydroxide and magnesium oxide is observed. (Author)

  19. Hydrogen Generation Rate Scoping Study of DOW Corning Antifoam Agent

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles

    2005-09-27

    conservatively bounds hydrogen generation rates (HGRs) from antifoam-containing simulants if the antifoam organic components are treated the same as other native organics. Tests that used the combination of radiolysis and thermolysis conducted on simulants containing antifoam produced measured hydrogen that was bounded by the WTP correlation. These tests used the bounding WTP temperature of 90 C and a dose rate of 1.8 x 10{sup 5} rad/hr. This dose rate is about ten times higher than the dose rate equivalent calculated for a bounding Hanford sludge slurry composition of 10 Ci/L, or 2 x 10{sup 4} rad/hr. Hydrogen was measured using a quadrupole mass spectroscopy instrument. Based on the analyses from the 4wt% and 10wt% antifoam samples, it is expected that the HGR results are directly proportional to the antifoam concentration added. A native organic-containing simulant that did not contain any added antifoam also produced a measurable radiolytic/thermal hydrogen rates that was in bounded by the WTP correlation. A base simulant with no added organic produced a measurable radiolytic/thermal HGR that was {approx}2X higher than the predicted HGR. Analysis of antifoam-containing simulants after prolonged irradiation of 52 Mrad and heating (23 days at 90 C) indicates that essentially all of the PDMS and greater than 60% of the PPG components are degraded, likely to lower molecular weight species. The antifoam components were analyzed by extraction from the salt simulants, followed by gel permeation chromatography (GPC) by personnel at Dow Corning. A more detailed study of the antifoam degradation and product formation from radiolysis and thermolysis is currently in progress at SRNL. That study uses a dose rate of about 2 x 10{sup 4} rad/hr and bounding temperatures of 90 C. Results from that study will be reported in a future report.

  20. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  1. Lipid peroxidation and generation of hydrogen peroxide in frozen-thawed ram semen cryopreserved in extenders with antioxidants.

    Science.gov (United States)

    Maia, Marciane da Silva; Bicudo, Sony Dimas; Sicherle, Carmen Cecilia; Rodello, Leandro; Gallego, Isabel Cristina Saltaren

    2010-10-01

    The objective of this study was to evaluate the effect of addition of the antioxidants Trolox and catalase to a ram semen cryopreservation extender on lipid peroxidation and hydrogen peroxide generation on the extender and in the thawed semen. Semen was collected from 23 Santa Inês rams (one ejaculate per ram) and diluted at 32°C to a concentration of 400×10⁶ cells/ml in one of the following solution: Tris-egg yolk extender (control), or the same extender supplemented with either 50μM Trolox/10⁸ sperm (Trolox), 50μgcatalase/ml (Catalase) or a combination of Trolox and catalase (Tro+cat, 50μM Trolox/10⁸ sperm and 50μg catalase/ml). The semen was loaded into 0.25ml straws, cooled and frozen in a programmable freezer and subsequently stored in liquid nitrogen. Prior to evaluation, frozen straws were thawed in a water bath (42°C for 20s). Lipid peroxidation (LPO), both spontaneous and catalyzed, on the semen and the extender were measured using the thiobarbituric acid (TBA) assay in accordance with the method described by Buege and Aust (1978). Hydrogen peroxide (H₂O₂) generation was measured using the horseradish peroxidase-dependent oxidation of phenol red to a derivative with absorbance at 610nm, according to the method described by Pick and Keisari (1980). Spontaneous LPO resulted in the least production of thiobarbituric acid-reactive substances (TBARS) in the Tro+cat (1.37±0.02nMol/10⁸ sperm), compared to amounts in the other treatments groups. In the catalyzed LPO experiments, the least (Pcontrol (3.81±0.02nMol/10⁸ sperm) and catalase (3.83±0.02nMol/10⁸ sperm) groups. Hydrogen peroxide generation was less (Pcontrol (6.97±0.18nMol/40×10⁶ sperm/±40min) and catalase (6.53±0.18nMol/40×10⁶ sperm/±40min) groups. Compared to the control group, Trolox and catalase treatment significantly reduced TBARS in catalyzed LPO and hydrogen peroxide concentrations in the samples (Pprocess. In addition, the data suggest that the antioxidants

  2. [Non-nascent hydrogen mechanism of plumbane generation].

    Science.gov (United States)

    Zou, Yan; Jin, Fu-xia; Chen, Zhi-jiang; Qiu, De-ren; Yang, Peng-yuan

    2005-10-01

    The mechanism of plumbane generation in dichromate system was studied via investigation of the relationship between the plumbane yield and the molar number of the reactants. A flow injection hydride generator was used in the study. Reactant moler number was calculated by the injected volume and the reactant concentration, and the plumbane yield was measured via an AAS spectrometer equipped with an electrothermal quartz tube atomizer. Experimental results show that the acid was first used for the neutralization of NaOH and successively participated in the redox reaction of borohydride with dichromate with a constant molar ratio of 9.95 +/- 0.42 (expressed in terms of mean +/- standard deviation). At the same time, plumbane generation was displayed as synchronously taking place with the redox reaction, and the yield increased with the increase of acid. The mechanism of plumbane generation was thus deduced as an induced reaction or a catalytic reaction by the redox reaction. Up to this end, the non-nascent hydrogen mechanism of hydride generation has been verified for all the IVA elements.

  3. HYDROGEN GENERATION FROM ELECTROLYSIS - REVISED FINAL TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    IBRAHIM, SAMIR; STICHTER, MICHAEL

    2008-07-31

    DOE GO13028-0001 DESCRIPTION/ABSTRACT This report is a summary of the work performed by Teledyne Energy Systems to understand high pressure electrolysis mechanisms, investigate and address safety concerns related to high pressure electrolysis, develop methods to test components and systems of a high pressure electrolyzer, and produce design specifications for a low cost high pressure electrolysis system using lessons learned throughout the project. Included in this report are data on separator materials, electrode materials, structural cell design, and dissolved gas tests. Also included are the results of trade studies for active area, component design analysis, high pressure hydrogen/oxygen reactions, and control systems design. Several key pieces of a high pressure electrolysis system were investigated in this project and the results will be useful in further attempts at high pressure and/or low cost hydrogen generator projects. An important portion of the testing and research performed in this study are the safety issues that are present in a high pressure electrolyzer system and that they can not easily be simplified to a level where units can be manufactured at the cost goals specified, or operated by other than trained personnel in a well safeguarded environment. The two key objectives of the program were to develop a system to supply hydrogen at a rate of at least 10,000 scf/day at a pressure of 5000psi, and to meet cost goals of $600/ kW in production quantities of 10,000/year. On these two points TESI was not successful. The project was halted due to concerns over safety of high pressure gas electrolysis and the associated costs of a system which reduced the safety concerns.

  4. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    Science.gov (United States)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  5. Nano-hetero functional materials for photocatalytic hydrogen generation

    Science.gov (United States)

    Tongying, Pornthip

    This dissertation focuses on designing nanomaterials and investigating their photocatalytic response for H2 generation. Hydrogen has gained a lot of attention as a new source of sustainable energy. It can be used to directly generate power in fuel cells and to produce liquid fuels such as methanol. Water splitting is an ideal (clean) way of producing H2 because it uses water and sunlight, two renewable resources. To explore the use of nanostructures and particularly nanostructure heterojunctions for photocatalytic H2 generation, four different systems have been synthesized: (i) CdSe nanowires (NWs), (ii) CdSe/CdS core/shell NWs, (iii) CdSe NWs decorated with Au or Pt nanoparticles, and (iv) CdSe/CdS NWs decorated with Au or Pt nanoparticles. This is motivated by (a) the fact that CdSe NWs absorb light from the UV to the near infrared (b) the NW morphology simultaneously enables us to explore the role of nanoscale dimensionality in photocatalytic processes (c) a CdS coating can enhance photogenerated carrier lifetimes, and (d) metal nanoparticles are catalytically active and can also enhance charge separation efficiencies. Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. Femtosecond transient differential absorption (TDA) spectroscopy has been used as a tool to reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. The use of this technique in concert with hydrogen evolution tests also reveal how CdS, CdSe and metal NP interact within metal NP decorated CdSe and CdSe/CdS NWs during photocatalytic hydrogen generation reactions. Electron transfer events across both semiconductor/semiconductor and metal/semiconductor heterojunctions are followed to identify where H 2 is evolved and the role each heterojunction plays in determining a system's overall

  6. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  7. Generation of hydrogen free radicals from water for fuels by electric field induction

    International Nuclear Information System (INIS)

    Nong, Guangzai; Chen, Yiyi; Li, Ming; Zhou, Zongwen

    2015-01-01

    Highlights: • Hydrogen free radicals are generated from water splitting. • Hydrogen fuel is generated from water by electric field induction. • Hydrocarbon fuel is generated from CO 2 and water by electric field induction. - Abstract: Water is the most abundant resource for generating hydrogen fuel. In addition to dissociating H + and − OH ions, certain water molecules dissociate to radicals under an electric field are considered. Therefore, an electric field inducing reactor is constructed and operated to generate hydrogen free radicals in this paper. Hydrogen free radicals begin to be generated under a 1.0 V electric field, and increasing the voltage and temperature increases the number of hydrogen free radicals. The production rate of hydrogen free radicals is 0.245 mmol/(L h) at 5.0 V and room temperature. The generated hydrogen free radicals are converted to polymer fuel and hydrogen fuel at production rates of 0.0093 mmol/(L h) and 0.0038 mmol/(L h) respectively, under 5.0 V and 0.25 mA. The results provide a way to generate hydrogen free radicals, which might be used to generate hydrocarbon fuel in industrial manufacture.

  8. Fuel cell drive system with hydrogen generation in test

    Science.gov (United States)

    Emonts, B.; Bøgild Hansen, J.; Schmidt, H.; Grube, T.; Höhlein, B.; Peters, R.; Tschauder, A.

    In the future, drive systems for vehicles with polymer electrolyte membrane fuel cells (PEMFC) may be the environmentally more acceptable alternative to conventional drives with internal combustion engines. The energy carrier may not be gasoline or diesel, as in combustion engines today, but methanol, which is converted on-board into a hydrogen-rich synthesis gas in a reforming reaction with water. After removal of carbon monoxide in a gas-cleaning step, the conditioned synthesis gas is converted into electricity in a fuel cell using air as the oxidant. The electric energy thus generated serves to supply a vehicle's electric drive system. Based on the process design for a test drive system, a test facility was prepared and assembled at Forschungszentrum Jülich (FZJ). Final function tests with the PEMFC and the integrated compact methanol reformer (CMR) were carried out to determine the performance and the dynamic behaviour. With regard to the 50-kW(H 2)-compact methanol reformer, a special design of catalytic burner was constructed. The burner units, with a total power output of 16 kW, were built and tested under different states of constant and alternating load. If selecting a specific catalyst loading of 40 g Pt/m 2, the burner emissions are below the super ultra low emission vehicle (SULEV) standard. The stationary performance test of the CMR shows a specific hydrogen production of 6.7 m N3/(kg cat h) for a methanol conversion rate of 95% at 280°C. Measurements of the transient behaviour of the CMR clearly show a response time of about 20 s, reaching 99% of the hydrogen flow demand due to the limited performance of the test facility control system. Simulations have been carried out in order to develop a control strategy for hydrogen production by the CMR during the New European Driving Cycle (NEDC). Based on the NEDC, an optimized energy management for the total drive system was evaluated and the characteristic data for different peak load storage systems are

  9. Combustion of hydrogen-oxygen mixture in electrochemically generated nanobubbles.

    Science.gov (United States)

    Svetovoy, Vitaly B; Sanders, Remko G P; Lammerink, Theo S J; Elwenspoek, Miko C

    2011-09-01

    Ignition of exothermic chemical reactions in small volumes is considered as difficult or impossible due to the large surface-to-volume ratio. Here observation of the spontaneous reaction is reported between hydrogen and oxygen in bubbles whose diameter is smaller than a threshold value around 150 nm. The effect is attributed to high Laplace pressure and to fast dynamics in nanobubbles and is the first indication on combustion in the nanoscale. In this study the bubbles were produced by water electrolysis using successive generation of H(2) and O(2) above the same electrode with short voltage pulses in the microsecond range. The process was observed in a microsystem at current densities >1000 A/cm(2) and relative supersaturations >1000.

  10. Next-generation TCAP hydrogen isotope separation process

    International Nuclear Information System (INIS)

    Heung, L. K.; Sessions, H. T.; Poore, A. S.; Jacobs, W. D.; Williams, C. S.

    2008-01-01

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed. (authors)

  11. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  12. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chang, Dong Wook; Baek, Jong-Beom

    2016-04-20

    Photocatalytic hydrogen (H2 ) generation in a water splitting process has recently attracted tremendous interest because it allows the direct conversion of clean and unlimited solar energy into the ideal energy resource of H2 . For efficient photocatalytic H2 generation, the role of the photocatalyst is critical. With increasing demand for more efficient, sustainable, and cost-effective photocatalysts, various types of semiconductor photocatalysts have been intensively developed. In particular, on the basis of its superior catalytic and tunable electronic properties, nitrogen-doped graphene is a potential candidate for a high-performance photocatalyst. Nitrogen-doped graphene also offers additional advantages originating from its unique two-dimensional sp(2) -hybridized carbon network including a large specific surface area and exceptional charge transport properties. It has been reported that nitrogen-doped graphene can play diverse but positive functions including photo-induced charge acceptor/meditator, light absorber from UV to visible light, n-type semiconductor, and giant molecular photocatalyst. Herein, we summarize the recent progress and general aspects of nitrogen-doped graphene as a photocatalyst for photocatalytic H2 generation. In addition, challenges and future perspectives in this field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  14. Iron-catalyzed oxidative sp3carbon-hydrogen bond functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones.

    Science.gov (United States)

    Huo, Congde; Dong, Jie; Su, Yingpeng; Tang, Jing; Chen, Fengjuan

    2016-11-08

    A novel and efficient iron-catalyzed sp 3 carbon-hydrogen bond functionalization of benzoxazinone derivatives has been developed. For the first time, benzoxazin-2-ones were used as substrates in an oxidative dehydrogenative coupling reaction. The experiments were performed under mild reaction conditions to construct alkyl-aryl C(sp 3 )-C(sp 2 ) bonds. The application of this method to the gram-scale synthesis of natural product cephalandole A has been accomplished in a 3-step sequence. A plausible one electron oxidation involved mechanism is proposed.

  15. Systems and methods for generation of hydrogen peroxide vapor

    Science.gov (United States)

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  16. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  17. Interfacial electrochemistry of colloidal ruthenium dioxide and catalysis of the photochemical generation of hydrogen from water

    NARCIS (Netherlands)

    Kleijn, J.M.

    1987-01-01

    The formation of hydrogen from water using solar energy is a very attractive research topic, because of the potential use of hydrogen as an alternative, clean fuel. It has been shown by many workers in the field that photochemical hydrogen generation can be achieved in an aqueous system,

  18. Gold-catalyzed tandem cycloisomerization/functionalization of in situ generated α-oxo gold carbenes in water.

    Science.gov (United States)

    Shen, Cang-Hai; Li, Long; Zhang, Wei; Liu, Shuang; Shu, Chao; Xie, Yun-Er; Yu, Yong-Fei; Ye, Long-Wu

    2014-10-03

    A gold-catalyzed tandem cycloisomerization/functionalization of in situ generated α-oxo gold carbenes in water has been developed, which provides ready access to highly functionalized indole derivatives from o-alkynyl anilines and ynamides. Importantly, gold serves dual catalytic roles to mediate both the cycloisomerization of o-alkynyl anilines and the intermolecular oxidation of ynamides at the same time, thus providing a new type of concurrent tandem catalysis. The use of readily available starting materials, a simple procedure, and mild reaction conditions are other notable features of this method.

  19. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  20. Computational design of materials for solar hydrogen generation

    Science.gov (United States)

    Umezawa, Naoto

    Photocatalysis has a great potential for the production of hydrogen from aquerous solution under solar light. In this talk, two different approaches toward the computational materials desing for solar hydrogen generation will be presented. Tin (Sn), which has two major oxidation states, Sn2+ and Sn4+, is abundant on the earth's crust. Recently, visible-light responsive photocatalytc H2 evolution reaction was identified over a mixed valence tin oxide Sn3O4. We have carried out crystal structure prediction for mixed valence tin oxides in different atomic compositions under ambient pressure condition using advanced computational methods based on the evolutionary crystal-structure search and density-functional theory. The predicted novel crystal structures realize the desirable band gaps and band edge positions for H2 evolution under visible light irradiation. It is concluded that multivalent tin oxides have a great potential as an abundant, cheap and environmentally-benign solar-energy conversion photofunctional materials. Transition metal doping is effective for sensitizing SrTiO3 under visible light. We have theoretically investigated the roles of the doped Cr in STO based on hybrid density-functional calculations. Cr atoms are preferably substituting for Ti under any equilibrium growth conditions. The lower oxidation state Cr3+, which is stabilized under an n-type condition of STO, is found to be advantageous for the photocatalytic performance. It is firther predicted that lanthanum is the best codopant for stabilizing the favorable oxidation state, Cr3+. The prediction was validated by our experiments that La and Cr co-doped STO shows the best performance among examined samples. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) and International Research Fellow program of Japan Society for the Promotion of Science (JSPS) through project P14207.

  1. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-07

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.

  2. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    Science.gov (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-04-19

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  3. Recent advances in hydrogen generation, distribution and control at Westinghouse

    International Nuclear Information System (INIS)

    Tsai, S.S.; Liparulo, N.J.; Srinivas, V.; Monty, B.S.

    1989-01-01

    This paper reports that since the TMI-2 accident, Westinghouse has been actively involved in an industry-wide effort to address the hydrogen issue. Westinghouse has developed and licensed the CLASIX and CLASIX-3 codes to utilities which own the PWR ice condenser plants and BWR Mark III plants. These utilities have used these codes to perform analyses to support a hydrogen mitigation system required by the NRC hydrogen control rule, 20CFR50.44. Lately, Westinghouse has made significant advances in the hydrogen control analysis method. The hydrogen control analysis methods newly developed by Westinghouse include: a fog inerting model; a detailed equipment survivability analysis model and criteria for survivability assessment; flame temperature criteria for air/steam/hydrogen mixtures; COMPACT: an advanced computer program for analysis of hydrogen behavior in containment and containment vent system. A methodology based on these analysis methods has been developed by Westinghouse to address all the hydrogen issues, including containment integrity during and after hydrogen burns, hydrogen detonation, potential for fog inerting, and equipment survivability

  4. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2005-01-01

    A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24 nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393 Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1 Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D - ) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H

  5. DMFC at low air flow operation: Study of parasitic hydrogen generation

    International Nuclear Information System (INIS)

    Dohle, H.; Mergel, J.; Ghosh, P.C.

    2007-01-01

    In this paper, the effect of hydrogen generation in direct methanol fuel cells (DMFC) is described. Under certain operating conditions hydrogen generation occurs in DMFC causing an additional methanol consumption and a decrease of the cell voltage. For the present experiments a segmented cell with an active area of 244 cm 2 is used. The cell has 196 segments which are regularly distributed on the whole area. By this experimental setup hydrogen generation was found in regions with insufficient air supply. Hydrogen generation was analyzed by systematically applying different air flow rates and detecting the local current densities. The theory for hydrogen generation is confirmed by the results obtained from the segmented cell. A correlation between open circuit voltage (OCV), air flow rate and hydrogen generation was observed. Furthermore, half-cell measurements with different methanol concentrations were performed and used for analyzing the processes during hydrogen generation. The work clearly indicates the importance of sufficient cathode air supply for DMFC. Starved cathode areas not only do not contribute to the overall current generation but in addition reduce the power and efficiency by the parasitic generation of hydrogen

  6. Mechanism of heat generation from loading gaseous hydrogen isotopes into palladium nanoparticles

    Science.gov (United States)

    Dmitriyeva, Olga

    I have carried out the study of hydrogen isotope reactions in the presence of palladium nanoparticles impregnated into oxide powder. My goal was to explain the mechanisms of heat generation in those systems as a result of exposure to deuterium gas. Some researchers have associated this heating with a nuclear reaction in the Pd lattice. While some earlier experiments showed a correlation between the generation of excess heat and helium production as possible evidence of a nuclear reaction, the results of that research have not been replicated by the other groups and the search for radiation was unsuccessful. Therefore, the unknown origin of the excess heat produced by these systems is of great interest. I synthesized different types of Pd and Pt-impregnated oxide samples similar to those used by other research groups. I used different characterization techniques to confirm that the fabrication method I used is capable of producing Pd nanoparticles on the surface of alumina support. I used a custom built gas-loading system to pressurize the material with hydrogen and deuterium gas while measuring heat output as a result of these pressurizations. My initial study confirmed the excess heat generation in the presence of deuterium. However, the in-situ radiometry and alpha-particle measurements did not show any abnormal increase in counts above the background level. In the absence of nuclear reaction products, I decided to look for a conventional chemical process that could account for the excess heat generation. It was earlier suggested that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. To prove the chemical nature of the observed phenomena I demonstrated that the reaction can be either exo- or endothermic based on the water isotope trapped in the material and the type of gas provided to the system. The H/D exchange was confirmed by RGA, NMR and FTIR analysis. I quantified the amount of energy that can be released due

  7. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.

    Science.gov (United States)

    Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A

    2015-04-24

    Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  9. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    Science.gov (United States)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  10. Genetic defects of hydrogen peroxide generation in the thyroid gland.

    Science.gov (United States)

    Weber, G; Rabbiosi, S; Zamproni, I; Fugazzola, L

    2013-04-01

    Hydrogen peroxide (H2O2) is a key element in thyroid hormone biosynthesis. It is the substrate used by thyroid peroxidase for oxidation and incorporation of iodine into thyroglobulin, a process known as organification. The main enzymes composing the H2O2-generating system are the dual oxidase 2 (DUOX2) and the recently described DUOX maturation factor 2 (DUOXA2). Defects in these reactions lead to reduced thyroid hormone synthesis and hypothyroidism, with consequent increased TSH secretion and goiter. Since the first report in 2002 of DUOX2 mutations causing congenital hypothryoidism (CH), to date 25 different mutations have been described. Affected patients show a positive perchlorate discharge test and high phenotypic variability, ranging from transient to permanent forms of CH. Up to now, only two cases of CH due to DUOXA2 defects have been published. They also suggest the existence of a great genotype-phenotype variability. The phenotypic expression is probably influenced by genetic background and environmental factors. DUOX and DUOXA constitute a redundant system in which DUOX1/DUOXA1 can at least partially replace the function of DUOX2/DUOXA2. Furthermore, increased nutritional iodide could ensure a better use of H2O2 provided by DUOX1.

  11. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  12. Selective C-O Bond Cleavage of Sugars with Hydrosilanes Catalyzed by Piers' Borane Generated In Situ.

    Science.gov (United States)

    Zhang, Jianbo; Park, Sehoon; Chang, Sukbok

    2017-10-23

    Described herein is the selective reduction of sugars with hydrosilanes catalyzed by using Piers' borane [(C 6 F 5 ) 2 BH] generated in situ. The hydrosilylative C-O bond cleavage of silyl-protected mono- and disaccharides in the presence of a (C 6 F 5 ) 2 BH catalyst, generated in situ from (C 6 F 5 ) 2 BOH, takes place with excellent chemo- and regioselectivities to provide a range of polyols. A study of the substituent effects of sugars on the catalytic activity and selectivity revealed that the steric environment around the anomeric carbon (C1) is crucial. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands

    NARCIS (Netherlands)

    Monti, Chiara; Gennari, Cesare; Piarulli, Umberto; Vries, Johannes G. de; Vries, André H.M. de; Lefort, Laurent

    2005-01-01

    A library of 19 chiral tropos phosphorus ligands, based on a flexible (tropos) biphenol unit and a chiral P-bound alcohol (11 phosphites) or secondary amine (8 phosphoramidites), was synthesized. These ligands were screened, individually and as a combination of two, in the rhodium-catalyzed

  14. Influence of hydrogen bonding on the generation and stabilization of ...

    Indian Academy of Sciences (India)

    Keywords. Hydrogen bonding; polymer liquid crystals; smectic; thermal properties; polymer. ... The occurrence of the smectic phases in some of the polymers indicated possibly self-assembly through the formation of hetero intermolecular hydrogen bonded networks. A smectic polymorphism and in addition, ...

  15. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V. [Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Shukla, S.; Saxena, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai (India); Lee, G.-H. [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Alwarappan, S., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in [CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2016-01-15

    Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows that 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.

  16. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  17. Method of generating hydrogen-storing hydride complexes

    Science.gov (United States)

    None, None

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  18. Feasibility study of hydrogen generator with molten slag granulation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T.; Mizuochi, T. [Graduate School of Engineering, Osaka Pref. Univ., Sakai, Osaka (Japan); Yagi, J.I.; Nogami, H. [Inst. of Multidisciplinary Research for Advanced Materials, Tohoku Univ., Aobaku, Sendai (Japan)

    2004-02-01

    A huge amount of hot molten oxides, such as steelmaking slag and molten municipal waste, is discharged at present without heat recovery, in spite of its very high potential. For example, hot molten slag as a byproduct in the Japanese steelmaking industry, over 1723 K in temperature, reaches as much as 30 million tonnes annually. To recover heat of the viscous slag chemically, the strongly endothermic reaction CH{sub 4}+H{sub 2}O {yields} 3H{sub 2}+CO was selected and then the property of dry granulation of the molten slag by rotary cup atomizer (RCA) for expanding surface area of the slag was experimentally studied. The purpose of this paper was, therefore, to study slag granulation under various conditions for promoting heat exchange between slag and gas, in which the influence of the rotating speed and the shape of the cup on the slag drop size was mainly examined. The collected slag drops were correlated with operating conditions such as rotating speed, cup shape, etc. Most significantly, the molten slag was successfully granulated under the dry conditions without water impingement. The rotating speed of the cup influenced the diameter and shape of the slag drops very strongly. The higher rotating speed made the slag drops smaller, more spherical and uniform. Drops with 5 to 6 mm of average dimension were obtained at a rotating speed of 15 rps (900 rpm), and drops with about 1 mm at 50 rps (3000 rpm). In the former case, the shape of the obtained drops changed from spherical to ribbon-like. These results will be useful to establish new heat recovery processes with hydrogen generation from molten slag with many benefits. Energy analysis and cost evaluation were also conducted, to study the benefit of the proposed process. (orig.)

  19. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  20. Hydrogen Generator by Methane Pyrolysis with Carbon Capture, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop, fabricate, and test a system to provide 99.999% hydrogen by efficiently performing methane pyrolysis. The system has three unique...

  1. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Langlois, J.; Viala, J.

    1975-01-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  2. Use of Alkyl Ethers as Traceless Hydride Donors in Brønsted Acid-Catalyzed Intramolecular Hydrogen Atom Transfer.

    Science.gov (United States)

    Gandamana, Dhika Aditya; Wang, Bin; Tejo, Ciputra; Bolte, Benoit; Gagosz, Fabien; Chiba, Shunsuke

    2018-03-25

    A new protocol for the deoxygenation of alcohols and the hydrogenation of alkenes under Brønsted acid catalysis has been developed. The method is based on the use of a benzyl or an isopropyl ether as a traceless hydrogen atom donor and involves an intramolecular hydride transfer as a key step that can be achieved in regio- and stereoselective manners. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Complementary Strategies for Directed C(sp3)-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer.

    Science.gov (United States)

    Chu, John C K; Rovis, Tomislav

    2018-01-02

    The functionalization of C(sp 3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp 3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    Science.gov (United States)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  5. Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties

    Science.gov (United States)

    Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong

    2015-11-01

    In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.

  6. Metal-free hydrogenation catalyzed by an air-stable borane: use of solvent as a frustrated Lewis base.

    Science.gov (United States)

    Scott, Daniel J; Fuchter, Matthew J; Ashley, Andrew E

    2014-09-15

    In recent years 'frustrated Lewis pairs' (FLPs) have been shown to be effective metal-free catalysts for the hydrogenation of many unsaturated substrates. Even so, limited functional-group tolerance restricts the range of solvents in which FLP-mediated reactions can be performed, with all FLP-mediated hydrogenations reported to date carried out in non-donor hydrocarbon or chlorinated solvents. Herein we report that the bulky Lewis acids B(C6Cl5)x(C6F5)(3-x) (x=0-3) are capable of heterolytic H2 activation in the strong-donor solvent THF, in the absence of any additional Lewis base. This allows metal-free catalytic hydrogenations to be performed in donor solvent media under mild conditions; these systems are particularly effective for the hydrogenation of weakly basic substrates, including the first examples of metal-free catalytic hydrogenation of furan heterocycles. The air-stability of the most effective borane, B(C6Cl5)(C6F5)2, makes this a practically simple reaction method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Enterobacter aerogenes ADH-43 is a hydrogen gas (H2) producing mutant bacterium and a facultative anaerobic microbe. This double mutant was obtained by classical mutagenetically treated in order to enhance H2 production. In addition, this mutant has ability to degrade molasses from sugar factory as well as other ...

  8. Combustion of hydrogen-oxygen mixture in electrochemically generated nanobubbles

    NARCIS (Netherlands)

    Svetovoy, Vitaly; Sanders, Remco G.P.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    2011-01-01

    Ignition of exothermic chemical reactions in small volumes is considered as difficult or impossible due to the large surface-to-volume ratio. Here observation of the spontaneous reaction is reported between hydrogen and oxygen in bubbles whose diameter is smaller than a threshold value around 150

  9. Solar-hydrogen generation and solar concentration (Conference Presentation)

    NARCIS (Netherlands)

    Sulima, Oleg V.; Chinello, Enrico; Conibeer, Gavin; Modestino, Miquel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Domine, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe

    2016-01-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been

  10. Influence of hydrogen bonding on the generation and stabilization of ...

    Indian Academy of Sciences (India)

    ety totally vanquished liquid crystalline phases while biphenylene and naphthalene units did only reduce the transition .... firms the fact that during heating some of the amide–ester hydrogen bonds change into amide–amide ... their potential applications in LC displays, NLO materials, information storage devices etc. [12].

  11. Hydrogen peroxide inhibition of bicupin oxalate oxidase.

    Science.gov (United States)

    Goodwin, John M; Rana, Hassan; Ndungu, Joan; Chakrabarti, Gaurab; Moomaw, Ellen W

    2017-01-01

    Oxalate oxidase is a manganese containing enzyme that catalyzes the oxidation of oxalate to carbon dioxide in a reaction that is coupled with the reduction of oxygen to hydrogen peroxide. Oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx) is the first fungal and bicupin enzyme identified that catalyzes this reaction. Potential applications of oxalate oxidase for use in pancreatic cancer treatment, to prevent scaling in paper pulping, and in biofuel cells have highlighted the need to understand the extent of the hydrogen peroxide inhibition of the CsOxOx catalyzed oxidation of oxalate. We apply a membrane inlet mass spectrometry (MIMS) assay to directly measure initial rates of carbon dioxide formation and oxygen consumption in the presence and absence of hydrogen peroxide. This work demonstrates that hydrogen peroxide is both a reversible noncompetitive inhibitor of the CsOxOx catalyzed oxidation of oxalate and an irreversible inactivator. The build-up of the turnover-generated hydrogen peroxide product leads to the inactivation of the enzyme. The introduction of catalase to reaction mixtures protects the enzyme from inactivation allowing reactions to proceed to completion. Circular dichroism spectra indicate that no changes in global protein structure take place in the presence of hydrogen peroxide. Additionally, we show that the CsOxOx catalyzed reaction with the three carbon substrate mesoxalate consumes oxygen which is in contrast to previous proposals that it catalyzed a non-oxidative decarboxylation with this substrate.

  12. Analysis of Hydrogen Generation and Accumulation in U-233 Tube Vaults

    International Nuclear Information System (INIS)

    Ally, M.R.; Willis, K.J.

    1999-01-01

    The purpose of the 233 U Safe Storage Program is to enhance the safe storage of 233 U-bearing materials. This report describes the work done at the Oak Ridge National Laboratory's Radiochemical Development Facility (RDF) to address questions related to possible hydrogen generation and accumulation in 233 U tube vaults. The objective of this effort was to verify assumptions in the mathematical model used to estimate the hydrogen content of the gaseous atmosphere that possibly could occur inside the tube vaults in Building 3019 and to evaluate proposed measures for mitigating any hydrogen concerns. A mathematical model was developed using conservative assumptions to evaluate possible hydrogen generation and accumulation in the tube vaults. The model concluded that an equilibrium concentration would be established below the lower flammability limit (LFL) of 4.1% hydrogen. The major assumptions used in the model that were validated are as follows: (1) The shield plug does not form a seal with the tube vault wall, thus allowing the hydrogen gas to diffuse past the shield plug to the upper section of the tube vault. (2) The tube vault end-cap leaks sufficiently to allow air to be drawn into the tube vault by the off-gas system, thereby purging hydrogen from the upper section of the tube vault. (3) Any hydrogen gas generated completely mixes with the other gases present in the lower section of the tube vault and does not stratify beneath the shield plug. (4) The diffusion coefficient determined from the literature for constant diffusion of hydrogen in air is valid. The coefficient is corrected for temperatures from 0 to 25 C. Another assumption used in the model, that hydrogen generated by radiolytic decomposition of hydrogen-bearing materials (e.g., moisture and plastic) leaks from the cans under steady-state condition, as opposed to a sudden release resulting from rupture of the can(s), was beyond the scope of this investigation. Several parameters from the original

  13. A composite of borohydride and super absorbent polymer for hydrogen generation

    Science.gov (United States)

    Li, Z. P.; Liu, B. H.; Liu, F. F.; Xu, D.

    To develop a hydrogen source for underwater applications, a composite of sodium borohydride and super absorbent polymer (SAP) is prepared by ball milling sodium borohydride powder with SAP powder, and by dehydrating an alkaline borohydride gel. When sodium polyacrylate (NaPAA) is used as the SAP, the resulting composite exhibits a high rate of borohydride hydrolysis for hydrogen generation. A mechanism of hydrogen evolution from the NaBH 4-NaPAA composite is suggested based on structure analysis by X-ray diffraction and scanning electron microscopy. The effects of water and NiCl 2 content in the precursor solution on the hydrogen evolution behavior are investigated and discussed.

  14. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  15. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 4 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-31

    This publication includes 86 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2016. These CDPs include data from retail stations only.

  16. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    Science.gov (United States)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  17. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data Through Quarter 3 of 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-07

    This publication includes 80 composite data products (CDPs) produced in Spring 2016 for next generation hydrogen stations, with data through the third quarter of 2016. These CDPs include data from retail stations only.

  18. Workshop on Hydrogen Storage and Generation for Medium-Power and -Energy Applications

    National Research Council Canada - National Science Library

    Matthews, Michael

    1998-01-01

    This report summarizes the Workshop on Hydrogen Storage and Generation Technologies for Medium-Power and -Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida...

  19. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 2 of 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, Christopher D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peters, Michael C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-12-05

    This publication includes 92 composite data products (CDPs) produced for next generation hydrogen stations, with data through the second quarter of 2017. These CDPs include data from retail stations only.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  1. Composite mixed ion-electron conducting (MIEC) membranes for hydrogen generation and separation

    Science.gov (United States)

    Wang, Haibing

    Decomposition of steam under a chemical driving force at moderate temperatures (˜900°C) offers a convenient and economical way to generate hydrogen. A significant amount of hydrogen can be generated and separated by splitting steam and removing oxygen using a mixed ion-electron conducting (MIEC) membrane. In this work, Gd0.2Ce0.8O1.9-deltaGd 0.08Sr0.88Ti0.95Al0.05O3+/-delta MIEC membranes have been explored in which, Gd0.2Ce 0.8O1.9-delta (GDC) functions as a predominantly oxygen ionic conductor, and Gd0.08Sr0.88Ti0.95Al 0.05O3+/-delta (GSTA) functions as a predominantly n-type electronic conductor under the process conditions. During the hydrogen generation process, oxygen transports from the feed side to the permeate side through coupled diffusion of oxygen ions and electrons under an oxygen partial pressure gradient across membranes. This process results in a H2-rich product on the feed side and depleted fuel gases on the permeate side. In this work, membrane architectures comprising self-supported thick membranes and thin membranes supported on porous supports of the same composition have been studied. The effect of membrane thickness on hydrogen generation has been studied by measuring the area-specific hydrogen generation rates at different experimental conditions. Experimental results have shown that the hydrogen generation process for the thick membranes was controlled by the oxygen bulk diffusion through membranes, while the hydrogen generation process for the dense thin membranes was controlled by both the surface exchange reactions and oxygen bulk diffusion process. The area-specific hydrogen generation rates of the supported dense thin membranes were significantly enhanced by applying a porous catalytic layer onto the surface of the membrane. Experimental results showed that the area-specific hydrogen generation rates were higher when the surface catalytic layer was exposed to the feed side rather than the permeate side. A mathematical model for

  2. Insight into the mechanism of hydrogenation of amino acids to amino alcohols catalyzed by a heterogeneous MoO(x) -modified Rh catalyst.

    Science.gov (United States)

    Tamura, Masazumi; Tamura, Riku; Takeda, Yasuyuki; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-09

    Hydrogenation of amino acids to amino alcohols is a promising utilization of natural amino acids. We found that MoOx -modified Rh/SiO2 (Rh-MoOx /SiO2 ) is an efficient heterogeneous catalyst for the reaction at low temperature (323 K) and the addition of a small amount of MoOx drastically increases the activity and selectivity. Here, we report the catalytic potential of Rh-MoOx /SiO2 and the results of kinetic and spectroscopic studies to elucidate the reaction mechanism of Rh-MoOx /SiO2 catalyzed hydrogenation of amino acids to amino alcohols. Rh-MoOx /SiO2 is superior to previously reported catalysts in terms of activity and substrate scope. This reaction proceeds by direct formation of an aldehyde intermediate from the carboxylic acid moiety, which is different from the reported reaction mechanism. This mechanism can be attributed to the reactive hydride species and substrate adsorption caused by MoOx modification of Rh metal, which results in high activity, selectivity, and enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deuterium exchange at terminal boron--hydrogen bonds catalyzed by certain transition metal complexes. A qualitative study of selectivity and mechanism

    International Nuclear Information System (INIS)

    Hoel, E.L.; Talebinasab-Savari, M.; Hawthorne, M.F.

    1977-01-01

    A wide variety of substrates, including carboranes, metallocarboranes, and boron hydrides, were found to undergo catalytic isotopic exchange of terminal hydrogen with deuterium gas in the presence of various transition metal complexes. With (PPh 3 ) 3 RuHCl as catalyst, exchange was found to proceed with stereoselectivity indicative of nucleophilic attack at boron; e.g., the order of rates for deuterium incorporation at chemically nonequivalent sites in 1,2-C 2 B 10 H 12 was B(3,6) greater than B(4,5,7,11) greater than B(8,10) greater than B(9,12). Other catalysts, most notably the series of hydridometallocarboranes, (PPh 3 ) 2 HMC 2 B 9 H 11 (M = Rh, Ir), showed little or no stereoselectivity during deuterium exchange. Intermediate stereoselectivity was found with (PPh 3 ) 2 (CO)IrCl and (PPh 3 ) 2 IrCl species as catalysts, while exchange catalyzed by (AsPh 3 ) 2 IrCl exhibited the stereoselectivity found with (PPh 3 ) 3 RuHCl. A mechanism is postulated which rationalizes the varied results and which involves oxidative addition of boron--hydrogen bonds to catalytic species

  4. Low-Cost High-Pressure Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Cropley, Cecelia C.; Norman, Timothy J.

    2008-04-02

    Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic

  5. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    NARCIS (Netherlands)

    Álvarez, Andrea; Bansode, Atul; Urakawa, Atsushi; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon Sabate, J.; Kapteijn, F.

    2017-01-01

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main

  6. Precipitation of UO2 in sodium carbonate solutions by electrolytic hydrogen and catalyzed by Ni-Raney - Bibliography

    International Nuclear Information System (INIS)

    Pottier, P.

    1958-01-01

    This report proposes abstracts and short versions of a set of documents (studies, patents) dealing with the precipitation of uranium (notably in its oxide form, UO 2 ) in solutions of sodium carbonate. The main objective is to identify the interest of a chemical reduction by electrolytic hydrogen. The author makes a distinction between the most relevant documents and those relatively relevant ones [fr

  7. The impact of Metal-Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer

    NARCIS (Netherlands)

    Filonenko, G.A.; Conley, M.P.; Copéret, C.; Lutz, M.; Hensen, E.J.M.; Pidko, E.A.

    2013-01-01

    The metal–ligand cooperative activation of CO2 with pyridine-based ruthenium PNP pincer catalysts leads to pronounced inhibition of the activity in the catalytic CO2 hydrogenation to formic acid. The addition of water restores catalytic performance by activating alternative reaction pathways and

  8. Highly Chemoselective Hydrogenation of 2-Ethylanthraquinone to 2-Ethylanthrahydroquinone Catalyzed by Palladium Metal Dispersed inside Highly Lipophilic Functional Resins

    Czech Academy of Sciences Publication Activity Database

    Biffis, A.; Ricoveri, R.; Campestrini, S.; Králik, M.; Jeřábek, Karel; Corain, B.

    2002-01-01

    Roč. 8, č. 13 (2002), s. 2962-2967 ISSN 0947-6539 R&D Projects: GA ČR GA104/99/0125 Grant - others:MURST(IT) 9903558918 Keywords : functional resins * heterogeneous catalysis * hydrogen peroxide Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.238, year: 2002

  9. The hydrolysis of epoxides catalyzed by inorganic ammonium salts in water: kinetic evidence for hydrogen bond catalysis.

    Science.gov (United States)

    Nozière, B; Fache, F; Maxut, A; Fenet, B; Baudouin, A; Fine, L; Ferronato, C

    2018-01-17

    Naturally-occurring inorganic ammonium ions have been recently reported as efficient catalysts for some organic reactions in water, which contributes to the understanding of the chemistry in some natural environments (soils, seawater, atmospheric aerosols, …) and biological systems, and is also potentially interesting for green chemistry as many of their salts are cheap and non-toxic. In this work, the effect of NH 4 + ions on the hydrolysis of small epoxides in water was studied kinetically. The presence of NH 4 + increased the hydrolysis rate by a factor of 6 to 25 compared to pure water and these catalytic effects were shown not to result from other ions, counter-ions or from acid or base catalysis, general or specific. The small amounts of amino alcohols produced in the reactions were identified as the actual catalysts by obtaining a strong acceleration of the reactions when adding these compounds directly to the epoxides in water. Replacing the amino alcohols by other strong hydrogen-bond donors, such as trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) gave the same results, demonstrating that the kinetics of these reactions was driven by hydrogen-bond catalysis. Because of the presence of many hydrogen-bond donors in natural environments (for instance amines and hydroxy-containing compounds), hydrogen-bond catalysis is likely to contribute to many reaction rates in these environments.

  10. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water.

    Science.gov (United States)

    Starkl Renar, K; Pečar, S; Iskra, J

    2015-09-28

    Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72-99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst. The reactions were more selective than with 100% H2O2 and due to neutral conditions also less stable products could be obtained.

  11. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  12. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  13. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  14. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Science.gov (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  15. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  16. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    Science.gov (United States)

    2017-01-01

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions. PMID:28656757

  17. Process for recycling waste aluminum with generation of high-pressure hydrogen.

    Science.gov (United States)

    Hiraki, Takehito; Yamauchi, Satoru; Iida, Masayasu; Uesugi, Hiroshi; Akiyama, Tomohiro

    2007-06-15

    An innovative environmently friendly hydrolysis process for recycling waste aluminum with the generation of high-pressure hydrogen has been proposed and experimentally validated. The effect of the concentration of sodium hydroxide solution on hydrogen generation rate was the main focus of the study. In the experiments, distilled water and aluminum powder were placed in the pressure-resistance reactor made of Hastelloy, and was compressed to a desired constant water pressure using a liquid pump. The sodium hydroxide solution was supplied by liquid pump with different concentrations (from 1.0 to 5.0 mol/dm3) at a constant flow rate into the reactor by replacing the distilled water, and the rate of hydrogen generated was measured simultaneously. The liquid temperature in the reactor increased due to the exothermic reaction given by Al + OH(-) + 3H2O = 1.5H2 + Al(OH)4(-) + 415.6 kJ. Therefore, a high-pressure hydrogen was generated at room temperature by mixing waste aluminum and sodium hydroxide solution. As the hydrogen compressor used in this process consumes less energy than the conventional one, the generation of hydrogen having a pressure of almost 30 MPa was experimentally validated together with Al(OH)3, a useful byproduct.

  18. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  19. Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine-diphosphine ligands.

    Science.gov (United States)

    Liu, Chong; Xie, Jian-Hua; Tian, Gui-Long; Li, Wei; Zhou, Qi-Lin

    2015-05-01

    A new iridium catalyst containing an imine-diphosphine ligand has been developed, which showed high efficiency for the hydrogenation of CO 2 to formate (yield up to 99%, TON up to 450 000). A possible catalytic mechanism is proposed, in which the imine group of the catalyst plays a key role in the cleavage of H 2 and the activation of CO 2 .

  20. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity.

    Science.gov (United States)

    Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Ben-David, Yehoshoa; Milstein, David

    2011-10-10

    A highly active iron catalyst for the hydrogenation of carbon dioxide and bicarbonates works under remarkably low pressures and achieves activities similar to some of the best noble metal catalysts. A mechanism is proposed involving the direct attack of an iron trans-dihydride on carbon dioxide, followed by ligand exchange and dihydrogen coordination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH

    Science.gov (United States)

    Song, Jian-zheng; Zhao, Zi-yang; Zhao, Xin; Fu, Rui-dong; Han, Shu-min

    2017-10-01

    To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, under the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.

  2. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  3. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  4. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized...... evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...

  5. Defects generation by hydrogen passivation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.; Boldyryeva, Hanna; Macková, Anna; Peřina, Vratislav

    2006-01-01

    Roč. 80, - (2006), s. 653-657 ISSN 0038-092X R&D Projects: GA MŽP(CZ) SM/300/1/03; GA MŽP(CZ) SN/3/172/05; GA AV ČR IAA1010413; GA ČR(CZ) GD202/05/H003; GA AV ČR IAA1010316 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : hydrogen passivation * ERDA * photoluminescence * Raman spectroscopy * Si-H 2 bonding * H 2 molecules * grain size. Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.431, year: 2006

  6. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine...... Proteobacteria, tested in microtiter plates. However, enzymatically produced H2O2 released from a coating did not impede biofilm formation by bacteria in natural seawater tested in a biofilm reactor. A field trial revealed a noticeable effect of the enzyme system: after immersion in the North Sea for 97 days...

  7. Technological forecasting applied to the processes of hydrogen generation; Previsao tecnologica sobre os processos de geracao de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Milton Satocy; Oliveira, Wagner dos Santos [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mails: msnakano@usp.br; wagner@ipen.br

    2008-11-15

    Fuel cells are attracting interest as efficient and clean energy conversion devices. Hydrogen is the combustible of the fuel cells and must be generated by an efficient and clean method. This work exploits Delphi methodology of technological forecasting applied to hydrogen generation and identifies the most probable methods that, in future, can be used to obtain hydrogen in Brazil. (author)

  8. CATALYTIC INTERACTIONS OF RHODIUM, RUTHENIUM, AND MERCURY DURING SIMULATED DWPF CPC PROCESSING WITH HYDROGEN GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-10-09

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC) vessels were performed as part of the ongoing investigation into catalytic hydrogen generation. Rhodium, ruthenium, and mercury have been identified as the principal elemental factors affecting the peak hydrogen generation rate in the DWPF Sludge Receipt and Adjustment Tank (SRAT) for a given acid addition. The primary goal of this study is to identify any significant interactions between the three factors. Noble metal concentrations were similar to recent sludge batches. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%. An experimental matrix was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), two duplicate midpoint runs, and two additional replicate runs to assess reproducibility away from the midpoint. Midpoint testing can identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. Six Slurry Mix Evaporator (SME) cycles were performed to supplement the SME hydrogen generation database. Some of the preliminary findings from this study include: (1) Rh was linked to the maximum SRAT hydrogen generation rate in the first two hours after acid addition in preliminary statistical modeling. (2) Ru was linked conclusively to the maximum SRAT hydrogen generation rate in the last four hours of reflux in preliminary statistical modeling. (3) Increasing the ratio of Hg/Rh shifted the noble metal controlling the maximum SRAT hydrogen generation rate from

  9. Precise characterization of self-catalyzed III-V nanowire heterostructures via optical second harmonic generation

    Science.gov (United States)

    Yu, Ying; Wang, Jing; Wei, Yu-Ming; Zhou, Zhang-Kai; Ni, Hai-Qiao; Niu, Zhi-Chuan; Wang, Xue-Hua; Yu, Si-Yuan

    2017-09-01

    We demonstrate the utility of optical second harmonic generation (SHG) polarimetry to perform structural characterization of self-assembled zinc-blende/wurtzite III-V nanowire heterostructures. By analyzing four anisotropic SHG polarimetric patterns, we distinguish between wurtzite (WZ), zinc-blende (ZB) and ZB/WZ mixing III-V semiconducting crystal structures in nanowire systems. By neglecting the surface contributions and treating the bulk crystal within the quasi-static approximation, we can well explain the optical SHG polarimetry from the NWs with diameter from 200-600 nm. We show that the optical in-coupling and out-coupling coefficients arising from depolarization field can determine the polarization of the SHG. We also demonstrate micro-photoluminescence of GaAs quantum dots in related ZB and ZB/WZ mixing sections of core-shell NW structure, in agreement with the SHG polarimetry results. The ability to perform in situ SHG-based crystallographic study of semiconducting single and multi-crystalline nanowire heterostructures will be useful in displaying structure-property relationships of nanodevices.

  10. The influence of anionic vesicles on the oligomerization of p-leaminodiphenylamine catalyzed by horseradish peroxidase and hydrogen peroxide

    OpenAIRE

    Luginbuehl Sandra; Milojevic-Rakic Maja; Junker Katja; Bajuk-Bogdanovic Danica; Pasti Igor; Kissner Reinhard; Ciric-Marjanovic Gordana; Walde Peter

    2017-01-01

    The aniline dimer N phenyl 14 phenylenediamine (=p aminodiphenylamine PADPA) was oxidized with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide (H2O2) to oligo(PADPA) in an aqueous suspension of 80–100 nm sized anionic vesicles at pH = 4.3 and at T ˜ 25 °C. The vesicles were formed from AOT (=sodium bis(2 ethylhexyl) sulfosuccinate) and served as templates for obtaining oligo(PADPA) as emeraldine salt form of polyaniline (PANI ES) in the polaron form. The optimal reaction condi...

  11. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  12. Solid-state-reaction synthesis of cotton-like CoB alloy at room temperature as a catalyst for hydrogen generation.

    Science.gov (United States)

    Wang, Xingpu; Liao, Jinyun; Li, Hao; Wang, Hui; Wang, Rongfang

    2016-08-01

    A novel room-temperature solid-state reaction is developed to synthesize cotton-like CoB alloy (CoBSSR) catalysts with a large specific surface area of 222.4m(2)g(-1). In the hydrolysis of ammonia borane catalyzed by the CoBSSR, the rate of hydrogen generation can reach 68.7mLmin(-1) with a turnover frequency (TOF) value of ca. 6.9Lhydrogenmin(-1)gcatalyst(-1) at 25°C. The TOF value is about 2 times as large as that of CoB alloy prepared by a regular solid-state reaction, which is also much higher than those of the CoB catalysts recently reported in the literature. The activation energy of the hydrolysis of ammonia borane catalyzed by the CoBSSR is as low as 22.78kJmol(-1), hinting that the CoBSSR possesses high catalytic activity, which may be attributed to the large specific surface area and the abundant porous structure. The high catalytic performance, good recoverability and low cost of the CoBSSR enable it to be a promissing catalyst condidate in the hydrolysis of ammonia borane for hydrogen production in commercial application. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  14. Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.

    Science.gov (United States)

    Umile, Thomas P; Wang, Dong; Groves, John T

    2011-10-17

    Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate

  15. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  16. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  17. Hydrogenation vs. H-D isotope scrambling during the conversion of ethylene with hydrogen/deuterium catalyzed by platinum under single-collision conditions.

    Science.gov (United States)

    Dong, Yujung; Ebrahimi, Maryam; Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-07-28

    The catalytic hydrogenation of olefins promoted by transition metals, represented here by the conversion of ethylene with platinum, was studied under a unique regime representing pressures in the mTorr range and single-collision conditions. Isotope labeling was used to follow the concurrent H-D exchange steps that occur during this conversion. Multiple isotope substitutions were observed in the resulting ethane products, reflecting the operability of the reversible stepwise mechanism proposed a long time ago by Horiuti and Polanyi. In fact, the ethane isotopologue distributions obtained in these experiments reflect a much higher probability for the dehydrogenation of ethyl intermediates back to the olefin, relative to the hydrogenation to ethane, than typically seen in this catalysis. In addition, a second mechanistic pathway was clearly identified, responsible for most of the dideuteroethane produced. Based on the dependence of the rates of formation of each isotopologue on the fluxes of deuterium and ethylene, it is argued that this second route may be a "reverse" Eley-Rideal step between gas-phase ethylene and two deuterium atoms adsorbed on adjacent sites of the platinum surface. The clear identification of this second pathway is new, and was possible thanks to our ability to explore a new single-collision intermediate pressure regime.

  18. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  19. Direct steam reforming of diesel and diesel–biodiesel blends for distributed hydrogen generation

    OpenAIRE

    Martin, Stefan; Kraaij, Gerard; Ascher, Torsten; Baltzopoulou, Penelope; Karagiannakis, George; Wails, David; Wörner, Antje

    2015-01-01

    Distributed hydrogen generation from liquid fuels has attracted increasing attention in the past years. Petroleum-derived fuels with already existing infrastructure benefit from high volumetric and gravimetric energy densities, making them an interesting option for cost competitive decentralized hydrogen production. In the present study, direct steam reforming of diesel and diesel blends (7 vol.% biodiesel) is investigated at various operating conditions using a proprietary precious metal ...

  20. Lessons learned from hydrogen generation and burning during the TMI-2 event

    International Nuclear Information System (INIS)

    Henrie, J.O.; Postma, A.K.

    1987-05-01

    This document summarizes what has been learned from generation of hydrogen in the reactor core and the hydrogen burn that occurred in the containment building of the Three Mile Island Unit No. 2 (TMI-2) nuclear power plant on March 28, 1979. During the TMI-2 loss-of-coolant accident (LOCA), a large quantity of hydrogen was generated by a zirconium-water reaction. The hydrogen burn that occurred 9 h and 50 min after the initiation of the TMI-2 accident went essentially unnoticed for the first few days. Even through the burn increased the containment gas temperature and pressure to 1200 0 F (650 0 C) and 29 lb/in 2 (200 kPa) gage, there was no serious threat to the containment building. The processes, rates, and quantities of hydrogen gas generated and removed during and following the LOCA are described in this report. In addition, the methods which were used to define the conditions that existed in the containment building before, during, and after the hydrogen burn are described. The results of data evaluations and engineering calculations are presented to show the pressure and temperature histories of the atmosphere in various containment segments during and after the burn. Material and equipment in reactor containment buildings can be protected from burn damage by the use of relatively simple enclosures or insulation

  1. Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis

    Science.gov (United States)

    Xu, Yanmin; Wu, Chaoling; Chen, Yungui; Huang, Zhifen; Luo, Linshan; Wu, Haiwen; Liu, Peipei

    2014-09-01

    In this work, NH3BH3 (AB) is used to induce hydrogen generation during NaBH4 (SB) hydrolysis in order to reduce the use of catalysts, simplify the preparation process, reduce the cost and improve desorption kinetics and hydrogen capacity as well. xNaBH4-yNH3BH3 composites are prepared by ball-milling in different proportions (from x:y = 1:1 to 8:1). The experimental results demonstrate that all composites can release more than 90% of hydrogen at 70 °C within 1 h, and their hydrogen yields can reach 9 wt% (taking reacted water into account). Among them, the composites in the proportion of 4:1 and 5:1, whose hydrogen yields reach no less than 10 wt%, show the best hydrogen generation properties. This is due to the impact of the following aspects: AB additive improves the dispersibility of SB particles, makes the composite more porous, hampers the generated metaborate from adhering to the surface of SB, and decreases the pH value of the composite during hydrolysis. The main solid byproduct of this hydrolysis system is NaBO2·2H2O. By hydrolytic kinetic simulation of the composites, the fitted activation energies of the complexes are between 37.2 and 45.6 kJ mol-1, which are comparable to the catalytic system with some precious metals and alloys.

  2. Platinum-functionalized black phosphorus hydrogen sensors

    Science.gov (United States)

    Lee, Geonyeop; Jung, Sunwoo; Jang, Soohwan; Kim, Jihyun

    2017-06-01

    Black phosphorus (BP), especially in its two-dimensional (2D) form, is an intriguing material because it exhibits higher chemical sensing ability as compared to other thin-film and 2D materials. However, its implementation into hydrogen sensors has been limited due to its insensitivity toward hydrogen. We functionalized exfoliated BP flakes with Pt nanoparticles to improve their hydrogen sensing efficiency. Pt-functionalized BP sensors with back-gated field-effect transistor configuration exhibited a fast response/decay, excellent reproducibility, and high sensitivities (over 50%) at room temperature. Langmuir isotherm model was employed to analyze the Pt-catalyzed BP sensors. Furthermore, the activation energy of hydrogen adsorption on Pt-decorated BP was evaluated, which is equal to the change in work function resulting from hydrogen adsorption on the Pt(111) surface. These results demonstrate that Pt-catalyzed BP exhibits a great potential for next-generation hydrogen sensors.

  3. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  4. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  5. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    , which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  6. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Pankaj Chowdhury

    2017-05-01

    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  7. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  8. Application of a new amidophosphite ligand to Rh-catalyzed asymmetric hydrogenation of β-dehydroamino acid derivatives in supercritical carbon dioxide: activation effect of protic Co-solvents.

    Science.gov (United States)

    Lyubimov, Sergey E; Rastorguev, Eugenie A; Davankov, Vadim A

    2011-09-01

    New chiral amidophosphite ligand was synthesized and tested in the Rh-catalyzed asymmetric hydrogenation of (Z)-β-(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO(2) ) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO(2) containing 1,1,1,3,3,3-hexafluoro-2-propanol, compared to neat protic solvents. Copyright © 2011 Wiley-Liss, Inc.

  9. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Lecturer

    2012-05-03

    % total sugar concentration of sugar ... 107 cfu/ml, pH was nearly constant at 6.0, and finally the H2 was drifted to fuel cell to generate electrical power until 4 V ..... hybrid system, reverse micelles and by metabolic engi- neering.

  10. Synthesis of alpha,beta-unsaturated 4,5-disubstituted gamma-lactones via ring-closing metathesis catalyzed by the first-generation Grubbs' catalyst.

    Science.gov (United States)

    Bassetti, Mauro; D'Annibale, Andrea; Fanfoni, Alessia; Minissi, Franco

    2005-04-28

    [reaction: see text] 4-Methyl-5-alkyl-2(5H)-furanones have been prepared by ruthenium-catalyzed ring-closing metathesis of the suitable methallyl acrylates. Despite the electron deficiency of the conjugated double bond and of the gem-disubstitution of the allylic alkene moiety in the starting acrylates, the first-generation Grubbs' catalyst I proved to be an effective promoter for the ring closure, affording the expected butenolides in good to high yields.

  11. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  12. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    Science.gov (United States)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet–visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h‑1·mol-catalyst‑1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol‑1.

  13. Zircaloy oxidation and hydrogen generation behavior during severe accidents

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Miller, R.W.; Osetek, D.J.

    1987-01-01

    Zircaloy oxidation and H 2 generation data are presented for recent in-pile severe fuel damage tests. The principal questions investigated concern zircaloy melting and bundle reconfiguration effects on oxidation behavior. A comparison of H 2 generation and cladding temperature data indicate that significant oxidation occurred after the onset of fuel liquefaction. Posttest metallographic observations of the test debris also indicate a high degree of oxidation of once-molten zircaloy. Analysis of bundle reconfiguration effects indicate that essentially complete flow area blockage (>98%) would be required to retard steam flow through the degraded bundle so as to diminish H 2 production. Such extreme blockage conditions are not supported by posttest bundle examination

  14. A reforming system for co-generation of hydrogen and mechanical work from methanol

    Science.gov (United States)

    Lyubovsky, Maxim; Walsh, Dennis

    The paper describes a reforming system for converting methanol into pure hydrogen. The system is based on an autothermal reforming reactor operating at elevated pressures followed by membrane-based hydrogen separation. The high-pressure membrane retentate stream is combusted and expanded through a turbine generating additional power. Process simulation illustrates the effects of the system operating parameters on performance and demonstrates system reforming efficiency up to ∼90%. When coupled with a PEM fuel cell and an electrical generator, overall fuel to electricity efficiency can be >48% depending upon the efficiency of a PEM fuel cell stack.

  15. Reforming system for co-generation of hydrogen and mechanical work

    Science.gov (United States)

    Lyubovsky, Maxim; Walsh, Dennis

    The paper describes a new design for a reforming system for converting hydrocarbon fuels into pure hydrogen. The system is based on an autothermal reforming (ATR) reactor operating at elevated pressures followed by membrane-based hydrogen separation. The high-pressure membrane discharge stream is combusted and expanded through a turbine generating additional power. Process simulation modeling illustrates the effect of pressure and other operating parameters on system performance and demonstrates a system reforming efficiency approaching 80%. When coupled with a PEM fuel cell and an electrical generator, fuel to electricity efficiency is above 40%. Other anticipated benefits of the system include compact size, simplicity in control and fast start up.

  16. Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyl)tetrazolate Metal-Organic Frameworks.

    Science.gov (United States)

    Martins, Luísa; Nasani, Rajendar; Saha, Manideepa; Mobin, Shaikh; Mukhopadhyay, Suman; Pombeiro, Armando

    2015-10-21

    Microwave assisted synthesis of the Cu(I) compound [Cu(µ₄-4-ptz)]n [1, 4-ptz=5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu₃(µ₃-4-ptz)₄(µ₂-N₃)₂(DMF)₂]n∙(DMF)2n (2) and [Cu(µ₂-4-ptz)₂(H₂O)₂]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H₂O₂) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h(-1)), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1-3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

  17. Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyltetrazolate Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Luísa Martins

    2015-10-01

    Full Text Available Microwave assisted synthesis of the Cu(I compound [Cu(µ4-4-ptz]n [1, 4-ptz = 5-(4-pyridyltetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II compounds [Cu3(µ3-4-ptz4(µ2-N32(DMF2]n∙(DMF2n (2 and [Cu(µ2-4-ptz2(H2O2]n (3 using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane with aqueous hydrogen peroxide, under very mild conditions (at room temperature, without any added solvent or additive. The most efficient system (2/H2O2 showed, for the oxidation of cyclohexane, a turnover number (TON of 396 (TOF of 40 h−1, with an overall product yield (cyclohexanol and cyclohexanone of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

  18. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    Energy Technology Data Exchange (ETDEWEB)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.; Shi, Hui; Gutierrez, Oliver Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-11-01

    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. The activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.

  19. Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Thomas L.; Kelly, Nelson A. [General Motors Research and Development Center, Chemical Science and Material Systems Laboratory, Mail Code 480-106-269, 30500 Mound Road, Warren, MI 48090-9055 (United States)

    2010-02-15

    Hydrogen fuel for fuel cell vehicles can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In the past, this renewable means of hydrogen production has suffered from low efficiency (2-6%), which increased the area of the PV array required and therefore, the cost of generating hydrogen. A comprehensive mathematical model was developed that can predict the efficiency of a PV-electrolyzer combination based on operating parameters including voltage, current, temperature, and gas output pressure. This model has been used to design optimized PV-electrolyzer systems with maximum solar energy to hydrogen efficiency. In this research, the electrical efficiency of the PV-electrolysis system was increased by matching the maximum power output and voltage of the photovoltaics to the operating voltage of a proton exchange membrane (PEM) electrolyzer, and optimizing the effects of electrolyzer operating current, and temperature. The operating temperature of the PV modules was also an important factor studied in this research to increase efficiency. The optimized PV-electrolysis system increased the hydrogen generation efficiency to 12.4% for a solar powered PV-PEM electrolyzer that could supply enough hydrogen to operate a fuel cell vehicle. (author)

  20. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  1. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  2. Generating hydrogen for mobile devices; Wasserstofferzeugung fuer die mobile Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, W. [Vodafone Pilotentwicklung GmbH, Muenchen (Germany)

    2001-10-01

    In future vehicles, more and more functions will be powered by electricity. These are for example ''steer by wire'', ''break by wire'', air conditioning and infotainment. This growing demand for electricity is a new challenge for the automotive industry. The so called APU (auxilliary power unit) is a convincing solution. This power generating unit based on fuel cell technology will provide electrical power in all operation situations. The article deals with the main focus of P{sup 21}-power for the 21st century, the Mannesmann Fuel Cell Product Center of the Vodafone Pilotentwicklung. (orig.)

  3. Molecular beam study of the mechanism of catalyzed hydrogen--deuterium exchange on platinum single crystal surfaces

    International Nuclear Information System (INIS)

    Bernasek, S.L.; Somorjai, G.A.

    1975-01-01

    The hydrogen--deuterium exchange reaction was studied by molecular beam scattering on low and high Miller index crystal faces of platinum in the surface temperature range of 300--1300degreeK. Under the condition of the experiments which put strict limitation on the residence time of the detected molecules, the reaction product, HD, was readily detectable from the high Miller index, stepped surfaces (integrated reaction probability, defined as total desorbed HD flux divided by D 2 flux, is approx.10/sup -1/) while HD formation was below the limit of detectability on the Pt(111) low Miller index surface (reaction probability 2 beam pressure and half-order in H 2 background pressure. The absence of beam kinetic energy dependence of the rate indicates that the molecular adsorption does not require activation energy. The surface is able to store a sufficiently large concentration of atoms which react with the molecules by a two-branch mechanism. The rate constants for this two-branch mechanism were determined under conditions of constant H atom coverage, reducing the bimolecular reaction to a pseudo-first-order reaction. At lower temperatures ( 1 = (2plus-or-minus1) times10 5 exp(-4.5plus-or-minus0.5 kcal/RT) sec/sup -1/. The rate determining step appears to be the diffusion of the D 2 molecule on the surface to a step site where HD is formed via a three-center (atom--molecule) reaction, or via a two-center (atom--atom) reaction subsequent to D 2 dissociation at the step. At higher temperatures (>600degreeK) the reaction between an adsorbed H atom and an incident D 2 gas molecule competes with the low temperature branch. The rate constant for this branch is k 2 = (1plus-or-minus2) times10 2 exp(-0.6plus-or-minus0.3 kcal/RT) sec/sup -1/

  4. Mixing of radiolytic hydrogen generated within a containment compartment following a LOCA

    International Nuclear Information System (INIS)

    Willcutt, G.J.E. Jr.; Gido, R.G.

    1978-07-01

    The objective of this work was to determine hydrogen concentration variations with position and time in a closed containment compartment with radiolytic hydrogen generation in the water on the compartment floor following a Loss-of-Coolant-Accident (LOCA). One application is to determine the potential difference between the compartment maximum hydrogen concentration and a hydrogen detector reading, due to the detector location. Three possible mechanisms for hydrogen transport in the compartment were investigated: (1) molecular diffusion, (2) possible bubble formation and motion, and (3) natural convection flows. A base case cubic compartment with 6.55-m (21.5-ft) height was analyzed. Parameter studies were used to determine the sensitivity of results to compartment size, hydrogen generation rates, diffusion coefficients, and the temperature difference between the floor and the ceiling and walls of the compartment. Diffusion modeling indicates that if no other mixing mechanism is present for the base case, the maximum hydrogen volume percent (vol percent) concentration difference between the compartment floor and ceiling will be 4.8 percent. It will be 24.5 days before the maximum concentration difference is less than 0.5 percent. Bubbles do not appear to be a potential source of hydrogen pocketing in a containment compartment. Compartment natural convection circulation rates for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls are estimated to be at least the equivalent of 1 compartment volume per hour and probably in the range of 4 to 9 compartment volumes per hour. Related natural convection studies indicate there will be turbulent mixing in the compartment for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls

  5. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Melter feed preparation processes, incorporating a final wash of the precipitate slurry feed to Defense Waste Processing Facility (DWPF) and a partial substitution of the SRAT formic acid requirement with nitric acid, should not produce peak hydrogen generation rates during Cold Chemical Runs (CCR's) and radioactive operation greater than their current, respective hydrogen design bases of 0.024 lb/hr and 1.5 lb/hr. A single SRAT bench-scale process simulation for CCR-s produced a DWPF equivalent peak hydrogen generation rate of 0.004 lb/hr. During radioactive operation, the peak hydrogen generation rate will be dependent on the extent DWPF deviates from the nominal precipitate hydrolysis and melter feed preparation process operating parameters. Two actual radioactive sludges were treated according to the new flowsheets. The peak hydrogen evolution rates were equivalent to 0.038 and 0.20 lb/hr (DWPF scale) respectively. Compared to the formic acid -- HAN hydrolysis flowsheets, these peak rates were reduced by a factor of 2.5 and 3.4 for Tank 15 and Tank 11 sludges, respectively

  6. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  7. A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method

    DEFF Research Database (Denmark)

    Kromann, Jimmy Charnley; Christensen, Anders Steen; Svendsen, Casper Steinmann

    2014-01-01

    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction en...... vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible....

  8. Generation of hydrogen rich gas through fluidized bed gasification of biomass.

    Science.gov (United States)

    Karmakar, M K; Datta, A B

    2011-01-01

    The objective of this study was to investigate the process of generating hydrogen rich syngas through thermo chemical fluidized bed gasification of biomass. The experiments were performed in a laboratory scale externally heated biomass gasifier. Rice husk had been taken as a representative biomass and, steam had been used as the fluidizing and gasifying media. A thermodynamic equilibrium model was used to predict the gasification process. The work included the parametric study of process parameters such as reactor temperature and steam biomass ratio which generally influence the percentage of hydrogen content in the product gas. Steam had been used here to generate nitrogen free product gas and also to increase the hydrogen concentration in syngas with a medium range heating value of around 12 MJ/Nm3. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Start up system for hydrogen generator used with an internal combustion engine

    Science.gov (United States)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  10. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

  11. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  12. Fuel processor and method for generating hydrogen for fuel cells

    Science.gov (United States)

    Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  13. Photocatalytic generation of hydrogen under visible light on La2CuO4

    Indian Academy of Sciences (India)

    1043–1048. c Indian Academy of Sciences. Photocatalytic generation of hydrogen under visible light on La2CuO4 .... phase was identified by X-ray diffraction using Cu Kα radi- ation (λ = 0.154178 nm). The diffuse ..... Omeiri S, Allalou N, Rekhila G, Bessekhouad Y and Trari M. 2013 Appl. Nanosci. 1 8. 10. Tiwari S and ...

  14. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Science.gov (United States)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  15. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    Science.gov (United States)

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  16. Hydrogen peroxide catalytic decomposition

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  17. EMPIRICAL RATE EQUATION MODEL and RATE CALCULATIONS OF HYDROGEN GENERATION FOR HANFORD TANK WASTE

    International Nuclear Information System (INIS)

    HU, T.A.

    2004-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty-eight tanks shows agreement within a factor of three. Revision 1 incorporates the available new data to update the equations. It also includes the contribution from total alpha to radiolysis

  18. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  19. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  20. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  1. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  2. Estudio cinético de la descomposición catalizada de peróxido de hidrógeno sobre carbón activado Kinetic study of the catalyzed decomposition of hydrogen peroxide on activated carbon

    Directory of Open Access Journals (Sweden)

    Elihu Paternina

    2009-01-01

    Full Text Available The kinetic study of decomposition of hydrogen peroxide catalyzed by activated carbon was carried out. The effect of concentrations of reactants and temperature were experimentally studied. Kinetic data were evaluated using differential method of initial rates of reaction. When a typical kinetic law for reactions in homogeneous phase is used, first order of reaction is obtained for hydrogen peroxide and activated carbon, and activation energy of 27 kJ mol-1 for the reaction was estimated. Experimentally was observed that surface of activated carbon is chemically modified during decomposition of hydrogen peroxide, based on this result a scheme of reaction was proposed and evaluated. Experimental data fits very well to a Langmuir- Hinshelwood kinetic model and activation energy of 40 kJ mol-1 was estimated for reaction in heterogeneous phase.

  3. Comparative study of the hydrogen generation during short term station blackout (STSBO) in a BWR

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.A.; Espinosa-Paredes, G.

    2015-01-01

    Highlights: • Comparative study of generation in a simulated STSBO severe accident. • MELCOR and SCDAP/RELAP5 codes were used to understanding the main phenomena. • Both codes present similar thermal-hydraulic behavior for pressure and boil off. • SCDAP/RELAP5 predicts 15.8% lower hydrogen production than MELCOR. - Abstract: The aim of this work is the comparative study of hydrogen generation and the associated parameters in a simulated severe accident of a short-term station blackout (STSBO) in a typical BWR-5 with Mark-II containment. MELCOR (v.1.8.6) and SCDAP/RELAP5 (Mod.3.4) codes were used to understand the main phenomena in the STSBO event through the results comparison obtained from simulations with these codes. Due that the simulation scope of SCDAP/RELAP5 is limited to failure of the vessel pressure boundary, the comparison was focused on in-vessel severe accident phenomena; with a special interest in the vessel pressure, boil of cooling, core temperature, and hydrogen generation. The results show that at the beginning of the scenario, both codes present similar thermal-hydraulic behavior for pressure and boil off of cooling, but during the relocation, the pressure and boil off, present differences in timing and order of magnitude. Both codes predict in similar time the beginning of melting material drop to the lower head. As far as the hydrogen production rate, SCDAP/RELAP5 predicts 15.8% lower production than MELCOR

  4. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    Science.gov (United States)

    Cremer, J. T.; Williams, D. L.; Gary, C. K.; Piestrup, M. A.; Faber, D. R.; Fuller, M. J.; Vainionpaa, J. H.; Apodaca, M.; Pantell, R. H.; Feinstein, J.

    2012-05-01

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 109 n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  5. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    International Nuclear Information System (INIS)

    Cremer, J.T.; Williams, D.L.; Gary, C.K.; Piestrup, M.A.; Faber, D.R.; Fuller, M.J.; Vainionpaa, J.H.; Apodaca, M.; Pantell, R.H.; Feinstein, J.

    2012-01-01

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5–50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 10 9 n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  6. Thermodynamic analysis of a solar-based multi-generation system with hydrogen production

    International Nuclear Information System (INIS)

    Ozturk, Murat; Dincer, Ibrahim

    2013-01-01

    Thermodynamic analysis of a renewable-based multi-generation energy production system which produces a number of outputs, such as power, heating, cooling, hot water, hydrogen and oxygen is conducted. This solar-based multi-generation system consists of four main sub-systems: Rankine cycle, organic Rankine cycle, absorption cooling and heating, and hydrogen production and utilization. Exergy destruction ratios and rates, power or heat transfer rates, energy and exergy efficiencies of the system components are carried out. Some parametric studies are performed in order to examine the effects of varying operating conditions (e.g., reference temperature, direct solar radiation and receiver temperature) on the exergy efficiencies of the sub-systems as well as the whole system. The solar-based multi-generation system which has an exergy efficiency of 57.35%, is obtained to be higher than using these sub-systems separately. The evaluation of the exergy efficiency and exergy destruction for the sub-systems and the overall system show that the parabolic dish collectors have the highest exergy destruction rate among constituent parts of the solar-based multi-generation system, due to high temperature difference between the working fluid and collector receivers. -- Highlights: ► Development of a new multi-generation system for solar-based hydrogen production. ► Investigation of exergy efficiencies and destructions in each process of the system. ► Evaluation of varying operating conditions on the exergy destruction and efficiency

  7. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    Science.gov (United States)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  8. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking.

    Science.gov (United States)

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-05-02

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample's posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress.

  9. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    Science.gov (United States)

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  10. Hydrogen generation from water using Mg nanopowder produced by arc plasma method

    Directory of Open Access Journals (Sweden)

    Masahiro Uda, Hideo Okuyama, Tohru S Suzuki and Yoshio Sakka

    2012-01-01

    Full Text Available We report that hydrogen gas can be easily produced from water at room temperature using a Mg nanopowder (30–1000 nm particles, average diameter 265 nm. The Mg nanopowder was produced by dc arc melting of a Mg ingot in a chamber with mixed-gas atmosphere (20% N2–80% Ar at 0.1 MPa using custom-built nanopowder production equipment. The Mg nanopowder was passivated with a gas mixture of 1% O2 in Ar for 12 h in the final step of the synthesis, after which the nanopowder could be safely handled in ambient air. The nanopowder vigorously reacted with water at room temperature, producing 110 ml of hydrogen gas per 1 g of powder in 600 s. This amount corresponds to 11% of the hydrogen that could be generated by the stoichiometric reaction between Mg and water. Mg(OH2 flakes formed on the surface of the Mg particles as a result of this reaction. They easily peeled off, and the generation of hydrogen continued until all the Mg was consumed.

  11. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    Science.gov (United States)

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  13. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  14. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  15. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Recently, SRTC recommended two process changes: (1) a final wash of the tetraphenylborate precipitate feed slurry and (2) the use of nitric acid to neutralize the sludge in the SRAT. The first change produced an aqueous hydrolysis product (PHA) with higher formic acid/formate and copper concentration, and reduced the nitrate content in the PHA by an order of magnitude. The second change is to substitute part of formic acid added to the SRAT with nitric acid, and therefore may reduce the hydrogen generated in the SRAT as well as provide nitrate as an oxidant to balance the redox state of the melter feed. The purpose of this report is to determine the pertinent variables that could affect the hydrogen generation rate with these process changes

  16. Towards numerical simulation of turbulent hydrogen combustion based on flamelet generated manifolds in OpenFOAM

    Science.gov (United States)

    Fancello, A.; Bastiaans, R. J. M.; de Goey, L. P. H.

    2013-10-01

    This work proposes an application of the Flamelet-Generated Manifolds (FGM) technique in the OpenFOAM environment. FGM is a chemical reduced method for combustion modeling. This technique treats the combustion process as the solution of a small amount of controlling variables. Regarding laminar simulation, a progress variable and enthalpy evolution can describe satisfactorily the problem. From a turbulent point of view, FGM can be applied to LES and RANS simulations, where the subgrid chemical terms are described with a β - PDF approach. These approaches apply satisfactorily in relatively simple gases, nevertheless for hydrogen are not more valid, due to preferential diffusion effects and instability of the flame structure. The overall aim of this research is to find technical solution for hydrogen gas turbines design in the next generation of Integrated Gasification Combined Cycle (IGCC) plants.

  17. Safety operation of chromatography column system with discharging hydrogen radiolytically generated

    Directory of Open Access Journals (Sweden)

    Watanabe Sou

    2015-01-01

    Full Text Available In the extraction chromatography system, accumulation of hydrogen gas in the chromatography column is suspected to lead to fire or explosion. In order to prevent the hazardous accidents, it is necessary to evaluate behaviors of gas radiolytically generated inside the column. In this study, behaviors of gas inside the extraction chromatography column were investigated through experiments and Computation Fluid Dynamics (CFD simulation. N2 gas once accumulated as bubbles in the packed bed was hardly discharged by the flow of mobile phase. However, the CFD simulation and X-ray imaging on γ-ray irradiated column revealed that during operation the hydrogen gas generated in the column was dissolved into the mobile phase without accumulation and discharged.

  18. g-C3N4-Based Photocatalysts for Hydrogen Generation.

    Science.gov (United States)

    Cao, Shaowen; Yu, Jiaguo

    2014-06-19

    Graphitic carbon nitride (g-C3N4)-based photocatalysts have attracted dramatically increasing interest in the area of visible-light-induced photocatalytic hydrogen generation due to the unique electronic band structure and high thermal and chemical stability of g-C3N4. This Perspective summarizes the recent significant advances on designing high-performance g-C3N4-based photocatalysts for hydrogen generation under visible-light irradiation. The rational strategies such as nanostructure design, band gap engineering, dye sensitization, and heterojunction construction are described. Finally, this Perspective highlights the ongoing challenges and opportunities for the future development of g-C3N4-based photocatalysts in the exciting research area.

  19. Enhanced hydrogen production from water via a photo-catalyzed reaction using chalcogenide d-element nanoparticles induced by UV light.

    Science.gov (United States)

    El Naggar, Ahmed M A; Nassar, Ibrahim M; Gobara, Heba M

    2013-10-21

    Hydrogen has the potential to meet the requirements as a clean non-fossil fuel in the future. The photocatalytic production of H2 through water splitting has been demonstrated and enormous efforts have been published. The present work is an attempt to enhance the production of H2 during water splitting using synthesized nanoparticles based on chalcogenide d-element semiconductors via a photochemical reaction under UV-light in the presence of methanol as a hole-scavenger. In general, the enhanced activity of a semiconductor is most likely due to the effective charge separation of photo generated electrons and holes in the semiconductors. Hence, the utilization of different semiconductors in combination can consequently provide better hydrogen production. Accordingly in this research work, two different semiconductors, with different concentrations, either used individually or combined together were introduced. They in turn produced a high concentration of H2 as detected and measured using gas chromatography. Herein, data revealed that the nano-structured semiconductors prepared through this work are a promising candidate in the production of an enhanced H2 flux under visible UV radiation.

  20. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-15

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solution excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.

  1. End-labeled amino terminated monotelechelic glycopolymers generated by ROMP and Cu(I-catalyzed azide–alkyne cycloaddition

    Directory of Open Access Journals (Sweden)

    Ronald Okoth

    2013-03-01

    Full Text Available Functionalizable monotelechelic polymers are useful materials for chemical biology and materials science. We report here the synthesis of a capping agent that can be used to terminate polymers prepared by ring-opening metathesis polymerization of norbornenes bearing an activated ester. The terminating agent is a cis-butene derivative bearing a Teoc (2-trimethylsilylethyl carbamate protected primary amine. Post-polymerization modification of the polymer was accomplished by amidation with an azido-amine linker followed by Cu(I-catalyzed azide–alkyne cycloaddition with propargyl sugars. Subsequent Teoc deprotection and conjugation with pyrenyl isothiocyanates afforded well-defined end-labeled glycopolymers.

  2. Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth Gopalan

    2006-12-31

    Composite mixed conductors comprising one electronic conducting phase, and one ionic conducting phase (MIECs) have been developed in this work. Such MIECs have applications in generating and separating hydrogen from hydrocarbon fuels at high process rates and high purities. The ionic conducting phase comprises of rare-earth doped ceria and the electronic conducting phase of rare-earth doped strontium titanate. These compositions are ideally suited for the hydrogen separation application. In the process studied in this project, steam at high temperatures is fed to one side of the MIEC membrane and hydrocarbon fuel or reformed hydrocarbon fuel to the other side of the membrane. Oxygen is transported from the steam side to the fuel side down the electrochemical potential gradient thereby enriching the steam side flow in hydrogen. The remnant water vapor can then be condensed to obtain high purity hydrogen. In this work we have shown that two-phase MIECs comprising rare-earth ceria as the ionic conductor and doped-strontium titanate as the electronic conductor are stable in the operating environment of the MIEC. Further, no adverse reaction products are formed when these phases are in contact at elevated temperatures. The composite MIECs have been characterized using a transient electrical conductivity relaxation technique to measure the oxygen chemical diffusivity and the surface exchange coefficient. Oxygen permeation and hydrogen generation rates have been measured under a range of process conditions and the results have been fit to a model which incorporates the oxygen chemical diffusivity and the surface exchange coefficient from the transient measurements.

  3. A molecular molybdenum–schiff base electro-catalyst for generating hydrogen from acetic acid or water

    International Nuclear Information System (INIS)

    Cao, Jie-Ping; Fang, Ting; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-01-01

    Highlights: • The reaction of ligand, H 2 L and MoCl 5 gives a Mo(VI) complex [MoL(O) 2 ] 1. • Complex 1 is capable of catalyzing hydrogen evolution from acetic acid and water. • TOF reaches a maximum of 68 (DMF) and 356 (buffer, pH 6) moles/h, respectively. • Sustained proton reduction catalysis occurs over a 69 h period and no decomposition of 1. - ABSTRACT: The reaction of 2-pyridylamino-N,N-bis(2-methylene-4-ethyl-6-tert-butylphenol) (H 2 L) and MoCl 5 gives a molybdenum(VI) complex [MoL(O) 2 ] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that complex 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 68 (in N,N-Dimethylformamide (DMF)) and 356 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H 2 over a 69 h electrolysis period and no observable decomposition of the catalyst

  4. Cuboid Ni2 P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Du, Yeshuang; Liu, Chao; Cheng, Gongzhen; Luo, Wei

    2017-11-16

    The design of high-performance catalysts for hydrogen generation is highly desirable for the upcoming hydrogen economy. Herein, we report the colloidal synthesis of nanocuboid Ni 2 P by the thermal decomposition of nickel chloride hexahydrate (NiCl 2 ⋅6 H 2 O) and trioctylphosphine. The obtained nanocuboid Ni 2 P was characterized by using powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. For the first time, the as-synthesized nanocuboid Ni 2 P is used as a bifunctional catalyst for hydrogen generation from the hydrolysis of ammonia borane and electrocatalytic hydrogen evolution. Owing to the strong synergistic electronic effect between Ni and P, the as-synthesized Ni 2 P exhibits catalytic performance that is superior to its counterpart without P doping. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Assessment study of devices from the generation of electricity from stored hydrogen

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Barghusen, J.J.; Link, L.E.

    1975-12-01

    A study was performed to evaluate alternative methods for the generation of electricity from stored hydrogen. The generation systems considered were low-temperature and high-temperature fuel cells, gas turbines and steam turbines. These systems were evaluated in terms of present-day technology and future (1995) technology. Of primary interest were the costs and efficiencies of the devices, the versatility of the devices toward various types of gaseous feeds, and the likelihood of commercial development. On the basis of these evaluations, recommendations were made describing the areas of technology which should be developed

  6. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  7. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  8. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  9. Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center

    Science.gov (United States)

    Colozza, Anthony; Prokopius, Kevin

    2007-01-01

    An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.

  10. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    International Nuclear Information System (INIS)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M.

    2006-01-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H 2 shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H 2 generation. These commercial applications may be satisfied by a 100 kg H 2 /day module; this platform can be the pathway towards a 500 kg H 2 /day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H 2 /day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  11. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase.

    Science.gov (United States)

    Hatazawa, Masahiro; Yoshie, Naoko; Seino, Hidetake

    2017-07-17

    [Fe]-hydrogenase is a key enzyme involved in methanogenesis and facilitates reversible hydride transfer from H 2 to N 5 ,N 10 -methenyltetrahydromethanopterin (CH-H 4 MPT + ). In this study, a reaction system was developed to model the enzymatic function of [Fe]-hydrogenase by using N,N'-diphenylimidazolinium cation (1 + ) as a structurally related alternative to CH-H 4 MPT + . In connection with the enzymatic mechanism via heterolytic cleavage of H 2 at the single metal active site, several transition metal complex catalysts capable of such activation were utilized in the model system. Reduction of 1[BF 4 ] to N,N'-diphenylimidazolidine (2) was achieved under 1 atm H 2 at ambient temperature in the presence of an equimolar amount of NEt 3 as a proton acceptor. The proposed catalytic pathways involved the generation of active hydride complexes and subsequent intermolecular hydride transfer to 1 + . The reverse reaction was accomplished by treatment of 2 with HNMe 2 Ph + as the proton source, where [(η 5 -C 5 Me 5 )Ir{(p-MeC 6 H 4 SO 2 )NCHPhCHPhNH}] was found to catalyze the formation of 1 + and H 2 with high efficiency. These results are consistent with the fact that use of 2,6-lutidine in the forward reaction or 2,6-lutidinium in the reverse reaction resulted in incomplete conversion. By combining these reactions using the above Ir amido catalyst, the reversible hydride transfer interconverting 1 + /H 2 and 2/H + was performed successfully. This system demonstrated the hydride-accepting and hydride-donating modes of biologically relevant N-heterocycles coupled with proton concentration. The influence of substituents on the forward and reverse reactivities was examined for the derivatives of 1 + and 2 bearing one para-substituted N-phenyl group.

  13. Assessment of Hydrogen Generation Potential from Biomass and its Application for Power Generation in Andaman and Nicobar Islands: A Review

    Directory of Open Access Journals (Sweden)

    Vinaya C. Mathad

    2016-09-01

    Full Text Available The Andaman and Nicobar Islands located southeast of Bay of Bengal in the Indian Ocean comprises of several small islands separated by sea over large distances which makes it impractical for electrifying all the islands by a single grid. A population of 380,581 (Census, 2011 living in these group of islands get their electricity demand catered through Diesel Generator Sets from 34 power houses with an aggregate capacity of 67.8 MW. Unavailability of any form of conventional fossil fuel reserves in the islands makes the diesel supplied in barges from southeastern coast of India as a sole lifeline for its power generation. Hence there is an urgent need for the development of a self sustainable model from non conventional energy resources to not only cater for the power demands but also to reduce the GHG emissions related with diesel powered generator sets. This paper discusses a self sustainable model for Andaman and Nicobar Islands that would cater the electrical demand through hydrogen produced from waste biomass resource which has a potential of replacing 86.65% of the diesel utilized in the diesel generator sets. The reduction in both the GHG emission and the cost of power generation would be evaluated to understand the impact of the self sustainable model on the environment and the livelihood of the local population of Andaman and Nicobar Islands

  14. Ultrahigh figure-of-merit for hydrogen generation from sodium borohydride using ternary metal catalysts

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH 4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH 4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH 4 - ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1].

  15. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation

    International Nuclear Information System (INIS)

    Ju, HyungKuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S.; Mulder, Roger J.

    2016-01-01

    Highlights: • Ethanol assisted water electrolysis reduces electric energy input by more than 50%. • Partial oxidation of ethanol leads to formation of undesired chemicals. • Degradation occurs due to formation of by-products and poisoning of catalyst. • Better catalyst has the potential to increase ethanol to H 2 conversion efficiency. • A plausible ethanol electro-oxidation mechanism has been proposed - Abstract: The global interest in hydrogen/fuel cell systems for distributed power generation and transport applications is rapidly increasing. Many automotive companies are now bringing their pre-commercial fuel cell vehicles in the market, which will need extensive hydrogen generation, distribution and storage infrastructure for fueling of these vehicles. Electrolytic water splitting coupled to renewable sources offers clean on-site hydrogen generation option. However, the process is energy intensive requiring electric energy >4.2 kWh for the electrolysis stack and >6 kWh for the complete system per m 3 of hydrogen produced. This paper investigates using ethanol as a renewable fuel to assist with water electrolysis process to substantially reduce the energy input. A zero-gap cell consisting of polymer electrolyte membrane electrolytic cells with Pt/C and PtSn/C as anode catalysts were employed. Current densities up to 200 mA cm −2 at 70 °C were achieved at less than 0.75 V corresponding to an energy consumption of about 1.62 kWh m −3 compared with >4.2 kWh m −3 required for conventional water electrolysis. Thus, this approach for hydrogen generation has the potential to substantially reduce the electric energy input to less than 40% with the remaining energy provided by ethanol. However, due to performance degradation over time, the energy consumption increased and partial oxidation of ethanol led to lower conversion efficiency. A plausible ethanol electro-oxidation mechanism has been proposed based on the Faradaic conversion of ethanol and mass

  16. Carbon quantum dots coated BiVO{sub 4} inverse opals for enhanced photoelectrochemical hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Feng; Shen, Mingrong; Fang, Liang, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn [College of Physics, Optoelectronics and Energy and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wang, Junling [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-04-13

    Carbon quantum dots (CQDs) coated BiVO{sub 4} inverse opal (io-BiVO{sub 4}) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO{sub 4} maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO{sub 4} to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO{sub 4} exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of the pure BiVO{sub 4} thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal.

  17. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes.

    Science.gov (United States)

    Sponholz, Peter; Mellmann, Dörthe; Cordes, Christoph; Alsabeh, Pamela G; Li, Bin; Li, Yang; Nielsen, Martin; Junge, Henrik; Dixneuf, Pierre; Beller, Matthias

    2014-09-01

    Catalytic generation of hydrogen from aqueous ethanol solution proceeds in the presence of pincer-type transition metal catalysts. Optimal results are obtained applying a [Ru(H)(Cl)(CO)(iPr2PEtN(H)EtPiPr2)] complex (catalyst TON 80,000) in the presence of water and base. This dehydrogenation reaction provides up to 70% acetic acid in a selective manner. For the first time, it is shown that bioethanol obtained from fermentation processes can be used directly in this protocol without the need for water removal. The produced hydrogen can be directly utilized in proton exchange membrane (PEM) fuel cells, since very low amounts of CO are formed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  19. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  20. Efficient catalysis by MgCl2 in hydrogen generation via hydrolysis of Mg-based hydride prepared by hydriding combustion synthesis.

    Science.gov (United States)

    Zhao, Zelun; Zhu, Yunfeng; Li, Liquan

    2012-06-04

    Magnesium chloride efficiently catalyzed the hydrolysis of Mg-based hydride prepared by hydriding combustion synthesis. Hydrogen yield of 1635 mL g(-1) was obtained (MgH(2)), i.e. with 96% conversion in 30 min at 303 K.

  1. An assessment of hydrogen generation for the PBF severe fuel damage scoping and 1-1 tests

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Miller, R.W.; Osetek, D.J.

    1987-04-01

    An evaluation of zircaloy oxidation and hydrogen generation data is presented for the first two Severe Fuel Damage (SFG) tests, conducted in the Power Burst Facility at the Idaho National Engineering Laboratory. This work is in support of an internationally sponsored severe accident research program, initiated by the US Nuclear Regulatory Commission to advance the understanding and methodology for predicting light water reactor core degradation, hydrogen generation, and fission product behavior during severe accidents. The principal objective of this report is an assessment of in-vessel hydrogen generation issues using data provided by the SFD Scoping Test (SFD-ST) and SFD 1-1 test. The principal issues in question are the influence of zircaloy melting on oxidation behavior and fuel bundle reconfiguration effects which may alter steam flow and hydrogen generation characteristics. 41 refs., 42 figs., 11 tabs

  2. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  3. The performance characteristics of a hydrogen-fuelled free piston internal combustion engine and linear generator system

    OpenAIRE

    Youngmin Woo; Youngjae Lee; Yonggyun Lee

    2009-01-01

    A power generation system that utilizes a hydrogen-fuelled free piston engine (FPICE) and a linear generator are under development. A FPICE gives power output more efficiently compared with conventional reciprocating piston engines, because it utilizes many benefits such as low friction loss and inherently variable compression ratio apart from the low emission of hazardous exhaust gases. In addition, if hydrogen fuel is used in an FPICE, it would be possible to make the exhaust emission level...

  4. Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems

    KAUST Repository

    Hatzell, Marta C.

    2014-01-01

    Currently, there is an enormous amount of energy available from salinity gradients, which could be used for clean hydrogen production. Through the use of a favorable oxygen reduction reaction (ORR) cathode, the projected electrical energy generated by a single pass ammonium bicarbonate reverse electrodialysis (RED) system approached 78 W h m-3. However, if RED is operated with the less favorable (higher overpotential) hydrogen evolution electrode and hydrogen gas is harvested, the energy recovered increases by as much ∼1.5× to 118 W h m-3. Indirect hydrogen production through coupling an RED stack with an external electrolysis system was only projected to achieve 35 W h m-3 or ∼1/3 of that produced through direct hydrogen generation.

  5. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    Science.gov (United States)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  6. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  7. Status and integration of the gas generation studies performed for the Hydrogen Safety Program

    International Nuclear Information System (INIS)

    Pederson, L.R.; Strachan, D.M.

    1993-02-01

    Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of ''gobs'' of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events

  8. Final Technical Report for GO15056 Millennium Cell: Development of an Advanced Chemical Hydrogen Storage and Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Oscar [Millennium Cell Inc., Eatontown, NJ (United States)

    2017-02-22

    The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.

  9. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst

    KAUST Repository

    Hu, Lei

    2014-12-01

    NiAgPd nanoparticles are successfully synthesized by in-situ reduction of Ni, Ag and Pd salts on the surface of carbon. Their catalytic activity was examined in ammonia borane (NH3BH3) hydrolysis to generate hydrogen gas. This nanomaterial exhibits a higher catalytic activity than those of monometallic and bimetallic counterparts and a stoichiometric amount of hydrogen was produced at a high generation rate. Hydrogen production rates were investigated in different concentrations of NH3BH3 solutions, including in the borates saturated solution, showing little influence of the concentrations on the reaction rates. The hydrogen production rate can reach 3.6-3.8 mol H2 molcat -1 min-1 at room temperature (21 °C). The activation energy and TOF value are 38.36 kJ/mol and 93.8 mol H2 molcat -1 min-1, respectively, comparable to those of Pt based catalysts. This nanomaterial catalyst also exhibits excellent chemical stability, and no significant morphology change was observed from TEM after the reaction. Using this catalyst for continuously hydrogen generation, the hydrogen production rate can be kept after generating 6.2 L hydrogen with over 10,000 turnovers and a TOF value of 90.3 mol H2 molcat -1 min-1.

  10. Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts

    KAUST Repository

    Tian, Yi

    2017-05-08

    The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h-1  cm-2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic-based photocatalysts for the dissociation of H2 with 50 h stable operation.

  11. Investigation of cold cathodes of plasma sources generating of hydrogen ion beams

    CERN Document Server

    Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A

    2001-01-01

    Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC

  12. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst

    International Nuclear Information System (INIS)

    Hoogeveen, Dijon A.; Fournier, Maxime; Bonke, Shannon A.; Fang, Xi-Ya; Mozer, Attila J.; Mishra, Amaresh; Bäuerle, Peter; Simonov, Alexandr N.; Spiccia, Leone

    2016-01-01

    Dye-sensitised photocathodes promoting hydrogen evolution are usually coupled to a catalyst to improve the reaction rate. Herein, we report on the first successful integration of a heterogeneous metal particulate catalyst, viz., Pt aggregates electrodeposited from acidic solutions on the surface of a NiO-based photocathode sensitised with a p-type perylenemonoimid-sexithiophene-triphenylamine dye (PMI-6T-TPA). The platinised dye-NiO electrodes generate photocurrent density of ca −0.03 mA cm −2 (geom.) with 100% faradaic efficiency for the H 2 evolution at 0.059 V vs. reversible hydrogen electrode under 1 sun visible light irradiation (AM1.5G, 100 mW cm −2 , λ > 400 nm) for more than 10 hours in 0.1 M H 2 SO 4 (aq.). The Pt-free dye-NiO and dye-free Pt-modified NiO cathodes show no photo-electrocatalytic hydrogen evolution under these conditions. The performance of these Pt-modified PMI-6T-TPA-based photoelectrodes compares well to that of previously reported dye-sensitised photocathodes for H 2 evolution.

  13. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  14. Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein

    Directory of Open Access Journals (Sweden)

    O. Olea-Mejia

    2017-01-01

    Full Text Available We have synthesized, in this work, zero valent iron (ZVI nanoparticles to improve the efficiency of degradation of phenolphthalein catalyzed by ozone in aqueous solution. The Fe nanoparticles were obtained using the pulsed plasma in liquid (PPL method with water as the liquid medium. Such nanoparticles have a mean size of 12 nm and are composed of ~80% Fe0, while the rest are a mixture of Fe+2 and Fe+3 oxides. The degradation of phenolphthalein was carried on a glass reactor injecting a constant amount of ozone and introducing different concentrations of Fe nanoparticles to the system. When using pure ozone, the percentage of degradation of phenolphthalein measured by colorimetry after one hour of reaction was 84%. However, when Fe nanoparticles are used, such percentage can be as high as 98% in 50 minutes of reaction. Furthermore, the degradation rate constant was 0.0334 min−1 with only ozone and it can be as high as 0.0733 min−1 with Fe nanoparticles. Finally, the total mineralization of phenolphthalein was obtained by total organic carbon (TOC determinations. It is shown that when using only ozone, we obtained a percentage of mineralization of 49% and 96% when using the highest concentration of Fe nanoparticles.

  15. Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process

    Energy Technology Data Exchange (ETDEWEB)

    Randy Cortright

    2006-06-30

    This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

  16. Xanthine oxidase-generated hydrogen peroxide is a consequence, not a mediator of cell death.

    Science.gov (United States)

    Czupryna, Julie; Tsourkas, Andrew

    2012-03-01

    Oxidative stress has been associated with a wide range of diseases including atherosclerosis, cancer and Alzheimer's disease. When present in excessive concentrations, reactive oxygen species (ROS) can cause deleterious effects. This has led to the notion that the anticancer effects of various chemotherapeutics may be mediated, at least in part, by an increase in ROS. To investigate the role of xanthine oxidase (XO), a source of hydrogen peroxide, in cell death, MCF7, HeLa and 293T cells were treated with various cell-death-inducing drugs in the presence and absence of allopurinol, a specific inhibitor of XO. In the absence of allopurinol, each drug led to a time- and concentration-dependent increase in percent DNA fragmentation and ROS levels, regardless of the mechanism of cell death incurred, i.e. caspase dependent and caspase independent. By contrast, pretreatment with allopurinol led to dramatically lower ROS levels in all cases, suggesting that XO is a major contributor to oxidative stress. However, allopurinol did not exhibit a protective effect against cell death. Similarly, the administration of siRNA against XO also did not exhibit a protective effect against cell death. The level of oxidative stress was recorded using the ROS sensor CM-H(2) DCFDA and a ratiometric bioluminescent assay that takes advantage of the increased sensitivity of Firefly luciferase to hydrogen peroxide, compared with a stable variant of Renilla luciferase (RLuc), RLuc8. Overall, these findings suggest that XO-generated hydrogen peroxide, and perhaps hydrogen peroxide in general, is a consequence, but not a mediator of cell death. © 2012 The Authors Journal compilation © 2012 FEBS.

  17. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    Science.gov (United States)

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were debris landfills are suggested.

  18. Leak detection in steam generators with hydrogen monitors using diffusion membranes

    International Nuclear Information System (INIS)

    Hissink, M.

    1975-01-01

    Large water leaks in steam-generators give rise to violent chemical reactions which can only be controlled by a pressure relief system. Smaller leaks do not pose direct safety hazards but wastage of pipes surrounding the leak should be prevented. Leak detection is best carried out by monitors recording the hydrogen in sodium content. For large leaks the specification of these monitors causes no problems, contrary to those for the timely detection of small leaks. Essential parameters are sensitivity and speed of response, specificity is less important. But apart from the instrument specification, a number of factors, related to the construction and operation of the steam-generator, determine the performance of the leak detection system. A discussion of these factors is given, with a view to the design of the SNR-300. Although tile results of many theoretical studies and experimental work are available, there seems to be room for further investigations on the growths of minor leaks. Also lacking a sufficient experience concerning the level and fluctuations of the hydrogen background in the sodium. A description is given of the hydrogen monitor developed at TNO, which is based on a combination of a nickel membrane and an ion getter pump. The parameters of this instrument have been evaluated in a test rig. Operational experience with the monitor is available from the 50 MW Test Facility at Hengelo. Especially for further studies the need for a calibrated instrument has become apparent. Test are going on with a modified design of a monitor meeting this requirement. (author)

  19. Thermal generation and mobility of charge carriers in collective proton transport in hydrogen-bonded chains

    Energy Technology Data Exchange (ETDEWEB)

    Peyrard, M.; Boesch, R.; Kourakis, I. (Dijon Univ., 21 (France). Faculte des Sciences)

    1991-01-01

    The transport of protons in hydrogen-bonded systems is a long standing problem which has not yet obtained a satisfactorily theoretical description. Although this problem was examined first for ice, it is relevant in many systems and in particular in biology for the transport along proteins or for proton conductance across membranes, an essential process in cell life. The broad relevance makes the study of proton conduction very appealing. Since the original work of Bernal and Fowler on ice, the idea that the transport occurs through chains of hydrogen bonds has been well accepted. Such proton wires'' were invoked by Nagle and Morowitz for proton transport across membranes proteins and more recently across lipid bilayers. In this report, we assume the existence of such an hydrogen-bonded chain and discuss its consequences on the dynamics of the charge carriers. We show that this assumption leads naturally to the idea of soliton transport and we put a special emphasis on the role of the coupling between the protons and heavy ions motions. The model is presented. We show how the coupling affects strongly the dynamics of the charge carriers and we discuss the role it plays in the thermal generation of carriers. The work presented has been performed in 1986 and 87 with St. Pnevmatikos and N. Flyzanis and was then completed in collaboration with D. Hochstrasser and H. Buettner. Therefore the results presented in this part are not new but we think that they are appropriate in the context of this multidisciplinary workshop because they provide a rather complete example of the soliton picture for proton conduction. This paper discusses the thermal generation of the charge carriers when the coupling between the protons and heavy ions dynamics is taken into account. The results presented in this part are very recent and will deserve further analysis but they already show that the coupling can assist for the formation of the charge carriers.

  20. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  1. PANI/NaTaO3 composite photocatalyst for enhanced hydrogen generation under UV light irradiation

    Directory of Open Access Journals (Sweden)

    Zielińska Beata

    2017-09-01

    Full Text Available A PANI/NaTaO3 composite was successfully synthesized by an oxidative polymerization of aniline monomer in hydrochloric acid solution containing sodium tantalate. NaTaO3 at a monoclinic structure was produced via hydrothermal method. The photocatalytic activities of the unmodified NaTaO3 and PANI/NaTaO3 were evaluated for hydrogen generation from an aqueous HCOOH solution and under UV light irradiation. The results showed that the evolution rate of H2 increased significantly when NaTaO3 was modified with PANI. The enhancement of the photocatalytic activity of PANI/NaTaO3 composite was ascribed to the effective charge transfer and separation between NaTaO3 and PANI, which reduced their recombination. This indicates that PANI modification of tantalate photocatalysts may open up a new way to prepare highly efficient catalytic materials for H2 generation.

  2. Analysis of hydrogen generation according to the specific concrete composition during severe accident

    International Nuclear Information System (INIS)

    Seo, M. R.; Kim, M. K.

    2001-01-01

    The chemical composition of reactor cavity floor concrete affects the kind and amout of gases generated by MCCI and ablation of concrete. And if affects the physical and chemical characteristics of molten pool formed in the cavity. So, the specific concrete compostion is inputted in the MAAP Code used in the Level 2 PSA. and since Ulchin Unit 3 and 4 PSA, the analysis of concrete composition has been performed by the concrete mold prepared for this usage at the installation of cavity floor concrete. But, the composition of domestic concrete for construction of NPP is nearly the same as that of the standard basaltic concrete, and the effect of minor variation in composition is expected to be negligible. This report analyze the effect of the concrete composition to the generation of hydrogen due to MCCI, and discuss the necessity of analysis about the specific concrete composition for Level 2 PSA

  3. Hydrogen and acoustic detection in steam generators of Super Phenix power plant

    International Nuclear Information System (INIS)

    Kong, N.; Le Bris, A.; Berthier, P.

    1986-05-01

    During the isothermal tests of Super-Phenix, two types of measurements were made on the steam generators with regard to the detection of water leaks into the sodium: - the first measurements enabled us to determine the characteristics (sensitivity, response time) of the hydrogen detectors that are already operational for the filling with water and the power operation of the steam generators. They also provided the basis for developing a prototype system for detecting very small water leaks (microleak phase). The other measurements concern the qualification tests of acoustic detectors which have been fitted for the first time to a major industrial installation. The results obtained are very satisfactory but final validation of the acoustic method will only occur after the full-power tests [fr

  4. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  5. Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Beata Zielińska

    2012-01-01

    Full Text Available K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD and diffuse reflectance (DR UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM and an energy dispersive X-ray spectrometer (EDX as its mode.

  6. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  7. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    Science.gov (United States)

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-01-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation. PMID:27849033

  8. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids.

    Science.gov (United States)

    Takimoto, Masanori; Hou, Zhaomin

    2013-08-19

    The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N-heterocyclic carbene (NHC)-copper catalyst have been examined in detail. The regio- and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu-catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one-pot to afford efficiently a variety of α,β-unsaturated carboxylic acids with well-controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio- and stereoselectivity, simple one-pot reaction operation, and the use of CO2 as a starting material. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    International Nuclear Information System (INIS)

    Muhammad, Yaseen; Lu Yingzhou; Shen Chong; Li Chunxi

    2011-01-01

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 o C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al 2 O 3 , Ni-Mo/Al 2 O 3 , Ru-Co-Mo/Al 2 O 3 and Ru-Ni-Mo/Al 2 O 3 were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N 2 adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al 2 O 3 catalyst at 380 o C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al 2 O 3 > Ni-Mo/Al 2 O 3 > Ru-Co-Mo/Al 2 O 3 > Co-Mo/Al 2 O 3 at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT.

  10. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Yaseen; Shen, Chong; Li, Chunxi [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Lu, Yingzhou [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-02-15

    Catalytic hydrodesulfurization (HDS) of dibenzothiophene (DBT) was carried out in a temperature range of 320-400 C using in situ generated hydrogen coupled with the effect of selected organic additives for the first time. Four kinds of alumina based catalysts i.e. Co-Mo/Al{sub 2}O{sub 3}, Ni-Mo/Al{sub 2}O{sub 3}, Ru-Co-Mo/Al{sub 2}O{sub 3} and Ru-Ni-Mo/Al{sub 2}O{sub 3} were used for the desulfurization process, which were prepared following incipient impregnation method with fixed metal loadings (wt.%) of Co, Ni, Mo and Ru. The surface area, average pore diameter and pore volume distribution of the fresh and used catalysts were measured by N{sub 2} adsorption using BET method. Catalytic activity was investigated in a batch autoclave reactor in the complete absence of external hydrogen gas. Addition and mutual reaction of specific quantities of water and ethanol provided the necessary in situ hydrogen for the desulfurization reaction. Organic additives like diethylene glycol (DEG), phenol, naphthalene, anthracene, o-xylene, tetralin, decalin and pyridine did impinge the HDS activity of the catalysts in different ways. Liquid samples from reaction products were quantitatively analyzed by HPLC technique while qualitative analyses were made using GC-MS. Both of these techniques showed that Ni-based catalysts were more active than Co-based ones at all conditions. Moreover, incorporation of Ru to both Co and Ni-based catalysts greatly promoted desulfurization activity of these catalysts. DBT conversion of up to 84% was achieved with Ru-Ni-Mo/Al{sub 2}O{sub 3} catalyst at 380 C temperature for 11 h. Catalyst systems followed the HDS activity order as: Ru-Ni-Mo/Al{sub 2}O{sub 3}> Ni-Mo/Al{sub 2}O{sub 3}> Ru-Co-Mo/Al{sub 2}O{sub 3}> Co-Mo/Al{sub 2}O{sub 3} at all conditions. Cost effectiveness, mild operating conditions and reasonably high catalytic activity using in situ generated hydrogen mechanism proved our process to be useful for HDS of DBT. (author)

  11. A Residential Distributed-Generating System with Photovoltaic Cells and Hydrogen-Storage Type Fuel Cells and its Operational Scheme

    Science.gov (United States)

    Machida, Yuuki; Funabiki, Shigeyuki

    Output power in photovoltaic systems changes steeply with the change of the solar irradiance and overall PV temperature. The change of output power has influence on the electric power quality of the system. This paper proposes a novel operational scheme of the residential distributed power generation system using solar cells and hydrogen-storage type fuel cells. In order to level the output power which changes steeply the fuel cells are connected to the PV system in parallel. Thus the generated power of all the system can be leveled. However, the hydrogen is required in order to generate electricity by the fuel cells. Therefore, the electrolyzer which is hydrogen manufacturing equipment is installed in the system. It is confirmed by the simulation that the distributed power generation system operates according to the proposed operational scheme and its system is available for residential supplies.

  12. Redirection of metabolism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and

  13. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    Directory of Open Access Journals (Sweden)

    Yanzhou Zhang

    Full Text Available For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn catalase with striking peroxidase activity for sinapic acid (SA and sinapine (SNP. In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP.

  14. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  15. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds

    Energy Technology Data Exchange (ETDEWEB)

    Semelsberger, T.A.; Brown, L.F.; Borup, R.L.; Inbody, M.A.M.A. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Los Alamos National Lab., NM (United States). Engineering Sciences and Applications Div.

    2004-08-01

    This work presents thermodynamic analyses of autothermal processes using five fuels- natural gas, methanol, ethanol, dimethyl ether, and gasoline. Autothermal processes combine exothermic and endothermic reactions. The processes considered here couple endothermic steam reforming with exothermic oxidation to create hydrogen-rich fuel-cell feeds. Of the fuels treated here, methanol, ethanol, and dimethyl ether are pure compounds. Methane simulates natural gas and a mixture of 7% neopentane, 56% 2,4 dimethyl pentane, 7% cyclohexane, 30% ethyl benzene simulates gasoline. In the computations, sufficient oxygen is fed so the energy generated by the oxidation exactly compensates the energy absorbed by the reforming reactions. The analyses calculate equilibrium product concentrations at temperatures from 300 to 1000 K, pressures from 1 to 5 atm, and water-fuel ratios from 1 to 9 times the stoichiometric value. The thermodynamic calculations in this work say that any of the five fuels, when processed autothermally, can give a product leading to a hydrogen-rich feed for fuel cells. The calculations also show that the oxygen-containing substances (methanol, ethanol, and dimethyl ether) require lower temperatures for effective processing than the non-oxygenated fuels (natural gas and gasoline). Lower reaction temperatures also promote products containing less carbon monoxide, a desirable effect. The presence of significant product CO mandates the choice of optimum conditions, not necessarily conditions that produce the maximum product hydrogen content. Using a simple optimum objective function shows that dimethyl ether has the greatest potential product content, followed by methanol, ethanol, gasoline, and natural gas. The calculations point the way toward rational choices of processes for producing fuel-cell feeds of the necessary quality. (author)

  17. PyBidine-Cu(OTf)2 -catalyzed asymmetric [3+2] cycloaddition with imino esters: harmony of Cu-Lewis acid and imidazolidine-NH hydrogen bonding in concerto catalysis.

    Science.gov (United States)

    Arai, Takayoshi; Ogawa, Hiroki; Awata, Atsuko; Sato, Makoto; Watabe, Megumi; Yamanaka, Masahiro

    2015-01-26

    A bis(imidazolidine)pyridine (PyBidine)-Cu(OTf)2 complex catalyzing the endo-selective [3+2] cycloaddition of nitroalkenes with imino esters was applied to the reaction of methyleneindolinones with imino esters to afford spiro[pyrrolidin-3,3'-oxindole]s in up to 98 % ee. X-ray crystallographic analysis of the PyBidine-Cu(OTf)2 complex and DFT calculations suggested that an intermediate Cu enolate of the imino ester reacts with nitroalkenes or methyleneindolinones, which are activated by NH-hydrogen bonding with the PyBidine-Cu(OTf)2 catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  19. Efficiency in chemistry: from hydrogen autotransfer to multicomponent catalysis.

    Science.gov (United States)

    Alonso, Francisco; Foubelo, Francisco; González-Gómez, José C; Martínez, Ricardo; Ramón, Diego J; Riente, Paola; Yus, Miguel

    2010-08-01

    A hydrogen autotransfer reaction has been applied to the α-alkylation of ketones, with primary alcohols as the electrophilic component, either under homogeneous (using a Ru complex as catalyst) or under heterogeneous (using Ni nanoparticles) conditions. This process is both very efficient (concerning atom economy) and ecologically friendly (water as the only by-product generated). On the other hand, three multicomponent reactions, namely, the Strecker reaction (without any catalyst), the aza-Sakurai process (catalyzed by ferrite), and the addition of in situ generated Zn enolates to chiral sulfinylimines (catalyzed by Cu), have proven to be very efficient in the generation of a diversity of polyfunctionalized molecules.

  20. Efficiency Evaluation of a Photovoltaic System Simultaneously Generating Solar Electricity and Hydrogen for Energy Storage

    Directory of Open Access Journals (Sweden)

    Abermann S.

    2012-10-01

    Full Text Available The direct combination of a photovoltaic system with an energy storage component appears desirable since it produces and stores electrical energy simultaneously, enabling it to compensate power generation fluctuations and supply sufficient energy during low- or non-irradiation periods. A novel concept based on hydrogenated amorphous silicon (a-Si:H triple-junction solar cells, as for example a-Si:H/a-SiGe:H/a-SiGe:H, and a solar water splitting system integrating a polymer electrolyte membrane (PEM electrolyser is presented. The thin film layer-by-layer concept allows large-area module fabrication applicable to buildings, and exhibits strong cost-reduction potential as compared to similar concepts. The evaluation shows that it is possible to achieve a sufficient voltage of greater than 1.5 V for effective water splitting with the a-Si based solar cell. Nevertheless, in the case of grid-connection, the actual energy production cost for hydrogen storage by the proposed system is currently too high.

  1. Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction.

    Science.gov (United States)

    Gan, Hong Seng; Tee, Nicholas Yee Kwang; Bin Mamtaz, Mohammad Raziun; Xiao, Kevin; Cheong, Brandon Huey-Ping; Liew, Oi Wah; Ng, Tuck Wah

    2018-02-28

    The appreciation and understanding of gas generation through processes is vital in biochemical education. In this work, an augmented reality tool is reported to depict the redox reaction between hydrogen peroxide and sodium hypochlorite solutions, two ubiquitous oxidizing agents, to create oxygen, a combustible gas. As it operates out of smartphones or tablets, students are able to conduct the exercise collaboratively, respond in a manner similar to an actual physical experiment, and able to depict the oxygen volume changes in relation to the volume of hydrogen peroxide of different concentrations used. The tool offers to help students acquire bench skills by limiting handing risks and to mitigate possible student anxiety on handling chemical materials and implements in the laboratory. The feedback received from Year 11 and 12 high school student participants in an outreach exercise indicate the overall effectiveness of this tool. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  2. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  3. A direct recursive residue generation method: application to photoionization of hydrogen in static electric fields

    International Nuclear Information System (INIS)

    Karlsson, H.O.; Goscinski, O.

    1994-01-01

    In studies of hydrogenic systems via the recursive residue generation method (RRGM) the major bottleneck is the matrix vector product HC, between the Hamiltonian matrix H and a Lanczos vector C. For highly excited states and/or strong perturbations the size of H grows fast leading to storage problems. By making use of direct methods, i.e. avoidance of explicit construction of large Hamiltonian matrices, such problems can be overcome. Utilizing the underlying analytical properties of the Laguerre basis e -λr L k 2l+2 (2λr) a direct RRGM (D-RRGM) for the unperturbed hydrogenic Hamiltonian is derived, changing the storage needs from scaling as N 2 to 4N where N is the number of radial functions for each factorized H o (l,m) block with the possibility of parallel processing. A further computational simplification is introduced by putting the expression for the photoionization (PI) cross section in the rational form conventionally used in the representation of density of states (DOS). This allows the construction of the PI cross section directly from the tridiagonal Lanczos matrix avoiding the explicit calculation of individual eigen values and eigenvectors. (Author)

  4. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  5. Acoustically induced optical second harmonic generation in hydrogenated amorphous silicon films

    CERN Document Server

    Ebothe, J; Cabarrocas, P R I; Godet, C; Equer, B

    2003-01-01

    Acoustically induced second harmonic generation (AISHG) in hydrogenated amorphous silicon (a-Si : H) films of different morphology has been observed. We have found that with increasing acoustical power, the optical SHG of Gd : YAB laser light (lambda = 2.03 mu m) increases and reaches its maximum value at an acoustical power density of about 2.10 W cm sup - sup 2. With decreasing temperature, the AISHG signal strongly increases below 48 K and correlates well with the temperature behaviour of differential scanning calorimetry indicating near-surface temperature phase transition. The AISHG maxima were observed at acoustical frequencies of 10-11, 14-16, 20-22 and 23-26 kHz. The independently performed measurements of the acoustically induced IR spectra have shown that the origin of the observed phenomenon is the acoustically induced electron-phonon anharmonicity in samples of different morphology.

  6. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  7. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications

    Science.gov (United States)

    Huang, Minghong; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-10-01

    In this work, flower-like MoS2 spheres are synthesized via a hydrothermal method and the catalytic activity of the as-prepared and bulk MoS2 on hydrolysis of Mg is systematically investigated for the first time. The Mg-MoS2 composites are prepared by ball milling and the hydrogen generation performances of the composites are investigated in 3.5% NaCl solution. The experimental results suggest that the as-prepared MoS2 exhibits better catalytic effect on hydrolysis of Mg compared to bulk MoS2. In particular, Mg-10 wt% MoS2 (as-prepared) composite milled for 1 h shows the best hydrogen generation properties and releases 90.4% of theoretical hydrogen generation capacity within 1 min at room temperature. The excellent catalytic effect of as-prepared MoS2 may be attributed to the following aspects: three-dimensional flower-like MoS2 architectures improve its dispersibility on Mg particles; make the composite more reactive; hamper the generated Mg(OH)2 from adhering to the surface of Mg; and increase the galvanic corrosion of Mg. In addition, a hydrogen generator based on the hydrolysis reaction of Mg-0.2 wt% MoS2 composite is manufactured and it can supply a maximum hydrogen flow rate of 2.5 L/min. The findings here demonstrate the as-prepared flower-like MoS2 can be a promising catalyst for hydrogen generation from Mg.

  9. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  10. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation

    Science.gov (United States)

    Zhang, Minhua; Dou, Maobin; Yu, Yingzhe

    2018-03-01

    Methanol synthesis from CO2 hydrogenation on the ZrO2 doped In2O3(110) surface (Zr-In2O3(110)) with oxygen vacancy has been studied using the density functional theory calculations. The calculated results show that the doped ZrO2 species prohibits the excessive formation of oxygen vacancies and dissociation of H2 on In2O3 surface slightly, but enhances the adsorption of CO2 on both perfect and defective Zr-In2O3(110) surface. Methanol is formed via the HCOO route. The hydrogenation of CO2 to HCOO is both energetically and kinetically facile. The HCOO hydrogenates to polydentate H2CO (p-H2CO) species with an activation barrier of 0.75 eV. H3CO is produced from the hydrogenation of monodentate H2CO (mono-H2CO), transformation from p-H2CO with 0.82 eV reaction energy, with no barrier whether there is hydroxyl group between the mono-H2CO and the neighboring hydride or not. Methanol is the product of H3CO protonation with 0.75 eV barrier. The dissociation and protonation of CO2 are both energetically and kinetically prohibited on Zr-In2O3(110) surface. The doped ZrO2 species can further enhance the adsorption of all the intermediates involved in CO2 hydrogenation to methanol, activate the adsorbed CO2 and H2CO, and stabilize the HCOO, H2CO and H3CO, especially prohibit the dissociation of H2CO or the reaction of H2CO with neighboring hydride to form HCOO and gas phase H2. All these effects make the ZrO2 supported In2O3 catalyst exhibit higher activity and selectivity on methanol synthesis from CO2 hydrogenation.

  11. An appealing photo-powered multi-functional energy system for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2015-10-01

    This paper focuses on a photo-powered poly-generation system (PPS) that is powered by the photocatalytic oxidation of organic substrate to produce hydrogen energy and electrical energy synchronously. This particular device runs entirely on light energy and chemical energy of substrate without external voltage. The performance measurements and optimization experiments are all investigated by using the low concentration of pure ethanol (EtOH) solution. Compared with the conventional submerged reactor for the photogeneration of hydrogen, the hydrogen and the electric current obtained in the constructed PPS are all relatively stable in experimental period and the numerical values detected are many times higher than that of the former by using various simulated ethanol waste liquid. When using Chinese rice wine as substrate at the same ethanol content level (i.e., 0.1 mol L-1), the production of hydrogen is close to that of the pure ethanol solution in the constructed PPS, but no hydrogen is detected in the conventional submerged reactor. These results demonstrate that the constructed PPS could effectively utilize light energy and perform good capability in poly-generation of hydrogen and electricity.

  12. CYP-450 isoenzymes catalyze the generation of hazardous aromatic amines after reaction with the azo dye Sudan III.

    Science.gov (United States)

    Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma

    2013-07-01

    This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  14. Versatile In Situ Generated N-Boc-Imines: Application to Phase-Transfer-Catalyzed Asymmetric Mannich-Type Reactions.

    Science.gov (United States)

    Kano, Taichi; Kobayashi, Ryohei; Maruoka, Keiji

    2015-07-13

    The efficient construction of nitrogen-containing organic compounds is a major challenge in chemical synthesis. Imines are one of the most important classes of electrophiles for this transformation. However, both the available imines and applicable nucleophiles for them are quite limited given the existing preparative methods. Described herein are imine precursors which generate reactive imines with a wide variety of substituents under mild basic conditions. This approach enables the construction of various nitrogen-containing molecules which cannot be accessed by the traditional approach. The utility of the novel imine precursor was demonstrated in the asymmetric Mannich-type reaction under phase-transfer conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of degree of sulfonation of BDPP upon enantioselectivity in rhodium-BDPP catalyzed hydrogenation reactions in a two phase system

    NARCIS (Netherlands)

    Lensink, Cornelis; Rijnberg, Evelien; Vries, Johannes G. de

    1997-01-01

    Asymmetric hydrogenation experiments were carried out with catalysts prepared in situ from [Rh(COD)Cl]2 and 2 eq. of a sulfonated (2S,4S)-bis-2,4-(diphenylphosphino)pentane carrying 0-4 sulfonate groups, in a two phase aqueous organic system. The effect of degree of sulfonation on enantioselectivity

  16. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  17. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  18. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  19. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  20. Investigation of advanced nanostructured multijunction photoanodes for enhanced solar hydrogen generation via water splitting

    Science.gov (United States)

    Ishihara, Hidetaka

    As the worldwide demand for fossil-based fuel increases every day and the fossil reserve continues to be depleted, the need for alternative/renewable energy sources has gained momentum. Electric, hybrid, and hydrogen cars have been at the center of discussion lately among consumers, automobile manufacturers, and politicians, alike. The development of a fuel-cell based engine using hydrogen has been an ambitious research area over the last few decades-ever since Fujishima showed that hydrogen can be generated via the solar-energy driven photo-electrolytic splitting of water. Such solar cells are known as Photo-Electro-Chemical (PEC) solar cells. In order to commercialize this technology, various challenges associated with photo-conversion efficiency, chemical corrosion resistance, and longevity need to be overcome. In general, metal oxide semiconductors such as titanium dioxide (TiO 2, titania) are excellent candidates for PEC solar cells. Titania nanotubes have several advantages, including biocompatibility and higher chemical stability. Nevertheless, they can absorb only 5-7% of the solar spectrum which makes it difficult to achieve the higher photo-conversion efficiency required for successful commercial applications. A two-prong approach was employed to enhance photo-conversion efficiency: 1) surface modification of titania nanotubes using plasma treatment and 2) nano-capping of the titania nanotubes using titanium disilicide. The plasma surface treatment with N2 was found to improve the photo-current efficiency of titania nanotubes by 55%. Similarly, a facile, novel approach of nano-capping titania nanotubes to enhance their photocurrent response was also investigated. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using RF magnetron sputtering technique. The optical properties of titania nanotubes were not found to change due to the capping; however, a considerable increase (40%) in the photocurrent

  1. Study of the acceleration of ammonia generation process from poultry residues aiming at hydrogen production

    International Nuclear Information System (INIS)

    Egute, Nayara dos Santos

    2010-01-01

    environment. The possibility of ammonia emission increment observed in this study, and its use in a system of ammonia generation - hydrogen production - fuel cell might produce electricity in the enterprise, reducing the expenses of the farms and providing a properly destination for these residues. (author)

  2. Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells. I. Activity tests and sulfur poisoning

    Science.gov (United States)

    Cheekatamarla, Praveen K.; Lane, Alan M.

    Polymer electrolyte membrane (PEM) fuel cells require hydrogen as the fuel source for generating power. Hydrogen can be produced in a fuel processor by the catalytic reforming of hydrocarbons. The objective of this paper is to present an analysis of the autothermal reforming (ATR) of synthetic diesel fuel in an adiabatic reactor using a Pt/ceria catalyst. ATR combines endothermic steam reforming and exothermic partial oxidation reactions in a single unit. This simple system provides higher efficiency and higher energy density than other conventional processes. The product composition as a function of the operating variables and the temperature and concentration profile inside the reactor were studied. Hydrogen was generated under adiabatic conditions by heating the feed mixture and ATR reactor to only 400 °C in contrast to higher temperatures reported in the literature. The stability of the catalyst and its response to the presence of S poison was also investigated.

  3. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  4. Fractal disperse hydrogen sorption kinetics in spark discharge generated Mg/NbOx and Mg/Pd nanocomposites

    NARCIS (Netherlands)

    Anastasopol, A.; Pfeiffer, T.V.; Schmidt-Ott, A.; Mulder, F.M.; Eijt, S.W.H.

    2011-01-01

    Isothermal hydrogen desorption of spark discharge generated Mg/NbOx and Mg/Pd metal hydride nanocomposites is consistently described by a kinetic model based on multiple reaction rates, in contrast to the Johnson-Mehl-Avrami-Kolmogorov [M. Avrami, J. Phys. Chem. 9, 177 (1941); W. A. Johnson and R.

  5. Hydrogen generation and foaming during tests in the GFPS simulating DWPF operations with Tank 42 sludge and CST

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    1999-12-08

    This report summarizes the pilot-scale research requested by the salt disposition team to examine the effect of crystalline silicotitanate (CST) resin with adsorbed noble metals on the maximum hydrogen generation rate produced during the DWPF melter feed preparation processes.

  6. Synthetic use of the primary kinetic isotope effect in hydrogen atom transfer 2: generation of captodatively stabilised radicals.

    Science.gov (United States)

    Wood, Mark E; Bissiriou, Sabine; Lowe, Christopher; Windeatt, Kim M

    2013-04-28

    Using C-3 di-deuterated morpholin-2-ones bearing N-2-iodobenzyl and N-3-bromobut-3-enyl radical generating groups, only products derived from the more stabilised C-3, rather than the less stabilised C-5 translocated radicals, were formed after intramolecular 1,5-hydrogen atom transfer, suggesting that any kinetic isotope effect present was not sufficient to offset captodative stabilisation.

  7. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.

    Science.gov (United States)

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng

    2015-10-07

    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center.

  8. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  9. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  10. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in

  11. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  12. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.

    Science.gov (United States)

    Modestino, Miguel A; Haussener, Sophia

    2015-01-01

    Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.

  13. Decreased Endogenous Hydrogen Sulfide Generation in Penile Tissues of Diabetic Rats with Erectile Dysfunction.

    Science.gov (United States)

    Zhang, Yan; Yang, Jun; Wang, Tao; Wang, Shao-Gang; Liu, Ji-Hong; Yin, Chun-Ping; Ye, Zhang-Qun

    2016-03-01

    Hydrogen sulfide (H2S) is an endogenous gasotransmitter. The levels of H2S-generating enzyme expression and endogenous H2S production in diabetic rats with erectile dysfunction (ED) remain unknown. The aim of this study was to investigate the expression of the H2S-generating enzymes and endogenous production of H2S in penile tissues of diabetic ED rats. Experimental rats were randomly divided into normal control group, apomorphine (APO)-positive group and APO-negative group. Primary rat corpus cavernosum smooth muscle cells (CCSMCs) and aortic endothelial cells (AECs) were isolated and cultured in vitro under 3 different conditions: normal glucose (NG) condition, high glucose (HG) condition, and osmotic control (OC) condition. Erectile function; H2S concentrations in plasma or penile tissues; expression of H2S-generating enzymes and endogenous H2S production in penile tissues, CCSMCs, and AECs. Erectile function was significantly decreasedin the APO-negative group. In addition to significantly decreased expression of cysteine aminotransferase (CAT), d-amino acid oxidase (DAO), and 3-mercaptopyruvate sulfurtransferase (3-MST), the H2S concentrations in plasma and penile tissues and endogenous H2S production were significantly decreased in the APO-negative group. Endogenous H2S production by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) decreased to the same levels in the APO-negative and APO-positive groups as that in the normal control group. However, CBS and CSE expression remained unchanged in the 3 groups. Under HG conditions, H2S-generating enzyme expression in AECs did not change, while CAT, DAO, and 3-MST expression in CCSMCs was significantly decreased. In both cell types, H2S production by these enzymes was decreased in the HG group. Endogenous H2S production was significantly decreased in the diabetic ED rats' penile tissues due to downregulated expression of the CAT/3-MST and DAO/3-MST pathways and low activities of CBS and CSE

  14. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    1999-01-01

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit

  15. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  16. Muon-catalyzed fusion-an energy production perspective

    International Nuclear Information System (INIS)

    Eliezer, S.; Henis, Z.

    1994-01-01

    The nuclear fission reaction can be catalyzed in a suitable fusion fuel by muons, which can temporarily form very tightly bound mu-molecules. Muons can be produced by the decay of negative pions, which, in turn, have been produced by an accelerated beam of light ions impinging on a target. Muon-catalyzed fusion is appropriately called cold fusion because the nuclear fusion also occurs at room temperature. For practical fusion energy generation, it appears to be necessary to have a fuel mixture of deuterium and tritium at about liquid density and at a temperature of the order of 1000 K. The current status of muon-catalyzed fusion is limited to demonstrations of scientific breakeven by showing that it is possible to sustain an energy balance between muon production and catalyzed fusion. Conceptually, a muon-catalyzed fusion reactor is seen to be an energy amplifier that increases by fusion reactions that energy invested in nuclear pion-muon beams. The physical quantity that determines this balance is X μ , the number of fusion reactions each muon can catalyze before it is lost. Showing the feasibility of useful power production is equivalent to showing that X μ can exceed a sufficiently large number, which is estimated to be ∼10 4 if standard technology is used or ∼10 3 if more advanced physics and technology can be developed. Since a muon can be produced with current technology for an expenditure of ∼5000 MeV and 17.6 MeV is produced per fusion event, it follows that X μ ∼ 250 would be a significant demonstration of scientific breakeven. Therefore, the energy cost of producing muons must be reduced substantially before muon-catalyzed fusion reactors could seriously be considered. The physics of muon-catalyzed fusion is summarized and discussed. Muon catalysis is surveyed for the following systems: proton-deuteron, deuteron-deuteron, deuteron-triton, and non-hydrogen elements. 95 refs., 6 figs., 4 tabs

  17. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water.

    Science.gov (United States)

    McCollom, Thomas M; Donaldson, Christopher

    2016-06-01

    . Serpentinization-Hydrogen generation-Abiotic methane synthesis. Astrobiology 16, 389-406.

  18. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  19. Photocatalytic hydrogen generation with Ag-loaded LiNbO3

    Indian Academy of Sciences (India)

    Administrator

    Abstract. In this contribiution LiNbO3 and Ag-loaded LiNbO3 photocatalysts were tested in the reaction of hydrogen evolution. The silver modified samples contained different loading of co-catalyst in the range of. 0∙5–4 wt%. It was essential to optimize the sample composition to achieve an efficient hydrogen evolution. The.

  20. Au-Catalyzed Biaryl Coupling To Generate 5- to 9-Membered Rings: Turnover-Limiting Reductive Elimination versus π-Complexation.

    Science.gov (United States)

    Corrie, Tom J A; Ball, Liam T; Russell, Christopher A; Lloyd-Jones, Guy C

    2017-01-11

    The intramolecular gold-catalyzed arylation of arenes by aryl-trimethylsilanes has been investigated from both mechanistic and preparative aspects. The reaction generates 5- to 9-membered rings, and of the 44 examples studied, 10 include a heteroatom (N, O). Tethering of the arene to the arylsilane provides not only a tool to probe the impact of the conformational flexibility of Ar-Au-Ar intermediates, via systematic modulation of the length of aryl-aryl linkage, but also the ability to arylate neutral and electron-poor arenes-substrates that do not react at all in the intermolecular process. Rendering the arylation intramolecular also results in phenomenologically simpler reaction kinetics, and overall these features have facilitated a detailed study of linear free energy relationships, kinetic isotope effects, and the first quantitative experimental data on the effects of aryl electron demand and conformational freedom on the rate of reductive elimination from diaryl-gold(III) species. The turnover-limiting step for the formation of a series of fluorene derivatives is sensitive to the reactivity of the arene and changes from reductive elimination to π-complexation for arenes bearing strongly electron-withdrawing substituents (σ > 0.43). Reductive elimination is accelerated by electron-donating substituents (ρ = -2.0) on one or both rings, with the individual σ-values being additive in nature. Longer and more flexible tethers between the two aryl rings result in faster reductive elimination from Ar-Au(X)-Ar and lead to the π-complexation of the arene by Ar-AuX 2 becoming the turnover-limiting step.

  1. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    , and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen......The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a thin...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  2. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.

    Science.gov (United States)

    Nithiya, Arumugam; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2018-03-01

    In the present research, municipal solid waste incineration (MSWI) bottom ash (BA) residues from three incinerators (N, K, and R) in Japan were collected for hydrogen gas generation purpose. The samples were split into four particle size fractions: (1) d≤0.6, (2) 0.6≤d≤1.0, (3) 1.0≤d≤2.0, and (4) 2.0≤d≤4.75mm for the characterization of metal aluminum, the relationship between the present metal aluminum and hydrogen gas production, and the influence of external metal aluminum on the enhancement of hydrogen gas. The batch experiments were performed for each BA fraction under agitated (200rpm) and non-agitated conditions at 40°C for 20days. The highest amount of hydrogen gas (cumulative) was collected under agitation condition that was 39.4, 10.0, and 8.4 L/kg of dry ash for N2, R2, and K2 (all fraction 2), respectively. To take the benefit of the BA high alkalinity (with initial pH over 12), 0.1 and 1g of household aluminum foil were added to the fractions 2 and 3. A Significantly larger amount of hydrogen gas was collected from each test. For 0.1g of aluminum foil, the cumulative amount of gas was in the range of 62 to 78 L/kg of dry ash and for 1g of aluminum foil the cumulative amount of hydrogen was in the range of 119-126 L/kg of dry ash. This indicated that the hydrogen gas yield was significantly a function of supplementary aluminum and the intrinsic alkaline environment of the BA residues rather than ash source or particle size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  4. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  5. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  6. Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint x-ray and neutron diffraction study.

    Science.gov (United States)

    Kovalevsky, Andrey Y; Hanson, Leif; Fisher, S Zoe; Mustyakimov, Marat; Mason, Sax A; Forsyth, V Trevor; Blakeley, Matthew P; Keen, David A; Wagner, Trixie; Carrell, H L; Katz, Amy K; Glusker, Jenny P; Langan, Paul

    2010-06-09

    Conversion of aldo to keto sugars by the metalloenzyme D-xylose isomerase (XI) is a multistep reaction that involves hydrogen transfer. We have determined the structure of this enzyme by neutron diffraction in order to locate H atoms (or their isotope D). Two studies are presented, one of XI containing cadmium and cyclic D-glucose (before sugar ring opening has occurred), and the other containing nickel and linear D-glucose (after ring opening has occurred but before isomerization). Previously we reported the neutron structures of ligand-free enzyme and enzyme with bound product. The data show that His54 is doubly protonated on the ring N in all four structures. Lys289 is neutral before ring opening and gains a proton after this; the catalytic metal-bound water is deprotonated to hydroxyl during isomerization and O5 is deprotonated. These results lead to new suggestions as to how changes might take place over the course of the reaction.

  7. A Bimetallic Nickel–Gallium Complex Catalyzes CO 2 Hydrogenation via the Intermediacy of an Anionic d 10 Nickel Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, Ryan C. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Vollmer, Matthew V. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Xie, Jing [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Ye, Jingyun [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Linehan, John C. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Burgess, Samantha A. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Appel, Aaron M. [Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, Washington 99352, United States; Gagliardi, Laura [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States; Supercomputing; Lu, Connie C. [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States

    2017-09-28

    Large-scale CO2 hydrogenation could offer a renewable stream of industrially important C1 chemicals while reducing CO2 emissions. Critical to this opportunity is the requirement for inexpensive catalysts based on earth-abundant metals instead of precious metals. We report a nickel-gallium complex featuring a Ni(0)→Ga(III) bond that shows remarkable catalytic activity for hydrogenating CO2 to formate at ambient temperature (3150 turnovers, turnover frequency = 9700 h-1), compared with prior homogeneous Ni-centred catalysts. The Lewis acidic Ga(III) ion plays a pivotal role by stabilizing reactive catalytic intermediates, including a rare anionic d10 Ni hydride. The structure of this reactive intermediate shows a terminal Ni-H, for which the hydride donor strength rivals those of precious metal-hydrides. Collectively, our experimental and computational results demonstrate that modulating a transition metal center via a direct interaction with a Lewis acidic support can be a powerful strategy for promoting new reactivity paradigms in base-metal catalysis. The work was supported as part of the Inorganometallic Catalysis Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award DE-SC0012702. R.C.C. and M.V.V. were supported by DOE Office of Science Graduate Student Research and National Science Foundation Graduate Research Fellowship programs, respectively. J.C.L., S.A.B., and A.M.A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  8. Root cause study on hydrogen generation and explosion through radiation-induced electrolysis in the Fukushima Daiichi accident

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Genn, E-mail: sajig@bd5.so-net.ne.jp

    2016-10-15

    Highlights: • Reviewed how LWRs have coped with “water radiolysis”, during normal operation to severe accidents. • Concluded “water radiolysis” is not likely a route course of the hydrogen explosions at Fukushima. • Performed modeling studies based on “radiation-induced electrolysis” on Unit 1–Unit 4. • Generation of several tens of thousands cubic meters hydrogen gas is predicted before the hydrogen explosions. • Upon SBO, early safe disposal of hydrogen from RPVs is indispensable in BWRs. - Abstract: Since the scientific cause for a series of hydrogen explosions during the Fukushima accident has not been established, the author investigated his basic theory named “radiation-induced electrolysis (RIE)” by applying the estimation of the amounts of H{sub 2} generation during the active phase of the Fukushima accident. The author's theory was originally developed by including Faraday's law of electrolysis into the basic time-dependent material balance equation of radiation-chemical species for his study on accelerated corrosion phenomena which is widely observed in aged plants. As such this theory applies to the early phase of the accident before the loss of water levels in the reactor cores, although the simulations were performed from the time of seismic reactor trip to the hydrogen explosions in this paper. Through this mechanism as much as 29,400 m{sup 3}-STP of hydrogen gas is estimated to be accumulated inside the PCV just prior to the hydrogen explosion which occurred one day after the reactor trip in 1F1. With this large volume of hydrogen gas the explosion was a viable possibility upon the “venting” operation. In view of this observation, hydrogen generation from the spent fuel pools was also investigated. For the investigation of the 1F4 SFP, the pool water temperature and flow velocity due to natural circulation were changed widely to identify conditions of large hydrogen generation. During the trial calculations

  9. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation.

    Science.gov (United States)

    Shaban, Mohamed; Rabia, Mohamed; El-Sayed, Asmaa M Abd; Ahmed, Aya; Sayed, Somaya

    2017-10-26

    In this work, roll-graphene oxide (Ro-GO), polyaniline (PANI) nano/microparticles, and PbS nanoparticles were prepared by modified Hammer, oxidative polymerization, and chemical bath deposition methods, respectively. These nano/microstructures were characterized, optimized, and designed to form PbS/Ro-GO/PANI nano/microcomposite. Also, the ratios of PbS and Ro-GO were optimized, and the optimized composition of the used composite was 0.4 g PANI, 0.125 g Ro-GO, and 0.075 g PbS. The band gap values for PANI, PbS, Ro-GO, and PbS/Ro-GO/PANI rocomposite were 3, 1.13, 2.86, (1.16, 2) eV, respectively. Two photoelectrode assemblies, Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass were used for the photoelectrochemical (PEC) hydrogen generation. In the first assembly 45 nm- Au layer was sputtered on the surface of a disk of PbS/Ro-GO/PANI composite. For the second assembly, a disk of PbS/Ro-GO/PANI composite was glued on ITO glass using Ag-THF paste. The lifetime efficiency values were 64.2 and 43.4% for the first and second electrode for 2 h, respectively. Finally, the incident photon-to-current conversion efficiency (IPCE) and photon-to-current efficiency (ABPE) were calculated under monochromatic illumination conditions. The optimum IPCE efficiency at 390 nm was 9.4% and 16.17%, whereas ABPE % efficiency was 1.01% and 1.75% for Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass, respectively.

  10. Relations between oxygen and hydrogen generated by radiolysis in the systems of a CANDU 600

    International Nuclear Information System (INIS)

    Romano, Christian; Chocron, Mauricio; Urrutia, Guillermo

    1999-01-01

    The water that constitutes the coolant of the primary heat transport system, the moderator and the liquid control zones, decomposed under radiation producing as stable products oxygen, hydrogen and hydrogen peroxide throughout a complex mechanisms of radiolysis that involves ions and free radicals. These compound formed in different proportions alters the chemical control established for each system which purpose is to minimize the corrosion of the structural materials. In the present paper have been presented results of the modelling of the mentioned processes and it has been found that in the absence of a vapor phase, a relatively low concentration of hydrogen added to the water would be sufficient to control the formation of oxygen and hydrogen peroxide. The last species however, would remain in relatively high values inside a coolant fuel channel in the reactor core. (author)

  11. Hydrogen gas generation from the corrosion of iron in cementitious environments

    International Nuclear Information System (INIS)

    Kreis, P.; Simpson, J.P.

    1992-01-01

    Then production of hydrogen from the anaerobic corrosion of iron or steel is an important issue in low/intermediate level nuclear waste repositories where large quantities of iron and steel (e.g. as drums and reinforcing steel) accompany the waste. Most of the iron in intermediate level repositories is in a cementitious environment. The literature on the corrosion of iron and steel at high pH values, in particular in cementitious environments, points to hydrogen evolution rates between 22 and 220 mmol (Hsub(2)).msup(-2) per year. In the present work a volumetric method was used to measure hydrogen evolution rates over several thousand hours under conditions relevant to intermediate level waste repositories. The sensitivity of this method (0.4 mmol (Hsub(2))/(msup(2).year) is sufficient to detect hydrogen evolution rates lower than those predicted for iron and steel in concrete. (author)

  12. Photocatalytic hydrogen generation with Ag-loaded LiNbO3

    Indian Academy of Sciences (India)

    In this contribiution LiNbO3 and Ag-loaded LiNbO3 photocatalysts were tested in the reaction of hydrogen evolution. The silver modified samples contained different loading of co-catalyst in the range of 0.5–4 wt%. It was essential to optimize the sample composition to achieve an efficient hydrogen evolution. The optimal ...

  13. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials.

    Science.gov (United States)

    Edwards, J Vincent; Prevost, Nicolette T; Nam, Sunghyun; Hinchliffe, Doug; Condon, Brian; Yager, Dorne

    2017-03-06

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H₂O₂ (5-50 micromolar). Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H₂O₂ generation, varying from 1 to 35 micromolar. The H₂O₂ generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H₂O₂ generation.

  14. Induction of Low-Level Hydrogen Peroxide Generation by Unbleached Cotton Nonwovens as Potential Wound Dressing Materials

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2017-03-01

    Full Text Available Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD, and trace metals, which are associated with hydrogen peroxide (H2O2 generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall. The use of unbleached, greige cotton fibers in dressings, has been relatively unexplored. We have recently determined that greige cotton can generate low levels of H2O2 (5–50 micromolar. Because this may provide advantages for the use of greige cotton-based wound dressings, we have begun to examine this in more detail. Both brown and white cotton varieties were examined in this study. Brown cotton was found to have a relatively higher hydrogen peroxide generation and demonstrated different capacities for H2O2 generation, varying from 1 to 35 micromolar. The H2O2 generation capacities of white and brown nonwoven greige cottons were also examined at different process stages with varying chronology and source parameters, from field to nonwoven fiber. The primary cell wall of nonwoven brown cotton appeared very intact, as observed by transmission electron microscopy, and possessed higher pectin levels. The levels of pectin, SOD, and polyphenolics, correlated with H2O2 generation.

  15. A New Spectrophotometric Method for Hydrogen Sulphide Through Electrolytically Generated Mn(III With O-Tolidine

    Directory of Open Access Journals (Sweden)

    M. S. Suresha

    2008-01-01

    Full Text Available A simple, sensitive and economical spectrophotometric method for the determination of hydrogen sulphide is developed. The method is based on a redox reaction in that Mn(III generated electrolytically is taken in excess, which is oxidizing a known but a less quantity of hydrogen sulphide and the unreacted oxidant will oxidize further o-tolidine to produce an orange yellow quinonediimine absorbing cation (λ max. 455 nm. Therefore, in principle, the decrease in color intensity of the absorbing system is proportional to the concentration of hydrogen sulphide. The stoichiometry between Mn(III and o-tolidine and stability constant of the complex were determined by Job's continuous method, the corresponding values were found to be 2:1 and 1.42X105 Lmol-1. The system was obeying Lambert-Beer's law in the range 0.2-1.4 μg mL-1 of hydrogen sulphide. Molar absorptivity, correlation coefficient and Sandell's sensitivity values were also calculated and found to be 4.2062X103 L mol-1 cm-1, 0.999 and 0.0012 μg cm-2 respectively. The method was employed for the determination of hydrogen sulphide in water samples. The results obtained were reproducible with acceptable standard deviation 0.01-0.068 and relative standard deviation, less than 3.21%. For a comparison, hydrogen sulphide present in water samples were also determined separately following the methylene blue official method. The results of the proposed method compare well with the official method.

  16. Kinetics and mechanisms of the oxidation of alcohols and hydroxylamines by hydrogen peroxide, catalyzed by methyltrioxorhenium, MTO, and the oxygen binding properties of cobalt Schiff base complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zauche, Timothy [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Catalysis is a very interesting area of chemistry, which is currently developing at a rapid pace. A great deal of effort is being put forth by both industry and academia to make reactions faster and more productive. One method of accomplishing this is by the development of catalysts. Enzymes are an example of catalysts that are able to perform reactions on a very rapid time scale and also very specifically; a goal for every man-made catalyst. A kinetic study can also be carried out for a reaction to gain a better understanding of its mechanism and to determine what type of catalyst would assist the reaction. Kinetic studies can also help determine other factors, such as the shelf life of a chemical, or the optimum temperature for an industrial scale reaction. An area of catalysis being studied at this time is that of oxygenations. Life on this earth depends on the kinetic barriers for oxygen in its various forms. If it were not for these barriers, molecular oxygen, water, and the oxygenated materials in the land would be in a constant equilibrium. These same barriers must be overcome when performing oxygenation reactions on the laboratory or industrial scale. By performing kinetic studies and developing catalysts for these reactions, a large number of reactions can be made more economical, while making less unwanted byproducts. For this dissertation the activation by transition metal complexes of hydrogen peroxide or molecular oxygen coordination will be discussed.

  17. Law proposal aiming at imposing the domestic consumption tax to the natural gas used for hydrogen generation for petroleum refining purposes

    International Nuclear Information System (INIS)

    2009-04-01

    In France, natural gas benefits from tax exemptions in several situations and in particular when used as raw material for hydrogen generation, which in turn, is used for crude oil refining and fuels generation. However, crude oil is cheaper when it is heavier but more hydrogen, and thus more natural gas, is needed to refine it and more CO 2 is released in the atmosphere. Therefore, refining cheap crude oil increases the refining margins of oil companies but their environmental impact as well. The aim of this law proposal is to impose the domestic consumption tax to natural gas when used in oil refining processes in order to finance the development of the renewable hydrogen industry through the creation of a High Council of Hydrogen Industry. This High Council would be in charge of promoting the development of renewable hydrogen production facilities and distribution circuits, of hydrogen-fueled vehicles, and of fuel cells. (J.S.)

  18. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  19. Production of hydrogen by electron transfer catalysis using conventional and photochemical means

    Science.gov (United States)

    Rillema, D. P.

    1981-01-01

    Alternate methods of generating hydrogen from the sulfuric acid thermal or electrochemical cycles are presented. A number of processes requiring chemical, electrochemical or photochemical methods are also presented. These include the design of potential photoelectrodes and photocatalytic membranes using Ru impregnated nafion tubing, and the design of experiments to study the catalyzed electrolytic formation of hydrogen and sulfuric acid from sulfur dioxide and water using quinones as catalysts. Experiments are carried out to determine the value of these approaches to energy conversion.

  20. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  1. Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst.

    Science.gov (United States)

    Tang, Chun; Zhang, Rong; Lu, Wenbo; Wang, Zao; Liu, Danni; Hao, Shuai; Du, Gu; Asiri, Abdullah M; Sun, Xuping

    2017-01-16

    It is highly attractive but challenging to develop earth-abundant electrocatalysts for energy-saving electrolytic hydrogen generation. Herein, we report that Ni 2 P nanoarrays grown in situ on nickel foam (Ni 2 P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy-saving electrochemical hydrogen production with the use of Ni 2 P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two-electrode electrolytic system drives 500 mA cm -2 at a cell voltage as low as 1.0 V with strong long-term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    Science.gov (United States)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  3. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides

    Science.gov (United States)

    Kim, J. Dongun; Yee, Nathan; Nanda, Vikas; Falkowski, Paul G.

    2013-01-01

    Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth’s history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth. PMID:23733945

  4. Preliminary analysis of an hydrogen generator system based on nuclear energy in the Laguna Verde site

    International Nuclear Information System (INIS)

    Flores y Flores, A.; Francois L, J.L.

    2003-01-01

    The shortage of fossil fuels in the next future, as well as the growing one demand of energetics and the high cost of the production of alternating fuels, it forces us to take advantage of to the maximum the fossil fuel with the one which we count and to look for the form of producing alternating fuels at a low cost and better even if these supply sources are reliable and non pollutants. It is intended a solution to the shortage of fuel; to use the thermal energy liberated of some appropriate nuclear reactor to be able to obtain a fuel but clean and relatively cheap as it is the hydrogen. In the first place the methods were looked for to produce hydrogen using thermal energy, later it was analyzed the temperature liberated by the existent nuclear reactors as well as the advanced designs, according to this liberated temperature settled down that the methods but feasible to produce hydrogen its were the one of reformed with water stream of the natural gas (methane) and the other one of the S-I thermochemical cycle, and the nuclear reactors that give the thermal energy for this production they are those of gas of high temperature. Once established the processes and the appropriate reactors, it was analyzed the site of Laguna Verde, with relationship to the free space to be able to place the reactor and the plant producer of hydrogen, as well as the direction in which blow the dominant winds and the near towns to the place, it was carried out an analysis of some explosion of tanks that could store hydrogen and the damage that its could to cause depending from the distance to which its were of the fire. Finally it was carried out an evaluation of capital and of operation costs for those two methods of hydrogen production. (Author)

  5. Enantioselective Direct Mannich-Type Reactions Catalyzed by Frustrated Lewis Acid/Brønsted Base Complexes.

    Science.gov (United States)

    Shang, Ming; Cao, Min; Wang, Qifan; Wasa, Masayuki

    2017-10-16

    An enantioselective direct Mannich-type reaction catalyzed by a sterically frustrated Lewis acid/Brønsted base complex is disclosed. Cooperative functioning of the chiral Lewis acid and achiral Brønsted base components gives rise to in situ enolate generation from monocarbonyl compounds. Subsequent reaction with hydrogen-bond-activated aldimines delivers β-aminocarbonyl compounds with high enantiomeric purity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generating parahydrogen-induced polarization using immobilized iridium complexes in the gas-phase hydrogenation of carbon-carbon double and triple bonds

    NARCIS (Netherlands)

    Skovpin, I.V.; Zhivonitko, V.V.; Kaptein, R.; Koptyug, I.V.

    2013-01-01

    Immobilized iridium complexes synthesized using [Ir(COD)Cl]2 by anchoring on hydrous and anhydrous silica gels were studied in terms of generating parahydrogen-induced polarization (PHIP) in the gas-phase hydrogenation of propylene and propyne. Distinguishing differences in the hydrogenations of

  7. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  8. Virtual Inertia Adaptive Control of a Doubly Fed Induction Generator (DFIG Wind Power System with Hydrogen Energy Storage

    Directory of Open Access Journals (Sweden)

    Tiejiang Yuan

    2018-04-01

    Full Text Available This paper presents a doubly fed induction generator (DFIG wind power system with hydrogen energy storage, with a focus on its virtual inertia adaptive control. Conventionally, a synchronous generator has a large inertia from its rotating rotor, and thus its kinetic energy can be used to damp out fluctuations from the grid. However, DFIGs do not provide such a mechanism as their rotor is disconnected with the power grid, owing to the use of back-to-back power converters between the two. In this paper, a hydrogen energy storage system is utilized to provide a virtual inertia so as to dampen the disturbances and support the grid’s stability. An analytical model is developed based on experimental data and test results show that: (1 the proposed method is effective in supporting the grid frequency; (2 the maximum power point tracking is achieved by implementing this proposed system; and, (3 the DFIG efficiency is improved. The developed system is technically viable and can be applied to medium and large wind power systems. The hydrogen energy storage is a clean and environmental-friendly technology, and can increase the renewable energy penetration in the power network.

  9. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  10. A two-stage bio hydrogen process for energy generation from municipal solid wastes

    International Nuclear Information System (INIS)

    Acevedo-Benitez, J. a.; Poggi-Varaldo, H. M.

    2009-01-01

    Energy supply and disposal of solid wastes are two big challenges that great cities face at the present time. Several experts have shown that hydrogen is the fuel of the future, due to their high energy content (three times more than that of the gasoline) and its clean combustion. (Author)

  11. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide

    DEFF Research Database (Denmark)

    Bartels, M.D.; Kristoffersen, K.; Slotsbjerg, T.

    2008-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a major problem in hospitals worldwide. Hand hygiene is recognised as crucial in limiting the spread of MRSA but less is known about the role of MRSA reservoirs in the inanimate hospital environment. We evaluated the effect of hydrogen peroxide...

  12. Influence of hydrogen bonding on the generation and stabilization

    Indian Academy of Sciences (India)

    Induction and stabilization of liquid crystallinity through hydrogen bonding (HB) are now well-established. Interesting observations made on the influence of HB on LC behaviour of amido diol-based poly(esteramide)s, poly(esteramide)s containing nitro groups and azobenzene mesogen-based polyacrylates will be ...

  13. Polarization of high harmonics generated from a hydrogen atom in a strong laser field

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1996-01-01

    The high harmonic spectrum of a hydrogen atom subject to an intense (>10 13 W/cm 2 ), elliptically polarized laser field is analyzed with a nonperturbative method of global approximation on a subspace grid. Considerable alteration of harmonics polarization with respect to laser polarization is found. 12 refs., 3 figs., 1 tab

  14. Water leak detection in sodium heated steam generators through measurement of hydrogen concentration in sodium

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Martin, P.; Viala, J.

    1980-07-01

    This report includes a description of apparatus for measuring hydrogen concentration in the secondary sodium system of the PHENIX reactor. The calibration method and results obtained since the commissioning of the reactor are also described. Mention is made of improvements to be built into SUPER PHENIX [fr

  15. Photocatalytic hydrogen generation with Ag-loaded LiNbO3

    Indian Academy of Sciences (India)

    Administrator

    spectroscopic methods, respectively. Morphology of the produced samples were studied using a high- resolution transmission electron microscope (HRTEM). Keywords. Lithium niobate; Ag2O; photocatalysts; hydrogen evolution. 1. Introduction. Lithium niobate (LiNbO3) is one of the most excellent functional materials due ...

  16. Base free N-alkylation of anilines with ArCH2OH and transfer hydrogenation of aldehydes/ketones catalyzed by the complexes of η5-Cp*Ir(iii) with chalcogenated Schiff bases of anthracene-9-carbaldehyde.

    Science.gov (United States)

    Dubey, Pooja; Gupta, Sonu; Singh, Ajai K

    2018-03-12

    The condensation of anthracene-9-carbaldehyde with 2-(phenylthio/seleno)ethylamine results in Schiff bases [PhS(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ](L1) and [PhSe(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ] (L2). On their reaction with [(η 5 -Cp*)IrCl(μ-Cl)] 2 and CH 3 COONa at 50 °C followed by treatment with NH 4 PF 6 , iridacycles, [(η 5 -Cp*)Ir(L-H)][PF 6 ] (1: L = L1; 2: L = L2), result. The same reaction in the absence of CH 3 COONa gives complexes [(η 5 -Cp*)Ir(L)Cl][PF 6 ] (3-4) in which L = L1(3)/L2(4) ligates in a bidentate mode. The ligands and complexes were authenticated with HR-MS and NMR spectra [ 1 H, 13 C{ 1 H} and 77 Se{ 1 H} (in the case of L2 and its complexes only)]. Single crystal structures of L2 and half sandwich complexes 1-4 were established with X-ray crystallography. Three coordination sites of Ir in each complex are covered with η 5 -Cp* and on the remaining three, donor atoms present are: N, S/Se and C - /Cl - , resulting in a piano-stool structure. The moisture and air insensitive 1-4 act as efficient catalysts under mild conditions for base free N-alkylation of amines with benzyl alcohols and transfer hydrogenation (TH) of aldehydes/ketones. The optimum loading of 1-4 as a catalyst is 0.1-0.5 mol% for both the activations. The best reaction temperature is 80 °C for transfer hydrogenation and 100 °C for N-alkylation. The mercury poisoning test supports a homogeneous pathway for both the reactions catalyzed by 1-4. The two catalytic processes are most efficient with 3 followed by 4 > 1 > 2. The mechanism proposed on the basis of HR-MS of the reaction mixtures of the two catalytic processes taken after 1-2 h involves the formation of an alkoxy and hydrido species. The real catalytic species proposed in the case of iridacycles results due to the loss of the Cp* ring.

  17. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide.

    Science.gov (United States)

    Meng, Fanke; Li, Jiangtian; Cushing, Scott K; Zhi, Mingjia; Wu, Nianqiang

    2013-07-17

    Molybdenum disulfide (MoS2) is a promising candidate for solar hydrogen generation but it alone has negligible photocatalytic activity. In this work, 5-20 nm sized p-type MoS2 nanoplatelets are deposited on the n-type nitrogen-doped reduced graphene oxide (n-rGO) nanosheets to form multiple nanoscale p-n junctions in each rGO nanosheet. The p-MoS2/n-rGO heterostructure shows significant photocatalytic activity toward the hydrogen evolution reaction (HER) in the wavelength range from the ultraviolet light through the near-infrared light. The photoelectrochemical measurement shows that the p-MoS2/n-rGO junction greatly enhances the charge generation and suppresses the charge recombination, which is responsible for enhancement of solar hydrogen generation. The p-MoS2/n-rGO is an earth-abundant and environmentally benign photocatalyst for solar hydrogen generation.

  18. System approach on solar hydrogen generation and the gas utilization; Taiyo energy ni yoru suiso no seisei oyobi sono riyo system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I.; Hirooka, N.; Deguchi, Y.; Narita, D. [Meiji University, Tokyo (Japan)

    1997-11-25

    An apparatus is developed to establish a system which allows utilization of hydrogen safely and easily, and its applicability to a hydrogen system for domestic purposes is tested. The system converts solar energy by the photovoltaic cell unit into power, which is used to generate hydrogen by electrolysis of water at the hydrogen generator, stores hydrogen in a metal hydride , and sends stored hydrogen to the burner and fuel cell units. It is found that a hydrogen occluding alloy of LaNi4.8Al0.2 stores hydrogen to approximately 80% when cooled to 20 to 25degC, and releases it to 10% when heated to 40degC. The fuel cell uses a solid polymer as the electrolyte. The hydrogen gas burner is a catalytic combustion burner with a Pt catalyst carried by expanded Ni-Al alloy. The optimum distance between the burner and object to be heated is 22mm. High safety and fabrication simplicity are confirmed for use for domestic purposes. The system characteristics will be further investigated. 4 refs., 8 figs.

  19. FINAL TECHNICAL REPORT for grant DE-FG02-93ER14353 "Carbon-Hydrogen Bond Functionalization Catalyzed by Transition Metal Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Alan S

    2012-05-21

    Alkanes are our most abundant organic resource but are highly resistant to selective chemical transformations. Alkenes (olefins) by contrast are the single most versatile class of molecules for selective transformations, and are intermediates in virtually every petrochemical process as well as a vast range of commodity and fine chemical processes. Over the course of this project we have developed the most efficient catalysts to date for the selective conversion of alkanes to give olefins, and have applied these catalysts to other dehydrogenation reactions. We have also developed some of the first efficient catalysts for carbonylation of alkanes and arenes to give aldehydes. The development of these catalysts has been accompanied by elucidation of the mechanism of their operation and the factors controlling the kinetics and thermodynamics of C-H bond activation and other individual steps of the catalytic cycles. This fundamental understanding will allow the further improvement of these catalysts, as well as the development of the next generation of catalysts for the functionalization of alkanes and other molecules containing C-H bonds.

  20. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  1. Carrier gas effects on aluminum-catalyzed nanowire growth

    International Nuclear Information System (INIS)

    Ke, Yue; Hainey, Mel Jr; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-01-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor–solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor–solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH 4 adsorption thereby reducing vapor–solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH 4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. (paper)

  2. Metal alloys for the new generation of compressors at hydrogen stations: Parametric study of corrosion behavior

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2017-01-01

    the corrosion rate. However, even at 80 °C, the very low corrosion current densities proved that all of the tested alloys are safe to use as construction materials. AISI 347 showed very high corrosion resistance in all of the ionic liquids. The highest corrosion resistance among all of the tested alloys......, consequently, significantly reduce the final cost of hydrogen production. The correct choice of ionic liquid and construction materials is critical for avoiding significant corrosion problems. Hence, the objective of this study is to evaluate the compatibility of various austenitic stainless steels and nickel......-based alloys as construction materials in contact with 80 °C ionic liquids in an ionic liquid hydrogen compressor, considering the role of parameters such as the temperature, viscosity, ionic liquid cation and anion, and water absorption. The results show that temperature contributes to increasing...

  3. The hydrogen generated as a gas and storage in Zircaloy during water quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    1999-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during water quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 , 1400 and 1600 C degrees using as-received Zircaloy-4 (no pre oxidation) and with Zircaloy specimens pre oxidised to give oxide thicknesses of 100μm and 300μm. The results are relevant to accident management in light water reactors. (author)

  4. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  5. Engineering Two-Dimensional Transition Metal Dichalcogenide Catalysts for Water-Splitting Hydrogen Generation

    DEFF Research Database (Denmark)

    Cao, Xianyi; Tang, Yingying; Duus, Jens Øllgaard

    2017-01-01

    -friendly character and high renewability during its production and combustion processes. The development of green electricity powered H2 production techniques is a highly competitive solution to meet current energy and environmental challenges. Among different industrial approaches for H2 production, platinum...... supported electrocatalytic water splitting via hydrogen evolution reaction (HER) is a rather mature technique. However, it has been increasingly demanded to explore high-performance, earth-abundant and cost-effective HER electrocatalysts that can further improve energy efficiency and bring down production......Development of advanced energy conversion and storage technologies is essential for optimizing the integration of sustainable energy resources into current-running power grid systems. As one of the key energy-storage carriers, hydrogen (H2) possesses ultrahigh gravimetric energy density, eco...

  6. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights.

    Science.gov (United States)

    Gärtner, Felix; Boddien, Albert; Barsch, Enrico; Fumino, Koichi; Losse, Sebastian; Junge, Henrik; Hollmann, Dirk; Brückner, Angelika; Ludwig, Ralf; Beller, Matthias

    2011-05-27

    An extended study of a novel visible-light-driven water reduction system containing an iridium photosensitizer, an in situ iron(0) phosphine water reduction catalyst (WRC), and triethylamine as sacrificial reductant is described. The influences of solvent composition, ligand, ligand-to-metal ratio, and pH were studied. The use of monodentate phosphine ligands led to improved activity of the WRC. By applying a WRC generated in situ from Fe(3) (CO)(12) and tris[3,5-bis(trifluoromethyl)phenyl]phosphine (P[C(6)H(3)(CF(3))(2)](3), Fe(3)(CO)(12)/PR(3)=1:1.5), a catalyst turnover number of more than 1500 was obtained, which constitutes the highest activity reported for any Fe WRC. The maximum incident photon to hydrogen efficiency obtained was 13.4% (440 nm). It is demonstrated that the evolved H(2) flow (0.23 mmol H(2) h(-1) mg(-1) Fe(3)(CO)(12)) is sufficient to be used in polymer electrolyte membrane fuel cells, which generate electricity directly from water with visible light. Mechanistic studies by NMR spectroscopy, in situ IR spectroscopy, and DFT calculations allow for an improved understanding of the mechanism. With respect to the Fe WRC, the complex [HNEt(3)](+)[HFe(3)(CO)(11)](-) was identified as the key intermediate during the catalytic cycle, which led to light-driven hydrogen generation from water. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation

    Science.gov (United States)

    Mahadik, Mahadeo A.; An, Gil Woo; David, Selvaraj; Choi, Sun Hee; Cho, Min; Jang, Jum Suk

    2017-12-01

    Anatase/rutile TiO2 nanorods composites were prepared by a facile hydrothermal method followed by dip coating method using titanium isopropoxide in acetic acid and ethanol solvent. The effects of the titanium isopropoxide precursor concentration, on the formation of dip coated anatase/rutile TiO2 nanorods composite were systematically explored. The growth of anatase on rutile TiO2 nanorods can be controlled by varying the titanium isopropoxide concentration. The morphological study reveals that anatase TiO2 nanograins formed on the surface of rutile TiO2 nanorod arrays through dip coating method. Photoelectrochemical analyses showed that the enhancement of the photocatalytic activities of the samples is affected by the anatase nanograins present on the rutile TiO2 nanorods, which can induce the separation of electrons and holes. To interpret the photoelectrochemical behaviors, the prepared photoelectrodes were applied in photoelectrochemical solar hydrogen generation and orange II dye degradation. The optimized photocurrent density of 1.8 mA cm-2 and the 625 μmol hydrogen generation was observed for 10 mM anatase/rutile TiO2 NRs composites. Additionally, 96% removal of the orange II dye was achieved within 5 h during oxidative degradation under solar light irradiation. One of the benefits of high specific surface area and the efficient photogenerated charge transport in the anatase/rutile TiO2 nanorod composite improves the photoelectrochemical hydrogen generation and orange dye degradation compared to the rutile TiO2. Thus, our strategy provides a promising, stable, and low cost alternative to existing photocatalysts and is expected to attract considerable attention for industrial applications.

  8. Renewable Bio-solar Hydrogen Production from Robust Oxygenic Phototrophs: The Second Generation

    Science.gov (United States)

    2015-01-22

    manganese oxides: structural requirements for catalysis . J Am Chem Soc, 2013. 135(9): p. 3494-501. 2) Xu, Y., L.T. Guerra, Z. Li, M. Ludwig, G.C...starch biosynthesis in Chlamydomonas reinhardtii. 4. GC Dismukes, invited speaker, Gordon Research Conference: Renewable Energy: Solar Fuels , Ventura...solar hydrogen and electrical energy storage. 6. GC Dismukes, SOFI-Creation of the Solar Fuels Institute, Telluride, CO, convenor: Dr. M. Wasielewski

  9. Generation of hydrogen peroxide in the developing rat heart: the role of elastin metabolism

    Czech Academy of Sciences Publication Activity Database

    Wilhelm, J.; Ošťádalová, Ivana; Vytášek, R.; Vajner, L.

    2011-01-01

    Roč. 358, 1-2 (2011), s. 215-220 ISSN 0300-8177 R&D Projects: GA MŠk(CZ) 1M0510 Grant - others:GA ČR(CZ) GAP303/11/0298 Program:GA Institutional research plan: CEZ:AV0Z50110509 Keywords : rat heart * ontogenetic development * hydrogen peroxide * elastin * fluorescence Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.057, year: 2011

  10. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  11. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  12. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  13. Reforming water to generate hydrogen using mechanical alloy; El reformado del agua para generar hidrogeno mediante aleado mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Pena F, D. L.

    2016-07-01

    The objective of this research was to generate a hydrogen production system by means of mechanical milling, in which 0.1 g of magnesium were weighed using a volume of 300 μL for each water solvent (H{sub 2}O) and methanol (CH{sub 3}OH) in a container to start mechanical milling for 2, 4 and 6 h. Once the mechanical milling was finished, the hydrogen that was produced every two hours was measured to determine the appropriate milling time in the production, also in each period of time samples of the powders produced during the milling of Mg were taken, in this process we used characterization techniques such as: X-ray diffraction at an angle of 2θi 5 and 2θf 90 degrees and scanning electron microscopy, taking micrographs of 100, 500, 1000 and 5000 magnifications. According to the mechanical milling results hydrogen was obtained when using water, as well as with methanol. In the techniques of X-ray diffraction characterization different results were obtained before and after the milling, since by the diffractogram s is possible to observe how the magnesium to be put in the mechanical milling along with the water and methanol was diminishing to be transformed into hydroxide and magnesium oxide, as well as in the micrographs taken with scanning electron microscopy the change in the magnesium morphology to hydroxide and magnesium oxide is observed. (Author)

  14. Bifunctional Modification of Graphitic Carbon Nitride with MgFe2O4 for Enhanced Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chen, Jie; Zhao, Daming; Diao, Zhidan; Wang, Miao; Guo, Liejin; Shen, Shaohua

    2015-08-26

    To gain high photocatalytic activity for hydrogen evolution, both charge separation efficiency and surface reaction kinetics must be improved, and together would be even better. In this study, the visible light photocatalytic hydrogen production activity of graphitic carbon nitride (g-C3N4) was greatly enhanced with MgFe2O4 modification. It was demonstrated that MgFe2O4 could not only extract photoinduced holes from g-C3N4, leading to efficient charge carrier separation at the g-C3N4/MgFe2O4 interface, but also act as an oxidative catalyst accelerating the oxidation reaction kinetics at g-C3N4 surface. This dual function of MgFe2O4 thus contributed to the great improvement (up to three-fold) in photocatalytic activity for hydrogen generation over g-C3N4/MgFe2O4 as compared to pristine g-C3N4, after loading Pt by photoreduction method. It was revealed that in the Pt/g-C3N4/MgFe2O4 system, the photoinduced electrons and holes were entrapped by Pt and MgFe2O4, respectively, giving rise to the promoted charge separation; moreover, as evidenced by electrochemical analysis, the electrocatalysis effect of MgFe2O4 benefited the oxidation reaction at g-C3N4 surface.

  15. MHD Electrical Power Generation in Result of Hydrogen/Oxygen Combustion

    National Research Council Canada - National Science Library

    Bityurin, V. A; Bocharov, A. N; Krasilnikov, A. V; Mikhailov, A. V

    2003-01-01

    .... To increase the electron concentration a seed injector system is used. The goal of this study is the physical demonstration of the MMD electrical power generation under conditions simulating those for on-board multi-megawatt power generating system...

  16. On-board hydrogen generation for transport applications: the HotSpot™ methanol processor

    Science.gov (United States)

    Edwards, Neil; Ellis, Suzanne R.; Frost, Jonathan C.; Golunski, Stanislaw E.; van Keulen, Arjan N. J.; Lindewald, Nicklas G.; Reinkingh, Jessica G.

    In the absence of a hydrogen infrastructure, development of effective on-board fuel processors is likely to be critical to the commercialisation of fuel-cell cars. The HotSpot™ reactor converts methanol, water and air in a single compact catalyst bed into a reformate containing mainly CO2 and hydrogen (and unreacted nitrogen). The process occurs by a combination of exothermic partial oxidation and endothermic steam reforming of methanol, to produce 750 l of hydrogen per hour from a 245-cm3 reactor. The relative contribution of each reaction can be tuned to match the system requirements at a given time. Scale-up is achieved by the parallel combination of the required number of individual HotSpot reactors, which are fed from a central manifold. Using this modular design, the start-up and transient characteristics of a large fuel-processor are identical to that of a single reactor. When vaporised liquid feed and air are introduced into cold reactors, 100% output is achieved in 50 s; subsequent changes in throughput result in instantaneous changes in output. Surplus energy within the fuel-cell powertrain can be directed to the manifold, where it can be used to vaporise the liquid feeds and so promote steam reforming, resulting in high system efficiency. The small amount of CO that is produced by the HotSpot reactions is attenuated to <10 ppm by a catalytic clean-up unit. The HotSpot concept and CO clean-up strategy are not limited to the processing of methanol, but are being applied to other organic fuels.

  17. Demonstration of multi-generational growth of tungsten nanoparticles in hydrogen plasma using in situ laser extinction method

    Science.gov (United States)

    Ouaras, K.; Lombardi, G.; Hassouni, K.

    2018-03-01

    For the first time, we demonstrate that tungsten (W) nanoparticles (NPs) are created when a tungsten target is exposed to low-pressure, high density hydrogen plasma. The plasma was generated using a novel dual plasma system combining a microwave discharge and a pulsed direct-current (DC) discharge. The tungsten surface originates in the multi-generational formation of a significant population of 30-70 nm diameter particles when the W cathode is biased at ~  -1 kV and submitted to ~1020 m2 s-1 H+/H2+ /H3+ ions flux. The evidenced NPs formation should be taking into account as one of the consequence of the plasma surface interaction outcomes, especially for fusion applications.

  18. Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

    Directory of Open Access Journals (Sweden)

    Jun Fang

    2014-03-01

    Full Text Available Pt@TiO2 core–shell nanostructures were prepared through a hydrothermal method. The dye-sensitization of these Pt@TiO2 core–shell structures allows for a high photocatalytic activity for the generation of hydrogen from proton reduction under visible-light irradiation. When the dyes and TiO2 were co-excited through the combination of two irradiation beams with different wavelengths, a synergic effect was observed, which led to a greatly enhanced H2 generation yield. This is attributed to the rational spatial distribution of the three components (dye, TiO2, Pt, and the vectored transport of photogenerated electrons from the dye to the Pt particles via the TiO2 particle bridge.

  19. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Science.gov (United States)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  20. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected

  1. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N 2 O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH) 3 . Among the carboxylic acids investigated in this study the α-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments

  2. Phase Effect of NixPyHybridized with g-C3N4for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Sun, Zhichao; Zhu, Mingshan; Fujitsuka, Mamoru; Wang, Anjie; Shi, Chuan; Majima, Tetsuro

    2017-09-13

    The use of noble metal-free nickel phosphides (Ni x P y ) as suitable cocatalysts in photocatalytic hydrogen (H 2 ) generation has gained a lot of interest. In this paper, for the first time, three different crystalline phases of nickel phosphides, Ni 2 P, Ni 12 P 5 , and Ni 3 P, were synthesized and then hybridized with g-C 3 N 4 to investigate the phase effect of Ni x P y on photocatalytic H 2 generation. It has been found that all three phases of Ni x P y work as effective cocatalysts for the enhancement of visible light H 2 generation with g-C 3 N 4 . The effective charge transfer between g-C 3 N 4 and Ni x P y , demonstrated by photoelectrochemical properties, photoluminescence, and time-resolved diffused reflectance, contributes to the enhanced photocatalytic H 2 generation performance. Interestingly, Ni 2 P/g-C 3 N 4 showed the highest photocatalytic activity among the three Ni x P y /g-C 3 N 4 . Ni x P y with a higher ratio of phosphorus (Ni 2 P) can accelerate charge transfer and provide more Ni-P bonds, leading to a preferable H 2 generation performance.

  3. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  4. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R AND P REACTOR VESSELS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2010-05-24

    operations in the R-reactor vessel is low for the Portland cement. Alternatively, if the grout fill rate is less than 0.5 inch/min and the grout is maintained at a temperature of 80 C, the risk is again low. Although these calculations are conservative, there are some measures that may be taken to further minimize the potential for hydrogen evolution. (1) Minimize the temperature of the grout as much as practical. Lower temperatures will mean lower hydrogen generation rates. For P-reactor, grout temperatures less than 100 C should provide an adequate safety margin for the pH 8 and pH 10.4 grout formulations. For R-reactor, grout temperatures less than 70 C or 80 C will provide an adequate safety margin for the Portland cement. The other grout formulations are also viable options for R-reactor. (2) Minimize the grout fill rate as much as practical. Lowering the fill rate takes advantage of passivation of the aluminum components and hence lower hydrogen generation rates. For P-reactor, fill rates that are less than 2 inches/min for the ceramicrete and the silica fume grouts will reduce the chance of significant hydrogen accumulation. For R-reactor, fill rates less than 1 inch/min will again minimize the risk of hydrogen accumulation. (3) Ventilate the building as much as practical (e.g., leave doors open) to further disperse hydrogen. The volumetric hydrogen generation rates in the P-reactor vessel, however, are low for the pH 8 and pH 10.4 grout, (i.e., less than 0.97 ft{sup 3}/min). If further walk-down inspections of the reactor vessels suggest an increase in the actual areal density of aluminum, the calculations should be re-visited.

  5. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide

    DEFF Research Database (Denmark)

    Bartels, M.D.; Kristoffersen, K.; Slotsbjerg, T.

    2008-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a major problem in hospitals worldwide. Hand hygiene is recognised as crucial in limiting the spread of MRSA but less is known about the role of MRSA reservoirs in the inanimate hospital environment. We evaluated the effect of hydrogen peroxide...... vapour diffused by Sterinis((R)) against MRSA in two experimental hospital settings and in two field trials. Dipslides were used for MRSA detection and quantification before and after using the Sterinis disinfection process. In the first experimental hospital setting, four epidemic MRSA strains were...... placed at five locations and left for one week. All strains survived the week but not the disinfection process. In field trial one 14 upholstered chairs from a department with many MRSA positive patients were left for one month in a closed room prior to disinfection. MRSA was found on the upholstery...

  6. Hydrogen silsesquioxane a next generation resist for proton beam writing at the 20 nm level

    International Nuclear Information System (INIS)

    Kan, J.A. van; Bettiol, A.A.; Watt, F.

    2007-01-01

    In proton beam writing (PBW) the only compatible resists which have demonstrated sub-100 nm features are PMMA and SU-8. In this paper, we present results on PBW using a new non C based, hydrogen silsesquioxane (HSQ) resist. The results obtained with PBW using the HSQ resist, show that HSQ behaves as a negative resist under proton beam exposure. Details down to the 20 nm level in width standing at a height of 850 nm have been directly written in HSQ. The superior resolution of HSQ shows great potential but unlike PMMA and SU-8 this resist has a limited shelf life. To optimize the usage of this resist contrast curves and sensitivity of HSQ as a function of shelf life will be discussed. The quest for smaller feature sizes is further complicated by the fact that the beam size determination has an error of about 14 nm

  7. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum.

    Science.gov (United States)

    Jayaranjan, Madawala Liyanage Duminda; Annachhatre, Ajit P

    2013-01-01

    Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H(2)S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation.

  8. Hydrodynamic analysis of a three-fluidized bed reactor cold flow model for chemical looping hydrogen generation. Pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhipeng; Xiang, Wenguo; Chen, Shiyi; Wang, Dong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO{sub 2} from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG system consists of three reactors: a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). In the FR, the fuel gases react with iron oxides (hematite Fe{sub 2}O{sub 3}, magnetite Fe{sub 3}O{sub 4}, wuestite FeO), generating reduced iron oxides (FeO or even Fe), and with full conversion of gaseous fuels, pure CO{sub 2} can be obtained after cooling the flue gas from the fuel reactor; in the SR, FeO and Fe reacts with steam to generate magnetite (Fe{sub 3}O{sub 4}) and H{sub 2}, the latter representing the final target product of the process; in the AR, the magnetite is oxidized back to hematite which is used in another cycle. A cold flow model of three-fluidized bed for CLHG corresponding to 50 KW hot units has been built. A major novelty of this facility is the compact fuel reactor, which integrates a bubble and a fast fluidized bed to avoid the incomplete conversion of the fuel gas caused by the thermodynamics equilibrium. In order to study the pressure characteristics and the solids concentration of the system, especially in the fuel reactor, the gas velocity of three reactors, gas flow of L-type value, total solids inventory (TSI) and the secondary air of fuel reactor were varied. Results show that the pressure and the solids concentration are strongly influenced by the fluidizing-gas velocity of three reactors. Moreover, the entrainment of the upper part of fuel reactor increases as the total solids inventory increases, and the operating range of the FR can be changed by introducing secondary air or increasing the total solids inventory.

  9. Effect of three disinfectants (chlorhexidine, sodium hypochlorite and hydrogen peroxide on the microleakage of 7th generation bonding agents

    Directory of Open Access Journals (Sweden)

    Salari Behzad

    2013-10-01

    Full Text Available   Background and Aims : The aim of this study was to evaluate the effect of chlorhexidin 2%, sodium hypochlorite 2.5% and hydrogen peroxide 3% as three effective and regular disinfectants on the microleakage of 7th generation bonding agents in vitro.   Materials and Methods: 45 extracted molar teeth without carries were collected and disinfected. On buccal and lingual aspects of these teeth conventional class V cavity preparation were done (90 cavities, then randomly divided to 4 groups, three of them had 10 teeth (20 cavities and one of them had 5 teeth (10 cavities as control group. Cavities in each experimental group prepared with one of the disinfectants and then 7th generation bonding (Optibond all in one, kerr was used as noted by manufacturer, then cavities filled with composite and polished. Bonding agent was used without our previous disinfectants manipulation in control group. Specimens were thermocycled with 1000 thermal cycles between 5 and 55 0 C each for 30 seconds and then immersed in the methylene blue 5%, then sectioned mesiodistally and investigated for microleakage under stereomicroscope (Olympus, Japan. Data were analyzed using Kruskal-Wallis and Wilcoxon mean rank tests.   Results: Despite the lower mean rank values for the untreated group at both occlusal and gingival aspects, the Kruskal-Wallis procedure (α=0.05 showed that the treatment factor did not significantly affect the mean rank values neither in occlusal (P=0.12 nor in gingival (P=0.39 part of cavities.   Conclusion: According to the results of this study, antimicrobial agents such as chlorhexidine 2%, sodium hypochloride 2.5% and hydrogen peroxide 3% can be used perior to 7th generation dentin bonding agent(Optibond all in one, kerr without much concern.

  10. Renewable Bio-Solar Hydrogen Production From Robust Oxygenic Phototrophs: The Second Generation

    Science.gov (United States)

    2014-07-14

    fixed carbon (typically carbohydrates), or from photosynthetic pathways [14–19]. Several eukaryotic algae generate fermentative H2 during dark, anoxic...of the ferredoxin (Fd)-dependent monomeric (M3) structural category [34] (Fig. 2). C. pasteurianum ferments 3 mol glucose to 2 mol acetate, 2 mol... carbon 12     dioxide [47, 48]. However, the mechanism for how reduced Fd is generated from H2 only became clear through the characterization of its

  11. Polyacrylonitrile Fibers Anchored Cobalt/Graphene Sheet Nanocomposite: A Low-Cost, High-Performance and Reusable Catalyst for Hydrogen Generation.

    Science.gov (United States)

    Zhang, Fei; Huang, Guoji; Hou, Chengyi; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-06-01

    Cobalt and its composites are known to be active and inexpensive catalysts in sodium borohydride (NaBH4) hydrolysis to generate clean and renewable hydrogen energy. A novel fiber catalyst, cobalt/graphene sheet nanocomposite anchored on polyacrylonitrile fibers (Co/GRs-PANFs), which can be easily recycled and used in any reactor with different shapes, were synthesized by anchoring cobalt/graphene (Co/GRs) on polyacrylonitrile fibers coated with graphene (GRs-PANFs) at low temperature. The unique structure design effectively prevents the inter-sheet restacking of Co/GRs and fully exploits the large surface area of novel hybrid material for generate hydrogen. And the extra electron transfer path supplied by GRs on the surface of GRs-PANFs can also enhance their catalysis performances. The catalytic activity of the catalyst was investigated by the hydrolysis of NaBH4 in aqueous solution with GRs-PANFs. GRs powders and Co powders were used as control groups. It was found that both GRs and fiber contributed to the hydrogen generation rate of Co/GRs-PANFs (3222 mL x min(-1) x g(-1)), which is much higher than that of cobalt powders (915 mL x min(-1) x g(-1)) and Co/GRs (995 mL x min(-1) x g(-1)). The improved hydrogen generation rate, low cost and uncomplicated recycling make the Co/GRs-PANFs promising candidate as catalysts for hydrogen generation.

  12. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    Science.gov (United States)

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of combined slow pyrolysis and steam gasification of sugarcane bagasse on hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Prakash; Narayanan, Sheeba [National Institute of Technology, Tamil Nadu (India)

    2015-11-15

    The present work aims at improving the generation of H2 from sugarcane bagasse in steam gasification process by incorporating slow pyrolysis technique. As a bench scale study, slow pyrolysis of sugarcane bagasse is performed at various pyrolysis temperature (350, 400, 450, 500 and 550 .deg. C) and feed particle size (90generation. In the combined process (slow pyrolysis of biomass followed by steam gasification of char), first slow pyrolysis is carried out at the effective conditions (pyrolysis temperature and particle size) of char generation (determined from bench scale study) and steam gasification is at varying gasification temperature (600, 650, 700, 750 and 800 .deg. C) and steam to biomass (S/B) ratio (1, 2, 3, 4, 5 and 6) to determine the effective conditions of H{sub 2} generation. The effect of temperature and S/B on gas product composition and overall product gas volume was also investigated. At effective conditions (gasification temperature and S/B) of H2 generation, individual slow pyrolysis and steam gasification were also experimented to evaluate the performance of combined process. The effective condition of H{sub 2} generation in combined process was found to be 800 .deg. C (gasification temperature) and 5 (S/B), respectively. The combined process produced 35.90% and 23.60% more gas volume (overall) than slow pyrolysis and steam gasification process, respectively. With respect to H{sub 2} composition, the combined process generated 72.37% more than slow pyrolysis and 17.91% more than steam gasification process.

  14. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation.

    Science.gov (United States)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Peng, Xin; Zeng, Guangming; Zhong, Hua; Liang, Jie; Ren, Miaomiao

    2013-07-01

    Graphene, as an ideal two-dimensional material and single-atom layer of graphite, has attracted exploding interests in multidisciplinary research because of its unique structure and exceptional physicochemical properties. Especially, graphene-based materials offer a wide range of potentialities for environmental remediation and energy applications. This review shows an extensive overview of the main principles and the recent synthetic technologies about designing and fabricating various innovative graphene-based materials. Furthermore, an extensive list of graphene-based sorbents and catalysts from vast literature has been compiled. The adsorptive and catalytic properties of graphene-based materials for the removal of various pollutants and hydrogen storage/production as available in the literature are presented. Tremendous adsorption capacity, excellent catalytic performance and abundant availability are the significant factors making these materials suitable alternatives for environmental pollutant control and energy-related system, especially in terms of the removal of pollutants in water, gas cleanup and purification, and hydrogen generation and storage. Meanwhile, a brief discussion is also included on the influence of graphene materials on the environment, and its toxicological effects. Lastly, some unsolved subjects together with major challenges in this germinating area of research are highlighted and discussed. Conclusively, the expanding of graphene-based materials in the field of adsorption and catalysis science represents a viable and powerful tool, resulting in the superior improvement of environmental pollution control and energy development. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. In Situ Fluorine Doping of TiO2 Superstructures for Efficient Visible-Light Driven Hydrogen Generation.

    Science.gov (United States)

    Zhang, Peng; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro

    2016-03-21

    With the aid of breakthroughs in nanoscience and nanotechnology, it is imperative to develop metal oxide semiconductors through visible light-driven hydrogen generation. In this study, TiOF2 was incorporated as an n-type F-dopant source to TiO2 mesocrystals (TMCs) with visible-light absorption during the topotactic transformation. The crystal growth, structural change, and dynamic morphological evolution, from the initial intermediate NH4 TiOF3 to HTiOF3, TiOF2, and F-doped TMCs, were verified through in situ temperature-dependent techniques to elucidate the doping mechanism from intermediate TiOF2. The visible-light efficiencies of photocatalytic hydrogen were dependent on the contents of the dopant as compared with the pure TMC and a controled reference. Using femtosecond time-resolved diffuse reflectance spectroscopy, the charge-transfer dynamics were monitored to confirm the improvement of charge separation after doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation

    KAUST Repository

    Yang, Xiulin

    2015-07-01

    There exists a strong demand to replace expensive noble metal catalysts with cheap metal sulfides or phosphides for hydrogen evolution reaction (HER). Recently metal phosphides such as NixP, FeP and CoP have been considered as promising candidates to replace Pt cathodes. Here we report that the nanocrystalline CoP nanosheet assembly on carbon cloth can be formed by a two-step process: electrochemical deposition of Co species followed by gas phase phosphidation. The CoP catalyst in this report exhibits a Tafel slope of 30.1mV/dec in 0.5M H2SO4 and 42.6mV/dec in 1M KOH. The high HER performance of our CoP catalysts is attributed to the rugae-like morphology which results in a high double-layer capacitance and high density of active sites, estimated as 7.77×1017sites/cm2. © 2015 Elsevier Ltd.

  17. Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Time-Delayed Hydrogen Generation.

    Science.gov (United States)

    Lau, Vincent Wing-Hei; Klose, Daniel; Kasap, Hatice; Podjaski, Filip; Pignié, Marie-Claire; Reisner, Erwin; Jeschke, Gunnar; Lotsch, Bettina V

    2017-01-09

    While natural photosynthesis serves as the model system for efficient charge separation and decoupling of redox reactions, bio-inspired artificial systems typically lack applicability owing to synthetic challenges and structural complexity. We present herein a simple and inexpensive system that, under solar irradiation, forms highly reductive radicals in the presence of an electron donor, with lifetimes exceeding the diurnal cycle. This radical species is formed within a cyanamide-functionalized polymeric network of heptazine units and can give off its trapped electrons in the dark to yield H 2 , triggered by a co-catalyst, thus enabling the temporal decoupling of the light and dark reactions of photocatalytic hydrogen production through the radical's longevity. The system introduced here thus demonstrates a new approach for storing sunlight as long-lived radicals, and provides the structural basis for designing photocatalysts with long-lived photo-induced states. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. A Study on the Combustion Characteristics of a Generator Engine Running on a Mixture of Syngas and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hyun; Park, Cheol Woong [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Sun Youp; Kim, Chang Gi [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2011-07-15

    Internal combustion engines running on syngas, which can be obtained from biomass or organic wastes, are expected to be one of the suitable alternatives for power generation, because they are environment-friendly and do not contribute to the depletion of fossil fuels. However, syngas has variable compositions and a lower heating value than pure natural gas, owing to which the combustion conditions need to be adjusted in order to achieve stable combustion. In this study, a gas that has the same characteristics as syngas, such as low heating value (LHV), was produced by mixing N{sub 2} with compressed natural gas (CNG). In addition, this study investigates the combustion characteristics of syngas when it is mixed with hydrogen in a ratio ranging from 10% to 30% with a constant LHV of total gas.

  19. Development and Improvement of Devices for Hydrogen Generation and Oxidation in Water Detritiation Facility Based on CECE Technology

    International Nuclear Information System (INIS)

    Rozenkevich, M.; Andreev, B.; Magomedbekov, E.; Park, Yu.; Sakharovsky, Yu.; Perevezentsev, A.

    2005-01-01

    Water detritiation facility based on CECE (Combined Electrolysis and Catalytic Exchange) technology needs an electrolyser for water conversion to hydrogen. Use of a conventional alkali electrolyser requires a very deep purification of hydrogen stream from alkali prior to injection to LPCE (Liquid Phase Catalytic Exchange) column. In some applications conversion of detritiated hydrogen back into water is required. This is usually performed via hydrogen catalytic oxidation in a recombiner. This paper presents results of study to improve hydrogen and oxygen purification for alkali electrolysers and develop a hydrogen recombiner based on use of hydrophobic catalyst

  20. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    Science.gov (United States)

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...