WorldWideScience

Sample records for catalyzed friedel-crafts acetylation

  1. The synthesis of mono- and diacetyl-9H-fluorenes. Reactivity and selectivity in the Lewis acid catalyzed Friedel-Crafts acetylation of 9H-fluorene

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.;

    2008-01-01

    Friedel-Crafts acetylation of 9H-fluorene is an effective route for the preparation of mono- and diacetyl-9H-fluorenes. Using acetylchloride as the reagent and aluminum chloride as the Lewis acid catalyst the effect of the solvent polarity, the temperature, the reaction time and the mode of......-fluorene was obtained in 5-11 % yield when carbon disulfide was used as the solvent. Acetylation of 9H-fluorene in dichloroethane and carbon disulfide, using an excess of acetyl chloride and aluminum chloride at reflux temperature, gives 2,7-diacetyl-9H-fluorene exclusively in high yields (> 97%). Attempts to...

  2. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3'-dimethylbiphenyl and the oxidation of the acetyl derivatives

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.;

    2012-01-01

    Background: Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3'-dimethylbiphenyl (3,3'-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and...... converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding s-complexes were studied by DFT calculations and the data indicated that mono-and diacetylation followed different mechanisms. Conclusions: Friedel-Crafts acetylation of 3...... derivatives that are of interest in cancer treatment. Findings: The effect of solvent and temperature on the selectivity of monoacetylation of 3,3'-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3'-dmbp was formed almost quantitatively in boiling 1...

  3. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    OpenAIRE

    Titinchi Salam JJ; Kamounah Fadhil S; Abbo Hanna S; Hammerich Ole

    2012-01-01

    Abstract Background Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment. Findings The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was st...

  4. The synthesis of mono- and diacetyl-9H-fluorenes. Reactivity and selectivity in the Lewis acid catalyzed Friedel-Crafts acetylation of 9H-fluorene

    DEFF Research Database (Denmark)

    Titinchi, Salam J. J.; Kamounah, Fadhil S.; Abbo, Hanna S.; Hammerich, Ole

    addition (Perrier or Bouveault) on the reactivity-selectivity pattern was investigated. The results showed that monoacetylation of 9H-fluorene in chloroalkanes and nitromethane gives mixtures of 2-acetyl-9H-fluorene and 4-acetyl-9H-fluorene with the former dominating. In addition to these two isomers, 2......,7-diacetyl-9H-fluorene was obtained in 5-11 % yield when carbon disulfide was used as the solvent. Acetylation of 9H-fluorene in dichloroethane and carbon disulfide, using an excess of acetyl chloride and aluminum chloride at reflux temperature, gives 2,7-diacetyl-9H-fluorene exclusively in high yields (> 97...... reactivity-selectivity pattern observed and it is concluded that the distribution of products is partly kinetically controlled....

  5. A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives

    Directory of Open Access Journals (Sweden)

    Titinchi Salam JJ

    2012-06-01

    Full Text Available Abstract Background Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment. Findings The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3′-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl3 equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4′- and 4,6′-diacetyl-3,3′-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms. Conclusions Friedel-Crafts acetylation of 3,3′-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl3 complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3′-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl3 does not seem to be important in determining the mechanism.

  6. Polystyrene or Magnetic Nanoparticles as Support in Enantioselective Organocatalysis? A Case Study in Friedel-Crafts Chemistry.

    Science.gov (United States)

    Ranjbar, Sara; Riente, Paola; Rodríguez-Escrich, Carles; Yadav, Jagjit; Ramineni, Kishore; Pericàs, Miquel A

    2016-04-01

    Heterogenized versions of the second-generation MacMillan imidazolidin-4-one are described for the first time. This versatile organocatalyst has been supported on 1% DVB Merrifield resin and Fe3O4 magnetic nanoparticles through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The resulting catalytic materials have been successfully applied to the asymmetric Friedel-Crafts alkylation of indoles with α,β-unsaturated aldehydes. While both catalytic systems can be easily recovered and admit repeated recycling, the polystyrene-based catalyst shows higher stability and provides better stereoselectivities. PMID:27010999

  7. Highly enantioselective synthesis of beta-heteroaryl-substituted dihydrochalcones through Friedel-Crafts alkylation of indoles and pyrrole.

    Science.gov (United States)

    Wang, Wentao; Liu, Xiaohua; Cao, Weidi; Wang, Jun; Lin, Lili; Feng, Xiaoming

    2010-02-01

    A highly enantioselective Friedel-Crafts (F-C) alkylation of indoles and pyrrole with chalcone derivatives catalyzed by a chiral N,N'-dioxide-Sc(OTf)(3) complex has been developed that tolerates a wide range of substrates. The reaction proceeds in moderate to excellent yields and high enantioselectivities (85-92 % enantiomeric excess) using 2 mol % (for indole) or 0.5 mol % (for pyrrole) catalyst loading, which showed the potential value of the catalyst system. Meanwhile, a strong positive nonlinear effect was observed. On the basis of the experimental results and previous reports, a possible working model is proposed to explain the origin of the activation and asymmetric induction. PMID:20013964

  8. Exploring a chemical encoding strategy for combinatorial synthesis using Friedel-Crafts alkylation

    OpenAIRE

    Scott, Robin H.; Barnes, Colin; Gerhard, Ulrich; Balasubramanian, Shankar

    1999-01-01

    The use of scandium(III) triflate and ytterbium(III) triflate-catalysed Friedel-Crafts alkylation to insert a set of hydroxymethyl pyrrole amide tags (1b-i) on to polystyrene resins under mild conditions and the encoding of a split and mix peptide library is demonstrated.

  9. One-pot Synthesis of Lewis Acidic Ionic Liquids for Friedel-Crafts Alkylation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. The ionic liquids were used as catalyst for Friedel-Crafts alkylation of benzene and 1-dodecene. The turnovers of 1-dodecene were higher than 99%. Monoalkylbenzene selectivity was 98%, while the 2-substituent product selectivity was 45%.

  10. Tetranuclear Zn/4f coordination clusters as highly efficient catalysts for Friedel-Crafts alkylation.

    Science.gov (United States)

    Griffiths, Kieran; Kumar, Prashant; Akien, Geoffrey R; Chilton, Nicholas F; Abdul-Sada, Alaa; Tizzard, Graham J; Coles, Simon J; Kostakis, George E

    2016-06-14

    A series of custom-designed, high yield, isoskeletal tetranuclear Zn/4f coordination clusters showing high efficiency as catalysts with low catalytic loadings in Friedel-Crafts alkylation are described for the first time. The possibility of altering the 4f centers in these catalysts without altering the core topology allows us to further confirm their stability via EPR and NMR, as well to gain insights into the plausible reaction mechanism, showcasing the usefulness of these bimetallic systems as catalysts. PMID:27248829

  11. A Zeolite Imidazolate Framework ZIF-8 Catalyst for Friedel-Crafts Acylation

    Institute of Scientific and Technical Information of China (English)

    LienT.L.NGUYEN; Ky K.A.LE; Nam T.S.PHAN

    2012-01-01

    A zeolite imidazolate framework,ZIF-8,was synthesized and characterized by dynamic laser light scattering,X-ray powder diffraction,scanning electron microscopy,transmission electron microscopy,thermogravimetric analysis,Fourier transform infrared,atomic absorption spectrophotometry,and nitrogen adsorption measurements.The ZIF-8 was highly crystalline and porous with a surface area of over 1600 m2/g.Friedel-Crafts acylation of anisole and benzoyl chloride proceeded well in the presence of ZIF-8 (2-6 mol%) without the need for an inert atmosphere.The reaction afforded a selectivity of 93%-95% to the p-isomer.The solid catalyst can be separated from the reaction mixture by simple centrifugation and reused without significant degradation in catalytic activity.There was no leaching of active acid species into the reaction solution.

  12. An efficient combination of Zr-MOF and microwave irradiation in catalytic Lewis acid Friedel-Crafts benzoylation.

    Science.gov (United States)

    Doan, Tan L H; Dao, Thong Q; Tran, Hai N; Tran, Phuong H; Le, Thach N

    2016-05-01

    A zirconium-based metal-organic framework, an effective heterogeneous catalyst, has been developed for the Friedel-Crafts benzoylation of aromatic compounds under microwave irradiation. Constructed by a Zr(iv) cluster and a linker 1,4-bis(2-[4-carboxyphenyl]ethynyl)benzene (H2CPEB), the MOF, possessing large pores and high chemical stability, was appropriate for the enhancement of Lewis acid activity under microwave irradiation. The reaction studies demonstrated that the material could give high yields for a few minutes and maintain its reactivity and structure over several cycles. PMID:27064371

  13. Fe3+-Exchanged Titanate Nanotubes: A New Kind of Highly Active Heterogeneous Catalyst for Friedel-Crafts Type Benzylation

    Directory of Open Access Journals (Sweden)

    Yunchen Du

    2015-01-01

    Full Text Available Heterogeneous catalysis for Friedel-Crafts type benzylation has received much attention in recent years due to its characteristic of environmental benefits. In this paper, titanate nanotubes (TNTs were employed as heterogeneous catalyst support, and a new kind of Fe3+-exchanged titanate nanotubes (Fe-TNTs catalyst with highly dispersed ferric sites was constructed by an ion exchange technique. The obtained catalyst was systematically characterized by XRD, TEM, N2 adsorption, XPS, and UV-vis spectra. As expected, Fe-TNTs showed excellent catalytic activities in the benzylation of benzene and benzene derivatives. The recycling tests for Fe-TNTs were also carried out, where the reason for the gradually decreased activity was carefully investigated. Superior to some reported catalysts, the catalytic ability of used Fe-TNTs could be easily recovered by ion exchange again, indicating that Fe-TNTs herein were a highly active and durable heterogeneous catalyst for Friedel-Crafts type benzylation. These results might be helpful for the design and preparation of novel heterogeneous catalysts by combining the structural advantages of titanate nanotubes and active metal ions.

  14. Friedel-Craft Acylation of ar-Himachalene: Synthesis of Acyl-ar-Himachalene and a New Acyl-Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Abdallah Karim

    2011-07-01

    Full Text Available Friedel-Craft acylation at 100 °C of 2,5,9,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocycloheptene [ar-himachalene (1], a sesquiterpenic hydrocarbon obtained by catalytic dehydrogenation of α-, β- and γ-himachalenes, produces a mixture of two compounds: (3,5,5,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl-ethanone (2, in 69% yield, with a conserved reactant backbone, and 3, with a different skeleton, in 21% yield. The crystal structure of 3 reveals it to be 1-(8-ethyl-8-hydroperoxy-3,5,5-trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl-ethanone. In this compound O-H…O bonds form dimers. These hydrogen-bonds, in conjunction with weaker C-H…O interactions, form a more extended supramolecular arrangement in the crystal.

  15. Methanetrisulfonic Acid: A Highly Efficient Strongly Acidic Catalyst for Wagner-Meerwein Rearrangement, Friedel-Crafts Alkylation and Acylation Reactions. Examples from Vitamin E Synthesis

    Directory of Open Access Journals (Sweden)

    Francesco Pace

    2009-04-01

    Full Text Available Methanetrisulfonic acid had been prepared for the first time over 140 years ago, but it was used only scarcely in chemical transformations. In the course of our activities dealing with key-steps of industrial syntheses of vitamins, e.g. economically important vitamin E (acetate, we found that methanetrisulfonic acid is an extremely effective catalyst in a variety of reactions. Examples of its applications are Wagner-Meerwein rearrangements, Friedel-Crafts alkylations and ring closures, as well as acylation reactions. Use of this catalyst in truly catalytic amounts (0.04-1.0 mol% resulted in highly selective transformations and yields over 95%. (Remark by the authors: We are describing only one example each for the various types of reactions. Therefore, it would be more appropriate to write (here and in the Introduction and in the Conclusion sections: “Wagner-Meerwein rearrangement, Friedel-Crafts alkylation and ring closure, as well as acylation reactions”

  16. Diaryl fluorene-Based Shape-Persistent Organic Nano molecular Frameworks via Iterative Friedel-Crafts Protocol toward Multicomponent Organic Semiconductors

    International Nuclear Information System (INIS)

    We describe bottom-up fluorenol approach to create soluble covalent organic nano molecular architectures (ONAs) as potential multicomponent organic semiconductors (MOSs). BPyFBFFA as a typical model of ONAs and MOSs exhibits a persistent chair-shaped geometric structure that consists of hole-transporting tri phenylamine (TPA), high-efficiency ter fluorene, and high-mobility pyrenes. BPyFBFFA was synthesized via the intermediates PyFA and BPyFA with iterative Friedel-Crafts reactions and Suzuki cross-coupling reactions. BPyFBFFA behaves as an efficient blue light-emitter without the low-energy green emission band. Complex diaryl fluorenes (CDAFs) are promising candidates for nano scale covalent organic frameworks and MOSs. Friedel-Crafts protocols offer versatile toolboxes for molecular architects to frame chemistry and materials, nano science, and molecular nano technology as well as molecular manufactures

  17. Werner-type Cobalt Complexes and Ruthenium Complexes with Substituted 2-Guanidinobenzimidazole Ligands as Catalysts for Michael and Friedel Crafts Reactions

    OpenAIRE

    Ganzmann, Carola

    2010-01-01

    In this thesis, chiral cobalt(III) complexes with en ligands (en = ethylenediamine) and ruthenium complexes with 2-guanidinobenzimidazole (GBI) and N-(2-benzimidazolyl)thiourea (BITU) ligands are developed. Their efficiency as catalysts for Friedel Crafts and Michael reactions are assayed. Chapter 1 provides an overview of the development of bifunctional thiourea catalysts and analyzes crystal structures of previously reported [Co(diamine)3]3+ complexes as well as GBI systems and correspondin...

  18. Methanetrisulfonic Acid: A Highly Efficient Strongly Acidic Catalyst for Wagner-Meerwein Rearrangement, Friedel-Crafts Alkylation and Acylation Reactions. Examples from Vitamin E Synthesis

    OpenAIRE

    Francesco Pace; Thomas Netscher; Simone Hoppmann; Alois Haas; Fabrice Aquino; Werner Bonrath; Horst Pauling

    2009-01-01

    Methanetrisulfonic acid had been prepared for the first time over 140 years ago, but it was used only scarcely in chemical transformations. In the course of our activities dealing with key-steps of industrial syntheses of vitamins, e.g. economically important vitamin E (acetate), we found that methanetrisulfonic acid is an extremely effective catalyst in a variety of reactions. Examples of its applications are Wagner-Meerwein rearrangements, Friedel-Crafts alkylations and ring closures, as we...

  19. Sulfamic acid as a cost-effective and recyclable solid acid catalyst for Friedel-Crafts alkylation of indole with α,β-unsaturated carbonyl compound and benzyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Juan Zhang; Tian Tian Chen; De Mei Sun; Ji Li; Xue Fen Wu

    2011-01-01

    Sulfamic acid was proved to be a cost-effective and recyclable catalyst for Friedel-Crafts type reaction of indole with α,β-unsaturated carbonyl compound and benzyl alcohol. Various indoles, α,β-unsaturated carbonyl compounds and a benzyl alcohol were successfully used in this type of reaction, and the corresponding products were obtained in good to excellent yields.

  20. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    Science.gov (United States)

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  1. A Large Scale Formal Synthesis of CoQ10: Highly Stereoselective Friedel-Crafts Allylation Reaction of Tetramethoxytoluene with (E)-4-Chloro-2-methyl-1-phenylsulfonyl-2-butene in the Presence of Montmorillonite K-10

    International Nuclear Information System (INIS)

    We disclosed that MK-10 is a highly effective catalyst for the Friedel-Crafts reaction of 6 and 7 in terms of yield and of stereoselectivity. Although there are numerous applications of clays in Friedel-Crafts reaction, there is very limited example which demonstrated its effect on the stereoselectivity. In that context, our result is significant and further expansion in this direction is highly envisioned. Ubiquinone, as its name represents, exists ubiquitously in human body, particularly in the heart. It mediates the electron transfer process in mitochondria and also exerts strong antioxidant effect in its reduced form. In clinical trial, it showed beneficial effect on heart-related diseases such as myocardial infarction, angina, and other related symptoms to cause decreased mortality compared to the placebo group

  2. A Large Scale Formal Synthesis of CoQ{sub 10}: Highly Stereoselective Friedel-Crafts Allylation Reaction of Tetramethoxytoluene with (E)-4-Chloro-2-methyl-1-phenylsulfonyl-2-butene in the Presence of Montmorillonite K-10

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Who; Lee, Hee Bong; Kim, Bong Chan; Sadaiah, Kadivendi; Lee, Kyuwoong; Shin, Hyunik [LG Life Sciences, Ltd., Daejeon (Korea, Republic of)

    2013-04-15

    We disclosed that MK-10 is a highly effective catalyst for the Friedel-Crafts reaction of 6 and 7 in terms of yield and of stereoselectivity. Although there are numerous applications of clays in Friedel-Crafts reaction, there is very limited example which demonstrated its effect on the stereoselectivity. In that context, our result is significant and further expansion in this direction is highly envisioned. Ubiquinone, as its name represents, exists ubiquitously in human body, particularly in the heart. It mediates the electron transfer process in mitochondria and also exerts strong antioxidant effect in its reduced form. In clinical trial, it showed beneficial effect on heart-related diseases such as myocardial infarction, angina, and other related symptoms to cause decreased mortality compared to the placebo group.

  3. Friedel-Crafts Alkylation of Arenes with 2-Halogeno-2-CF3-styrenes under Superacidic Conditions. Access to Trifluoromethylated Ethanes and Ethenes.

    Science.gov (United States)

    Sandzhieva, Maria A; Kazakova, Anna N; Boyarskaya, Irina A; Ivanov, Alexandr Yu; Nenajdenko, Valentine G; Vasilyev, Aleksander V

    2016-06-17

    The formation of the corresponding benzyl cations [ArHC(+)-CH(X)CF3] takes place under protonation of E-/Z-2-halogeno-2-CF3 styrenes [ArCH═C(X)CF3, X = F, Cl, Br] in superacids. The structures of these new electrophiles were studied by means of NMR and theoretical DFT calculations. According to these data, in the case of bromo derivatives, the formed cations, most probably, exist as cyclic bromonium ions; however, in the cases of chloro and fluoro derivatives, open forms are more preferable. Subsequent reaction of these benzyl cations with arenes proceeds as Friedel-Crafts alkylation to afford 1,1-diaryl-2-halo-3,3,3-trifluoropropanes [Ar(Ar')CH-CH(X)CF3] in high yields (up to 96%) as a mixture of two diastereomers. The prepared halogenopropanes were easily converted into the corresponding mixtures of E-/Z-trifluoromethylated diarylethenes [Ar(Ar')C═CCF3] (in yields up to 96%) by dehydrohalogenation with base (KOH or t-BuOK). The mechanism of elimination (E2 and Ecb) depends on the nature of the leaving group and reaction conditions. PMID:27227747

  4. A facile Friedel-Crafts acylation for the synthesis of polyethylenimine-grafted multi-walled carbon nanotubes as efficient gene delivery vectors.

    Science.gov (United States)

    Nia, Azadeh Hashem; Amini, Abbas; Taghavi, Sahar; Eshghi, Hossein; Abnous, Khalil; Ramezani, Mohammad

    2016-04-11

    Low chemical reactivity of carbon nanotubes is one of the major obstacles in their functionalization via chemical reactions. As a non-destructive method, Friedel-Crafts acylation was suggested among the explored reactions for which only a few methods have been reported under harsh reaction conditions, e.g., high temperature all leading to low yields. In this study, we propose a novel method for the acylation of multi-walled carbon nanotubes (MWCNTs) at a low temperature (i.e., 42°C), using SiO2-Al2O3 as a catalyst and 6-bromohexanoic acid as the acylating agent to produce high yield functionalized MWCNTs. After acylation, MWCNTs are conjugated with polyethylenimines (PEIs) with three molecular weights (1.8, 10 and 25kDa). Three different MWCNT-PEI conjugates are synthesized and evaluated for their condensation ability, viability, size and zeta potential properties. The transfection efficiency of the functionalized MWCNTs is evaluated using luciferase assay and flow cytometry in a Neuroblastoma cell line. MWCNT-PEI (10 kDa) conjugate shows the highest transfection efficacy compared to others. For this carrier transfection efficacy exceeds the amount of PEI 25 kDa at similar carrier to plasmid weight ratio (C/P) and is around 3 times higher compared to PEI 25 kDa at C/P=0.8 as positive control regarding its high transfection efficiency and low cytotoxicity. PMID:26906459

  5. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    Science.gov (United States)

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group. PMID:26861768

  6. Alkylidene malonates and α,β-unsaturated α'-hydroxyketones as practical substrates for vinylogous Friedel-Crafts alkylations in water catalysed by scandium(III) triflate/SDS.

    Science.gov (United States)

    Oelerich, Jens; Roelfes, Gerard

    2015-03-01

    Alkylidene malonates and α,β-unsaturated α'-hydroxyketones are demonstrated to be efficient classes of electrophiles for the scandium(III) triflate/sodium dodecyl sulphate (SDS) catalysed vinylogous Friedel-Crafts alkylation of indoles and pyrroles in water. These substrates contain an easily removable auxiliary group that increases affinity for the catalytic metal ion in such a way that they can compete with water for binding to the catalytic metal ion. Thus, alkylidene malonates and α,β-unsaturated α'-hydroxyketones are attractive substitutes for, e.g., α,β-unsaturated carboxylic acids and -esters, which in aqueous media are not reactive enough in these reactions. The combination of Lewis acid and SDS in catalysis results in considerable acceleration of the reaction in water compared to organic solvents. The method presented is attractive because the reactions are fast, experimentally straightforward and give rise to high yields of products. PMID:25604240

  7. SCANDIUM TRIFLATE CATALYZED ACETYLATION OF STARCH UNDER MILD CONDITIONS

    Science.gov (United States)

    Scandium (III) trifluoromethan sulfonate (Sc(OTf)3) was investigated as a catalyst for the acetylation of starch in order to determine the potential for preparing new types of starch esters under mild conditions. At room temperature, dry granular corn starch reacts with acetic anhydride in the pres...

  8. Friedel-Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates. Efficient synthesis of highly fluorescent diethyl 1-(pyrene-1-carboxamido)alkylphosphonates and 1-(pyrene-1-carboxamido)methylphosphonic acid.

    Science.gov (United States)

    Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Gajda, Anna; Gajda, Tadeusz; Makal, Anna; Brosseau, Arnaud; Métivier, Rémi

    2015-01-01

    Friedel-Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates promoted by trifluoromethanosulfonic acid afforded diethyl 1-(pyrene-1-carbothioamido)alkylphosphonates in 83-94% yield. These compounds were transformed, in 87-94% yield, into the corresponding diethyl 1-(pyrene-1-carboxamido)alkylphosphonates by treatment with Oxone(®). 1-(Pyrene-1-carboxamido)methylphosphonic acid was obtained in a 87% yield by treating the corresponding diethyl phosphonate with Me3Si-Br in methanol. All of the synthesized amidophosphonates were emissive in solution and in the solid state. The presence of a phosphonato group brought about an approximately two-fold increase in solution fluorescence quantum yield in comparison with that of a model N-alkyl pyrene-1-carboxamide. This effect was tentatively explained by stiffening of the amidophosphonate lateral chain which was caused by the interaction (intramolecular hydrogen bond) of phosphonate and amide groups. The synthesized phosphonic acid was soluble in a biological aqueous buffer (PBS, 0.01 M, pH 7.35) and was strongly emissive under these conditions (λem = 383, 400 nm, τ = 18.7 ns, ΦF > 0.98). Solid-state emission of diethyl 1-(pyrene-1-carboxamido)methylphosphonate (λmax = 485 nm; ΦF = 0.25) was assigned to π-π aggregates, the presence of which was revealed by single-crystal X-ray diffraction analysis. PMID:26734093

  9. 分子内酰基化反应合成新型六环稠杂环化合物%Synthesis of Novel Hexacyclic -fused Heterocyclic Compounds via Intramolecular Friedel -Crafts Acylation

    Institute of Scientific and Technical Information of China (English)

    聂成铭; 徐良玉; 李阳; 高文涛

    2013-01-01

    The hitherto unreported benzo[h]naphtho[1′,2′,6,7]oxepino[3,4-b] quinolin-17(8H) -one (3a) was synthesized by the intramolecular Friedel -Crafts acylation reaction of 2 -(( naphthalen -2 -yloxy)methyl)benzo[h]quinoline -3-carboxylic acid 2 under the treatment of Eaton′s reagent (P2O5 -Me-SO3 ) .The precursor 2 was prepared through one -pot reaction of ethyl 2-( chloromethyl ) benzo [ h] quinoline-3-carboxylate 1 with α-naphthol or β-naphthol .The substrate 1 was obtained in good yield by a mild , effi-cient and direct reaction of α-naphthylamine with 4 -chloroacetoacetate under the treatment of Vilsmeier -Haack reagent.The structures of all the new compounds were identified by ESI -MS, IR, NMR spectra and Ele-mental analysis .%以2-氯甲基-3-苯并喹啉甲酸乙酯(1)为底物与α-萘酚、β-萘酚反应经“一锅法”合成了中间体2-(α-萘氧甲基)苯并[ h]喹啉-3-羧酸(2a)、2-(β-萘氧甲基)苯并[ H]喹啉-3-羧酸(2b)。化合物2a,2b在Eaton′s试剂作用下合成两种新型六环稠杂环化合物萘并[2′,1′,6,7]氧杂卓并[3,4-b]苯并喹啉-7(14H)-酮(3a)和萘并[1′,2′,6,7]氧杂卓并[3,4-b]苯并喹啉-15(8H)-酮(3b)。化合物2a,2b发生分子内傅一克酰基化闭环反应,所合成的新化合物2a、2b、3a、3b的结构经红外光谱、核磁共振谱、质谱及元素分析等得以确认。

  10. 2-Acetylthiamin pyrophosphate (acetyl-TPP) pH-rate profile for hydrolysis of acetyl-TPP and isolation of acetyl-TPP as a transient species in pyruvate dehydrogenase catalyzed reactions

    International Nuclear Information System (INIS)

    Rate constants for the hydrolysis of acetyl-TPP were measured pH values of 2.5 and 7.5 and plotted as log kobs versus pH. The pH-rate profile defined two legs, each with a slope of +1 but separated by a region of decreased slope between pH 4 and pH 6. The rates were insensitive to buffer concentrations. Each leg of the profile reflected specific-base-catalyzed hydrolysis of acetyl-TPP, analogous to the hydrolysis of 2-acetyl-3,4-dimethylthiazolium ion. The separation of the two legs of this profile has been shown to be caused by the ionization of a group exhibiting a pKa of 4.73 within acetyl-TPP that is remote from the acetyl group, the aminopyrimidine ring, which is promoted below pH 4.73. The protonation level of this ring has been shown to control the equilibrium partitioning of acetyl-TPP among its carbinolamine, keto, and hydrate forms. The differential partitioning of these species is a major factor causing the separation between the two legs of the pH-rate profile. The characteristic pH-rate profile and the availability of synthetic acetyl-TPP have facilitated the isolation and identification of [1-14C]acetyl-TPP from acid-quenched enymatic reaction mixtures at steady states. [1-14C]Acetyl-TPP was identified as a transient species in reactions catalyzed by the PDH complex or the pyruvate dehydrogenase component of the complex (E1). The pH-rate profile for hydrolysis of [1-14C]-acetyl-TPP, isolated from enzymatic reactions was found to be indistinguishable from that for authentic acetyl-TPP, which constituted positive identification of the 14C-labeled enzymic species

  11. 全氟辛基磺酸稀土金属盐催化氟两相Friedel-Crafts烷基化反应%Friedel-Crafts Alkylation in Fluorous Biphasic System Catalyzed by Rare Earth(Ⅲ) Perfluorooctanesulfonates

    Institute of Scientific and Technical Information of China (English)

    易文斌; 蔡春

    2006-01-01

    制备了全氟辛基磺酸稀土金属盐[RE(OSO2C8C17)3,RE:Sc,Y,La~Lu],并研究了将其作为催化剂催化氟两相烷基化反应. 全氟己烷(C6F14)、全氟甲苯(C7F8)、全氟甲基环己烷(C7F14)、全氟辛烷(C8F18)、1-溴代全氟辛烷(C8F17Br)和全氟萘烷(C10F18,顺式与反式的混合物)可作为该反应的氟溶剂. 考察了带有不同配体的稀土金属催化剂对反应的影响. 研究表明,Yb(OSO2C8F17)3和C10F18分别是最好的氟代催化剂和氟溶剂. 以Yb(OSO2C8F17)3为催化剂在C10F18中苯甲醚和苯甲醇的烷基化反应得率为96%. 含有催化剂的氟相通过简单的相分离,可回收利用. 氟相重复使用5次,其催化活性降低不大.

  12. Friedel-Crafts Acylation in Fluorous Biphasic Systems Catalyzed by Rare Earth( Ⅲ ) Perfluorooctanesulfonates%全氟辛基磺酸稀土金属盐催化氟两相Friedel-Crafts酰化反应

    Institute of Scientific and Technical Information of China (English)

    易文斌; 蔡春

    2005-01-01

    制备了全氟辛基磺酸稀土金属盐(RE(OSO2C8F17)3,RE=Y,La~Lu),研究了该催化剂作用下氟两相Friedel-Crafts酰化反应.全氟己烷(C6F14)、全氟甲苯(C7F8)、全氟甲基环己烷(C7F14)、全氟辛烷(C8F18)、1-溴代全氟辛烷(C8F17Br)和全氟萘烷(C10F18,顺式与反式的混合物)可作为该反应的氟溶剂.考察了氟相和有机相的相比与酰化试剂种类对反应的影响.结果表明,反应具有强对位选择性酰化能力;Y(OSO2C8F17)3和C10F18分别是最好的催化剂和氟溶剂,以Y(OSO2C8F17)3为催化剂在C10F18中苯甲醚和乙酸酐的Friedel-Crafts酰化反应得率为56%,对位选择性超过99%;随着氟相和有机相相比的减小,产率升高,对位选择性降低;含有催化剂的氟相通过简单的相分离,就可回收利用,氟相重复使用5次,其催化活性减少不大.

  13. Highly Active Copolymerization of Ethylene and N-Acetyl-O-(ω-Alkenyl-l-Tyrosine Ethyl Esters Catalyzed by Titanium Complex

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-03-01

    Full Text Available A series of N-acetyl-O-(ω-alkenyl-l-tyrosine ethyl esters were synthesized by the reaction of vinyl bromides (4-bromo-1-butene, 6-bromo-1-hexene, 8-bromo-1-octene and 10-bromo-1-decene with N-acetyl-l-tyrosine ethyl ester. 1H NMR, elemental analysis, FT-IR, and mass spectra were performed for these N-acetyl-O-(ω-alkenyl-l-tyrosine ethyl esters. The novel titanium complex can catalyze the copolymerization of ethylene and N-acetyl-O-(ω-alkenyl-l-tyrosine ethyl esters efficiently and the highest catalytic activity was up to 6.86 × 104 gP·(molTi−1·h−1. The structures and properties of the obtained copolymers were characterized by FT-IR, (1H13C NMR, GPC, DSC, and water contact angle. The results indicated that the obtained copolymers had a uniformly high average molecular weight of 2.85 × 105 g·mol−1 and a high incorporation ratio of N-acetyl-O-(but-3-enyl-l-tyrosine ethyl ester of 2.65 mol % within the copolymer chain. The units of the comonomer were isolated within the copolymer chains. The insertion of the polar comonomer into a copolymer chain can effectively improve the hydrophilicity of a copolymer.

  14. A Cell-Free Fluorometric High-Throughput Screen for Inhibitors of Rtt109-Catalyzed Histone Acetylation

    OpenAIRE

    Dahlin, Jayme L; Sinville, Rondedrick; Solberg, Jonathan; Zhou, Hui; Han, Junhong; Francis, Subhashree; Strasser, Jessica M.; John, Kristen; Hook, Derek J.; Walters, Michael A.; Zhang, Zhiguo

    2013-01-01

    The lysine acetyltransferase (KAT) Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac) in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we ...

  15. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation.

    Directory of Open Access Journals (Sweden)

    Jayme L Dahlin

    Full Text Available The lysine acetyltransferase (KAT Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7% were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could

  16. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation.

    Science.gov (United States)

    Dahlin, Jayme L; Sinville, Rondedrick; Solberg, Jonathan; Zhou, Hui; Han, Junhong; Francis, Subhashree; Strasser, Jessica M; John, Kristen; Hook, Derek J; Walters, Michael A; Zhang, Zhiguo

    2013-01-01

    The lysine acetyltransferase (KAT) Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac) in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS) for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7%) were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could serve as

  17. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila

    International Nuclear Information System (INIS)

    The purified nickel-containing CO dehydrogenase complex isolated from methanogenic Methanosarcina thermophila grown on acetate is able to catalyze the exchange of [1-14C] acetyl-coenzyme A (CoA) (carbonyl group) with 12CO as well as the exchange of [3'-32P]CoA with acetyl-CoA. Kinetic parameters for the carbonyl exchange have been determined: Km (acetyl-CoA) = 200 microM, Vmax = 15 min-1. CoA is a potent inhibitor of this exchange (Ki = 25 microM) and is formed under the assay conditions because of a slow but detectable acetyl-CoA hydrolase activity of the enzyme. Kinetic parameters for both exchanges are compared with those previously determined for the acetyl-CoA synthase/CO dehydrogenase from the acetogenic Clostridium thermoaceticum. Collectively, these results provide evidence for the postulated role of CO dehydrogenase as the key enzyme for acetyl-CoA degradation in acetotrophic bacteria

  18. Proton inventory of the water-catalyzed hydrolysis of 1-acetyl-1,2,4-triazole. Examination of ionic strength effects

    International Nuclear Information System (INIS)

    Proton inventories of the water-catalyzed hydrolysis of 1-acetyl-1,2-4-triazole have been completed under a variety of conditions. The solvent deuterium isotope effect, k/sub H2O/k/sub D2O/, determined at pH 4.7 or the equivalent point on the pD rate profile at 250C by using acetic acid-acetate buffers at 1 M ionic strength was 3.18. The solvent deuterium isotope effects determined at ionic strenghs of 1 and 0.5 M by using 10-3 M HCl (DCl) to control the pH(D) were 3.13 and 3.07, respectively. In all cases the proton inventories exhibit significant downward curvature and are, within experimental error, consistent with a cyclic transition state structure involving four water molecules. The equation k/sub n/ = k0(1 - n + 0.75n) describes the proton inventories where the value of the isotope fractionation factor for the four in-flight protons is 0.75. These inventories are compared to an earlier study done with no ionic strength control, and several alternative transition states are considered in detail

  19. Dy(OTf)3 Catalyzed Reaction of Indole with Aldehydes and Ketones in Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    MI Xue-Ling; LUO San-Zhong; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ The use of environmentally benign reaction media is very important in view of today' s environmentally con scious attitude. In connect with this, room temperature ionic liquids that are air and moisture stable have received a good deal of attention in recent years as novel solvent systems for organic synthesis. A number of reactions such as Friedel-Crafts reactions, Diels-Alder cycloadditions, hydrogenations, and Heck reactions have employed ionic liquids as solvents. Among them, the Friedel-Crafts reaction[1] is of great synthetic significance in view of laboratory synthesis and industrial production. Recent studies showed that Friedel-Crafts reaction of indole with carbonyl compounds proceeded readily in aqueous media. [2] However, the aqueous reactions suffer from some common problems,such as tedious work-up, reuse of catalyst and so on.

  20. Phenylalanine Ammonia-Lyase-Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles.

    Science.gov (United States)

    Weiser, Diána; Bencze, László Csaba; Bánóczi, Gergely; Ender, Ferenc; Kiss, Róbert; Kókai, Eszter; Szilágyi, András; Vértessy, Beáta G; Farkas, Ödön; Paizs, Csaba; Poppe, László

    2015-11-01

    Phenylalanine ammonia-lyase (PAL), found in many organisms, catalyzes the deamination of l-phenylalanine (Phe) to (E)-cinnamate by the aid of its MIO prosthetic group. By using PAL immobilized on magnetic nanoparticles and fixed in a microfluidic reactor with an in-line UV detector, we demonstrated that PAL can catalyze ammonia elimination from the acyclic propargylglycine (PG) to yield (E)-pent-2-ene-4-ynoate. This highlights new opportunities to extend MIO enzymes towards acyclic substrates. As PG is acyclic, its deamination cannot involve a Friedel-Crafts-type attack at an aromatic ring. The reversibility of the PAL reaction, demonstrated by the ammonia addition to (E)-pent-2-ene-4-ynoate yielding enantiopure l-PG, contradicts the proposed highly exothermic single-step mechanism. Computations with the QM/MM models of the N-MIO intermediates from L-PG and L-Phe in PAL show similar arrangements within the active site, thus supporting a mechanism via the N-MIO intermediate. PMID:26345352

  1. UNIQUE ACETYLATION OF OLIGOSACCHARIDES BY TRICHODERMA REESEI ACETYL ESTERASE IN WATER - VINYL ACETATE MIXTURE

    Science.gov (United States)

    Purified T. reesei RUT C-30 acetyl esterase catalyzes acetyl transfer to a variety of carbohydrates in water in the presence of vinyl acetate as the acetyl group donor. The degree of conversion and the number of formed acetates depended on the acceptor used. With some acceptors, such as methyl or ...

  2. Amine-Catalyzed Highly Regioselective and Stereoselective C(sp(2) )-C(sp(2) ) Cross-Coupling of Naphthols with trans-α,β-Unsaturated Aldehydes.

    Science.gov (United States)

    Hu, Yang; Ma, Yueyue; Sun, Rengwei; Yu, Xinhong; Xie, Hexin; Wang, Wei

    2015-09-01

    A metal-free C(sp(2) )-C(sp(2) ) cross-coupling approach to highly congested (E)-α-naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4-bromination of 1-naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4-bromo-1-naphthols with the α-C(sp(2) ) of enals through a Michael-type Friedel-Crafts alkylation-dearomatization followed by a cyclopropanation ring-opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp(2) )-C(sp(2) ) bond from readily available unfunctionalized naphthols and enals catalyzed by non-metal, readily available cyclic secondary amines under mild reaction conditions. PMID:26096893

  3. Deaminated zeolite, ITQ-6 as heterogeneous catalyst for Friedel crafts alkylation

    International Nuclear Information System (INIS)

    The ability of ITQ-6, a kind of meso porous zeolitic material to replace microporous zeolite as catalyst has attracted particular attention. In this study, modification of a precursor of microporous ferrierite, PREFER to meso porous material, ITQ-6 was carried out by delamination technique. The XRD results show that the crystalline phase of PREFER diminished for the sample after delamination. Porosity study of the ITQ-6 sample shows formation of homogeneous meso pores in the size between 3.5-4.0 nm. The acidity study indicates that ITQ-6 still contains appreciable amounts of Bronsted and Lewis acidities. Catalytic evaluation of the resulting material, ITQ-6 was carried out in the alkylation of resorcinol with methyl tert-butyl ether which gave 4-tert-butyl resorcinol and 4, 6-di-tert-butyl resorcinol as main products. The conversion of resorcinol when using ITQ-6 was ten times higher than ferrierite, FER with similar selectivity of disubstituted product. It shows that the meso porosity of ITQ-6 was responsible for the higher activity of the catalyst in the reaction. (author)

  4. Microwave-assisted facile and rapid Friedel-Crafts benzoylation of arenes catalysed by bismuth trifluoromethanesulfonate

    DEFF Research Database (Denmark)

    Tran, Phoung Hoang; Hansen, Poul Erik; Pham, Thuy Than;

    2014-01-01

    The catalytic activity of metal triflates was investigated in Friedel–Crafts benzoylation under microwave irradiation. Friedel–Crafts benzoylation with benzoyl chloride of a variety of arenes containing electron-rich and electron-poor rings using bismuth triflate under microwave irradiation is...

  5. Green photochemistry: the solar-chemical 'Photo-Friedel-Crafts acylation' of quinones

    Energy Technology Data Exchange (ETDEWEB)

    Schiel, C.; Oelgemoeller, M.; Ortner, J.; Mattay, J.

    2001-07-01

    The photoreactions between 1,4-quinones (1 and 4) and aldehydes (2 and 5), yielding acylated hydroquinones as sole products, were investigated under artificial and solar irradiation conditions. Three different solar reactors were used for the photochemical syntheses with sunlight (PROPHIS, CPC and a flat bed reactor), and the CPC system was found to be the most robust one in terms of weather dependence. The solar reactions can be easily performed on a half-kilogram scale using cheap and commercially available starting materials. (author)

  6. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    International Nuclear Information System (INIS)

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  7. Iodine catalyzed acetylation of starch and cellulose

    Science.gov (United States)

    Starch and cellulose, earth's most abundant biopolymers, are of tremendous economic importance. Over 90% of cotton and 50% of wood are made of cellulose. Wood and cotton are the major resources for all cellulose products such as paper, textiles, construction materials, cardboard, as well as such c...

  8. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel-Crafts type benzylation reactions

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Rani Jha; Pankaj A Choudhari

    2005-11-01

    Fe-Mg-hydrotalcite (Mg/Fe = 3) anionic clay with or without calcination (at 200-800°C) has been used for the benzylation of toluene and other aromatic compounds by benzyl chloride. Hydrotalcite before and after its calcination was characterized for surface area, crystalline phases and basicity. Both the hydrotalcite, particularly after its use in the benzylation reaction, and the catalyst derived from it by its calcination at 200-800°C show high catalytic activity for the benzylation of toluene and other aromatic compounds. The catalytically active species present in the catalyst in its most active form are the chlorides and oxides of iron on the catalyst surface.

  9. Upward Trend in Catalytic Efficiency of Rare-Earth Triflate Catalysts in Friedel-Crafts Aromatic Sulfonylation Reactions

    DEFF Research Database (Denmark)

    Duus, Fritz; Le, Thach Ngoc; Nguyen, Vo Thu An

    2014-01-01

    90 % were achieved for short irradiation periods. This was the case especially for Tm(OTf)3, Yb(OTf)3, and Lu(OTf)3, of which Yb(OTf)3 was the most efficient. The upward trend in catalytic efficiency therefore correlates with the lanthanide sequence in the periodic table. The results can be explained...

  10. Ga doped SBA-15 as an active and stable catalyst for Friedel-Crafts liquid-phase acylation

    OpenAIRE

    EL BERRICHI, Zohra; CHERIF, Leila; ORSEN O.; TESSONIER, Jean-Philippe; VANHAECKE, Estelle; LOUIS, Benoit; LEDOUX, Marc-Jacques; Pham-Huu, Cuong

    2013-01-01

    Gallium containing SBA-15 mesoporous materials with different Si/Ga ratio were synthesized using a post-treatment procedure with an aqueous solution of Ga(NO3)3. The materials were characterised by means of elemental analysis, BET, XRD, TEM and H/D isotope exchange techniques. It appears that stable Ga-species were anchored to the siliceous matrix of SBA-15, thus generating acid properties in their host material. The catalytic activity of Ga-SBA-15 materials has been evaluated in the FriedelC...

  11. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: an efficient and green catalytic system for Friedel-Crafts acylation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hoang, Huy Manh; Chau, Duy-Khiem Nguyen;

    2015-01-01

    Indium triflate in the ionic liquid, 1-isobutyl-3-methylimidazolium dihydrogen phosphate ([i-BMIM]H2PO4), was found to show enhanced catalytic activity in the Friedel–Crafts acylation of various aromatic compounds with acid anhydrides. The catalytic system was easily recovered and reused without ...

  12. A SIMPLE, EFFICIENT AND SOLVENT FREE ONE POT SYNTHESIS OF 3, 3 DIHETEROAROMATIC OXINDOLE

    Directory of Open Access Journals (Sweden)

    Syed Shahed Ali

    2013-04-01

    Full Text Available Formic acid catalyzed, single step and environmentally friendly process for synthesis of 3, 3- diheteroaromatic oxindole derivatives is described. This adopted protocol for Friedel- Crafts substitution reaction has the advantage of reusability of the catalyst, high yields and ease of separation of pure products.

  13. Synthesis, X-ray Structure and Aggregation Effect of Tetramethoxy Substituted Dibenzo[fg, op]naphthacene

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-Hong; FU Chang-Jin

    2007-01-01

    Tetramethoxy substituted dibenzo[fg,op]naphthacene was synthesised by using Friedel-Crafts acylation, tandem Aldol-Michael solvent-free reaction and palladium catalyzed dehydrohalogenation cyclization as key steps. The X-ray structure of the product and its aggregation effect in solvent were also reported.

  14. Computational study of the three-dimensional structure of N-acetyltransferase 2-acetyl coenzyme a complex.

    Science.gov (United States)

    Oda, Akifumi; Kobayashi, Kana; Takahashi, Ohgi

    2010-01-01

    N-Acetyltransferase 2 (NAT2) is one of the most important polymorphic drug-metabolizing enzymes and plays a significant role in individual differences of drug efficacies and/or side effects. Coenzyme A (CoA) is a cofactor in the experimentally determined crystal structure of NAT2, although the acetyl source of acetylation reactions catalyzed by NAT is not CoA, but rather acetyl CoA. In this study, the three-dimensional structure of NAT2, including acetyl CoA, was calculated using molecular dynamics simulation. By substituting acetyl CoA for CoA the amino acid residue Gly286, which is known to transform into a glutamate residue by NAT2*7A and NAT2*7B, comes close to the cofactor binding site. In addition, the binding pocket around the sulfur atom of acetyl CoA expanded in the NAT2-acetyl CoA complex. PMID:20930369

  15. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chuna Ram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  16. Acetyltransferase and human hemoglobin acetylation

    International Nuclear Information System (INIS)

    A minor component of human fetal hemoglobin (Hb F) is acetylated at the amino-terminus of the γ-globin chains. A similar minor component of Hb F is formed during translation of cord blood mRNA in the rabbit reticulocyte lysate system. The acetylation appeared to be enzymatic. This system contains an acetyltransferase capable of acetylating histones and hemoglobins. The enzyme, partially purified by histone-Sepharose affinity chromatography was capable of incorporating labeled acetyl- group from 1-[14C-acetyl]-CoA into both human Hb F0 and HB A0, but at a lower rate than for histones. Characterization of the labeled products indicated that the α-chains of both hemoglobins were being acetylated presumably at a lysyl-residue, but in the case of Hb F0 the amino-terminus of the γ-globin chains was acetylated as well. While histone-Sepharose bound more than 95% of the enzyme, Sepharose linked Hb F0, γ-globin chains, and Hb Bart's bound 14, 5, and 12% of the activity, respectively. Enzyme bound to these resins was not any more active on the hemoglobins than was the enzyme bound to the histone-Sepharose. The histone-Sepharose was also used to detect the enzyme in human cord blood red cells separated by dextran 40 density gradient centrifugation. Activity was found mostly in the young cells, and was directly related to the number of reticulocytes present in any one fraction

  17. Reaction Mechanism and Structural Model of ADP-forming Acetyl-CoA Synthetase from the Hyperthermophilic Archaeon Pyrococcus furiosus: EVIDENCE FOR A SECOND ACTIVE SITE HISTIDINE RESIDUE*S⃞

    OpenAIRE

    Bräsen, Christopher; Schmidt, Marcel; Grötzinger, Joachim; Schönheit, Peter

    2008-01-01

    In Archaea, acetate formation and ATP synthesis from acetyl-CoA is catalyzed by an unusual ADP-forming acetyl-CoA synthetase (ACD) (acetyl-CoA + ADP + Pi ⇆ acetate + ATP + HS-CoA) catalyzing the formation of acetate from acetyl-CoA and concomitant ATP synthesis by the mechanism of substrate level phosphorylation. ACD belongs to the protein superfamily of nucleoside diphosphate-forming acyl-CoA synthetases, which also include succinyl-CoA synthetases (SCSs). ACD differs from SCS in domain orga...

  18. MeIQx-induced DNA adduct formation and mutagenesis in DNA repair deficient CHO cells expressing human CYP1A1 and rapid or slow acetylator NAT2

    OpenAIRE

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R.; Metry, Kristin J.; Doll, Mark A; States, J. Christopher; Pierce, William M.; Hein, David W.

    2007-01-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). Nucleotide excision repair-deficient chinese hamster ovary (CHO) cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alle...

  19. Chemical Genetics of Acetyl-CoA Carboxylases

    Directory of Open Access Journals (Sweden)

    Xuyu Zu

    2013-01-01

    Full Text Available Chemical genetic studies on acetyl-CoA carboxylases (ACCs, rate-limiting enzymes in long chain fatty acid biosynthesis, have greatly advanced the understanding of their biochemistry and molecular biology and promoted the use of ACCs as targets for herbicides in agriculture and for development of drugs for diabetes, obesity and cancers. In mammals, ACCs have both biotin carboxylase (BC and carboxyltransferase (CT activity, catalyzing carboxylation of acetyl-CoA to malonyl-CoA. Several classes of small chemicals modulate ACC activity, including cellular metabolites, natural compounds, and chemically synthesized products. This article reviews chemical genetic studies of ACCs and the use of ACCs for targeted therapy of cancers.

  20. Regulation of intermediary metabolism by protein acetylation

    OpenAIRE

    Guan, Kun-Liang; Xiong, Yue

    2010-01-01

    Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Convers...

  1. Density Functional Theory Study on the Histidine-assisted Mechanism of Arylamine N-Acetyltransferase Acetylation

    Institute of Scientific and Technical Information of China (English)

    QIAO Qing-An; GAO Shan-Min; JIN Yue-Qing; CHEN Xin; SUN Xiao-Min; YANG Chuan-Lu

    2008-01-01

    Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc.In this paper, three possible reaction mechanisms are investigated and the results indicate that if the acetyl group directly transfers from the donor to the acceptor, the high activation energies will make it hard to obtain the target products.When using histidine to mediate the acetylation process, these energies will drop in the 15~45 kJ/mol range.If the histidine residue is protonated, the corresponding energies will be decreased by about 35~87 kJ/mol.The calculations predict an enzymatic acetylation mechanism that undergoes a thiolate-imidazolium pair, which agrees with the experimental results very well.

  2. Synthesis and Applications of (-)-(S)-3-Aminoquinuclidine- Derived Thiourea

    OpenAIRE

    Rolava, E; Turks, M

    2015-01-01

    A synthesis of enantiopure thiourea organocatalyst based on (-)-(S)-3-aminoquinuclidine dihydrochloride was developed with quantitative product yield. The catalyst was tested in different reactions: asymmetric Michael addition of ketones and malonates to nitroalkenes, nitromethane 1,4-addition to trans-chalcone, and Friedel-Crafts alkylation of indoles with trans-β-nitrostyrene. The novel thiourea proved to catalyze the aforementioned reactions and expected products were ...

  3. The different roles of a cationic gold(i) complex in catalysing hydroarylation of alkynes and alkenes with a heterocycle.

    Science.gov (United States)

    Mehrabi, Tahmineh; Ariafard, Alireza

    2016-08-01

    The mechanism of twofold hydroarylation of terminal alkynes with pyrrole catalyzed by a cationic gold(i) complex was investigated using DFT. It was found that while both the hydroarylation reactions proceed via a Friedel-Crafts-type mechanism, the first hydroarylation is directly promoted by gold(i) but the second hydroarylation by a proton released through interaction of the alkene product with gold-bound acidic organic species such as acetic acid and terminal alkynes. PMID:27377712

  4. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [3H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [3H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [3H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  5. Pyruvate dehydrogenase and 3-fluoropyruvate: chemical competence of 2-acetylthiamin pyrophosphate as an acetyl group donor to dihydrolipoamide

    International Nuclear Information System (INIS)

    The pyruvate dehydrogenase component (E1) of the pyruvate dehydrogenase complex catalyzes the decomposition of 3-fluoropyruvate to CO2, fluoride anion, and acetate. Acetylthiamin pyrophosphate (acetyl-TPP) is an intermediate in this reaction. Incubation of the pyruvate dehydrogenase complex with 3-fluoro[1,2-14]pyruvate, TPP, coenzyme A (CoASH), and either NADH or pyruvate as reducing systems leads to the formation of [14]acetyl-CoA. In this reaction the acetyl group of acetyl-TPP is partitioned by transfer to both CoASH (87 +/- 2%) and water (13 +/- 2%). When the E1 component is incubated with 3-fluoro[1,2-14]pyruvate, TPP, and dihydrolipoamide, [14]acetyldihydrolipoamide is produced. The formation of [14C]acetyldihydrolipoamide was examined as a function of dihydrolipoamide concentration (0.25-16 mM). A plot of the extent of acetyl group partitioning to dihydrolipoamide as a function of 1/[dihydrolipoamide] showed 95 +/- 2% acetyl group transfer to dihydrolipoamide when dihydrolipoamide concentration was extrapolated to infinity. It is concluded that acetyl-TPP is chemically competent as an intermediate for the pyruvate dehydrogenase complex catalyzed oxidative decarboxylation of pyruvate

  6. Fatal Intoxication with Acetyl Fentanyl.

    Science.gov (United States)

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  7. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    International Nuclear Information System (INIS)

    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with [14C]oxaloacetate by citrate synthase to give [14C]-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976

  8. Autotrophic growth: the methyl binding site of CO dehydrogenase in the synthesis of acetyl-CoA

    International Nuclear Information System (INIS)

    A pathway in which CO or CO2 and H2 is used as a source of energy and carbon to synthesize acetyl-CoA is used for autotrophic growth of acetogenes, methanogens and some sulfate-reducing bacteria. All enzymes involved in this pathway have been purified from C. thermoaceticum. Five of them: CO dehydrogenase (CODH), corrinoid protein, methyltransferase, CODH disulfide reductase (SSRd) and ferredoxin catalyzed synthesis of acetyl-CoA from methyltetrahydrofolate, CO and CoA. CODH is a central enzyme catalyzing the condensation of CH3, CO and CoA and per se it catalyzes a reversible exchange of CO with acetyl-CoA. Thus, CODH must have binding sites for CH3, CO and CoA. They have succeeded in methylating β subunits of CODH using 14CH3I or 14CH-corrinoid protein, a native donor of the CH3 group in synthesis of acetyl-CoA. With resulting [14CH3]CODH, only SSRd is required for synthesis of [14C]acetyl-CoA from CO and CoA. The kinetic studies show that CH3I is a competitive inhibitor for exchange reaction between CO and acetyl-CoA. Acetaldehyde and acetyl-CoA but not acetic acid and CoA protected CODH against methylation by CH3I. Methyl group bound to CODH is very slowly removed by CO and CoA and acetyl-CoA accelerated this process. These data confirm that CH3 group from CH3I and CH3-corrinoid protein is bound to the methyl binding site of CODH

  9. PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression

    Institute of Scientific and Technical Information of China (English)

    Wan Junhu; Chin Y Eugene; Zhang Hongquan; Zhan Jun; Li Shuai; Ma Ji; Xu Weizhi; Liu Chang; Xue Xiaowei; Xie Yuping; Fang Weigang

    2015-01-01

    Enhancer of zeste homolog 2 ( EZH2 ) is a key epigenetic regulator that catalyzes the trimethyla-tion of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associat-ed factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 ( PRC2 ) . Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients pre-dicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acety-lation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.

  10. New spectrophotometric and radiochemical assays for acetyl-CoA: arylamine N-acetyltransferase applicable to a variety of arylamines

    International Nuclear Information System (INIS)

    Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of [3H]acetyl-CoA in the assay using [3H]acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-[3H]acetylarylamine after separation from [3H]acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase

  11. Protein Acetylation in Archaea, Bacteria, and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Jörg Soppa

    2010-01-01

    Full Text Available Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which—Alba—was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  12. Iodine Supported on 3-Aminopropyl Silica Gel as Efficient Catalyst for Acetylation of Alcohols under Solvent-free Conditions

    Institute of Scientific and Technical Information of China (English)

    MAHDAVI Hossein; GHAEMY Mosa; ZERAATPISHEH Fatemeh

    2009-01-01

    3-Aminopropyl silica gel (I2/APSG) was found to catalyze the acetylation of alcohols and phenols efficiently with acetic anhydride. The reaction is mild and selective with high yields. A wide variety of alcohols and phenols are selectively converted into the corresponding acetates using I2/APSG under solvent-free conditions at room tem-perature.

  13. Preparation of mono- and diacetyl 4,4′-dimethylbiphenyl and their corresponding carboxylic acids

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.

    2007-01-01

    Shape selective acetylation of 4,4′-dimethylbiphenyl using anhydrous aluminum chloride as catalyst is an effective route for the production of mono- and di-acetyl-4,4′-dimethylbiphenyl. Preparations, characterization and a catalytic study of the Friedel-Crafts acetylation of 4,4′-dimethylbiphenyl...... dimethylbiphenyls. In chloroalkane or carbon disulfide solvent, the yields of isomers were in the order: 2 -> 3-; in nitromethane 3-isomer predominated. On the other hand diacetylation of the hydrocarbon gave only the 2,3′-diacetyl isomer. The mono- and di-ketones are converted to the corresponding carboxylic acids...

  14. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A;

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  15. In vitro phosphorylation and acetylation of the murine pocket protein Rb2/p130.

    Directory of Open Access Journals (Sweden)

    Muhammad Saeed

    Full Text Available The retinoblastoma protein (pRb and the related proteins Rb2/p130 and 107 represent the "pocket protein" family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.

  16. Swelling of acetylated wood in organic liquids

    CERN Document Server

    Obataya, E; Obataya, Eiichi; Gril, Joseph

    2005-01-01

    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.

  17. Histone Acetylation in Drug Addiction

    OpenAIRE

    Renthal, William; Nestler, Eric J.

    2009-01-01

    Regulation of chromatin structure through post-translational modifications of histones (e.g. acetylation) has emerged as an important mechanism to translate a variety of environmental stimuli, including drugs of abuse, into specific changes in gene expression. Since alterations in gene expression are thought to contribute to the development and maintenance of the addicted state, recent efforts are aimed at identifying how drugs of abuse alter chromatin structure and the enzymes which regulate...

  18. Large acceleration of α-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents

    NARCIS (Netherlands)

    Unen, van Dirk-Jan; Engbersen, Johan F.J.; Reinhoudt, David N.

    1998-01-01

    The effects of 18-crown-6 on the synthesis of peptides catalyzed by α-chymotrypsin are reported. Lyophilization of the enzyme in the presence of 50 equivalents of 18-crown-6 results in a 425-fold enhanced activity when the reaction between the 2-chloroethylester of N-acetyl-L-phenylalanine and L-phe

  19. The Palladium-Catalyzed Vinylation and Carbonylation of Bromoindoles and N-Acety1-bromoindoline

    OpenAIRE

    Kasahara, Akira; Izumi, Taeko; Ogata, Hideaki

    1989-01-01

    Abstracts The palladium-catalyzed vinylic substitution reaction of alkenes has been shown to proceed in moderate yields with 5- and 6-bromoindols, and N-acetyl-5-bromoindoline. 4-, 5-, 6-, and 7-Bromoindoles also undergo facile palladium-assisted carbonylation with carbon monoxide in methanol to produce methoxycarbonylindoles in moderate yields.

  20. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    Science.gov (United States)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues. PMID:26358839

  1. A Method to determine lysine acetylation stoichiometries

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  2. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    DEFF Research Database (Denmark)

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas;

    2015-01-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or...... suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of...... fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...

  3. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  4. Acetylation-Mediated Suppression of Transcription-Independent Memory: Bidirectional Modulation of Memory by Acetylation

    OpenAIRE

    Katja Merschbaecher; Jakob Haettig; Uli Mueller

    2012-01-01

    Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs), and the antagonistic histone deacetylases (HDACs) play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM). While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact...

  5. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    International Nuclear Information System (INIS)

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 370C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as α-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other fraction enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected

  6. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    Science.gov (United States)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  7. A Concise Synthesis and the Antibacterial Activity of 5,6-Dimethoxynaphthalene-2-carboxylic Acid

    OpenAIRE

    GÖKSU, Süleyman; UĞUZ, Metin Tansu

    2005-01-01

    5,6-Dimethoxynaphthalene-2-carboxylic acid was synthesized in 7 steps and with an overall yield of 46%. Bromination of 2-naphthol, and methylation with dimethyl sulfate followed by Friedel-Crafts acylation with AcCl gave 2-acetyl-5-bromo-6-methoxynaphthalene. 2-Acetyl-5-bromo-6-methoxynaphthalene was converted to 5-bromo-6- methoxynaphthalene-2-carboxylic acid by a haloform reaction. The esterification of the acid with methanol, methoxylation with NaOCH3 in the presence of CuI and s...

  8. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  9. Metalloporphyrin-Based Hypercrosslinked Polymers Catalyze Hetero-Diels-Alder Reactions of Unactivated Aldehydes with Simple Dienes: A Fascinating Strategy for the Construction of Heterogeneous Catalysts.

    Science.gov (United States)

    Dou, Zhiyu; Xu, Li; Zhi, Yongfeng; Zhang, Yuwei; Xia, Hong; Mu, Ying; Liu, Xiaoming

    2016-07-11

    We describe a novel and intriguing strategy for the construction of efficient heterogeneous catalysts by hypercrosslinking catalyst molecules in a one-pot Friedel-Crafts alkylation reaction. The new hypercrosslinked polymers (HCPs) as porous solid catalysts exhibit the combined advantages of homogeneous and heterogeneous catalysis, owing to their high surface area, good stability, and tailoring of catalytic centers on the frameworks. Indeed, a new class of metalloporphyrin-based HCPs were successfully synthesized using modified iron(III) porphyrin complexes as building blocks, and the resulting networks were found to be excellent recyclable heterogeneous catalysts for the hetero-Diels-Alder reaction of unactivated aldehydes with 1,3-dienes. Moreover, this new strategy showed wide adaptability, and many kinds of homogeneous-like solid-based catalysts with high catalytic performance and excellent recyclability were also constructed. PMID:27147500

  10. Crystal Structure of the N-Acetyltransferase Domain of Human N-Acetyl-L-Glutamate Synthase in Complex with N-Acetyl-L-Glutamate Provides Insights into Its Catalytic and Regulatory Mechanisms

    OpenAIRE

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNA...

  11. Autotrophic growth: methylated carbon monoxide dehydrogenase as an intermediate of acetyl-CoA synthesis

    International Nuclear Information System (INIS)

    A new pathway of autotrophic growth has been discovered in certain anaerobic bacteria in which acetyl-CoA is the product formed from CO2 for initiation of anabolism rather than 3-phosphoglycerate as in the Calvin Cycle. CO2 is reduced in combination with tetrahydrofolate to methyltetrahydrofolate (CH3THF) and is the source of the CH3 group. CO2 or CO is the source of the carbonyl group. CO dehydrogenase (CODH), corrinoid enzyme, methyltransferase, ferredoxin and CODH disulfide reductase have been isolated from Clostridium thermoaceticum and shown to catalyze the synthesis of acetyl-CoA from CH3THF, CO and CoA. The methyltransferase catalyzes transfer of the CH3 group from CH3THF to the corrinoid enzyme from which the methyl is transferred to CODH. CO is bound to the Ni of CODH forming a Ni-Fe-C center. When CO2 is the source of carbon, H2 and hydrogenase are required for reduction of the CO2 by CODH. CODH disulfide reductase is required for the addition of CoA to the CODH (Pezacka, E. and Wood, H.G. J. Biol. Chem., in press). Then, CODH catalyzes the combination of the three groups forming acetyl-CoA. The authors have now succeeded in methylating CODH using 14CH3I or 14CH3-B12. With the resulting 14CH3-CODH, only CODH disulfide reductase is required for synthesis of [14C]acetyl-CoA from CO and CoA. The amino acid sequence at the CH3-site is being investigated

  12. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    Science.gov (United States)

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  13. Investigation of acetyl migrations in furanosides

    Directory of Open Access Journals (Sweden)

    Migaud ME

    2006-07-01

    Full Text Available Abstract Standard reaction conditions for the desilylation of acetylated furanoside (riboside, arabinoside and xyloside derivatives facilitate acyl migration. Conditions which favour intramolecular and intermolecular mechanisms have been identified with intermolecular transesterifications taking place under mild basic conditions when intramolecular orthoester formations are disfavoured. In acetyl ribosides, acyl migration could be prevented when desilylation was catalysed by cerium ammonium nitrate.

  14. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  15. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation.

    Directory of Open Access Journals (Sweden)

    Katja Merschbaecher

    Full Text Available Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs, and the antagonistic histone deacetylases (HDACs play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM. While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

  16. What a Role did Histidine Residue Play in Arylamine N-Acetyltransferase 2 Acetylation? A Quantum Chemistry Study

    Institute of Scientific and Technical Information of China (English)

    QIAO Qing-An; CAI Zheng-Ting; YANG Chuan-Lu; WANG Mei-Shan

    2006-01-01

    Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to primary arylamines and play a very important role in the metabolism and bioactivation of drugs and carcinogens. Experiments revealed that His-107 was likely the residues responsible for mediating acetyl transfer.The full catalytic mechanism of acetylation process has been examined by density functional theory. The results indicate that, if the acetyl group is directly transferred from the donor, p-nitrophenyl acetate, to the acceptor, cysteine,the high activation energy will be a great hindrance. These energies have dropped in a little range of 20-25 k J/mol when His-107 assisted the transfer process. However, when protonated His-107 mediated the reaction, the activation energies have been dropped about 73-85 kJ/mol. Our calculations strongly supported an enzyme acetylation mechanism that experiences a thiolate-imidazolium pair, and verified the presumption from experiments.

  17. GCN5-dependent acetylation of HIV-1 integrase enhances viral integration

    Directory of Open Access Journals (Sweden)

    Albanese Alberto

    2010-03-01

    Full Text Available Abstract Background An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN, the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT p300. Results In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273 are targeted by GCN5 acetylation, three of which (K264, K266, and K273 are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258 does not affect this process. Conclusions The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.

  18. Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation1[OPEN

    Science.gov (United States)

    Preuss, Aileen S.

    2016-01-01

    Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2. Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1. PMID:27208290

  19. A Multienzyme Complex Channels Substrates and Electrons through Acetyl-CoA and Methane Biosynthesis Pathways in Methanosarcina

    OpenAIRE

    Dillon J Lieber; Jennifer Catlett; Nandu Madayiputhiya; Renu Nandakumar; Lopez, Madeline M.; Metcalf, William W.; Buan, Nicole R.

    2014-01-01

    Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis). A crosslinking-mass spectrometry (XL-MS) strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr), an essential enzyme in all methane-producing archaea (methanogens). In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase s...

  20. Efficient acetylation of primary amines and amino acids in environmentally benign brine solution using acetyl chloride

    Indian Academy of Sciences (India)

    Kaushik Basu; Suchandra Chakraborty; Achintya Kumar Sarkar; Chandan Saha

    2013-05-01

    Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the amide derivatives. Mechanistic rationale of this methodology is also important.

  1. Levels of histone acetylation in thyroid tumors.

    Science.gov (United States)

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  2. p53 Acetylation: Regulation and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  3. p53 Acetylation: Regulation and Consequences

    International Nuclear Information System (INIS)

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer

  4. p53 Acetylation: Regulation and Consequences

    Directory of Open Access Journals (Sweden)

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  5. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103.

    OpenAIRE

    Witschel, M; S. Nagel; Egli, T

    1997-01-01

    In a gram-negative isolate (DSM 9103) able to grow with EDTA as the sole source of carbon, nitrogen, and energy, the first two steps of the catabolic pathway for EDTA were elucidated. They consisted of the sequential oxidative removal of two acetyl groups, resulting in the formation of glyoxylate. An enzyme complex that catalyzes the removal of two acetyl groups was purified and characterized. In the reaction, ethylenediaminetriacetate (ED3A) was formed as an intermediate and N,N'-ethylenedia...

  6. Acetylation of vitamin E by Candida antarctica lipase B immobilized on different carriers

    OpenAIRE

    Torres, Pamela; Reyes-Duarte, Dolores; López-Cortés, Nieves; Ferrer, Manuel; Ballesteros Olmo, Antonio; Plou Gasca, Francisco José

    2009-01-01

    We describe for the first time the enzymatic acylation of the phenolic group of tocopherols (vitamin E) by transesterification with vinyl acetate in 2-methyl-2-butanol (2M2B). Out of 15 hydrolases screened, only the lipase B from Candida antarctica (Novozym 435) catalyzed the acylation. The acetylation of -tocopherol was faster than that of -tocopherol, probably due to its lower methylation degree. A series of experiments using (R)-Trolox and p-cresol as competitive acceptors of tocopherols...

  7. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism

    OpenAIRE

    Strijbis, K.; Distel, B.

    2010-01-01

    Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming...

  8. Tritium catalyzed deuterium tokamaks

    International Nuclear Information System (INIS)

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the 3He from the D(D,n)3He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general)

  9. Kinase-Catalyzed Biotinylation

    OpenAIRE

    Senevirathne, Chamara; Green, Keith D.; Pflum, Mary Kay H.

    2012-01-01

    Kinase-catalyzed protein phosphorylation plays an essential role in a variety of biological processes. Methods to detect phosphoproteins and phosphopeptides in cellular mixtures will aid in cell biological and signaling research. Our laboratory recently discovered the utility of γ-modified ATP analogues as tools for studying phosphorylation. Specifically, ATP-biotin can be used for labeling and visualizing phosphoproteins from cell lysates. Because the biotin tag is suitable for protein detec...

  10. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2

    DEFF Research Database (Denmark)

    Schwer, Bjoern; Bunkenborg, Jakob; Verdin, Regis O; Andersen, Jens S; Verdin, Eric

    2006-01-01

    We report that human acetyl-CoA synthetase 2 (AceCS2) is a mitochondrial matrix protein. AceCS2 is reversibly acetylated at Lys-642 in the active site of the enzyme. The mitochondrial sirtuin SIRT3 interacts with AceCS2 and deacetylates Lys-642 both in vitro and in vivo. Deacetylation of AceCS2 b...

  11. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained. PMID:19552446

  12. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  13. Oxidative Debenzylation and Acetylation of Hexabenzylhexaazaisowutzitane

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The oxidative reactivity of hexabenzylhexaazaisowutzitane(HBIW)under different conditions was studied. It was found that the N-benzyl groups were found to form benzoyl group after oxidation. They might also be first debenzylated and then acetylated by potassium permanganate in acetic anhydride/DMF.

  14. Property enhancement of optically transparent bionanofiber composites by acetylation

    Science.gov (United States)

    Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Ifuku, Shinsuke; Yano, Hiroyuki

    2006-12-01

    The authors studied acetylation of bacterial cellulose (BC) nanofibers to widen the applications of BC nanocomposites in optoelectronic devices. The slight acetylation of BC nanofibers significantly reduces the hygroscopicity of BC nanocomposites, while maintaining their high optical transparency and thermal stability. Furthermore, the degradation in optical transparency at elevated temperature (200°C) was significantly reduced by acetylation treatment. Therefore, the acetylation of bionanofibers has an extraordinary potential as treatment for property enhancement of bionanofiber composites.

  15. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming β-cyano-L-alanine

    International Nuclear Information System (INIS)

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable β-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of β-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various β-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the β-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the β-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed β-cyano-L-alanine synthase. Heat stable β-cyano-L-alanine synthase can be applied to the synthesis of [4-11C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  16. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J;

    2011-01-01

    acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  17. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    time and in combination with other social processes establish more aligned and standardized environmental performance between countries. However, examples of the introduction of environmental management suggests that EMS’ only plays a minor role in developing the actual environmental objectives......This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  18. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes

    DEFF Research Database (Denmark)

    Pasini, Diego; Malatesta, Martina; Jung, Hye Ryung; Valfridsson, Julian Osmond A; Willer, Anton; Olsson, Linda; Skotte, Julie; Wutz, Anton; Porse, Bo; Jensen, Ole Nørregaard; Helin, Kristian

    2010-01-01

    Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine...... 27 (K27), and it is believed that this activity mediates transcriptional repression. Despite the recent progress in understanding PcG function, the molecular mechanisms by which the PcG proteins repress transcription, as well as the mechanisms that lead to the activation of PcG target genes are....... The methylation to acetylation switch correlates with the transcriptional activation of PcG target genes, both during ES cell differentiation and in MLL-AF9-transduced hematopoietic stem cells. Moreover, we provide evidence that the acetylation of H3K27 is catalyzed by the acetyltransferases p300 and...

  19. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  20. Evolution of Arginine Biosynthesis in the Bacterial Domain: Novel Gene-Enzyme Relationships from Psychrophilic Moritella Strains (Vibrionaceae) and Evolutionary Significance of N-α-Acetyl Ornithinase

    OpenAIRE

    Xu, Ying; Liang, Ziyuan; Legrain, Christianne; Rüger, Hans J.; Glansdorff, Nicolas

    2000-01-01

    In the arginine biosynthetic pathway of the vast majority of prokaryotes, the formation of ornithine is catalyzed by an enzyme transferring the acetyl group of N-α-acetylornithine to glutamate (ornithine acetyltransferase [OATase]) (argJ encoded). Only two exceptions had been reported—the Enterobacteriaceae and Myxococcus xanthus (members of the γ and δ groups of the class Proteobacteria, respectively)—in which ornithine is produced from N-α-acetylornithine by a deacylase, acetylornithinase (...

  1. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    Science.gov (United States)

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  2. Acetylation Is Indispensable for p53 Activation

    OpenAIRE

    Tang, Yi; Zhao, Wenhui; Chen, Yue; Zhao, Yingming; Gu, Wei

    2008-01-01

    The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its...

  3. p53 Acetylation: Regulation and Consequences

    OpenAIRE

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo ev...

  4. The neurobiology of acetyl-L-carnitine.

    Science.gov (United States)

    Traina, Giovanna

    2016-01-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system. PMID:27100509

  5. Fragrance material review on acetyl cedrene.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23907023

  6. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    International Nuclear Information System (INIS)

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with [3H]acetate and [14C]glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with [acetyl-3H]acetyl-coenzyme A, the major labeled products were disialogangliosides. [Acetyl-3H]O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in [3H]N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from [3H]acetate was exclusively in the form of [3H]N-acetyl groups, whereas the 14C-label was at the 4-position

  7. Acetylation phenotype variation in pediatric patients with atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Rafi A Majeed Al-Razzuqi

    2011-01-01

    Full Text Available Background: Few studies have been done on the relation between acetylator status and allergic diseases. Aim: To determine any possible association between acetylating phenotype in pediatric patients with atopic dermatitis (AD and the disease prognosis. Patients and Methods: Thirty-six pediatric patients and forty two healthy children as a control group were participated in the study. All participants received a single oral dose of dapsone of 1.54 mg/kg body weight, after an overnight fast. Using high performance liquid chromatography (HPLC, plasma concentrations of dapsone and its metabolite (monoacetyldapsone were estimated to phenotype the participants as slow and rapid acetylators according to their acetylation ratio (ratio of monoacetyldapsone to dapsone. Results: 72.2% of pediatric patients with AD showed slow acetylating status as compared to 69.4% of control individuals. Also, 73% of AD patients with slow acetylating phenotype had familial history of allergy. The severity of AD occurred only in slow acetylator patients. The eczematous lesions in slow acetylators presented mainly in the limbs, while in rapid acetylators, they were found mostly in face and neck. Conclusion: This study shows an association between the N-acetylation phenotype variation and clinical aspects of AD.

  8. Metabolic engineering of Escherichia coli for production of biodiesel from fatty alcohols and acetyl-CoA.

    Science.gov (United States)

    Guo, Daoyi; Pan, Hong; Li, Xun

    2015-09-01

    Microbial production of biodiesel from renewable feedstock has attracted intensive attention. Biodiesel is known to be produced from short-chain alcohols and fatty acyl-CoAs through the expression of wax ester synthase/fatty acyl-CoA: diacylglycerol acyltransferase that catalyzes the esterification of short-chain alcohols and fatty acyl-CoAs. Here, we engineered Escherichia coli to produce various fatty alcohol acetate esters, which depend on the expression of Saccharomyces cerevisiae alcohol acetyltransferase ATF1 that catalyzes the esterification of fatty alcohols and acetyl-CoA. The fatty acid biosynthetic pathways generate fatty acyl-ACPs, fatty acyl-CoAs, or fatty acids, which can be converted to fatty alcohols by fatty acyl-CoA reductase, fatty acyl-ACP reductase, or carboxylic acid reductase, respectively. This study showed the biosynthesis of biodiesel from three fatty acid biosynthetic pathway intermediates. PMID:26205521

  9. Acetylation and characterization of spruce (Picea abies) galactoglucomannans.

    Science.gov (United States)

    Xu, Chunlin; Leppänen, Ann-Sofie; Eklund, Patrik; Holmlund, Peter; Sjöholm, Rainer; Sundberg, Kenneth; Willför, Stefan

    2010-04-19

    Acetylated galactoglucomannans (GGMs) are the main hemicellulose type in most softwood species and can be utilized as, for example, bioactive polymers, hydrocolloids, papermaking chemicals, or coating polymers. Acetylation of spruce GGM using acetic anhydride with pyridine as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale, whereas, as a classic method, it can be potentially transferred to the industrial scale. The effects of the amount of catalyst and acetic anhydride, reaction time, temperature and pretreatment by acetic acid were investigated. A fully acetylated product was obtained by refluxing GGM for two hours. The structures of the acetylated GGMs were determined by SEC-MALLS/RI, (1)H and (13)C NMR and FTIR spectroscopy. NMR studies also indicated migration of acetyl groups from O-2 or O-3 to O-6 after a heating treatment in a water bath. The thermal stability of the products was investigated by DSC-TGA. PMID:20144827

  10. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    Science.gov (United States)

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. PMID:26453845

  11. Obesity, cancer, and acetyl-CoA metabolism

    OpenAIRE

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in r...

  12. Getting a Knack for NAC: N-Acetyl-Cysteine

    OpenAIRE

    Sansone, Randy A.; Sansone, Lori A.

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway....

  13. Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy

    OpenAIRE

    Min, Sang-Won; Cho, Seo-Hyun; Zhou, Yungui; Schroeder, Sebastian; Haroutunian, Vahram; Seeley, William W.; Huang, Eric J.; Shen, Yong; Masliah, Eliezer; Mukherjee, Chandrani; Meyers, David; Cole, Philip A.; Ott, Melanie; Gan, Li

    2010-01-01

    Neurodegenerative tauopathies characterized by hyperphosphorylated tau include frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). Reducing tau levels improves cognitive function in mouse models of AD and FTDP-17, but the mechanisms regulating the turnover of pathogenic tau are unknown. We found that tau is acetylated and that tau acetylation prevents degradation of phosphorylated tau (p-tau). Using two antibodies specific for acetylated ta...

  14. Determination of amphetamine by HPLC after acetylation.

    Science.gov (United States)

    Veress, T

    2000-01-01

    An analytical procedure has been developed for the HPLC determination of amphetamine by off-line pre-column derivatization. The proposed procedure consists of sample preparation by acetylation of amphetamine with acetic anhydride and a subsequent reversed-phase HPLC separation on an octadecyl silica stationary phase with salt-free mobile phase (tetrahydrofuran, acetonitrile, 0.1% triethylamine in water, 15:15:70 v/v) applying UV-detection. The applicability of the elaborated procedure is demonstrated with results obtained by analysis of real samples seized in the Hungarian black market. PMID:10641931

  15. Differential patterns of histone acetylation in inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  16. Protein lysine acetylation in bacteria: Current state of the art.

    Science.gov (United States)

    Ouidir, Tassadit; Kentache, Takfarinas; Hardouin, Julie

    2016-01-01

    Post-translational modifications of proteins are key events in cellular metabolism and physiology regulation. Lysine acetylation is one of the best studied protein modifications in eukaryotes, but, until recently, ignored in bacteria. However, proteomic advances have highlighted the diversity of bacterial lysine-acetylated proteins. The current data support the implication of lysine acetylation in various metabolic pathways, adaptation and virulence. In this review, we present a broad overview of the current knowledge of lysine acetylation in bacteria. We emphasize particularly the significant contribution of proteomics in this field. PMID:26390373

  17. Probing the acetylation code of histone H4.

    Science.gov (United States)

    Lang, Diana; Schümann, Michael; Gelato, Kathy; Fischle, Wolfgang; Schwarzer, Dirk; Krause, Eberhard

    2013-10-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein-protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-acetylated at K8/12/16 and fully tetra-acetylated. A set of 29 proteins was found enriched on the fully acetylated H4 tail while specific binders of the mono and bis-acetylated tails were barely detectable. These observations are in good agreement with earlier reports indicating that the H4 acetylation state establishes its regulatory effects in a cumulative manner rather than via site-specific recruitment of regulatory proteins. PMID:23970329

  18. Probing the acetylation code of histone H4.

    OpenAIRE

    Lang, D; Schümann, M; Gelato, K.; Fischle, W; Schwarzer, D; Krause, E.

    2013-01-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein–protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-ace...

  19. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    DEFF Research Database (Denmark)

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  20. Cloning and characterization of cotton heteromeric acetyl-CoA carboxylase genes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Heteromeric acetyl-coanzyme A(CoA)carboxylese(ACCase)catalyzes the formation of malonyl-CoA from acetyl-CoA.It plays an essential role in fatty acid synthesis in prokaryotes and most of plants.The heteromeric ACCase is composed of four subunits:biotin carboxylase (BC),biotin carboxyl carrier protein (BCCP),and α-and β-subunits of carboxyltransferese(α-andβ-CT).In this study,we cloned five novel genes encoding the subunits of heteromeric ACCese(one BC,BCCP and β-CT,and two α-CTs) from cotton (Gossypium hirsutum cv.zhongmian 35)by RACE-PCR.The deduced amino acid sequence of these cDNAs shares high similarity with other reported heteromeric ACCese subunits.The phylogenetic analysis indicated that the different subunits of heteromeric ACCase were grouped in a similar pattern.Southern blot analysis revealed the milti-copy patterns of these heteromeric ACCase genes in cotton genome.Semi-quantitative RT-PCR demonstrated that heteromeric ACCese genes were constitutively expressed in all of the cotton tissues,but the transcripts accumulated at a relatively low level in roots.To our knowledge,this is the first report about characterization of the heteromeric ACCase genes in cotton.

  1. Medial temporal N-acetyl-aspartate in pediatric major depression.

    Science.gov (United States)

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  2. Medial temporal N-acetyl aspartate in pediatric major depression

    Science.gov (United States)

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  3. Emerging Functions for N-Terminal Protein Acetylation in Plants

    OpenAIRE

    Gibbs, Daniel J.

    2015-01-01

    N-terminal (Nt-) acetylation is a widespread but poorly understood co-translational protein modification. Two reports now shed light onto the proteome-wide dynamics and protein-specific consequences of Nt-acetylation in relation to plant development, stress-response, and protein stability, identifying this modification as a key regulator of diverse aspects of plant growth and behaviour.

  4. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog.

    Science.gov (United States)

    Zhao, Gengxiang; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-25

    N-Acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  5. Acetylation of FoxO1 Activates Bim Expression to Induce Apoptosis in Response to Histone Deacetylase Inhibitor Depsipeptide Treatment

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2009-04-01

    Full Text Available Histone deacetylase (HDAC inhibitors have been shown to induce cell cycle arrest and apoptosis in cancer cells. However, the mechanisms of HDAC inhibitor induced apoptosis are incompletely understood. In this study, depsipeptide, a novel HDAC inhibitor, was shown to be able to induce significant apoptotic cell death in human lung cancer cells. Further study showed that Bim, a BH3-only proapoptotic protein, was significantly upregulated by depsipeptide in cancer cells, and Bim's function in depsipeptide-induced apoptosis was confirmed by knockdown of Bim with RNAi. In addition, we found that depsipeptide-induced expression of Bim was directly dependent on acetylation of forkhead box class O1 (FoxO1 that is catalyzed by cyclic adenosine monophosphate-responsive element-binding protein-binding protein, and indirectly induced by a decreased four-and-a-half LIM-domain protein 2. Moreover, our results demonstrated that FoxO1 acetylation is required for the depsipeptide-induced activation of Bim and apoptosis, using transfection with a plasmid containing FoxO1 mutated at lysine sites and a luciferase reporter assay. These data show for the first time that an HDAC inhibitor induces apoptosis through the FoxO1 acetylation-Bim pathway.

  6. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    Science.gov (United States)

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. PMID:26920270

  7. Unchanged acetylation of isoniazid by alcohol intake

    DEFF Research Database (Denmark)

    Wilcke, J T R; Døssing, M; Angelo, H R;

    2004-01-01

    SETTING: In 10 healthy subjects, the influence of acute alcohol intake on the pharmacokinetics of isoniazid (INH) was studied. OBJECTIVE: To test the hypothesis that alcohol increases the conversion of INH by acetylation into its metabolite acetylisoniazid. DESIGN: In a crossover design, an oral...... dose of 300 mg INH was administered on 2 separate days, 14 days apart, with or without alcohol to a serum alcohol of about 21 mmol/l (1 g/l) maintained for 12 h. RESULTS: Neither the metabolism of INH nor that of acetylisoniazid was changed by acute alcohol intake. CONCLUSION: Acute alcohol intake has...... no impact on the conversion of INH to its metabolite acetylisoniazid, which is catalysed by the enzyme N-acetyltranferase. Accordingly, a metabolic effect of acute alcohol intake on INH metabolism probably contributes little to the therapeutic failure of anti-tuberculosis treatment among alcoholics....

  8. Role of acetyl CoA

    International Nuclear Information System (INIS)

    Existence of an acetyltransferase, which catalizes acetylation of deacetylcephalosporin C to cephalosporin C, was demonstrated for the first time in cell-free extracts of Cephalosporium acremonium. The pH optimum of the enzyme appeared to be 7.0 to 7.5 and the enzyme required essentially Mg2+ as a cofactor for its reaction. The activity of this enzyme was not observed in the cell-free extracts of deacetylcephalosporin C-producing mutants Nos. 20, 29, 36 and 40, but was recovered in a revertant obtained from the mutant No. 40. These results indicate that deacetylcephalosporin C accumulation by these mutants was due to the lack of the acetyltransferase and made it reasonable that the terminal reaction of cephalosporin C biosynthesis in Cephalosporium acremonium proceeded by the catalytic action of acetyltransferase. (auth.)

  9. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  10. Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose

    DEFF Research Database (Denmark)

    Biely, Peter; Cziszarava, Maria; Agger, Jane W.;

    2014-01-01

    Results The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most promin...

  11. Acetylation/deacetylation reactions of T-2, acetyl T-2, HT-2, and acetyl HT-2 toxins in bovine rumen fluid in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Munger, C.E.; Ivie, G.W.; Christopher, R.J.; Hammock, B.D.; Phillips, T.D.

    A tritiated preparation of the trichothecene mycotoxin, T-2 toxin, underwent both acetylation and deacetylation reactions when incubated with bovine rumen fluid in vitro. Products from incubations of T-2 in rumen fluid included acetyl T-2, HT-2, and acetyl HT-2. Direct studies with tritiated samples of each of these metabolites confirmed their relatively facile interconversion in the rumen. Studies with (/sup 3/H)HT-2 under conditions of inhibited esterase activity (added diisopropyl fluorophosphate) showed that acetylation is preferred at C-3 vs. C-4. Studies with (/sup 3/H)acetyl T-2 indicated that deacetylation similarly occurs with greater rapidity at C-3. There were no indications that ester hydrolysis of these trichothecenes occurred at C-8 or C-15 or that they were subjected to epoxide reduction reactions. These data suggest that acetylation of T-2 and other trichothecenes in the rumen in situ may ultimately result in the absorption of more lipophilic metabolites whose toxicological and residual properties are at present unknown.

  12. Acetylation/deacetylation reactions of T-2, acetyl T-2, HT-2, and acetyl HT-2 toxins in bovine rumen fluid in vitro

    International Nuclear Information System (INIS)

    A tritiated preparation of the trichothecene mycotoxin, T-2 toxin, underwent both acetylation and deacetylation reactions when incubated with bovine rumen fluid in vitro. Products from incubations of T-2 in rumen fluid included acetyl T-2, HT-2, and acetyl HT-2. Direct studies with tritiated samples of each of these metabolites confirmed their relatively facile interconversion in the rumen. Studies with [3H]HT-2 under conditions of inhibited esterase activity (added diisopropyl fluorophosphate) showed that acetylation is preferred at C-3 vs. C-4. Studies with [3H]acetyl T-2 indicated that deacetylation similarly occurs with greater rapidity at C-3. There were no indications that ester hydrolysis of these trichothecenes occurred at C-8 or C-15 or that they were subjected to epoxide reduction reactions. These data suggest that acetylation of T-2 and other trichothecenes in the rumen in situ may ultimately result in the absorption of more lipophilic metabolites whose toxicological and residual properties are at present unknown

  13. Role of Histone Acetylation in Cell Cycle Regulation.

    Science.gov (United States)

    Koprinarova, Miglena; Schnekenburger, Michael; Diederich, Marc

    2016-01-01

    Core histone acetylation is a key prerequisite for chromatin decondensation and plays a pivotal role in regulation of chromatin structure, function and dynamics. The addition of acetyl groups disturbs histone/DNA interactions in the nucleosome and alters histone/histone interactions in the same or adjacent nucleosomes. Acetyl groups can also provide binding sites for recruitment of bromodomain (BRD)-containing non-histone readers and regulatory complexes to chromatin allowing them to perform distinct downstream functions. The presence of a particular acetylation pattern influences appearance of other histone modifications in the immediate vicinity forming the "histone code". Although the roles of the acetylation of particular lysine residues for the ongoing chromatin functions is largely studied, the epigenetic inheritance of histone acetylation is a debated issue. The dynamics of local or global histone acetylation is associated with fundamental cellular processes such as gene transcription, DNA replication, DNA repair or chromatin condensation. Therefore, it is an essential part of the epigenetic cell response to processes related to internal and external signals. PMID:26303420

  14. Iodine-catalyzed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.T.; Duffield, J.E.; Davidson, M.G. (Amoco Oil Company, Naperville, IL (USA). Research and Development Dept.)

    Coals of two different ranks were liquefied in high yields using catalytic quantities of elemental iodine or iodine compounds. Iodine monochloride was found to be especially effective for enhancing both coal conversion and product quality. It appears that enhancement in coal conversion is due to the unique ability of iodine to catalyze radical-induced bond scission and hydrogen addition to the coal macromolecule or coal-derived free radicals. The starting iodine can be fully accounted for in the reaction products as both organic-bound and water-soluble forms. Unconverted coal and the heavy product fractions contain the majority of the organic-bound iodine. The results of iodine-catalyzed coal reactions emphasize the need for efficient hydrogen atom transfer along with bond scission to achieve high conversion and product quality. 22 refs., 12 tabs.

  15. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes.

    OpenAIRE

    Labedan Bernard; Glansdorff Nicolas; Xu Ying

    2006-01-01

    Abstract Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA) first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene argJ)...

  16. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols

    OpenAIRE

    Gadi Ranjith Kumar; Yalla Kiran Kumar; Ruchir Kant; Maddi Sridhar Reddy

    2014-01-01

    The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions.

  17. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols

    OpenAIRE

    Kumar, Gadi Ranjith; Kumar, Yalla Kiran; Kant, Ruchir; Reddy, Maddi Sridhar

    2014-01-01

    The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions.

  18. Partially Acetylated Sugarcane Bagasse For Wicking Oil From Contaminated Wetlands

    Science.gov (United States)

    Sugarcane bagasse was partially acetylated to enhance its oil-wicking ability in saturated environments while holding moisture for hydrocarbon biodegradation. The water sorption capacity of raw bagasse was reduced fourfold after treatment, which indicated considerably increased ...

  19. Acetylation of C/EBPα inhibits its granulopoietic function.

    Science.gov (United States)

    Bararia, Deepak; Kwok, Hui Si; Welner, Robert S; Numata, Akihiko; Sárosi, Menyhárt B; Yang, Henry; Wee, Sheena; Tschuri, Sebastian; Ray, Debleena; Weigert, Oliver; Levantini, Elena; Ebralidze, Alexander K; Gunaratne, Jayantha; Tenen, Daniel G

    2016-01-01

    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. PMID:27005833

  20. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase.

    Science.gov (United States)

    Born, T L; Franklin, M; Blanchard, J S

    2000-07-25

    The first unique step in bacterial and plant methionine biosynthesis involves the acylation of the gamma-hydroxyl of homoserine. In Haemophilus influenzae, acylation is accomplished via an acetyl-CoA-dependent acetylation catalyzed by homoserine transacetylase. The activity of this enzyme regulates flux of homoserine into multiple biosynthetic pathways and, therefore, represents a critical control point for cell growth and viability. We have cloned homoserine transacetylase from H. influenzae and present the first detailed enzymatic study of this enzyme. Steady-state kinetic experiments demonstrate that the enzyme utilizes a ping-pong kinetic mechanism in which the acetyl group of acetyl-CoA is initially transferred to an enzyme nucleophile before subsequent transfer to homoserine to form the final product, O-acetylhomoserine. The maximal velocity and V/K(homoserine) were independent of pH over the range of values tested, while V/K(acetyl)(-)(CoA) was dependent upon the ionization state of a single group exhibiting a pK value of 8.6, which was required to be protonated. Solvent kinetic isotope effect studies yielded inverse effects of 0.75 on V and 0.74 on V/K(CoA) on the reverse reaction and effects of 1.2 on V and 1.7 on V/K(homoserine) on the forward reaction. Direct evidence for the formation of an acetyl-enzyme intermediate was obtained using rapid-quench labeling studies. On the basis of these observations, we propose a chemical mechanism for this important member of the acyltransferase family and contrast its mechanism with that of homoserine transsuccinylase. PMID:10913262

  1. Function-structure relationships of acetylated pea starches

    OpenAIRE

    J. Huang

    2006-01-01

    Cowpea, chickpea and yellow pea starches were studied and the results showed that their properties were strongly related to the chemical fine structures of the starches. Furthermore, granular starches were modified using two types of chemical acetylation reagents and then separated into different size fractions. The amount of introduced acetyl groups was found to depend on the size of the granules for the reaction with rapidly reacting reagent acetic acid anhydride, whereas the amount of intr...

  2. Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes.

    Science.gov (United States)

    Han, Yitao; Li, Hao; Hu, Yufang; Li, Pei; Wang, Huixia; Nie, Zhou; Yao, Shouzhuo

    2015-09-15

    Protein acetylation of histone is an essential post-translational modification (PTM) mechanism in epigenetic gene regulation, and its status is reversibly controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Herein, we have developed a sensitive and label-free time-resolved luminescence (TRL) biosensor for continuous detection of enzymatic activity of HATs and HDACs, respectively, based on acetylation-mediated peptide/DNA interaction and Tb(3+)/DNA luminescent probes. Using guanine (G)-rich DNA-sensitized Tb(3+) luminescence as the output signal, the polycationic substrate peptides interact with DNA with high affinity and subsequently replace Tb(3+), eliminating the luminescent signal. HAT-catalyzed acetylation remarkably reduces the positive charge of the peptides and diminishes the peptide/DNA interaction, resulting in the signal on detection via recovery of DNA-sensitized Tb(3+) luminescence. With this TRL sensor, HAT (p300) can be sensitively detected with a wide linear range from 0.2 to 100 nM and a low detection limit of 0.05 nM. The proposed sensor was further used to continuously monitor the HAT activity in real time. Additionally, the TRL biosensor was successfully applied to evaluating HAT inhibition by two specific inhibitors, anacardic acid and C464, and satisfactory Z'-factors above 0.73 were obtained. Moreover, this sensor is feasible to continuously monitor the HDAC (Sirt1)-catalyzed deacetylation with a linear range from 0.5 to 500 nM and a detection limit of 0.5 nM. The proposed sensor is a convenient, sensitive, and mix-and-read assay, presenting a promising platform for protein acetylation-targeted epigenetic research and drug discovery. PMID:26307596

  3. Acetyl radical generation in cigarette smoke: Quantification and simulations

    Science.gov (United States)

    Hu, Na; Green, Sarah A.

    2014-10-01

    Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.

  4. Site-specific acetylation of ISWI by GCN5

    Directory of Open Access Journals (Sweden)

    Chioda Mariacristina

    2007-08-01

    Full Text Available Abstract Background The tight organisation of eukaryotic genomes as chromatin hinders the interaction of many DNA-binding regulators. The local accessibility of DNA is regulated by many chromatin modifying enzymes, among them the nucleosome remodelling factors. These enzymes couple the hydrolysis of ATP to disruption of histone-DNA interactions, which may lead to partial or complete disassembly of nucleosomes or their sliding on DNA. The diversity of nucleosome remodelling factors is reflected by a multitude of ATPase complexes with distinct subunit composition. Results We found further diversification of remodelling factors by posttranslational modification. The histone acetyltransferase GCN5 can acetylate the Drosophila remodelling ATPase ISWI at a single, conserved lysine, K753, in vivo and in vitro. The target sequence is strikingly similar to the N-terminus of histone H3, where the corresponding lysine, H3K14, can also be acetylated by GCN5. The acetylated form of ISWI represents a minor species presumably associated with the nucleosome remodelling factor NURF. Conclusion Acetylation of histone H3 and ISWI by GCN5 is explained by the sequence similarity between the histone and ISWI around the acetylation site. The common motif RKT/SxGx(KacxPR/K differs from the previously suggested GCN5/PCAF recognition motif GKxxP. This raises the possibility of co-regulation of a nucleosome remodelling factor and its nucleosome substrate through acetylation of related epitopes and suggests a direct crosstalk between two distinct nucleosome modification principles.

  5. Stau-catalyzed Nuclear Fusion

    OpenAIRE

    Hamaguchi, K.; Hatsuda, T.(Theoretical Research Division, Nishina Center, RIKEN, Saitama, 351-0198, Japan); Yanagida, T. T.

    2006-01-01

    We point out that the stau may play a role of a catalyst for nuclear fusions if the stau is a long-lived particle as in the scenario of gravitino dark matter. In this letter, we consider d d fusion under the influence of stau where the fusion is enhanced because of a short distance between the two deuterons. We find that one chain of the d d fusion may release an energy of O(10) GeV per stau. We discuss problems of making the stau-catalyzed nuclear fusion of practical use with the present tec...

  6. Gold-catalyzed naphthalene functionalization

    OpenAIRE

    Iván Rivilla; M. Mar Díaz-Requejo; Pedro J. Pérez

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either f...

  7. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  8. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

    OpenAIRE

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H. Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2014-01-01

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profilin...

  9. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    International Nuclear Information System (INIS)

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1+ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-[3H]acetyl groups from [3H]acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified ∼ 600-fold using a single affinity chromatography step with Procion Red-A Agarose. The enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 μM), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1+ E.coli

  10. Monitoring the Hydrolysis of p-Nitrophenyl Acetate Catalyzed by Seryl-histidine with Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN,Jing(陈晶); ZHANG,Yun(张韵); CAO,Xiao-Yu(曹晓宇); WANG,Jin(王津); CHEN,Yi(陈益); ZHAO,Yu-Fen(赵玉芬)

    2002-01-01

    The hydrolysis of p-nitrophenyl acetate (p-NPA) catalyzed by seryl- histidine or histidine has been monitored by electrospray ionization mass spectrometry in the presence of the internal calibration, 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS). The half-life of p-NPA in the presence of 10 mmol.L-1 seryl- histidine or histidine at25 ℃ was 370 min and70 min respectively. With the occurrence of acetyl seryl- histidine and acetyl histidine in the reaction, and the fact that p-NPA was stable in the presence of 10 mmol. L- 1 serine, an imidazolysis mechanism has been proposed, which is in accordance with the reported work.

  11. Monitoring the Hydrolysis of p—Nitrophenyl Acetate Catalyzed by Seryl—histidine with Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈益; 赵玉芬; 陈晶; 张韵; 曹晓宇; 王津

    2002-01-01

    The hydrolysis of p-nitrophenyl acetate(p-NPA)catalyzed by seryl-histidine or histidine has been monitored by electrospray ionization mass spectrometry in the presence of the internal calibration,8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS).The half-life of p-NPA in the presence of 10 mmol·L-1 seryl-histidine or histidine at 25℃ was 370min and 70min respectively.With the occurrence of acetyl seryl-histidine and acetyl histidine in the reaction,and the fact that p-NPA was stable in the presence of 10mmol·L-1 serine,an imidazolysis mechanism has been proposed,Which is in accordance with the reported work.

  12. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Science.gov (United States)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  13. Oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases

    International Nuclear Information System (INIS)

    The extracellular lignin peroxidases (ligninases) of Phanerochaete chrysosporium catalyzed H2O2-dependent spectral changes in several environmentally significant polychlorinated phenols: 2,4-dichloro-, 2,4,5-trichloro-, 2,4,6-trichloro-, and pentachlorophenol. Gas chromatography/mass spectrometry of reduced and acetylated reaction products showed that, in each case, lignin peroxidase catalyzed a 4-dechlorination of the starting phenol to yield a p-benzoquinone. The oxidation of 2,4-dichlorophenol also yielded a dechlorinated coupling dimer, tentatively identified as 2-chloro-6-(2,4-dichlorophenoxy)-p-benzoquinone. Experiments on the stoichiometry of 2,4,6-trichlorophenol oxidation showed that this substrate was quantitatively dechlorinated to give the quinone and inorganic chloride. H218O-labeling experiments on 2,4,6-trichlorophenol oxidation demonstrated that water was the source of the new 4-oxo substituent in 2,6-di-chloro-p-benzoquinone. The results indicate a mechanism whereby lignin peroxidase oxidizes a 4-chlorinated phenol to an electrophilic intermediate, perhaps the 4-chlorocyclohexadienone cation. Nucleophilic attack by water and elimination of HCl then ensue at the 4-position, which produces the quinone. Lignin peroxidases have previously been implicated in the degradation by Phanerochaete of several nonphenolic aromatic pollutants. It appears likely from their results that these peroxidases could also catalyze the initial dechlorination of certain polychlorinated phenols in vivo

  14. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand;

    2015-01-01

    these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed...

  15. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  16. Curcumin-induced Histone Acetylation in Malignant Hematologic Cells

    Institute of Scientific and Technical Information of China (English)

    Junbin HU; Yan WANG; Yan CHEN

    2009-01-01

    This study investigated the inhibitory effects of curcumin on proliferation of hemato-logical malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacety-lation levels.The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay.The expression of acetylated histone-3 (H3) in Raji,HL60 and K562 cells,and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS.The results showed curcumin inhibited pro-liferation of Raji cells significantly in a time- and dose-dependent fashion,while exhibited low toxic-ity in PBMCs.Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested.In conclusion,curcumin inhibited proliferation of Raji cells selec-tively,enhanced the level of acetylated H3 in Raji,HL60,and K562 cells,which acted as a histone deacetylase inhibitor like TSA.Furthermore,up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells.

  17. Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development.

    Science.gov (United States)

    Dai, Jinxiang; Bercury, Kathryn K; Jin, Weilin; Macklin, Wendy B

    2015-12-01

    The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. PMID:26631469

  18. Crystal structure of the N-acetyltransferase domain of human N-acetyl-L-glutamate synthase in complex with N-acetyl-L-glutamate provides insights into its catalytic and regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Gengxiang Zhao

    Full Text Available N-acetylglutamate synthase (NAGS catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG, an obligate cofactor for carbamyl phosphate synthetase I (CPSI in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K.

  19. Crystal structure of the N-acetyltransferase domain of human N-acetyl-L-glutamate synthase in complex with N-acetyl-L-glutamate provides insights into its catalytic and regulatory mechanisms.

    Science.gov (United States)

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K. PMID:23894642

  20. Catalyzed electrolytic plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Catalyzed electrolytic plutonium oxide dissolution (CEPOD) was first demonstrated at Pacific Northwest Laboratory (PNL) in early 1974 in work funded by the Exxon Corporation. The work, aimed at dissolution of Pu-containing residues remaining after the dissolution of spent mixed-oxide reactor fuels, was first publicly disclosed in 1981. The process dissolves PuO2 in an anolyte containing small (catalytic) amounts of elements that form kinetically fast, strongly oxidizing ions. These are continuously regenerated at the anode. Catalysts used, in their oxidized form, include Ag2+, Ce4+, Co3+, and AmO22+. This paper reviews the chemistry involved in CEPOD and the results of its application to the dissolution of the Pu content of a variety of PuO2-containing materials such as off-standard oxide, fuels dissolution residues, incinerator ash, contaminated soils, and other scraps or wastes. Results are presented for both laboratory-scale and plant-scale dissolves

  1. Gold-catalyzed naphthalene functionalization

    Directory of Open Access Journals (Sweden)

    Iván Rivilla

    2011-05-01

    Full Text Available The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenylimidazol-2-ylidene, M = Cu, 1a; M = Au, 1b, in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethylphenyl, catalyze the transfer of carbene groups: C(RCO2Et (R = H, Me from N2C(RCO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  2. Hydrogen evolution catalyzed by cobaloximes.

    Science.gov (United States)

    Dempsey, Jillian L; Brunschwig, Bruce S; Winkler, Jay R; Gray, Harry B

    2009-12-21

    Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H(2). In this Account, we report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes). Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a Co(II)-diglyoxime generates a Co(I) species that reacts with a proton source to produce a Co(III)-hydride. Then, in a homolytic pathway, two Co(III)-hydrides react in a bimolecular step to eliminate H(2). Alternatively, in a heterolytic pathway, protonation of the Co(III)-hydride produces H(2) and Co(III). A thermodynamic analysis of H(2) evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by Co(I)-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H(2) evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with Co(III)-diglyoxime formation along the heterolytic pathway. Our investigations of cobaloxime-catalyzed H(2) evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of Co(III)-hydrides. PMID:19928840

  3. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    Science.gov (United States)

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  4. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.

    Science.gov (United States)

    Ding, Bao-Jian; Lager, Ida; Bansal, Sunil; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2016-04-01

    Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with Ea DAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to Ea DAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast. PMID:26801935

  5. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    Energy Technology Data Exchange (ETDEWEB)

    Pampa, K.J., E-mail: sagarikakj@gmail.com [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Lokanath, N.K. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Girish, T.U. [Department of General Surgery, JSS Medical College and Hospital, JSS University, Mysore 570 015 (India); Kunishima, N. [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Rai, V.R. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India)

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  6. Dynamic Histone Acetylation of H3K4me3 Nucleosome Regulates MCL1 Pre-mRNA Splicing.

    Science.gov (United States)

    Khan, Dilshad H; Gonzalez, Carolina; Tailor, Nikesh; Hamedani, Mohammad K; Leygue, Etienne; Davie, James R

    2016-10-01

    Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetylation and H3K4me3 levels along the MCL1 gene and no change in pre-mRNA splicing choice. These results show that, upon HDAC inhibition, the H3K4me3 mark plays a critical role in the exclusion of exon 2 from the MCL1 pre-mRNA. J. Cell. Physiol. 231: 2196-2204, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864447

  7. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis

    Directory of Open Access Journals (Sweden)

    Jialei Hu

    2015-12-01

    Full Text Available Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  8. Recycling and Reuse of Ionic Liquid in Homogeneous Cellulose Acetylation

    Institute of Scientific and Technical Information of China (English)

    HUANG Kelin; WU Rui; CAO Yan; LI Huiquan; WANG Jinshu

    2013-01-01

    Molecular distillation was used to recover ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AmimC1) in homogeneous cellulose acetylation.The five factors that affect the separation efficiency of molecular distillation,namely,feed flow rate,distillation temperature,feed temperature,wiper rotating speed,and distillation pressure,are discussed.The optimal recovery condition was determined via orthogonal experiments using an OA9(34) design.The IL was recycled and reused 5 times in the homogeneous cellulose acetylation system under optimal conditions.The purity of recycled IL the 5th time reached 99.56%.FT-IR (Fourier transform infrared spectroscopy) and 1H NMR (nuclear magnetic resonance) spectroscopy showed that the structure of the recovered IL is not changed.This work proves that AmirnCl has excellent reusability,and that molecular distillation is an effective method for recovering IL in homogeneous cellulose acetylation.

  9. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A;

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain...... acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the...

  10. Study on Reactions of 2-Acetyl-7-methylaminotropone with Pyridinecarboxyaldehydes

    Institute of Scientific and Technical Information of China (English)

    GAO Wen-Tao; ZHENG Zhuo

    2003-01-01

    @@ Cinnamoyl group is a versatile constituent because of bearing active carbonyl group and α, β-unsaturated car bon-carbon double bond. A wide variety of heterocycle-fused troponoid compounds have been derived from cinnamoyl-substituted tropones. For examples, the 3-(4-aryl-3-cyano-2- methoxypyridin-6-yl)tropones were synthesized by the reactions of 2-acetyl-7-methylaminotropone with malononitrile via michael addition and cyclization. [1] There have been some reports about the synthesis of 2-cinnamoyl-7-methylaminotropone, [2,3] herein we further report the synthesis of this kind of compounds by the reactions of 2-acetyl-7-methylaminotropone with pyridinecarboxyaldehydes.

  11. Lipozyme TL IM as Catalyst for the Synthesis of Eugenyl Acetate in Solvent-Free Acetylation.

    Science.gov (United States)

    Silva, María José A; Loss, Raquel A; Laroque, Denise A; Lerin, Lindomar A; Pereira, Gabriela N; Thon, Élise; Oliveira, J Vladimir; Ninow, Jorge L; Hense, Haiko; Oliveira, Débora

    2015-06-01

    The ability of commercial immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) to catalyze the acetylation of essential clove oil with acetic anhydride in a solvent-free system was studied, and the antimicrobial activity of the ester formed was evaluated as well. Experimental design based on two variables (eugenol to acetic anhydride molar ratio and temperature) was employed to evaluate the experimental conditions of eugenyl acetate ester production. The maximum conversion yield (92.86 %) was obtained using Lipozyme TL IM (5 wt%, based on the total amount of substrates), with eugenol to acetic anhydride molar ratio of 1:5 at 70 °C. The chemical structure of the eugenyl acetate ester obtained at the optimized condition, and purified, was confirmed by the proton nuclear magnetic resonance ((1)H-NMR) analysis. The antimicrobial activity of eugenyl acetate ester was proven effective on Gram-positive and Gram-negative bacteria, with means of 16.62 and 17.55 mm of inhibition halo. PMID:25875787

  12. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase.

    Science.gov (United States)

    Choi, Jin Wook; Da Silva, Nancy A

    2014-10-10

    Polyketides and fatty acids are important in the production of pharmaceuticals, industrial chemicals, and biofuels. The synthesis of the malonyl-CoA building block, catalyzed by acetyl-CoA carboxylase (Acc1), is considered a limiting step to achieving high titers of polyketides and fatty acids in Saccharomyces cerevisiae. Acc1 is deactivated by AMP-activated serine/threonine protein kinase (Snf1) when glucose is depleted. To prevent this deactivation, the enzyme was aligned with the Rattus norvegicus (rat) Acc1 to identify a critical amino acid (Ser-1157) for phosphorylation and deactivation. Introduction of a S1157A mutation into Acc1 resulted in 9-fold higher specific activity following glucose depletion. The enzyme was tested in yeast engineered to produce the polyketide 6-methylsalisylic acid (6-MSA). Both 6-MSA and native fatty acid levels increased by 3-fold. Utilization of this modified Acc1 enzyme will also be beneficial for other products built from malonyl-CoA. PMID:25078432

  13. Microfluidic Mobility Shift Profiling of Lysine Acetyltransferases Enables Screening and Mechanistic Analysis of Cellular Acetylation Inhibitors.

    Science.gov (United States)

    Sorum, Alexander W; Shrimp, Jonathan H; Roberts, Allison M; Montgomery, David C; Tiwari, Neil K; Lal-Nag, Madhu; Simeonov, Anton; Jadhav, Ajit; Meier, Jordan L

    2016-03-18

    Lysine acetyltransferases (KATs) are critical regulators of signaling in many diseases, including cancer. A major challenge in establishing the targetable functions of KATs in disease is a lack of well-characterized, cell-active KAT inhibitors. To confront this challenge, here we report a microfluidic mobility shift platform for the discovery and characterization of small molecule KAT inhibitors. Novel fluorescent peptide substrates were developed for four well-known KAT enzymes (p300, Crebbp, Morf, and Gcn5). Enzyme-catalyzed acetylation alters the electrophoretic mobility of these peptides in a microfluidic chip, allowing facile and direct monitoring of KAT activity. A pilot screen was used to demonstrate the utility of microfluidic mobility shift profiling to identify known and novel modulators of KAT activity. Real-time kinetic monitoring of KAT activity revealed that garcinol, a natural product KAT inhibitor used in cellular studies, exhibits time-dependent and detergent-sensitive inhibition, consistent with an aggregation-based mechanism. In contrast, the cell-permeable bisubstrate inhibitor Tat-CoA exhibited potent and time-independent KAT inhibition, highlighting its potential utility as a cellular inhibitor of KAT activity. These studies define microfluidic mobility shift profiling as a powerful platform for the discovery and characterization of small molecule inhibitors of KAT activity, and provide mechanistic insights potentially important for the application of KAT inhibitors in cellular contexts. PMID:26428393

  14. New lysine-acetylated proteins screened by immunoaffinity and liquid chromatography-mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The lack of selective extraction specific for lysine-acetylated proteins has been a major problem in the field of acetylation biology,though acetylation plays a key role in many biological processes.In this paper,we report for the first time the proteomic screening of lysine-acetylated proteins from a mouse liver tissue,by a new approach of immunoaffinity purification of lysine-acetylated peptides combined with nano-HPLC/MS/MS analysis.We have found 20 lysine-acetylated proteins with 21 lysine-acetylated sites,among which 12 lysine-acetylated proteins and 16 lysine-acetylated sites have never been reported before.Notably,three acetyltransferases harboring in mitochondrion are newly discovered acetyltransferases responsible for the acetylation of nonhistone proteins.We have explored the significant patterns of residue preference by the hierarchical clustering analysis of amino acid residues surrounding acetylation sites,which could be helpful to the prediction of new sites of lysine acetylation.Our findings provide more candidates for studying the important roles played by acetylation in diverse cellular pathways and related human diseases.

  15. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme.

    Science.gov (United States)

    Sundaresan, Ramya; Ragunathan, Preethi; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2012-04-13

    The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability. PMID:22452987

  16. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  17. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  18. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  19. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram;

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  20. The potential role of wood acetylation in climate change mitigation

    NARCIS (Netherlands)

    Van der Lugt, P.; Vogtländer, J.G.; Alexander, J.; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet

  1. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    Science.gov (United States)

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  2. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    Science.gov (United States)

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function. PMID:26227334

  3. Acetylation regulates DNA repair mechanisms in human cells.

    Science.gov (United States)

    Piekna-Przybylska, Dorota; Bambara, Robert A; Balakrishnan, Lata

    2016-06-01

    The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation. PMID:27104361

  4. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  5. Enzymatic synthesis of carbon-11 N-acetyl-D-glucosamine

    International Nuclear Information System (INIS)

    An enzymatic synthesis of [11C] N-acetyl-D-glucosamine is described. 11CO2 is reacted with methylmagnesium bromide to form [1-11C]acetate. The latter is converted to [11C]acetylcoenzyme A by passage over an enzyme reactor containing immobilized acetylcoenzyme A synthetase, and to the title compound after purification. (author)

  6. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 1017 cm-3. The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.)

  7. Synthesis of Bioactive Natural Polymethoxyflavones and Their Vinyl Ether Derivatives

    Institute of Scientific and Technical Information of China (English)

    CAI Shuang-lian; LIU Shuang; LIU Li; WANG Qiu-an

    2012-01-01

    Bioactive natural polymethoxyflavones 1-6 and their vinyl ether derivatives 7-15 were synthesized by bromination,aromatic nucleophilic substitution,methylation,benzyl protection,Friedel-Crafts acetylation,aldol condensation,cyclization,DDQ dehydrogenation,regioselective demethylation,debenzylation and O-prenylation or O-farnesylation with resorcinol and appropriate substituted benzaldehydes as starting materials.Among them,compounds 7-15 are new compounds.Natural products 2-4 were firstly total synthesized.The syntheses of compounds 1,5 and 6 were efficiently improved by the new synthetic routes.The structures of all synthetic compounds were confirmed by NMR,IR spectra and MS.

  8. Vitamin B12-catalyzed synthesis of some peracetylated alkyl b-D-xylopyranosides

    Directory of Open Access Journals (Sweden)

    LJILJANA STEVANOVIC

    2003-10-01

    Full Text Available The vitamin B12-catalyzed glycosylation reaction of brominated b-D-xylose peracetate with alkanols ROH (C1-C8 has been studied. The catalytically active species in this reaction was cob(Ialamin, obtained by chemical reduction of Vitamin B12 with NaBH4 (Co(III to Co(I. The reaction was carried out with 2 mol% of vitamin B12, with respect to xylosyl bromide 1, under argon at room temperature. Under these conditions, peracetylated C1-C8-alkyl b-D-xylopyranosides (3a–3f were obtained in moderate yield (55–70 %. In all cases 3,4-di-O-acetyl-D-xylal (4 was obtained, as the product of reductive elimination of peracetylated xylosyl bromide (15–25 %.

  9. Copolymerization of Ethylene and Vinyl Amino Acidic Ester Catalyzed by Titanium and Zirconium Complexes

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-10-01

    Full Text Available A series of titanium and zirconium complexes with ligands based on di-isopropyl phosphorus-phenylamine and their derivatives were synthesized and characterized. These catalysts were utilized to catalyze the copolymerization of ethylene with N-acetyl-O-(dec-9-enyl-L-tyrosine ethyl ester with high catalytic activity of 6.63 × 104 g P (mol Ti−1 h−1 after activation by methylaluminoxane (MAO. The effects of ligand structure, metal atoms (Ti, Zr and polymerization conditions were investigated in detail. The obtained polymers were characterized by 13C-NMR, DSC, FT-IR, and GPC. The results showed that the obtained copolymer had a high comonomer incorporation rate of 2.56 mol % within the copolymer chain. The melting temperature of the copolymer was up to 138.9 °C, higher than that of the obtained homopolyethylene.

  10. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.

    Science.gov (United States)

    Łukowska-Chojnacka, Edyta; Staniszewska, Monika; Bondaryk, Małgorzata; Maurin, Jan K; Bretner, Maria

    2016-04-01

    A series of new N-substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase-catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100). PMID:26922853

  11. Palladium-Catalyzed Carbonylation and Arylation Reactions

    OpenAIRE

    Sävmarker, Jonas

    2012-01-01

    Palladium-catalyzed reactions have found widespread use in contemporary organic chemistry due to their impressive range of functional group tolerance and high chemo- and regioselectivity. The pioneering contributions to the development of the Pd-catalyzed C-C bond forming cross-coupling reaction were rewarded with the Nobel Prize in Chemistry in 2010. Today, this is a rapidly growing field, and the development of novel methods, as well as the theoretical understanding of the various processes...

  12. DMPD: Acetylation of MKP-1 and the control of inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18922786 Acetylation of MKP-1 and the control of inflammation. Chi H, Flavell RA. S...ci Signal. 2008 Oct 14;1(41):pe44. (.png) (.svg) (.html) (.csml) Show Acetylation of MKP-1 and the control of inflammation.... PubmedID 18922786 Title Acetylation of MKP-1 and the control of inflammation. Authors Chi H,

  13. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  14. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins.

    Science.gov (United States)

    Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will; Dubois, Laura G; Stevens, Robert D; Ilkayeva, Olga R; Brosnan, M Julia; Rolph, Timothy P; Grimsrud, Paul A; Muoio, Deborah M

    2016-01-12

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  15. Mixing Up the Pieces of the Desferrioxamine B Jigsaw Defines the Biosynthetic Sequence Catalyzed by DesD.

    Science.gov (United States)

    Telfer, Thomas J; Gotsbacher, Michael P; Soe, Cho Zin; Codd, Rachel

    2016-05-20

    Late-stage assembly of the trimeric linear siderophore desferrioxamine B (DFOB) native to Streptomyces pilosus involves two DesD-catalyzed condensation reactions between one N-acetyl-N-hydroxy-1,5-diaminopentane (AHDP) unit and two N-succinyl-N-hydroxy-1,5-diaminopentane (SHDP) units. AHDP and SHDP are products of DesBC-catalyzed reactions of the native diamine substrate 1,5-diaminopentane (DP). The sequence of DesD-catalyzed DFOB biosynthesis was delineated by analyzing the distribution of DFOB analogues and dimeric precursors assembled by S. pilosus in medium containing 1,4-diamino-2(E)-butene (E-DBE). Seven unsaturated DFOB analogues were produced that were partially resolved by liquid chromatography (LC). Mass spectrometry (MS) measurements reported on the combination of E-DBE- and DP-derived substrates in each trimer (uDFOA1 series, 1:2; uDFOA2 series, 2:1; uDFOA3, 3:0). MS/MS fragmentation patterns reported on the absolute position of the substrate derivative at the N-acetylated terminus, the internal region, or the amine terminus of the trimer. The uDFOA1 and uDFOA2 series each comprised three constitutional isomers (binary notation (DP-derived substrate "0," E-DBE-derived substrate "1"); direction, N-acetylated-internal-amine): uDFOA1[001], uDFOA1[010], uDFOA1[100]; and uDFOA2[011], uDFOA2[110], and uDFOA2[101]. E-DBE completely replaced DP in uDFOA3[111]. Relative concentrations of the uDFOA1 series were uDFOA1[001] ≫ uDFOA1[100] > uDFOA1[010] and of the uDFOA2 series, uDFOA2[101] > uDFOA2[011] ≫ uDFOA2[110]. Dimeric compounds assembled from one N-acetylated and one N-succinylated substrate derivative were detected as trimer precursors: dDFX[00-] ≫ udDFX[10-] > udDFX[01-] (d = dimer, vacant position "-"). Relative concentrations of all species were consistent with the biosynthetic sequence: (i) SHDP activation, (ii) condensation with AHDP to form AHDP-SHDP, (iii) SHDP activation, and (iv) condensation with AHDP-SHDP to form DFOB. PMID:27004785

  16. Acetylcholinesterase-catalyzed acetate - water oxygen exchange studied by 13C-NMR

    International Nuclear Information System (INIS)

    The kinetics of the oxygen exchange reaction between [l-13C,18O2]acetate and H216O catalyzed by homogeneous acetyl-cholinesterase from the electric eel, Electrophorus electricus, was studied using the 18O-isotope-induced shift on 13C-nuclear magnetic resonance spectra. Pseudo-first-order rate constants for the exchange reactions were determined at pH values from 4.5 to 8. The exchange reaction exhibits a maximum at pH 5.8. The apparent catalytic rate constant for the exchange reaction is 102 to 104 times smaller than that for the deacylation of the acetyl-enzyme intermediate over the pH range tested. Oxygen exchange occurs by a random sequential pathway rather than by multiple (coupled) exchange. The inhibition of acetylcholinesterase by sodium acetate showed a sigmoidal dependence on pH, with K/sub i/ increasing 2.5 orders of magnitude over the pH range. Protonation of an active site residue having an apparent pKa of 6.8 is associated with an increase in acetate binding. Deacylation also exhibits a sigmoidal dependence on [H+]. The experimental data fits titration curves with inflection points at 5.0 +/- 0.3 and 6.7 +/-0.1. Results support the role of histidine in acetylation of the active site serine, but the conjugate base of another active site residue with a pKa of 5.0 appears necessary for maximal catalytic activity in both the deacylation and exchange reactions

  17. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex.

    Science.gov (United States)

    Gebremedhin, Kibrom G; Rademacher, David J

    2016-08-01

    Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription. PMID:27241718

  18. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.

    Science.gov (United States)

    Mizuno, Yuta; Nagano-Shoji, Megumi; Kubo, Shosei; Kawamura, Yumi; Yoshida, Ayako; Kawasaki, Hisashi; Nishiyama, Makoto; Yoshida, Minoru; Kosono, Saori

    2016-02-01

    The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as l-glutamate. During l-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor l-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more

  19. Specificity of antibodies to O-acetyl-positive and O-acetyl-negative group C meningococcal polysaccharides in sera from vaccinees and carriers.

    OpenAIRE

    Arakere, G; Frasch, C E

    1991-01-01

    Most group C Neisseria meningitidis strains produce an O-acetyl-positive polysaccharide, a homopolymer of alpha-2----9-linked N-acetylneuraminic acid with O-acetyl groups at the C-7 and C-8 of its sialic acid residues. The majority of disease isolates have been reported to contain this polysaccharide. Some strains produce group C polysaccharide lacking O-acetyl groups. The licensed vaccine contains the O-acetyl-positive polysaccharide. We have measured the antibody specificities to the two po...

  20. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate; Breinholt Bekker-Jensen, Dorte; Secher, Anna; Skovgaard, Tine; Kelstrup, Christian; Dmytriyev, Anatoliy; Choudhary, Chuna Ram; Lundby, Carsten; Olsen, Jesper Velgaard

    2012-01-01

    Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4...... subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle...

  1. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya;

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation......, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and...... deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes....

  2. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Energy Technology Data Exchange (ETDEWEB)

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  3. N-Acetyltransferase 2 (NAT2) in Tunisian Population: Correlation Between Acetylation Phenotype and Genotype

    International Nuclear Information System (INIS)

    One hundred tuberculous patients were studied during 2004-2005 to determine acetylation phenotype, frequent mutations of NAT2 gene and to compare acetylation phenotype with NAT2 genotype in Tunisian population. Acetylation phenotype was determined by determination of acetylation index. Five mutations of NAT2 gene were evaluated by PCR/RFLP. Results show bimodal distribution of acetylation SA and RA phenotype, 75% and 25% and genotype 56% and 44%, respectively. Ten NAT2 alleles were found, NAT2*4 being the major one. Thirty-two different genotypes were found (9 RA and 23 SA). The major one was NAT2*6 B/NAT2*4. The concordance value was 79%. A good sensibility (98, 2%) of acetylation test for SA detection was found. Thus, acetylation phenotype in SA is predicted with poor error risk. (author)

  4. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian; Nielsen, Michael L; Rehman, Michael; Walther, Tobias C; Olsen, Jesper V; Mann, Matthias

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600...... lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  5. Use of Intravenous N-Acetyl Systein in Paracetamol Intoxication

    OpenAIRE

    Latif Duran; Bülent Şişman; Canan Doğruel; Türker Yardan; Ahmet Baydın; Yücel Yavuz

    2011-01-01

    Objective: In this study, we aimed to present our clinical experiences of intravenous (IV) N-Acetyl cystein administration in patients admitted to our emergency department with paracetamol intoxication.Material and Methods: This study was conducted between January 2007 and December 2009, in the Ondokuz Mayis University Medical Faculty Hospital, Emergency Service, and the hospital records of adult patients admitted with paracetamol poisoning were examined retrospectively. Fifty three patients ...

  6. The potential role of wood acetylation in climate change mitigation

    OpenAIRE

    Van der Lugt, P.; Vogtländer, J.G.; J. Alexander; Bongers, F.; Stebbins, H.

    2014-01-01

    In a carbon footprint assessment, the greenhouse gas emissions during the life cycle of a material can be measured, and compared to alternative products in terms of kg CO2 equivalent. If applied correctly, wood acetylation opens up a range of new innovative applications in which high performance yet carbon intensive non-renewable materials such as metals, plastics and concrete may be replaced by abundantly available nondurable wood species. To better understand the difference in greenhouse ga...

  7. Acetylation modification regulates GRP78 secretion in colon cancer cells.

    Science.gov (United States)

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  8. Acetylation modification regulates GRP78 secretion in colon cancer cells

    Science.gov (United States)

    Li, Zongwei; Zhuang, Ming; Zhang, Lichao; Zheng, Xingnan; Yang, Peng; Li, Zhuoyu

    2016-01-01

    High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors. PMID:27460191

  9. Astrocyte Reactivity Following Blast Exposure Involves Aberrant Histone Acetylation

    Science.gov (United States)

    Bailey, Zachary S.; Grinter, Michael B.; VandeVord, Pamela J.

    2016-01-01

    Blast induced neurotrauma (BINT) is a prevalent injury within military and civilian populations. The injury is characterized by persistent inflammation at the cellular level which manifests as a multitude of cognitive and functional impairments. Epigenetic regulation of transcription offers an important control mechanism for gene expression and cellular function which may underlie chronic inflammation and result in neurodegeneration. We hypothesize that altered histone acetylation patterns may be involved in blast induced inflammation and the chronic activation of glial cells. This study aimed to elucidate changes to histone acetylation occurring following injury and the roles these changes may have within the pathology. Sprague Dawley rats were subjected to either a 10 or 17 psi blast overpressure within an Advanced Blast Simulator (ABS). Sham animals underwent the same procedures without blast exposure. Memory impairments were measured using the Novel Object Recognition (NOR) test at 2 and 7 days post-injury. Tissues were collected at 7 days for Western blot and immunohistochemistry (IHC) analysis. Sham animals showed intact memory at each time point. The novel object discrimination decreased significantly between two and 7 days for each injury group (p processes. We have shown aberrant histone acetylation patterns involved in blast induced astrogliosis and cognitive impairments. Further understanding of their role in the injury progression may lead to novel therapeutic targets. PMID:27551260

  10. Histone acetylation regulates osteodifferentiation of hDPSCs via DSPP.

    Science.gov (United States)

    Gu, Shensheng; Liang, Jingping; Wang, Jia; Liu, Bin

    2013-01-01

    Dental pulp stem cells (DPSCs) are a unique population of precursor cells isolated from postnatal human dental pulp, with the ability to regenerate a reparative dentin-like complex. We examined the regulation of odontoblast-like differentiation of DPSCs by histone acetylation. Western blot analysis showed that histone H3 acetylation was strongly induced in osteodifferentiation medium. Inhibition of histone acetyltransferase by garcinol reversed osteodifferentiation and mineral formation. Real-time polymerase chain reaction assay indicated that the dentin sialophosphoprotein (DSPP) gene, which is mainly expressed in odontoblasts and preameloblasts in teeth and plays an important role in tooth function, was also down-regulated in garcinol-treated cells. Moreover, lentivirus-mediated knockdown of DSPP in human DPSCs was associated with significant inhibition of mineral formation, but not osteoblast differentiation. In conclusion, the results of this study suggest that DSPP positively affects mineral formation, and that odontoblast-like differentiation and maturation of DPSCs can be regulated by histone acetylation of the DSPP gene. PMID:23747867

  11. Selective cleavage enhanced by acetylating the side chain of lysine.

    Science.gov (United States)

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  12. MeIQx-induced DNA adduct formation and mutagenesis in DNA repair deficient CHO cells expressing human CYP1A1 and rapid or slow acetylator NAT2

    Science.gov (United States)

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R.; Metry, Kristin J.; Doll, Mark A.; States, J. Christopher; Pierce, William M.; Hein, David W.

    2007-01-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). Nucleotide excision repair-deficient chinese hamster ovary (CHO) cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected CHO cell lines. CYP1A1 activity did not differ significantly (p > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had significantly higher levels of sulfamethazine N-acetyltransferase (p = 0.0001) and N-hydroxy-MeIQx O-acetyltransferase (p = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase (hprt) mutagenesis following MeIQx treatment. dG-C8-MeIQx was the primary DNA adduct formed and levels were dose-dependent in each cell line and in the order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 & NAT2*5B < transfected with CYP1A1 & NAT2*4. MeIQx DNA adduct levels were significantly higher (p < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism on MeIQx –induced DNA adducts and mutagenesis. The results provide laboratory-based support for epidemiological studies reporting higher frequency of heterocyclic amine-related cancers in rapid NAT2 acetylators. PMID:17627018

  13. Attractor Explosions and Catalyzed Vacuum Decay

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  14. Palladium-Catalyzed Amination of Bromoanthancene

    Institute of Scientific and Technical Information of China (English)

    YU Ming-Xin; CHEN Xiao-Hang; CHENG Chien-Hong

    2003-01-01

    @@ Triarylamines are an important class of compounds, because they have been used as the hole-transport layer in electroluminescent devices. [1] New palladium catalyzed methods to form arylamines have emerged recently from Hartwing and Bucchwald . [2,3] Our group have investigated unusual diboration of allenes catalyzed by palladium complex and organic iodides. [4] Here we will report that arylamines react with bromoanthrancene (or dibromoanthancene) to afford triarylamines in the presence of Ligand-palladium complex. The structures of products were de termined by 1H NMR, 13C NMR, 13C (DEPT), IR and MS (HREI and EI) spectra.

  15. Two crystal structures of Escherichia coli N-acetyl-L-glutamate kinase demonstrate the cycling between open and closed conformations.

    Science.gov (United States)

    Gil-Ortiz, Fernando; Ramón-Maiques, Santiago; Fernández-Murga, María L; Fita, Ignacio; Rubio, Vicente

    2010-06-11

    N-Acetyl-L-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 A resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-L-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates approximately 24 degrees -28 degrees away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the beta-phosphate of ATP normally binds, suggesting that ATP is first anchored to the beta-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its beta-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11. PMID:20403363

  16. Acetylator genotype-dependent formation of 2-aminofluorene-hemoglobin adducts in rapid and slow acetylator Syrian hamsters congenic at the NAT2 locus.

    Science.gov (United States)

    Feng, Y; Rustan, T D; Ferguson, R J; Doll, M A; Hein, D W

    1994-01-01

    Arylamine-hemoglobin adducts are a valuable dosimeter for assessing arylamine exposures and carcinogenic risk. The effects of age, sex, time-course, dose, and acetylator genotype on levels of 2-aminofluorene-hemoglobin adducts were investigated in homozygous rapid (Bio. 82.73/H-Patr) and slow (Bio. 82.73/H-Pats) acetylator hamsters congenic at the polymorphic (NAT2) acetylator locus. Following administration of a single ip dose of [3H]2-aminofluorene, peak 2-aminofluorene-hemoglobin adduct levels were achieved at 12-18 hr and retained a plateau up to 72 hr postinjection in both rapid and slow acetylator congenic hamsters. 2-Aminofluorene-hemoglobin adduct levels did not differ significantly between young (5-6 weeks) and old (32-49 weeks) hamsters or between male and female hamsters within either acetylator genotype. 2-Aminofluorene-hemoglobin adduct levels increased in a dose-dependent manner (r = 0.95, p = 0.0001) and were consistently higher in slow versus rapid acetylator congenic hamsters in studies of both time-course and dose-effect. The magnitude of the acetylator genotype-dependent difference was a function of dose; 2-aminofluorene-hemoglobin adduct levels were 1.5-fold higher in slow acetylator congenic hamsters following a 60 mg/kg 2-aminofluorene dose (p = 0.0013) but 2-fold higher following a 100 mg/kg 2-aminofluorene dose (p < 0.0001). These results show a specific and significant role for NAT2 acetylator genotype in formation of arylamine-hemoglobin adducts, which may reflect the relationship between acetylator genotype and the incidence of different cancers from arylamine exposures. PMID:8291051

  17. Study on the Synthesis of 3,6-Disubstituted Asymmetric Carbazole Derivatives%3,6-位不对称二取代咔唑衍生物的合成研究

    Institute of Scientific and Technical Information of China (English)

    赵三虎; 刘瑞琴; 亢丽娜; 葛海霞; 赵明根

    2011-01-01

    以咔唑为主要合成原料,通过N-烷基化、付克酰基化、硝化以及付克烷基化等反应合成了两个结构新颖的3,6-位不对称二取代咔唑衍生物.探讨了原料摩尔比、催化剂用量、反应温度及反应时间等因素对反应的影响,得到最佳反应条件:(1)傅克酰基化反应:n(N-乙基咔唑):n(三氯化铝):n(乙酰氯)=1:1.2:1.5,反应温度室温,反应时间4h,产品收率82%;(2)硝化反应:n(N-乙基咔唑):n(65%硝酸)=1:1.15,反应温度5~10℃,反应时间2h,产品收率89%;(3)傅克烷基化反应:n(3-乙酰基-N-乙基咔唑):n(氯化锌):n(叔丁基氯)=1:1.5:1.5,反应温度室温,反应时间12 h,产品收率64%.所得产品结构经FTIR、1 H NMR、13C NMR、及MS表征.%With carbazole as mainly synthetic material,two novel compounds of 3,6-disubstituted asymmetric carbazole derivatives were prepared by a serious of reactions, such as N- alkylation,Friedel-Crafts acyla-tion, nitration and Friedel-Crafts alkylation. The factors affected the reactions,such as the mol ratio of substrates, the quantity of catalyst,reaction temperature and reaction time were explored and the optimum reaction conditions are as follows; (1) For the reaction of Friedel-Crafts acylation,with the mol ratio 1 : 1. 2 ':1. 5 of N-ethylcarbazole,anhydrous aluminum chloride and acetyl chloride,82% yield of the product was obtained at room temperature for 4 h;(2) For the reaction of nitration, with the mol ratio 1:1. 15 of the N-ethylcarbazole and 65% nitric,89% yield of the object product was obtained at 5 - 10 °C for 2 h;(3) For the reaction of Friedel-Crafts alkylation, with the mol ratio 1 : 1. 5 : 1. 5 of 3-acetyl-N-ethylcarbazol,anhydrous zinc chloride and tert. -butyl chloride,64% yield of the product was obtained at room temperature for 12 h. The structures of object products were characterized by FTIR、1H NMR、13C NMR and MS.

  18. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  19. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  20. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C...

  1. Sulfilimimines in metal-catalyzed redox reactions

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    Praha : -, 2009. s. 593-593. ISBN 978-80-02-02160-5. [ESOC 2009. European Symposium on Organic Chemistry /16./. 12.07.2009-16.07.2009, Praha] Institutional research plan: CEZ:AV0Z40550506 Keywords : sulfilimines * metal catalyzed oxidations * benzoisothiazolone Subject RIV: CC - Organic Chemistry

  2. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  3. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    Science.gov (United States)

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  4. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels In(n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkjv and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkjv, where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species ak(t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k(t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, ak(t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  5. Acetylated starch nanocrystals: Preparation and antitumor drug delivery study.

    Science.gov (United States)

    Xiao, Huaxi; Yang, Tao; Lin, Qinlu; Liu, Gao-Qiang; Zhang, Lin; Yu, Fengxiang; Chen, Yuejiao

    2016-08-01

    In this study, we developed a new nanoparticulate system for acetylated starch nanocrystals (ASN) using broken rice. ASN with different degrees of substitution (DS) of 0.04, 0.08 and 0.14 were prepared using acetic anhydride as acetylating agent through reaction with starch nanocrystals (SN). The resulting ASN were investigated for the capability to load and release doxorubicin hydrochloride (DOX), and the antitumor activities of DOX-loaded SN and DOX-loaded ASN were evaluated as potential drug delivery systems for cancer therapy. Cellular uptake and cytotoxicity of nanocrystals and the DOX-loaded nanocrystals were investigated using fluorescence microscopy and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. Compared with acetylated starches (AS) and native starches (NS), ASN with DS 0.14 loaded up to 6.07% of DOX with a higher loading efficiency of 91.1% and had steadier drug-release rates. Toxicity analysis using the rat hepatocytes model suggested that ASN was biocompatible and could be used for drug delivery. Furthermore, ASN were taken up by cancer cells in vitro and significantly enhanced the cytotoxicity of DOX against HeLa human cervical carcinoma cells. The IC50 value of DOX-loaded ASN-DS 0.14 was 3.8μg/mL for 24h of treatment, which was significantly lower than that of free DOX (21μg/mL). These results indicate that the prepared ASN using broken rice is a promising vehicle for the controlled delivery of DOX for cancer therapy. PMID:27156696

  6. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties - clinical study

    OpenAIRE

    Kassandra Azevedo Tadini; Daiane Garcia Mercurio; Patrícia Maria Berardo Gonçalves Maia Campos

    2015-01-01

    abstract Acetyl hexapeptide-3 has been used in anti-aging topical formulations aimed at improving skin appearance. However, few basic studies address its effects on epidermis and dermis, when vehiculated in topical formulations. Thus, the objective of this study was to determine the clinical efficacy of acetyl hexapeptide-3 using biophysical techniques. For this purpose, formulations with and without acetyl hexapeptide-3 were applied to the ventral forearm and the face area of forty female vo...

  7. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    Energy Technology Data Exchange (ETDEWEB)

    Saare, Mario, E-mail: mario.saare@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); Rebane, Ana [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia); SIAF, Swiss Institute of Allergy and Asthma Research, University of Zuerich, Davos (Switzerland); Rajashekar, Balaji; Vilo, Jaak [BIIT, Bioinformatics, Algorithmics and Data Mining group, Institute of Computer Science, University of Tartu, Tartu (Estonia); Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, 19th Ravila Str, Tartu (Estonia)

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations that mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of AIRE

  8. Targeted Quantitation of Acetylated Lysine Peptides by Selected Reaction Monitoring Mass Spectrometry

    OpenAIRE

    Rardin, Matthew J.; Held, Jason M.; Gibson, Bradford W.

    2013-01-01

    Mass spectrometry (MS) allows for the large-scale identification of multiple peptide analytes in complex mixtures. However, the low abundance of acetylated peptides in the overall mixture requires an enrichment step. After enrichment, the resulting acetylated peptides of interest can be quantitated using selected reaction monitoring (SRM)-MS with stable isotope dilution. Here, we describe the enrichment of lysine acetylated peptides from typsin digested mouse liver mitochondria, and the targe...

  9. Production and characterization of a monoclonal antibody to the O-acetylated peptidoglycan of Proteus mirabilis.

    OpenAIRE

    Gyorffy, S; Clarke, A J

    1992-01-01

    A monoclonal antibody (PmPG5-3) specific for the O-acetylated peptidoglycan of Proteus mirabilis 19 was produced by an NS-1 myeloma cell line and purified from ascites fluid by a combination of ammonium sulfate precipitation and affinity chromatography. The monoclonal antibody (an immunoglobulin M) was characterized by a competition enzyme-linked immunosorbent assay to be equally specific for both insoluble and soluble O-acetylated peptidoglycan but weakly recognized chemically de-O-acetylate...

  10. Production of N α -acetylated thymosin α1 in Escherichia coli

    OpenAIRE

    Ren, Yuantao; Yao, Xueqin; Dai, Hongmei; Li, Shulong; Fang, Hongqing; Chen, Huipeng; Zhou, Changlin

    2011-01-01

    Background Thymosin α1 (Tα1), a 28-amino acid N α -acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining N α -acetylation. In this study, we describe a novel production process for N α -acetylated Tα1 in Escherichia coli. Results To obtain recombinant N α -ac...

  11. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    OpenAIRE

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate e...

  12. A Novel One-Pot and One-Step Microwave-Assisted Cyclization-Methylation Reaction of Amino Alcohols and Acetylated Derivatives with Dimethyl Carbonate and TBAC

    Directory of Open Access Journals (Sweden)

    Adrián Ochoa-Terán

    2014-01-01

    Full Text Available A simple and efficient microwave-assisted methodology for the synthesis of 4-substituted-3-methyl-1,3-oxazolidin-2-ones from amino alcohols catalyzed by a ionic liquid was developed. This novel one-pot and one-step cyclization-methylation reaction represents an easier and faster method than any other reported protocols that can be used to obtain the desired products in good yields and high purity. Applying microwave irradiation at 130°C in the presence of TBAC, dimethyl carbonate acts simultaneously as carbonylating and methylating agent and surprisingly promotes an in situ basic trans esterification when a N-acetylated amino alcohol is used as starting material. Furthermore, dimethyl carbonate worked better than diethyl carbonate in performing this reaction.

  13. A novel one-pot and one-step microwave-assisted cyclization-methylation reaction of amino alcohols and acetylated derivatives with dimethyl carbonate and TBAC.

    Science.gov (United States)

    Ochoa-Terán, Adrián; Guerrero, Leticia; Rivero, Ignacio A

    2014-01-01

    A simple and efficient microwave-assisted methodology for the synthesis of 4-substituted-3-methyl-1,3-oxazolidin-2-ones from amino alcohols catalyzed by a ionic liquid was developed. This novel one-pot and one-step cyclization-methylation reaction represents an easier and faster method than any other reported protocols that can be used to obtain the desired products in good yields and high purity. Applying microwave irradiation at 130°C in the presence of TBAC, dimethyl carbonate acts simultaneously as carbonylating and methylating agent and surprisingly promotes an in situ basic trans esterification when a N-acetylated amino alcohol is used as starting material. Furthermore, dimethyl carbonate worked better than diethyl carbonate in performing this reaction. PMID:25692177

  14. Glutamine Assimilation and Feedback Regulation of L-acetyl-N-glutamate Kinase Activity in Chlorella variabilis NC64A Results in Changes in Arginine Pools.

    Science.gov (United States)

    Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella. PMID:26356535

  15. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin. PMID:26596838

  16. 全氟辛基磺酰亚胺稀土(Ⅲ)催化氟两相Friedel-Crafts烷基化反应%Recyclable Rare Earth Metal(Ⅲ) Bis(perfluorooctanesulfonyl)imide Complex for Catalytic Friedel-Crafts Alkylation Reaction in Fluorous Biphase System

    Institute of Scientific and Technical Information of China (English)

    洪梅; 沈明贵; 蔡春

    2010-01-01

    制备了全氟辛基磺酰亚胺盐(M[N(SO_2C_8F_(17))_2]_n,n:3,4),并用于催化氟两相烷基化反应.考察了催化剂种类、反应时间、反应温度和催化剂用量对烷基化反应的影响,同时探讨了Yb[N(SO_2C_8F_(17))_2]_3对烷基化试剂摩尔比为0.2%时,催化烷基化试剂与不同芳烃的反应,表明Yb[N(SO_2C_8F_(17))_2]_3是一种有效的烷基化催化剂.含有催化剂的氟相通过简单的相分离后,可回收利用.氟相重复使用5次,其催化活性降低不大.

  17. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Emaus, R.; Bieber, L.L.

    1982-01-15

    A rapid method for the preparation of (1-/sup 14/C)acetyl-L-carnitine is described. The method involves exchange of (1-/sup 14/C)acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1/sup -/) anion exchange resin. One of the procedures used to verify the product (1-/sup 14/C)acetyl-L-carnitine can be used to synthesize (3S)-(5-/sup 14/C)citric acid.

  18. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium. (author)

  19. Effect of acetylation on arthropathic activity of group A streptococcal peptidoglycan-polysaccharide fragments.

    OpenAIRE

    Stimpson, S. A.; Lerch, R A; Cleland, D R; Yarnall, D P; Clark, R L; Cromartie, W. J.; Schwab, J. H.

    1987-01-01

    Purified group A streptococcal peptidoglycan-polysaccharide (PG-PS) fragments were either de-O-acylated, or acetylated and then de-O-acylated to yield N-acetylated PG-PS. Native PG-PS was poorly degraded, N-acetylated PG-PS was extensively degraded, and de-O-acylated PG-PS was only slightly degraded by hen egg white lysozyme. N-acetylated PG-PS was also extensively degraded by human lysozyme and partially degraded by rat serum or rat liver extract. After a single intraperitoneal injection of ...

  20. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.

    Science.gov (United States)

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-06-14

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  1. p53 targets simian virus 40 large T antigen for acetylation by CBP.

    Science.gov (United States)

    Poulin, Danielle L; Kung, Andrew L; DeCaprio, James A

    2004-08-01

    Simian virus 40 (SV40) large T antigen (T Ag) interacts with the tumor suppressor p53 and the transcriptional coactivators CBP and p300. Binding of these cellular proteins in a ternary complex has been implicated in T Ag-mediated transformation. It has been suggested that the ability of CBP/p300 to modulate p53 function underlies p53's regulation of cell proliferation and tumorigenesis. In this study, we provide further evidence that CBP activity may be mediated through its synergistic action with p53. We demonstrate that SV40 T Ag is acetylated in vivo in a p53-dependent manner and T Ag acetylation is largely mediated by CBP. The acetylation of T Ag is dependent on its interaction with p53 and on p53's interaction with CBP. We have mapped the site of acetylation on T Ag to the C-terminal lysine residue 697. This acetylation site is conserved between the T antigens of the human polyomaviruses JC and BK, which are also known to interact with p53. We show that both JC and BK T antigens are also acetylated at corresponding sites in vivo. While other proteins are known to be acetylated by CBP/p300, none are known to depend on p53 for acetylation. T Ag acetylation may provide a regulatory mechanism for T Ag binding to a cellular factor or play a role in another aspect of T Ag function. PMID:15254196

  2. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Yun, Nuri; Kim, Chiho [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Song, Min-Young; Park, Kang-Sik [Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701 (Korea, Republic of); Oh, Young J., E-mail: yjoh@yonsei.ac.kr [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of)

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  3. Preparation of radioactive acetyl-l-carnitine by an enzymatic exchange reaction

    International Nuclear Information System (INIS)

    A rapid method for the preparation of [1-14C]acetyl-L-carnitine is described. The method involves exchange of [1-14C]acetic acid into a pool of unlabeled acetyl-L-carnitine using the enzymes acetyl-CoA synthetase and carnitine acetyltransferase. After isotopic equilibrium is attained, radioactive acetylcarnitine is separated from the other reaction components by chromatography on Dowex 1 (C1-) anion exchange resin. One of the procedures used to verify the product [1-14C]acetyl-L-carnitine can be used to synthesize (3S)-[5-14C]citric acid

  4. Synthesis of Andrographolide Glucopyranoside and Selective Cleavage of O-acetyl Groups in Sugar Moiety

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Min; LIU Hong-Min

    2008-01-01

    Andrographolide glucopyranosides were synthesized from andrographolide and tetra-O-acetyl-β-D-glucopyranosyl bromide via a Koenigs-Knorr reaction and deacetylation with a moderate deacetylation reagent dibutyltin oxide in methanol for the first time.The structures of the andrographolide derivatives were confirmed by IR, NMR,and HRMS.Deprotection of the acetylated andrographolide glucopyranoside with dibutyltin oxide in methanol selectively removed all acetyl groups of the sugar moiety, whereas the acetyl group of the andrographolide part and the base- or acid-sensitive functional groups were retained.

  5. Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer, in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Egeberg, Rikke; Olsen, Anja; Autrup, Herman;

    2008-01-01

    total meat intake and red meat intake and breast cancer risk were confined to intermediate/fast N-acetyl transferase 2 acetylators (P-interaction=0.03 and 0.04). Our findings support an association between meat consumption and breast cancer risk and that N-acetyl transferase 2 polymorphism has a......The aim of this study was to investigate whether polymorphisms in N-acetyl transferase 1 and 2 modify the association between meat consumption and risk of breast cancer. A nested case-control study was conducted among 24697 postmenopausal women included in the 'Diet, Cancer and Health' cohort study...... increment in intake. Compared with slow acetylators, the IRR (95% confidence interval) among fast N-acetyl transferase 1 acetylators was 1.43 (1.03-1.99) and 1.13 (0.83-1.54) among intermediate/fast N-acetyl transferase 2 acetylators. Interaction analyses revealed that the positive associations between...

  6. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2015-05-01

    Full Text Available A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22 of silychristin was accomplished by lipase PS (Pseudomonas cepacia immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.

  7. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    Science.gov (United States)

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  8. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    Directory of Open Access Journals (Sweden)

    Clemens Schmeitzl

    2015-08-01

    Full Text Available Deoxynivalenol (DON is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON, 15-acetyl-DON (15-ADON and 3,15-diacetyl-DON (3,15-diADON, and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G and of 15-acetyl-DON-3-sulfate (15-ADON3S as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G. This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  9. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Science.gov (United States)

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. PMID:27181349

  10. The dynamic organization of fungal acetyl-CoA carboxylase

    Science.gov (United States)

    Hunkeler, Moritz; Stuttfeld, Edward; Hagmann, Anna; Imseng, Stefan; Maier, Timm

    2016-04-01

    Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.

  11. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis

    International Nuclear Information System (INIS)

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotropically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.1 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation

  12. Parameters critical to muon-catalyzed fusion

    International Nuclear Information System (INIS)

    We have demonstrated that muon catalysis cycling rates increase rapidly with increasing deuterium-tritium gas temperatures and densities. Furthermore, muon-capture losses are significantly smaller than predicted before the experiments. There remains a significant gap between observation and theoretical expectation for the muon-alpha sticking probability in dense d-t mixtures. We have been able to achieve muon-catalyzed yields of 150 fusion/muon (average). While the fusion energy thereby released significantly exceeds expectations, enhancements by nearly a factor of twenty would be needed to realize energy applications for a pure (non-hybrid) muon-catalyzed fusion reactor. The process could be useful in tritium-breeding schemes. We have also explored a new form of cold nuclear fusion which occurs when hydrogen isotopes are loaded into metals. 22 refs., 10 figs

  13. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  14. Palladium-Catalyzed Environmentally Benign Acylation.

    Science.gov (United States)

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  15. Copper Catalyzed Oceanic Methyl Halide Production

    OpenAIRE

    Robin Kim, Jae Yun; Rhew, Robert

    2014-01-01

    Methyl halides are found in all of Earth’s biomes, produced naturally or through manmade means. Their presence in the atmosphere is problematic, as they catalyze depletion of stratospheric ozone. To understand the full environmental impact of these compounds, it is important to identify their chemical cycling processes. Iron increases methyl halide production in soils and oceans, yet copper’s influence remains unknown despite its similar chemical oxidation properties to iron. I experimentally...

  16. Antibody-Catalyzed Degradation of Cocaine

    Science.gov (United States)

    Landry, Donald W.; Zhao, Kang; Yang, Ginger X.-Q.; Glickman, Michael; Georgiadis, Taxiarchis M.

    1993-03-01

    Immunization with a phosphonate monoester transition-state analog of cocaine provided monoclonal antibodies capable of catalyzing the hydrolysis of the cocaine benzoyl ester group. An assay for the degradation of radiolabeled cocaine identified active enzymes. Benzoyl esterolysis yields ecgonine methyl ester and benzoic acid, fragments devoid of cocaine's stimulant activity. Passive immunization with such an artificial enzyme could provide a treatment for dependence by blunting reinforcement.

  17. Palladium(II)-Catalyzed Coupling Reactions

    OpenAIRE

    Lindh, Jonas

    2010-01-01

    Sustainable chemical processes are becoming increasingly important in all fields of synthetic chemistry. Catalysis can play an important role in developing environmentally benign chemical processes, and transition metals have an important role to play in the area of green chemistry. In particular, palladium(II) catalysis includes many key features for successful green chemistry methods, as demonstrated by a number of eco-friendly oxidation reactions catalyzed by palladium(II). The aim of the ...

  18. Palladium-catalyzed oxidative carbonylation reactions.

    Science.gov (United States)

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  19. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity.

    Science.gov (United States)

    Kim, Dong-Hyun; Xiao, Zhen; Kwon, Sanghoon; Sun, Xiaoxiao; Ryerson, Daniel; Tkac, David; Ma, Ping; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Zhou, Edward; Xu, H Eric; Palvimo, Jorma J; Chen, Lin-Feng; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-13

    Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient-excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet-induced obese mice. In vivo studies utilizing acetylation-mimic and acetylation-defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist-activated FXR increased its interaction with NF-κB but blocked that with RXRα, so that SUMO2-modified FXR was selectively recruited to and trans-repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti-inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity-related metabolic disorders. PMID:25425577

  20. Polymorphic acetylation of the antibacterials, sulfamethazine and dapsone, in South Indian subjects.

    Science.gov (United States)

    Peters, J H; Gordon, G R; Karat, A B

    1975-07-01

    A group of South Indian subjects was studied for their capacities to acetylate sulfamethazine (SMZ) and dapsone (DDS) and to clear DDS from the circulation. An apparent trimodal distribution of acetylator phenotypes was found in 49 subjects (51% slow, 12% intermediate, and 37% rapid acetylators) from measurements of the percentage acetylation of SMZ in 6-hour plasma samples after administration of 10 mg SMZ/kg. The intermediate phenotype was not discernible from either the percentage acetylation of SMZ in urine (collected concurrently with the plasma after SMZ) or that of DDS in plasma after the ingestion of 50 mg DDS by the same subjects. The latter two measurements yielded a bimodal distribution of 59% slow and 41% rapid acetylators, nearly identical to earlier reported distributions of isoniazid inactivator phenotypes in larger numbers of South Indian tuberculosis patients. In the current group, acetylation of DDS and SMZ was positively correlated. The half-time of disappearance (T 1/2) of DDS, an expression of the rate of clearance from the plasma, ranged from 13 to 40 hours. No correlation was found between the subject's capacity to acetylate DDS and the T 1/2 value for DDS. These results were generally consistent with earlier observations made during similar studies of American and Filipino subjects. PMID:1155699

  1. chiral Synthesis of 13-Acetyl-12-hydroxy-podocarpane-8, 11,13-triene-7-one

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An enantioselective synthetic route to (+)-13-acetyl-12-hydroxy-podocarpane-8,11,13-triene-7-one 1a and (-)-13-acetyl-12-hydroxy-podocarpane-8,11,13-triene-7-one 1b was developed from (S)-(-)-a -cyclocitral 8a and (R)-(+)-a -cyclocitral 8b.

  2. The Effect of Acetyl-L-Carnitine Administration on Persons with Down Syndrome

    Science.gov (United States)

    Pueschel, Siegfried M.

    2006-01-01

    Since previous investigations reported improvements in cognition of patients with dementia after acetyl-L-carnitine therapy and since there is an increased risk for persons with Down syndrome to develop Alzheimer disease, this study was designed to investigate the effect of acetyl-L-carnitine administration on neurological, intellectual, and…

  3. Acetylation of Starch with Vinyl Acetate in Imidazolium Ionic Liquids and Characterization of Acetate Distribution

    Science.gov (United States)

    Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...

  4. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide.

    Science.gov (United States)

    Li, Junjun; Hu, Xinzhong; Li, Xiaoping; Ma, Zhen

    2016-06-25

    In the present study, polysaccharides extracted from Artemisia sphaerocephala Krasch. seeds (ASKP) were acetylated to improve the emulsifying properties of the macromolecules. Several methods were applied for the acetylation purpose, among which the acetic anhydride-pyridine method with formamide as solvent was found to be the most effective one. Acetylated ASKPs with various degree of substitution (DS) were successfully produced and structurally characterized using HPSEC-MALS, FTIR and (1)H NMR techniques in this study. Results showed that acetylation treatment could cause the degradation of ASKP. Moreover, with the increase of DS, both the molecular weight and radius of gyration increased, as well as the molecular conformation trended to be more compact. Low DS (DS: 0.04 and 0.13) conferred acetylated ASKP a lower viscosity than that of ASKP. With the increase of DS, the viscosity of acetylated ASKPs increased and exceeded that of ASKP. Compared with ASKP, acetylated ASKPs could reduce the surface tension to a greater extent and demonstrated a much smaller droplet size (ZD) in an oil/water emulsion system. Acetylated ASKPs were capable of stabilizing the oil/water emulsion for 3 days at 60°C, whose performance was as good as that of gum acacia. In conclusion, such a hydrophobic modification on ASKP conferred it better emulsifying properties. PMID:27083845

  5. Effects of Partially N-acetylated Chitosans to Elicit Resistance Reaction on Brassica napus L.

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-kun; TANG Zhang-lin; CHEN Li; GUO Yi-hong; CHEN Yun-ping; LI Jia-na

    2002-01-01

    The effects to elicit resistance reaction on oilseed rape (Brassica napus L. cv Xinongchangjiao )by four partially N-acetylated chitosan 7B, 8B, 9B and 10B (Degree of acetylation (D. A. ) is 30%, 20%,10%, 0%, respectively) and Glycol chitosan (GC, D.A. is 0%) were investigated and compared. Results showed that chitosan were similar to salicylic acid (SA), and could induce resistance reaction, but the reaction was influenced by the degree of acetylation of chitosan. Fully deacetylated chitosans, 10B and GC, elicited chitinase activity, but partially acetylated chitosan, 7B, 8B and 9B, inhibited chitinase activity. Phenyalanine ammonia-lyase (PAL) was also elicited. Elicitor activity increased with on increasing degree of acetylation, 7B induced highest PAL activity among all chitosans. All chitosans induced peroxidase (POD) in a similar level.After elicited by glycol chitosan, like SA treatment, the seedlings increased disease resistance to Sclerotinia sclerotiorum significantly.

  6. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.;

    2013-01-01

    -dependent posttranslational modifications (PT Ms). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry......-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP 300 and CREBBP, are dynamically acetylated; (2) that nuclear...... to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure...

  7. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Junhe Cui

    2016-01-01

    Full Text Available Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered.

  8. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    Science.gov (United States)

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  9. H3K9 acetylation and radial chromatin positioning

    Czech Academy of Sciences Publication Activity Database

    Strašák, Luděk; Bártová, Eva; Harničarová, Andrea; Galiová-Šustáčková, Gabriela; Krejčí, Jana; Kozubek, Stanislav

    2009-01-01

    Roč. 220, č. 1 (2009), s. 91-101. ISSN 0021-9541 R&D Projects: GA MŠk(CZ) LC06027; GA MŠk(CZ) LC535; GA AV ČR(CZ) 1QS500040508; GA AV ČR(CZ) IAA5004306; GA ČR(CZ) GA204/06/0978 Grant ostatní: GA ČR(CZ) GP310/07/P480 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromatin structure * RIDGE and anti-RIDGE regions * H3K9 acetylation Subject RIV: BO - Biophysics Impact factor: 4.586, year: 2009

  10. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate.

    Science.gov (United States)

    Kadokawa, Jun-ichi; Shimohigoshi, Riko; Yamashita, Kento; Yamamoto, Kazuya

    2015-04-14

    The relationship between two aminopolysaccharide stereoisomers, namely α-(1→4)- and β-(1→4)-linked (N-acetyl)-D-glucosamine polymers, is of significant interest within the field of polysaccharide science, as they correspond to amino analogs of the representative abundant natural polysaccharides, viz. amylose and cellulose. While the latter glucosamine polymer is the basis of well-known natural polysaccharides, chitin and chitosan (linear polysaccharides composed of β-(1→4)-linked N-acetyl-D-glucosamine and D-glucosamine), to the best of our knowledge, the former (α-(1→4)-linked) has not been observed in nature. For the purpose of these studies, the synthesis of such non-natural aminopolysaccharides was performed by the thermostable α-glucan phosphorylase (from Aquifex aeolicus VF5)-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate (GlcN-1-P), via successive α-glucosaminylations, in ammonia buffer containing Mg(2+) ions, resulting in the production of the α-(1→4)-linked D-glucosamine polymers, corresponding to the structure of the chitosan stereoisomer. Subsequent N-acetylation of the products gave the aminopolysaccharides, corresponding to the chitin stereoisomer. PMID:25766841

  11. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase

    DEFF Research Database (Denmark)

    Chen, Yun; Zhang, Yiming; Siewers, Verena;

    2015-01-01

    Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nucleus, and cannot be directly transported between these compartments. With the acetyl-carnitine or glyoxylate shuttle, acetyl-CoA produced in peroxisomes or the cytoplasm can be transported into the......-fermentative yeast strain. We found that mitochondrial Ach1 can convert acetyl-CoA in this compartment into acetate, which crosses the mitochondrial membrane before being converted into acetyl-CoA in the cytosol. Based on our finding we propose a model in which acetate can be used to exchange acetyl units between...... mitochondria and the cytosol. These results will increase our fundamental understanding of intracellular transport of acetyl units, and also help to develop microbial cell factories for many kinds of acetyl-CoA derived products....

  12. Hair Analysis for Determination of Isoniazid Concentrations and Acetylator Phenotype during Antituberculous Treatment

    Directory of Open Access Journals (Sweden)

    Michael Eisenhut

    2012-01-01

    Full Text Available Background. Analysis of isoniazid (INH uptake has been based on measurement of plasma concentrations providing a short-term and potentially biased view. Objectives. To establish hair analysis as a tool to measure long-term uptake of INH and to assess whether acetylator phenotype in hair reflects N-acetyltransferase-2 (NAT2 genotype. Design and Methods. INH and acetyl-INH concentrations in hair were determined in patients on INH treatment for M. tuberculosis infection using high pressure liquid chromatography/mass spectrometry. Acetyl-INH/INH ratios were correlated with NAT-2 genotype. Results. Hair concentrations of INH, determined in 40 patients, were not dependent on ethnic group or body mass index and were significantly higher in male compared to female patients (median (range 2.37 ng/mg (0.76–4.9 versus 1.11 ng/mg (0.02–7.20 (P=0.02. Acetyl-INH/INH ratios were a median of 15.2% (14.5 to 31.7 in homozygous rapid acetylator NAT-2 genotype and 37.3% (1.73 to 51.2 in the heterozygous rapid acetylator NAT-2 genotype and both significantly higher than in the slow acetylator NAT-2 genotype with 5.8% (0.53 to 14.4 (P<0.05. Conclusions. Results of hair analysis for INH showed lower concentrations in females. Acetyl-INH/INH ratios were significantly lower in patients with slow acetylator versus rapid acetylator genotypes.

  13. Antioxidant activity of N-acetyl-glucosamine based thiazolidine derivative

    Institute of Scientific and Technical Information of China (English)

    Li Chunlei; Yang Yan; Han Baoqin; Liu Wanshun

    2007-01-01

    N-acetyl-glucosamine,the monomer of chitin,was cyclo-condensed with L-cysteine to prepare thiazolidine derivative:2-N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid(GlcNAcCys).The stability of GlcNAcCys was evaluated by high performance liquid chromatography(HPLC)measurement.The results showed that GlcNAcCys Was more stable than other TCA derivatives,especially in alkaline condition.The direct in vitro antioxidative properties of GlcNAcCys were investigated by using UV radiation-induced lipid peroxidation(LPO)in mitochondria and nuclei and.OH-induced LPO in red blood cell (RBC)ghosts models.UV radiation caused dose-dependent LPO in both mitochondria and nuclei,this effect Was catalvzed by addition of Fd2+ while prevented by co-incubation with GlcNAcCys.When nuclei and mitochondria Was treated with 100μl,300μl,500μl of GlcNAcCys and co-incubated at 37℃ for 30min,LPO was decreased to 96%,72%,68%in nuclei and 95%,72%,68% in mitochondria when compared to the UV radiation group respectively.Hydroxyl radicals(.OH)generated by Fenton reaction induced LPO in RBC ghosts.Pretreatment of RBC ghosts with GlcNAcCys could induce antioxidant RBC ghosts and inhibit concentration-dependent malondialdehyde(MDA)formation in antioxidant RBC ghosts.Its inhibition percent Was 14%,35%,36%,42%at 10,20,30,40ms/ml respectively.In a conclusion,the data suggest that GlcNAcCys has antioxidant ability and can significantly inhibit lipid peroxidation in biological samples tested in vitro.

  14. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Heidi A [University of Wisconsin, Madison; Pelletier, Dale A [ORNL; Hurst, Gregory {Greg} B [ORNL; Escalante-Semerena, Jorge C [University of Wisconsin, Madison

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  15. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells

    OpenAIRE

    Kwon, Hye-Sook; Lim, Hyung W; Wu, Jessica; Schnoelzer, Martina; Verdin, Eric; Ott, Melanie

    2012-01-01

    The Foxp3 transcription factor is the master regulator of regulatory T cell (Treg) differentiation and function. Its activity is regulated by reversible acetylation. Using mass spectrometry of immunoprecipitated proteins, we identify three novel acetylation sites in murine Foxp3 (K31, K262, and K267) and the corresponding sites in human FoxP3 proteins. Newly raised modification-specific antibodies against acetylated K31 and K267 confirm acetylation of these residues in murine Tregs. Mutant Fo...

  16. Arabidopsis Acetyl-Amido Synthetase GH3.5 Involvement in Camalexin Biosynthesis through Conjugation of Indole-3-Carboxylic Acid and Cysteine and Upregulation of Camalexin Biosynthesis Genes

    Institute of Scientific and Technical Information of China (English)

    Mu-Yang Wang; Xue-Ting Liu; Ying Chen; Xiao-Jing Xu; Biao Yu; Shu-Qun Zhang; Qun Li; Zu-Hua He

    2012-01-01

    Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana.Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments.Camalexin is formed when indole-3-acetonitrile (IAN)is catalyzed by the cytochrome P450 monooxygenase CYP71A13.Here,we demonstrate that the Arabidopsis GH3.5 protein,a multifunctional acetyl-amido synthetase,is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes.Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection.The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro.In support of the in vitro reaction,feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D.Dihydrocamalexic acid (DHCA),the precursor of camalexin and the substrate for PAD3,was accumulated in gh3.5-1Dlpad3-1,suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis.Furthermore,expression of the major camalexin biosynthesis genes CYP79B2,CYP71A12,CYP71A13 and PAD3 was strongly induced in gh3.5-1D.Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys),and upregulation of the major biosynthetic pathway genes.

  17. Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the Alpha Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Huay-Keng Loke; Xiangshi Tan; Paul A. Lindahl

    2002-06-28

    In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha2beta2 tetrameric 310 kda bifunctional enzyme. ACS catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-CoA from CO (or CO2 in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains 7 metal-sulfur clusters of 4 different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kda beta subunit while the A-cluster, a Ni-X-Fe4S4 cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kda alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire alpha subunit was removed, as long as CO, rather than CO2 and a low-potential reductant, was used as a substrate. Truncating an {approx} 30 kda region from the N-terminus of the alpha subunit yielded a 49 kda protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO binding properties. Further truncation afforded a 23 kda protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe4S4]2+ clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 kda and 82 kda fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multi-centered metalloenzymes and to generate new complex metalloenzymes with interesting properties.

  18. 40 CFR 180.1089 - Poly-N-acetyl-D-glucosamine; exemption from the requirement of tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Poly-N-acetyl-D-glucosamine; exemption... FOOD Exemptions From Tolerances § 180.1089 Poly-N-acetyl-D-glucosamine; exemption from the requirement... biochemical nematicide poly-N-acetyl-D-glucosamine on a variety of agricultural crops....

  19. Dissection of an antibody-catalyzed reaction.

    OpenAIRE

    Stewart, J D; Krebs, J F; Siuzdak, G; Berdis, A J; Smithrud, D B; Benkovic, S J

    1994-01-01

    Antibody 43C9 accelerates the hydrolysis of a p-nitroanilide by a factor of 2.5 x 10(5) over the background rate in addition to catalyzing the hydrolysis of a series of aromatic esters. Since this represents one of the largest rate accelerations achieved with an antibody, we have undertaken a series of studies aimed at uncovering the catalytic mechanism of 43C9. The immunogen, a phosphonamidate, was designed to mimic the geometric and electronic characteristics of the tetrahedral intermediate...

  20. Ligand Intermediates in Metal-Catalyzed Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  1. Chiral Diamine-catalyzed Asymmetric Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Da-zhen; WU Lu-lu; WANG Yong-mei

    2012-01-01

    A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid(TFA) was employed for asymmetric Aldol reaction in i-PrOH at room temperature.A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes,furnishing Aldol products in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.

  2. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether

    OpenAIRE

    Andrews, Ian P.; Kwon, Ohyun

    2008-01-01

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethy...

  3. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2.

    Science.gov (United States)

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R; Metry, Kristin J; Doll, Mark A; States, J Christopher; Pierce, William M; Hein, David W

    2007-07-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). In humans, NAT2*4 allele is associated with rapid acetylator phenotype, whereas NAT2*5B allele is associated with slow acetylator phenotype. We hypothesized that rapid acetylator phenotype predisposes humans to DNA damage and mutagenesis from MeIQx. Nucleotide excision repair-deficient Chinese hamster ovary cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected Chinese hamster ovary cell lines. CYP1A1 activity did not differ significantly (P > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had 20-fold significantly higher levels of sulfamethazine N-acetyltransferase (P = 0.0001) and 6-fold higher levels of N-hydroxy-MeIQx O-acetyltransferase (P = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase mutagenesis following MeIQx treatment. Deoxyguanosine-C8-MeIQx was the primary DNA adduct formed and levels were dose dependent in each cell line and in the following order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 and NAT2*5B < transfected with CYP1A1 and NAT2*4. MeIQx DNA adduct levels were significantly higher (P < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism

  4. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.

    Science.gov (United States)

    Wuyun, Qiqige; Zheng, Wei; Zhang, Yanping; Ruan, Jishou; Hu, Gang

    2016-01-01

    Lysine acetylation is a major post-translational modification. It plays a vital role in numerous essential biological processes, such as gene expression and metabolism, and is related to some human diseases. To fully understand the regulatory mechanism of acetylation, identification of acetylation sites is first and most important. However, experimental identification of protein acetylation sites is often time consuming and expensive. Therefore, the alternative computational methods are necessary. Here, we developed a novel tool, KA-predictor, to predict species-specific lysine acetylation sites based on support vector machine (SVM) classifier. We incorporated different types of features and employed an efficient feature selection on each type to form the final optimal feature set for model learning. And our predictor was highly competitive for the majority of species when compared with other methods. Feature contribution analysis indicated that HSE features, which were firstly introduced for lysine acetylation prediction, significantly improved the predictive performance. Particularly, we constructed a high-accurate structure dataset of H.sapiens from PDB to analyze the structural properties around lysine acetylation sites. Our datasets and a user-friendly local tool of KA-predictor can be freely available at http://sourceforge.net/p/ka-predictor. PMID:27183223

  5. Aberrant histone H4 acetylation in dead somatic cell-cloned calves

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shaohua Wang; Qiang Li; Xiangdong Ding; Yunping Dai; Ning Li

    2008-01-01

    In somatic cell-cloned animals, inefficient epigenetic reprogramming can result in an inappropriate gene expression and histone H4 acetylation is one of the key epigenetic modifications regulating gene expression. In this study, we investigated the levels of histone H4 acetylation of 11 development-related genes and expression levels of 19 genes in lungs of three normal control calves and nine aber-rant somatic cell-cloned calves. The results showed that nine studied genes had decreased acetylation levels in aberrant clones (p 0.05). Whereas 13 genes had significantly decreased expression (p 0.05), and only one gene had higher expression level in clones (p < 0.05). Furthermore, FGFR, GHR, HGFR and IGF1 genes showed lowered levels of both histone H4 acetylation and expression in aberrant clones than in controls, and the level of histone H4 acetylation was even more lowered in aberrant clones than those in controls. It was suggested that the lower levels of histone H4 acetylation in aberrant clones caused by the previous memory of cell differentiation might not support enough chromatin reprogramming, thus affecting appropriate gene expressions, and growth and development of the cloned calves. To our knowledge, this is the first study on how histone H4 acetylation affects gene expression in organs of somatic cell-cloned calves.

  6. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products.

  7. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  8. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.

    Directory of Open Access Journals (Sweden)

    Eri Maria Sol

    Full Text Available Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3 by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases.

  9. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Science.gov (United States)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  10. Biginelli reaction catalyzed by copper nanoparticles.

    Directory of Open Access Journals (Sweden)

    Manika Dewan

    Full Text Available We recently reported a novel synthesis of copper nanoparticles from copper sulphate utilizing the charge-compensatory effect of ionic liquid [bmim]BF(4 and ethylene glycol. The nanoparticles were characterized and found to be stable for one year. Here we hypothesize that the stabilized nanoparticles should be able to catalyze one-pot multicomponent organic reactions. We show that the nanoparticles catalyzed Biginelli reaction at room temperature to give the product 3,4-dihydopyrimidinone (>90% yield in ~15 minutes from aldehydes, β-diketoester (ethylacetoacetate and urea (or thiourea. . Remarkably, such high yields and rapid kinetics was found to be independent of the electronic density on the reactant aryl-aldehyde. This was probably because even the surface-active particles reacted faster in the presence of ionic liquid as compared to conventional methods. The heterocyclic dihydropyrimidinones (DHPMs and their derivatives are widely used in natural and synthetic organic chemistry due to their wide spectrum of biological and therapeutic properties (resulting from their antibacterial, antiviral, antitumor and anti-inflammatory activities. Our method has an easy work-up procedure and the nanoparticles could be recycled with minimal loss of efficiency.

  11. Palladium-Catalyzed Arylation of Fluoroalkylamines

    Science.gov (United States)

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  12. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis

    International Nuclear Information System (INIS)

    Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [3H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication

  13. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    OpenAIRE

    Park, C. Sehwan; Rehrauer, Hubert; Mansuy, Isabelle M.

    2013-01-01

    Background Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. Results Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlates...

  14. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice

    OpenAIRE

    Park, C. Sehwan; Rehrauer, Hubert; Mansuy, Isabelle M.

    2013-01-01

    BACKGROUND: Histone acetylation has been implicated in learning and memory in the brain, however, its function at the level of the genome and at individual genetic loci remains poorly investigated. This study examines a key acetylation mark, histone H4 lysine 5 acetylation (H4K5ac), genome-wide and its role in activity-dependent gene transcription in the adult mouse hippocampus following contextual fear conditioning. RESULTS: Using ChIP-Seq, we identified 23,235 genes in which H4K5ac correlat...

  15. Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs

    OpenAIRE

    Yamagata, Tetsuya; Mitani, Kinuko; Oda, Hideaki; Suzuki, Takahiro; Honda, Hiroaki; Asai, Takashi; Maki, Kazuhiro; Nakamoto, Tetsuya; Hirai, Hisamaru

    2000-01-01

    Acetylation of a transcription factor has recently been shown to play a significant role in gene regulation. Here we show that GATA-3 is acetylated in T cells and that a mutation introduced into amino acids 305–307 (KRR-GATA3) creates local hypoacetylation in GATA-3. Remarkably, KRR-GATA3 possesses the most potent suppressive effect when compared with other mutants that are disrupted in putative acetylation targets. Expressing this mutant in peripheral T cells results in defective T-cell homi...

  16. Manganese Catalyzed C-H Halogenation.

    Science.gov (United States)

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  17. Synthesis and characterization of branched polymers from lipase-catalyzed trimethylolpropane copolymerizations.

    Science.gov (United States)

    Kulshrestha, Ankur S; Gao, Wei; Fu, Hongyong; Gross, Richard A

    2007-06-01

    Lipase-catalyzed terpolymerizations were performed with the monomers trimethylolpropane (B3), 1,8-octanediol (B2), and adipic acid (A2). Polymerizations were performed in bulk, at 70 degrees C, for 42 h, using immobilized lipase B from Candida antartica (Novozyme-435) as a catalyst. To determine the substitution pattern of trimethylolpropane (TMP) in copolymers, model compounds with variable degrees of acetylation were synthesized. Inverse-gated 13C NMR spectra were recorded to first determine the chemical shift positions for mono-, di-, and trisubstituted TMP units and, subsequently, to determine substitution of TMP units along chains. Variation of TMP in the monomer feed gave copolymers with degrees of branching (DB) from 20% to 67%. In one example, a hyperbranched copolyester with 53 mol % TMP adipate units was formed in 80% yield, with Mw 14 100 (relative to polystyrene standards), Mw/Mn 5.3, and DB 36%. Thermal and crystalline properties of the copolyesters were studied by thermogravimetric analysis and differential scanning calorimetry. PMID:17477567

  18. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko;

    2011-01-01

    . With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification...... sites between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated...... that acetylation of ubiquitin-conjugating E2 enzymes was evolutionarily conserved, and mutation of a conserved acetylation site impaired the function of the human E2 enzyme UBE2D3. This systems-level analysis of comparative posttranslational modification showed that acetylation is an anciently...

  19. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    Science.gov (United States)

    Lv, Lei; Li, Dong; Zhao, Di; Lin, Ruiting; Chu, Yajing; Zhang, Heng; Zha, Zhengyu; Liu, Ying; Li, Zi; Xu, Yanping; Wang, Gang; Huang, Yiran; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2016-01-01

    SUMMARY Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA. PMID:21700219

  20. Blends of Poly (lactic acid) with Thermoplastic Acetylated Starch

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kun-yu; RAN Xiang-hai; ZHUANG Yu-gang; YAO Bin; DONG Li-song

    2009-01-01

    Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of T_g by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPS content, the elongation at break and impact strength were increased. The elongation at break increased from 5% of neat PLA to 25% of the blend PLA/ATPS40. It was found that the cold crystallization behavior of PLA changed evidently by addition of ATPS. The cold crystallization temperature(T_(cc)) of each of PLA/ATPS blends was found to shift to a lower temperature and the width of exothermic peak became narrow compared with that of neat PLA. The thermogravimetry analy-sis(TGA) results showed that the peak of derivative weight for ATPS moved to higher temperature with increasing PLA content in PLA/ATPS blends. It can be concluded that PLA could increase the thermal stability of ATPS. The rheological measurement reveals the melt elasticity and viscosity of the blends decreased with the increased concentration of ATPS, which was favorable to the processing properties of PLA.

  1. Reference intervals for acetylated fetal hemoglobin in healthy newborns

    Directory of Open Access Journals (Sweden)

    Renata Paleari

    2014-09-01

    Full Text Available The acetylated fetal hemoglobin (AcHbF derives from an enzyme-mediated post-translational modification occurring on the N-terminal glycine residues of γ-chains. At present, no established data are available on reference intervals for AcHbF in newborns. A total of 92 healthy infants, with gestational age between 37 and 41 weeks were selected for the establishment of AcHbF reference intervals. Blood samples were collected by heel pricking, when collecting routine neonatal screening, and the hemoglobin pattern was analyzed by high-performance liquid chromatography. AcHbF results were then normalized for HbF content in order to account for differences in hemoglobin switch. No difference was found in AcHbF values between genders (P=0.858. AcHbF results were as follow: 12.8±0.8% (mean±standard deviation, reference interval: 11.3-14.3%. This finding could facilitate further studies aimed to assess the possible use of AcHbF, for instance as a possible fetal metabolic biomarker during pregnancy.

  2. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Science.gov (United States)

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G; Zindel, Ofra; Balaban, Carey D; Hoffer, Michael E; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  3. Experimental thermochemical study of 3-acetyl-2-methyl-5-phenylthiophene

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro da Silva, Manuel A.V., E-mail: risilva@fc.up.p [Centro de Investigacao em Quimica, Department of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Santos, Ana Filipa L.O.M. [Centro de Investigacao em Quimica, Department of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2010-01-15

    The standard (p{sup 0}=0.1MPa) massic energy of combustion, in oxygen, of the crystalline 3-acetyl-2-methyl-5-phenylthiophene was measured, at T = 298.15 K, by rotating-bomb combustion calorimetry, from which the standard molar enthalpy of formation, in the condensed phase, was calculated as DELTA{sub f}H{sub m}{sup 0}(cr)=-(104.3+-3.1)kJ.mol{sup -1}. The corresponding standard molar enthalpy of sublimation, at T = 298.15 K, DELTA{sub cr}{sup g}H{sub m}{sup 0}=(108.9+-0.4)kJ.mol{sup -1}, was derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures of this compound, measured by the Knudsen effusion mass-loss technique. From the results presented above, the standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived, DELTA{sub f}H{sub m}{sup 0}(g)=(4.6+-3.1)kJ.mol{sup -1}. This value, in conjunction with the literature values of the experimental enthalpies of formation of thiophene, 2-methylthiophene, and 3-acetylthiophene, was used to predict the enthalpic increment due to the introduction of a phenyl group in the position 2- of the thiophene ring. The calculated increment was compared with the corresponding ones in benzene and pyridine derivatives.

  4. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    Science.gov (United States)

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D.; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  5. Efficacy of N-acetyl cysteine in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Katharine Eakin

    Full Text Available In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting, to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI. For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30-60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.

  6. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change

    International Nuclear Information System (INIS)

    Prothrombin fragment 1 (prothrombin residues 1-156) contains two acetylation sites that are protected from derivatization by calcium. The first site was protected by only calcium while the second site was protected by magnesium as well. To identify this second acetylation site, fragment 1 was first acetylated with unlabeled reagent in the presence of magnesium. Metal ions were removed, and the protein was acetylated with radiolabeled reagent. The incorporated radiolabel was stable over long periods of time and at acidic or basic pH as long as elevated temperatures were avoided. The radiolabel was removed by treatment of the protein at pH 10 and 50 0C or with 0.2 M hydroxylamine at 50 0C for at least 30 min. Proteolytic degradation of the protein showed that the radioactivity appeared in a tryptic peptide corresponding to residues 94-111 of prothrombin. Amino acid sequence analysis revealed that the radiolabel was associated with an unextracted sequence product. The major radiolabeled product contained Asn101-Ser102 along with the expected chitobiose attached to Asn-101. NMR analysis revealed the presence of three acetate groups which would correspond to two from the chitobiose plus the incorporated acetate residue. Mass spectral analysis showed the correct mass for this glycopeptide plus a single added acetyl group. Amide 1H NMR analysis showed only three amide protons rather than the anticipated four. On the basis of these several observations, it is postulated that the site of acetylation is the β-amide nitrogen of Asn-101. Consequently, these studies showed an unusual chemical reactivity in prothrombin fragment 1. They further show that metal ion binding to prothrombin fragment 1 and subsequent protein fluorescence quenching involve sites ion the kringle region of the protein

  7. Synthetic applications of gold-catalyzed ring expansions

    Directory of Open Access Journals (Sweden)

    Cristina Nevado

    2011-06-01

    Full Text Available The development of new methodologies catalyzed by late transition metals involving cycloisomerizations of strained rings can open new venues for the synthesis of structurally complex molecules with interesting biological activities. Herein we summarize, from both a synthetic as well as a mechanistic point of view, the most recent developments in gold-catalyzed ring expansions.

  8. Hydrolysis of toxic natural glucosides catalyzed by cyclodextrin dicyanohydrins

    DEFF Research Database (Denmark)

    Bjerre, J.; Nielsen, Erik Holm Toustrup; Bols, M.

    2008-01-01

    The hydrolysis of toxic 7-hydroxycoumarin glucosides and other aryl and alkyl glucosides, catalyzed by modified a- and ß-cyclodextrin dicyanohydrins, was investigated using different UV, redox, or HPAEC detection assays. The catalyzed reactions all followed Michaelis-Menten kinetics, and an...

  9. The renaissance of palladium(II)-catalyzed oxidation chemistry

    OpenAIRE

    Sigman, Matthew S.; Schultz, Mitchell J.

    2004-01-01

    Palladium(II)-catalyzed oxidations constitute a paramount reaction class but have remained immature over the past few decades. Recently, this field has reappeared at the forefront of organometallic catalysis. This emerging area article outlines recent developments in palladium(II)-catalyzed oxidation chemistry with discussion of potential future growth.

  10. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...

  11. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  12. The percutaneous absorption of 35S-acetyl-L-methionine and L-serine in rabbit

    International Nuclear Information System (INIS)

    The authors had reported that L-cysteine probably was formed from acetyl-L-methionine and L-serine through cystathionine pathway by the skin enzyme of rabbit, and the solution composed of acetyl-L-methionine and L-serine exhibited the effectiveness to the hair growth in rabbit. This report shows that, by the application of 35S-acetyl-L-methionine and L-serine to the skin of rabbit and in vitro analysis of the metabolites of 35S-compounds, 35S-acetyl-L-methionine was absorbed into the hair tissues for many hours, and half 35S-L-cystine was formed in vitro and in vivo. When total amount of 35S in the hair was measured, the radiochemical activities were clearly shown as almost 35S-L-cystine. (auth.)

  13. Acetylation regulates monopolar attachment at multiple levels during meiosis I in fission yeast

    OpenAIRE

    Kagami, Ayano; Sakuno, Takeshi; Yamagishi, Yuya; Ishiguro, Tadashi; Tsukahara, Tatsuya; Shirahige, Katsuhiko; Tanaka, Koichi; Watanabe, Yoshinori

    2011-01-01

    This study shows that multiple acetylations are crucial for establishing and maintaining core centromere cohesion in meiosis. Eso1 establishes it during S phase, whereas Moa1 maintains cohesion after S phase.

  14. Physiology: Kinetics of Acetyl Coenzyme A: Arylamine N-Acetyltransferase from Human Cumulus Cells

    OpenAIRE

    Chang, Chi-Chen; Hsieh, Yao-Yuan; CHUNG, JING-GUNG; Tsai, Horng-Der; Tsai, Chang-Hai

    2001-01-01

    Purpose:N-acetyltransferase (NAT) activity is involved in the detoxification of exogenous amines. We aimed to evaluate the kinetics of acetyl coenzyme A (AcCoA): arylamine NAT for human cumulus cells.

  15. The Synthesis of Some Novel N-[a-(Isoflavone-7-O-)Acetyl ] Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of novel N-[(α)-(isoflavone-7-O-)acetyl] amino acid methyl esters were prepared from the efficient and regioselective alkylation of isoflavones with chloroacetyl amino acid derivatives under mild condition.

  16. Preparation and structural characterization of O-acetyl agarose with low degree of substitution

    Directory of Open Access Journals (Sweden)

    Rosangela B. Garcia

    2000-09-01

    Full Text Available Among the biodegradable polymers, the polysaccharides have been found to be promising carriers for bioactive molecules. From a general standpoint, they present several reactive groups, such as hydroxyl, carboxyl and amine, that can be modified in a number of ways, giving rise to suitable devices for controlled release. In this paper, agarose was submitted to O-acetylation reactions under heterogeneous conditions, using acetic anhydride and pyridine, aiming to observe the effect of acetyl groups on the agarose properties. The products were characterized by Infrared and ¹H NMR spectroscopies. In the range of average acetylation degrees (DA 0.07-0.48, the polymers presented partial solubility in boiling water and in common organic solvents. The ¹H NMR spectra presented evidences of non-homogeneous acetyl group distribution along the chains, as concluded from the solubility of only one of the fractions with DA<0.09, in boiling water .

  17. Data for global lysine-acetylation analysis in rice (Oryza sativa).

    Science.gov (United States)

    Xiong, Yehui; Zhang, Kai; Cheng, Zhongyi; Wang, Guo-Liang; Liu, Wende

    2016-06-01

    Rice is one of the most important crops for human consumption and is a staple food for over half of the world׳s population (Yu et al., 2002) [1]. A systematic identification of the lysine acetylome was performed by our research (Xiong et al., 2016) [2]. Rice plant samples were collected from 5 weeks old seedlings (Oryza sativa, Nipponbare). After the trypsin digestion and immunoaffinity precipitation, LC-MS/MS approach was used to identify acetylated peptides. After the collected MS/MS data procession and GO annotation, the InterProScan was used to annotate protein domain. Subcellular localization of the identified acetylated proteins was predicted by WoLF PSORT. The KEGG pathway database was used to annotate identified acetylated protein interactions, reactions, and relations. The data, supplied in this article, are related to "A comprehensive catalog of the lysine-acetylation targets in rice (O. sativa) based on proteomic analyses" by Xiong et al. (2016) [2]. PMID:26977447

  18. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors

    OpenAIRE

    Subramanian, Chitra; Opipari, Anthony W.; Bian, Xin; Castle, Valerie P; Kwok, Roland P S

    2005-01-01

    Histone deacetylase inhibitors (HDACIs) are therapeutic drugs that inhibit deacetylase activity, thereby increasing acetylation of many proteins, including histones. HDACIs have antineoplastic effects in preclinical and clinical trials and are being considered for cancers with unmet therapeutic need, including neuroblastoma (NB). Uncertainty of how HDACI-induced protein acetylation leads to cell death, however, makes it difficult to determine which tumors are likely to be responsive to these ...

  19. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl

    Directory of Open Access Journals (Sweden)

    Pandita Tej K

    2011-07-01

    Full Text Available Abstract Background The proto-oncogene, c-Abl encodes a ubiquitously expressed tyrosine kinase that critically governs the cell death response induced by genotoxic agents such as ionizing radiation and cisplatin. The catalytic function of Abl, which is essential for executing DNA damage response (DDR, is normally tightly regulated but upregulated several folds upon IR exposure due to ATM-mediated phosphorylation on S465. However, the mechanism/s leading to activation of Abl's apoptotic activity is currently unknown. Results We investigated the role of acetyl modification in regulating apoptotic activity of Abl and the results showed that DNA strand break-inducing agents, ionizing radiation and bleomycin induced Abl acetylation. Using mass spectrophotometry and site-specific acetyl antibody, we identified Abl K921, located in the DNA binding domain, and conforming to one of the lysine residue in the consensus acetylation motif (KXXK--X3-5--SGS is acetylated following DNA damage. We further observed that the S465 phosphorylated Abl is acetyl modified during DNA damage. Signifying the modification, cells expressing the non acetylatable K921R mutant displayed attenuated apoptosis compared to wild-type in response to IR or bleomycin treatment. WT-Abl induced apoptosis irrespective of new protein synthesis. Furthermore, upon γ-irradiation K921R-Abl displayed reduced chromatin binding compared to wild type. Finally, loss of Abl K921 acetylation in Tip60-knocked down cells and co-precipitation of Abl with Tip60 in DNA damaged cells identified Tip60 as an Abl acetylase. Conclusion Collective data showed that DNA damage-induced K921 Abl acetylation, mediated by Tip60, stimulates transcriptional-independent apoptotic activity and chromatin-associative property thereby defining a new regulatory mechanism governing Abl's DDR function.

  20. Physical and Functional HAT/HDAC Interplay Regulates Protein Acetylation Balance

    OpenAIRE

    Alessia Peserico; Cristiano Simone

    2011-01-01

    The balance between protein acetylation and deacetylation controls several physiological and pathological cellular processes, and the enzymes involved in the maintenance of this equilibrium—acetyltransferases (HATs) and deacetylases (HDACs)—have been widely studied. Presently, the evidences obtained in this field suggest that the dynamic acetylation equilibrium is mostly maintained through the physical and functional interplay between HAT and HDAC activities. This model overcomes the classica...

  1. Identification and characterization of genes involved in Arabidopsis thaliana cell wall acetylation

    OpenAIRE

    de Souza, Amancio Jose

    2014-01-01

    Most non-cellulosic plant cell wall polysaccharides including the hemicellulose xyloglucan and the pectic polysaccharides can be O-acetylated. This feature has direct significance in the use of these polymers in the food and biofuel industry. For example, increased pectin acetylation can reduce its gelling abilities and is hence detrimental in its application as a food thickener or emulsifier. In general, plant biomass with wall polymers with high acetate content can negatively influence biom...

  2. Acetyl salicylic acid augments functional recovery following sciatic nerve crush in mice

    OpenAIRE

    Gunale Bhagawat K; Prasanna C G; Subbanna Prasanna; Tyagi Manoj G

    2007-01-01

    Abstract Cyclin-dependent kinase 5 (CDK-5) appears to play a significant role in peripheral nerve regeneration as CDK-5 inhibition retards nerve regeneration following nerve crush. Anti-inflammatory drug acetyl salicylic acid elevates CDK-5 and reduces ischemia – reperfusion injury in cultured neurons. In this study we have evaluated the effect of acetyl salicylic acid on functional recovery following sciatic nerve crush in mice. Eighteen Swiss albino mice underwent unilateral sciatic nerve c...

  3. Mapping dynamic histone acetylation patterns to gene expression in nanog-depleted murine embryonic stem cells.

    Science.gov (United States)

    Markowetz, Florian; Mulder, Klaas W; Airoldi, Edoardo M; Lemischka, Ihor R; Troyanskaya, Olga G

    2010-01-01

    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate. PMID:21187909

  4. Hair Analysis for Determination of Isoniazid Concentrations and Acetylator Phenotype during Antituberculous Treatment

    OpenAIRE

    Michael Eisenhut; Detlef Thieme; Dagmar Schmid; Sybille Fieseler; Hans Sachs

    2012-01-01

    Background. Analysis of isoniazid (INH) uptake has been based on measurement of plasma concentrations providing a short-term and potentially biased view. Objectives. To establish hair analysis as a tool to measure long-term uptake of INH and to assess whether acetylator phenotype in hair reflects N-acetyltransferase-2 (NAT2) genotype. Design and Methods. INH and acetyl-INH concentrations in hair were determined in patients on INH treatment for M. tuberculosis infection using high pressure liq...

  5. Micronutrients, N-acetyl cysteine, probiotics and prebiotics, a review of effectiveness in reducing HIV progression

    OpenAIRE

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics...

  6. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    OpenAIRE

    Ruben Hummelen; Jaimie Hemsworth; Gregor Reid

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebio...

  7. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, A Review of Effectiveness in Reducing HIV Progression

    OpenAIRE

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics...

  8. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  9. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition

    OpenAIRE

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.

    2012-01-01

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of ga...

  10. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.

    Science.gov (United States)

    Salminen, Antero; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks

  11. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Podbielska, Maria; Dasgupta, Somsankar; Levery, Steven B;

    2010-01-01

    Fast migrating cerebrosides (FMC) are derivatives of galactosylceramide (GalCer). The structures of the most hydrophobic FMC-5, FMC-6, and FMC-7 were determined by electrospray ionization linear ion-trap mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy complementing previous......GL-II from Mycoplasma fermentans. The cross-reactivity of highly acetylated GalCer with microbial acyl-glycolipid raises the possibility that myelin-O-acetyl-cerebrosides, bacterial infection, and neurological disease are linked....

  12. Catalyzed deuterium fueled tandem mirror reactor assessment

    International Nuclear Information System (INIS)

    This study was part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corp. The purpose of this portion of the study is to perform an assessment of a conceptual tandem mirror reactor (TMR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to the physics, technology, safety, and cost. Achievable stable betas and magnet configurations are found to be comparable for the Cat-d and d-t fueled TMR. A comparison with respect to cost, reactor performance, and technology requirements for a Cat-d fueled reactor and a comparable d-t fueled reactor such as MARS is also made

  13. Transition Metal Catalyzed Synthesis of Aryl Sulfides

    Directory of Open Access Journals (Sweden)

    Chad C. Eichman

    2011-01-01

    Full Text Available The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.

  14. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec.1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  15. Thioglycoside hydrolysis catalyzed by β-glucosidase

    International Nuclear Information System (INIS)

    Sweet almond β-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the Km values for the S- and O-glycosides are similar, the kcat values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for kcat/Km for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pKa 4.5) and a protonated group (pKa 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active β-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG

  16. Gallium-Catalyzed Silicon Oxide Nanowire Growth

    Institute of Scientific and Technical Information of China (English)

    Zheng Wei Pan; Sheng Dai; Douglas H.Lowndes

    2005-01-01

    Silicon oxide nanowires tend to assemble into various complex morphologies through a metalcatalyzed vapor-liquid-solid (VLS) growth process. This article summarizes our recent efforts in the controlled growth of silicon oxide nanowire assemblies by using molten gallium as the catalyst and silicon wafer,SiO powder, or silane (SiH4) as the silicon sources. Silicon oxide nanowire assemblies with morphologies of carrotlike, cometlike, gourdlike, spindlelike, badmintonlike, sandwichlike, etc. were obtained. Although the morphologies of the nanowire assemblies are temperature- and silicon source-dependent, they share similar structural and compositional features: all the assemblies contain a microscale spherical liquid Ga ball and a highly aligned, closely packed amorphous silicon oxide nanowire bunch. The Ga-catalyzed silicon oxide nanowire growth reveals several interesting new nanowire growth phenomena that expand our knowledge of the conventional VLS nanowire growth mechanism.

  17. Direct conversion of muon catalyzed fusion energy

    International Nuclear Information System (INIS)

    In this paper a method of direct conversion of muon catalyzed fusion (MCF) energy is proposed in order to reduce the cost of muon production. This MCF concept is based on a pellet composed of many thin solid deuterium-tritium (DT) rods encircled by a metallic circuit immersed in a magnetic field. The direct energy conversion is the result of the heating of the pellet by beam injection and fusion alphas. The expanding DT rods causes the change of magnetic flux linked by the circuit. Our calculation shows that the direct conversion method reduces the cost of one muon by a factor of approximately 2.5 over the previous methods. The present method is compatible with a reactor using the pellet concept, where the muon sticking is reduced by the ion cyclotron resonance heating and the confinement of the exploding pellet is handled by magnetic fields and the coronal plasma. 17 refs., 6 figs

  18. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a...... properties to the widely discussed gold catalysts. Literature results were summarized for alcohol oxidation, epoxidation, amine oxidation, phenol hydroxylation, silane and sulfide oxidation, (side-chain) oxidation of alkyl aromatic compounds, hydroquinone oxidation and cyclohexane oxidation. It was found...

  19. Enzyme-catalyzed degradation of carbon nanomaterials

    Science.gov (United States)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer

  20. Synthesis of O-[11C]acetyl CoA, O-[11C]acetyl-L-carnitine, and L-[11C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    International Nuclear Information System (INIS)

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with 11C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-11C]acetyl CoA and O-[2-11C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-11C]acetyl-L-carnitine and O-[2-11C]acetyl-L-carnitine in 70-80% yield, based on [1-11C]acetate or [2-11C]acetate, respectively. By an N-methylation reaction with [11C]methyl iodide, L-[methyl-11C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-11C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [11C]methyl iodide. Initial data of the kinetics of the different 11C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented

  1. Synthesis of O-[{sup 11}C]acetyl CoA, O-[{sup 11}C]acetyl-L-carnitine, and L-[{sup 11}C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-07-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with {sup 11}C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-{sup 11}C]acetyl CoA and O-[2-{sup 11}C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-{sup 11}C]acetyl-L-carnitine and O-[2-{sup 11}C]acetyl-L-carnitine in 70-80% yield, based on [1-{sup 11}C]acetate or [2-{sup 11}C]acetate, respectively. By an N-methylation reaction with [{sup 11}C]methyl iodide, L-[methyl-{sup 11}C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-{sup 11}C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [{sup 11}C]methyl iodide. Initial data of the kinetics of the different {sup 11}C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented.

  2. Application of the MIDAS approach for analysis of lysine acetylation sites.

    Science.gov (United States)

    Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M

    2013-01-01

    Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation. PMID:23381851

  3. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  4. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Directory of Open Access Journals (Sweden)

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  5. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    International Nuclear Information System (INIS)

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets

  6. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    Directory of Open Access Journals (Sweden)

    Todd J Cohen

    Full Text Available Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD. Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  7. Histone H3 globular domain acetylation identifies a new class of enhancers.

    Science.gov (United States)

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-06-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered. PMID:27089178

  8. The effect of N-acetyl cysteine on laryngopharyngeal reflux.

    Directory of Open Access Journals (Sweden)

    Payman Dabirmoghaddam

    2013-11-01

    Full Text Available Laryngopharyngeal reflux (LPR is a variant of gastroesophageal reflux disease (GERD in which the stomach contents go up into the pharynx and then down into the larynx. LPR causes a wide spectrum of manifestations mainly related to the upper and the lower respiratory system such as laryngitis, asthma, chronic obstructive pulmonary disease, cough, hoarseness, postnasal drip disease, sinusitis, otitis media, recurrent pneumonia, laryngeal cancer and etc. The object of this study was to examine the effect of N-acetyl Cysteine (NAC with and without Omeprazole on laryngitis and LPR. Ninety patients with laryngitis or its symptoms were referred and randomly assigned into three groups. The first group was treated by Omeprazole and NAC. The second group was treated by Omeprazole and placebo and the last group was treated by NAC and placebo. Duration of treatment was 3 months and all patients were evaluated at the beginning of study, one month and three month after treatment of sign and symptoms, based on reflux symptom index (RSI and reflex finding score (RFS. Based on the results of this study, despite therapeutic efficacy of all treatment protocols, the RSI before and after 3 months treatment had significant difference in (NAS+ Omeprazole and (Omeprazole+ placebo group (P<0.001 in the first group, P<0.001 in the second group and P=0.35 in the third group. Whereas RFS before and after 3 month treatment had significant difference in all groups. (P<0.001 in each group in comparison with itself but this results had not significant difference after 1 month treatment. Our results showed that the combination therapy with Omeprazole and NAC treatment had the most effect on both subjective and objective questionnaire at least after 3 months treatment. Based on the results of the present study, it seems that the use objective tools are more accurate than subjective tools in evaluation of therapeutic effects in patients with GERD-related laryngitis.

  9. Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water

    Directory of Open Access Journals (Sweden)

    Charles A. Eckert

    2010-11-01

    Full Text Available The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity.  We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation.  Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO2, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO2 pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA to 2-phenylethanol (2PE. Another tunable solvent is nearcritical water (NCW, whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.

  10. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Cordonier, Elizabeth L; Jarecke, Sarah K; Hollinger, Frances E; Zempleni, Janos

    2016-06-01

    Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation. PMID:27041646

  11. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    Science.gov (United States)

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  12. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  13. Catalytic and glycan-binding abilities of ppGalNAc-T2 are regulated by acetylation

    DEFF Research Database (Denmark)

    Zlocowski, Natacha; Sendra, Victor G; Lorenz, Virginia; Villarreal, Marcos A; Jorge, Alberto; Núñez, Yolanda; Bennett, Eric P; Clausen, Henrik; Nores, Gustavo A; Irazoqui, Fernando J

    2011-01-01

    ); the first five are located in the catalytic domain. Specific glycosyltransferase activity of ppGalNAc-T2 was reduced 95% by acetylation. The last two amino acids, K521 and S529, are located in the lectin domain, and their acetylation results in alteration of the carbohydrate-binding ability of pp...... activity (catalytic capacity and glycan-binding ability) of ppGalNAc-T2 is regulated by acetylation....

  14. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  15. Horseradish peroxidase catalyzed hydroxylations: mechanistic studies.

    Science.gov (United States)

    Dordick, J S; Klibanov, A M; Marletta, M A

    1986-05-20

    The hydroxylation of phenol to hydroquinone and catechol in the presence of dihydroxyfumaric acid and oxygen catalyzed by horseradish peroxidase was studied under conditions where the product yield was high and the side reactions were minimal. The reaction is partially uncoupled with a molar ratio of dihydroxyfumaric acid consumed to hydroxylated products of 12:1. Hydrogen peroxide does not participate in the reaction as evidenced by the lack of effect of catalase and by the direct addition of hydrogen peroxide. Conversely, superoxide and hydroxyl radicals are involved as their scavengers are potent inhibitors. Experiments were all consistent with the involvement of compound III (oxygenated ferrous complex) of peroxidase in the reaction. Compound III is stable in the presence of phenol alone but decomposes rapidly in the presence of both phenol and dihydroxyfumaric acid with the concomitant formation of product. Therefore, phenol and dihydroxyfumaric acid must be present with compound III in order for the hydroxylation reaction to occur. A mechanism consistent with the experimental results is proposed. PMID:3718931

  16. Stereoselective Palladium Catalyzed Cyclizations of Enediyne Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang Ho; Rhim, Chul Yun; Jung, Hyung Hoon; Jung, Seung Hyun [Hanyang University, Seoul (Korea, Republic of)

    1999-06-15

    Hydropalladium carboxylates, formed from {pi}-allylpalladium chloride dimer plus carboxylic acids, have been shown to catalyze cyclization of structurally diverse enediynes to form the corresponding six- or five-membered rings depending upon the reaction conditions. Some enediynes having an oxygen linker in an appropriate position under the similar condition yielded the corresponding cyclopropanation products in highly stereoselective manner. A study using deuterated formic acid has proven that the alkylpalladium intermediates formed in our conditions were reduced by the pendant formate ligand. The dienediyne 10 yielded only the tricyclic product 12 in 67% yield, although it was expected to form the cyclic product 11. All these cyclizations seemed to occur via the corresponding alkylpalladium intermediates I, which could proceed to the corresponding cyclic products depending on the reaction conditions and the substrates. The study using deuterated formic acid could provide an important information to understand the present cyclization mechanism. Overall the present study could play an important role in developing new synthetic methodologies for constructing complex polycyclic compounds

  17. N-Acetylation of L-aspartate in the nervous system: differential distribution of a specific enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Truckenmiller, M.E.; Namboodiri, M.A.; Brownstein, M.J.; Neale, J.H.

    1985-11-01

    L-Aspartate N-acetyltransferase, a nervous system enzyme that mediates the synthesis of N-acetyl-L-aspartic acid, has been characterized. In the presence of acetyl-CoA, L-aspartate was acetylated 10-fold more efficiently than L-glutamate, and the acetylation of aspartylglutamate was not detectable. Within the nervous system, a 10-fold variation in the enzyme activity was observed, with the brainstem and spinal cord exhibiting the highest activity and retina the lowest detectable activity. No enzyme activity was detected in pituitary, heart, liver, or kidney. The enzyme activity was found to be membrane-associated and was solubilized by treatment with Triton X-100.

  18. Lipase catalyzed synthesis of epoxy-fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  19. Functioned Calix[4]arenes as Artificial Enzymes Catalyze Aldol Condensation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aldolase models derived from calix[4]arene were designed and synthesized. The aldol condensation of p-nitrobenzaldehyde with acetone was catalyzed by the synthetic enzymes proceeded under mild conditions to offer chiefly aldol-type product in good yield.

  20. Amino Acids Catalyzed Direct Aldol Reactions in Aqueous Micelles

    Institute of Scientific and Technical Information of China (English)

    PENG Yi-Yuan; WANG Qi; DING Qiu-Ping; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ Since the discovery of its roles as a good small-organic-molecule catalyst in intramolecular aldol reactions, pro line has drawn considerable attention in synthetic chemistry due to its similarity to the type-Ⅰ aldolases. Recently,List and others have reported some new direct asymmetric intermolecular reactions catalyzed by proline, including aldol, Mannich, Michael, and other analogous reactions. Except for two recent examples, [1,2] proline catalyzed aldol reactions in aqueous micelles have not been reported, nor have other amino acids as organocatalysts in directly catalyzing aldol reaction been reported. Herein we wish to present our recent results regarding environmentally be nign direct aldol reactions catalyzed by amino acids including proline, histidine and arginine in aqueous media.

  1. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  2. Heterocycles via intramolecular platinum-catalyzed propargylic substitution

    OpenAIRE

    Liang, Qiren; De Brabander, Jef K

    2011-01-01

    We report a Pt(II)-catalyzed cyclization of nucleophile-tethered propargylic acetates yielding substituted heterocycles containing multiple heteroatoms including morpholines, dioxanes and sulfamates with high cis-selectivity.

  3. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties - clinical study

    Directory of Open Access Journals (Sweden)

    Kassandra Azevedo Tadini

    2015-12-01

    Full Text Available abstract Acetyl hexapeptide-3 has been used in anti-aging topical formulations aimed at improving skin appearance. However, few basic studies address its effects on epidermis and dermis, when vehiculated in topical formulations. Thus, the objective of this study was to determine the clinical efficacy of acetyl hexapeptide-3 using biophysical techniques. For this purpose, formulations with and without acetyl hexapeptide-3 were applied to the ventral forearm and the face area of forty female volunteers. Skin conditions were evaluated after 2 and 4-week long daily applications, by analyzing the stratum corneum water content and the skin mechanical properties, using three instruments, the Corneometer(r CM 825, CutometerSEM 575 and ReviscometerRV600. All formulations tested increased the stratum corneum water content in the face region, which remained constant until the end of the study. In contrast, only formulations containing acetyl hexapeptide-3 exhibit a significant effect on mechanical properties, by decreasing the anisotropy of the face skin. No significant effects were observed in viscoelasticity parameters. In conclusion, the effects of acetyl hexapeptide-3 on the anisotropy of face skin characterize the compound as an effective ingredient for improving conditions of the cutaneous tissue, when used in anti-aging cosmetic formulations.

  4. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  5. Effect of (L-Carnitine) on acetyl-L-carnitine production by heart mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bieber, L.L.; Lilly, K.; Lysiak, W.

    1986-05-01

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of /sup 14/CO/sub 2/ from 2-/sup 14/C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. /sup 14/CO/sub 2/ production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase.

  6. NUCLEOPHOSMIN/B23 NEGATIVELY REGULATES GCN5-DEPENDENT HISTONE ACETYLATION AND TRANSACTIVATION

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yonglong [ORNL; Wu, Jun [ORNL; Giannone, Richard J [ORNL; Boucher, Lorrie [Samuel Lunenfeld Res Inst., Canada; Du, Hansen [National Institute on Aging, Baltimore; Huang, Ying [ORNL; Johnson, Dabney K [ORNL; Liu, Yie [National Institute on Aging, Baltimore; Wang, Yisong [ORNL

    2007-01-01

    Nucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. In vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated. Mitotic B23 exhibited higher inhibitory activity on GCN5-mediated histone acetylation than interphase B23. Immunodepletion experiments of mitotic extracts revealed that phosphorylation of B23 at Thr199 enhanced the inhibition of GCN5-mediated histone acetylation. Moreover, luciferase reporter and microarray analyses suggested that B23 attenuated GCN5-mediated transactivation in vivo. Taken together, our studies suggest a molecular mechanism of B23 in the mitotic inhibition of GCN5-mediated histone acetylation and transactivation.

  7. Acetylation of C/EBPε is a prerequisite for terminal neutrophil differentiation.

    Science.gov (United States)

    Bartels, Marije; Govers, Anita M; Fleskens, Veerle; Lourenço, Ana Rita; Pals, Cornelieke E; Vervoort, Stephin J; van Gent, Rogier; Brenkman, Arjan B; Bierings, Marc B; Ackerman, Steven J; van Loosdregt, Jorg; Coffer, Paul J

    2015-03-12

    C/EBPε, a member of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, is exclusively expressed in myeloid cells and regulates transition from the promyelocytic stage to the myelocytic stage of neutrophil development, being indispensable for secondary and tertiary granule formation. Knowledge concerning the functional role of C/EBPε posttranslational modifications is limited to studies concerning phosphorylation and sumoylation. In the current study, using ectopic expression and ex vivo differentiation of CD34(+) hematopoietic progenitor cells, we demonstrate that C/EBPε is acetylated, which was confirmed by mass spectrometry analysis, identifying 4 acetylated lysines in 3 distinct functional domains. Regulation of C/EBPε acetylation levels by the p300 acetyltransferase and the sirtuin 1 deacetylase controls transcriptional activity, which can at least in part be explained by modulation of DNA binding. During neutrophil development, acetylation of lysines 121 and 198 were found to be crucial for terminal neutrophil differentiation and the expression of neutrophil-specific granule proteins, including lactoferrin and collagenase. Taken together, our data illustrate a critical role for acetylation in the functional regulation of C/EBPε activity during terminal neutrophil development. PMID:25568349

  8. Characterization of acetylation of Saccharomyces cerevisiae H2B by mass spectrometry

    Science.gov (United States)

    Zhang, Kangling

    2008-11-01

    Following the identification of histone H3 modifications in Saccharomyces cerevisiae [K. Zhang, Int. J. Mass Spectrom. 269 (2008) 101-111], here, we report a detailed characterization of post-translational modifications by LC/MS/MS analysis of tryptic and Glu-C digests of H2B proteins isolated from S. cerevisiae. We show that both H2B.1 and H2B.2 are acetylated at K6, K11, K16, K21 and K22 while H2B.2 has an additional acetylation site at K3. All the acetylation sites of yeast H2B except K3 of H2B.2 are located at the same positions on aligned protein sequences of Arabidopsis H2B variants that were reported previously to be acetylated at K6, K11, K27, K32, K38 and K39. A unique acetylation motif AEK is observed in the H2B variants of these two species, indicating a plant/yeast H2B specific acetyltransferase may exist.

  9. Boric acid-dependent decrease in regulatory histone H3 acetylation is not mutagenic in yeast.

    Science.gov (United States)

    Pointer, Benjamin R; Schmidt, Martin

    2016-07-01

    Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations. The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast. PMID:27190149

  10. Effect of [L-Carnitine] on acetyl-L-carnitine production by heart mitochondria

    International Nuclear Information System (INIS)

    The authors recently reported a large efflux of acetyl-L-carnitine from rat heart mitochondria during state 3 respiration with pyruvate as substrate both in the presence and absence of malate. In this series of experiments, the effect of the concentration of L-carnitine on the efflux of acetyl-L-carnitine and on the production of 14CO2 from 2-14C-pyruvate was determined. Maximum acetylcarnitine production (approximately 25 n moles/min/mg protein) was obtained at 3-5 mM L-carnitine in the absence of added malate. 14CO2 production decreased as the concentration of L-carnitine increased; it plateaued at 3-5 mM L-carnitine. These data indicate carnitine can stimulate flux of pyruvate through pyruvate dehydrogenase and can reduce flux of acetyl CoA through the Krebs cycle by acting as an acceptor of the acetyl moieties of acetyl CoA generated by pyruvate dehydrogenase

  11. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho Carneiro, Vitor; Moraes Maciel, Renata de; Caetano de Abreu da Silva, Isabel; Furtado Madeira da Costa, Rodrigo [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Neto Paiva, Claudia; Torres Bozza, Marcelo [Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil); Rosado Fantappie, Marcelo, E-mail: fantappie@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, Rio de Janeiro 21941-590 (Brazil)

    2009-12-25

    Schistosoma mansoni HMGB1 (SmHMGB1) was revealed to be a substrate for the parasite histone acetyltransferases SmGCN5 and SmCBP1. We found that full-length SmHMGB1, as well as its HMG-box B (but not HMG-box A) were acetylated in vitro by SmGCN5 and SmCBP1. However, SmCBP1 was able to acetylate both substrates more efficiently than SmGCN5. Interestingly, the removal of the C-terminal acidic tail of SmHMGB1 (SmHMGB1{Delta}C) resulted in increased acetylation of the protein. We showed by mammalian cell transfection assays that SmHMGB1 and SmHMGB1{Delta}C were transported from the nucleus to the cytoplasm after sodium butyrate (NaB) treatment. Importantly, after NaB treatment, SmHMGB1 was also present outside the cell. Together, our data suggest that acetylation of SmHMGB1 plays a role in cellular trafficking, culminating with its secretion to the extracellular milieu. The possible role of SmHMGB1 acetylation in the pathogenesis of schistosomiasis is discussed.

  12. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Science.gov (United States)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  13. Proteomic analysis reveals differentially regulated protein acetylation in human amyotrophic lateral sclerosis spinal cord.

    Directory of Open Access Journals (Sweden)

    Dong Liu

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive fatal neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Histone deacetylase (HDAC inhibitors have neuroprotective effects potentially useful for the treatment of neurodegenerative diseases including ALS; however, the molecular mechanisms underlying their potential efficacy is not well understood. Here we report that protein acetylation in urea-soluble proteins is differently regulated in post-mortem ALS spinal cord. Two-dimensional electrophoresis (2-DE analysis reveals several protein clusters with similar molecular weight but different charge status. Liquid chromatography and tandem mass spectrometry (LC-MS/MS identifies glial fibrillary acidic protein (GFAP as the dominant component in the protein clusters. Further analysis indicates six heavily acetylated lysine residues at positions 89, 153, 189, 218, 259 and 331 of GFAP. Immunoprecipitation followed by Western blotting confirms that the larger form of GFAP fragments are acetylated and upregulated in ALS spinal cord. Further studies demonstrate that acetylation of the proteins additional to GFAP is differently regulated, suggesting that acetylation and/or deacetylation play an important role in pathogenesis of ALS.

  14. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  15. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.

    Directory of Open Access Journals (Sweden)

    Jachen A Solinger

    2010-01-01

    Full Text Available Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3 and in a scaffold subunit (Elp1 have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.

  16. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones

    Science.gov (United States)

    Subramanian, M.; Vanangamudi, G.; Thirunarayanan, G.

    2013-06-01

    A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm-1) of CO s-cis and s-trans, CH in-plane and out of plane, CHdbnd CH out of plane, lbond2 Cdbnd Crbond2 out of plane modes, NMR chemical shifts δ(ppm) of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied.

  17. Muon-catalyzed fusion-an energy production perspective

    International Nuclear Information System (INIS)

    The nuclear fission reaction can be catalyzed in a suitable fusion fuel by muons, which can temporarily form very tightly bound mu-molecules. Muons can be produced by the decay of negative pions, which, in turn, have been produced by an accelerated beam of light ions impinging on a target. Muon-catalyzed fusion is appropriately called cold fusion because the nuclear fusion also occurs at room temperature. For practical fusion energy generation, it appears to be necessary to have a fuel mixture of deuterium and tritium at about liquid density and at a temperature of the order of 1000 K. The current status of muon-catalyzed fusion is limited to demonstrations of scientific breakeven by showing that it is possible to sustain an energy balance between muon production and catalyzed fusion. Conceptually, a muon-catalyzed fusion reactor is seen to be an energy amplifier that increases by fusion reactions that energy invested in nuclear pion-muon beams. The physical quantity that determines this balance is Xμ, the number of fusion reactions each muon can catalyze before it is lost. Showing the feasibility of useful power production is equivalent to showing that Xμ can exceed a sufficiently large number, which is estimated to be ∼104 if standard technology is used or ∼103 if more advanced physics and technology can be developed. Since a muon can be produced with current technology for an expenditure of ∼5000 MeV and 17.6 MeV is produced per fusion event, it follows that Xμ ∼ 250 would be a significant demonstration of scientific breakeven. Therefore, the energy cost of producing muons must be reduced substantially before muon-catalyzed fusion reactors could seriously be considered. The physics of muon-catalyzed fusion is summarized and discussed. Muon catalysis is surveyed for the following systems: proton-deuteron, deuteron-deuteron, deuteron-triton, and non-hydrogen elements. 95 refs., 6 figs., 4 tabs

  18. Regioselective alcoholysis of silychristin acetates catalyzed by lipases

    Czech Academy of Sciences Publication Activity Database

    Vavříková, Eva; Gavezzotti, P.; Purchartová, Kateřina; Fuksová, Kateřina; Biedermann, David; Kuzma, Marek; Riva, S.; Křen, Vladimír

    2015-01-01

    Roč. 16, č. 6 (2015), s. 11983-11995. E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GA15-03037S; GA MŠk(CZ) LD14096; GA MŠk LH13097 Institutional support: RVO:61388971 Keywords : acetylation * alcoholysis * lipase Subject RIV: CC - Organic Chemistry Impact factor: 2.862, year: 2014

  19. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.

    Science.gov (United States)

    Gerhardt, Edileusa C M; Rodrigues, Thiago E; Müller-Santos, Marcelo; Pedrosa, Fabio O; Souza, Emanuel M; Forchhammer, Karl; Huergo, Luciano F

    2015-03-01

    Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate-limiting step in fatty acid biosynthesis is catalyzed by a multi-subunit form of the acetyl-CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl-CoA to produce malonyl-CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC-BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC-BCCP-GlnB interaction and ACC inhibition were relieved by 2-oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2-oxoglutarate-sensitive dissociable regulatory subunit of ACC in Bacteria. PMID:25557370

  20. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    Science.gov (United States)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and

  1. The chromosomal protein HMGBI inhibits DNA replication in vitro. The role of post-synthetic acetylation

    International Nuclear Information System (INIS)

    The effect of HMGB1 protein on the replication of closed circular plasmid DNA in cell free extract have been studied using parental form of the protein, post-synthetically acetylated HMGB1 and HMGB1 lacking its acidic C-terminal tail. We have shown that HMGB1 protein inhibits DNA replication and that this effect is eliminated upon either acetylation of the protein or removal of the acidic C-terminal domain. An explanation of these findings suggests interactions of HMGB1 with a protein(s) of the replication complex resulting in reduction of its functional efficiency. Acetylation of HMGB1 affects these interactions in a way that restores the initial replication capacity of the system. The eventual protein-protein interactions are supposed to proceed via the C-terminal domain of HMGB1. (authors)

  2. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Gabriella M A Forte

    2011-05-01

    Full Text Available Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.

  3. Preparation of Acetylated Guar Gum – Unsaturated Polyester Composites & Effect of Water on Their Properties

    Directory of Open Access Journals (Sweden)

    David D’Melo

    2012-07-01

    Full Text Available Guar gum has seen extensive use in blends, however, its application as a filler in thermoset composites has as yet not been investigated. The effect of the addition of guar gum and its acetyl derivatives on the kinetics of water diffusion in unsaturated polyester composites was studied. The effect of water on the mechanical properties of the composites was studied with respect to the nature of filler, filler concentration and time of immersion. All the mechanical properties were observed to decrease on exposure to water. Further, it was observed that acetylated guar gum, with a degree of substitution of 0.21, showed the best mechanical properties, surpassing the other filled composites and that of the pure unsaturated polyester. Thus, acetylated guar gum showed promise as eco-friendly filler in composite formulation.

  4. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics.

    Science.gov (United States)

    Kaypee, Stephanie; Sudarshan, Deepthi; Shanmugam, Muthu K; Mukherjee, Debanjan; Sethi, Gautam; Kundu, Tapas K

    2016-06-01

    The 'language' of covalent histone modifications translates environmental and cellular cues into gene expression. This vast array of post-translational modifications on histones are more than just covalent moieties added onto a protein, as they also form a platform on which crucial cellular signals are relayed. The reversible lysine acetylation has emerged as an important post-translational modification of both histone and non-histone proteins, dictating numerous epigenetic programs within a cell. Thus, understanding the complex biology of lysine acetylation and its regulators is essential for the development of epigenetic therapeutics. In this review, we will attempt to address the complexities of lysine acetylation in the context of tumorigenesis, their role in cancer progression and emphasize on the modalities developed to target lysine acetyltransferases towards cancer treatment. PMID:26808162

  5. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences.

    Science.gov (United States)

    Kramer, Debora L; Diegelman, Paula; Jell, Jason; Vujcic, Slavoljub; Merali, Salim; Porter, Carl W

    2008-02-15

    Recent studies suggest that overexpression of the polyamine-acetylating enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) significantly increases metabolic flux through the polyamine pathway. The concept derives from the observation that SSAT-induced acetylation of polyamines gives rise to a compensatory increase in biosynthesis and presumably to increased flow through the pathway. Despite the strength of this deduction, the existence of heightened polyamine flux has not yet been experimentally demonstrated. Here, we use the artificial polyamine precursor 4-fluoro-ornithine to measure polyamine flux by tracking fluorine unit permeation of polyamine pools in human prostate carcinoma LNCaP cells. Conditional overexpression of SSAT was accompanied by a massive increase in intracellular and extracellular acetylated spermidine and by a 6-20-fold increase in biosynthetic enzyme activities. In the presence of 300 microM 4-fluoro-ornithine, SSAT overexpression led to the sequential appearance of fluorinated putrescine, spermidine, acetylated spermidine, and spermine. As fluorinated polyamines increased, endogenous polyamines decreased, so that the total polyamine pool size remained relatively constant. At 24 h, 56% of the spermine pool in the induced SSAT cells was fluorine-labeled compared with only 12% in uninduced cells. Thus, SSAT induction increased metabolic flux by approximately 5-fold. Flux could be interrupted by inhibition of polyamine biosynthesis but not by inhibition of polyamine oxidation. Overall, the findings are consistent with a paradigm whereby flux is initiated by SSAT acetylation of spermine and particularly spermidine followed by a marked increase in key biosynthetic enzymes. The latter sustains the flux cycle by providing a constant supply of polyamines for subsequent acetylation by SSAT. The broader metabolic implications of this futile metabolic cycling are discussed in detail. PMID:18089555

  6. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans.

    Science.gov (United States)

    Hynes, Michael J; Murray, Sandra L

    2010-07-01

    Acetyl coenzyme A (CoA) is a central metabolite in carbon and energy metabolism and in the biosynthesis of cellular molecules. A source of cytoplasmic acetyl-CoA is essential for the production of fatty acids and sterols and for protein acetylation, including histone acetylation in the nucleus. In Saccharomyces cerevisiae and Candida albicans acetyl-CoA is produced from acetate by cytoplasmic acetyl-CoA synthetase, while in plants and animals acetyl-CoA is derived from citrate via ATP-citrate lyase. In the filamentous ascomycete Aspergillus nidulans, tandem divergently transcribed genes (aclA and aclB) encode the subunits of ATP-citrate lyase, and we have deleted these genes. Growth is greatly diminished on carbon sources that do not result in cytoplasmic acetyl-CoA, such as glucose and proline, while growth is not affected on carbon sources that result in the production of cytoplasmic acetyl-CoA, such as acetate and ethanol. Addition of acetate restores growth on glucose or proline, and this is dependent on facA, which encodes cytoplasmic acetyl-CoA synthetase, but not on the regulatory gene facB. Transcription of aclA and aclB is repressed by growth on acetate or ethanol. Loss of ATP-citrate lyase results in severe developmental effects, with the production of asexual spores (conidia) being greatly reduced and a complete absence of sexual development. This is in contrast to Sordaria macrospora, in which fruiting body formation is initiated but maturation is defective in an ATP-citrate lyase mutant. Addition of acetate does not repair these defects, indicating a specific requirement for high levels of cytoplasmic acetyl-CoA during differentiation. Complementation in heterokaryons between aclA and aclB deletions for all phenotypes indicates that the tandem gene arrangement is not essential. PMID:20495057

  7. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    Science.gov (United States)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  8. Magical Power of d-block transition metals. Pd-Catalyzed Cross-Coupling and Zr-Catalyzed Asymmetric Carboalumination (Zaca reaction)

    OpenAIRE

    Año Internacional de la Quimica 2011

    2011-01-01

    Magical Porwer of d-block Transition Metals. Pd-Catalyzed Cross-Coupling and Zr-Catalyzed Asymmetric Carboalumination (Zaca Reaction). Ei-ichi Negishi (Department of Chemistry - Purdue University). Premio Nobel de Química 2010

  9. Cigarette Smoking, N-Acetyltransferase 2 Acetylation Status, and Bladder Cancer Risk

    DEFF Research Database (Denmark)

    Marcus, P.M.; Hayes, R.B.; Vineis, P.;

    2000-01-01

    Tobacco use is an established cause of bladder cancer. The ability to detoxify aromatic amines, which are present in tobacco and are potent bladder carcinogens, is compromised in persons with the N-acetyltransferase 2 slow acetylation polymorphism. The relationship of cigarette smoking with bladder...... interaction between smoking and N-acetyltransferase 2 slow acetylation (OR, 1.3; 95% confidence interval, 1.0-1.6) that was somewhat stronger when analyses were restricted to studies conducted in Europe (OR, 1.5; confidence interval, 1.1-1.9), a pooling that included nearly 80% of the collected data. Using...

  10. Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-Depleted Murine Embryonic Stem Cells

    OpenAIRE

    Airoldi, Edoardo Maria; Markowetz, Florian; Mulder, Klaas; Lemischka, Ihor; Troyanskaya, Olga

    2010-01-01

    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation p...

  11. Radioimmunoassay for cyclic GMP with femtomole sensitivity using tritiated label and acetylated ligands

    International Nuclear Information System (INIS)

    An economical assay using [3H]cyclic GMP is described which will be of use to those laboratories either restricted from using γ isotopes or who do not possess gamma-counting facilities. In this assay, label, standards, and samples are acetylated, and interacted with an antibody raised against the succinyl derivative of cyclic GMP prepared in the usual way. Using this assay procedure 20 fmol of cyclic GMP are detectable. The optimal assay conditions were calculated on theoretical grounds. The use of acetylated ligands might also be applied to the assay of cyclic AMP

  12. Histone Acetyl Transferase (HAT) HBO1 and JADE1 in Epithelial Cell Regeneration

    OpenAIRE

    Havasi, Andrea; Haegele, Joseph A.; Gall, Jonathan M.; Blackmon, Sherry; Ichimura, Takaharu; Bonegio, Ramon G.; Panchenko, Maria V.

    2013-01-01

    HBO1 acetylates lysine residues of histones and is involved in DNA replication and gene transcription. Two isoforms of JADE1, JADE1S and JADE1L, bind HBO1 and promote acetylation of histones in chromatin context. We characterized the role of JADE1-HBO1 complexes in vitro and in vivo during epithelial cell replication. Down-regulation of JADE1 by siRNA diminished the rate of DNA synthesis in cultured cells, decreased endogenous HBO1 protein expression, and prevented chromatin recruitment of re...

  13. Hydrolysis of Wheat Arabinoxylan by Two Acetyl Xylan Esterases from Chaetomium thermophilum

    DEFF Research Database (Denmark)

    Tong, Xiaoxue; Lange, Lene; Grell, Morten Nedergaard;

    2015-01-01

    The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has...... xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass...

  14. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation

    OpenAIRE

    Shaw, Bryan F; Schneider, Gregory F.; Bilgiçer, Başar; Kaufman, George K.; Neveu, John M.; Lane, William S.; Whitelegge, Julian P.; Whitesides, George M.

    2008-01-01

    This paper reports that the acetylation of lysine ε-NH3 + groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the ...

  15. Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium

    Indian Academy of Sciences (India)

    A V Shanbhag; T V Venkatesha; R A Prabhu; B M Praveen

    2011-06-01

    The corrosion inhibition characteristics of acetyl coumarine (AC), bromo acetyl coumarine (BAC) and thiazole derivatives (BTMQ and BTCQ) on the corrosion of zinc in 0.1 M HCl solution were investigated by weight loss, potentiodynamic polarization and impedance techniques. The inhibition efficiency increased with increase in inhibitor concentration upto 5 × 10-4 M, then gave almost same inhibition efficiency. The polarizationmeasurements indicated the mixed nature of inhibitors. The adsorption of compounds obeyed Langmuir’s adsorption isotherm. The thermodynamic functions for adsorption processes were evaluated.

  16. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-l-glutamate synthase/kinase with and without a His tag bound to N-acetyl-l-glutamate

    OpenAIRE

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-l-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-l-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively.

  17. Inhibition of Different Histone Acetyltransferases (HATs) Uncovers Transcription-Dependent and -Independent Acetylation-Mediated Mechanisms in Memory Formation

    Science.gov (United States)

    Merschbaecher, Katja; Hatko, Lucyna; Folz, Jennifer; Mueller, Uli

    2016-01-01

    Acetylation of histones changes the efficiency of the transcription processes and thus contributes to the formation of long-term memory (LTM). In our comparative study, we used two inhibitors to characterize the contribution of different histone acetyl transferases (HATs) to appetitive associative learning in the honeybee. For one we applied…

  18. NON-DEGRADATIVE DISSOLUTION AND ACETYLATION OF BALL-MILLED PLANT CELL WALLS; HIGH-RESOLUTION SOLUTION-STATE NMR

    Science.gov (United States)

    We describe two solvent systems for fully dissolving, and optionally derivatizing, finely ground plant cell wall material at room temperature: dimethylsulfoxide and tetrabutylammonium fluoride or N-methylimidazole. In situ acetylation produces acetylated cell walls that are fully soluble in CDCl3. L...

  19. Catalytic Synthesis of 4- Hydroxy-3-methyl Ethyl Ketone by Poly Phosphoric Acid%多聚磷酸催化合成4-羟基-3-甲氧基苯乙酮的实验研究

    Institute of Scientific and Technical Information of China (English)

    郗伟

    2016-01-01

    4-羟基-3-甲氧基苯乙酮是一种非常重要的化工原料,可用来生产食品添加,制备香料、合成多种药品,在造纸工业中用来合成邻醌型木质素模型物。邻甲氧基苯酚乙酰化合成4-羟基-3-甲氧基苯乙酮的反应属于傅列德尔-克拉夫茨(Friedel-Crafts)酰基化反应,传统的催化剂是 AlCl3,但是 AlCl3作为催化剂自身有很多难以克服的缺点。通过对乙酰化反应催化剂(路易斯酸或质子酸)的分析探讨,研究表明,多聚磷酸(PPA)在温和的催化条件下,具有不易水解酯类化合物、对乙酰基化反应尤其对芳香烃类酯化反应的催化活性好、副反应少、目标产物易于分离等优点。以多聚磷酸 PPA 为催化剂,通过实验分析判别出了该合成工艺的最佳催化剂用量、反应温度、反应时间和原料摩尔比。%4-Hydroxy-3-methoxy-acetophenone is an important organic chemical raw material, and can be used to produce food additives, perfume, various intermediates of pesticides, pharmaceuticals, and so on. Synthesis reaction of 4-hydroxy-3-methoxy-acetophenone by guaiacol acetylation belongs to Friedel-Crafts acylation reaction, conventional catalyst is AlCl3, but AlCl3 catalyst has many insurmountable drawbacks. In this paper, the acetylation catalysts (Lewis acid or a proton acid) were analyzed. The results show that, PPA catalyst has many advantages, such as mild reaction condition, high catalytic activity, and fewer side reactions and so on. At last, the best synthesis conditions including PPA catalyst dosage, reaction temperature, reaction time and molar ratio of the raw materials were determined through experiments.

  20. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    Directory of Open Access Journals (Sweden)

    L. López-Contreras

    2013-01-01

    Full Text Available Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  1. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  2. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Schölz, Christian; Wagner, Sebastian A;

    2013-01-01

    Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), hu...

  3. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    NARCIS (Netherlands)

    Schrier, B.P.; Lichtendonk, W.J.; Witjes, J.A.

    2002-01-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a

  4. Acetylation regulates WRN catalytic activities and affects base excision DNA repair

    DEFF Research Database (Denmark)

    Muftuoglu, Meltem; Kusumoto, Rika; Speina, Elzbieta;

    2008-01-01

    The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone...... acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription....

  5. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum

    DEFF Research Database (Denmark)

    østergaard, Simon; Theilgaard, Hanne Birgitte; Nielsen, Jens Bredal

    1998-01-01

    -cysteine. The purified enzyme did not catalyse the formation of L-homocysteine from O-acetyl-L-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyI-L-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold...

  6. Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation.

    Science.gov (United States)

    Das, Chandrima; Roy, Siddhartha; Namjoshi, Sarita; Malarkey, Christopher S; Jones, David N M; Kutateladze, Tatiana G; Churchill, Mair E A; Tyler, Jessica K

    2014-03-25

    The multifunctional Creb-binding protein (CBP) protein plays a pivotal role in many critical cellular processes. Here we demonstrate that the bromodomain of CBP binds to histone H3 acetylated on lysine 56 (K56Ac) with higher affinity than to its other monoacetylated binding partners. We show that autoacetylation of CBP is critical for the bromodomain-H3 K56Ac interaction, and we propose that this interaction occurs via autoacetylation-induced conformation changes in CBP. Unexpectedly, the bromodomain promotes acetylation of H3 K56 on free histones. The CBP bromodomain also interacts with the histone chaperone anti-silencing function 1 (ASF1) via a nearby but distinct interface. This interaction is necessary for ASF1 to promote acetylation of H3 K56 by CBP, indicating that the ASF1-bromodomain interaction physically delivers the histones to the histone acetyl transferase domain of CBP. A CBP bromodomain mutation manifested in Rubinstein-Taybi syndrome has compromised binding to both H3 K56Ac and ASF1, suggesting that these interactions are important for the normal function of CBP. PMID:24616510

  7. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    DEFF Research Database (Denmark)

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T; Kumar, Amit; Kim, Hyun-Seok; Deng, Chu-Xia; Choudhary, Chuna Ram

    2012-01-01

    KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...

  8. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Arunima; Pasquel, Danielle [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Tyagi, Rakesh Kumar [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Mani, Sridhar, E-mail: sridhar.mani@einstein.yu.edu [Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  9. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM, info

  10. 2-acetyl-1-pyrroline - key aroma compound in Mediterranean dried sausages

    DEFF Research Database (Denmark)

    Stahnke, Marie Louise Heller

    2000-01-01

    Southern types were attributed to a burned coffee odour from smoke in the smoked sausages and a popcorn note in the Mediterranean products covered with mould. The two compounds were 2-furfurylthiol and 2-acetyl-1-pyrroline, respectively. An analysis of five dried, moulded sausages showed that the surface...

  11. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  12. Ficolins and FIBCD1: Soluble and membrane bound pattern recognition molecules with acetyl group selectivity

    DEFF Research Database (Denmark)

    Thomsen, Theresa; Schlosser, Anders; Holmskov, Uffe;

    2011-01-01

    A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized......D-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands....

  13. Effect of acetyl-SDKP, an inhibitor of hematopoiesis, in myelosuppressed animals

    International Nuclear Information System (INIS)

    The hemoregulatory tetrapeptide Acetyl-SDKP could be used as a myeloprotector in cancer chemotherapy as well as in radiobiology. It improves the survival rate in lethally irradiated rats and stimulates the leucocyte recovery in 1-β-D-arabino-furanosylcytosine treated cynomolgus monkeys

  14. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  15. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, A Review of Effectiveness in Reducing HIV Progression

    NARCIS (Netherlands)

    R.B.S. Hummelen (Ruben); J. Hemsworth (Jaimie); G.K. Reid (Gregor)

    2010-01-01

    textabstractLow serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical t

  16. Urinary excretion of N-acetyl-beta-d-glucosaminidase in children.

    OpenAIRE

    Osborne, J.

    1980-01-01

    The normal range for the urinary N-acetyl-beta-D-glucosaminidase/creatinine ratio was determined in 82 children. The range was found to vary with age, and the distribution was found to be logarithmic. This test should help to detect renal tubular disease in children; it gave abnormal results in some of these children.

  17. Hydrolytic stability of water-soluble spruce O-acetyl galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Hemmimg, J.; Holmbom, B.; Albrecht, S.A.; Schols, H.A.; Willfor, S.

    2009-01-01

    Water-soluble native O-acetyl galactoglucomannan (GGM) from spruce is a polysaccharide that can be produced in an industrial scale. To develop GGM applications, information is needed on its stability, particularly under acidic conditions. Therefore, acid hydrolysis of spruce GGM was investigated at

  18. Hydrolysis of wheat B-starch and characterisation of acetylated maltodextrin

    Czech Academy of Sciences Publication Activity Database

    Smrčková, P.; Horský, Jiří; Šárka, E.; Koláček, J.; Netopilík, Miloš; Walterová, Zuzana; Kruliš, Zdeněk; Synytsya, A.; Hrušková, K.

    2013-01-01

    Roč. 98, č. 1 (2013), s. 43-49. ISSN 0144-8617 R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : wheat B-starch * α-amylase * acetylated maltodextrin Subject RIV: JI - Composite Materials Impact factor: 3.916, year: 2013

  19. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

    Czech Academy of Sciences Publication Activity Database

    Dušková, Eva; Hnilicová, Jarmila; Staněk, David

    2014-01-01

    Roč. 11, č. 7 (2014), s. 865-874. ISSN 1547-6286 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : alternative splicing * fibronectin * p300 * histone acetylation * promoter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.974, year: 2014

  20. The in situ distribution of glycoprotein-bound 4-O-Acetylated sialic acids in vertebrates.

    Science.gov (United States)

    Aamelfot, Maria; Dale, Ole Bendik; Weli, Simon Chioma; Koppang, Erling Olaf; Falk, Knut

    2014-05-01

    Sialic acids are located at the terminal branches of the cell glycocalyx and secreted glycan molecules. O-Acetylation is an important modification of the sialic acids, however very few studies have demonstrated the in situ distribution of the O-Acetylated sialic acids. Here the distribution of glycoprotein bound 4-O-Acetylated sialic acids (4-O-Ac sias) in vertebrates was determined using a novel virus histochemistry assay. The 4-O-Ac sias were found in the circulatory system, i.e. on the surface of endothelial cells and RBCs, of several vertebrate species, though most frequently in the cartilaginous fish (class Chondrichthyes) and the bony fish (class Osteichthyes). The O-Acetylated sialic acid was detected in 64 % of the examined fish species. Even though the sialic acid was found less commonly in higher vertebrates, it was found at the same location in the positive species. The general significance of this endothelial labelling pattern distribution is discussed. The seemingly conserved local position through the evolution of the vertebrates, suggests an evolutionary advantage of this sialic acid modification. PMID:24833039

  1. Patterns of histone acetylation as targets for novel therapeutic approaches in neurological diseases

    OpenAIRE

    Ebrahimi, Azadeh

    2013-01-01

    Neurological diseases, in particular brain tumors and neurodegenerative disorders, cause significant socio-economic burdens on societies. Exploring epigenetic mechanisms in neurological disorders in recent decades has been an emerging tool for describing the pathogenesis of neurological diseases as well as developing new therapeutics. Global histone acetylation is an epigenetic entity whose alternating patterns in various neurological diseases have recently raised special attention concer...

  2. Nvar-epsilon-acetyl-β-lysine: An osmolyte synthesized by mothanogenic archaebacteria

    International Nuclear Information System (INIS)

    Methanosarcina thermophila, a nonmarine methanogenic archaebacterium, can grow in a range of saline concentrations. At less than 0.4 M NaCl, Ms. thermophila accumulated glutamate in response to increasing osmotic stress. At greater than 0.4 M NaCl, this organism synthesized a modified β-amino acid that was identified as Nvar-epsilon-acetyl-β-lysine by NMR spectroscopy and ion-exchange HPLC. This β-amino acid derivative accumulated to high intracellular concentrations (up to 0.6 M) in Ms. thermophila and in another methanogen examined - Methanogenium cariaci, a marine species. The compound has features that are characteristic of a compatible solute: it is neutrally charged at physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological compatible solute, Nvar-epsilon-acetyl-β-lysine synthesis was repressed and glycine betaine was accumulated. Nvar-epsilon-Acetyl-β-lysine was synthesized by species from three phylogenetic families when grown in high solute concentrations, suggesting that it may be ubiquitous among the methanogens. The ability to control the biosynthesis of Nvar-epsilon-acetyl-β-lysine in response to extracellular solute concentration indicates that the methanogenic archaebacteria have a unique β-amino acid biosynthetic pathway that is osmotically regulated

  3. Production of Nα-acetylated thymosin α1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fang Hongqing

    2011-04-01

    Full Text Available Abstract Background Thymosin α1 (Tα1, a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel production process for Nα-acetylated Tα1 in Escherichia coli. Results To obtain recombinant Nα-acetylated Tα1 efficiently, a fusion protein, Tα1-Intein, was constructed, in which Tα1 was fused to the N-terminus of the smallest mini-intein, Spl DnaX (136 amino acids long, from Spirulina platensis, and a His tag was added at the C-terminus. Because Tα1 was placed at the N-terminus of the Tα1-Intein fusion protein, Tα1 could be fully acetylated when the Tα1-Intein fusion protein was co-expressed with RimJ (a known prokaryotic Nα-acetyltransferase in Escherichia coli. After purification by Ni-Sepharose affinity chromatography, the Tα1-Intein fusion protein was induced by the thiols β-mercaptoethanol or d,l-dithiothreitol, or by increasing the temperature, to release Tα1 through intein-mediated N-terminal cleavage. Under the optimal conditions, more than 90% of the Tα1-Intein fusion protein was thiolyzed, and 24.5 mg Tα1 was obtained from 1 L of culture media. The purity was 98% after a series of chromatographic purification steps. The molecular weight of recombinant Tα1 was determined to be 3107.44 Da by mass spectrometry, which was nearly identical to that of the synthetic version (3107.42 Da. The whole sequence of recombinant Tα1 was identified by tandem mass spectrometry and its N-terminal serine residue was shown to be acetylated. Conclusions The present data demonstrate that Nα-acetylated Tα1 can be efficiently produced in recombinant E. coli. This bioprocess could be used as an alternative to chemosynthesis for the production

  4. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice

    OpenAIRE

    Fortress, Ashley M.; Kim, Jaekyoon; Rachel L Poole; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone ace...

  5. The Structural Basis of Ribozyme-Catalyzed RNA Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, M.P.; Scott, W.G.; /UC, Santa Cruz

    2007-07-12

    Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.

  6. Missing value imputation for microarray gene expression data using histone acetylation information

    Directory of Open Access Journals (Sweden)

    Feng Jihua

    2008-05-01

    Full Text Available Abstract Background It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages. Results The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method is presented. It incorporates the histone acetylation information into the conventional KNN(k-nearest neighbor and LLS(local least square imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE. Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information. Conclusion We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.

  7. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition.

    Science.gov (United States)

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M; Boulware, Marissa I; Frick, Karyn M

    2012-02-15

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol E2. We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2. Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409

  8. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model.

    Science.gov (United States)

    Mahmoudi Najafi, Seyed Heydar; Baghaie, Maryam; Ashori, Alireza

    2016-06-01

    The objective of this study was to characterize in-vitro the potential of acetylated corn starch (ACS) particles as a matrix for the delivery of ciprofloxacin (CFx). ACS was successfully synthesized and optimized by the reaction of native corn starch using acetic anhydride and acetic acid with low and high degrees of substitution (DS). The nanoprecipitation method was applied for the formation of the ACS-based nanoparticles, by the dropwise addition of water to acetone solution of ACS under stirring. The effects of acetylation and nanoprecipitation on the morphology and granular structure of ACS samples were examined by the FT-IR, XRD, DSL and SEM techniques. The efficiency of CFx loading was also evaluated via encapsulation efficiency (EE) in ACS nanoparticles. The average degree of acetyl substitution per glucose residue of corn starch was 0.33, 2.00, and 2.66. The nanoparticles size of the ACS and ACS-loaded with CFx were measured and analyzed relative to the solvent:non-solvent ratio. Based on the results, ACS nanoparticles with DS of 2.00 and water:acetone of 3:1 had 312nm diameter. Increasing DS in starch acetate led to increase in the EE from 67.7 to 89.1% and with increasing ratio of water/acetone from 1:1 to 3:1, the EE raised from 48.5 to 89.1%. X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. PMID:26893054

  9. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection

    Directory of Open Access Journals (Sweden)

    Mukherjee Krishnendu

    2012-10-01

    Full Text Available Abstract Background Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs and histone deacetylases (HDACs whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessibility and promotes gene expression, whereas the removal of acetyl groups by HDACs has the opposite effect. Results We explored the role of HDACs and HATs in epigenetic reprogramming during metamorphosis, wounding and infection in the lepidopteran model host Galleria mellonella. We measured the expression of genes encoding components of HATs and HDACs to monitor the transcriptional activity of each enzyme complex and found that both enzymes were upregulated during pupation. Specific HAT inhibitors were able to postpone pupation and to reduce insect survival following wounding, whereas HDAC inhibitors accelerated pupation and increased survival. The administration of HDAC inhibitors modulated the expression of effector genes with key roles in tissue remodeling (matrix metalloproteinase, the regulation of sepsis (inhibitor of metalloproteinases from insects and host defense (antimicrobial peptides, and simultaneously induced HAT activity, suggesting that histone acetylation is regulated by a feedback mechanism. We also discovered that both the entomopathogenic fungus Metarhizium anisopliae and the human bacterial pathogen Listeria monocytogenes can delay metamorphosis in G. mellonella by skewing the HDAC/HAT balance. Conclusions Our study provides for the first evidence that pathogenic bacteria can interfere with the regulation of HDACs and HATs in insects which appear to manipulate host immunity and development. We conclude that histone acetylation/deacetylation in insects mediates transcriptional reprogramming during metamorphosis and in response to wounding and infection.

  10. Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species

    DEFF Research Database (Denmark)

    Koutaniemi, Sanna; Guillon, Fabienne; Tranquet, Olivier; Bouchet, Brigitte; Tuomainen, Päivi; Virkki, Liisa; Pedersen, Henriette Lodberg; Willats, William George Tycho; Saulnier, Luc; Tenkanen, Maija

    2012-01-01

    antibody binding. The treatment removed acetyl groups from xylan, indicating that the vicinity of glucuronic acid substituents is also acetylated. The novel labeling patterns observed in the xylem of tree species suggested that differences within the cell wall exist both in acetylation degree and in...

  11. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    Science.gov (United States)

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  12. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  13. Recent advances in copper-catalyzed asymmetric coupling reactions

    Directory of Open Access Journals (Sweden)

    Fengtao Zhou

    2015-12-01

    Full Text Available Copper-catalyzed (or -mediated asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds.

  14. Nickel-Catalyzed Aromatic C-H Functionalization.

    Science.gov (United States)

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  15. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  16. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    Science.gov (United States)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  17. Muon-catalyzed fusion theory: Introduction and review

    International Nuclear Information System (INIS)

    Muon-catalyzed fusion (μCF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dtμ molecule in mixtures of deuterium and tritium. After a brief review of the subject's history, the dtμ catalysis cycle and the principal relations used in its analysis are described. Some of the important processes in the μCF cycle are then discussed. Finally, the status of current research is appraised. 52 refs., 7 figs

  18. Recent advances in copper-catalyzed asymmetric coupling reactions

    Science.gov (United States)

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  19. The mechanism of Fe (Ⅲ)-catalyzed ozonation of phenol

    Institute of Scientific and Technical Information of China (English)

    竹湘锋; 徐新华

    2004-01-01

    Fe (Ⅲ)-catalyzed ozonation yielded better degradation rate and extent of COD (Chemical Oxygen Demand) or oxalic acid as compared with oxidation by ozone alone. Two parameters with strong effects on the efficiency of ozonation are pH of the solution and the catalyst (Fe3+) dosage. The existence of a critical pH value determining the catalysis of Fe (Ⅲ) in acid conditions was observed in phenol and oxalic acid systems. The best efficiency of catalysis was obtained at a moderate concentration of the catalyst. A reasonable mechanism of Fe (Ⅲ)-catalyzed ozonation of phenol was obtained based on the results and literature.

  20. Binary and tertiary combination of alternariol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on HepG2 cells: Toxic effects and evaluation of degradation products.

    Science.gov (United States)

    Juan-García, Ana; Juan, Cristina; Manyes, Lara; Ruiz, María-José

    2016-08-01

    Fungi producers of mycotoxins are able to synthesize more than one toxin. Alternariol (AOH) is one of the mycotoxins produced by several Alternaria species, the most common one being Alternaria alternata. The toxins 3-Acetyl-deoxynivalenol (3-ADON) and 15-Acetyl-deoxynivalenol (15-ADON) are acetylated forms of deoxynivalenol (DON) produced by Fusarium graminearum. In the present work it is determined and evaluated the toxic effects of binary and tertiary combination treatment of HepG2 cells with AOH, 3-ADON and 15-ADON, by using the MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), to subsequently apply the isobologram method and elucidate if the mixtures of these mycotoxins produced synergism, antagonism or additive effect; and lastly, to analyze mycotoxins conversion into metabolites produced and released by HepG2 cells after applying the treatment conditions by liquid chromatography tandem mass spectrometry (LC-MS/MS) equipment and extracted from culture media. HepG2 cells were treated at different concentrations over 24, 48 and 72h. IC50 values detected at all times assayed, ranged from 0.8 to >25μM in binary combinations; while in tertiary it ranged from 7.5 to 12μM. Synergistic, antagonism or additive effect detected in the mixtures of these mycotoxins was different depending on low or high concentration. Among all four mycotoxins combinations assayed, 15-ADON+3-ADON presented the highest toxic potential. At all assayed times, recoveries values oscillated depending on the time and combination studied. PMID:27131905

  1. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.

    Science.gov (United States)

    Cuccurazzu, Bruna; Bortolotto, Valeria; Valente, Maria Maddalena; Ubezio, Federica; Koverech, Aleardo; Canonico, Pier Luigi; Grilli, Mariagrazia

    2013-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-κB p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-κB pathway, and in particular by p65 acetylation, and subsequent NF-κB-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressants. PMID:23670591

  2. Determination of the degree of acetylation and the distribution of acetyl groups in chitosan by HPLC analysis of nitrous acid degraded and PMP labeled products.

    Science.gov (United States)

    Han, Zhangrun; Zeng, Yangyang; Lu, Hong; Zhang, Lijuan

    2015-09-01

    Chitin is one of the most abundant polysaccharides on earth. It consists of repeating β-1,4 linked N-acetylated glucosamine (A) units. Chitosan is an N-deacetylated product of chitin. Chitosan and its derivatives have broad medical applications as drugs, nutraceuticals, or drug delivery agents. However, a reliable analytical method for quality control of medically used chitosans is still lacking. In current study, nitrous acid was used to cleave all glucosamine residues in chitosan into 2,5-anhydromannose (M) or M at the reducing end of di-, tri-, and oligosaccharides. PMP, i.e. 1-phenyl-3-methyl-5-pyrazolone, was used to label all the Ms. Online UV detection allowed quantification of all M-containing UV peaks whereas online MS analysis directly identified 11 different kinds of mono-, di-, tri-, and oligosaccharides that correlated each oligosaccharide with specific UV peak after HPLC separation. The DA (degree of acetylation) for chitosans was calculated based on the A/(A+M) value derived from the UV data. This newly developed method had several advantages for quality control of chitosan: 1. the experimental procedures were extensively optimized; 2. the reliability of the method was confirmed by online LC-MS analysis; 3. the DA value was obtainable based on the UV data after HPLC analysis, which was comparableto that of (1)H NMR and conductometric titration analyses; 4. finally and most importantly, this method could be used to obtain the DA as well as chemical acetylation/deacetylation mechanisms for chitosan by any laboratory equipped with a HPLC and an online UV detector. PMID:26114886

  3. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration.

    Science.gov (United States)

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-12-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  4. Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Anne Bouchut

    Full Text Available Lysine acetylation is a reversible post-translational modification (PTM that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT and deacetylase (KDAC genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.

  5. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola, E-mail: Ola.Hermanson@ki.se

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here we show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.

  6. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    Energy Technology Data Exchange (ETDEWEB)

    Yamagata, Kazutsune, E-mail: kyamagat@ncc.go.jp [Department of Molecular Oncology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kitabayashi, Issay [Department of Molecular Oncology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  7. Spectroscopic and Biological Studies on Newly Synthesized Cobalt (II and Nickel (II Complexes with 2-Acetyl Coumarone Semicarbazone and 2-Acetyl Coumarone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2013-01-01

    Full Text Available Co(II and Ni(II complexes of general composition ML2X2 (M = Co(II, Ni(II; X = Cl−, NO3 − were synthesized by the condensation of metal salts with semicarbazone/thiosemicarbazone derived from 2-acetyl coumarone. The ligands and metal complexes were characterized by NMR, elemental analysis, molar conductance, magnetic susceptibility measurements, IR, and atomic absorption spectral studies. On the basis of electronic, molar conductance and infrared spectral studies, the complexes were found to have square planar geometry. The Schiff bases and their metal complexes were tested for their antibacterial and antioxidant activities.

  8. Stability and Analgesic Efficacy of Di-acetyl Morphine (Diamorphine) Compared with Morphine in Implanted Intrathecal Pumps In Vivo.

    Science.gov (United States)

    Raphael, Jon H; Palfrey, Stephen M; Rayen, Arasu; Southall, Jane L; Labib, Maurad H

    2004-07-01

    The objective of this study was to investigate di-acetyl morphine as an alternative opioid analgesic for use in implanted intrathecal drug delivery systems because of its greater solubility through evaluation of its stability in vivo and analgesic efficacy in the period between pump refills. Contents of intrathecal drug delivery system reservoirs (SynchroMed, Medtronic, Inc., Minneapolis, MN) that had been filled with di-acetyl morphine dissolved in saline (21), bupivacaine (9), or in both bupivacaine and clonidine (19) were sampled in vivo between 1 and 125 days after refill. The samples were assayed for di-acetyl morphine and its breakdown products by micellar electrokinetic capillary chromatography. Prospective daily numerical pain scores between pump refills, using 11-point Likert scales, on 24 patients with implanted SynchroMed pumps (12 delivering di-acetyl morphine in saline, 12 were delivering morphine in saline) were collected. Results showed that di-acetyl morphine immediately started to decay to mono-acetyl morphine in implanted Synchromed pumps with half-life of 50 days. Mono-acetyl morphine decayed to morphine with a maxima estimated at 125 days. There was no clinically significant change in average weekly pain scores for up to ten weeks in either group (range, 2.5 to 2.8 for diamorphine and 2.7 to 3.1 for morphine) (2-way repeated ANOVA, F(9,220) = 0.98, n.s.). We conclude that di-acetyl morphine and its breakdown products, 6 mono-acetyl morphine and morphine, provide similar analgesia to morphine alone when administered by intrathecal pump for a period of at least ten weeks and may be a useful alternative when a more soluble agent is favored. PMID:22151270

  9. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    OpenAIRE

    Lisa Günther; Roswitha Beck; Guoming Xiong; Heidrun Potschka; Klaus Jahn; Peter Bartenstein; Thomas Brandt; Mayank Dutia; Marianne Dieterich; Michael Strupp; Christian la Fougère; Andreas Zwergal

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular beha...

  10. HBO1 Is Required for H3K14 Acetylation and Normal Transcriptional Activity during Embryonic Development▿

    OpenAIRE

    Kueh, Andrew J.; Dixon, Mathew P.; Voss, Anne K.; Thomas, Tim

    2010-01-01

    We report here that the MYST histone acetyltransferase HBO1 (histone acetyltransferase bound to ORC; MYST2/KAT7) is essential for postgastrulation mammalian development. Lack of HBO1 led to a more than 90% reduction of histone 3 lysine 14 (H3K14) acetylation, whereas no reduction of acetylation was detected at other histone residues. The decrease in H3K14 acetylation was accompanied by a decrease in expression of the majority of genes studied. However, some genes, in particular genes regulati...

  11. On the Mechanism of Condensation between 5-Amino-4, 6-dichloro-2-methylpyrimidine and 1-Acetyl-2-imidazolin-2-one

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The condensation reaction between 5-amino-4, 6-dichloro-2-methylpyrimidine and 1-acetyl-2-imidazolin-2-one using POCl3 as solvent gave 4, 6-dichloro-2-methyl-5-(l-acetyl-tetrahydro-imidazo-2-ylidene)-aminopyrimidine predominantly and 4, 6-dichloro-2-methyl-5-{1-[ l-(2-oxo-tetrahydro-imidazolyl)]-acetyene}-aminopyrimidine as by-product. No 4, 6-dichloro-2-methyl-5-(1-acetyl-2-imidazolin-2-yl)-aminopyrimidine was found. The result indicated an esterifi- cation-addition-elimination mechanism.``

  12. Functional Interplay between Acetylation and Methylation of the RelA Subunit of NF-κB▿

    OpenAIRE

    Yang, Xiao-Dong; Tajkhorshid, Emad; Chen, Lin-Feng

    2010-01-01

    Posttranslational modifications of the RelA subunit of NF-κB, including acetylation and methylation, play a key role in controlling the strength and duration of its nuclear activity. Whether these modifications are functionally linked is largely unknown. Here, we show that the acetylation of lysine 310 of RelA impairs the Set9-mediated methylation of lysines 314 and 315, which is important for the ubiquitination and degradation of chromatin-associated RelA. Abolishing the acetylation of lysin...

  13. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65

    OpenAIRE

    Buerki, C; Rothgiesser, K M; Valovka, T; Owen, H R; Rehrauer, H; Fey, M.; Lane, W S; Hottiger, M O

    2008-01-01

    Nuclear factor kappaB (NF-kappaB) plays an important role in the transcriptional regulation of genes involved in immunity and cell survival. We show here in vitro and in vivo acetylation of RelA/p65 by p300 on lysine 314 and 315, two novel acetylation sites. Additionally, we confirmed the acetylation on lysine 310 shown previously. Genetic complementation of RelA/p65-/- cells with wild type and non-acetylatable mutants of RelA/p65 (K314R and K315R) revealed that neither shuttling, DNA binding...

  14. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  15. Ruthenium-catalyzed C–H activation of thioxanthones

    OpenAIRE

    Danny Wagner; Stefan Bräse

    2015-01-01

    Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented.

  16. Ruthenium-catalyzed C–H activation of thioxanthones

    Science.gov (United States)

    Wagner, Danny

    2015-01-01

    Summary Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented. PMID:25977717

  17. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  18. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    Science.gov (United States)

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  19. Transfer Methane to Fragrant Hydrocarbon by Direct Catalyzed Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Sponsored by NSFC,a research project -"Transfer methane to fragrant hydrocarbon by direct catalyzed dehydrogenation",directed by Prof.Xin Bao from Dalian Institute of Chemical Physics of CAS,honored the 2nd class National Science & Technology Award in 2005.

  20. Polyphosphorous acid catalyzed cyclization in the synthesis of cryptolepine derivatives

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    11-Oxo-10,11-dihydroxy-5H-indolo[3,2,b]quinoline7-carboxylic acid was obtained specifically by polyphosphorous acid catalyzed cyclization with optimal reaction conditions. Biological assays showed that it potentially inhibits the proteasomal chymotrypsin-like activity in vitro and suppresses breast cancer cell growth.

  1. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  2. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  3. Kinetic Resolution of Aryl Alkenylcarbinols Catalyzed by Fc-PIP

    Institute of Scientific and Technical Information of China (English)

    胡斌; 孟萌; 姜山山; 邓卫平

    2012-01-01

    An effective kinetic resolution of a variety of aryl alkenylcarbinols catalyzed by nonenzymatic acyl transfer catalyst Fe-PIP was developed, affording corresponding unreacted alcohols in good to excellent ee value up to 99% and with selectivity factors up to 24.

  4. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U;

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two met...

  5. Mechanistic approaches to palladium-catalyzed alkene difunctionalization reactions

    OpenAIRE

    Jensen, Katrina H.; Sigman, Matthew S.

    2008-01-01

    Alkene difunctionalization, the addition of two functional groups across a double bond, exemplifies a class of reactions with significant synthetic potential. This emerging area examines recent developments of palladium-catalyzed difunctionalization reactions, with a focus on mechanistic strategies that allow for functionalization of a common palladium alkyl intermediate.

  6. A Palladium-catalyzed Synthesis of 2-Substituted Indoles

    OpenAIRE

    Kasahara, Akira; YANAI, Hiroshi; Murakami, Satoshi

    1986-01-01

    Abstract In the presence of palladium (II) acetate, tri-o-tolylphosphine, and triethylamine, o-bromoaniline derivatives react readily with olefins such as ethylene, 1-hexene, styrene, ethyl acrylate, and acrylonitriIe, to produce o-alkenylaniline derivatives. A palladium (II) -catalyzed cyclization of o-alkenylaniline p-toluenesulfonamide led to a formation of a number of 1-tosylindole derivatives.

  7. Metal-Catalyzed Cleavage of tRNA[superscript Phe

    Science.gov (United States)

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students assay metal-catalyzed hydrolysis of tRNA[superscript Phe]…

  8. Gal3 Catalyzed Tetrahydropyranylation of Alcohols and Phenols

    Institute of Scientific and Technical Information of China (English)

    SUN, Pei-Pei(孙培培); HU, Zhi-Xin(胡志新)

    2004-01-01

    In dichloromethane, the nucleophilic addition of alcohols or phenols to 3,4-dihydro-2H-pyran (DHP) was catalyzed effectively by gallium triiodide which was generated in situ by the reaction of gallium metal and iodine to give the corresponding tetrahydropyranyl acetals in good to excellent yields.

  9. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 400C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  10. Palladium(0)-catalyzed methylenecyclopropanation of norbornenes with vinyl bromides.

    Science.gov (United States)

    Mao, Jiangang; Bao, Weiliang

    2014-05-16

    Highly strained methylenecyclopropane derivatives have been achieved via a novel and efficient Pd(0)-catalyzed domino reaction. The formal [2 + 1] cycloaddition reaction of vinyl bromides to norbornenes involves a Heck-type coupling and a C(sp(2))-H bond activation. PMID:24784731

  11. Inhibition of acetyl-CoA carboxylase by cystamine may mediate the hypotriglyceridemic activity of pantethine.

    Science.gov (United States)

    McCarty, M F

    2001-03-01

    Pantethine is a versatile and well-tolerated hypolipidemic agent whose efficacy in this regard appears to be mediated by its catabolic product cystamine, a nucleophile which avidly attacks disulfide groups. An overview of pantethine research suggests that the hypotriglyceridemic activity of pantethine reflects cystamine-mediated inhibition of the hepatic acetyl-CoA carboxylase, which can be expected to activate hepatic fatty acid oxidation. Inhibition of HMG-CoA reductase as well as a more distal enzyme in the cholesterol synthetic pathway may account for pantethine's hypocholesterolemic effects. If pantethine does indeed effectively inhibit hepatic acetyl-CoA carboxylase, it may have adjuvant utility in the hepatothermic therapy of obesity. As a safe and effective compound of natural origin, pantethine merits broader use in the management of hyperlipidemias. PMID:11359352

  12. Bromodomains: Translating the words of lysine acetylation into myelin injury and repair.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2016-06-20

    Bromodomains are evolutionarily highly conserved α-helical structural motifs that recognize and bind acetylated lysine residues. Lysine acetylation is being increasingly recognized as a major posttranslational modification involved in diverse cellular processes and protein interactions and its deregulation has been implicated in the pathophysiology of various human diseases, such as multiple sclerosis and cancer. Bromodomain-containing proteins can have a wide variety of functions, ranging from histone acetyltransferase activity and chromatin remodeling to transcriptional mediation and co-activation. The role of bromodomains in translating a deregulated cell acetylome into disease phenotypes was recently unveiled by the development of small molecule bromodomain inhibitors. This breakthrough discovery highlighted bromodomain-containing proteins as key players of inflammatory pathways responsible for myelin injury and also demonstrated their role in several aspects of myelin repair including oligodendrocyte differentiation and axonal regeneration. PMID:26472704

  13. Synthesis and Molecular Structure of 1-Acetyl-1-(4-iodophenyl)-3-cyclohexylurea

    Institute of Scientific and Technical Information of China (English)

    QIAN Qiu-Feng; ZOU Jian-Ping; MU Xue-Jun; ZENG Run-Sheng

    2006-01-01

    The title compound 1-acetyl-1-(4-iodophenyl)-3-cyclohexylurea 1 (C15H19IN2O2, Mr = 386.22) has been synthesized and its crystal structure was determined by X-ray diffraction analysis. It crystallizes in orthorhombic, space group Pbca, a =15.4754(16), b = 11.4284(11), c = 17.829(2) (A),Z = 8, V = 3153.2(6)(A)3, Dc= 1.627 mg/m3, μ(MoKα) = 2.034 mm-1, F(000) = 1536, the final R = 0.0276 and wR = 0.0593 for 2805 observed reflections (I > 2σ(I)). X-ray analysis reveals that cyclohexyl ring adopts a chair conformation, with the cyclohexyl group located at the 3-position of urea, and the acetyl and 4-iodophenyl groups at the 1-position.

  14. Stereoselective Luche reduction of deoxynivalenol and three of its acetylated derivatives at C8.

    Science.gov (United States)

    Fruhmann, Philipp; Hametner, Christian; Mikula, Hannes; Adam, Gerhard; Krska, Rudolf; Fröhlich, Johannes

    2014-01-01

    The trichothecene mycotoxin deoxynivalenol (DON) is a well known and common contaminant in food and feed. Acetylated derivatives and other biosynthetic precursors can occur together with the main toxin. A key biosynthetic step towards DON involves an oxidation of the 8-OH group of 7,8-dihydroxycalonectrin. Since analytical standards for the intermediates are not available and these intermediates are therefore rarely studied, we aimed for a synthetic method to invert this reaction, making a series of calonectrin-derived precursors accessible. We did this by developing an efficient protocol for stereoselective Luche reduction at C8. This method was used to access 3,7,8,15-tetrahydroxyscirpene, 3-deacetyl-7,8-dihydroxycalonectrin, 15-deacetyl-7,8-dihydroxycalonectrin and 7,8-dihydroxycalonectrin, which were characterized using several NMR techniques. Beside the development of a method which could basically be used for all type B trichothecenes, we opened a synthetic route towards different acetylated calonectrins. PMID:24434906

  15. (E-(25S-23-Acetyl-5β-furost-22-ene-3β,26-diol

    Directory of Open Access Journals (Sweden)

    Sylvain Bernès

    2008-03-01

    Full Text Available The title steroid, C29H46O4, is a furostene derivative with a C=C double-bond length of 1.353 (3 Å and an E configuration. The side chain is oriented toward the α face of the A–E steroidal nucleus and presents a disordered terminal CH2—OH group [occupancies for resolved sites are 0.591 (9 and 0.409 (9]. The methyl group at C20 attached to ring E is also oriented toward the α face, avoiding steric hindrance with the carbonyl O atom of the acetyl group. The furostene and acetyl functionalities form an α,β-unsaturated ketone system, with an s-cis configuration. All hydroxy and carbonyl groups are involved in weak intermolecular hydrogen bonds. The absolute configuration was assigned from the synthesis.

  16. CHITOSAN SOLUTIONS WITH DIFFERENT DEGREES OF ACETYLATION AS COATING ON CUT APPLE

    Directory of Open Access Journals (Sweden)

    Douglas de BRITTO

    2012-01-01

    Full Text Available In this study we analyzed the protective properties of different types of chitosan on minimally processed apples, concerning water loss, surface color changes and antifungal activity. Seven different chitosanbased formulations with variable molecular weight and degrees of acetylation were prepared and used to coat sliced apples which were stored in a greenhouse at 28o C and RH 80%. The coatings, with concentration of 2.0g/L, independent of chitosan type, had no significant effect in protecting the samples against loss of mass by water vapor permeation. Along the storage time, all samples resulted in similar dehydration. Gradual browning was observed in cut fruit, whereas chitosan did not maintain natural color of the cut surfaces. Concerning antifungal activity, chitosans with low molecular weight and low degree of acetylation was the best formulation, reducing in around 50% the fungal incidence after 10 days of storage.

  17. Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films

    Directory of Open Access Journals (Sweden)

    Laura Alicia Manjarrez Nevárez, Lourdes Ballinas Casarrubias, Alain Celzard, Vanessa Fierro, Vinicio Torres Muñoz, Alejandro Camacho Davila, José Román Torres Lubian and Guillermo González Sánchez

    2011-01-01

    Full Text Available We have prepared all-biopolymer nanocomposite films using lignin as a filler and cellulose triacetate (CTA as a polymer matrix, and characterized them by several analytical methods. Three types of lignin were tested: organosolv, hydrolytic and kraft, with or without acetylation. They were used in the form of nanoparticles incorporated at 1 wt% in CTA. Self-supported films were prepared by vapor-induced phase separation at controlled temperature (35–55 °C and relative humidity (10–70%. The efficiency of acetylation of each type of lignin was studied and discussed, as well as its effects on film structure, homogeneity and mechanical properties. The obtained results are explained in terms of intermolecular filler-matrix interaction at the nanometer scale, for which the highest mechanical resistance was reached using hydrolytic lignin in the nanocomposite.

  18. In vivo N-acetyl cysteine reduce hepatocyte death by induced acetaminophen

    Science.gov (United States)

    Lin, Chih-Ju; Li, Feng-Chieh; Wang, Sheng-Shun; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2011-07-01

    Acetaminophen (APAP) is the famous drug in global, and taking overdose Acetaminophen will intake hepatic cell injure. Desptie substantial progress in our understanding of the mechanism of hepatocellular injury during the last 40 years, many aspects of the pathophysiology are still unknown or controversial.1 In this study, mice are injected APAP overdose to damage hepatocyte. APAP deplete glutathione and ATP of cell, N-Acetyl Cysteine (NAC) plays an important role to protect hepatocytes be injury. N-Acetyl Cysteine provides mitochondrial to produce glutathione to release drug effect hepatocyte. By 6-carboxyfluorescein diacetate (6-CFDA) metabolism in vivo, glutathione keep depleting to observe the hepatocyte morphology in time. Without NAC, cell necrosis increase to plasma membrane damage to release 6-CFDA, that's rupture. After 6-CFDA injection, fluorescence will be retained in hepatocyte. For cell retain with NAC and without NAC are almost the same. With NAC, the number of cell rupture decreases about 75%.

  19. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    Science.gov (United States)

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  20. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    Science.gov (United States)

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)