WorldWideScience

Sample records for catalyzed alkene-alkyne coupling

  1. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods.

    Science.gov (United States)

    Denmark, Scott E; Regens, Christopher S

    2008-11-18

    In the panoply of modern synthetic methods for forming carbon-carbon and carbon-heteroatom bonds, the transition metal-catalyzed cross-coupling of organometallic nucleophiles with organic electrophiles enjoys a preeminent status. The preparative utility of these reactions is, in large measure, a consequence of the wide variety of organometallic donors that have been conscripted into service. The most common of these reagents are organic derivatives of tin, boron, and zinc, which each possess unique advantages and shortcomings. Because of their low cost, low toxicity, and high chemical stability, organosilanes have emerged as viable alternatives to the conventional reagents in recent years. However, unlike the tin- and zinc-based reactions, which require no activation, or the boron-based reactions, which require only heating with mild bases, silicon-based cross-coupling reactions often require heating in the presence of a fluoride source; this has significantly hampered the widespread acceptance of organosilanes. To address the "fluoride problem", we have introduced a new paradigm for palladium-catalyzed, silicon-based cross-coupling reactions that employs organosilanols, a previously underutilized class of silicon reagents. The use of organosilanols either in the presence of Brønsted bases or as their silanolate salts represents a simple and mild alternative to the classic fluoride-based activation method. Organosilanols are easily available by many well-established methods for introducing carbon-silicon bonds onto alkenes, alkynes, and arenes and heteroarenes. Moreover, we have developed four different protocols for the generation of alkali metal salts of vinyl-, alkenyl-, alkynyl-, aryl-, and heteroarylsilanolates: (1) reversible deprotonation with weak Brønsted bases, (2) irreversible deprotonation with strong Brønsted bases, (3) isolation of the salts from irreversible deprotonation, and (4) silanolate exchange with disiloxanes. We have demonstrated the

  2. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  3. Palladium-catalyzed coupling reactions

    CERN Document Server

    Molnár, Árpád

    2013-01-01

    This handbook and ready reference brings together all significant issues of practical importance for interested readers in one single volume. While covering homogeneous and heterogeneous catalysis, the text is unique in focusing on such important aspects as using different reaction media, microwave techniques or catalyst recycling. It also provides a comprehensive treatment of modern-day coupling reactions and emphasizes those topics that show potential for future development, such as continuous flow systems, water as a reaction medium, and catalyst immobilization, among others. With i

  4. Organic Transformations Catalyzed by N-Heterocyclic Carben e-Metal Complexes%以N-杂环卡宾为配体的金属络合物催化有机合成的反应

    Institute of Scientific and Technical Information of China (English)

    李林涛; 麻生明

    2001-01-01

    Reactions catalyzed by N-heterocyclic carbene-metal complexes, such as ol efin metathesis, coupling reaction, hydrosilylation reaction, etc. were revi ewed.   Ruthenium (II) complexes bearing one or two imidazolin-2-ylidene ligands are h ighly active catalysts for all types of ring closing metathesis reactions. Impor tantly, they even allow the formation of tetrasubstituted alkenes that were not previously achieved by ruthenium-phosphine metathesis catalysts. In addition, f unctionalized olefins were synthesized by intermolecular cross-metathesis and r ing-closing metathesis.   Palladium(0) complexes of imidazolin-2-ylidenes (19) could not catalyze the coupling of p-chlorotoluene and phenylboronic acid. However, a system consists of a Pd(0) precursor and dihydroimidazoline carbene ligand, wh ich is generated in situ, showed high activity for Suzuki cross-coupling re action of aryl chlorides with arylboronic acids, Kumada cross-coupling reaction of aryl chlorides with aryl Grignard reagents and amination of aryl chlorides.   Complexes of the (NHC)Pd(PR3)I2-type with bulky N-heterocyclic carbene s (NHC) are efficient catalysts for the Suzuki and Stille cross-coupling reacti ons, etc.   Imidazolidin-2-ylidene derivatives of rhodium(I) and ruthenium(II) catalyze t he carbon-carbon coupling of terminal alkynes, the cyclopropanation reactions o f diazoalkane derivatives with styrene, hydrosilylation of alkenes, alkynes, keto nes and hydrogenation of olefins.%综述了近几年来以N-杂环卡宾 为配体的金属络合物催化有机合成的反应。

  5. Recent advances in copper-catalyzed asymmetric coupling reactions

    Directory of Open Access Journals (Sweden)

    Fengtao Zhou

    2015-12-01

    Full Text Available Copper-catalyzed (or -mediated asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds.

  6. Ligand-guided pathway selection in nickel-catalyzed couplings of enals and alkynes.

    Science.gov (United States)

    Li, Wei; Montgomery, John

    2012-01-28

    Nickel-catalyzed couplings of enals and alkynes utilizing triethylborane as the reducing agent illustrate a significant dependence on ligand structure. Simple variation of monodentate phosphines allows selective access to alkylative couplings or reductive cycloadditions, while further variation of reaction conditions provides clean access to reductive couplings and redox-neutral couplings.

  7. Palladium-catalyzed Cascade Cyclization-Coupling Reaction of Benzyl Halides with N,N-Diallylbenzoylamide

    Institute of Scientific and Technical Information of China (English)

    Yi Min HU; Yu ZHANG; Jian Lin HAN; Cheng Jian ZHU; Yi PAN

    2003-01-01

    A novel type of palladium-catalyzed cascade cyclization-coupling reaction has been found. Reaction of N, N-diallylbenzoylamide 1 with benzyl halides 2 afforded the corresponding dihydropyrroles 3 in moderate to excellent yields.

  8. Regioselective Palladium-Catalyzed Cross-Coupling Reactions of 2,4,7-Trichloroquinazoline.

    Science.gov (United States)

    Wipf, Peter; George, Kara M

    2010-03-01

    The regioselective palladium-catalyzed cross-coupling reactions of 2,4,7-trichloroquinazoline with various aryl- and heteroarylboronic acids are reported. An efficient, sequential strategy was developed that provides access to novel, functionalized heterocycles.

  9. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    Science.gov (United States)

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed.

  10. Ammonium Chloride Promoted Palladium-Catalyzed Ullmann Coupling of Aryl Bromide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 梁云; 刘文杰; 唐石; 谢叶香

    2004-01-01

    In water, ammonium chloride was found to promote palladium-catalyzed Ullmann coupling reactions of aryl bromides. In the presence of Pd/C, zinc, NH4Cl, and water, coupling of various aryl bromides was carried out smoothly to afford the corresponding homocoupling products in moderate yields.

  11. Gold(III)-catalyzed three-component coupling reaction (TCC) selective toward furans.

    Science.gov (United States)

    Li, Jian; Liu, Li; Ding, Dong; Sun, Jiangtao; Ji, Yangxuan; Dong, Jialing

    2013-06-01

    An efficient three-component coupling reaction toward a variety of furan derivatives has been developed. This cascade transformation proceeds via the gold-catalyzed coupling reaction of phenylglyoxal derivatives, secondary amines, and terminal alkynes, under the reaction conditions, that undergoes cyclization into the furan core.

  12. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  13. Palladium-catalyzed Coupling between Aryl Halides and Trimethylsilylacetylene Assisted by Dimethylaminotrimethyltin

    Institute of Scientific and Technical Information of China (English)

    Cai Liangzhen; Yang Dujuan; Sun Zhonghua; Tao Xiaochun; Cai Lisheng; Pike Victor W

    2011-01-01

    Palladium-catalyzed coupling between aryl halides, especially less reactive ones or N-heteroaryls, and trimethylsilylacetylene in the presence of dimethylaminotrimethyltin generated the coupled products in high yields. The reaction does not need CuI and base as auxiliary agents.

  14. Sn-free Ni-catalyzed reductive coupling of glycosyl bromides with activated alkenes.

    Science.gov (United States)

    Gong, Hegui; Andrews, R Stephen; Zuccarello, Joseph L; Lee, Stephen J; Gagné, Michel R

    2009-02-19

    A mild, stereoselective method for the Ni-catalyzed synthesis of alpha-C-alkylglycosides is reported. This approach entails the reductive coupling of glycosyl bromides with activated alkenes at room temperature, with low alkene loading as an important feature. Diastereoselective coupling with 2-substituted acrylate derivatives was made possible through the use of 2,4-dimethyl-3-pentanol as a proton source.

  15. Heteroaromatic sulfonates and phosphates as electrophiles in iron-catalyzed cross-couplings.

    Science.gov (United States)

    Gøgsig, Thomas M; Lindhardt, Anders T; Skrydstrup, Troels

    2009-11-01

    Employment of heteroaromatic tosylates and phosphates as suitable electrophiles in iron-catalyzed cross-coupling reactions with alkyl Grignard reagents is reported. These reactions are performed at low temperature allowing good functional group tolerance and full conversion is achieved within minutes. In addition, an aryl-aryl cross-coupling utilizing a heteroaryl sulfamate electrophile is reported.

  16. The Use of Tertiary Alkylmagnesium Nucleophiles in Ni-Catalyzed Cross-Coupling Reactions.

    Science.gov (United States)

    Joshi-Pangu, Amruta; Biscoe, Mark R

    2012-05-14

    Nickel-catalyzed cross-coupling reactions of unactivated tertiary alkyl nucleophiles and aryl bromides have been developed using N-heterocyclic carbene ligands. These processes are reviewed alongside earlier attempts to employ unactivated tertiary alkyl nucleophiles in cross-coupling reactions. Potential mechanisms for the transformations, and future challenges in this field are discussed.

  17. Heterogeneous Palladium Chloride Catalyzed Ligand-free Suzuki-Miyaura Coupling Reactions at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Min; WANG Lei

    2008-01-01

    A mild and efficient ligand-free Suzuki-Miyaura coupling reaction catalyzed by heterogeneous palladium chloride was developed at room temperature in a short reaction time under air atmosphere.Various phenyl iodides,bromides and activated chlorides were coupled with sodium tetraphenylborate or phenylboronic acids efficiently to afford the corresponding cross-coupled products in good to excellent yields.Furthermore,the catalyst could be recycled up to four times without loss of its activity.

  18. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  19. Palladium-catalyzed homo-coupling of boronic acids with supported reagents in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Lei Zhou; Qiu Xiang Xu; Huan Feng Jiang

    2007-01-01

    Palladium-catalyzed homo-coupling of arylboronic acids could proceed smoothly with a commercially available resin functionlised by phosphino or amino group as the ligand in supercritical carbon dioxide thereby offering a simple and efficient protocol for the synthesis of symmetrical bi-aryl molecules and their higher homologues.

  20. Palladium Catalyzed Suzuki Cross-coupling Reaction in Molten Tetra-n-butylammonium Bromide

    Institute of Scientific and Technical Information of China (English)

    ZOU, Yue(邹岳); WANG, Quan-Rui(王全瑞); TAO, Feng-Gang(陶凤岗); DING, Zong-Biao(丁宗彪)

    2004-01-01

    A practical procedure for palladium catalyzed Suzuki cross-coupling reaction of arylboronic acids with aryl halides, including aryl chlorides in molten tetra-n-butylammonium bromide (TBAB) was developed. The reaction exhibits high efficiency and functional group tolerance. The recovery of the catalyst and molten n-Bu4NBr was also investigated.

  1. Copper and amine free Sonogashira cross-coupling reaction catalyzed by efficient diphosphane-palladium catalyst

    Institute of Scientific and Technical Information of China (English)

    Ting He; Lei Lei Wu; Xing Li Fu; Hai Yan Fu; Hua Chen; Rui Xiang Li

    2011-01-01

    The commercially available diphosphane ligand MeO-BIPHEP was first investigated in the palladium-catalyzed Sonogashira reaction in the absence of copper and amine. The coupling of various aryl bromides and aryl chlorides with phenylacetylene gave moderate to excellent yields.

  2. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates

    KAUST Repository

    Fang, Xin

    2013-07-01

    The direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates gave the desired products of fluorinated biaryls in good to excellent yields. A diverse set of important functional groups including methoxy, aldehyde, ester, nitro and halide can be well tolerated in the protocol. © 2013 Elsevier B.V. All rights reserved.

  3. Palladium-catalyzed cross-coupling reactions of allylic halides and acetates with indium organometallics.

    Science.gov (United States)

    Rodríguez, David; Pérez Sestelo, José; Sarandeses, Luis A

    2004-11-12

    The palladium(0)-catalyzed cross-coupling reaction of allylic halides and acetates with indium organometallics is reported. In this synthetic transformation, triorganoindium compounds and tetraorganoindates (aryl, alkenyl, and methyl) react with cinnamyl and geranyl halides and acetates to afford the S(N)2 product regioselectively and in good yield. The reaction proceeds with net inversion of the stereochemical configuration.

  4. DFT Investigation of the Palladium-Catalyzed Ene-Yne Coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Tanner, David Ackland; Skrydstrup, T.;

    2010-01-01

    The mechanism of the recently developed palladium-catalyzed ene-yne coupling has been evaluated by DFT methods. The calculations validate the previously proposed reaction mechanism and explain the stereoselectivity of the reaction (exclusive formation of the E isomer of the disubstituted alkene...

  5. Synthesis of Unsymmetrical Heterobiaryls Using palladium-catalyzed cross-coupling reactions of lithium organozincates

    OpenAIRE

    Seggio, Anne; Jutand, Anny; Priem, Ghislaine; Mongin, Florence

    2008-01-01

    International audience; Several unsymmetrical heterobiaryls have been synthesized through palladium-catalyzed cross-coupling reactions of lithium triorganozincates. The latter have been prepared by deprotonative lithiation followed by transmetalation using non hygroscopic ZnCl2*TMEDA (1/3 equiv).

  6. Why You Really Should Consider Using Palladium-Catalyzed Cross-Coupling of Silanols and Silanolates

    OpenAIRE

    Denmark, Scott E; Ambrosi, Andrea

    2015-01-01

    The transition metal-catalyzed cross-coupling of organometallic nucleophiles derived from tin, boron, and zinc with organic electrophiles enjoys a preeminent status among modern synthetic methods for the formation of carbon-carbon bonds. In recent years, organosilanes have emerged as viable alternatives to the conventional reagents, with the added benefits of low cost, low toxicity and high chemical stability. However, silicon-based cross-coupling reactions often require heating in the presen...

  7. Iron-Catalyzed Regioselective Transfer Hydrogenative Couplings of Unactivated Aldehydes with Simple Alkenes.

    Science.gov (United States)

    Zheng, Yan-Long; Liu, Yan-Yao; Wu, Yi-Mei; Wang, Yin-Xia; Lin, Yu-Tong; Ye, Mengchun

    2016-05-17

    An FeBr3 -catalyzed reductive coupling of various aldehydes with alkenes that proceeds through a direct hydride transfer pathway has been developed. With (i) PrOH as the hydrogen donor under mild conditions, previously challenging coupling reactions of unactivated alkyl and aryl aldehydes with simple alkenes, such as styrene derivatives and α-olefins, proceeded smoothly to furnish a diverse range of functionalized alcohols with complete linear regioselectivity.

  8. Advances in Metal-Catalyzed Cross-Coupling Reactions of Halogenated Quinazolinones and Their Quinazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2014-10-01

    Full Text Available Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon–carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives.

  9. Nickel-catalyzed cross-electrophile coupling of 2-chloropyridines with alkyl bromides.

    Science.gov (United States)

    Everson, Daniel A; Buonomo, Joseph A; Weix, Daniel J

    2014-01-01

    The synthesis of 2-alkylated pyridines by the nickel-catalyzed cross-coupling of two different electrophiles, 2-chloropyridines with alkyl bromides, is described. Compared to our previously published conditions for aryl halides, this method uses the different, more rigid bathophenanthroline ligand and is conducted at high concentration in DMF solvent. The method displays promising functional group compatibility and the conditions are orthogonal to the Stille coupling.

  10. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase.

    Science.gov (United States)

    Yang, Zhi-Yong; Moure, Vivian R; Dean, Dennis R; Seefeldt, Lance C

    2012-11-27

    A doubly substituted form of the nitrogenase MoFe protein (α-70(Val)(→Ala), α-195(His→Gln)) has the capacity to catalyze the reduction of carbon dioxide (CO(2)) to yield methane (CH(4)). Under optimized conditions, 1 nmol of the substituted MoFe protein catalyzes the formation of 21 nmol of CH(4) within 20 min. The catalytic rate depends on the partial pressure of CO(2) (or concentration of HCO(3)(-)) and the electron flux through nitrogenase. The doubly substituted MoFe protein also has the capacity to catalyze the unprecedented formation of propylene (H(2)C = CH-CH(3)) through the reductive coupling of CO(2) and acetylene (HC≡CH). In light of these observations, we suggest that an emerging understanding of the mechanistic features of nitrogenase could be relevant to the design of synthetic catalysts for CO(2) sequestration and formation of olefins.

  11. Application of quinoxaline based diimidazolium salt in palladium catalyzed cross-coupling reactions

    Indian Academy of Sciences (India)

    Mujahuddin M Siddiqui; Mohammed Waheed; Sajad A Bhat; Maravanji S Balakrishna

    2015-05-01

    The reaction of 2,3-bis(bromomethyl)quinoxaline with imidazole afforded the quinoxaline bridged diimidazolium salt (1) in good yield. Diimidazolium salt (1) in conjunction with Pd(OAc)2 was employed as a catalyst for C–C cross-coupling reactions. The diimidazolium salt was found to be efficient in catalyzing Suzuki-Miyaura cross-coupling reaction in ethanol under ambient conditions. Moderate to good selectivity of the trans product was observed in the Heck cross-coupling reaction. The molecular structure of 1 was confirmed by single crystal X-ray diffraction study.

  12. NOx Catalyzed Pathway of Stratospheric Ozone Depletion: A Coupled Cluster Investigation.

    Science.gov (United States)

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2012-06-12

    We report a theoretical investigation on the NOx catalyzed pathways of stratospheric ozone depletion using highly accurate coupled cluster methods. These catalytic reactions represent a great challenge to state-of-the-art ab initio methods, while their mechanisms remain unclear to both experimentalists and theoreticians. In this work, we have used the so-called "gold standard of quantum chemistry," the CCSD(T) method, to identify the saddle points on NOx-based reaction pathways of ozone hole formation. Energies of the saddle points are calculated using the multireference variants of coupled cluster methods. The calculated activation energies and rate constants show good agreement with available experimental results. Tropospheric precursors to stratospheric NOx radicals have been identified, and their potential importance in stratospheric chemistry has been discussed. Our calculations resolve previous conflicts between ab initio and experimental results for a trans nitro peroxide intermediate, in the NOx catalyzed pathway of ozone depletion.

  13. A General Palladium-Catalyzed Hiyama Cross-Coupling Reaction of Aryl and Heteroaryl Chlorides.

    Science.gov (United States)

    Yuen, On Ying; So, Chau Ming; Man, Ho Wing; Kwong, Fuk Yee

    2016-05-01

    A general palladium-catalyzed Hiyama cross-coupling reaction of aryl and heteroaryl chlorides with aryl and heteroaryl trialkoxysilanes by a Pd(OAc)2 /L2 catalytic system is presented. A newly developed water addition protocol can dramatically improve the product yields. The conjugation of the Pd/L2 system and the water addition protocol can efficiently catalyze a broad range of electron-rich, -neutral, -deficient, and sterically hindered aryl chlorides and heteroaryl chlorides with excellent yields within three hours and the catalyst loading can be down to 0.05 mol % Pd for the first time. Hiyama coupling of heteroaryl chlorides with heteroaryl silanes is also reported for the first time. The reaction can be easily scaled up 200 times (100 mmol) without any degasification and purification of reactants; this facilitates the practical application in routine synthesis.

  14. Palladium-Catalyzed Suzuki-Miyaura Type Coupling Reaction of Aryl Halides with Triphenylborane-Pyridine

    Institute of Scientific and Technical Information of China (English)

    杨明华; 顾勇冰; 王艳; 赵玺玉; 严国兵

    2012-01-01

    The Suzuki-Miyaura type coupling reaction of aryl halides with triphenylborane-pyridine was described. The reaction can be catalyzed by Pd(OAc)2 (5 mol%) in presence of Cs2CO3 at 50 ℃ or 80 ℃, and functionalized biaryls were obtained in good to excellent yields. This protocol is general and can tolerate a wide range of func- tional groups.

  15. Recyclable Polystyrene-Supported Siloxane-Transfer Agent for Palladium-Catalyzed Cross-Coupling Reactions

    Science.gov (United States)

    2015-01-01

    The rational design, synthesis, and validation of a significantly improved insoluble polymer-supported siloxane-transfer agent has been achieved that permits efficient palladium-catalyzed cross-coupling reactions. The cross-linked polystyrene support facilitates product purification with excellent siloxane recycling. Drawbacks of a previous polymer-supported siloxane-transfer agent, relating to reaction efficiency and polymer stability after repeated cycles, have been addressed. PMID:24661113

  16. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora

    2016-07-21

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  17. A novel copper-catalyzed reductive coupling of N-tosylhydrazones with H-phosphorus oxides.

    Science.gov (United States)

    Wu, Lei; Zhang, Xio; Chen, Qing-Qing; Zhou, An-Kun

    2012-10-21

    We report here a novel C(sp(3))-P bonds formation via copper-catalyzed reductive coupling of N-tosylhydrazones with H-phosphorus oxides. A variety of aliphatic and aromatic substrates bearing electron-rich and electron-deficient substituents affords phosphine oxide derivatives with moderate to good yields. This work suggests a new transformation of aldehydes/ketones via N-tosylhydrazones to organophosphorus compounds.

  18. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    Science.gov (United States)

    2016-01-01

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. PMID:27442851

  19. Silica-supported Copper(Ⅱ) Catalyzed Coupling of Arylboronic Acids with Imidazoles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Yuan; WANG Lei

    2006-01-01

    Immobilized copper(Ⅱ) in organic-inorganic hybrid materials catalyzed Ar-N coupling of arylboronic acids with imidazoles has been developed. Arylboronic acids reacted with imidazoles smoothly in the presence of a 3-(2-aminoethylamino)propyl functionalized silica gel immobilized copper(Ⅱ) catalyst (10 mol%) in methanol without any additives and bases. The reactions generated the corresponding cross-coupling products in good yields.Furthermore, silica-supported copper can be recovered and recycled by a simple filtration procedure and used for five consecutive trials without decreases in activity.

  20. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology.

    Science.gov (United States)

    Liu, Huihui; Chuah, Gaik Khuan; Jaenicke, Stephan

    2015-06-14

    Supported silver catalysts were reported for the first time to be able to catalyze the coupling reaction between nitroarenes and alcohols via the borrowing hydrogen scheme. The recyclable, non-leaching catalyst is synthesized by the entrapment method, which allows entrapping of silver nanoparticles in an alumina matrix. Alcohols, acting as the reducing agents for nitro-groups, alkylated the resultant amines smoothly over these silver catalysts giving a yield of >98% towards the N-substituted amines. In this process, multiple steps were realized in one-pot over a single catalyst with very high efficiency. It offers another clean and economic way to achieve amination of alcohols.

  1. Nickel-catalyzed Electrochemical Coupling of Phenyl Halide and Study of Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Peng; LUO, Yi-Wen; XUE, Teng; ZHANG, Ai-Jian; LU, Jia-Xing

    2006-01-01

    Electrochemical coupling of phenyl halide catalyzed by NiCl2bpy in DMF has been investigated in this paper.Stainless steel was used as cathode and zinc as anode. Effects of potential, temperature and catalyst on electrolyses were studied to optimize the electrolytic conditions, with the maximal isolated yield under potentiostatic electrolysis to be 85%. Cyclic voltammetry of NiCl2bpy in the presence of phenyl bromide has been studied and mechanisms,concerned with several kinds of nickel complex, have been summarized.

  2. Mechanistic insights on platinum- and palladium-pincer catalyzed coupling and cyclopropanation reactions between olefins.

    Science.gov (United States)

    Rajeev, Ramanan; Sunoj, Raghavan B

    2012-07-21

    The mechanism of M(II)-PNP-pincer catalyzed reaction between (i) ethene, (ii) trans-butene with 2-methylbut-2-ene, 2,3-dimethylbut-2-ene and tert-butylbutene is examined by using density functional theory methods (where M = Pt or Pd). All key intermediates and transition states involved in the reaction are precisely located on the respective potential energy surfaces using the popular DFT functionals such as mPW1K, M06-2X, and B3LYP in conjunction with the 6-31+G** basis set. The reaction between these olefins can lead to a linear coupling product or a substituted cyclopropane. The energetic comparison between coupling as well as cyclopropanation pathways involving four pairs of olefins for both platinum (1-4) and palladium (5-8) catalyzed reactions is performed. The key events in the lower energy pathway in the mechanistic course involves (i) a C-C bond formation between the metal bound olefin (ethene or trans-butene) and a free olefin, and (ii) two successive [1,2] hydrogen migrations in the ensuing carbocationic intermediates (1c-4c, and 1d-4d), toward the formation of the coupling product. The computed barriers for these steps in the reaction of metal bound ethene to free tert-butylbutene (or other butenes) are found to be much lower than the corresponding steps when trans-butene is bound to the metal pincer. The Gibbs free energy differences between the transition states leading to the coupling product (TS(d-e)) and that responsible for cyclopropanated product (TS(d-g)) are found to be diminishingly closer in the case of the platinum pincer as compared to that in the palladium system. The computed energetics indicate that the coupled product prefers to remain as a metal olefin complex, consistent with the earlier experimental reports.

  3. Nickel-catalyzed enantioselective cross-couplings of racemic secondary electrophiles that bear an oxygen leaving group.

    Science.gov (United States)

    Oelke, Alexander J; Sun, Jianwei; Fu, Gregory C

    2012-02-15

    To date, effective nickel-catalyzed enantioselective cross-couplings of alkyl electrophiles that bear oxygen leaving groups have been limited to reactions of allylic alcohol derivatives with Grignard reagents. In this Communication, we establish that, in the presence of a nickel/pybox catalyst, a variety of racemic propargylic carbonates are suitable partners for asymmetric couplings with organozinc reagents. The method is compatible with an array of functional groups and utilizes commercially available catalyst components. The development of a versatile nickel-catalyzed enantioselective cross-coupling process for electrophiles that bear a leaving group other than a halide adds a significant new dimension to the scope of these reactions.

  4. Atom-efficient metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles.

    Science.gov (United States)

    Pérez, I; Sestelo, J P; Sarandeses, L A

    2001-05-09

    The novel metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles is described. Triorganoindium compounds (R(3)In) containing alkyl, vinyl, aryl, and alkynyl groups are efficiently prepared from the corresponding lithium or magnesium organometallics by reaction with indium trichloride. The cross-coupling reaction of R(3)In with aryl halides and pseudohalides (iodide 2, bromide 5, and triflate 4), vinyl triflates, benzyl bromides, and acid chlorides proceeds under palladium catalysis in excellent yields and with high chemoselectivity. Indium organometallics also react with aryl chlorides as under nickel catalysis. In the cross-coupling reaction the triorganoindium compounds transfer, in a clear example of atom economy, all three of the organic groups attached to the metal, as shown by the necessity of using only 34 mol % of indium. The feasibility of using R(3)In in reactions with different electrophiles, along with the high yields and chemoselectivities obtained, reveals indium organometallics to be useful alternatives to other organometallics in cross-coupling reactions.

  5. CO2 as Both a Selective Agent and Reaction Media in Palladium-Catalyzed Reductive Ullmann-Type Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Heng李金恒; XIE Ye-Xiang谢叶香

    2004-01-01

    Carbon dioxide as both a selective agent and reaction media in the palladium-catalyzed Ullmann-type coupling has been described. The results showed that aryl chlorides could be easily activated in the presence of carbon dioxide and the chemoselectivity shifted toward the palladium-catalyzed Ullmann-type coupling reaction. In liquid carbon dioxide, homocoupling reactions of aryl halides, including less reactive aryl chlorides, were carried out smoothly in moderate to good yields using Pd/C, zinc, and H2O as the catalytic system at room temperature.

  6. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New palladium-catalyzed cross-coupling routes to carbon functionalized metallatricarbadecaboranes.

    Science.gov (United States)

    Perez-Gavilan, Ariane; Carroll, Patrick J; Sneddon, Larry G

    2012-05-21

    A general method for the synthesis of cage-carbon-functionalized cyclopentadienyl iron and cyclopentadienyl ruthenium tricarbadecaboranyl complexes has been developed that employs palladium-catalyzed Sonogashira, Heck, and Stille cross-coupling reactions directed at a cage-carbon haloaryl substituent. The key Li(+)[6-(p-XC(6)H(4))-nido-5,6,9-C(3)B(7)H(9)(-)] (X = I (1), Br (2), Cl (3)) haloaryl-tricarbadecaboranyl anionic ligands were synthesized in high yields via the reaction of the arachno-4,6-C(2)B(7)H(12)(-) anion with the corresponding p-halobenzonitriles (p-XC(6)H(4)-CN). The reactions of the salts 1-3 with (η(5)-C(5)H(5))Fe(CO)(2)I and (η(5)-C(5)H(5))Ru(CH(3)CN)(3)PF(6) were then used to produce the haloaryl complexes 1-(η(5)-C(5)H(5))-2-(p-XC(6)H(4))-closo-1,2,3,4-MC(3)B(7)H(9) (M = Fe, X = I (4), Br (5), Cl (6) and M = Ru, X = I (7), Br (8), Cl (9)). The sonication-promoted Sonogashira coupling reactions of 4 with terminal alkynes catalyzed by Pd(dppf)(2)Cl(2)/CuI yielded the alkynyl-linked derivatives 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhC≡C)- (10), (CH(3)CH(2)C(O)OCH(2)C≡C)- (11), ((η(5)-C(5)H(5))Fe(η(5)-C(5)H(4)C≡C))- (12)). Heck reactions of 4 with terminal alkenes catalyzed by Pd(OAc)(2) yielded the alkene-functionalized products 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhCH(2)CH═CH)- (13), (CH(3)(CH(2))(2)CH═CH)- (14)), while the Stille cross-coupling reactions of 4 with organotin compounds catalyzed by Pd(PPh(3))(2)Cl(2) afforded the complexes 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = Ph- (15), (CH(2)═CH)- (16), (CH(2)═CHCH(2))- (17)). These reactions thus provide facile and systematic access to a wide variety of new types of functionalized metallatricarbadecaboranyl complexes with substituents needed for potential metallocene-like biomedical and/or optoelectronic applications.

  8. A facile synthesis of terminal arylacetylenes via Sonogashira coupling reactions catalyzed by MCM-41-supported mercapto palladium(0) complex

    Institute of Scientific and Technical Information of China (English)

    Ya Ping Xu; Rong Hua Hu; Ramesh C.Kamboj

    2008-01-01

    A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium(0) complex,followed by desilylation under mild conditions.This polymeric palladium catalyst can be reused many times without any decrease in activity.

  9. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction.

    Science.gov (United States)

    Muntzeck, Maren; Wilhelm, René

    2016-06-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species.

  10. Palladium-catalyzed regioselective intramolecular coupling of o-carborane with aromatics via direct cage B-H activation.

    Science.gov (United States)

    Quan, Yangjian; Xie, Zuowei

    2015-03-18

    Palladium-catalyzed intramolecular coupling of o-carborane with aromatics via direct cage B-H bond activation has been achieved, leading to the synthesis of a series of o-carborane-functionalized aromatics in high yields with excellent regioselectivity. In addition, the site selectivity can also be tuned by the substituents on cage carbon atom.

  11. Inhibition of Homo-coupling of Arylboronic Acids in Ligand Free Pd(Ⅱ)-Catalyzed Suzuki Reaction

    Institute of Scientific and Technical Information of China (English)

    TAO,Xiao-Chun; ZHANG,Yue-Ping; HE,Tian-Xiong; SHEN,Dong

    2007-01-01

    A series of solvents were examined for the ligand free Pd(Ⅱ)-catalyzed Suzuki reaction of 4-bromotoluene with phenylboronic acid. It was found that the PdCl2/i-PrOH system could efficiently inhibit the homo-coupling of phenylboronic acid and give a cross-coupling product in high yields. The substrates with a wide variety of functional groups were tolerated in the system. A possible mechanism for this system was proposed.

  12. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    Science.gov (United States)

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo.

  13. G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?

    Science.gov (United States)

    Roberts, David J; Waelbroeck, Magali

    2004-09-01

    G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).

  14. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  15. Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex.

    Science.gov (United States)

    Yoo, Woo-Jin; Nguyen, Thanh V Q; Kobayashi, Shū

    2014-09-15

    A copper-catalyzed multicomponent coupling reaction between in situ generated ortho-arynes, terminal alkynes, and carbon dioxide was developed to access isocoumarins in moderate to good yields. The key to this CO2-incorporating reaction was the use of a versatile N-heterocyclic carbene/copper complex that was able to catalyze multiple transformations within the three-component reaction.

  16. Decarboxylative-coupling of allyl acetate catalyzed by group 10 organometallics, [(phen)M(CH3)]+.

    Science.gov (United States)

    Woolley, Matthew; Ariafard, Alireza; Khairallah, George N; Kwan, Kim Hong-Yin; Donnelly, Paul S; White, Jonathan M; Canty, Allan J; Yates, Brian F; O'Hair, Richard A J

    2014-12-19

    Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)](+) (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)](+) yields the organometallic complex, [(phen)M(CH3)](+), via decarboxylation. [(phen)M(CH3)](+) reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)](+), with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)](+), occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)](+), are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)](+). The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.

  17. Amide as an efficient ligand in the palladium-catalyzed Suzuki coupling reaction in water/ethanol under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Hai Yang Liu; Kun Wang; Hai Yan Fu; Mao Lin Yuan; Hua Chen; Rui Xiang Li

    2011-01-01

    Amide, which is derived from proline and is inexpensive and air-stable, has been synthesized and characterized by 1H NMR,13C NMR, and MS. It was found to be an efficient ligand in the palladium-catalyzed Suzuki cross-coupling reaction. In the Pd/amide catalytic system, aryl bromides can be coupled with phenylboronic acid in ethanol/water (1:2;v/v) in excellent yields even with a low Pd loading of 0.01 mol%. Moreover, the scope of the reaction is broad, and a wide variety of functional groups are tolerant.

  18. A general Suzuki cross-coupling reaction of heteroaromatics catalyzed by nanopalladium on amino-functionalized siliceous mesocellular foam.

    Science.gov (United States)

    Bratt, Emma; Verho, Oscar; Johansson, Magnus J; Bäckvall, Jan-Erling

    2014-05-02

    Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized siliceous mesocellular foam are presented. The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids but also heteroaryl halides with boronate esters, potassium trifluoroborates, MIDA boronates, and triolborates, producing a wide range of heterobiaryls in good to excellent yields. Furthermore, the heterogeneous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls.

  19. Copper-catalyzed Suzuki-Miyaura coupling of arylboronate esters: transmetalation with (PN)CuF and identification of intermediates.

    Science.gov (United States)

    Gurung, Santosh K; Thapa, Surendra; Kafle, Arjun; Dickie, Diane A; Giri, Ramesh

    2014-02-21

    An efficient Cu(I)-catalyzed Suzuki-Miyaura reaction was developed for the coupling of aryl- and heteroarylboronate esters with aryl and heteroaryl iodides at low catalyst loadings (2 mol %). The reaction proceeds under ligand-free conditions for aryl-heteroaryl and heteroaryl-heteroaryl couplings. We also conducted the first detailed mechanistic studies by synthesizing [(PN-2)CuI]2, [(PN-2)CuF]2, and (PN-2)CuPh (PN-2 = o-(di-tert-butylphosphino)-N,N-dimethylaniline) and demonstrated that [(PN-2)CuF]2 is the species that undergoes transmetalation with arylboronate esters.

  20. Cyclization strategies to polyenes using Pd(II)-catalyzed couplings of pinacol vinylboronates.

    Science.gov (United States)

    Iafe, Robert G; Chan, Daniel G; Kuo, Jonathan L; Boon, Byron A; Faizi, Darius J; Saga, Tomomi; Turner, Jonathan W; Merlic, Craig A

    2012-08-17

    As a complement to Pd(0)-catalyzed cyclizations, seven Pd(II)-catalyzed cyclization strategies are reported. α,ω-Diynes are selectively hydroborated to bis(boronate esters), which cyclize under Pd(II)-catalysis producing a diverse array of small, medium, and macrocyclic polyenes with controlled E,E, Z,Z, or E,Z stereochemistry. Various functional groups are tolerated including aryl bromides, and applications are illustrated.

  1. Titanium-catalyzed multicomponent couplings: efficient one-pot syntheses of nitrogen heterocycles.

    Science.gov (United States)

    Odom, Aaron L; McDaniel, Tanner J

    2015-11-17

    Nitrogen-based heterocycles are important frameworks for pharmaceuticals, natural products, organic dyes for solar cells, and many other applications. Catalysis for the formation of heterocyclic scaffolds, like many C-C and C-N bond-forming reactions, has focused on the use of rare, late transition metals like palladium and gold. Our group is interested in the use of Earth-abundant catalysts based on titanium to generate heterocycles using multicomponent coupling strategies, often in one-pot reactions. To be of maximal utility, the catalysts need to be easily prepared from inexpensive reagents, and that has been one guiding principle in the research. For this purpose, a series of easily prepared pyrrole-based ligands has been developed. Titanium imido complexes are known to catalyze the hydroamination of alkynes, and this reaction has been used to advantage in the production of α,β-unsaturated imines from 1,3-enynes and pyrroles from 1,4-diynes. Likewise, catalyst design can be used to find complexes applicable to hydrohydrazination, coupling of a hydrazine and alkyne, which is a method for the production of hydrazones. Many of the hydrazones synthesized are converted to indoles through Fischer cyclization by addition of a Lewis acid. However, more complex products are available in a single catalytic cycle through coupling of isonitriles, primary amines, and alkynes to give tautomers of 1,3-diimines, iminoamination (IA). The products of IA are useful intermediates for the one-pot synthesis of pyrazoles, pyrimidines, isoxazoles, quinolines, and 2-amino-3-cyanopyridines. The regioselectivity of the reactions is elucidated in some detail for some of these heterocycles. The 2-amino-3-cyanopyridines are synthesized through isolable intermediates, 1,2-dihydro-2-iminopyridines, which undergo Dimroth rearrangement driven by aromatization of the pyridine ring; the proposed mechanism of the reaction is discussed. The IA-based heterocyclic syntheses can be accomplished

  2. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories. PMID:25774064

  3. Direct synthesis of diaryl sulfides by copper-catalyzed coupling of aryl halides with aminothiourea

    Institute of Scientific and Technical Information of China (English)

    Xiang Mei Wu; Wei Ya Hu

    2012-01-01

    An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94% with the advantage of avoiding foul-smelling thiols.

  4. Z-Selective Olefin Synthesis via Iron-Catalyzed Reductive Coupling of Alkyl Halides with Terminal Arylalkynes.

    Science.gov (United States)

    Cheung, Chi Wai; Zhurkin, Fedor E; Hu, Xile

    2015-04-22

    Selective catalytic synthesis of Z-olefins has been challenging. Here we describe a method to produce 1,2-disubstituted olefins in high Z selectivity via reductive cross-coupling of alkyl halides with terminal arylalkynes. The method employs inexpensive and nontoxic catalyst (iron(II) bromide) and reductant (zinc). The substrate scope encompasses primary, secondary, and tertiary alkyl halides, and the reaction tolerates a large number of functional groups. The utility of the method is demonstrated in the synthesis of several pharmaceutically relevant molecules. Mechanistic study suggests that the reaction proceeds through an iron-catalyzed anti-selective carbozincation pathway.

  5. Applications of and alternatives to pi-electron-deficient azine organometallics in metal catalyzed cross-coupling reactions.

    Science.gov (United States)

    Campeau, Louis-Charles; Fagnou, Keith

    2007-07-01

    While the use of pi-deficient azine halides in palladium catalyzed cross-coupling reactions is common, the use of pi-electron deficient azine organometallics has been less intensively examined. In recent years, important advances have been made that are beginning to address this deficiency and need. The purpose of this tutorial review is to highlight and discuss the innovations that facilitate the synthesis of azine-containing biaryls with a focus on the pyridine structural motif. Given the number of important compounds which exhibit azine-heterobiaryls and the wide use of cross-coupling methods in their synthesis, this review should be of interest among synthetic organic chemists and organometallic chemists alike.

  6. Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling

    OpenAIRE

    Denmark, Scott E; Liu, Jack H.-C.

    2010-01-01

    Although developed somewhat later, silicon-based cross-coupling has become a viable alternative to the more conventional Suzuki-Miyaura, Stille-Kosugi-Migita, and Negishi cross-coupling reactions because of its broad substrate scope, high stability of silicon-containing reagents, and low toxicity of waste streams. An empowering and yet underappreciated feature unique to silicon-based cross-coupling is the wide range of sequential processes available. In these processes, simple precursors are ...

  7. Microwave-Assisted Cross-Coupling Reaction of Sodium Tetraphenylboratewith Carboxylic Anhydrides Catalyzed by Palladium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Quan; WANG Jin-Xian; WANG Ke-Hu; ZHAO Lian-Biao

    2003-01-01

    @@ Cross-coupling processes of aryl or alkenyl halides with organometallic compounds of main group elements cat alyzed by palladium complexes have been found extensive use in organic synthesis. These cross-coupling reactions offer a powerful tool for the formation of carbon-carbon bonds. [1] The Suzuki-Miyaura cross-coupling reaction has been employed for the synthesis of ketone as well.

  8. Nickel-catalyzed cross-coupling of aryl phosphates with arylboronic acids.

    Science.gov (United States)

    Chen, Hu; Huang, Zhongbin; Hu, Xiaoming; Tang, Guo; Xu, Pengxiang; Zhao, Yufen; Cheng, Chien-Hong

    2011-04-01

    The Suzuki-Miyaura cross-coupling of aryl phosphates using Ni(PCy(3))(2)Cl(2) as an inexpensive, bench-stable catalyst is described. Broad substrate scope and high efficiency are demonstrated by the syntheses of more than 40 biaryls and by constructing complex organic molecules. The poor reactivity of aryl phosphates relative to aryl halides is successfully employed to construct polyarenes by selective cross-coupling using Pd and Ni catalysts.

  9. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  10. N-heterocyclic carbene-assisted, bis(phosphine)nickel-catalyzed cross-couplings of diarylborinic acids with aryl chlorides, tosylates, and sulfamates.

    Science.gov (United States)

    Ke, Haihua; Chen, Xiaofeng; Zou, Gang

    2014-08-01

    Efficient bis(phosphine)nickel-catalyzed cross-couplings of diarylborinic acids with aryl chlorides, tosylates, and sulfamates have been effected with an assistance of N-heterocyclic carbene (NHC) generated in situ from N,N'-dialkylimidazoliums, e.g., N-butyl-N'-methylimidazolium bromide ([Bmim]Br), in toluene using K3PO4·3H2O as base. In contrast to bis(NHC)nickel-catalyzed conventional Suzuki coupling of arylboronic acids, mono(NHC)bis(phosphine)nickel species generated in situ from Ni(PPh3)2Cl2/[Bmim]Br displayed high catalytic activities in the cross-couplings of diarylborinic acids. The structural influences from diarylborinic acids were found to be rather small, while electronic factors from aryl chlorides, tosylates, and sulfamates affected the couplings remarkably. The couplings of electronically activated aryl chlorides, tosylates, and sulfamates could be efficiently effected with 1.5 mol % NiCl2(PPh3)2/[Bmim]Br as catalyst precursor to give the biaryl products in excellent yields, while 3-5 mol % loadings had to be used for the couplings of non- and deactivated ones. A small ortho-substitutent on the aromatic ring of aryl chlorides, tosylates, and sulfamates was tolerable. Applicability of the nickel-catalyzed cross-couplings in practical synthesis of fine chemicals has been demonstrated in process development for a third-generation topical retinoid, Adapalene.

  11. Ruthenium-catalyzed C-C coupling of fluorinated alcohols with allenes: dehydrogenation at the energetic limit of β-hydride elimination.

    Science.gov (United States)

    Sam, Brannon; Luong, Tom; Krische, Michael J

    2015-04-27

    Ruthenium(II) complexes catalyze the CC coupling of 1,1-disubstituted allenes and fluorinated alcohols to form homoallylic alcohols bearing all-carbon quaternary centers with good to complete levels of diastereoselectivity. Whereas fluorinated alcohols are relatively abundant and tractable, the corresponding aldehydes are often not commercially available because of their instability.

  12. Pd(OAc)2 catalyzed synthesis of heteroaryl-substituted 1,8-naphthyridine derivatives via C-N-coupling reactions of chloronaphthyridines

    Institute of Scientific and Technical Information of China (English)

    Shou Wen Jin; Bin Liu; Wan Zhi Chen

    2007-01-01

    An efficient route to synthesize the heteroaryl-substituted 1,8-naphthyridine derivatives was described. Eight 2-heteroaryl- and 2,7-diheteroaryl-l,8-naphthyridine derivatives were obtained through palladium-catalyzed C-N-coupling reactions of chloronaphthyridines with imidazole, benzimidazole, morpholine, 3,5-dimethylpyrazole, and phthalimide in moderate to good yields.

  13. Site-specific indolation of proline-based peptides via copper(II)-catalyzed oxidative coupling of tertiary amine N-oxides.

    Science.gov (United States)

    Wu, Xiaowei; Zhang, Dengyou; Zhou, Shengbin; Gao, Feng; Liu, Hong

    2015-08-14

    The first site-specific and purely chemical method for modifying proline-based peptides was developed via a convenient, copper-catalyzed oxidative coupling of tertiary amine N-oxides with indoles. This novel approach features high regioselectivity and diastereoselectivity, mild conditions, and compatibility with various functional groups. In addition, a simplified process was realized in one pot and two steps via in situ oxidative coupling of tertiary amine and indoles.

  14. Coupling of Carbon Dioxide with Epoxides Catalyzed by Amino Acid Hydrochloride Salts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using amino acid hydrochloride salt as a catalyst, the coupling reaction of CO2 with epoxides could proceed smoothly to give cyclic carbonates in very good yields and high selectivity. The reaction conditions such as the pressure of carbon dioxide, reaction temperature, time and catalyst loading were carefully investigated.

  15. Facile palladium catalyzed Suzuki-Miyaura coupling in air and water at ambient temperature

    KAUST Repository

    Marziale, Alexander N.

    2010-01-01

    A new palladacyclic catalyst yields high activities in aqueous Suzuki-Miyaura coupling at room temperature. Using an optimized protocol, a broad range of products can be isolated in good to excellent yields and high purity by simple filtration. © 2010 The Royal Society of Chemistry.

  16. Ferric hydrogensulfate catalyzed aerobic oxidative coupling of 2-naphthols in water or under solvent free conditions

    Institute of Scientific and Technical Information of China (English)

    Hossein Eshghi; Mehdi Bakavoli; Hassanali Moradi

    2009-01-01

    The symmetric oxidative coupling reactions of 2-naphthol derivatives withboth ferric hydrogensulfate in water and silica ferric hydrogensulfate in solvent free conditions were carried out. The advantages of this green procedure are: inexpensive catalyst or co-catalyst, reusability of catalyst, organic solvent-free procedures and simple workup.

  17. Efficient Sonogashira and Suzuki-Miyaura coupling reaction catalyzed by Pd-Nanoparticles

    Indian Academy of Sciences (India)

    Kishor E Balsane; Suresh S Shendage; Jayashree M Nagarkar

    2015-03-01

    The Pd nano particles were electrochemically deposited on nafion-graphene. They showed excellent catalytic activity towards Sonogashira and Suzuki-Miyaura cross-coupling reaction. Benzenediazonium salts were used as alternative to aromatic halide. The developed protocol offers recyclability, easy workups with short reaction time and good-to-excellent product yield.

  18. SYNTHESIS OF FUNCTIONAL MACROMOLECULE INTERMEDIATE THROUGH COUPLING REACTION CATALYZED BY [bmim]Cl/FeCl3 IONIC LIQUID

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; CHEN Xiaonong; YUAN Xinhua; ZHANG Yan; ZHANG Chunyan; LIU Hua; DAI Qixun

    2006-01-01

    To obtain new functional aromatic polymer material. 3.3'-biacenophthene. which is used as macrotnolecule intermediate of function aromatic polymer material. was synthesized through the coupling reaction of acenaphthene catalyzing by ionic liquid (/bmim/Cl/FeCl3) at mild reaction condition. Pure 3,3' -biacenaphthene was obtained by recrystalling and column chromatography from the reaction mixture, and was determined by GC/MS. 1HNMR and FTIR analysis. The influence of various reaction conditions on the yield of 3,3'-biacenaphthene were studied by GC analysis. The result shows that the optimun synthesis conditions of the coupling reaction are as following: the molar ratio of FeCl3 to [Bmim]Cl being 3. the mole ratio of FeCl3 in [Bmim]Cl/FeCl3 to acenaphthene being 4. the reaction temperature being 20 ℃, the reaction time being 4h and the solvent of the reaction system being PhNO2. Under those conditions, the yield of the 3,3'-biacenaphthene will be 48.71% and selectivity of that will be 78.56 %. Further more.[bmim ]Cl/FeCl3 has no pollution to environments and can be reused.

  19. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  20. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Science.gov (United States)

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  1. Transition-metal-free coupling reaction of vinylcyclopropanes with aldehydes catalyzed by tin hydride.

    Science.gov (United States)

    Ieki, Ryosuke; Kani, Yuria; Tsunoi, Shinji; Shibata, Ikuya

    2015-04-13

    Donor-acceptor cyclopropanes are useful building blocks for catalytic cycloaddition reactions with a range of electrophiles to give various cyclic products. In contrast, relatively few methods are available for the synthesis of homoallylic alcohols through coupling of vinylcyclopropanes (VCPs) with aldehydes, even with transition-metal catalysts. Here, we report that the hydrostannation of vinylcyclopropanes (VCPs) was effectively promoted by dibutyliodotin hydride (Bu2 SnIH). The resultant allylic tin compounds reacted easily with aldehydes. Furthermore, the use of Bu2 SnIH was effectively catalytic in the presence of hydrosilane as a hydride source, which established a coupling reaction of VCPs with aldehydes for the synthesis of homoallylic alcohols without the use of transition-metal catalysts. In contrast to conventional catalytic reactions of VCPs, the presented method allowed the use of several VCPs in addition to conventional donor-acceptor cyclopropanes.

  2. Rh(I)-Catalyzed Intermolecular Hydroacylation: Enantioselective Cross-Coupling of Aldehydes and Ketoamides

    Science.gov (United States)

    2015-01-01

    Under Rh(I) catalysis, α-ketoamides undergo intermolecular hydroacylation with aliphatic aldehydes. A newly designed Josiphos ligand enables access to α-acyloxyamides with high atom-economy and enantioselectivity. On the basis of mechanistic and kinetic studies, we propose a pathway in which rhodium plays a dual role in activating the aldehyde for cross-coupling. A stereochemical model is provided to rationalize the sense of enantioinduction observed. PMID:24937681

  3. Microwave-assisted Palladium-micelle-catalyzed Suzuki Cross-coupling Reaction in Water

    Institute of Scientific and Technical Information of China (English)

    LIN Li; LI Sheng-hai; JIANG Ri-hua

    2011-01-01

    A microwave-accelerated Suzuki coupling procedure was developed via guanidinium ionic liquids(GILs)stabilized Pd-micelle.The Pd micelle/GILs play a key role in enhancing the activity,due to the highly dispersed Pd active sites and the phase transfer function of GILs,which ensures the adsorption of reactants and facilitates the translation of the intermediates to the surface of the micelle.

  4. Palladium-catalyzed cross coupling reactions of 4-bromo-6H-1,2-oxazines

    Directory of Open Access Journals (Sweden)

    Reinhold Zimmer

    2009-09-01

    Full Text Available A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines.

  5. Preparation of 5-acyl- and 5-aryl-substituted 1-(benzyloxy)pyrazoles via directed ortho-lithiation/transmetalation and palladium catalyzed cross- coupling

    DEFF Research Database (Denmark)

    Kristensen, Jesper Langgaard; Begtrup, M.; Vedsø, P.

    1998-01-01

    Palladium(0) catalyzed cross-coupling of 1-(benzyloxy)pyrazol-5-ylzinc halides 3a,b, prepared by transmetalation of 1-(benzyloxy)-5-lithiopyrazole (2), with acyl chlorides produced 5 acyl-1-(benzyloxy)pyrazoles 4a-d in high yields. Similar coupling of the pyrazol-5-ylzinc halide with amino......-, hydroxy- , methoxy-, fluoro-, nitro-, or formyl-substituted iodobenzene gave the corresponding 5-aryl-1-(benzyloxy)pyrazoles 5a-f, while coupling with iodothiophene, iodopyrazole or bromopyridine provided the corresponding 1- (benzyloxy)-5-heteroarylpyrazoles 6a-c....

  6. Possible intermediates of Cu(phen)-catalyzed C-O cross-coupling of phenol with an aryl bromide by in situ ESI-MS and EPR studies.

    Science.gov (United States)

    Chen, Hong-Jie; Hsu, I-Jui; Tseng, Mei-Chun; Shyu, Shin-Guang

    2014-08-07

    The C-O coupling reaction between 2,4-dimethylphenol and 4-bromotoluene catalyzed by the CuI/K2CO3/phen system can be inhibited by the radical scavenger cumene. Complexes [Cu(i)(phen)(1-(2,4-dimethylphenoxy)-4-methylbenzene)](+) (denoted as A), {H[Cu(i)(phen)(2,4-dimethylphenoxy)]}(+) and [Cu(i)(2,4-dimethylphenoxy)2](-) (denoted as B) were observed by in situ electrospray ionization mass spectrometry (ESI-MS) analysis of the copper(i)-catalyzed C-O coupling reaction under the catalytic reaction conditions indicating that they could be intermediates in the reaction. The in situ EPR study of the reaction solution detected the Cu(ii) species with a fitted g value of 2.188. A catalytic cycle with a single electron transfer (SET) step was proposed based on these observations.

  7. Recent Progress in Copper-Catalyzed C-S Coupling Reactions%铜催化C-S偶联反应的研究新进展

    Institute of Scientific and Technical Information of China (English)

    秦元成; 彭强

    2011-01-01

    Copper-catalyzed C-S coupling reaction is an important method for the synthesis of sulphur-containing compounds and also a hightlight on organic and catalyst chemistry. In this paper, the recent progress in copper-catalyzed C-S coupling reactions is reviewed according to the different ligands.%铜催化C-S偶联反应是有机合成中的重要手段,近年来一直是有机化学和催化化学的研究热点之一.按照反应中所使用的配体的不同对铜催化C-S偶联反应的研究新进展进行了综述.

  8. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-03

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling.

  9. Copper-catalyzed decarboxylative C-P cross-coupling of alkynyl acids with H-phosphine oxides: a facile and selective synthesis of (E)-1-alkenylphosphine oxides.

    Science.gov (United States)

    Hu, Gaobo; Gao, Yuxing; Zhao, Yufen

    2014-09-05

    A novel and efficient copper-catalyzed decarboxylative cross-coupling of alkynyl acids for the stereoselective synthesis of E-alkenylphosphine oxides has been developed. In the presence of 10 mol % of CuCl without added ligand, base, and additive, various alkynyl acids reacted with H-phosphine oxides to afford E-alkenylphosphine oxides with operational simplicity, broad substrate scope, and the stereoselectivity for E-isomers.

  10. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    Science.gov (United States)

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures.

  11. Simultaneous Determination of Size and Quantification of Gold Nanoparticles by Direct Coupling Thin layer Chromatography with Catalyzed Luminol Chemiluminescence

    Science.gov (United States)

    Yan, Neng; Zhu, Zhenli; He, Dong; Jin, Lanlan; Zheng, Hongtao; Hu, Shenghong

    2016-04-01

    The increasing use of metal-based nanoparticle products has raised concerns in particular for the aquatic environment and thus the quantification of such nanomaterials released from products should be determined to assess their environmental risks. In this study, a simple, rapid and sensitive method for the determination of size and mass concentration of gold nanoparticles (AuNPs) in aqueous suspension was established by direct coupling of thin layer chromatography (TLC) with catalyzed luminol-H2O2 chemiluminescence (CL) detection. For this purpose, a moving stage was constructed to scan the chemiluminescence signal from TLC separated AuNPs. The proposed TLC-CL method allows the quantification of differently sized AuNPs (13 nm, 41 nm and 100 nm) contained in a mixture. Various experimental parameters affecting the characterization of AuNPs, such as the concentration of H2O2, the concentration and pH of the luminol solution, and the size of the spectrometer aperture were investigated. Under optimal conditions, the detection limits for AuNP size fractions of 13 nm, 41 nm and 100 nm were 38.4 μg L‑1, 35.9 μg L‑1 and 39.6 μg L‑1, with repeatabilities (RSD, n = 7) of 7.3%, 6.9% and 8.1% respectively for 10 mg L‑1 samples. The proposed method was successfully applied to the characterization of AuNP size and concentration in aqueous test samples.

  12. Silicon-Carbon Bond Formation via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Unactivated Secondary and Tertiary Alkyl Electrophiles

    OpenAIRE

    Chu, Crystal K.; Liang, Yufan; Fu, Gregory C.

    2016-01-01

    A wide array of cross-coupling methods for the formation of C–C bonds from unactivated alkyl electrophiles have been described in recent years. In contrast, progress in the development of methods for the construction of C–heteroatom bonds has lagged; for example, there have been no reports of metal-catalyzed cross-couplings of unactivated secondary or tertiary alkyl halides with silicon nucleophiles to form C–Si bonds. In this study, we address this challenge, establishing that a simple, comm...

  13. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    Science.gov (United States)

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  14. [Cu]-catalyzed domino Sonogashira coupling followed by intramolecular 5-exo-dig cyclization: synthesis of 1,3-dihydro-2-benzofurans.

    Science.gov (United States)

    Mahendar, Lodi; Reddy, Alavala Gopi Krishna; Krishna, Jonnada; Satyanarayana, Gedu

    2014-09-19

    An efficient [Cu]-catalyzed domino Sonogashira coupling of o-bromobenzyl tertiary alcohols with terminal aryl acetylenes followed by an intramolecular anti-5-exo-dig cyclization is presented. The terminal aryl acetylenes were identified as ideal coupling partners that permit in situ intramolecular oxacyclization by the hydroxyl group as a pre-existing nucleophile of the alcohol. Notably, the intramolecular nucleophilic attack of the hydroxyl group took place on the alkyne moiety in a highly regio- and stereoselective manner. Interestingly, this method was amenable to a wide variety of o-bromobenzyl tertiary alcohols and furnished the corresponding cyclic ethers. On the other hand, when terminal alkyl acetylenes were used as the coupling partners, the reaction was impeded after the Sonogashira coupling.

  15. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para' C-C Phenol Couple in the Amaryllidaceae Alkaloids

    Science.gov (United States)

    Kilgore, Matthew B.; Augustin, Megan M.; May, Gregory D.; Crow, John A.; Kutchan, Toni M.

    2016-01-01

    The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para', para-ortho', or ortho-para' regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para' C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS)-noroxomaritidine and (10bS,4aR)-noroxomaritidine from 4′-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho' phenol coupled product, N-demethylnarwedine, as less than 1% of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4′-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot. PMID:26941773

  16. CYP96T1 of Narcissus sp. aff. pseudonarcissus Catalyzes Formation of the Para-Para’ C-C Phenol Couple in the Amaryllidaceae Alkaloids

    Directory of Open Access Journals (Sweden)

    Matthew eKilgore

    2016-02-01

    Full Text Available The Amaryllidaceae alkaloids are a family of amino acid derived alkaloids with many biological activities; examples include haemanthamine, haemanthidine, galanthamine, lycorine, and maritidine. Central to the biosynthesis of the majority of these alkaloids is a C-C phenol-coupling reaction that can have para-para’, para-ortho’, or ortho-para’ regiospecificity. Through comparative transcriptomics of Narcissus sp. aff. pseudonarcissus, Galanthus sp., and Galanthus elwesii we have identified a para-para’ C-C phenol coupling cytochrome P450, CYP96T1, capable of forming the products (10bR,4aS-noroxomaritidine and (10bS,4aR-noroxomaritidine from 4’-O-methylnorbelladine. CYP96T1 was also shown to catalyzed formation of the para-ortho’ phenol coupled product, N-demethylnarwedine, as less than 1 % of the total product. CYP96T1 co-expresses with the previously characterized norbelladine 4’-O-methyltransferase. The discovery of CYP96T1 is of special interest because it catalyzes the first major branch in Amaryllidaceae alkaloid biosynthesis. CYP96T1 is also the first phenol-coupling enzyme characterized from a monocot.

  17. Reusable and Ligand-Free Palladium-Catalyzed Suzuki- Miyaura Cross-Couplings of Aryl Halides with Arylboronic Acids in Tetra-n-butylammonium Bromide

    Institute of Scientific and Technical Information of China (English)

    XIE,Ye-Xiang; WANG,Jian; LI,Jin-Heng; LIANG,Yun

    2008-01-01

    Ligand-free and reusable palladium-catalyzed Suzuki-Miyaura cross-coupling reaction performed in TBAB (tetra-n-butylammonium bromide) was presented. It was found that the amount of water affected these reactions. Excellent results were obtained when there was w= 1% of water in TBAB. In the presence of 3 mol% of Pd(Oac)2 and 1.5 g of TBAB (containing w= 1% of water), a number of aryl halides were coupled with arylboronic acids smoothly in moderate to excellent yields. Moreover, the Pd(Oac)2/TBAB system among the couplings of aryl bro-mides and activated chlorides could be recovered and reused three times without a loss of catalytic efficiency.

  18. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride as the c...

  19. Rhodium-Catalyzed β-Selective Oxidative Heck-Type Coupling of Vinyl Acetate via C-H Activation.

    Science.gov (United States)

    Zhang, Hui-Jun; Lin, Weidong; Su, Feng; Wen, Ting-Bin

    2016-12-16

    An efficient Rh(III)-catalyzed direct ortho-C-H olefination of acetanilides with vinyl acetate was developed. This protocol provides a straightforward pathway to a series of (E)-2-acetamidostyryl acetates, giving access to indole derivatives following a simple hydrolysis/cyclization process.

  20. Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides.

    Science.gov (United States)

    Fu, Tingting; Qiao, Hongwei; Peng, Zhimin; Hu, Gaobo; Wu, Xueji; Gao, Yuxing; Zhao, Yufen

    2014-05-14

    We present a novel and highly efficient methodology that allows for the construction of C-P bonds via the palladium-catalyzed air-based oxidative coupling of various commercially available arylboronic acids with easily oxidized H-phosphine oxides leading to valuable aryl phosphine oxides, particularly triarylphosphine oxides, with the use of air as the green oxidant, broad substrate applicability and good to excellent yields. The described catalytic system should be an efficient complement to the Chan-Lam type reaction and be useful in synthetic programs.

  1. An Effective Synthesis of Indazolo[2,1-a]indazole-6,12-diones by Regioselective Copper-Catalyzed Cascade Acylation/Coupling Cyclization Process%An Effective Synthesis of Indazolo[2,1-a]indazole-6,12-diones by Regioselective Copper-Catalyzed Cascade Acylation/Coupling Cyclization Process

    Institute of Scientific and Technical Information of China (English)

    王治明; 于斌; 崔源; 孙小强; 包伟良

    2011-01-01

    A new and efficient cascade synthesis of indazolo[2,1-a]indazole-6,12-diones has been developed. This protocol includes an intermolecular N-acylation followed by a copper-catalyzed intramolecular C--N coupling reaction. The methodology is applied to a wide range of 2-bromo and 2-chloro benzoyl chlorides to yield the indazolo- [2,1-a]indazole-6,l 2-diones in good to excellent yields with high regioselectivities.

  2. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  3. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D.; Krische, Michael J.

    2015-01-01

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo- and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k and 6m, respectively. Primary alcohols 2a, 2l and 2p were converted to the siloxy-crotylation products 3a, 3l and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  4. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  5. Pd(II)-catalyzed cascade Wacker-Heck reaction: chemoselective coupling of two electron-deficient reactants.

    Science.gov (United States)

    Silva, Franck; Reiter, Maud; Mills-Webb, Rebecca; Sawicki, Marcin; Klär, Daniel; Bensel, Nicolas; Wagner, Alain; Gouverneur, Véronique

    2006-10-27

    A novel palladium(II)-catalyzed oxy-carbopalladation process was developed allowing for the orchestrated union of hydroxy ynones with ethyl acrylate, two electron-deficient reactants. With beta-hydroxy ynones, this cascade Wacker-Heck process gave access to highly functionalized tri- or tetrasubstituted dihydropyranones featuring an unusual dienic system. For diastereomerically pure and for enantioenriched beta-hydroxyynones, these reactions proceed without affecting the stereochemical integrity of the existing stereocenters. In addition, tetrasubstituted furanones can be prepared when alpha-hydroxyynones and ethyl acrylate are used as starting materials. The dihydropyranones and furanones obtained upon cyclization are novel compounds, but structurally related carbohydrate derivatives featuring a similar dienic system have been used as starting materials for the construction of polyannulated products, suggesting that these cascade Pd(II)-mediated oxidative heterocyclizations are of value for various synthetic applications.

  6. Olefin Preparation via Palladium-Catalyzed Oxidative De-Azotative and De-Sulfitative Internal Cross-Coupling of Sulfonylhydrazones.

    Science.gov (United States)

    Tan, Hongyu; Houpis, Ioannis; Liu, Renmao; Wang, Youchu; Chen, Zhilong

    2015-07-17

    A novel reactivity of sulfonylhydrazones under Pd catalysis is described, where SO2 and N2 are formally extruded to afford the product of an apparent internal coupling reaction. The reaction is effective with both carbocyclic and heterocyclic aromatic precursors.

  7. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    OpenAIRE

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2014-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of co...

  8. Palladium-Catalyzed Heck Coupling Reaction of Aryl Bromides in Aqueous Media Using Tetrahydropyrimidinium Salts as Carbene Ligands

    Directory of Open Access Journals (Sweden)

    İsmail Özdemir

    2010-01-01

    Full Text Available An efficient and stereoselective catalytic system for the Heck cross coupling reaction using novel 1,3-dialkyl-3,4,5,6-tetrahydropyrimidinium salts (1, LHX and Pd(OAc2 loading has been reported. The palladium complexes derived from the salts 1a-f prepared in situ exhibit good catalytic activity in the Heck coupling reaction of aryl bromides under mild conditions.

  9. NHC Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Aryl Boronate Esters with Perfluorobenzenes.

    Science.gov (United States)

    Zhou, Jing; Berthel, Johannes H J; Kuntze-Fechner, Maximilian W; Friedrich, Alexandra; Marder, Todd B; Radius, Udo

    2016-07-01

    An efficient Suzuki-Miyaura cross-coupling reaction of perfluorinated arenes with aryl boronate esters using NHC nickel complexes as catalysts is described. The efficiencies of different boronate esters (p-tolyl-Beg, p-tolyl-Bneop, p-tolyl-Bpin, p-tolyl-Bcat) and the corresponding boronic acid (p-tolyl-B(OH)2) in this type of cross-coupling reaction were evaluated (eg, ethyleneglycolato; neop, neopentylglycolato; pin, pinacolato; cat, catecholato). Aryl-Beg was shown to be the most reactive boronate ester among those studied. The use of CsF as an additive is essential for an efficient reaction of hexafluorobenzene with aryl neopentylglycolboronates.

  10. Cross—Coupling of Aryl Iodides with Malononitrile Catalyzed by Palladium N—Heterocyclic Carbene Complex System

    Institute of Scientific and Technical Information of China (English)

    高诚伟; 陶晓春; 等

    2002-01-01

    Eight N-heterocyclic carbenes (NHC),generated in situ from their imidazolium salts,as ligands of palladium complexes were used for the catalytic coupling of iodobenzene with malononi-trile anion,It was found that 1,3-bis(2,4,6-trimethylphenyl)-imidazolium chloride (IMesHCl)-Pd2(dba)3 catalytic system has the highest activity to obtain phenyl malononitrile among the imidazolium salts.The substituted iodoarenes reacted with malononitrile anions by using the catalytic system to give cross-coupling products in yields from 50% to 96%.

  11. The Oxidative Coupling of 2,6-Xylenol Catalyzed by Polymeric Complexes of Copper, 1. Kinetic Study of the Catalysis by Copper(II)-Complexes of Partially Aminated Polystyrene

    NARCIS (Netherlands)

    Schouten, Arend Jan; Prak, Nanno; Challa, Ger

    1977-01-01

    The oxidative coupling reaction of 2,6-xylenol catalyzed by copper(II) complexes of chemically modified polystyrene was investigated. Under the applied reaction conditions the main reaction product was 2,6,2',6'-tetramethyl-1,1'-dioxo-4,4'-bicyclohexa-2,5-dienylidene. It was found that the polymeric

  12. Cu(OAc)2/Pyrimidines-Catalyzed Cross-coupling Reactions of Aryl Iodides and Activated Aryl Bromides with Alkynes under Aerobic, Solvent-free and Palladium-free Conditions

    Institute of Scientific and Technical Information of China (English)

    XIE Ye-Xiang; DENG Chen-Liang; PI Shao-Feng; LI Jin-Heng; YIN Du-Lin

    2006-01-01

    Excellent results have been achieved in the Cu(OAc)2-catalyzed Sonogashira cross-couplings of aryl iodides and activated aryl bromides utilizing TBAF (tetrabutylammonium fluoride) as the base and 4,6-dimethoxypyrimidin-2-amine as the ligand. It is noteworthy that the reaction is conducted under aerobic, solvent-free and palladium-free conditions.

  13. Stereoselective Synthesis of 1,3-Enynylstannanes via Palladium Catalyzed Cross-Coupling Reactions of (Z)-α-Bromovinylstannanes

    Institute of Scientific and Technical Information of China (English)

    蔡明中; 章荣立; 赵红

    2004-01-01

    Based on the different reactivity of stannyl and bromo groups, (Z)-α-bromovinylstannanes can undergo the cross-coupling reaction with alkynyl Grignard reagents in the presence of tetrakis(triphenylphosphine)palladium(0)catalyst in THF at room temperature to afford stereoselectively 1,3-enynylstannanes in good yields.

  14. Rh(I)-Catalyzed Coupling of Conjugated Enynones with Arylboronic Acids: Synthesis of Furyl-Containing Triarylmethanes.

    Science.gov (United States)

    Xia, Ying; Chen, Li; Qu, Peiyuan; Ji, Guojing; Feng, Sheng; Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2016-11-04

    Conjugated enynones can be used as carbene precursors to couple with arylboronic acids in the presence of Rh(I) catalyst. This reaction shows good functional compatibility, and a range of furyl-containing triarylmethanes can be smoothly synthesized from easily available starting materials under mild reaction conditions. Mechanistically, the formation of Rh(I) (2-furyl)carbene species and the subsequent carbene migratory insertion are proposed as the key steps in this reaction.

  15. Cross-Coupling of Aryl Iodides with Malononitrile Catalyzed by Palladium N-Heterocyclic Carbene Complex System

    Institute of Scientific and Technical Information of China (English)

    GAO,Cheng-Wei(高诚伟); TAO,Xiao-Chun(陶晓春); LIU,Tao-Ping(刘涛平); HUANG,Ji-Ling(黄吉玲); QIAN,Yan-Long(钱延龙)

    2002-01-01

    Eight N-heterocyclic carbenes (NHC), generated in situ from their imidazolium salts, as ligands of palladium complexes were used for the catalytic coupling of iodobenzene with malononitrile anion. It was found that 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (IMesHC1)-Pd2(dba)3 catalytic system has the highest activity to obtain phenyl malononitrile among the imidazolium salts. The substituted iodoarenes reacted with malononitrile anions by using the catalytic system to give crosscoupling products in yields from 50% to 96%.

  16. Synthesis of Functionalized [3], [4], [5] and [6]Dendralenes through Palladium-Catalyzed Cross-Couplings of Substituted Allenoates.

    Science.gov (United States)

    Lippincott, Daniel J; Linstadt, Roscoe T H; Maser, Michael R; Lipshutz, Bruce H

    2017-01-16

    A mild method for the synthesis of highly functionalized [3]-[6]dendralenes is reported, representing a general strategy to diversely substituted higher homologues of the dendralenes. The methodology utilizes allenoates bearing various substitution patterns, along with a wide range of boron and alkenyl nucleophiles that couple under palladium catalysis leading to sp-, sp(2) -, and sp(3) -substituted arrays. Regioselective transformations of the newly formed unsymmetrical dendralene derivatives are demonstrated. The use of micellar catalysis, where water is the global reaction medium, and room temperature reaction conditions, highlights the green nature of this technology.

  17. An efficient protocol for copper-free palladium-catalyzed Sonogashira cross-coupling in aqueous media at low temperatures

    KAUST Repository

    Marziale, Alexander N.

    2011-11-01

    A thorough study on copper-free Sonogashira cross-couplings in water was carried out using the palla-dacycle, [{Pd(μ-Cl){K2-P,C-P(iPr) 2(OC6H3-2-Ph)}}2] as pre-catalyst with different bases and palladium concentrations. The highly active pre-catalyst imparts good to near quantitative yields using a concentration of 0.25 mol % at 40 °C. This broadly applicable protocol exhibits high tolerance of functional groups and substitution patterns. © 2011 Elsevier Ltd. All rights reserved.

  18. Synthesis of C-4 Substituted Amido Nicotine Derivatives via Copper(I)- and (II)-Catalyzed Cross-Coupling Reactions.

    Science.gov (United States)

    Zhu, Jiancheng; Enamorado, Monica F; Comins, Daniel L

    2016-11-18

    The syntheses of seven novel amido nicotine derivatives 12-18 from (S)-nicotine are presented. (S)-Nicotine and (S)-6-chloronicotine derivatives were cross-coupled with the corresponding amides 6-10 at the C-4 position of the pyridine ring via copper(I)-mediated reactions. Derivatives 16-18 were also obtained via copper(II)-mediated reactions from (S)-nicotine containing a C-4 boronic acid pinacol ester group. The optimization of reaction conditions for both routes provided a useful method for preparing C-4 amide-containing nicotine analogs.

  19. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

    Directory of Open Access Journals (Sweden)

    Jian-Lin Huang

    2013-07-01

    Full Text Available We decorated HS-functionalized cellulose nanocrystallite (CNC films with monodisperse Au nanoparticles (AuNPs to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS- group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS, TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis.

  20. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

    Science.gov (United States)

    Huang, Jian-Lin

    2013-01-01

    Summary We decorated HS-functionalized cellulose nanocrystallite (CNC) films with monodisperse Au nanoparticles (AuNPs) to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS-) group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS), TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling) either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis. PMID:23946833

  1. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    Science.gov (United States)

    Seffer, J.-F.; Detriche, S.; Nagy, J. B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR3) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl2 catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  2. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    Energy Technology Data Exchange (ETDEWEB)

    Seffer, J.-F., E-mail: jean-francois.seffer@unamur.be; Detriche, S.; Nagy, J.B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR{sup ′}{sub 3}) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl{sub 2} catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  3. An Iron-Catalyzed Bond-Making/Bond-Breaking Cascade Merges Cycloisomerization and Cross-Coupling Chemistry.

    Science.gov (United States)

    Echeverria, Pierre-Georges; Fürstner, Alois

    2016-09-05

    Treatment of readily available enynes with alkyl-Grignard reagents in the presence of catalytic amounts of Fe(acac)3 engenders a remarkably facile and efficient reaction cascade that results in the net formation of two new C-C bonds while a C-Z bond in the substrate backbone is broken. Not only does this new manifold lend itself to the extrusion of heteroelements (Z=O, NR), but it can even be used for the cleavage of activated C-C bonds. The reaction likely proceeds via metallacyclic intermediates, the iron center of which gains ate character before reductive elimination occurs. The overall transformation represents a previously unknown merger of cycloisomerization and cross-coupling chemistry. It provides ready access to highly functionalized 1,3-dienes comprising a stereodefined tetrasubstituted alkene unit, which are difficult to make by conventional means.

  4. A comprehensive theoretical study on the coupling reaction mechanism of propylene oxide with carbon dioxide catalyzed by copper(I) cyanomethyl.

    Science.gov (United States)

    Guo, Cai-Hong; Wu, Hai-Shun; Zhang, Xian-Ming; Song, Jiang-Yu; Zhang, Xiang

    2009-06-18

    The mechanistic details of the coupling reaction of propylene oxide with carbon dioxide catalyzed by copper(I) cyanomethyl to yield cyclic carbonate were elucidated by density functional theory (DFT) calculations at the B3LYP/6-311G** level. Our results reveal that the overall reaction is stepwise and considered to include two processes. In process 1, CO(2) insertion into the Cu(I)-C bond of copper(I) cyanomethyl affords activated carbon dioxide carriers. In process 2, O-coordination of propylene oxide molecule to the electrophilic copper center of carriers occurs. Herein, three possible pathways were investigated, and the calculated reaction free energy profiles were compared. It was found that carrier 8 reacting with propylene oxide is more favored than the other two carriers (6 and 7) both kinetically and thermodynamically. Several factors, such as the composition of catalyst, the coordinate environment of copper, and the symmetry of frontier molecular orbitals, affected the reaction mechanisms, and the outcomes were identified. The overall reaction is exothermic. In addition, natural bond orbital (NBO) analysis has been performed to study the effects of charge transfer and understand the nature of different interactions between atoms and groups. The present theoretical study explains satisfactorily the early reported experimental observations well and provides a clear profile for the cycloaddition of carbon dioxide with propylene oxide promoted by NCCH(2)Cu.

  5. Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles.

    Science.gov (United States)

    Wu, Jia-Qiang; Zhang, Shang-Shi; Gao, Hui; Qi, Zisong; Zhou, Chu-Jun; Ji, Wei-Wei; Liu, Yao; Chen, Yunyun; Li, Qingjiang; Li, Xingwei; Wang, Honggen

    2017-03-08

    Fluorinated heterocycles play an important role in pharmaceutical and agrochemical industries. Herein, we report on the synthesis of four types of fluorinated heterocycles via rhodium(III)-catalyzed C-H activation of arenes/alkenes and versatile coupling with 2,2-difluorovinyl tosylate. With N-OMe benzamide being a directing group (DG), the reaction delivered a monofluorinated alkene with the retention of the tosylate functionality. Subsequent one-pot acid treatment allowed the efficient synthesis of 4-fluoroisoquinolin-1(2H)-ones and 5-fluoropyridin-2(1H)-ones. When N-OPiv benzamides were used, however, [4 + 2] cyclization occurred to provide gem-difluorinated dihydroisoquinolin-1(2H)-ones. Synthetic applications have been demonstrated and the ready availability of both the arene and the coupling partner highlighted the synthetic potentials of these protocols. Mechanistically, these two processes share a common process involving N-H deprotonation, C-H activation, and olefin insertion to form a 7-membered rhodacycle. Thereafter, different reaction pathways featuring β-F elimination and C-N bond formation are followed on the basis of density functional theory (DFT) studies. These two pathways are DG-dependent and led to the open chain and cyclization products, respectively. The mechanistic rationale was supported by detailed DFT studies. In particular, the origins of the intriguing selectivity in the competing β-F elimination versus C-N bond formation were elucidated. It was found that β-F elimination is a facile event and proceeds via a syn-coplanar transition state with a low energy barrier. The C-N bond formation proceeds via a facile migratory insertion of the Rh-C(alkyl) into the Rh(V) amido species. In both reactions, the migratory insertion of the alkene is turnover-limiting, which stays in good agreement with the experimental studies.

  6. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    Science.gov (United States)

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity.

  7. Palladium-catalyzed Reppe carbonylation.

    Science.gov (United States)

    Kiss, G

    2001-11-01

    PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter

  8. Synthesis of α-methylene-δ-oxo-γ-amino esters via Rh(ii)-catalyzed coupling of 1-sulfonyl-1,2,3-triazoles with Morita-Baylis-Hillman adducts.

    Science.gov (United States)

    Jeon, Hyun Ji; Kwak, Mi Soo; Jung, Da Jung; Bouffard, Jean; Lee, Sang-Gi

    2016-11-29

    A rhodium(ii)-catalyzed coupling of 1-sulfonyl-1,2,3-triazoles, prepared from 1-alkynes and sulfonyl azides, with Morita-Baylis-Hillman (MBH) adducts afforded highly functionalized α-methylene-δ-oxo-γ-amino esters in excellent yields with broad functional group tolerance. This transformation can also be successfully accomplished as a multicomponent all-in-one-pot reaction of 1-alkynes, sulfonyl azides and MBH adducts in the presence of Cu(i) and Rh(ii) catalysts.

  9. Gold-Catalyzed Synthesis of Heterocycles

    Science.gov (United States)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  10. Design, Synthesis, and Validation of an Effective, Reusable Silicon-Based Transfer Agent for Room-Temperature Pd-Catalyzed Cross-Coupling Reactions of Aryl and Heteroaryl Chlorides with Readily Available Aryl Lithium Reagents.

    Science.gov (United States)

    Martinez-Solorio, Dionicio; Melillo, Bruno; Sanchez, Luis; Liang, Yong; Lam, Erwin; Houk, K N; Smith, Amos B

    2016-02-17

    A reusable silicon-based transfer agent (1) has been designed, synthesized, and validated for effective room-temperature palladium-catalyzed cross-coupling reactions (CCRs) of aryl and heteroaryl chlorides with readily accessible aryl lithium reagents. The crystalline, bench-stable siloxane transfer agent (1) is easily prepared via a one-step protocol. Importantly, this "green" CCR protocol circumvents prefunctionalization, isolation of organometallic cross-coupling partners, and/or stoichiometric waste aside from LiCl. DFT calculations support a σ-bond metathesis mechanism during transmetalation and lead to insights on the importance of the CF3 groups.

  11. Atom-efficient coupling reaction of aryl bromideswith sodium tetraphenylborate catalyzed by reusable Pd/C in water under focused microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    Lin Bai

    2009-01-01

    A rapid and heterogeneous Pal/C-catalyzed atom-efficient phenylation of aryl bromides by sodium tetraphenylborate takes place under focused microwave irradiation in water.The palladium catalyst can be easily recovered and reused.

  12. Separation of intermediates of iron-catalyzed dopamine oxidation reactions using reversed-phase ion-pairing chromatography coupled in tandem with UV-visible and ESI-MS detections.

    Science.gov (United States)

    Zhang, Lin; Yagnik, Gargey; Jiang, Dianlu; Shi, Shuyun; Chang, Peter; Zhou, Feimeng

    2012-12-12

    Reversed-phase ion-pairing chromatography (RP-IPC) is coupled on-line with electrospray ionization-mass spectrometry (ESI-MS) through an interface comprising a four-way switch valve and an anion exchange column. Regeneration of the anion exchange column can be accomplished on-line by switching the four-way switch valve to interconnect the column to a regeneration solution. Positioning the anion exchange column between the RP-IPC and ESI-MS instruments allows the ion-pairing reagent (IPR) sodium octane sulfonate to be removed. The IPC-ESI-MS method enabled us to separate and detect four intermediates of the Fe(III)-catalyzed dopamine oxidation. In particular, 6-hydroxydopamine, which is short-lived and highly neurotoxic, was detected and quantified. Together with the separation of other intermediates, gaining insight into the mechanism and kinetics of the Fe(III)-catalyzed dopamine oxidation becomes possible.

  13. Online capillary solid-phase microextraction coupled liquid chromatography-mass spectrometry for analysis of chiral secondary alcohol products in yeast catalyzed stereoselective reduction cell culture.

    Science.gov (United States)

    Cheng, Cheanyeh; Nian, Yu-Chuan

    2015-02-06

    An online solid-phase microextraction coupled liquid chromatography-electrospray ionization-ion trap mass spectrometry was developed for the analysis of trace R- and S-4-phenyl-2-butanol (R- and S-pbol) in salt rich cell culture of Saccharomyces cerevisiae catalyzed stereoselective reduction of 4-pheny-2-butanone (pbone). A Supel-Q PLOT capillary column was used for the extraction and deionized distilled water was used as the extraction mobile phase. The extraction flow rate and extraction time were at 0.1 mL min(-1) and 0.95 min, respectively. The three target analytes, pbone, R-pbol, and S-4-pbol, were desorbed and eluted by the mobile phase of water/methanol/isopropanol (55/25/20, v/v/v) with a flow rate of 0.5 mL min(-1) and analyzed by a chiral column. The mass spectrometric detection of the three target analytes was in positive ion mode with the signal [M+Na](+). The matrix-matched external standard calibration curves with linear concentration range between 0 and 50 μg mL(-1) were used for quantitative analysis. The linear regression correlation coefficients (r(2)) of the standard calibration curves were between 0.9950 and 0.9961. The yeast mediated reduction was performed with a recation culture of yeast incubation culture/glycerol (70/30, v/v) for 4 days. This biotransformation possessed 82.3% yield and 92.9% S-enantomeric excess. The limit of detection (LOD)/limit of quantification (LOQ) for pbone, R-pbol, and S-pbol was 0.02/0.067, 0.01/0.033, and 0.01/0.033 μg mL(-1), respectively. The intra-day and inter-day precisions from repeated measurements were 10.8-21.1% and 11.6-18.7%, respectively. The analysis accuracy from spike recovery was 84-91%.

  14. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    Science.gov (United States)

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles.

  15. Rh(III)-catalyzed oxidative coupling of 1,2-disubstituted arylhydrazines and olefins: a new strategy for 2,3-dihydro-1H-indazoles.

    Science.gov (United States)

    Han, Sangil; Shin, Youngmi; Sharma, Satyasheel; Mishra, Neeraj Kumar; Park, Jihye; Kim, Mirim; Kim, Minyoung; Jang, Jinbong; Kim, In Su

    2014-05-02

    A rhodium(III)-catalyzed oxidative olefination of 1,2-disubstituted arylhydrazines with alkenes via sp(2) C-H bond activation followed by an intramolecular aza-Michael reaction is described. This strategy allows the direct and efficient construction of highly substituted 2,3-dihydro-1H-indazole scaffolds.

  16. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    . Whereas, anionically prepared A-PS had much higher reliance on the molecular weight changes for its glass transition temperature. However, in thin films, c-PS films have, within error, no confinement effect. In contrast, A-PS has seen large T g reduction with confinement. Ellipsometry analysis suggests that this invariance of the Tg-confinement effect in c-PS is a result of the weak perturbation to Tg near the free surface (i.e. the polymer-air interface). These weak perturbations are the result of the high packing efficiency of cyclic PS segments. The copper-catalyzed alkyne/azide cycloaddition (CuAAC) click reaction has been used to cyclize many linear polymers with complementary azide and alkyne end groups via unimolecular heterodifunctional approach. Cyclic polymers exhibit unique and potentially useful physical properties compared to their linear analogs, hence increasing interest in techniques for preparing this class of polymers. However, a general route for producing high purity cyclic polymers remained elusive. Prior to the discovery of "click" chemistry, it was difficult to produce highly pure cyclic polymers via the ring-closure approach, requiring extensive post-cyclization purification. However, even minor amounts of linear impurities can influence the physical properties of cyclic polymers. Thermal gradient interaction chromatography (TGIC) coupled with Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF MS) allows the fractionation of cyclic polymer samples and produce valuable data for determining both the quantity and identity of linear impurities. This understanding further enables us to optimize cyclization conditions towards the goal of and efficient, general methodology for producing highly pure cyclic polymers. To solve the ever-growing energy needs of the world and capture the renewable energy that is generated sporadically, we need to create devices that can store high amounts of energy and discharge power at

  17. Rh(III)-catalyzed coupling of nitrones with alkynes for the synthesis of indolines%三价铑催化硝酮与炔的碳氢活化偶联合成二氢吲哚

    Institute of Scientific and Technical Information of China (English)

    孔令恒; 谢芳; 于松杰; 戚自松; 李兴伟

    2015-01-01

    Rh-catalyzed redox-neutral coupling betweenN-aryl nitrones and alkynes has been achieved under relatively mild conditions. The reaction proceeded via C–H activation at theN-aryl ring with subse-quent O-atom transfer, affording trisubstituted indolines in good chemoselectivity and moderate to good diasteroselectivity.%三价铑在氧化还原中性条件下催化硝酮与炔发生偶联,经过氮芳环的碳氢键活化和氧转移可以高化学选择性、中等到良好非对映选择性的得到三取代二氢吲哚。

  18. Nickel-catalyzed cross-coupling of phenols and arylboronic acids through an in situ phenol activation mediated by PyBroP.

    Science.gov (United States)

    Chen, Guo-Jun; Huang, Jie; Gao, Lian-Xun; Han, Fu-She

    2011-03-28

    A new method for the Suzuki-Miyaura cross-coupling of phenols and arylboronic acids through in situ phenol activation mediated by PyBroP is presented. The reaction proceeds efficiently by using cost-effective, markedly stable [NiCl(2)(dppp)] (dppp=1,3-bis(diphenylphosphino)propane) as the catalyst in only 5 mol % loading, as well as in the absence of extra ligands. The method exhibits broad applicability and high efficiency towards a wide range of both phenols and boronic acids, including activated, nonactivated, deactivated, and heteroaromatic coupling partners. In addition, various functional groups, such as ether, amino, cyano, ester, and ketone groups, are compatible with this transformation. Notably, arylboronic acids containing an unprotected NH(2) group and 2-heterocyclic boronic acids, which are generally problematic for coupling under conventional conditions, are also viable substrates, although moderate yields were obtained for sterically hindered substrates. Consequently, the in situ cross-coupling methodology coupled with the use of an inexpensive and stable nickel catalyst provides a rapid and efficient pathway for the assembly of biaryls and heterobiaryls with structural diversity from readily available phenol compounds.

  19. Stereoselective Synthesis of (E)-1, 3-Enynyl Bromides via Pd/Cu-catalyzed Cross-coupling Reaction of (Z)-α-Bromovinylstannanes

    Institute of Scientific and Technical Information of China (English)

    Ming Zhong CAI; Hong ZHAO

    2004-01-01

    (Z)-α-Bromovinylstannanes undergo the cross-coupling reaction with alkynyl iodides in the presence of Pd(PPh3)4 and Cul in THF at room temperature to afford stereoselectively (E)-1, 3-enynyl bromides in good yields.

  20. Stereocontrolled Synthesis of (E)-β, γ-Unsaturated Esters via Palladium-Catalyzed Cross-Coupling of (E)-Alkenylboronic Acids with a-Bromoacetic Esters

    Institute of Scientific and Technical Information of China (English)

    DUAN Yazhen; ZHANG Jianshe; YANG Jun; DENG Minzhi

    2009-01-01

    The cross-coupling reaction of trans-alkenylboronic acids with α-bromoacetic esters was firstly studied. It was found that using Pd(OAc)2 as catalyst, a bulky electron-rich phospine, (2-dicyclohexylphospino-biphenyl) as ligand, the reaction can be readily accomplished to give specific (E)-β,γ-unsaturated esters in high yields.

  1. Carbon-carbon cross-coupling reactions catalyzed by a two-coordinate nickel(II)-bis(amido) complex via observable Ni(I) , Ni(II) , and Ni(III) intermediates.

    Science.gov (United States)

    Lipschutz, Michael I; Tilley, T Don

    2014-07-01

    Recently, the development of more sustainable catalytic systems based on abundant first-row metals, especially nickel, for cross-coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a Ni(III) -alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon-carbon cross-coupling system based on a two-coordinate Ni(II) -bis(amido) complex in which a Ni(III) -alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this Ni(III) -alkyl species as well as those of other key Ni(I) and Ni(II) intermediates. The catalytic cycle described herein is also one of the first examples of a two-coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first-row transition metals to accommodate two-coordinate complexes.

  2. Organozinc Chemistry Enabled by Micellar Catalysis. Palladium-Catalyzed Cross-Couplings between Alkyl and Aryl Bromides in Water at Room Temperature.

    Science.gov (United States)

    Duplais, Christophe; Krasovskiy, Arkady; Lipshutz, Bruce H

    2011-11-28

    Negishi-like cross-couplings between (functionalized) alkyl and aryl bromides are described. Despite the fact that organozinc reagents are intolerant of water, their formation as well as their use in an aqueous micellar environment is discussed herein. Each component of this complex series of events leading up to C-C bond formation has an important role which has been determined insofar as the type of zinc, amine ligand, surfactant, and palladium catalyst are concerned. In particular, the nature of the surfactant has been found to be crucial in order to obtain synthetically useful results involving highly reactive, moisture-sensitive organometallics. Neither organic solvent nor heat is required for these cross-couplings to occur; just add water.

  3. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette;

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene-cat......-catalyst, these dienes selectively underwent ring-closing metathesis reactions to form 5- and 7-membered heterocycles and cyclic aminals via a tandem isomerization/N-alkyliminium cyclization sequence....

  4. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents.

    Science.gov (United States)

    Li, Ben; Wang, Cuiping; Chen, Guang; Zhang, Zhiqiang

    2013-06-01

    Highly active, air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents. Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture, water/propanol mixture and neat water respectively, the corresponding yields of cross-coupling heteroaryl-aryls were satisfied. The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPd1 and POPd2, and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3. The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step. Compared with other solid phase transfer catalysts, TBAB was tested as the ideal one. The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents. Notably, in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products. However in terms of the liquid phase transfer catalyst of PEGs, mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase, which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

  5. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents

    Institute of Scientific and Technical Information of China (English)

    Ben Li; Cuiping Wang; Guang Chen; Zhiqiang Zhang

    2013-01-01

    Highly active,air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents.Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture,water/propanol mixture and neat water respectively,the corresponding yields of cross-coupling heteroaryl-aryls were satisfied.The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPdl and POPd2,and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3.The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step.Compared with other solid phase transfer catalysts,TBAB was tested as the ideal one.The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents.Notably,in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products.However in terms of the liquid phase transfer catalyst of PEGs,mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase,which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

  6. A New Route to Biaryl Ketones via Carbonylative Suzuki Coupling Catalyzed by MCM-41-supported Bidentate Phosphine Palladium(O) Complex

    Institute of Scientific and Technical Information of China (English)

    ZHENG, Guomin; WANG, Pingping; CAI, Mingzhong

    2009-01-01

    A variety of biaryl ketones can be conveniently synthesized in good to high yields via the first heterogeneous carbonylative Suzuki coupling of arylboronic acids with aryl iodides under atmospheric pressure of carbon monox- ide in the presence of a catalytic amount of MCM-41-supported bidentate phosphine palladium(0) complex [MCM-41-2P-Pd(0)]. This polymeric palladium catalyst can be reused at least 10 times without any decrease in ac- tivity.

  7. C(sp2)–C(sp2) cross coupling reaction catalyzed by a palladacycle phosphine complex: A simple and sustainable protocol in aqueous media

    Indian Academy of Sciences (India)

    Seyyed Javad Sabounchei; Marjan Hosseinzadeh

    2015-11-01

    The Heck reactions of various aryl halides with olefins using {[Ph2PCH2PPh2CH=C(O)(C10H7)] PdCl2} as efficient catalyst has been investigated. The mononuclear palladacycle complex showed excellent activity in aqueous phase including the C(sp2)–C(sp2) cross coupling reactions. The advantages of the protocol are high yields, short reaction time, a cleaner reaction profile and notable simplicity.

  8. Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials

    Directory of Open Access Journals (Sweden)

    Zen Maeno

    2015-02-01

    Full Text Available Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine (PPI dendrimer and magadiite for the selective C–C coupling of 2,6-dimethylphenol (DMP to 3,3',5,5'-tetramethyldiphenoquinone (DPQ with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C–C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis, Fourier transform infrared (FTIR, electronic spin resonance (ESR, and X-ray absorption fine structure (XAFS spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  9. Water-Soluble Pd-Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling.

    Science.gov (United States)

    Gayakhe, Vijay; Ardhapure, Ajaykumar; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; García, Luis; Pérez, Jose; García, Joaquím; Sánchez, Gregorio; Fischer, Christian; Schulzke, Carola

    2016-04-01

    A broadly applicable catalyst system consisting of water-soluble Pd--imidate complexes has been enployed for the Suzuki-Miyaura cross-coupling of four different nucleosides in water under mild conditions. The efficient nature of the catalyst system also allowed its application in developing a microwave-assisted protocol with the purpose of expediting the catalytic reaction. Preliminary mechanistic studies, assisted by catalyst poison tests and stoichiometric tests performed using an electrospray ionization spectrometer, revealed the possible presence of a homotopic catalyst system.

  10. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Palladium-catalyzed cross-coupling reaction of alkynyl iodides with organotin compounds%钯催化炔碘与有机锡化合物交叉偶联反应

    Institute of Scientific and Technical Information of China (English)

    张茂美; 龚军; 周夏禹; 荣春英; 刘汉; 涂冰

    2015-01-01

    Palladium-catalyzed Stille cross-coupling reaction of alkynyl iodides and organotin compounds was developed under alka-line conditions,with DMEDA as ligand,which synthesized a series of internal alkynes including Me,MeO and halogen functional groups on the aromatic ring. The method had advantages of wide range of substrates and high yields,which provided a new route for the construction of C—C bond.%以钯为催化剂,DMEDA为配体,实现了碱性条件下炔碘化合物与有机锡化合物的Stille交叉偶联反应,合成了一系列芳环上含有甲基、甲氧基及卤原子的中间炔烃。该方法底物适应范围广、产率高,为C—C键的构筑提供了一条新路径。

  12. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation.

    Science.gov (United States)

    Zeng, Guixiang; Li, Shuhua

    2011-11-07

    Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.

  13. Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer

    Science.gov (United States)

    Evans, M. J.; Jacob, D. J.; Atlas, E.; Cantrell, C. A.; Eisele, F.; Flocke, F.; Fried, A.; Mauldin, R. L.; Ridley, B. A.; Wert, B.; Talbot, R.; Blake, D.; Heikes, B.; Snow, J.; Walega, J.; Weinheimer, A. J.; Dibb, J.

    2003-02-01

    Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March-May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOx chemistry is only active during the early stage of O3 depletion (O3 > 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere.

  14. Homocoupling of Aryl Bromides Catalyzed by Nickel Chloride in Pyridine

    Institute of Scientific and Technical Information of China (English)

    TAO, Xiao-Chun; ZHOU, Wei; ZHANG, Yue-Ping; DAI, Chun-ya; SHEN, Dong; HUANG, Mei

    2006-01-01

    Pyridine was used as a solvent for homocoupling of aryl bromides catalyzed by nickel chloride/triarylphosphine in the presence of zinc and recycled easily. Triphenylphosphine was the best ligand for nickel in this coupling reaction.

  15. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  16. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  17. Efficient Solvent-free Synthesis of Chloropropene Carbonate from the Coupling Reaction of CO2 and Epichlorohydrin Catalyzed by Magnesium Porphyrins as Chlorophyll-like Catalysts%类叶绿素镁卟啉高效催化CO2环氧氯丙烷偶合反应无溶剂合成氯丙烯碳酸酯

    Institute of Scientific and Technical Information of China (English)

    王梅; 佘远斌; 周贤太; 纪红兵

    2011-01-01

    Highly efficient solvent-free coupling reaction of carbon dioxide (CO2) and epichlorohydrin catalyzed by meso-tetraphenyl porphyrin magnesium (MgTPP) in the presence of triethylamine as co-catalysts is reported. As a chlorophyll-like catalyst, MgTPP showed excellent activity for the coupling reaction of CO2 and epichlorohydrin to chloropropene carbonate, in which the turnover number could reach up to 9200. Moreover, different factors including the amount of catalyst, reaction temperature, pressure and time were systematically investigated and the optimal reaction conditions were obtained (epichlorohydrin 50 mmol, MgTPP 5.0×10-3 mmol, triethylamine 6.25x10-3 mmol, 140 ℃, 1.5 MPa, 8 h). A plausible two-pathway mechanism for the coupling reaction of CO2 and epichlorohydrin is proposed to propound the catalysis of MgTPP.

  18. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-12-15

    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  19. Synthesis of 4-substituted tetrahydropyridines by cross-coupling of enol phosphates

    DEFF Research Database (Denmark)

    Larsen, U.S.; Martiny, L.; Begtrup, M.

    2005-01-01

    Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved.......Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved....

  20. Palladium-Catalyzed Environmentally Benign Acylation.

    Science.gov (United States)

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-05

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone.

  1. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  2. Palladium-Catalyzed Modification of Unprotected Nucleosides, Nucleotides, and Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Kevin H. Shaughnessy

    2015-05-01

    Full Text Available Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  3. 钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍%Palladium-Catalyzed Cross-Coupling ReactionsIntroduction of Nobel Prize in Chemistry in 2010

    Institute of Scientific and Technical Information of China (English)

    王乃兴

    2011-01-01

    钯催化的交叉偶联反应是非常实用的合成新方法.文章给出了Heck反应、Negishi反应和Suzuki反应的概念,对其反应机理作了详细的说明,并对其在复杂化合物和天然产物全合成中的应用作了评价.%Palladium-catalyzed cross-coupling reactions provide chemists with a more precise and efficient new methodologies. The concepts of the Heck reaction and Negishi reaction as well as Suzuki reaction are given, the reaction mechanisms are proposed, and applications of these reactions in the total synthesis of natural products are commented.

  4. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas....... They are here used to describe the context in which environmental management is implemented. Based on findings from contributions to a research program studying the implementation and impact of EMS in different settings, we highlight the diverse roles that these systems play in the Thai context. EMS may over...

  5. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether.

    Science.gov (United States)

    Andrews, Ian P; Kwon, Ohyun

    2008-12-08

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethyl ethynyl ether using 0.1% palladium(0) catalyst and 1.0 equiv of tributyltin hydride. The product obtained is a mixture of regioisomers that can be carried forward with exclusive reaction of the beta-isomer. This method is highly reproducible; relative to previously reported procedures, it is more economical and involves a more facile purification procedure.

  6. A broadly applicable NHC-Cu-catalyzed approach for efficient, site-, and enantioselective coupling of readily accessible (pinacolato)alkenylboron compounds to allylic phosphates and applications to natural product synthesis.

    Science.gov (United States)

    Gao, Fang; Carr, James L; Hoveyda, Amir H

    2014-02-05

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0-5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl-(pinacolatoboron) [alkenyl-B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2':SN2, and 99:1 enantiomeric ratio (er). NHC-Cu-catalyzed EAS with alkenyl-B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E.

  7. Copper-Catalyzed Three- Five- or Seven-Component Coupling Reactions: The Selective Synthesis of Cyanomethylamines, N,N-Bis(CyanomethylAmines and N,N'-Bis(CyanomethylMethylenediamines Based on a Strecker-Type Synthesis

    Directory of Open Access Journals (Sweden)

    Takeo Konakahara

    2013-10-01

    Full Text Available We have demonstrated that a cooperative catalytic system comprised of CuCl and Cu(OTf2 could be used to effectively catalyse the three-, five- and seven-component coupling reactions of aliphatic or aromatic amines, formaldehyde, and trimethylsilyl cyanide (TMSCN, and selectively produce in good yields the corresponding cyanomethylamines, N,N-bis(cyanomethylamines and N,N'-bis(cyanomethylmethylenediamines.

  8. (15)N Double-labeled guanosine from inosine through ring-opening-ring-closing and one-pot Pd-catalyzed C-O and C-N cross-coupling reactions.

    Science.gov (United States)

    Caner, Joaquim; Vilarrasa, Jaume

    2010-07-16

    [N,1-(15)N(2)]-Guanosine, or [1,NH(2)-(15)N(2)]-guanosine, and derivatives were prepared from tri-O-acetylinosine, via N-nitration and reaction with (15)NH(2)OH, followed by conversion of the (15)N-labeled 1-hydroxyinosine to the corresponding 2,6-dichloropurine riboside. The sequential one-pot C-O and C-N key couplings of this dichloro derivative with PhCH(2)OH and PhCO(15)NH(2) or (i)PrCO(15)NH(2) was achieved in good overall yields, with Pd(0)-Xantphos as the best choice of five different catalytic systems examined.

  9. Cobalt-catalyzed formation of symmetrical biaryls and its mechanism.

    Science.gov (United States)

    Moncomble, Aurélien; Le Floch, Pascal; Gosmini, Corinne

    2009-01-01

    Effective devotion: An efficient cobalt-catalyzed method devoted to the formation of symmetrical biaryls is described avoiding the preparation of organometallic reagents. Various aromatic halides functionalized by a variety of reactive group reagents are employed. Preliminary DFT calculations have shown that the involvement of a Co(I)/Co(III) couple is realistic at least in the case of 1,3-diazadienes as ligands (FG = functional group).

  10. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  11. Palladium-Catalyzed Coupling Reaction of 1-Bromoalkynes with Olefins to Synthesize Enynes%钯催化炔溴和烯烃偶联合成共轭烯炔的研究

    Institute of Scientific and Technical Information of China (English)

    温燕梅; 江焕峰

    2012-01-01

    1,3-Enynes are very useful synthetic intermediates.Furthermore,enyne moiety is also an important unit often found in many naturally occurring and biologically active compounds.For these reasons,the design and synthesis of such compounds containing an enyne moiety have received considerable attention in organic synthesis and have been extensively studied.Among of these methods,the Sonogashira cross-coupling reaction for the synthesis of enynes between a vinyl halide and a terminal alkyne or organometallic alkyne using Pd-Cu catalyst has become an indispensable and powerful tool for the synthesis of enynes.However,limited attention has been turned to another alternative cross-coupling reaction between a terminal alkene and a haloalkyne which is highly valuable synthon and widely used in synthetic organic chemistry for constructing complex organic compounds due to their versatility.Using Pd(OAc)2as the catalyst and K2CO3as the base in DMF,an efficient procedure for the stereoselective synthesis of a series of conjugated enynes by a simple cross-coupling reaction of alkenes and alkynyl bromides has been developed.The effects of catalyst,base and reaction temperature were studied.The result indicated that the reaction proceeds smoothly to give the corresponding products in good to excellent yields using 5 mol% Pd(OAc)2 and 2.5 equiv.K2CO3 in DMF for 2 h at 80 ℃ for arylalkene compounds,room temperature for electron-deficient alkenes.The structure of enyne derivatives was confirmed by IR,1H NMR,13C NMR,MS and HRMS.In summary,an efficient and general catalytic system has been developed for the cross-coupling reaction of a wide range of alkenes and bromoalkynes in the absence of any stabilizing ligands or special additives.The process is regio-and stereoselective,and provides good access to a series of functionalized 1,3-enynes in good to excellent yields.Moreover,the reaction is a convenient and simple path for the synthesis of the 1,3-enyne,and tolerates

  12. Pd-Complex Catalyzed Suzuki Cross-Coupling Reaction of Brominated Salicylaldehyde with Pyridylboronic Acid%钯催化溴代水杨醛与吡啶硼酸的Suzuki交叉偶联反应

    Institute of Scientific and Technical Information of China (English)

    王碧玉; 倪沛钟; 范吉理; 郑辉东; 赵素英; 白正帅

    2014-01-01

    通过研究不同种类钯催化剂[Pd(dppf)2Cl2, Pd(OAc)2, Pd(PPh3)4]、碱(Na2CO3, NaHCO3, K2CO3, K3PO4, Cs2CO3, CsF)、溶剂(DME/H2O, DMF/H2O, Dioxane/H2O)及温度(70,80,100℃)对5-溴-3-叔丁基水杨醛与吡啶-4-硼酸制备5-(4-吡啶)-3-叔丁基水杨醛化合物的 Suzuki 偶联反应的影响,开发出一种高效催化吸或供电子基取代的芳基硼酸与吸电子基取代的溴代芳烃的偶联反应的方法,该反应在Pd(PPh3)4, K2CO3, Dioxane/H2O (V∶V=4∶1)、80℃的条件下产率达到97%,且具有分离简单、重现性好的特征;但对供电子基取代的溴代芳烃参与的反应催化效果一般。%The synthesis of 3-tert-butyl-2-hydroxy-5-(pyridin-4-yl)benzaldehyde by Suzuki cross coupling reaction of 5-bromo-3-tert-butyl-2-hydroxybenzaldehyde with pyridin-4-ylboronic acid was studied by using different catalysts [Pd(dppf)2Cl2, Pd(OAc)2 and Pd(PPh3)4], bases (Na2CO3, NaHCO3, K2CO3, K3PO4, Cs2CO3 and CsF) and solvents (DME/H2O, DMF/H2O and dioxane/H2O) under different temperature of 70, 80 and 100 ℃. A compatible method was de-veloped for the coupling reaction of arylboronic acids (having electron donating or withdrawing group) with aryl bromides (having electron withdrawing group). Under the condition of Pd(PPh3)4, K2CO3, dioxane/H2O (V∶V=4∶1), 80 ℃, the yield is excellent (97%) and the product separation is easy. The compatibility for aryl bromides with electron donating group is moderate.

  13. 碘化钾催化 CO2与氧化苯乙烯合成苯乙烯环状碳酸酯条件的优化%Optimal Condition for Styrene Carbonate from Carbon Dioxide and Styrene Oxide Coupling Reaction Catalyzed by Potassium Iodide

    Institute of Scientific and Technical Information of China (English)

    杨海健; 宋念念; 黄海丽; 金亚美; 彭静; 杨洪委

    2015-01-01

    用碘化钾催化CO2与氧化苯乙烯( SO)合成苯乙烯环状碳酸酯,分别从溶剂、催化剂用量、温度、CO2压力和反应时间进行探讨,得出了最佳条件。结果表明:以无水乙醇为溶剂,催化剂用量r( KI∶SO)=1∶250,在170℃, CO2压力5 MPa,反应时间5 h,苯乙烯环状碳酸酯的产率和选择性均达到100%。%Potassium iodide was used to catalyze the coupling reaction of carbon dioxide and styrene oxide for the production of styrene carbonate.The effects of solvent, catalyst amounts,temperature, CO2 pressure and reaction time were assessed to obtain the optimal condition.The results showed that both the yield and selectivity of styrene carbonate could reach to 100%,using anhydrous ethanol as solvent, with the mole ratio of potassium iodide and styrene oxide of 1∶250, under 170℃and 5 MPa of CO2 pressure for 5 h.

  14. A facile synthesis of new 5-aryl-thiophenes bearing sulfonamide moiety via Pd(0-catalyzed Suzuki–Miyaura cross coupling reactions and 5-bromothiophene-2-acetamide: As potent urease inhibitor, antibacterial agent and hemolytically active compounds

    Directory of Open Access Journals (Sweden)

    Mnaza Noreen

    2017-01-01

    Full Text Available The present study reports a convenient approach for the synthesis of thiophene sulfonamide derivatives (3a–3k via Suzuki cross coupling reaction. This method of synthesis involved the reactions of various aryl boronic acids and esters with 5-bromthiophene-2-sulfonamide (2 under mild and suitable temperature conditions. The compounds synthesized in the present study were subjected to urease inhibition and hemolytic activities. The substitution pattern and the electronic effects of different functional groups (i.e., Cl, CH3, OCH3, F etc. available on the aromatic ring are found to have significant effect on the overall results. The compound 5-Phenylthiophene-2-sulfonamide 3a showed the highest urease inhibition activity with IC50 value ∼ 30.8 μg/mL compared with the thiourea (used as standard having IC50 value ∼ 43 μg/mL. Moreover, almost all of the compounds were examined for the hemolytic activity against triton X-100 with positive results obtained in most of the cases. In addition, the antibacterial activities of the derivatives of 5-arylthiophene-2-sulfonamide and 5-bromothiophene-2-acetamide were also investigated during the course of the study.

  15. Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin.

    Science.gov (United States)

    Meyer, Michael E; Phillips, John H; Ferreira, Eric M; Stoltz, Brian M

    2013-09-09

    Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR).

  16. Facile Rh(III)-Catalyzed Synthesis of Fluorinated Pyridines

    Science.gov (United States)

    Chen, Shuming; Bergman, Robert G.; Ellman, Jonathan A.

    2015-01-01

    A Rh(III)-catalyzed C–H functionalization approach was developed for the preparation of multi-substituted 3-fluoropyridines from α-fluoro-α,β-unsaturated oximes and alkynes. Oximes substituted with aryl, heteroaryl and alkyl β-substituents were effective coupling partners, as were symmetrical and unsymmetrical alkynes with aryl and alkyl substituents. The first examples of coupling α,β-unsaturated oximes with terminal alkynes was also demonstrated and proceeded with uniformly high regioselectivity to provide single 3-fluoropyridine regioisomers. Reactions were also conveniently set up in air on the bench top. PMID:25992591

  17. Cu-catalyzed arylation of phosphinic amide facilitated by (±)-trans-cyclohexane-1,2-diamine

    Institute of Scientific and Technical Information of China (English)

    Juan Li; Song Lin Zhang; Chuan Zhou Tao; Yao Fu; Qing Xiang Guo

    2007-01-01

    Cu-catalyzed cross coupling between phosphinic amides and aryl halides was accomplished for the first time by using (±)-transcyclohexane-1,2-diamine as the ligand. This reaction provided a novel approach for synthesizing arylated phosphinic amides. Both kinetic measurement and theoretical calculation indicated that phosphinic amides were much less reactive than amides by about 10times in Cu-catalyzed cross coupling.

  18. ReBr(CO)5-Catalyzed Knoevenagel Condensation

    Institute of Scientific and Technical Information of China (English)

    ZUO Wei-xiong; HUA Rui-mao; SUN Hong-bin

    2004-01-01

    Knoevenagel condensations are especially important reactions for the synthesis of alkene compounds having electron-withdrawing groups such as COR,CN,COOR,NO2 etc. Recently,transition metal hydride ruthenium1, hydride and polyhydride rhenium2, and polyhydride iridium complexes have been found to be the efficient catalysts for Knoevenagle condensation. However the mentioned-above transition metal hydride complexes are not easily prepared. In addition, all of them are oxygen and H2O-sensitive, unstable compands. Therefor the catalytic reactions are required to be carried out under an inert atmosphere, and using the prepurified reagent.In the paper, We wish to report the development of Knoevenagel condensation catalyzed by ReBr(CO)5 under an air atmosphere in the absence of solvent.All the experiments were carried out under 1atm, without solvent.The resuIts of the representative Knoevenagel condensations are summarized in Table 1.The Knoevenagel reaction with diethyl malonate can be catalyzed by ReBr(CO)5, while the present Knoevenagel reactions catalyzed by transition metal have at least one cyano group in active methylene compouds.A propose mechanism for present catalytic coupling dehydration reactions is also illustrated in the paper.Briefly, this paper reports the ReBr(CO)5-catalyzed Knoevenagel reaction. The reaction is a new method for the Konevenagel condensation.

  19. Reduction of nitrobenzene by the catalyzed Fe/Cu process

    Institute of Scientific and Technical Information of China (English)

    XU Wenying; LI Ping; FAN Jinhong

    2008-01-01

    The polarization behavior of the couple Fe/Cu in 100 mg/L nitrobenzene aqueous solution was studied using Evans coupling diagrams. The results indicated that the iron corrosion was limited by both anodic and cathodic half-cell reactions under the neutral conditions and cathodically controlled under the alkaline conditions. Batch experiments were performed to study the effect of solution pH, reaction duration, concentration, type of electrolyte and dissolved oxygen (DO) on the reduction of nitrobenzene by the catalyzed Fe/Cu process. This process proved effective in the pH range of 3 to 11. The conversion efficiency of nitrobenzene at pH ≈ 10.1 was almost the same as that under highly acid conditions (pH ≈ 3). The degradation of nitrobenzene fell into two phases: adsorption and surface reduction, and the influence of adsorption and mass transfer became more extensive with solution concentration. The reduction rate decreased in the presence of DO in the solution, indicating that a need for aeration was eliminated in the catalyzed Fe/Cu process. Accordingly, spending on energy consumption would be reduced. Economic analysis indicated that merely 0.05 kg was required for the treatment of a ton of nitrobenzene-containing water with pH from 3 to 11. The catalyzed Fe/Cu process is cost-effective and of practical value.

  20. Polymerization of phenols catalyzed by peroxidase in nonaqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Dordick, J.S.; Marletta, M.A.; Klibanov, A.M.

    1987-01-01

    Polymers produced by horseradish-peroxidase-catalyzed coupling of phenols have been explored as potential substitutes for phenol-formaldehyde resins. To overcome low substrate solubilities and product molecular weights in water, enzymatic polymerizations in aqueous-organic mixtures have been examined. Peroxidase vigorously polymerizes a number of phenols in mixtures of water with water-miscible solvents such as dioxane, acetone, dimethylformamide, and methyl formate with the solvent content up to 95%. As a result, various phenolic polymers with average molecular weights from 400 to 2.6 x 10/sup 4/ D were obtained depending on the reaction medium composition and the nature of the phenol. Peroxidase-catalyzed copolymerization of different phenols in 85% dioxane was demonstrated. Poly(p-phenylphenol) and poly(p-cresol) were enzymatically prepared on a gram scale. They had much higher melting points, and in addition, poly(p-phenylphenol) was found to have a much higher electrical conductivity than phenol-formaldehyde resins.

  1. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  2. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    OpenAIRE

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to develop new methods to activate (bio-mass derived) allyl-alcohols, which allow ‘green’ chemical processes for a broad substrate range. This may have a considerable impact on the methodology for fin...

  3. Coupling of Photonic and Electronic Spin Catalyzed by Diatomic Molecules

    Science.gov (United States)

    Gay, Timothy

    2011-05-01

    Recent experiments involving the collisions of polarized photons or polarized electrons with simple diatomic molecules have shown novel ways in which the net spin of electrons can be converted into the net spin of photons following the collisions, or vice versa. I will discuss three recent experiments that illustrate such transformations: the production of nuclear rotational spin in nitrogen molecules excited by polarized electrons with the subsequent emission of polarized photons, the excitation by polarized electrons of rotational eigenstates of hydrogen molecules and the subsequent emission of circularly-polarized light, and the photolysis of hydrogen molecules by circularly-polarized light yielding photofragments that ``spin the wrong way.'' To our knowledge, these latter measurements represent the first observation of photofragment orientation by direct observation of the polarization of the photofragment fluoresence. Work supported by the NSF through grant PHY-0821385, the DOE through the use of the ALS at LBL, and ANSTO (Access to Major Research Facilities Programme).

  4. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  5. Iridium-Catalyzed Allylic Substitution

    Science.gov (United States)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  6. Palladium-catalyzed cross-couplings in organic synthesis:An introduction to the 2010 Nobel Prize in Chemistry%有机合成中钯催化交叉偶联反应:2010年诺贝尔化学奖成果简介

    Institute of Scientific and Technical Information of China (English)

    陈垚; 赖文勇; 解令海; 黄维

    2011-01-01

    The 2010 Nobel Prize in Chemistry was awarded by the Royal Swedish Academy of Sciences to Professor Richard F. Heck, Professor Ei-ichi Negishi and Professor Akira Suzuki for “palladium-catalyzed cross-couplings in organic synthesis”. The discoveries made by the these three organic chemists have had a great impact on academic research and industrial applications. Their reactions have proved extremely powerful and are widely used for the synthesis of organic electronic materials, new drugs, pharmaceuticals and biologically active compounds. In this report, we present a brief introduction to the 2010 Nobel Prize in Chemistry and the related Heck, Nigishi,and Suzuki-Miyaura reactions. We also discuss the recent advances and applications involving these reactions, especially in the field of organic electronics.%瑞典皇家科学院将2010年诺贝尔化学奖授予美国和日本的3位科学家理查德.海克(Richard F.Heck)、根岸英-(Ei-ichi Negishi)和铃木章(Akira Suzuki),以表彰他们在"有机合成中钯催化交叉偶联反应"方面所做出的杰出贡献.他们的研究成果极大地促进了有机合成化学的发展,广泛应用于合成制备具有特殊光电功能的高性能有机电子材料、具有复杂结构的天然产物和生物活性化合物以及一些精细化学品,对学术界和工业界产生了重要影响.本文简要介绍了Heck反应、Negishi反应和Suzuki-Miyaura反应的基本知识,并讨论了其发展和应用概况.

  7. A General and Efficient CuBr2-Catalyzed N-Arylation of Secondary Acyclic Amides

    Institute of Scientific and Technical Information of China (English)

    王满刚; 于华; 尤心稳; 吴军; 商志才

    2012-01-01

    A general and efficient Cu(II)-catalyzed cross-coupling method is reported for the preparation of acyclic tertiary amides. Generally moderate to excellent yields and functional group tolerance were obtained with secondary acyclic amides and aryl halides as substrates in toluene.

  8. Hydrazone as the directing group for Ir-catalyzed arene diborylations and sequential functionalizations.

    Science.gov (United States)

    Ros, Abel; López-Rodríguez, Rocío; Estepa, Beatriz; Álvarez, Eleuterio; Fernández, Rosario; Lassaletta, José M

    2012-03-14

    The use of hemilabile pyridine-hydrazone N,N-ligands allows the highly selective Ir-catalyzed ortho,ortho'-directed diborylation of aromatic N,N-dimethylhydrazones in near-quantitative yields. One-pot sequential Suzuki-Miyaura cross-coupling with different aryl bromides provides a short entry to unsymmetrically substituted 2,6-diarylbenzaldehyde derivatives.

  9. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  10. Synthesis of Flurbiprofen via Suzuki Reaction Catalyzed by Palladium Charcoal in Water

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Flurbiprofen 1, an excellent nonsteroidal an tiinflammatory drug, was synthesized in 5steps in 69% overall yield. The key step of constructing the biaryl fragment was successfully achieved via Pd/C-catalyzed Suzuki coupling reaction in water using sodium tetraphenylborate as phenylation reagent.

  11. Room-Temperature Palladium-Catalyzed Direct 2-Arylation of Benzoxazoles with Aryl and Heteroaryl Bromides†

    Science.gov (United States)

    Gao, Feng; Kim, Byeong-Seon; Walsh, Patrick J.

    2014-01-01

    An efficient room-temperature palladium-catalyzed direct 2-arylation of benzoxazoles with aryl bromides is presented. The Pd(OAc)2/NiXantphos-based catalyst enables the introduction of various aryl and heteroaryl groups, via a deprotonative cross-coupling process (DCCP) in good to excellent yields (75–99%). PMID:25078988

  12. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.

    Science.gov (United States)

    Chen, Xuan; Zhu, Chongwei; Cui, Xiuling; Wu, Yangjie

    2013-08-07

    An efficient and direct 2-acetoxylation of quinoline N-oxides via copper(I) catalyzed C-H bond activation has been developed. This transformation was achieved using TBHP as an oxidant in the cross-dehydrogenative coupling (CDC) reaction of quinoline N-oxides with aldehydes, and provided a practical pathway to 2-acyloxyl quinolines.

  13. A Novel Palladium-Catalyzed Reaction and Its Application in Preparation of Derivatives of Stilbazols

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel palladium-catalyzed coupling reaction for the preparation of derivatives of stilbazoles was presented.A series of stilbazoles were synthesized firstly by this highly efficient method.From this reaction it was found that reaction solvent is one of important factors in this catalytic system.

  14. Palladium-Catalyzed Polyfluorophenylation of Porphyrins with Bis(polyfluorophenylzinc Reagents

    Directory of Open Access Journals (Sweden)

    Toshikatsu Takanami

    2013-10-01

    Full Text Available A facile and efficient method for the synthesis of pentafluorophenyl- and related polyfluorophenyl-substituted porphyrins has been achieved via palladium-catalyzed cross-coupling reactions of brominated porphyrins with bis(polyfluorophenylzinc reagents. The reaction is applicable to a variety of free-base bromoporphyrins, their metal complexes, and a number of bis(polyfluorophenylzinc reagents.

  15. A new manganese-mediated, cobalt-catalyzed three-component synthesis of (diarylmethylsulfonamides

    Directory of Open Access Journals (Sweden)

    Antoine Pignon

    2014-02-01

    Full Text Available The synthesis of (diarylmethylsulfonamides and related compounds by a new manganese-mediated, cobalt-catalyzed three-component reaction between sulfonamides, carbonyl compounds and organic bromides is described. This organometallic Mannich-like process allows the formation of the coupling products within minutes at room temperature. A possible mechanism, emphasizing the crucial role of manganese is proposed.

  16. Rhodium(III)-Catalyzed C-H Activation Mediated Synthesis of Isoquinolones from Amides and Cyclopropenes.

    Science.gov (United States)

    Hyster, Todd K; Rovis, Tomislav

    2013-01-01

    We have developed a synthesis of 4-substituted isoquinolones from the Rh(III)-catalyzed, C-H activation mediated, coupling of O-pivaloyl benzhydroxamic acids and 3,3-disubstituted cyclopropenes. Experiments suggest the formation of a [4.1.0] bicyclic-system, which can open under acidic conditions to generate the desired isoquinolone.

  17. Rhodium(III)-Catalyzed C–H Activation Mediated Synthesis of Isoquinolones from Amides and Cyclopropenes

    Science.gov (United States)

    Hyster, Todd K.; Rovis, Tomislav

    2014-01-01

    We have developed a synthesis of 4-substituted isoquinolones from the Rh(III)-catalyzed, C–H activation mediated, coupling of O-pivaloyl benzhydroxamic acids and 3,3-disubstituted cyclopropenes. Experiments suggest the formation of a [4.1.0] bicyclic-system, which can open under acidic conditions to generate the desired isoquinolone. PMID:25346576

  18. Palladium-Catalyzed Carbonylation of Aryl Bromides with N-Substituted Cyanamides

    DEFF Research Database (Denmark)

    Lian, Zhong; Friis, Stig D.; Lindhardt, Anders T.;

    2014-01-01

    The palladium(0)-catalyzed three-component coupling reaction of aryl bromides, carbon monoxide, and N-alkyl cyan­amides has been developed employing a two-chamber system with ex situ generation of carbon monoxide from a silacarboxylic acid. The reactions proceeded well and were complete with a re...

  19. Multifold and sequential cross-coupling reactions with indium organometallics.

    Science.gov (United States)

    Pena, Miguel A; Pérez, Ignacio; Pérez Sestelo, José; Sarandeses, Luis A

    2002-10-07

    Multifold and sequential palladium-catalyzed cross-coupling reactions can be performed between triorganoindium compounds and oligohaloarenes using only a small excess of the organometallic reagent, low catalyst charge loading and short reaction times.

  20. Transition metal-catalyzed functionalization of pyrazines

    NARCIS (Netherlands)

    Nikishkin, Nicolai I.; Huskens, Jurriaan; Verboom, Willem

    2013-01-01

    Transition metal-catalyzed reactions are generally used for carbon–carbon bond formation on pyrazines and include, but are not limited to, classical palladium-catalyzed reactions like Sonogashira, Heck, Suzuki, and Stille reactions. Also a few examples of carbon–heteroatom bond formation in pyrazine

  1. A Copper-Assisted Palladium(II)-catalyzed Direct Arylation of Cyclic Enaminones with Arylboronic Acids

    OpenAIRE

    Kim, Yong Wook; Niphakis, Micah J.; Georg, Gunda I.

    2012-01-01

    Described herein is a palladium(II)-catalyzed direct arylation of cyclic enaminones with arylboronic acids. The versatility of this method is that both electron-rich and electron-poor boronic acids can be coupled in high yields. A mixture of two Cu(II) additives was crucial for efficient cross-coupling. The role of each Cu(II) reagent appears to be distinct and complementary serving to assist catalyst reoxidation and transmetallation through a putative arylcopper intermediate.

  2. 氧化偶联反应和酸催化反应制备活性买麻藤醇二聚体衍生物%Preparation of Active Gnetol Dimers by Oxidative Coupling Reaction and Acid-Catalyzed Dimerization

    Institute of Scientific and Technical Information of China (English)

    姚春所; 林茂; 杨庆云

    2013-01-01

    Oxidative coupling reaction with FeCl3·6H2O as oxidant and acid-catalyzed dimerization of natural gnetol in methanol afforded two new gnetol dimers and one new phenyl naphthalene derivative: 4-[1-(2,6-dihydroxyphenyl)-2-(3,5-dihydroxyphenyl)ethyl]-2-[(lE)-2-(3,5-dihydroxyphenyl)ethenyl]-1,3-benzenediol (1),2-[1-(2,6-dihydroxyphenyl)-2-(3,5-di-hydroxyphenyl)ethyl]-5-f(1E)-2-(2,6-dihydroxyphenyl)ethenyl]-1,3-benzenediol (2) and 4-(6,8-dimethoxyl-2-naphthalenyl)-1,3-benzenediol (3). Their structures were elucidated on the basis of spectral analysis,and their possible formation mechanisms were discussed. 1 and 2 were new linear stilbene dimers synthesized for the first time. Pharmacological tests showed 1,2 and 3 to exhibit potent anti-oxidation activity with IC50 values of 6.29×10-9,4.19× 10-6,and 2.96×10-5 mol·L-1,respectively,and 2 was shown to have potent anti-inflammatory activity.%以天然得到的买麻藤醇为原料,以FeCl3·6H2O为氧化剂进行氧化偶联反应和酸催化二聚反应,获得了2个新的买麻藤醇二聚体及一个新的苯基萘衍生物:4-[1-(2,6-二羟基苯基)-2-(3,5-二羟基苯基)乙基]-2-[(1E)-2-(3,5-二 羟基苯基)乙烯基]-1,3-苯二醇(1),2-[1-(2,6-二羟基苯基)-2-(3,5-二羟基苯基)乙基]-5-[(1E)2-(2,6-二羟基苯基)乙烯基]-1,3-苯二醇(2)和4-(6,8-二甲氧基-2-萘基)-1,3-苯二醇(3).应用波谱分析的方法确定了它们的结构,并分别讨论了它们可能的形成机理.其中,化合物1和2首次为人工合成的二苯乙烯链状二聚体.活性测试结果表明,化合物1,2和3显示有较强的抗氧化活性,其IC50值分别为6.29×10-9,4.19×10-6和2.96×10-5 mol·L-1;化合物2还显示有较强的抗炎活性.

  3. Iridium and ruthenium catalyzed syntheses, hydroborations, and metathesis reactions of alkenyl-decaboranes.

    Science.gov (United States)

    Chatterjee, Shahana; Carroll, Patrick J; Sneddon, Larry G

    2013-08-05

    The selective syntheses of new classes of 6,9-dialkenyl- and 6-alkenyl-decaboranes and 6-alkyl-9-alkenyl-decaboranes have been achieved via iridium and ruthenium catalyzed decaborane and 6-alkyl-decaborane alkyne-hydroborations. Reactions employing [Cp*IrCl2]2 and [RuCl2(p-cymene)]2 precatalysts gave β-E-alkenyl-decaboranes, while the corresponding reactions with [RuI2(p-cymene)]2 gave the α-alkenyl-decaborane isomers, with the differences in product selectivity suggesting quite different mechanistic steps for the catalysts. The alkenyl-decaboranes were easily converted to other useful derivatives, including coupled-cage and functionally substituted compounds, via iridium-catalyzed hydroborations and ruthenium-catalyzed homo and cross olefin-metathesis reactions.

  4. Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush".

    Science.gov (United States)

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M; Tang, Weiping

    2012-12-07

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed.

  5. Advances in lipase-catalyzed esterification reactions.

    Science.gov (United States)

    Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Filippou, Michalis; Koukouritaki, Maria; Parapouli, Maria; Theodorou, Leonidas G; Hatziloukas, Efstathios; Afendra, Amalia; Pandey, Ashok; Papamichael, Emmanuel M

    2013-12-01

    Lipase-catalyzed esterification reactions are among the most significant chemical and biochemical processes of industrial relevance. Lipases catalyze hydrolysis as well as esterification reactions. Enzyme-catalyzed esterification has acquired increasing attention in many applications, due to the significance of the derived products. More specifically, the lipase-catalyzed esterification reactions attracted research interest during the past decade, due to an increased use of organic esters in biotechnology and the chemical industry. Lipases, as hydrolyzing agents are active in environments, which contain a minimum of two distinct phases, where all reactants are partitioned between these phases, although their distribution is not fixed and changes as the reaction proceeds. The kinetics of the lipase-catalyzed reactions is governed by a number of factors. This article presents a thorough and descriptive evaluation of the applied trends and perspectives concerning the enzymatic esterification, mainly for biofuel production; an emphasis is given on essential factors, which affect the lipase-catalyzed esterification reaction. Moreover, the art of using bacterial and/or fungal strains for whole cell biocatalysis purposes, as well as carrying out catalysis by various forms of purified lipases from bacterial and fungal sources is also reviewed.

  6. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  7. Coupled transfers; Transferts couples

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, X.; Lauriat, G.; Jimenez-Rondan, J. [Universite de Marne-la-Vallee, Lab. d' Etudes des Transferts d' Energie et de Matiere (LETEM), 77 (France); Bouali, H.; Mezrhab, A. [Faculte des Sciences, Dept. de Physique, Lab. de Mecanique et Energetique, Oujda (Morocco); Abid, C. [Ecole Polytechnique Universitaire de Marseille, IUSTI UMR 6595, 13 Marseille (France); Stoian, M.; Rebay, M.; Lachi, M.; Padet, J. [Faculte des Sciences, Lab. de Thermomecanique, UTAP, 51 - Reims (France); Mladin, E.C. [Universitaire Polytechnique Bucarest, Faculte de Genie Mecanique, Bucarest (Romania); Mezrhab, A. [Faculte des Sciences, Lab. de Mecanique et Energetique, Dept. de Physique, Oujda (Morocco); Abid, C.; Papini, F. [Ecole Polytechnique, IUSTI, 13 - Marseille (France); Lorrette, C.; Goyheneche, J.M.; Boechat, C.; Pailler, R. [Laboratoire des Composites ThermoStructuraux, UMR 5801, 33 - Pessac (France); Ben Salah, M.; Askri, F.; Jemni, A.; Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Lab. d' Etudes des Systemes Thermiques et Energetiques (Tunisia); Grine, A.; Desmons, J.Y.; Harmand, S. [Laboratoire de Mecanique et d' Energetique, 59 - Valenciennes (France); Radenac, E.; Gressier, J.; Millan, P. [ONERA, 31 - Toulouse (France); Giovannini, A. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2005-07-01

    This session about coupled transfers gathers 30 articles dealing with: numerical study of coupled heat transfers inside an alveolar wall; natural convection/radiant heat transfer coupling inside a plugged and ventilated chimney; finite-volume modeling of the convection-conduction coupling in non-stationary regime; numerical study of the natural convection/radiant heat transfer coupling inside a partitioned cavity; modeling of the thermal conductivity of textile reinforced composites: finite element homogenization on a full periodical pattern; application of the control volume method based on non-structured finite elements to the problems of axisymmetrical radiant heat transfers in any geometries; modeling of convective transfers in transient regime on a flat plate; a conservative method for the non-stationary coupling of aero-thermal engineering codes; measurement of coupled heat transfers (forced convection/radiant transfer) inside an horizontal duct; numerical simulation of the combustion of a water-oil emulsion droplet; numerical simulation study of heat and mass transfers inside a reactor for nano-powders synthesis; reduction of a combustion and heat transfer model of a direct injection diesel engine; modeling of heat transfers inside a knocking operated spark ignition engine; heat loss inside an internal combustion engine, thermodynamical and flamelet model, composition effects of CH{sub 4}H{sub 2} mixtures; experimental study and modeling of the evolution of a flame on a solid fuel; heat transfer for laminar subsonic jet of oxygen plasma impacting an obstacle; hydrogen transport through a A-Si:H layer submitted to an hydrogen plasma: temperature effects; thermal modeling of the CO{sub 2} laser welding of a magnesium alloy; radiant heat transfer inside a 3-D environment: application of the finite volume method in association with the CK model; optimization of the infrared baking of two types of powder paints; optimization of the emission power of an infrared

  8. Attractor Explosions and Catalyzed Vacuum Decay

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  9. Enantioselective, iridium-catalyzed monoallylation of ammonia.

    Science.gov (United States)

    Pouy, Mark J; Stanley, Levi M; Hartwig, John F

    2009-08-19

    Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations.

  10. Cp*Rh(iii)-catalyzed C(sp(3))-H alkylation of 8-methylquinolines in aqueous media.

    Science.gov (United States)

    Kim, Saegun; Han, Sangil; Park, Jihye; Sharma, Satyasheel; Mishra, Neeraj Kumar; Oh, Hyunjung; Kwak, Jong Hwan; Kim, In Su

    2017-03-09

    The rhodium(iii)-catalyzed cross-coupling reaction of 8-methylquinolines with a range of allylic alcohols in water is described. This approach leads to the synthesis of various γ-quinolinyl carbonyl compounds, which are synthetically useful precursors for the construction of bioactive tetrahydroquinoline and azasteroid derivatives.

  11. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-05

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

  12. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    Science.gov (United States)

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  13. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  14. Catalyzing curriculum evolution in graduate science education.

    Science.gov (United States)

    Gutlerner, Johanna L; Van Vactor, David

    2013-05-09

    Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training.

  15. Mechanochemical ruthenium-catalyzed olefin metathesis.

    Science.gov (United States)

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  16. Rhodium-catalyzed restructuring of carbon frameworks.

    Science.gov (United States)

    Murakami, Masahiro

    2010-10-01

    Metal-catalyzed reactions involving an elementary step which cleaves a carbon-carbon bond provide unique organic transformations. Restructuring reactions recently developed in our laboratory, through which the carbon framework of a starting substance is restructured into a totally different carbon framework, are discussed, with the possibility of applying such methods to the synthesis of natural products.

  17. Lysophosphatidylcholine synthesis by lipase-catalyzed ethanolysis.

    Science.gov (United States)

    Yang, Guolong; Yang, Ruoxi; Hu, Jingbo

    2015-01-01

    Lysophosphatidylcholine (LPC) is amphiphilic substance, and possesses excellent physiological functions. In this study, LPC was prepared through ethanolysis of phosphatidylcholine (PC) in n-hexane or solvent free media catalyzed by Novozym 435 (from Candida antarctica), Lipozyme TLIM (from Thermomcyces lanuginosus) and Lipozyme RMIM (from Rhizomucor miehei). The results showed that three immobilized lipases from Candida Antarctica, Thermomcyces lanuginosus and Rhizomucor miehei could catalyze ethanolysis of PC efficiently. In n-hexane, the LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TLIM and Lipozyme RMIM could reach to 98.5 ± 1.6%, 94.6 ± 1.4% and 93.7 ± 1.8%, respectively. In solvent free media, the highest LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TL IM and Lipozyme RM IM were 97.7 ± 1.7%, 93.5 ± 1.2% and 93.8 ± 1.9%, respectively. The catalytic efficiencies of the three lipases were in the order of Novozyme 435 > Lipozyme TLIM > Lipozyme RMIM. Furthermore, their catalytic efficiencies in n-hexane were better than those in solvent free media.

  18. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  19. Palladium-Catalyzed Intramolecular Aminofluorination of Styrenes%Palladium-Catalyzed Intramolecular Aminofluorination of Styrenes

    Institute of Scientific and Technical Information of China (English)

    徐涛; 邱水发; 刘国生

    2011-01-01

    A novel palladium-catalyzed intramolecular oxidative aminofluorination of styrenes has been developed by using NFSI as fluorinating reagent. This reaction represented an efficient method for the synthesis of 2-aryl-3-fluoropyrrolidine derivatives.

  20. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-Feng; Lin Zhen-Quan; Gao Yan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels In(n = 1, 2, 3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkjv, and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k, j) = Lkjv, where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species ak(t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v < 0 case, the irreversible aggregation dominates the process, and ak(t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, ak(t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely.

  1. Palladium-catalyzed reductive homocoupling of aromatic halides and oxidation of alcohols.

    Science.gov (United States)

    Zeng, Minfeng; Du, Yijun; Shao, Linjun; Qi, Chenze; Zhang, Xian-Man

    2010-04-16

    Palladium-catalyzed reductive homocoupling of aromatic halides can be performed in alcohol solutions without any auxiliary reducing reagents. Pd(dppf)Cl(2) [dppf = 1,1'-bis(diphenylphosphino)ferrocene] has been shown as the most effective catalyst among the palladium catalysts screened for the model reductive homocoupling of iodobenzene in alcoholic solutions. The reduction of iodobenzene is stoichiometrically coupled with the oxidation of solvent alcohol (3-pentanol). The X-ray photoelectron spectroscopic (XPS) studies clearly indicate that the oxidation of solvent alcohol molecules is involved with the in situ regeneration of the reductive Pd(0)(dppf) active species, indicating that the solvent alcohol also reacts as a reducing reagent for the reductive homocoupling of aromatic halides. Elimination of the external reducing reagents will simplify the product separation and purification. Base is essential for the success of the Pd(dppf)Cl(2)-catalyzed redox reaction as 2 molar equiv of base is needed to neutralize the acid byproduct formed. Biaryls are the predominant products for the Pd(dppf)Cl(2)-catalyzed reductions of the unsubstituted aromatic halides in 3-pentanol solution, whereas the dehalogenation products are predominant for the Pd(dppf)Cl(2)-catalyzed reductions of the substituted aromatic halides. The reaction mechanisms have been discussed for the palladium-mediated concomitant reduction of aromatic halides and oxidation of alcohols without any auxiliary reductants and oxidants.

  2. Synthesis of 3,4-disubstituted maleimides by selective cross-coupling reactions using indium organometallics.

    Science.gov (United States)

    Bouissane, Latifa; Pérez Sestelo, José; Sarandeses, Luis A

    2009-03-19

    Unsymmetrical 3,4-disubstituted maleimides have been synthesized by palladium-catalyzed cross-coupling reactions of indium organometallics with 3,4-dihalomaleimides. The synthesis was performed by stepwise or sequential one-pot palladium-catalyzed cross-coupling reactions with various triorganoindium reagents. This method was used to prepare a wide variety of alkyl, aryl, heteroaryl, and alkynyl 3,4-disubstituted maleimides in good yields and with high selectivity and atom economy.

  3. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  4. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study motivations for and outcomes of couples starting up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010, while comparing them to a set of comparable firms and couples. The main motivation for joint entrepreneurship is to create...

  5. Reaction design, discovery, and development as a foundation to function-oriented synthesis.

    Science.gov (United States)

    Micalizio, Glenn C; Hale, Sarah B

    2015-03-17

    Convergent C-C bond-forming reactions define the fabric of organic synthesis and, when applied in complex molecule synthesis, can have a profound impact on efficiency by decreasing the longest linear sequence of transformations required to convert simple starting materials to complex targets. Despite their well-appreciated strategic significance, campaigns in natural product synthesis typically embrace only a small suite of reactivity to achieve such bond construction (i.e., nucleophilic addition to polarized π-bonds, nucleophilic substitution, cycloaddition, and metal-catalyzed "cross-coupling"), therefore limiting the sites at which convergent coupling chemistry can be strategically employed. In our opinion, it is far too often that triumphs in the field are defined by chemical sequences that do not address the challenges associated with discovery, development, and production of natural product-inspired agents. We speculated that advancing an area of chemical reactivity not represented in the few well-established strategies for convergent C-C bond formation may lead to powerful new retrosynthetic relationships that could simplify approaches to the syntheses of a variety of different classes of natural products. Our studies ultimately embraced the pursuit of strategies to control the course of metallacycle-mediated "cross-coupling" between substrates containing sites of simple π-unsaturation (ubiquitous functionality in organic chemistry including alkenes, alkynes, allenes, aldehydes, and imines, among others). In just eight years since our initial publication in this area, we have defined over 20 stereoselective intermolecular C-C bond-forming reactions that provide access to structural motifs of relevance for the synthesis of polyketides, fatty acids, alkaloids, and terpenes, while doing so in a direct and stereoselective fashion. These achievements continue to serve as the foundation of my group's activity in natural product and function-oriented synthesis

  6. A reductive coupling strategy towards ripostatin A.

    Science.gov (United States)

    Schleicher, Kristin D; Jamison, Timothy F

    2013-01-01

    Synthetic studies on the antibiotic natural product ripostatin A have been carried out with the aim to construct the C9-C10 bond by a nickel(0)-catalyzed coupling reaction of an enyne and an epoxide, followed by rearrangement of the resulting dienylcyclopropane intermediate to afford the skipped 1,4,7-triene. A cyclopropyl enyne fragment corresponding to C1-C9 has been synthesized in high yield and demonstrated to be a competent substrate for the nickel(0)-catalyzed coupling with a model epoxide. Several synthetic approaches toward the C10-C26 epoxide have been pursued. The C13 stereocenter can be set by allylation and reductive decyanation of a cyanohydrin acetonide. A mild, fluoride-promoted decarboxylation enables construction of the C15-C16 bond by an aldol reaction. The product of this transformation is of the correct oxidation state and potentially three steps removed from the targeted epoxide fragment.

  7. Facile coupling of propargylic, allylic and benzylic alcohols with allylsilane and alkynylsilane, and their deoxygenation with Et3SiH, catalyzed by Bi(OTf)3 in [BMIM][BF4] ionic liquid (IL), with recycling and reuse of the IL.

    Science.gov (United States)

    Kumar, G G K S Narayana; Laali, Kenneth K

    2012-09-28

    Allyltrimethylsilane (allyl-TMS) reacts with propargylic alcohols 1a-1d in the presence of 10% Bi(OTf)(3) in [BMIM][BF(4)] solvent to furnish the corresponding 1,5-enynes in respectable isolated yields (87-93%) at room temperature. The utility of Bi(OTf)(3) as a superior catalyst was demonstrated in a survey study on coupling of allyl-TMS with employing several metallic triflates (Bi, Ln, Al, Yb) as well as, B(C(6)F(5))(3), Zn(NTf(2))(2) and Bi(NO(3))(3)·5H(2)O. Coupling of cyclopropyl substituted propargylic alcohol with allyl-TMS gave the skeletally intact 1,5-enyne and a ring opened derivative as a mixture. Coupling of propargylic/allylic alcohol with allyl-TMS resulted in allylation at both benzylic (2 isomers) and propargylic positions, as major and minor products respectively. The scope of this methodology for allylation of a series of allylic and benzylic alcohols was explored. Chemoselective reduction of a host of propargylic, propagylic/allylic, bis-allylic, allylic, and benzylic alcohols with Et(3)SiH was achieved in high yields with short reaction times. The same approach was successfully applied to couple representative propargylic and allylic alcohols with 1-phenyl-2-trimethylsilylacetylene. The recovery and reuse of the ionic liquid (IL) was gauged in a case study with minimal decrease in isolated yields after six cycles.

  8. On the way towards greener transition-metal-catalyzed processes as quantified by E factors.

    Science.gov (United States)

    Lipshutz, Bruce H; Isley, Nicholas A; Fennewald, James C; Slack, Eric D

    2013-10-11

    Transition-metal-catalyzed carbon-carbon and carbon-heteroatom bond formations are among the most heavily used types of reactions in both academic and industrial settings. As important as these are to the synthetic community, such cross-couplings come with a heavy price to our environment, and sustainability. E Factors are one measure of waste created, and organic solvents, by far, are the main contributors to the high values associated, in particular, with the pharmaceutical and fine-chemical companies which utilize these reactions. An alternative to organic solvents in which cross-couplings are run can be found in the form of micellar catalysis, wherein nanoparticles composed of newly introduced designer surfactants enable the same cross-couplings, albeit in water, with most taking place at room temperature. In the absence of an organic solvent as the reaction medium, organic waste and hence, E Factors, drop dramatically.

  9. Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles

    Science.gov (United States)

    Müller, Thomas J. J.

    Alkynones and chalcones are of paramount importance in heterocyclic chemistry as three-carbon building blocks. In a very efficient manner, they can be easily generated by palladium-copper catalyzed reactions: ynones are formed from acid chlorides and terminal alkynes, and chalcones are synthesized in the sense of a coupling-isomerization (CI) sequence from (hetero)aryl halides and propargyl alcohols. Mild reaction conditions now open entries to sequential and consecutive transformations to heterocycles, such as furans, 3-halo furans, pyrroles, pyrazoles, substituted and annelated pyridines, annelated thiopyranones, pyridimines, meridianins, benzoheteroazepines and tetrahydro-β-carbolines, by consecutive coupling-cyclocondensation or CI-cyclocondensation sequences, as new diversity oriented routes to heterocycles. Domino reactions based upon the coupling-isomerization reaction (CIR) have been probed in the synthesis of antiparasital 2-substituted quinoline derivatives and highly luminescent spiro-benzofuranones and spiro-indolones.

  10. Chiral Diamine-catalyzed Asymmetric Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Da-zhen; WU Lu-lu; WANG Yong-mei

    2012-01-01

    A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid(TFA) was employed for asymmetric Aldol reaction in i-PrOH at room temperature.A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes,furnishing Aldol products in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.

  11. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  12. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  13. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  14. Rapid Microwave-promoted Base-free Suzuki Coupling Reaction of Sodium Tetraphenylborate with Hypervalent Iodonium Salts in Water

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The palladium chloride-catalyzed Suzuki coupling reaction of sodium tetraphenylborate with hypervalent iodonium salts was achieved under microwave irradiation in water without base in excellent yield. A convenient and rapidmethod for formation of carbon-carbon bonds was afforded.

  15. Synthesis of 3-Allyl-4-phosphachromones by Cyclized Coupling of Ethyl o-Hydroxyphenyl(ethynyl)phosphinate with Allyl Bromide

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3-Allyl-4-phosphachromones as the phosphorus analogues of chromone were firstly prepared in good yields and high regioselectivity by the palladium(Ⅱ)-catalyzed cyclized coupling reaction of ethyl o-hydroxyphenyl(ethynyl)-phosphinate with allyl bromide.

  16. Biginelli reaction catalyzed by copper nanoparticles.

    Directory of Open Access Journals (Sweden)

    Manika Dewan

    Full Text Available We recently reported a novel synthesis of copper nanoparticles from copper sulphate utilizing the charge-compensatory effect of ionic liquid [bmim]BF(4 and ethylene glycol. The nanoparticles were characterized and found to be stable for one year. Here we hypothesize that the stabilized nanoparticles should be able to catalyze one-pot multicomponent organic reactions. We show that the nanoparticles catalyzed Biginelli reaction at room temperature to give the product 3,4-dihydopyrimidinone (>90% yield in ~15 minutes from aldehydes, β-diketoester (ethylacetoacetate and urea (or thiourea. . Remarkably, such high yields and rapid kinetics was found to be independent of the electronic density on the reactant aryl-aldehyde. This was probably because even the surface-active particles reacted faster in the presence of ionic liquid as compared to conventional methods. The heterocyclic dihydropyrimidinones (DHPMs and their derivatives are widely used in natural and synthetic organic chemistry due to their wide spectrum of biological and therapeutic properties (resulting from their antibacterial, antiviral, antitumor and anti-inflammatory activities. Our method has an easy work-up procedure and the nanoparticles could be recycled with minimal loss of efficiency.

  17. Cu-catalyzed arylation of the amino group in the indazole ring: regioselective synthesis of pyrazolo-carbazoles.

    Science.gov (United States)

    Anil Kumar, K; Kannaboina, Prakash; Dhaked, Devendra K; Vishwakarma, Ram A; Bharatam, Prasad V; Das, Parthasarathi

    2015-02-07

    Cu(II)-catalyzed cross-coupling of various aryl boronic acids with 5 and 6-amino indazoles has resulted in (arylamino)-indazoles. These (arylamino)-indazoles have been utilized in synthesizing medicinally important pyrazole-fused carbazoles via Pd(II)-catalyzed cross-dehydrogenative coupling (CDC). This combined N-arylation/C-H arylation strategy has been successfully applied to the regioselective synthesis of polyheterocycles 3,6-dihydropyrazolo[3,4-c]carbazoles and 1,6-dihydro pyrazolo[4,3-c]carbazoles. Quantum chemical analysis has been carried out to understand the regioselectivity and to trace the potential energy surface of the entire reaction upon 5-N-aryl-indazole conversion to the corresponding carbazole.

  18. Highly Efficient Synthesis of 1,2,3-Triazoles Catalyzed by Silane Coupled Chitosan-CuBr Catalyst%硅烷偶联化壳聚糖负载CuBr高活性催化合成1,2,3-三唑化合物

    Institute of Scientific and Technical Information of China (English)

    江云兵; 王彦龙; 韩骞; 朱荣俊; 熊兴泉

    2014-01-01

    N-(2-Aminoethyl)-3-aminopropyltriethoxysilane-modified chitosan (CS-AAPTS) was successfully prepared by simply refluxing the corresponding CS and AAPTS in toluene solution. Subsequently, CS-AAPTS bound CuBr (CS-CuBr) was synthesized by the reaction of CS-AAPTS with CuBr in DMF at room temperature under N2 atmosphere. The obtained catalyst was characterized by FT-IR, TGA, XRD and EDX. The catalytic performances were evaluated in one-pot multicom-ponent copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction under microwave-assisted condition. CS-CuBr was found to exhibit obvious catalytic activity to rapidly prepare 1,2,3-triazole compounds under the microwave irradiation power of 480 W and 70 ℃ operating conditions. Furthermore, the catalyst could be easily recovered by simple filtration and recy-cled at least 4 cycles without significant loss of activity, and the preparation of 1,2,3-triazoles could be scaled up to multi-ple-gram conveniently with a yield up to 94%.%以壳聚糖为原料,将其与 N-(2-氨乙基)-3-氨丙基三乙氧基硅烷(AAPTS)反应制得胺基功能化的壳聚糖(CS-AAPTS),然后将CS-AAPTS与CuBr进行络合制备得到负载型催化剂(CS-CuBr)。通过FT-IR, TGA, XRD以及EDX等分析方法对CS-CuBr催化剂进行表征。结合微波辐射技术以及“一锅法”合成策略,以CS-CuBr为催化剂催化有机炔、卤代烷以及NaN3之间的环加成反应制备1,2,3-三唑。结果表明, CS-CuBr具有良好的催化性能,微波辐射功率为480 W,温度为70℃条件下,可快速合成出1,2,3-三唑类化合物。 CS-CuBr易回收和重复使用,重复使用4次后仍可保持良好收率。初步放大实验表明,1,2,3-三唑类化合物能够以94%的收率以十数克规模制备。

  19. Rhodium(III)-catalyzed indazole synthesis by C-H bond functionalization and cyclative capture.

    Science.gov (United States)

    Lian, Yajing; Bergman, Robert G; Lavis, Luke D; Ellman, Jonathan A

    2013-05-15

    An efficient, one-step, and highly functional group-compatible synthesis of substituted N-aryl-2H-indazoles is reported via the rhodium(III)-catalyzed C-H bond addition of azobenzenes to aldehydes. The regioselective coupling of unsymmetrical azobenzenes was further demonstrated and led to the development of a new removable aryl group that allows for the preparation of indazoles without N-substitution. The 2-aryl-2H-indazole products also represent a new class of readily prepared fluorophores for which initial spectroscopic characterization has been performed.

  20. Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition

    Directory of Open Access Journals (Sweden)

    Zachary L. Palchak

    2015-08-01

    Full Text Available Propargylamines are popular substrates for triazole formation, but tetrasubstituted variants have required multistep syntheses involving stoichiometric amounts of metal. A recent cyclohexanone–amine–silylacetylene coupling forms silyl-protected tetrasubstituted propargylamines in a single copper-catalyzed step. The development of the tandem silyl deprotection–triazole formation reported herein offers rapid access to alpha-tetrasubstituted triazoles. A streamlined two-step approach to this uncommon class of hindered triazoles will accelerate exploration of their therapeutic potential. The superior activity of copper(II triflate in the formation of triazoles from sensitive alkyne substrates extends to simple terminal alkynes.

  1. Ruthenium(II)-Catalyzed Regioselective Ortho Amidation of Imidazo Heterocycles with Isocyanates.

    Science.gov (United States)

    Shakoor, S M Abdul; Kumari, Santosh; Khullar, Sadhika; Mandal, Sanjay K; Kumar, Anil; Sakhuja, Rajeev

    2016-12-16

    Direct ortho amidation at the phenyl ring of 2-phenylimidazo heterocycles with aryl isocyanates has been achieved via a chelation-assisted cationic ruthenium(II) complex catalyzed mechanism. The methodology provides a straightforward, high-yielding regioselective approach toward the synthesis of an array of ortho-amidated phenylimidazo heterocycles without prior activation of C(sp(2))-H. This also reports the first method for coupling of aryl isocyanates with the imidazo[1,2-a]pyridine system via a pentacyclometalated intermediate. The methodology is found to be easily scalable and could be applied toward the selective ortho amidation of 2-heteroarylimidazo[1,2-a]pyridine frameworks.

  2. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    Science.gov (United States)

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-09

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  3. Amination Reactions of Aryl Halides with Nitrogen-Containing Reagents Catalyzed by Cul in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    YAN,Jin-Can; ZHOU,Li; WANG,Lei

    2008-01-01

    CuI-catalyzed coupling reactions of aryl iodides and electron-deficient aryl bromides with nitrogen-containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of[Bmim][BF4] as the solvent,potassium phosphate as the base, and CuI as the catalyst. The CuI and[Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.

  4. Discoloration of Rhodamine B dyeing wastewater by schorl-catalyzed Fenton-like reaction

    Institute of Scientific and Technical Information of China (English)

    Murari; PRASAD

    2009-01-01

    As other natural iron-bearing minerals, schorl could be taken as an effective iron source for degradation of organic pollutants by mineral-catalyzed Fenton-like system. In our present study, the schorl-catalyzed Fenton-like system has been successfully developed for discoloration of an active commercial dye, Rhodamine B (RhB), in an aqueous solution. Through a number of batch discoloration experiments under various conditions, it was found that the reactivity of the system increased by, respectively, increasing schorl dosage, temperature, hydrogen peroxide starting concentration and by decreasing the pH. Over 90% of discoloration ratio could be gained in less than 30 min, and nearly 70% of total organic carbon (TOC) could be removed in less than 200 min. And, the schorl catalyst could be repeatedly used at least ten times, still with high catalytic activity. Comparative studies indicated that the RhB discoloration ratios were much higher in presence of schorl and H2O2 than those in presence of schorl or H2O2 only, which suggested that the schorl-catalyzed Fenton-like reaction governed the RhB discoloration process. The content of Fe ion leaching in the solution was also measured using inductively coupling plasma-atomic emission spectra (ICP-AES). A mechanism proposed herein suggested that adsorption and Fenton-like reaction (heterogeneous and homogeneous) were responsible for the discoloration of RhB.

  5. Peroxidase-catalyzed S-oxygenation: Mechanism of oxygen transfer for lactoperoxidase

    Energy Technology Data Exchange (ETDEWEB)

    Doerge, D.R.; Cooray, N.M. (Univ. of Hawaii, Honolulu (United States)); Brewster, M.E. (Pharmatec Inc., Alachua, FL (United States))

    1991-09-17

    The mechanism of organosulfur oxygenation by peroxidases (lactoperoxidase (LPX), chloroperoxidase, thyroid peroxidase, and horseradish peroxidase) and hydrogen peroxide was investigated by use of para-substituted thiobenzamides and thioanisoles. The rate constants for thiobenzamide oxygenation by LPX/H{sub 2}O{sub 2} were found to correlate with calculated vertical ionization potentials, suggesting rate-limiting single-electron transfer between LPX compound I and the organosulfur substrate. The incorporation of oxygen from {sup 18}O-labeled hydrogen peroxide, water, and molecular oxygen into sulfoxides during peroxidase-catalyzed S-oxygenation reactions was determined by LC- and GC-MS. All peroxidases tested catalyzed essentially quantitative oxygen transfer from {sup 18}O-labeled hydrogen peroxide into thiobenzamide S-oxide, suggesting that oxygen rebound from the oxoferryl heme is tightly coupled with the initial electron transfer in the active site. Experiments using H{sub 2}{sup 18}O{sub 2}, and H{sub 2}{sup 18}O showed the LPX catalyzed approximately 85,22, and 0% {sup 18}O-incorporation into thioanisole sulfoxide oxygen, respectively. These results are consistent with an active site controlled mechanism in which the protein radical form of LPX compound I is an intermediate in LPX-mediated sulfoxidation reactions.

  6. Copper-catalyzed direct amination of quinoline N-oxides via C-H bond activation under mild conditions.

    Science.gov (United States)

    Zhu, Chongwei; Yi, Meiling; Wei, Donghui; Chen, Xuan; Wu, Yangjie; Cui, Xiuling

    2014-04-04

    A highly efficient and concise one-pot strategy for the direct amination of quinoline N-oxides via copper-catalyzed dehydrogenative C-N coupling has been developed. The desired products were obtained in good to excellent yields for 22 examples starting from the parent aliphatic amines. This methodology provides a practical pathway to 2-aminoquinolines and features a simple system, high efficiency, environmental friendliness, low reaction temperature, and ligand, additives, base, and external oxidant free conditions.

  7. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    OpenAIRE

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.; Tang, Weiping

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative a...

  8. Recent progress in coupling of two heteroarenes.

    Science.gov (United States)

    Zhao, Dongbing; You, Jingsong; Hu, Changwei

    2011-05-09

    The biheteroaryl structural motif is prevalent in polymers, advanced materials, liquid crystals, ligands, molecules of medicinal interest, and natural products. Many types of synthetic transformations have been known for the construction of heteroaryl-heteroaryl linkages. Coupling reactions provide one of the most efficient ways to achieve these biheterocyclic structures. In this review, four types of coupling reactions are discussed: 1) transition-metal-catalyzed coupling reactions of heteroaryl halides or surrogates with heteroarylmetals; 2) direct inter- and intramolecular heteroarylations of C sp 2-H bonds of heteroarenes with heteroaryl halides or pseudohalides; 3) oxidative C-H/C-H homo- and cross-couplings of two unpreactivated heteroarenes; and 4) transition-metal-catalyzed decarboxylative cross-coupling reactions between haloheteroarenes or heteroarenes and heteroarenecarboxylic acids. The general purpose of this review is to give an exhaustive and clear picture in heteroaryl-heteroaryl bond formation as well as its application in the synthesis of natural products, pharmaceuticals, catalyst ligands, and materials.

  9. Transition metal-catalyzed orthogonal solid-phase decoration of the 2(1H)-pyrazinone scaffold using a sulfur linker.

    Science.gov (United States)

    Kaval, Nadya; Singh, Brajendra Kumar; Ermolat'ev, Denis S; Claerhout, Stijn; Parmar, Virinder S; der Eycken, Johan Van; der Eycken, Erik Van

    2007-01-01

    A new transition metal-catalyzed orthogonal solid-phase protocol for the synthesis of highly substituted 2(1H)-pyrazinones was developed, on the basis of Chan-Lam arylation and Liebeskind-Srogl cross-coupling reactions. This strategy opens the way for the generation of small libraries of 2(1H)-pyrazinone analogues for biological screening.

  10. Synthetic applications of gold-catalyzed ring expansions

    Directory of Open Access Journals (Sweden)

    Cristina Nevado

    2011-06-01

    Full Text Available The development of new methodologies catalyzed by late transition metals involving cycloisomerizations of strained rings can open new venues for the synthesis of structurally complex molecules with interesting biological activities. Herein we summarize, from both a synthetic as well as a mechanistic point of view, the most recent developments in gold-catalyzed ring expansions.

  11. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    Science.gov (United States)

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-01

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  12. Nonadiabatic Coupling

    Science.gov (United States)

    Kryachko, Eugene S.

    The general features of the nonadiabatic coupling and its relation to molecular properties are surveyed. Some consequences of the [`]equation of motion', formally expressing a [`]smoothness' of a given molecular property within the diabatic basis, are demonstrated. A particular emphasis is made on the relation between a [`]smoothness' of the electronic dipole moment and the generalized Mulliken-Hush formula for the diabatic electronic coupling.

  13. Synthesis of Diethyl Oxalate by a Coupling-Regeneration Reaction of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Baowei Wang; Xinbin Ma

    2002-01-01

    This article describes a process for the synthesis of diethyl oxalate by a coupling reaction ofcarbon monoxide, catalyzed by palladium in the presence of ethyl nitrite. The kinetics and mechanism ofthe coupling and regeneration reaction are also discussed. This paper presents the results of a scale-uptest of the catalyst and the process based on an a priori computer simulation.

  14. Palladium-catalyzed cyclization/Heck- and cyclization/conjugate-addition-type sequences in the preparation of polysubstituted furans.

    Science.gov (United States)

    Aurrecoechea, José M; Durana, Aritz; Pérez, Elena

    2008-05-02

    Palladium-catalyzed heterocyclization-coupling sequences have been developed starting from buta-1,2,3-trienyl carbinols and electron-deficient alkenes. Polysubstituted furans are formed where the heterocyclic ring originates from the elements of the butatrienyl carbinol while the electron-deficient olefin is incorporated as a C-3 substituent. In most cases, the reaction proceeds via a Heck-type pathway leading to the efficient formation of 3-vinylfurans. However, couplings with methyl vinyl ketone display a divergent behavior to afford selectively either Heck- or hydroarylation-type products depending on reaction conditions.

  15. One-shot access to α,β-difunctionalized azepenes and dehydropiperidines by reductive cross-coupling of α-selenonyl-β-selenyl enamides with organic bromides.

    Science.gov (United States)

    Beng, Timothy K; Silaire, Ann Wens V; Alwali, Amir; Bassler, Daniel P

    2015-08-01

    The synthesis of α- and α,β-functionalized azepenes and dehydropiperidines from readily prepared α-selenonyl eneformamides or enecarbamates has been achieved through Fe-catalyzed α-substitutive deselenonation, β-regioselective lithiation/trapping, and Co-catalyzed reductive cross-coupling protocols.

  16. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials.

  17. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  18. Structurally Diverse π-Extended Conjugated Polycarbo- and Heterocycles through Pd-Catalyzed Autotandem Cascades.

    Science.gov (United States)

    Barroso, Raquel; Cabal, María-Paz; Badía-Laiño, Rosana; Valdés, Carlos

    2015-11-09

    The Pd-catalyzed reaction between 2,2'-dibromobiphenyls and related systems with tosylhydrazones gives rise to new π-extended conjugated polycarbo- and heterocycles through an autotandem process involving a cross-coupling reaction followed by an intramolecular Heck cyclization. The reaction shows wide scope regarding both coupling partners. Cyclic and acyclic tosylhydrazones can participate in the process. Additionally, a variety of aromatic and heteroaromatic dibromoderivatives have been employed, leading to an array of diverse scaffolds featuring a fluorene or acridine central nucleus, and containing binaphthyl, thiophene, benzothiophene and indole moieties. The application to appropriate tetrabrominated systems led to greater structural complexity through two consecutive autotandem cascades. The photophysical properties of selected compounds were studied through their absorption and emission spectra. Fluorescence molecules featuring very high quantum yields were identified, showing the potential of this methodology in the development of molecules with interesting optoelectronic properties.

  19. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  20. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  1. Diversity-oriented approach to macrocyclic cyclophane derivatives by Suzuki-Miyaura cross-coupling and olefin metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Chavan, Arjun S; Shaikh, Mobin

    2012-01-01

    Palladium-catalyzed Suzuki-Miyaura (SM) cross-coupling reaction with allylboronic acid pinacol ester and titanium assisted cross-metathesis (CM)/ring-closing metathesis (RCM) cascade has been used to synthesize macrocyclic cyclophane derivatives.

  2. Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles%Cyclopalladated Ferrocenylimine Catalyzed Chlorination of 2-Arylbenzoxazoles

    Institute of Scientific and Technical Information of China (English)

    冷瑜婷; 杨帆; 吴养洁; 李克

    2011-01-01

    An efficient and facile protocol for palladacycle-catalyzed chlorination of 2-arylbenzoxazoles was developed. The results represent the first examples involving the palladacycle as the catalyst for such chlorination. This chlori- nation was not a ligand-directed ortho-C--H activation, but an electrophilic substitution process at the para-position of the nitrogen atom in the benzo ring of benzoxazole moiety, the regiochemistry of which had been confirmed by HMBC spectral analysis. The catalytic system could tolerate various halogen atoms, such as F, Cl and Br, affording the corresponding products in moderate to excellent yields.

  3. Functioned Calix[4]arenes as Artificial Enzymes Catalyze Aldol Condensation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aldolase models derived from calix[4]arene were designed and synthesized. The aldol condensation of p-nitrobenzaldehyde with acetone was catalyzed by the synthetic enzymes proceeded under mild conditions to offer chiefly aldol-type product in good yield.

  4. Diastereoselective Pt catalyzed cycloisomerization of polyenes to polycycles.

    Science.gov (United States)

    Geier, Michael J; Gagné, Michel R

    2014-02-26

    Application of a tridentate NHC containing pincer ligand to Pt catalyzed cascade cyclization reactions has allowed for the catalytic, diastereoselective cycloisomerization of biogenic alkene terminated substrates to the their polycyclic counterparts.

  5. Lipase catalyzed synthesis of epoxy-fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN, Qian; LI, Zu-Yi

    2000-01-01

    Lipase catalyzed synthesis of epoxy-fatty acidas from unsaturated carboxylic acids was investigated.Under mild conditions unsaturated arboxylic acids were convcveed to peroxide,then the unsaturated peroxycarboxylic acids epoxidised the C=C bond of themselves

  6. Gold-Catalyzed Regioselective Dimerization of Aliphatic Terminal Alkynes.

    Science.gov (United States)

    Sun, Sheng; Kroll, Julien; Luo, Yingdong; Zhang, Liming

    2012-01-01

    A gold-catalyzed regioselective homodimerization of aliphatic terminal alkynes is described. Bulky and less Lewis acidic tBuXPhosAuNTf(2) is the preferred catalyst, and the additive, anhydrous NaOAc, substantially facilitates the reaction.

  7. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    OpenAIRE

    Honggang Chang; Ronghai Zhu; Zongshe Liu; Jinlong He; Chongrong Wen; Sujuan Zhang; Yang Li

    2015-01-01

    With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, prepar...

  8. LIPASE-CATALYZED TRANSESTERIFICATION OF PALM KERNEL OIL WITH DIALKYLCARBONATES

    OpenAIRE

    Tjahjono Herawan; M. Rüsch Gen. Klaas

    2014-01-01

    Lipase-catalyzed transesterifications-especially in a solvent-free medium-are important for industrial applications because such systems would have an enormous advantage by avoiding the problem of separation, toxicity and flammability of organic solvents. However, the organic solvent-free alcoholysis, especially methanolysis, does not give high conversions. The same problem also occurs when ethyl or methyl acetate are used as acyl acceptors. The main problems of lipase-catalyzed organic solve...

  9. Copper-Catalyzed Aerobic C–H Trifluoromethylation of Phenanthrolines

    Science.gov (United States)

    Zhu, Cheng-Liang; Zhang, Yong-Qiang; Yuan, Yong-An

    2016-01-01

    Direct C–H trifluoromethylation of heterocycles is a valuable transformation. In particular, nonprecious metal-catalyzed C–H trifluoromethylation processes, which do not proceed through CF3 radical species, have been less developed. In this cluster report, a new copper-catalyzed aerobic C–H trifluoromethylation of phenanthrolines is described. This transformation affords trifluoromethylated phenanthrolines that have not been synthesized and preliminary mechanistic studies suggest that the CF3 group transfer may occur through cooperative activation. PMID:26855477

  10. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    Science.gov (United States)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and

  11. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  12. Synthesis of functionalized thiophenes and oligothiophenes by selective and iterative cross-coupling reactions using indium organometallics.

    Science.gov (United States)

    Montserrat Martínez, M; Peña-López, Miguel; Pérez Sestelo, José; Sarandeses, Luis A

    2012-05-21

    The synthesis of unsymmetrical 2,5-disubstituted thiophenes by selective and sequential palladium-catalyzed cross-coupling reactions of indium organometallics with 2,5-dibromothiophene is reported. Following an iterative coupling sequence, α-oligothiophenes were synthesized in good yields and with high atom economy.

  13. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zheng, Di; Zhang, Yitao

    2016-10-01

    A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N2 adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the -NO2 has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  14. Bridging organometallics and quantum chemical topology: Understanding electronic relocalisation during palladium-catalyzed reductive elimination.

    Science.gov (United States)

    de Courcy, Benoit; Derat, Etienne; Piquemal, Jean-Philip

    2015-06-05

    This article proposes to bridge two fields, namely organometallics and quantum chemical topology. To do so, Palladium-catalyzed reductive elimination is studied. Such reaction is a classical elementary step in organometallic chemistry, where the directionality of electrons delocalization is not well understood. New computational evidences highlighting the accepted mechanism are proposed following a strategy coupling quantum theory of atoms in molecules and electron localization function topological analyses and enabling an extended quantification of donated/back-donated electrons fluxes along reaction paths going beyond the usual Dewar-Chatt-Duncanson model. Indeed, if the ligands coordination mode (phosphine, carbene) is commonly described as dative, it appears that ligands lone pairs stay centered on ligands as electrons are shared between metal and ligand with strong delocalization toward the latter. Overall, through strong trans effects coming from the carbon involved in the reductive elimination, palladium delocalizes its valence electrons not only toward phosphines but interestingly also toward the carbene. As back-donation increases during reductive elimination, one of the reaction key components is the palladium ligands ability to accept electrons. The rationalization of such electronic phenomena gives new directions for the design of palladium-catalyzed systems.

  15. Inhibitory effect of water on the oxygen reduction catalyzed by cobalt(II) tetraphenylporphyrin.

    Science.gov (United States)

    Trojánek, Antonín; Langmaier, Jan; Kvapilová, Hana; Záliš, Stanislav; Samec, Zdeněk

    2014-03-20

    Stopped-flow kinetic measurements, UV-vis spectroscopy, rotating disk voltammetry, and quantum chemical calculations are used to clarify the role of water in the homogeneous two-electron reduction of O2 to H2O2 in 1,2-dichloroethane (DCE) using ferrocene (Fc) as an electron donor, tetrakis(pentafluorophenyl)boric acid (HTB) as a proton donor, and [5,10,15,20-tetraphenyl-21H,23H-porphine]cobalt(II) (Co(II)TTP) as a catalyst. Kinetic analysis suggests that the reaction is controlled by the intramolecular proton coupled electron transfer to the O2 molecule coordinated to the metal center producing the O2H(•) radical. This rate-determining step is common to both the O2 reduction by Fc catalyzed by Co(II)TPP and the O2 reduction by Co(II)TPP itself. Experimental data point to the competitive coordination of water to the metal center leading to a strong inhibition of the catalytic reaction. In agreement with this finding, quantum chemical calculations indicate that water is bound to the metal center much more strongly than triplet O2. A similar effect is demonstrated also for the O2 reduction catalyzed by the porphyrin free base (H2TPP), though its rate is lower by 2 orders of magnitude.

  16. Captan impairs CYP-catalyzed drug metabolism in the mouse.

    Science.gov (United States)

    Paolini, M; Barillari, J; Trespidi, S; Valgimigli, L; Pedulli, G F; Cantelli-Forti, G

    1999-11-30

    To investigate whether the fungicide captan impairs CYP-catalyzed drug metabolism in murine liver, kidney and lung, the modulation of the regio- and stereo-selective hydroxylation of testosterone, including 6beta-(CYP3A), 6alpha-(CYP2A1 and CYP2B1) and 16alpha-(CYP2B9) oxidations was studied. Specific substrates as probes for different CYP isoforms such as p-nitrophenol (CYP2E1), pentoxyresorufin (CYP2B1), ethoxyresorufin (CYP1A1), aminopyrine (CYP3A), phenacetin and methoxyresorufin (CYP1A2), and ethoxycoumarin (mixed) were also considered. Daily doses of captan (7.5 or 15 mg/kg b.w., i.p.) were administered to different groups of Swiss Albino CD1 mice of both sexes for 1 or 3 consecutive days. While a single dose of this fungicide did not affect CYP-machinery, repeated treatment significantly impaired the microsomal metabolism; in the liver, for example, a general inactivating effect was observed, with the sole exception of testosterone 2alpha-hydroxylase activity which was induced up to 8.6-fold in males. In vitro studies showed that the mechanism-based inhibition was related to captan metabolites rather than the parental compound. In the kidney, both CYP3A- and CYP1A2-linked monooxygenases were significantly induced (2-fold) by this pesticide. Accelerated phenacetin and methoxyresorufin metabolism (CYP1A2) was also observed in the lung. Data on CYP3A (kidney) and CYP1A2 (kidney and lung) induction were corroborated by Western immunoblotting using rabbit polyclonal anti-CYP3A1/2 and CYP1A1/2 antibodies. By means of electron spin resonance (EPR) spectrometry coupled to a spin-trapping technique, it was found that the recorded induction generates a large amounts of the anion radical superoxide (O*2-) either in kidney or lung microsomes. These findings suggest that alterations in CYP-associated activities by captan exposure may result in impaired (endogenous) metabolism as well as of coadministered drugs with significant implications for their disposition. The

  17. The Structural Basis of Ribozyme-Catalyzed RNA Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, M.P.; Scott, W.G.; /UC, Santa Cruz

    2007-07-12

    Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.

  18. Ruthenium-catalyzed self-coupling of primary and secondary alcohols with the liberation of dihydrogen

    DEFF Research Database (Denmark)

    Makarov, Ilya; Madsen, Robert

    2013-01-01

    The dehydrogenative self-condensation of primary and secondary alcohols has been studied in the presence of RuCl2(IiPr)(p-cymene). The conversion of primary alcohols into esters has been further optimized by using magnesium nitride as an additive, which allows the reaction to take place at a temp......The dehydrogenative self-condensation of primary and secondary alcohols has been studied in the presence of RuCl2(IiPr)(p-cymene). The conversion of primary alcohols into esters has been further optimized by using magnesium nitride as an additive, which allows the reaction to take place...... at a temperature and catalyst loading lower than those described previously. Secondary alcohols were dimerized into racemic ketones by a dehydrogenative Guerbet reaction with potassium hydroxide as the additive. The transformation gave good yields of the ketone dimers with a range of alkan-2-ols, whereas more...

  19. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu

    2016-09-23

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  20. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway

    OpenAIRE

    Wurtzler, Elizabeth M.; Wendell, David

    2016-01-01

    For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency...

  1. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway

    Science.gov (United States)

    2016-01-01

    For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity. PMID:27617441

  2. Multistep divergent synthesis of benzimidazole linked benzoxazole/benzothiazole via copper catalyzed domino annulation.

    Science.gov (United States)

    Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming

    2013-04-21

    An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.

  3. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...... not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction...

  4. Palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to a library of tetraphenylenes

    Science.gov (United States)

    Zhu, Chendan; Zhao, Yue; Wang, Di; Sun, Wei-Yin; Shi, Zhuangzhi

    2016-09-01

    Aryl–aryl bond formation constitutes one of the most important subjects in organic synthesis. The recent developments in direct arylation reactions forming aryl–aryl bond have emerged as very attractive alternatives to traditional cross-coupling reactions. Here, we describe a general palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to build a library of tetraphenylenes. This transformation represents one of the very few examples of C-H activation process that involves simultaneous formation of two aryl–aryl bonds. Oxygen plays a vital role by ensuring high reactivity, with air as the promoter furnished the best results. We anticipate this ligand-free and aerobic catalytic system will simplify the synthesis of tetraphenylenes as many of the reported methods involve use of preformed organometallic reagents and will lead to the discovery of highly efficient new direct arylation process.

  5. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.; Meunier, B. [Laboratoire de Chimie de Coordination du CNRS, Toulouse (France); Seris, J.L. [Elf-Aquitaine, Artix (France)

    1995-05-26

    An efficient method has been developed for the catalytic oxidation of pollutants that are not easily degraded. The products of the hydrogen peroxide (H{sub 2}O{sub 2}) oxidation of 2,4,6-trichlorophenol (TCP) catalyzed by the iron complex 2,9,16,23-tetrasulfophthalocyanine (FePcS) were observed to be chloromaleic, chlorofumaric, maleic, and fumaric acids from dechlorination and aromatic cycle cleavage, as well as additional products that resulted from oxidative coupling. Quantitative analysis of the TCP oxidation reaction revealed that up to two chloride ions were released per TCP molecule. This chemical system, consisting of an environmentally safe oxidant (H{sub 2}O{sub 2}) and an easily accessible catalyst (FePcS), can perform several key steps in the oxidative mineralization of TCP, a paradigm of recalcitrant pollutants. 20 refs., 4 figs., 2 tabs.

  6. Evaluating the Effect of Catalyst Nuclearity in Ni-Catalyzed Alkyne Cyclotrimerizations.

    Science.gov (United States)

    Pal, Sudipta; Uyeda, Christopher

    2015-07-01

    An evaluation of catalyst nuclearity effects in Ni-catalyzed alkyne oligomerization reactions is presented. A dinuclear complex, featuring a Ni-Ni bond supported by a naphthyridine-diimine (NDI) ligand, promotes rapid and selective cyclotrimerization to form 1,2,4-substituted arene products. Mononickel congeners bearing related N-donor chelates (2-iminopyridines, 2,2'-bipyridines, or 1,4,-diazadienes) are significantly less active and yield complex product mixtures. Stoichiometric reactions of the dinickel catalyst with hindered silyl acetylenes enable characterization of the alkyne complex and the metallacycle that are implicated as catalytic intermediates. Based on these experiments and supporting DFT calculations, the role of the dinuclear active site in promoting regioselective alkyne coupling is discussed. Together, these results demonstrate the utility of exploring nuclearity as a parameter for catalyst optimization.

  7. Ligand free copper(I)-catalyzed synthesis of diaryl ether with Cs2CO3 via a free radical path.

    Science.gov (United States)

    Chen, Hong-Jie; Tseng, Mei-Chun; Hsu, I-Jui; Chen, Wei-Ting; Han, Chien-Chung; Shyu, Shin-Guang

    2015-07-21

    Complexes [Cu(I)(2,4-dimethylphenoxy)2](-) (A) and [Cu(II)(2,4-dimethylphenoxy)2(p-tolyl)](-) (B) were observed by in situ electrospray ionization mass spectrometry (ESI-MS) analysis of the ligand free copper(I)-catalyzed C-O coupling reaction using Cs2CO3 under the catalytic reaction conditions indicating that they could be intermediates in the reaction. The radical scavenger cumene retarded the reaction. Catalytic cycles involving a free radical path are proposed based on these observations.

  8. Rh(III) and Ru(II)-catalyzed site-selective C-H alkynylation of quinolones.

    Science.gov (United States)

    Kang, Dahye; Hong, Sungwoo

    2015-04-17

    C2- and C5-alkynylated quinolone scaffolds are core structures of numerous biologically active molecules. Utilizing TIPS-EBX as an alkynylating agent, we have developed an efficient and site-selective C5 alkynylation of 4-quinolones that is directed by the weakly coordinating carbonyl group. In addition, Ru(II) catalyzed C2-selective alkynylation was successfully realized via N-pyrimidyl group-directed cross-couplings to access valuable C2-alkynylated 4-quinolones. This strategy provides direct access to the C2 or C5 alkynylated 4-quinolones. Furthermore, the reaction was applied to isoquinolones for C3-selective alkynylation.

  9. Copper/N,N-Dimethylglycine Catalyzed Goldberg Reactions Between Aryl Bromides and Amides, Aryl Iodides and Secondary Acyclic Amides

    Directory of Open Access Journals (Sweden)

    Liqin Jiang

    2014-08-01

    Full Text Available An efficient and general copper-catalyzed Goldberg reaction at 90–110 °C between aryl bromides and amides providing the desired products in good to excellent yields has been developed using N,N-dimethylglycine as the ligand. The reaction is tolerant toward a wide range of amides and a variety of functional group substituted aryl bromides. In addition, hindered, unreactive aromatic and aliphatic secondary acyclic amides, known to be poor nucleophiles, are efficiently coupled with aryl iodides through this simple and cheap copper/N,N-dimethylglycine catalytic system.

  10. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    Directory of Open Access Journals (Sweden)

    Syed Adnan Ali Shah

    2014-07-01

    Full Text Available Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids.

  11. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically......Metal-catalyzed isomerization of N- and O-allylic systems is emerging as an effective method to form synthetically useful iminium and oxocarbenium intermediates. In the presence of tethered nucleophiles, several recent examples illuminate this approach as a powerful strategy for the synthesis...

  12. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  13. The mechanism of Fe (Ⅲ)-catalyzed ozonation of phenol

    Institute of Scientific and Technical Information of China (English)

    竹湘锋; 徐新华

    2004-01-01

    Fe (Ⅲ)-catalyzed ozonation yielded better degradation rate and extent of COD (Chemical Oxygen Demand) or oxalic acid as compared with oxidation by ozone alone. Two parameters with strong effects on the efficiency of ozonation are pH of the solution and the catalyst (Fe3+) dosage. The existence of a critical pH value determining the catalysis of Fe (Ⅲ) in acid conditions was observed in phenol and oxalic acid systems. The best efficiency of catalysis was obtained at a moderate concentration of the catalyst. A reasonable mechanism of Fe (Ⅲ)-catalyzed ozonation of phenol was obtained based on the results and literature.

  14. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  15. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  16. Esterification of phenolic acids catalyzed by lipases immobilized in organogels.

    Science.gov (United States)

    Zoumpanioti, M; Merianou, E; Karandreas, T; Stamatis, H; Xenakis, A

    2010-10-01

    Lipases from Rhizomucor miehei and Candida antarctica B were immobilized in hydroxypropylmethyl cellulose organogels based on surfactant-free microemulsions consisting of n-hexane, 1-propanol and water. Both lipases kept their catalytic activity, catalyzing the esterification reactions of various phenolic acids including cinnamic acid derivatives. High reaction rates and yields (up to 94%) were obtained when lipase from C. antarctica was used. Kinetic studies have been performed and apparent kinetic constants were determined showing that ester synthesis catalyzed by immobilized lipases occurs via the Michaelis-Menten mechanism.

  17. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.

    Science.gov (United States)

    Park, Jihye; Han, Sang Hoon; Sharma, Satyasheel; Han, Sangil; Shin, Youngmi; Mishra, Neeraj Kumar; Kwak, Jong Hwan; Lee, Cheong Hoon; Lee, Jeongmi; Kim, In Su

    2014-05-16

    A copper-catalyzed oxidative coupling of 2-carbonyl-substituted phenols and 1,3-dicarbonyl compounds with a wide range of dibenzyl or dialkyl ethers is described. This protocol provides an efficient preparation of phenol esters and enol esters in good yields with high chemoselectivity. This method represents an alternative protocol for classical esterification reactions.

  18. A reductive coupling strategy towards ripostatin A

    Directory of Open Access Journals (Sweden)

    Kristin D. Schleicher

    2013-07-01

    Full Text Available Synthetic studies on the antibiotic natural product ripostatin A have been carried out with the aim to construct the C9−C10 bond by a nickel(0-catalyzed coupling reaction of an enyne and an epoxide, followed by rearrangement of the resulting dienylcyclopropane intermediate to afford the skipped 1,4,7-triene. A cyclopropyl enyne fragment corresponding to C1−C9 has been synthesized in high yield and demonstrated to be a competent substrate for the nickel(0-catalyzed coupling with a model epoxide. Several synthetic approaches toward the C10−C26 epoxide have been pursued. The C13 stereocenter can be set by allylation and reductive decyanation of a cyanohydrin acetonide. A mild, fluoride-promoted decarboxylation enables construction of the C15−C16 bond by an aldol reaction. The product of this transformation is of the correct oxidation state and potentially three steps removed from the targeted epoxide fragment.

  19. Rh-Catalyzed Asymmetric Hydrogenation of 1,2-Dicyanoalkenes.

    Science.gov (United States)

    Li, Meina; Kong, Duanyang; Zi, Guofu; Hou, Guohua

    2017-01-06

    A highly efficient enantioselective hydrogenation of 1,2-dicyanoalkenes catalyzed by the complex of rhodium and f-spiroPhos has been developed. A series of 1,2-dicyanoalkenes were successfully hydrogenated to the corresponding chiral 1,2-dicyanoalkanes under mild conditions with excellent enantioselectivities (up to 98% ee). This methodology provides efficient access to the asymmetric synthesis of chiral diamines.

  20. Lipase-Catalyzed Modification of Canola Oil with Caprylic Acid

    DEFF Research Database (Denmark)

    Wang, Yingyao; Luan, Xia; Xu, Xuebing

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids. Six commercial lipases from different sources were screened for their ability to incorporate the caprylic acid into the canola oil. The positional distribution of FA on the glycerol backbone o...

  1. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  2. Rh-Catalyzed arylation of fluorinated ketones with arylboronic acids.

    Science.gov (United States)

    Dobson, Luca S; Pattison, Graham

    2016-09-25

    The Rh-catalyzed arylation of fluorinated ketones with boronic acids is reported. This efficient process allows access to fluorinated alcohols in high yields under mild conditions. Competition experiments suggest that difluoromethyl ketones are more reactive than trifluoromethyl ketones in this process, despite their decreased electronic activation, an effect we postulate to be steric in origin.

  3. ASYMMETRIC HYDROSILYLATION CATALYZED BY POLYMER—SUPPORTED THIAZOLIDINE RHODIUM CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    LEIYanohui; LIHong; 等

    1999-01-01

    Asymmetric hydrisilylation catalyzed by polymeric thiazolidine rhodium catalysts was conducted.Almost the same optical yields have been obtained when comb-shaped polymeric ligands and their corresponding monomer complexed rhodium cataltysts were used to asymmetric hydrosilylation of acetophenone.Optical yield of chiral 1-methylbenzyl alcohol reaches as high as 71.5%.Temperature dependence of enantioselective hydrosilylation of acetophenone was discussed.

  4. Gal3 Catalyzed Tetrahydropyranylation of Alcohols and Phenols

    Institute of Scientific and Technical Information of China (English)

    SUN, Pei-Pei(孙培培); HU, Zhi-Xin(胡志新)

    2004-01-01

    In dichloromethane, the nucleophilic addition of alcohols or phenols to 3,4-dihydro-2H-pyran (DHP) was catalyzed effectively by gallium triiodide which was generated in situ by the reaction of gallium metal and iodine to give the corresponding tetrahydropyranyl acetals in good to excellent yields.

  5. Iron-Catalyzed Synthesis of Sulfur-Containing Heterocycles.

    Science.gov (United States)

    Bosset, Cyril; Lefebvre, Gauthier; Angibaud, Patrick; Stansfield, Ian; Meerpoel, Lieven; Berthelot, Didier; Guérinot, Amandine; Cossy, Janine

    2016-10-13

    An iron-catalyzed synthesis of sulfur- and sulfone-containing heterocycles is reported. The method is based on the cyclization of readily available substrates and proceeded with high efficiency and diastereoselectivity. A variety of sulfur-containing heterocycles bearing moieties suitable for subsequent functionalization are prepared. Illustrative examples of such postcyclization modifications are also presented.

  6. Catalyzing new product adoption at the base of the pyramid

    NARCIS (Netherlands)

    Marinakis, Y.D.; Walsh, S.T.; Harms, R.

    2016-01-01

    One of the more perplexing of the entrepreneurial issues at the Base of the Pyramid (BoP) is how to catalyze new product adoption by BoP consumers. Because S-shaped adoption dynamics are the result of cultural transmission bias, the question can be rephrased as, how can an entrepreneur overcome conf

  7. Kinetic Resolution of Aryl Alkenylcarbinols Catalyzed by Fc-PIP

    Institute of Scientific and Technical Information of China (English)

    胡斌; 孟萌; 姜山山; 邓卫平

    2012-01-01

    An effective kinetic resolution of a variety of aryl alkenylcarbinols catalyzed by nonenzymatic acyl transfer catalyst Fe-PIP was developed, affording corresponding unreacted alcohols in good to excellent ee value up to 99% and with selectivity factors up to 24.

  8. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  9. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.;

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...

  10. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG XiaoMing

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  11. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  12. Transfer Methane to Fragrant Hydrocarbon by Direct Catalyzed Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Sponsored by NSFC,a research project -"Transfer methane to fragrant hydrocarbon by direct catalyzed dehydrogenation",directed by Prof.Xin Bao from Dalian Institute of Chemical Physics of CAS,honored the 2nd class National Science & Technology Award in 2005.

  13. Solvent-free lipase-catalyzed preparation of diacylglycerols.

    Science.gov (United States)

    Weber, Nikolaus; Mukherjee, Kumar D

    2004-08-25

    Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of

  14. Polyphosphorous acid catalyzed cyclization in the synthesis of cryptolepine derivatives

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    11-Oxo-10,11-dihydroxy-5H-indolo[3,2,b]quinoline7-carboxylic acid was obtained specifically by polyphosphorous acid catalyzed cyclization with optimal reaction conditions. Biological assays showed that it potentially inhibits the proteasomal chymotrypsin-like activity in vitro and suppresses breast cancer cell growth.

  15. Phosphine-catalyzed [3+2] annulation of cyanoallenes

    NARCIS (Netherlands)

    Kinderman, S.S.; van Maarseveen, J.H.; Hiemstra, H.

    2011-01-01

    Cyanoallenes were successfully used in organophosphine-catalyzed [3+2]-type annulation to give cyano-substituted dihydropyrroles in good yield. Chiral phosphines were also screened, leading to some initial results in the asymmetric version of cyano­allene-based annulations.

  16. Enantioselective N-heterocyclic carbene-catalyzed synthesis of trifluoromethyldihydropyridinones.

    Science.gov (United States)

    Wang, Dong-Ling; Liang, Zhi-Qin; Chen, Kun-Quan; Sun, De-Qun; Ye, Song

    2015-06-05

    The enantioselective N-heterocyclic carbene-catalyzed [4 + 2] cyclocondensation of α-chloroaldehydes and trifluoromethyl N-Boc azadienes was developed, giving the corresponding 3,4-disubstituted-6-trifluoromethyldihydropyridin-2(1H)-ones in good yields with exclusive cis-selectivities and excellent enantioselectivities.

  17. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    Science.gov (United States)

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  18. Synthesis of Soai aldehydes for asymmetric autocatalysis by desulfurative cross-coupling.

    Science.gov (United States)

    Maltsev, Oleg V; Pöthig, Alexander; Hintermann, Lukas

    2014-03-07

    Palladium-catalyzed dehydrosulfurative Liebeskind-Srogl coupling of terminal alkynes with 2-mercapto-1,3-pyrimidine-5-carbaldehyde under base-free conditions provides 2-(alkynyl)-1,3-pyrimidine-5-carbaldehydes, which are substrates for autocatalytic amplification of chirality according to Soai et al. The mercapto aldehyde acceptor is obtained by condensation of Arnold's vinamidinium salt with thiourea.

  19. An improved coupling reaction for the preparation of pyridylethynyl benzonitrile compounds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An improved coupling reaction between aro matic ring and acetylene triple bond catalyzed by palladium (0) catalyses for the preparation of pyridylethynyl benzoni trile compounds is described. Efforts were made to improve the reaction by changing different reaction conditions and it was found that the solvent is one important factor in this situation.

  20. Suzuki-Miyaura cross-coupling of potassium dioxolanylethyltrifluoroborate and aryl/heteroaryl chlorides.

    Science.gov (United States)

    Fleury-Brégeot, Nicolas; Oehlrich, Daniel; Rombouts, Frederik; Molander, Gary A

    2013-04-01

    A robust and efficient protocol for the introduction of the dioxolanylethyl moiety onto various aryl and heteroaryl halides has been developed, providing cross-coupling yields up to 93%. Copper-catalyzed borylation of 2-(2-bromoethyl)-1,3-dioxolane with bis(pinacolato)diboron followed by treatment with potassium bifluoride provides the key organotrifluoroborate reagent.

  1. Rh(III)-Catalyzed Carbocyclization of 3-(Indolin-1-yl)-3-oxopropanenitriles with Alkynes and Alkenes through C-H Activation.

    Science.gov (United States)

    Zhou, Tao; Wang, Yanwei; Li, Bin; Wang, Baiquan

    2016-10-07

    Rh(III)-catalyzed carbocyclization reactions of 3-(indolin-1-yl)-3-oxopropanenitriles with alkynes and alkenes have been developed to form 1,7-fused indolines through C-H activation. These reactions have a broad range of substrates and high yields. Unsymmetrical aryl-alkyl substituted alkynes proceeded smoothly with high regioselectivity. Electron-rich alkynes could undergo further oxidative coupling reaction to form polycyclic compounds. For alkenes, 1,2-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-4-ones were formed via C(sp(2))-H bond alkenylation and C(sp(2))-H, C(sp(3))-H oxidative coupling reactions.

  2. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral heterobiaryls.

    Science.gov (United States)

    Ros, Abel; Estepa, Beatriz; Ramírez-López, Pedro; Álvarez, Eleuterio; Fernández, Rosario; Lassaletta, José M

    2013-10-23

    A dynamic kinetic asymmetric transformation (DYKAT) technique has been designed for the synthesis of 2'-substituted 2-aryl pyridines/isoquinolines and related heterobiaryls. In this way, the Pd(0)-catalyzed coupling of racemic 2-triflates with aryl boroxines using a TADDOL-derived phosphoramidite as the ligand provides the corresponding coupling products with good to excellent enantioselectivities. Structural studies support that the formation of configurationally labile oxidative addition palladacycles is the key for the success of the methodology.

  3. Aqueous microwave-assisted cross-coupling reactions applied to unprotected nucleosides

    Science.gov (United States)

    Hervé, Gwénaëlle; Len, Christophe

    2015-01-01

    Metal catalyzed cross-coupling reactions have been the preferred tools to access to modified nucleosides (on the C5-position of pyrimidines and on the C7- or C8-positions of purines). Our objective is to focus this mini-review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which is an alternative technology compatible with green chemistry and sustainable development PMID:25741506

  4. Synthesis of renewable fine-chemical building blocks by reductive coupling between furfural derivatives and terpenes.

    Science.gov (United States)

    Nicklaus, Céline M; Minnaard, Adriaan J; Feringa, Ben L; de Vries, Johannes G

    2013-09-01

    Sugar and Spice…: The use of renewable resources to produce fine chemicals is an underdeveloped area. A waste-free technology will be necessary to further convert platform chemicals, readily available from biomass. We show that furfurals, which can be obtained from C5 sugars, can be coupled with terpenes in up to 95% yield through ruthenium-catalyzed reductive couplings developed by Krische et al.

  5. Integrable Couplings of the Coupled Burgers Hierarchy

    Institute of Scientific and Technical Information of China (English)

    XIATie-Cheng; CHENXiao-Hong; CHENDeng-Yuan; ZHANGYu-Feng

    2004-01-01

    In this letter, a new loop algebra G is constructed, from which a new isospectral problem is established. It follows that integrable couplings of the well-known coupled Burgers hierarchy are obtained.

  6. Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics

    Science.gov (United States)

    Laiou, Petroula; Andrzejak, Ralph G.

    2017-01-01

    The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.

  7. Coupling coefficients for coupled-cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lang, R.J.; Yariv, A.

    1987-03-01

    The authors derive simple, analytic formulas for the field coupling coefficients in a two-section coupled-cavity laser using a local field rate equation treatment. They show that there is a correction to the heuristic formulas based on power flow calculated by Marcuse; the correction is in agreement with numerical calculations from a coupled-mode approach.

  8. Oxidative photoredox-catalytic activation of aliphatic nucleophiles for C(sp(3))-C(sp(2)) cross-coupling reactions.

    Science.gov (United States)

    Jahn, Emanuela; Jahn, Ullrich

    2014-12-01

    In the light you will find the road (Led Zeppelin): Visible-light photoredox catalysis leads the way in overcoming the reactivity limitations of alkyl nucleophiles in cross-coupling reactions. Iridium-triggered oxidative photoredox activation of alkyltrifluoroborate or carboxylic acids affords alkyl radicals, which undergo nickel-catalyzed cross-coupling reactions.

  9. Application of Grote-Hynes theory to the reaction catalyzed by thymidylate synthase.

    Science.gov (United States)

    Kanaan, Natalia; Roca, Maite; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2010-10-28

    A theoretical study of dynamic effects on the rate-limiting step of the thymidylate synthase catalyzed reaction has been carried out by means of Grote-Hynes theory, successfully predicting the values of the recrossing effects for a chemical reaction that involves the transfer of a classical light particle. The transmission coefficients, obtained at 278, 293, 303, and 313 K, are almost invariant and in all cases far from unity, revealing a significant coupling of the environment motions and the reaction coordinate. Nevertheless, their energetic contribution to the activation free energy represents less than 0.50 kcal/mol for each of the four tested temperatures. Calculation of the transmission coefficient for the isotopically labeled hydride transfer has rendered almost the same values, in agreement with the experimentally observed temperature-independent KIEs. Fourier transform of the time-dependent friction kernel at these four temperatures has allowed obtaining the transition-state friction spectra, which present very small dependence with temperature. Their analysis has led to the identification of some key vibrational modes governing the coupling between the reaction coordinate and the protein environment, thus identifying the relevant motions in the active site and obtaining a full picture of the role of each amino acid.

  10. Comparison of lignin peroxidase and horseradish peroxidase for catalyzing the removal of nonylphenol from water.

    Science.gov (United States)

    Dong, Shipeng; Mao, Liang; Luo, Siqiang; Zhou, Lei; Feng, Yiping; Gao, Shixiang

    2014-02-01

    Concentrations of aqueous-phase nonylphenol (NP), a well-known endocrine-disrupting chemical, are shown to be reduced effectively via reaction with lignin peroxidase (LiP) or horseradish peroxidase (HRP) and hydrogen peroxide. We systematically assessed their reaction efficiencies at varying conditions, and the results have confirmed that the catalytic performance of LiP toward NP was more efficient than that of HRP under experimental conditions. Mass spectrum analysis demonstrated that polymerization through radical-radical coupling mechanism was the pathway leading to NP transformation. Our molecular modeling with the assistance of ab initio suggested the coupling of NP likely proceeded via covalent bonding between two NP radicals at their unsubstituted carbons in phenolic rings. Data from acute immobilization tests with Daphnia confirm that NP toxicity is effectively eliminated by LiP/HRP-catalyzed NP removal. The findings in this study provide useful information for understanding LiP/HRP-mediated NP reactions, and comparison of enzymatic performance can present their advantages for up-scale applications in water/wastewater treatment.

  11. Fe-Catalyzed C–C Bond Construction from Olefins via Radicals

    Science.gov (United States)

    2017-01-01

    This Article details the development of the iron-catalyzed conversion of olefins to radicals and their subsequent use in the construction of C–C bonds. Optimization of a reductive diene cyclization led to the development of an intermolecular cross-coupling of electronically-differentiated donor and acceptor olefins. Although the substitution on the donor olefins was initially limited to alkyl and aryl groups, additional efforts culminated in the expansion of the scope of the substitution to various heteroatom-based functionalities, providing a unified olefin reactivity. A vinyl sulfone acceptor olefin was developed, which allowed for the efficient synthesis of sulfone adducts that could be used as branch points for further diversification. Moreover, this reactivity was extended into an olefin-based Minisci reaction to functionalize heterocyclic scaffolds. Finally, mechanistic studies resulted in a more thorough understanding of the reaction, giving rise to the development of a more efficient second-generation set of olefin cross-coupling conditions. PMID:28094980

  12. Development of Copper-Catalyzed Electrophilic Trifluoromethylation and Exploiting Cu/Cu2O Nanowires with Novel Catalytic Reactivity

    KAUST Repository

    Li, Huaifeng

    2014-06-01

    area of the active component, thereby enhancing the contact between reactants and catalyst dramatically. Based on the above-mentioned concepts and with the aim of achieving one “green and sustainable” approach, C-S bond formation and click reactions catalyzed by Cu/Cu2O nanowires were investigated. It was found that the recyclable core-shell structured Cu/Cu2O nanowires could be applied as a highly reactive catalysts for the cross-coupling reaction between aryl iodides and the cycloaddition of terminal alkynes and azides under ligand-free conditions. Furthermore, these results were the first report for the crosscoupling reaction and click reaction catalyzed by one-dimensional (1D) copper nanowires.

  13. Microcalorimetric Study on Tyrosine Oxidation Catalyzed by Tyrosinase

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Through the method of initial heat release rate, the kinetic property of tyrosine oxidationcatalyzed by tyrosinase from Pseudomonas maltophilia was investigated using a LKB-2107 batchmicrocalorimeter. Tyrosine was catalyzed and oxidized into L-dopa, then into melanin catalyzed bytyrosinase. We found that the tyrosinase reaction obeyed the Michaelis-Menten kinetics, and at298.15K and pH 7.0, the initial exothermic rate (Ω0) are in the range of0.1567~0.5704 mJ@ s-1, themaximum exothermic rate (Ωmax) are in 0.4152 ~ 0.8143mol @ L-1, and mean value of the Michaelisconstant (Km) is 2.199±0.105×104 mol @ L-1.

  14. Silylation of Dinitrogen Catalyzed by Hydridodinitrogentris(TriphenylphosphineCobalt(I

    Directory of Open Access Journals (Sweden)

    Wojciech I. Dzik

    2016-07-01

    Full Text Available Recently, homogeneous cobalt systems were reported to catalyze the reductive silylation of dinitrogen. In this study the investigations on the silylation of dinitrogen catalyzed by CoH(PPh33N2 are presented. We show that in the presence of the title compound, the reaction of N2 with trimethylsilylchloride and sodium yields, on average, 6.7 equivalents of tris(trimethylsilylamine per Co atom in THF (tetrahydrofuran. The aim was to elucidate whether the active catalyst is: (a the [Co(PPh33N2]− anion formed after two-electron reduction of the title compound; or (b a species formed via decomposition of CoH(PPh33N2 in the presence of the highly reactive substrates. Time profile, and IR and EPR spectroscopic investigations show instability of the pre-catalyst under the applied conditions which suggests that the catalytically active species is formed through in situ modification of the pre-catalyst.

  15. Thermodynamics of Enzyme-Catalyzed Reactions. Part 3. Hydrolases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  16. Thermodynamics of Enzyme-Catalyzed Reactions: Part 4. Lyases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.

    1995-09-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the lyase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 106 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  17. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-07-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  18. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  19. Effect of urate on the lactoperoxidase catalyzed oxidation of adrenaline.

    Science.gov (United States)

    Løvstad, Rolf A

    2004-12-01

    Lactoperoxidase is an iron containing enzyme, which is an essential component of the defense system of mammalian secretary fluids. The enzyme readily oxidizes adrenaline and other catecholamines to coloured aminochrome products. A Km-value of 1.21 mM and a catalytic constant (k = Vmax/[Enz]) of 15.5 x 10(3) min(-1) characterized the reaction between lactoperoxidase and adrenaline at pH 7.4. Urate was found to activate the enzyme catalyzed oxidation of adrenaline in a competitive manner, the effect decreasing with increasing adrenaline concentration. Lactoperoxidase was able to catalyze the oxidation of urate. However, urate was a much poorer substrate than adrenaline, and it seems unlikely that urate activates by functioning as a free, redox cycling intermediate between enzyme and adrenaline. The activation mechanism probably involves an urate-lactoperoxidase complex.

  20. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions.

    Science.gov (United States)

    Ishoey, Mette; Nielsen, Thomas E

    2014-07-14

    Metal-catalyzed isomerization of N- and O-allylic systems is emerging as an effective method to form synthetically useful iminium and oxocarbenium intermediates. In the presence of tethered nucleophiles, several recent examples illuminate this approach as a powerful strategy for the synthesis of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples.

  1. Silver-Catalyzed C(sp(3))-H Chlorination.

    Science.gov (United States)

    Ozawa, Jun; Kanai, Motomu

    2017-03-17

    A silver-catalyzed chlorination of benzylic, tertiary, and secondary C(sp(3))-H bonds was developed. The reaction proceeded with as low as 0.2 mol % catalyst loading at room temperature under air atmosphere with synthetically useful functional group compatibility. The regioselectivity and reactivity tendencies suggest that the chlorination proceeded through a radical pathway, but an intermediate alkylsilver species cannot be ruled out.

  2. Predictive Modeling of Metal-Catalyzed Polyolefin Processes

    OpenAIRE

    Khare, Neeraj Prasad

    2003-01-01

    This dissertation describes the essential modeling components and techniques for building comprehensive polymer process models for metal-catalyzed polyolefin processes. The significance of this work is that it presents a comprehensive approach to polymer process modeling applied to large-scale commercial processes. Most researchers focus only on polymerization mechanisms and reaction kinetics, and neglect physical properties and phase equilibrium. Both physical properties and phase equilib...

  3. Comparing Ru and Fe-catalyzed olefin metathesis.

    Science.gov (United States)

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts.

  4. Biodiesel by acid-catalyzed transesterification with butanol

    OpenAIRE

    Bynes, Adrian

    2012-01-01

    Jatropha oil and Rapeseed oil was transesterified with n-butanol by the use of H2SO4. Before conducting the experiments a review of the effect of alcohol type was preformed. Alcohols from methanol to butanol, branched and straight, were reviewed for the effect on the acid catalyzed transesterification reaction. From the review it was found that propanol and butanol were the best for the acidic transesterification reaction. Variables such as time, temperature, alcohol amount and catalyst c...

  5. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N;

    1997-01-01

    937 cell lysates, had the same amino termini as uPAR(2+3), generated by uPA in a purified system. In both cases cleavage had occurred at two positions in the hinge region connecting domain 1 and 2, between Arg83-Ala84 and Arg89-Ser90, respectively. The uPA-catalyzed cleavage of uPAR is a new negative...

  6. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    Science.gov (United States)

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.

  7. Gold-catalyzed oxidative cycloadditions to activate a quinoline framework.

    Science.gov (United States)

    Huple, Deepak B; Ghorpade, Satish; Liu, Rai-Shung

    2013-09-23

    Going for gold! Gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkylquinoline oxides results in an oxidative cycloaddition with high stereospecificity (see scheme; EWG = electron-withdrawing group); this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.

  8. Lactoperoxidase-catalyzed activation of carcinogenic aromatic and heterocyclic amines.

    Science.gov (United States)

    Gorlewska-Roberts, Katarzyna M; Teitel, Candee H; Lay, Jackson O; Roberts, Dean W; Kadlubar, Fred F

    2004-12-01

    Lactoperoxidase, an enzyme secreted from the human mammary gland, plays a host defensive role through antimicrobial activity. It has been implicated in mutagenic and carcinogenic activation in the human mammary gland. The potential role of heterocyclic and aromatic amines in the etiology of breast cancer led us to examination of the lactoperoxidase-catalyzed activation of the most commonly studied arylamine carcinogens: 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), benzidine, 4-aminobiphenyl (ABP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). In vitro activation was performed with lactoperoxidase (partially purified from bovine milk or human milk) in the presence of hydrogen peroxide and calf thymus DNA. Products formed during enzymatic activation were monitored by HPLC with ultraviolet and radiometric detection. Two of these products were characterized as hydrazo and azo derivatives by means of mass spectrometry. The DNA binding level of 3H- and 14C-radiolabeled amines after peroxidase-catalyzed activation was dependent on the hydrogen peroxide concentration, and the highest levels of carcinogen binding to DNA were observed at 100 microM H2O2. Carcinogen activation and the level of binding to DNA were in the order of benzidine > ABP > IQ > MeIQx > PhIP. One of the ABP adducts was identified, and the level at which it is formed was estimated to be six adducts/10(5) nucleotides. The susceptibility of aromatic and heterocyclic amines for lactoperoxidase-catalyzed activation and the binding levels of activated products to DNA suggest a potential role of lactoperoxidase-catalyzed activation of carcinogens in the etiology of breast cancer.

  9. Asymmetric Aldol Reaction Catalyzed by Modularly Designed Organocatalysts

    Institute of Scientific and Technical Information of China (English)

    Sinha, Debarshi; Mandal, Tanmay; Gogoi, Sanjib; Goldman, Joshua J.; 赵从贵

    2012-01-01

    The self-assembly of the precatalyst modules, which are amino acids and cinchona alkaloid derivatives, leads to the direct formation of the desired organocatalysts without any synthesis. These modularly designed organocatalysts (MDOs) may be used for catalyzed asymmetric aldol reaction the corresponding aldol products may be obtained in mediocre diastereoselectivities (up to 79 : 21 dr). Depending on structure of the aldehyde substrates, to excellent ee values (up to 92% ee) with moderate

  10. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Science.gov (United States)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  11. Protection of wood from microorganisms by laccase-catalyzed iodination.

    Science.gov (United States)

    Schubert, M; Engel, J; Thöny-Meyer, L; Schwarze, F W M R; Ihssen, J

    2012-10-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I(-)) to iodine (I(2)) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection.

  12. Enzyme-catalyzed biocathode in a photoelectrochemical biofuel cell

    Science.gov (United States)

    Yang, Jing; Hu, Donghua; Zhang, Xiaohuan; Wang, Kunqi; Wang, Bin; Sun, Bo; Qiu, Zhidong

    2014-12-01

    A novel double-enzyme photoelectrochemical biofuel cell (PEBFC) has been developed by taking glucose dehydrogenase (GDH) and horseradish peroxidase (HRP) as the enzyme of the photoanode and biocathode to catalyze the oxidation of glucose and the reduction of oxygen. A H2-mesoporphyrin IX is used as a dye for a TiO2 film electrode to fabricate a photoanode. The horseradish peroxidase (HRP) is immobilized on a glassy carbon (GC) electrode to construct a biocathode which is used to catalyze the reduction of oxygen in the PEBFC for the first time. The biocathode exhibits excellent electrocatalytic activity in the presence of O2. The performances of the PEBFC are obtained by current-voltage and power-voltage curves. The short-circuit current density (Isc), the open-circuit voltage (Voc), maximum power density (Pmax), fill factor (FF) and energy conversion efficiency (η) are 439 μA cm-2, 678 mV, 79 μW cm-2, 0.39 and 0.016%, respectively, and the incident photon-to-collected electron conversion efficiency (IPCE) is 32% at 350 nm. The Isc is higher than that of the PEBFC with Pt cathode, and the Voc is higher than that of the dye-sensitized solar cell or the enzyme-catalyzed biofuel cell operating individually, which demonstrates that the HRP is an efficient catalyst for the biocathode in the PEBFC.

  13. Anisotropic Morphological Changes in Goethite during Fe(2+)-Catalyzed Recrystallization.

    Science.gov (United States)

    Joshi, Prachi; Gorski, Christopher A

    2016-07-19

    When goethite is exposed to aqueous Fe(2+), rapid and extensive Fe atom exchange can occur between solid-phase Fe(3+) and aqueous Fe(2+) in a process referred to as Fe(2+)-catalyzed recrystallization. This process can lead to the structural incorporation or release of trace elements, which has important implications for contaminant remediation and nutrient biogeochemical cycling. Prior work found that the process did not cause major changes to the goethite structure or morphology. Here, we further investigated if and how goethite morphology and aggregation behavior changed temporally during Fe(2+)-catalyzed recrystallization. On the basis of existing literature, we hypothesized that Fe(2+)-catalyzed recrystallization of goethite would not result in changes to individual particle morphology or interparticle interactions. To test this, we reacted nanoparticulate goethite with aqueous Fe(2+) at pH 7.5 over 30 days and used transmission electron microscopy (TEM), cryogenic TEM, and (55)Fe as an isotope tracer to observe changes in particle dimensions, aggregation, and isotopic composition over time. Over the course of 30 days, the goethite particles substantially recrystallized, and the particle dimensions changed anisotropically, resulting in a preferential increase in the mean particle width. The temporal changes in goethite morphology could not be completely explained by a single mineral-transformation mechanism but rather indicated that multiple transformation mechanisms occurred concurrently. Collectively, these results demonstrate that the morphology of goethite nanoparticles does change during recrystallization, which is an important step toward identifying the driving force(s) of recrystallization.

  14. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  15. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  16. Output-input coupling in thermally fluctuating biomolecular machines

    CERN Document Server

    Kurzynski, Michal; Chelminiak, Przemyslaw

    2011-01-01

    Biological molecular machines are proteins that operate under isothermal conditions hence are referred to as free energy transducers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating reaction and the free energy-accepting one. Most if not all biologically active proteins display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. In the steady state, this dynamics is characterized by mean first-passage times between transition substates of the catalyzed reactions. On taking advantage of the assumption that each reaction proceeds through a single pair (the gate) of conformational transition substates of the enzyme-substrates complex, analytical formulas were derived for the flux-force dependence of the both reactions, the respective stalling forces and the degree of coupling between the free energy-accepting (output) reaction flux and the free energy-donating (input) one. Th...

  17. Synthetic Study of Dragmacidin E: Construction of the Core Structure Using Pd-Catalyzed Cascade Cyclization and Rh-Catalyzed Aminoacetoxylation.

    Science.gov (United States)

    Inoue, Naoya; Nakano, Shun-Ichi; Harada, Shingo; Hamada, Yasumasa; Nemoto, Tetsuhiro

    2017-03-03

    We developed a novel synthetic method of the core structure of dragmacidin E bearing a 7-membered ring-fused bis(indolyl)pyrazinone skeleton. Formation of the 7-membered ring-fused tricyclic indole skeleton was accomplished using a palladium-catalyzed Heck insertion-allylic amination cascade. Vicinal difunctionalization of the 7-membered ring was realized via a rhodium-catalyzed aminoacetoxylation.

  18. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  19. Theoretical views on activation of methane catalyzed by Hf2+ and oxidation of CO (x(1)Σ(+)) by N2O (x(1)Σ(+)) Catalyzed by HfO2+ and TaO2+.

    Science.gov (United States)

    Nian, Jingyan; Tie, Lu; Wang, Ben; Guo, Zhiguang

    2013-09-12

    The mechanisms of activation of CH4 catalyzed by (1/3)Hf(2+) and oxidation of CO by N2O catalyzed by (1/3)HfO(2+) or (2/4)TaO(2+) have been investigated using the B3LYP level of theory. For the activation of methane, the TSR (two-state reactivity) mechanism has been certified through the spin-orbit coupling (SOC) calculation and the Landau-Zener-type model. In the vicinity of the minimum energy crossing point (MECP), SOC equals 900.23 cm(-1) and the probability of intersystem crossing is approximately 0.62. Spin inversion makes the activation barrier decline from 1.63 to 0.57 eV. NBO analysis demonstrates that empty 6s and 5d orbitals of the Hf atom play the major role for the activation of C-H bonds. Finally, CH4 dehydrogenates to produce Hf-CH2(2+). For oxidation of CO by N2O catalyzed by HfO(2+) or TaO(2+), the covalent bonds between transition metal atoms and the oxygen atom restrict the freedom of valence electrons. Therefore, they are all SSR (single-state reactivity). The oxygen atom is directly extracted during the course of oxygen transfer, and its microscopic essence has been discussed. The detailed kinetic information of two catalytic cycles has been calculated by referencing the "energetic span (δE)" model. Finally, TOF(HfO(2+))/TOF(TaO(2+)) = 2.7 at 298.15 K, which has a good consistency with the experimental result.

  20. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  1. Cross-coupling reactions of indium organometallics with 2,5-dihalopyrimidines: synthesis of hyrtinadine A.

    Science.gov (United States)

    Mosquera, Angeles; Riveiros, Ricardo; Pérez Sestelo, José; Sarandeses, Luis A

    2008-09-04

    The palladium-catalyzed cross-coupling reaction of triorganoindium reagents (R3In) with 5-bromo-2-chloropyrimidine proceeds chemoselectively, in good yields, to give 5-substituted-2-chloropyrimidines or 2,5-disubstituted pyrimidines using 40 or 100 mol % of R3In, respectively. Sequential cross-couplings are also performed, in one pot, using two different R3In. This method was used to achieve the first synthesis of the alkaloid hyrtinadine A. The key step was a two-fold cross-coupling reaction between a tri(3-indolyl)indium reagent and 5-bromo-2-chloropyrimidine.

  2. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Ferrer, Jean-Luc [Universite Joseph Fourier, France; Moon, Hong S [Department of Plant Sciences, University of Tennessee; Kapteyn, Jeremy [Institute of Biological Chemistry, Washington State University; Zhuang, Xiaofeng [Department of Plant Sciences, University of Tennessee; Hasebe, Mitsuyasu [Laboratory of Evolutionary Biology, National Institute for Biology, 38 Nishigounaka; Stewart, Neal C. [Department of Plant Sciences, University of Tennessee; Gang, David R. [Institute of Biological Chemistry, Washington State University; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  3. Physio-pathological roles of transglutaminase-catalyzed reactions

    Institute of Scientific and Technical Information of China (English)

    Mariangela; Ricotta; Maura; Iannuzzi; Giulia; De; Vivo; Vittorio; Gentile

    2010-01-01

    Transglutaminases(TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins.The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate.In addition to lysyl residues,other second nucleophilic co-substrates may include monoamines or polyamines(to form mono-or bi-substituted/crosslinked adducts) or-OH groups(to form ester linkages) .In the absence of co-substrates,the nucleophile may be water,resulting in the net deamidation of the glutaminyl residue.The TG enzymes are also capable of catalyzing other reactions important for cell viability.The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified."Tissue" TG(TG2) ,a member of the TG family of enzymes,has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology:i.e.celiac disease(CD) .TG activity has alsobeen hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases,including neurodegenerative diseases,which are often associated with CD.Neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,supranuclear palsy,Huntington’s disease and other recently identified polyglutamine diseases,are characterized,in part,by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains.In this review,we discuss the physio-pathological role of TG-catalyzed reactions,with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases.

  4. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  5. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    Science.gov (United States)

    2012-03-01

    MOLECULES ON MUON -CATALYZED FUSION DISSERTATION Eugene V. Sheely, Lieutenant Colonel, USA DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY...THEORETICAL STUDY OF THE EFFECTS OF DI-MUONIC MOLECULES ON MUON -CATALYZED FUSION DISSERTATION Presented to the Faculty...potential of enhancing the muon -catalyzed fusion reaction rate. In order to study these di-muonic molecules a method of non-adiabatic quantum mechanics

  6. Lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol

    OpenAIRE

    2000-01-01

    The influences of water activity and solvent hydrophobicity on the kinetics of the lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol were investigated. The solvent effect was not similar for lipases from Candida rugosa (Crl), Mucor javanicus (Mjl), and porcine pancreas (Ppl). The lipase-catalyzed reaction rates in different solvents across a wide range of water activities revealed that the Ppl-catalyzed reaction exhibited no enantioselectivity and no substantial ...

  7. Rhodium catalyzed asymmetric Pauson-Khand reaction using SDP ligands

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The activity and enantiocontrol ability of the chiral catalysts prepared from spiro diphosphine ligands, SDP, and rhodium precursor were investigated in the asymmetric catalytic Pauson-Khand reaction. The results showed that SDP ligands were very effective in Rh-catalyzed Pauson-Khand reaction, and their complexes with rhodium could convert a variety of 1,6-enyne compounds into bicyclopentone derivatives under CO atmosphere in high yields with good enantioselectivities. The SbF6- was found to be a suitable counter anion of the catalyst, and 1,2-dichloroethane was the best choice of the solvent for Pauson-Khand reaction.

  8. Kinetics of acid-catalyzed cleavage of cumene hydroperoxide.

    Science.gov (United States)

    Levin, M E; Gonzales, N O; Zimmerman, L W; Yang, J

    2006-03-17

    The cleavage of cumene hydroperoxide, in the presence of sulfuric acid, to form phenol and acetone has been examined by adiabatic calorimetry. As expected, acid can catalyze cumene hydroperoxide reaction at temperatures below that of thermally-induced decomposition. At elevated acid concentrations, reactivity is also observed at or below room temperature. The exhibited reactivity behavior is complex and is significantly affected by the presence of other species (including the products). Several reaction models have been explored to explain the behavior and these are discussed.

  9. FBH1 Catalyzes Regression of Stalled Replication Forks

    DEFF Research Database (Denmark)

    Fugger, Kasper; Mistrik, Martin; Neelsen, Kai J;

    2015-01-01

    DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression...... a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks....... of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity...

  10. Catalyzing new product adoption at the base of the pyramid

    OpenAIRE

    Marinakis, Y.D.; Walsh, S. T.; Harms, R.

    2016-01-01

    One of the more perplexing of the entrepreneurial issues at the Base of the Pyramid (BoP) is how to catalyze new product adoption by BoP consumers. Because S-shaped adoption dynamics are the result of cultural transmission bias, the question can be rephrased as, how can an entrepreneur overcome conformity bias. We modified the Technology Acceptance Model (TAM) to include conformity bias. We then qualitatively applied the model to three examples from the literature, namely fuel stoves in Darfu...

  11. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  12. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, Roman Vladimirovich [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a β-hydrogen in the vinylic halide results in β-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the α-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  13. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    Science.gov (United States)

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  14. Urea- and Thiourea-Catalyzed Aminolysis of Carbonates.

    Science.gov (United States)

    Blain, Marine; Yau, Honman; Jean-Gérard, Ludivine; Auvergne, Rémi; Benazet, Dominique; Schreiner, Peter R; Caillol, Sylvain; Andrioletti, Bruno

    2016-08-23

    The aminolysis of (poly)carbonates by (poly)amines provides access to non-isocyanate polyurethanes (NIPUs) that are toxic-reagent-free analogues of polyurethanes (PUs). Owing to their low reactivity, the ring opening of cyclic carbonates requires the use of a catalyst. Herein, we report that the more available and cheaper ureas could advantageously be used for catalyzing the formation of NIPUs at the expense of the thiourea analogues. In addition, we demonstrate a medium-range pKa of the (thio)urea and an unqeual substitution pattern is critical for controlling the efficiency of the carbonate opening.

  15. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  16. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    OpenAIRE

    Jumat Salimon; Nadia Salih; Bashar Mudhaffar Abdullah

    2012-01-01

    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL ...

  17. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Roman Vladimirovich Rozhkov

    2004-12-19

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  18. Triphenylphosphine-Catalyzed Michael Addition of Alcohols to Acrylic Compounds

    Institute of Scientific and Technical Information of China (English)

    LIU, Hai-Ling; JIANG, Huan-Feng; WANG, Yu-Gang

    2007-01-01

    A facile triphenylphosphine-catalyzed Michael addition of alcohols to acrylic compounds was described. The reaction was carried out in open air at refluxing temperature in the presence of 10 mol% PPh3. Michael addition of saturated and unsaturated alcohols to acrylonitrile or acrylates has been examined. The reaction gaveβ-alkoxy derivatives with isolated yields of 5%-79%. PPh3 is cheaper and more stable than those trialkylphosphines previously used for the similar reactions, and the products can be easily separated from the reaction mixture via distillation.

  19. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction

    DEFF Research Database (Denmark)

    Sandrini, Michael; Piskur, Jure

    2005-01-01

    Mammals have four deoxyribonucleoside kinases, the cytoplasmic (TK1) and mitochondrial (TK2) thymidine kinases, and the deoxycytidine (dCK) and deoxyguanosine (dGK) kinases, which salvage the precursors for nucleic acids synthesis. In addition to the native deoxyribonucleoside substrates, the kin......, the kinases can phosphorylate and thereby activate a variety of anti-cancer and antiviral prodrugs. Recently, the crystal structure of human TK1 has been solved and has revealed that enzymes with fundamentally different origins and folds catalyze similar, crucial cellular reactions....

  20. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions

    NARCIS (Netherlands)

    Birkholz, M.N.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2009-01-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite

  1. Synthesis of indazoles and azaindazoles by intramolecular aerobic oxidative C-N coupling under transition-metal-free conditions.

    Science.gov (United States)

    Hu, Jiantao; Xu, Huacheng; Nie, Pengju; Xie, Xiaobo; Nie, Zongxiu; Rao, Yu

    2014-04-01

    A transition-metal-free oxidative C-N coupling method has been developed for the synthesis of 1H-azaindazoles and 1H-indazoles from easily accessible hydrazones. The procedure uses TEMPO, a basic additive, and dioxygen gas as the terminal oxidant. This reaction demonstrates better reactivity, functional group tolerance, and broader scope than comparable metal catalyzed reactions.

  2. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. They demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, they developed conditions to directly arylate these heterocycles with aryl halides. The initial conditions that used PCy{sub 3} as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (Phoban) that also facilitated the coupling of aryl bromides. They then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, they anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.

  3. Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation.

    Science.gov (United States)

    Lewis, Jared C; Bergman, Robert G; Ellman, Jonathan A

    2008-08-01

    heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy 3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.

  4. Sonogashira coupling reaction of homopropargyl ether with aryl bromides and synthesis of 2,5-disubstituted 3-bromofurans

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents Sonogashira coupling reaction of aryl bromides with protected homopropargyl alcohols such as tert-butyldimethyl(1-phenylbut-3-ynyloxy)silane and tert-butyldimethyl(1-(2,4-dichlorophenyl)but-3-ynyloxy)silane in piperidine catalyzed by PdCl2/PPh3 without copper(Ⅰ). The coupling products, disubstituted acetylene, are obtained in good or excellent yields. These products can be further used for the synthesis of 2,5-disubstituted 3-bromofurans.

  5. Palladium-catalyzed α-arylation of zinc enolates of esters: reaction conditions and substrate scope.

    Science.gov (United States)

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F

    2013-09-06

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching alkali metal enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl, or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2.

  6. Interconversion between formate and hydrogen carbonate by tungsten-containing formate dehydrogenase-catalyzed mediated bioelectrocatalysis

    Directory of Open Access Journals (Sweden)

    Kento Sakai

    2015-09-01

    Full Text Available We have focused on the catalytic properties of tungsten-containing formate dehydrogenase (FoDH1 from Methylobacterium extorquens AM1 to construct a bioelectrochemical interconversion system between formate (HCOO− and hydrogen carbonate (HCO3−. FoDH1 catalyzes both of the HCOO oxidation and the HCO3− reduction with several artificial dyes. The bi-molecular reaction rate constants between FoDH1 and the artificial electron acceptors and NAD+ (as the natural electron acceptor show the property called a linear free energy relationship (LFER, indicating that FoDH1 would have no specificity to NAD+. Similar LFER is also observed for the catalytic reduction of HCO3−. The reversible reaction between HCOO− and HCO3− through FoDH1 has been realized on cyclic voltammetry by using methyl viologen (MV as a mediator and by adjusting pH from the thermodynamic viewpoint. Potentiometric measurements have revealed that the three redox couples, MV2+/MV·−+, HCOO−/HCO3−, FoDH1 (ox/red, reach an equilibrium in the bulk solution when the two-way bioelectrocatalysis proceeds in the presence of FoDH1 and MV. The steady-state voltammograms with two-way bioelectrocatalytic properties are interpreted on a simple model by considering the solution equilibrium.

  7. A Study of Fuel and Reactor Design for Platinum Nanoparticle Catalyzed Microreactors

    Directory of Open Access Journals (Sweden)

    Dylan McNally

    2015-01-01

    Full Text Available Typical microcombustion-based power devices entail the use of catalyst to sustain combustion in less than millimeter scale channels. This work explores the use of several other candidate fuels for ~8 nm diameter Pt particle catalyzed combustion within 800 μm channel width cordierite substrates. The results demonstrate while commercial hydrocarbon fuels such as methane, propane, butane, and ethanol can be used to sustain catalytic combustion, room temperature ignition was only observed using methanol-air mixtures. Fuels, other than methanol, required preheating at temperatures >200°C, yet repeated catalytic cycling similar to methanol-air mixtures was demonstrated. Subsequently, a new reactor design was investigated to couple with thermoelectric generators. The modified reactor design enabled ignition of methanol-air mixtures at room temperature with the ability to achieve repeat catalytic cycles. Preliminary performance studies achieved a maximum temperature difference ΔT of 55°C with a flow rate of 800 mL/min. While the temperature difference indicates a respectable potential for power generation, reduced exhaust temperature and improved thermal management could significantly enhance the eventual device performance.

  8. Ruthenium-catalyzed α-(hetero)arylation of saturated cyclic amines: reaction scope and mechanism.

    Science.gov (United States)

    Peschiulli, Aldo; Smout, Veerle; Storr, Thomas E; Mitchell, Emily A; Eliáš, Zdeněk; Herrebout, Wouter; Berthelot, Didier; Meerpoel, Lieven; Maes, Bert U W

    2013-07-29

    Transition-metal-catalyzed sp(3) C-H activation has emerged as a powerful approach to functionalize saturated cyclic amines. Our group recently disclosed a direct catalytic arylation reaction of piperidines at the α position to the nitrogen atom. 1-(Pyridin-2-yl)piperidine could be smoothly α-arylated if treated with an arylboronic ester in the presence of a catalytic amount of [Ru3(CO)12] and one equivalent of 3-ethyl-3-pentanol. A systematic study on the substrate and reagent scope of this transformation is disclosed in this paper. The effect of substitution on both the piperidine ring and the arylboronic ester has been investigated. Smaller (pyrrolidine) and larger (azepane) saturated ring systems, as well as benzoannulated derivatives, were found to be compatible substrates with the α-arylation protocol. The successful use of a variety of heteroarylboronic esters as coupling partners further proved the power of this direct functionalization method. Mechanistic studies have allowed for a better understanding of the catalytic cycle of this remarkable transformation featuring an unprecedented direct transmetalation on a Ru(II)-H species.

  9. Coverage Effects on the Palladium-Catalyzed Synthesis of Vinyl Acetate: Comparison between Theory and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Calaza, Florencia; Stacchiola, Dario; Neurock, Matthew; Tysoe, Wilfred T.

    2010-02-24

    The high adsorbate coverages that form on the surfaces of many heterogeneous catalysts under steady-state conditions can significantly lower the activation energies for reactions that involve the coupling of two adsorbed intermediates while increasing those which result in adsorbate bond-breaking reactions. The influence of the surface coverage on the kinetics of metal-catalyzed reactions is often ignored in theoretical and even in some ultrahigh vacuum experimental studies. Herein, first principle density functional theoretical calculations are combined with experimental surface titration studies carried out over well-defined Pd(111) surfaces to explicitly examine the influence of coverage on the acetoxylation of ethylene to form vinyl acetate over Pd. The activation energies calculated for elementary steps in the Samanos and Moiseev pathways for vinyl acetate synthesis carried out on acetate-saturated palladium surfaces reveal that the reaction proceeds via the Samanos mechanism which is consistent with experimental results carried out on acetate-saturated Pd(111) surfaces. The rate-limiting step involves a β-hydride elimination from the adsorbed acetoxyethyl intermediate, which proceeds with an apparent calculated activation barrier of 53 kJ/mol which is in very good agreement with the experimental barrier of 55 ± 4 kJ/mol determined from kinetic measurements.

  10. Study of microwave effects on the lipase-catalyzed hydrolysis.

    Science.gov (United States)

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions.

  11. Acid base catalyzed transesterification kinetics of waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P.; Rajvanshi, Shalini [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee (India)

    2011-01-15

    The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 C and 50 C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H{sub 2}SO{sub 4} and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min{sup -1} and 0.0078 min{sup -1} respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield. (author)

  12. Metalloporphyrin solubility: a trigger for catalyzing reductive dechlorination of tetrachloroethylene.

    Science.gov (United States)

    Dror, Ishai; Schlautman, Mark A

    2004-02-01

    Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants.

  13. Enzyme catalyzed electricity-driven water softening system.

    Science.gov (United States)

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD⁺ as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO₃. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO₃ the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water.

  14. Ozonation of Indigo Carmine Catalyzed with Fe-Pillared Clay

    Directory of Open Access Journals (Sweden)

    Miriam Bernal

    2013-01-01

    Full Text Available The ozonation catalyzed by iron-pillared clays was studied. The degradation of dye indigo carmine (IC was elected as test reaction. Fe-pillared clays were synthesized by employing hydrolyzed FeCl3 solutions and bentonite. The pillared structure was verified by XRD and by XPS the oxidation state of iron in the synthesized material was established to be +2. By atomic absorption the weight percentage of iron was determined to be 16. The reaction was conducted in a laboratory scale up-flow bubble column reactor. From the studied variables the best results were obtained with a particle size of 60 microns, pH=3, ozone flow of 0.045 L/min, and catalyst concentration of 100 mg/L. IC was completely degraded and degradation rate was found to be double when using Fe-PILCS than with ozone alone. DQO reduction was also significantly higher with catalyzed than with noncatalyzed ozonation.

  15. Thermodynamics of Enzyme-Catalyzed Reactions: Part 1. Oxidoreductases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.; Bell, Donna; Fazio, Kari; Anderson, Ellen

    1993-03-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by oxidoreductases have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it. The thermodynamic conventions pertinent to the tabulation of equilibrium data are discussed. A distinction is made between those thermodynamic quantities which pertain to the overall biochemical reaction and those which pertain to a reference reaction that involves specific species. The data from 205 references have been examined and evaluated. Chemical Abstract Service Registry Numbers have been assigned to the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participated.

  16. IRC analysis of methanol carbonylation reaction catalyzed by rhodium complex

    Institute of Scientific and Technical Information of China (English)

    HAO Maorong; FENG Wenlin; JI Yongqiang; LEI Ming

    2004-01-01

    In the reaction cycle for methanol carbonylation catalyzed by Rh complex, the structure geometries of the reactant, intermediates, transition states and product of each elemental reaction have been studied by using the energy gradient method at HF/LANL2DZ level, and the changes of their potential profiles have also been calculated. Through IRC analyses of the transition states for each elemental reaction, it is confirmed that the various structure geometries obtained are stationary points on the cycle reaction pathway of methanol carbonylation catalyzed by Rh complex, and the changes are given in energies and structure geometries of the reactant molecules along the reaction pathway of lowest energy. It has been proposed that the geometrical conversions of intermediates play an important role during the cycle reaction. Through analyses of structure geometries, it has been suggested that, in addition to cis- and trans- structure exchange linkage of catalysis reactive species, the two pathways, cis- and trans-cata- lyzed cycle reactions, can also be linked through geometrical conversion of intermediates, of which the activation energy is 49.79 kJ/mol. Moreover, the reductive elimination elemental reaction may be neither cis-cycle nor trans- one, showing that the cycle reaction can be achieved through various pathways. However different the pathway, the oxidative addition elemental reaction of CH3I is the rate-controlling step.

  17. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    Science.gov (United States)

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  18. Lipase-catalyzed polyester synthesis--a green polymer chemistry.

    Science.gov (United States)

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemoenzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting 'green polymer chemistry'.

  19. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    Science.gov (United States)

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire.

  20. [Desire disorders in the couple: accident, dream, sexuality].

    Science.gov (United States)

    Stauffacher, M; Godat, A

    2013-03-20

    Eros, as few only would doubt about it, takes part in the deepest and most intimate area of the human being. Our contemporaries attach great importance to sexuality, but feed the illusion that mastering it could lead to miracles in the couple. We suggest that giving up control and committing himself to fully listening to the patient, the physician will be able to orient him in the blind rules of desire and to accept fortuity. Unexpected (?) accident, dream, hypnosis, often powerfully catalyze changes. Some clinical situations are described in this article with their evolution as consultations develop, without foreseeing their interpretation.

  1. Period-doubling and chaotic oscillations the ferroin-catalyzed Belousov-Zhabotinsky reaction in a CSTR

    Institute of Scientific and Technical Information of China (English)

    ZONG ChunYan; GAO QingYu; WANG YuMei; FENG JiaMin; MAO ShanCheng; ZHANG Lu

    2007-01-01

    The ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction, the oxidation of malonic acid by acidic bromate, is the most commonly investigated chemical system for understanding spatial pattern formation. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at Iow flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy(o)rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition, it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.

  2. Period-doubling and chaotic oscillations in the ferroin-catalyzed Belousov-Zhabotinsky reaction in a CSTR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The ferroin-catalyzed Belousov-Zhabotinsky(BZ) reaction,the oxidation of malonic acid by acidic bromate,is the most commonly investigated chemical system for understanding spatial pattern forma-tion. Various oscillatory behaviors were found from such as mixed-mode and simple period-doubling oscillations and chaos on both Pt electrode and Br-ISE at high flow rates to mixed-mode oscillations on Br-ISE only at low flow rates. The complex dynamic behaviors were qualitatively reproduced with a two-cycle coupling model proposed initially by Gy?rgyi and Field. This investigation offered a proper medium for studying pattern formation under complex temporal dynamics. In addition,it also shows that complex oscillations and chaos in the BZ reaction can be extended to other bromate-driven nonlinear reaction systems with different metal catalysts.

  3. Pd-catalyzed autotandem C-C/C-C bond-forming reactions with tosylhydrazones: synthesis of spirocycles with extended π-conjugation.

    Science.gov (United States)

    Barroso, Raquel; Valencia, Rocío A; Cabal, María-Paz; Valdés, Carlos

    2014-04-18

    A new Pd-catalyzed autotandem process is presented by the reaction of tosylhydrazones of cyclic ketones and 2,2'-dibromobiphenyls and related systems. The process involves cross-coupling with tosylhydrazone followed by an intramolecular Heck reaction and gives rise to spirocyclic structures. Noteworthy, two C-CAr bonds are formed on the hydrazonic carbon during the process. Depending on the starting dibromide, an array of spirofluorenes, spirodibenzofluorenes, spiroacridines, and spiroanthracenes have been prepared. Thus, this methodology may be applied for the preparation of interesting structures useful in the development of optoelectronic materials.

  4. Regioselective synthesis of 1-alkyl- or 1-aryl-1H-indazoles via copper-catalyzed cyclizations of 2-haloarylcarbonylic compounds.

    Science.gov (United States)

    Viña, Dolores; del Olmo, Esther; López-Pérez, José L; San Feliciano, Arturo

    2007-02-01

    [reaction: see text] A general method for the one-step regioselective synthesis of 1-alkyl- or 1-aryl-1H-indazoles from ortho-halogenated alkanoylphenones, benzophenones, and arylcarboxylic acids, via copper-catalyzed amination, was developed by using 0.2% mol of CuO in the presence of K(2)CO(3). The reaction involves amination followed by intramolecular dehydration. Different functionalized alkyl aryl ketones, diaryl ketones, and benzoic acid derivatives were efficiently coupled with several hydrazines. Ligands commonly employed as catalysts for intermolecular amination were shown to be ineffective for this cyclization.

  5. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard;

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  6. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  7. Immobilization of Chiral Ferrocenyl Ligands on Silica Gel and their Testing in Pd-catalyzed Allylic Substitution and Rh-catalyzed Hydrogenation

    Directory of Open Access Journals (Sweden)

    Duncan J. Macquarrie

    2005-07-01

    Full Text Available Five different silica gels containing two chiral ferrocenyl ligands were prepared by various synthetic routes and tested in an enantioselective Pd(0-catalyzed allylic substitution and Rh-catalyzed hydrogenation. All the prepared anchored ligands were characterized by porosimetry data, DRIFTS spectra, thermal data and AAS. The aim of the work was to compare the influence of the carrier, surface properties and immobilization strategy on the performance of the catalyst.

  8. Oxygenase-Catalyzed Desymmetrization of N,N-Dialkyl-piperidine-4-carboxylic Acids**

    Science.gov (United States)

    Rydzik, Anna M; Leung, Ivanhoe K H; Kochan, Grazyna T; McDonough, Michael A; Claridge, Timothy D W; Schofield, Christopher J

    2014-01-01

    γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers. PMID:25164544

  9. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    Science.gov (United States)

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  10. LIPASE-CATALYZED TRANSESTERIFICATION OF PALM KERNEL OIL WITH DIALKYLCARBONATES

    Directory of Open Access Journals (Sweden)

    Tjahjono Herawan

    2014-01-01

    Full Text Available Lipase-catalyzed transesterifications-especially in a solvent-free medium-are important for industrial applications because such systems would have an enormous advantage by avoiding the problem of separation, toxicity and flammability of organic solvents. However, the organic solvent-free alcoholysis, especially methanolysis, does not give high conversions. The same problem also occurs when ethyl or methyl acetate are used as acyl acceptors. The main problems of lipase-catalyzed organic solvent-free alcoholysis are first, the solubility of the plant oil in the substrate or solvent and second, the fact that transesterification is an equilibrium reaction. Dialkyl carbonates, versatile compounds due to their chemical reactivity and physical properties, may provide an alternative to solve both problems. Using dialkyl carbonates transesterification is not an equilibrium reaction, because the intermediate compound immediately decomposes to carbon dioxide and an alcohol. Moreover, dialkyl carbonates (especially dimethyl carbonate are cheap and widely available. For single step lipase-catalyzed transesterification of palm kernel oil, diakyl carbonates (in this case dimethyl and diethyl carbonate gave better yields compared to those of short chain alcohols. The rate of ester formation with dialkyl carbonates as substrate was about 6-7 times higher than that obtained with short chain alcohols. The formation of esters was gradually increased by a higher enzyme amount from 5-20% (w/w of oil for 8 h reaction time. However from the economic point of view, an enzyme amount of 10% on the weight base of oil was proposed for further reaction. Generally, the highest ester formation was observed when a temperature of 60°C was used. However, in the case of dimethyl carbonate little difference was observed at reaction temperatures of 60 and 70oC and the reactions proceeded nearly identically. The esters formation increased drastically up to more than 70% when water

  11. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  12. Degradation and transformation of atrazine under catalyzed ozonation process with TiO2 as catalyst.

    Science.gov (United States)

    Yang, Yixin; Cao, Hongbin; Peng, Pai; Bo, Hongmiao

    2014-08-30

    Degradation of atrazine by heterogeneously catalyzed ozonation was carried out with TiO2 in the form of rutile as the catalyst. Some experimental factors such as catalyst dose, ozone dose and initial concentration of atrazine were investigated for their influence on catalyzed ozonation process. Although atrazine was effectively removed from aqueous solution by catalyzed ozonation process, the mineralization degree only reached 56% at the experimental conditions. Five transformation products were identified by GC/MS analysis. The degradation of atrazine involved de-alkylation, de-chlorination and de-amination. Diaminotriazine and 5-azauracil were the de-chlorinated and de-aminated products, respectively. The evolution of concentration of transformation products during catalyzed ozonation process was compared with uncatalyzed ozonation to show the degradation pathway. Toxicity tests based on the inhibition of the luminescence emitted by Vibrio fisheri indicated the detoxification of atrazine by catalyzed ozonation.

  13. Rh(II)-catalyzed Reactions of Diazoesters with Organozinc Reagents

    Science.gov (United States)

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M.

    2015-01-01

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethylacetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed. PMID:26241081

  14. Muon Catalyzed Fusion in 3 K Solid Deuterium

    CERN Document Server

    Knowles, P E; Bailey, J M; Beer, G A; Beveridge, J L; Fujiwara, M C; Huber, T M; Jacot-Guillarmod, R; Kammel, P; Kim, S K; Kunselman, A R; Marshall, G M; Martoff, C J; Mason, G R; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Zmeskal, J; Zmeskal, and J.

    1997-01-01

    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of $\\mu d$ and the hyperfine transition rate have been measured: $\\tilde{\\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.

  15. Chemical and genomic evolution of enzyme-catalyzed reaction networks.

    Science.gov (United States)

    Kanehisa, Minoru

    2013-09-02

    There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.

  16. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    . For most studied systems, the tetrahedral structure is a stable intermediate. Moreover, the C-N bond in the lactam ring is intact in this intermediate, as well as in the following transition state-its cleavage is induced by proton transfer to the nitrogen atom in the lactam ring. However, for the model...... with Asp as a proton shuttle, attack of the zinc-bond hydroxide ion seems to be concerted with the proton transfer. We have also studied the effect of replacing one of the histidine ligands by an asparagine or glutamine residue, giving a zinc site representative of other subclasses of metallo......Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  17. Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures.

    Science.gov (United States)

    Xi, Guangcheng; Liu, Yankuan; Liu, Xiaoyan; Wang, Xiaoqing; Qian, Yitai

    2006-07-27

    In this article, a novel magnesium-catalyzed co-reduction route was developed for the large-scale synthesis of aligned beta-SiC one-dimensional (1D) nanostructures at relative lower temperature (600 degrees C). By carefully controlling the reagent concentrations, we could synthesize beta-SiC rodlike and needlelike nanostructures. The possible growth mechanism of the as-synthesized beta-SiC 1D nanostructures has been investigated. The structure and morphology of the as-synthesized beta-SiC nanostructures are characterized using X-ray diffraction, Fourier transform infrared absorption, and scanning and transmission electron microscopes. Raman and photoluminescence properties are also investigated at room temperature. The as-synthesized beta-SiC nanostructures exhibit strong shape-dependent field emission properties. Corresponding to their shapes, the as-synthesized nanorods and nanoneedles display the turn-on fields of 12, 8.4, and 1.8 V/microm, respectively.

  18. Silica nanospheres formation induced by peroxidase-catalyzed phenol polymerization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To examine whether lignin-like compound is correlated with silica precipitation in grass, a series of simulated chemical experiments were carried out at ambient temperature and pressure, close to cell wall pH, with phenol polymerization catalyzed by peroxidase in silicon solution. The experiments showed that phenol polymer (a kind of lignin-like substance) caused silica nanosphere precipitation similar to those caused by protein in diatom cell wall previously reported by other authors. The sphere diameter varied with different kinds of phenol and the concentrations of phenol and silicon. Silicon precipitation had phenol and silicon saturation effect, meaning that when the concentration ratio of soluble silicon to phenol exceeded a certain value, the amount of silicon precipitation would decrease.

  19. Synthesis of Rosin Acid Starch Catalyzed by Lipase

    Directory of Open Access Journals (Sweden)

    Rihui Lin

    2014-01-01

    Full Text Available Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435 under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2 : 1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.

  20. CRYSTAL DEFECTS IN PLASMA NITRIDED LAYER CATALYZED BY RARE EARTH

    Institute of Scientific and Technical Information of China (English)

    F.S. Chen; Y.X. Liu; D.K. Liang; L.M. Xiao

    2002-01-01

    The microstructure of plasma nitrided layer catalyzed by rare-earth elements has beenstudied with TEM. The results show that the grains of γ'-Fe4N phase are refinedby rare-earth elements and the plane defects in boundary are increased by rare-earthelements. The addition of rare-earth element increases the bombardment effect andthe number of crystal defects such as vacancies, dislocation loops, twins and stackingfaults in γ'-Fe4N phase and can produce the high-density dislocations in the ferrite ofdiffusion layer at a distance 0. 08mm from the surface. The production of a numberof crystal defects is one of important reasons why rare-earth element accelerates thediffusion of nitrogen atoms during plasma-nitridiug.

  1. FBH1 Catalyzes Regression of Stalled Replication Forks

    Directory of Open Access Journals (Sweden)

    Kasper Fugger

    2015-03-01

    Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

  2. Recent developments in lipase-catalyzed synthesis of polyesters.

    Science.gov (United States)

    Kobayashi, Shiro

    2009-02-18

    Polyester synthesis by lipase catalyst involves two major polymerization modes: i) ring-opening polymerization of lactones, and, ii) polycondensation. Ring-opening polymerization includes the finding of lipase catalyst; scope of reactions; polymerization mechanism; ring-opening polymerization reactivity of lactones; enantio-, chemo- and regio-selective polymerizations; and, chemoenzymatic polymerizations. Polycondensation includes polymerizations involving condensation reactions between carboxylic acid and alcohol functional groups to form an ester bond. In most cases, a carboxylic acid group is activated as an ester form, such as a vinyl ester. Many recently developed polymerizations demonstrate lipase catalysis specific to enzymatic polymerization and appear very useful. Also, since lipase-catalyzed polyester synthesis provides a good opportunity for conducting "green polymer chemistry", the importance of this is described.

  3. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  4. WILDCAT: a catalyzed D-D tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-11-01

    WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.

  5. Describing spatiotemporal couplings in ultrashort pulses using coupling coefficients

    Institute of Scientific and Technical Information of China (English)

    Zeng Shu-Guang; Dan You-Quan; Zhang Bin; Sun Nian-Chun; Sui Zhan

    2011-01-01

    Three coupling coefficients are defined to describe spatiotemporal coupling in ultrashort pulses.With these coupling coefficients,the first-order spatiotemporal couplings of Gaussian pulse and beam are described analytically.Also,the first-order and the second-order spatiotemporal couplings caused by angular dispersion elements are studied using these coupling coefficients.It can be shown that these coupling coefficients are dimensionless and normalized,and readily indicate the severity of spatiotemporal coupling.

  6. The general base in the thymidylate synthase catalyzed proton abstraction.

    Science.gov (United States)

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-12-14

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.

  7. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  8. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2012-04-01

    Full Text Available The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN and 7-deazaguanine urea (DeUG is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylaminopyridine (DMAP-catalyzed peptide synthesis with N-(3-dimethylaminopropyl-N’-ethyl carbodiimide hydrochloride (EDC as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H-pyrimidone quadruply hydrogen-bonding interactions.

  9. Response reactions: equilibrium coupling.

    Science.gov (United States)

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  10. Conformally Coupled Inflation

    Directory of Open Access Journals (Sweden)

    Valerio Faraoni

    2013-07-01

    Full Text Available A massive scalar field in a curved spacetime can propagate along the light cone, a causal pathology, which can, in principle, be eliminated only if the scalar couples conformally to the Ricci curvature of spacetime. This property mandates conformal coupling for the field driving inflation in the early universe. During slow-roll inflation, this coupling can cause super-acceleration and, as a signature, a blue spectrum of primordial gravitational waves.

  11. Running surface couplings

    OpenAIRE

    1995-01-01

    We discuss the renormalization group improved effective action and running surface couplings in curved spacetime with boundary. Using scalar self-interacting theory as an example, we study the influence of the boundary effects to effective equations of motion in spherical cap and the relevance of surface running couplings to quantum cosmology and symmetry breaking phenomenon. Running surface couplings in the asymptotically free SU(2) gauge theory are found.

  12. Conversation, coupling and complexity

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Abney, Drew; Bahrami, Bahador;

    We investigate the linguistic co-construction of interpersonal synergies. By applying a measure of coupling between complex systems to an experimentally elicited corpus of joint decision dialogues, we show that interlocutors’ linguistic behavior displays increasing signature of multi-scale coupling......, known as complexity matching, over the course of interaction. Furthermore, we show that stronger coupling corresponds with more effective interaction, as measured by collective task performance....

  13. Conformally coupled inflation

    CERN Document Server

    Faraoni, Valerio

    2013-01-01

    A massive scalar field in a curved spacetime can propagate along the light cone, a causal pathology, which can, in principle, be eliminated only if the scalar couples conformally to the Ricci curvature of spacetime. This property mandates conformal coupling for the field driving inflation in the early universe. During slow-roll inflation, this coupling can cause super-acceleration and, as a signature, a blue spectrum of primordial gravitational waves.

  14. Pneumatic flexible shaft couplings

    OpenAIRE

    2007-01-01

    Main effort of every design engineer is reduction of torsional oscillation in any mechanical system. At present this problem can be solved by means of a suitable modification of dynamic properties of flexible shaft couplings according to dynamics in the given systems. But the dynamic properties of nowadays-applied flexible couplings arenot unchangeable because of aging and fatigue processes occurring in flexible coupling elements. Result of this fact causes detuning of mechanical system. Taki...

  15. Coupling of Ligands to the Liposome Surface by Click Chemistry.

    Science.gov (United States)

    Spanedda, Maria Vittoria; De Giorgi, Marcella; Hassane, Fatouma Saïd; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2017-01-01

    Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.

  16. Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase

    Directory of Open Access Journals (Sweden)

    Leif Hertz

    2017-02-01

    Full Text Available The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT and its degradation by glutamate dehydrogenase (GDH. Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA. Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here.

  17. Gear Spline Coupling Program

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-29

    An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.

  18. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  19. Bibliographic Coupling: A Review

    Science.gov (United States)

    Weinberg, Bella Hass

    1974-01-01

    The theory and practical applications of bibliographic coupling are reviewed. The reviewer takes issue with the use of bibliographic coupling for information retrieval and automatic classification on logical grounds, and for reasons relating to uncontrolled citation practices. The usefulness of the procedure for the study of the science of science…

  20. Translation-coupling systems

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  1. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  2. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  3. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  4. Suzuki-Miyaura cross-coupling reactions in aqueous media: Green and sustainable syntheses of biaryls

    KAUST Repository

    Polshettiwar, Vivek

    2010-02-28

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally catalyzed by soluble palladium complexes with various ligands. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance. This Review will summarize various recently developed significant methods by which the Suzuki-Miyaura coupling was conducted in aqueous media, and analyzes if they are "real green" protocols. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Isotopic study of ceria-catalyzed soot oxidation in the presence of NOx

    OpenAIRE

    Guillén Hurtado, Noelia; García García, Avelina; Bueno López, Agustín

    2013-01-01

    The ceria-catalyzed soot oxidation mechanism has been studied by a pulse technique with labeled O2 in the absence and presence of NO, using ceria–soot mixtures prepared in the loose contact mode. In the absence of soot, the ceria-catalyzed oxidation of NO to NO2 takes place with ceria oxygen and not with gas-phase O2. However, the oxygen exchange process between gas-phase O2 and ceria oxygen (to yield back O2, but with oxygen atoms coming from ceria) prevailed with regard to the ceria-catalyz...

  6. DFT Study of the Molybdenum-Catalyzed Deoxydehydration of Vicinal Diols

    DEFF Research Database (Denmark)

    Lupp, Daniel; Christensen, Niels Johan; Dethlefsen, Johannes Rytter

    2015-01-01

    The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex......, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum- catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding...... of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations....

  7. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  8. Exploring chain length selectivity in HIC-catalyzed polycondensation reactions.

    Science.gov (United States)

    Feder, David; Gross, Richard A

    2010-03-08

    Polyester synthesis activity of immobilized Humicola insolens (HiC) was systematically studied with three-series of substrates varying in (i) omega-hydroxyalkanoic acid (omegaHA), (ii) alpha,omega-n-alkane diol, and (iii) alpha,omega-n-alkane diacid chain length. Covalent immobilization of HiC on Amberzyme oxirane (AO) resin (i.e., AO-HiC) was prepared. HiC-AO's activity for omegaHA substrates with 6, 10, 12, and 16 carbons was C16 > C12, where C10-omegaHA and C6-omegaHA were not polymerized. In contrast, N435's activity for omegaHA substrates was C16 = C12 > C10, where C6-omegaHA was not polymerized. HiC-AO activity for copolymerization of sebacic acid (C10-diacid) with alpha,omega-n-alkane diols with 3-, 4-, 5-, 6-, and 8-carbon chain lengths was C8 > C6, where C3, C4, and C5 diols were not polymerized. N435's relative activity for diol substrates was C8 = C6 = C5 > C4 > C3. HiC-AO activity for copolymerizations of 1,8-octanediol with alpha,omega-n-alkane diacids with 6-, 8-, 9-, 10-, and 13-carbon chain lengths was C13 = C10, where HiC showed little activity for C6, C8, and C9 diacid copolymerization. N435 displayed similar activity for all these diacid chain lengths. Thus, N435 has a broader substrate promiscuity than HiC-AO. This is most apparent for shorter chain length omegaHA, diol, and diacid monomers. These trends were similarly observed for a series of small molecule esterification reactions. Comparison of HiC-AO- and N435-catalyzed C16-HA homopolymerization at 8 h gave polymers with M(n) 40.4 and 25.5 kg/mol, respectively. Furthermore, HiC-AO- and N435-catalyzed copolymerization of 1,8-octanediol/C13-diacid polymerizations at 8 h gave polymers with M(n) of 11.0 and 9.6 kg/mol, respectively.

  9. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)

    Science.gov (United States)

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.

    2013-01-01

    Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.

  10. Production of hydroxylated polybrominated diphenyl ethers from bromophenols by bromoperoxidase-catalyzed dimerization.

    Science.gov (United States)

    Lin, Kunde; Gan, Jay; Liu, Weiping

    2014-10-21

    Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) are emerging endocrine-disrupting compounds that are widely present in the marine environment. The origin of HO-PBDEs is generally attributed to metabolism of PBDEs and natural production in the environment. However, it is unclear how HO-PBDEs are produced naturally. Here we report the formation of HO-PBDEs from simple bromophenols (BPs) [e.g., 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)] under the catalysis of bromoperoxidase (BPO) isolated from the common marine red alga Corallina officinalis. Experiments at room temperature showed that BPO readily catalyzes the conversion of 2,4-DBP and 2,4,6-TBP to HO-PBDEs in the presence of Br(-) and H2O2. From analysis of the original forms and their corresponding methylated derivatives, the reaction products were tentatively identified as 2'-HO-BDE-121 and 4'-HO-BDE-121. The formation of HO-PBDEs was likely resulted from the coupling of bromophenoxy radicals generated by the oxidation of BPs via BPO-mediated processes. The presence of Br(-) in the reaction favored the conversion. The production of HO-PBDEs was found to be pH-dependent, and a higher yield was obtained at pH 6.5. In view of the abundance of BPs and C. officinalis in the marine environment, bioconversion of BPs mediated by BPO may be a potential route for the natural production of HO-PBDEs.

  11. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  12. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation.

    Directory of Open Access Journals (Sweden)

    Jayme L Dahlin

    Full Text Available The lysine acetyltransferase (KAT Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7% were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could

  13. Depression: The Differing Narratives of Couples in Couple Therapy

    Science.gov (United States)

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  14. Cobalt-Catalyzed Vinylation of Organozinc Reagents with Aldehydes

    Institute of Scientific and Technical Information of China (English)

    WANG; JinXian

    2001-01-01

    Transtion metal catalyzed vinylation of organic halides are known to be a very convenient method for forming carbon-carbon bonds at unsubstituted vinylic position. The versatility of stilbenes is well known because of its various biological active components, the variety of its reactions in organic syntheses, and its ability to function as a bonding partner for metals in complexes.  Many methods have been described for the synthesis of stilbenes. The reduction, dehydrogenation, and elimination reactions leading to stilbenes without formation of new carbon-carbon bonds are known to be a very convenient methods. Synthetically more important are the dimerization reactions: oxidative or eleminative dimerization of a suitable methylarene often constitutes the method of choice for the preparation of a symmetric stilbene. Meerwein arylation and Heck reaction are prominent examples for the synthesis of stilbenes from arenes and styrenes. Moreover, condensation reactions of a nucleophilic with an electrophilic arylmethyl compound include Knoevenagel type reactions and the very general Wittig and Wittig-Horner reactions are also known methods.  ……

  15. Alkylation of Benzene with Propylene Catalyzed by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Sun Xuewen; Zhao Suoqi

    2006-01-01

    The alkylation of benzene with propylene catalyzed by ionic liquids to obtain cumene was investigated. Propylene conversion and cumene selectivity under mild reaction conditions were improved greatly after the ionic liquid was modified with HCl. Under the conditions of 20 oC, 0.1MPa, 5 min of reaction time, and a molar ratio of benzene to propylene of 10:1, propylene conversion increased from 83.6% to 100%, and cumene selectivity increased from 90.86% to 98.47%. In addition, it was found that the reaction could be carried out in two different stages so as to obtain a better result. At the first stage, the key reaction was alkylation and a higher propylene conversion was obtained at a lower temperature;At the second stage, the key reaction was transalkylation and a higher temperature was used to improve cumene selectivity. The reaction temperature, pressure and the amount of catalyst used in this work were lower than those used in traditional alkylation processes.

  16. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained.

  17. Acid-catalyzed production of biodiesel from waste frying oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.; Dube, M.A.; McLean, D.D. [Department of Chemical Engineering, University of Ottawa, Ottawa, ON (Canada); Kates, M. [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2006-03-15

    The reaction kinetics of acid-catalyzed transesterification of waste frying oil in excess methanol to form fatty acid methyl esters (FAME), for possible use as biodiesel, was studied. Rate of mixing, feed composition (molar ratio oil:methanol:acid) and temperature were independent variables. There was no significant difference in the yield of FAME when the rate of mixing was in the turbulent range 100 to 600rpm. The oil:methanol:acid molar ratios and the temperature were the most significant factors affecting the yield of FAME. At 70{sup o}C with oil:methanol:acid molar ratios of 1:245:3.8, and at 80{sup o}C with oil:methanol:acid molar ratios in the range 1:74:1.9-1:245:3.8, the transesterification was essentially a pseudo-first-order reaction as a result of the large excess of methanol which drove the reaction to completion (99+/-1% at 4h). In the presence of the large excess of methanol, free fatty acids present in the waste oil were very rapidly converted to methyl esters in the first few minutes under the above conditions. Little or no monoglycerides were detected during the course of the reaction, and diglycerides present in the initial waste oil were rapidly converted to FAME. (author)

  18. Enzyme-catalyzed Sequential Reduction of Carbon Dioxide to Formaldehyde☆

    Institute of Scientific and Technical Information of China (English)

    Wenfang Liu; Yanhui Hou; Benxiang Hou; Zhiping Zhao

    2014-01-01

    It has been reported that enzymatic-catalyzed reduction of CO2 is feasible. Most of literature focuses on the con-version of CO2 to methanol. Herein we put emphasis on the sequential conversion of CO2 to formaldehyde and its single reactions. It appears that CO2 pressure plays a critical role and higher pressure is greatly helpful to form more HCOOH as well as HCHO. The reverse reaction became severe in the reduction of CO2 to formaldehyde after 10 h, decreasing HCHO production. Increasing the mass ratio of formate dehydrogenase to formaldehyde dehydrogenase could promote the sequential reaction. At concentrations of nicotinamide adenine dinucleotide lower than 100 mmol·L−1, the reduction of CO2 was accelerated by increasing cofactor concentration. The opti-mum pH value and concentration of phosphate buffer were determined as 6.0 and 0.05 mol·L−1, respectively, for the overall reaction. It seems that thermodynamic factor such as pH is restrictive to the sequential reaction due to distinct divergence in appropriate pH range between its single reactions.

  19. On Transition Metal Catalyzed Reduction of N-nitrosodimethlamine

    CERN Document Server

    Zhou, Jun; Tian, Junhua; Zhao, Zhun

    2014-01-01

    This report provides a critical review on "Metal-Catalyzed Reduction of N-Nitrosodimethylamine with Hydrogen in Water", by Davie et al. N-nitrosodimethlamine (NDMA) is a contaminant in drinking and ground water which is difficult to remove by conventional physical methods, such as air stripping. Based on the reported robust capability of metal based powder shaped catalysts in hydrogen reduction, several monometallic and bimetallic catalyst are studied in this paper on the reduction of NDMA with hydrogen. Two kinds of kinetics, metal weight normalized and surface area normalized, are compared between each catalyst in terms of pseudo-first order reaction rate. Palladium, copper enhanced palladium and nickel are found to be very efficient in NDMA reduction, with half-lives on the order of hours per 10 mg/l catalyst metal. Preliminary LC-MS data and carbon balance showed no intermediates. Finally, a simple hydrogen and NMDA surface activated reaction mechanism is proposed by the author for palladium and nickel.

  20. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)

    2007-12-15

    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  1. Production of chemoenzymatic catalyzed monoepoxide biolubricant: optimization and physicochemical characteristics.

    Science.gov (United States)

    Salimon, Jumat; Salih, Nadia; Abdullah, Bashar Mudhaffar

    2012-01-01

    Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL of H(2)O(2), 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of -41(°)C. FP of MEOA increased to 128(°)C comparing with 115(°)C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168(°)C, respectively.

  2. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2012-01-01

    Full Text Available Linoleic acid (LA is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435. This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12-10(13-monoepoxy 12(9-octadecanoic acid (MEOA was optimized using D-optimal design. At optimum conditions, higher yield% (82.14 and medium oxirane oxygen content (OOC (4.91% of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP, flash point (FP, viscosity index (VI, and oxidative stability (OT were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively.

  3. Lipase catalyzed esterification of glycidol in organic solvents.

    Science.gov (United States)

    Martins, J F; Da Ponte, M N; Barreiros, S

    1993-08-05

    We studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiomeric purity (e. p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35 degrees C. The enzyme exhibited maximum activity at a water content of 13 +/- 2% (w/w). The enantiomeric purity obtained was 83 +/- 2% of (S)-glycidyl butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism.

  4. Kinetics of phenolic polymerization catalyzed by peroxidase in organic media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.P.; Huang, G.L; Yu, Y.T. [Nankai Univ., Tianjin (China). Inst. for Molecular Biology

    1995-07-05

    Phenolic polymerization was carried out by enzymatic catalysis in organic media, and its kinetics was studied by using high-pressure liquid chromatography (HPLC). Phenols and aromatic amines with electron-withdrawing groups could hardly be polymerized by HRP catalysis, but phenols and aromatic amines with electron-donating groups could easily by polymerized. The reaction rate of either the para-substituted substrate or meta-substituted substrate was higher than that of ortho-substituted substrate. When ortho-position of hydroxy group of phenols was occupied by an electron-donating group and if another electron-donating group occupied para-position of hydroxy group, the reaction rate increased. Horseradish peroxidase and lactoperoxidase could easily catalyze the polymerization, but chloroperoxidase and laccase failed to yield polymers. Metallic ions such as Mn{sup 2+}, Fe{sup 2+}, or Fe{sup 3+}, and Cu{sup 2+} could poison horseradish peroxidase to various extents, but ions such as Co{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, and K{sup +} were not found to inhibit the reaction.

  5. 1,2,3-Triazole N(2)-coordinated C-O coupling: Access to ortho aryloxyl 1,4-diaryl 1,2,3-triazoles

    Indian Academy of Sciences (India)

    YAOWEN LIU; FEN ZHAO; HAOHUA ZHOU; KAI XIE; YUBO JIANG

    2017-03-01

    CuI-catalyzed selective Ullmann C–O coupling of 1,4-disubstituted 1,2,3-triazole bromides with phenols were achieved through the coordination of N(2) atom. The ortho C–Br bond in N(1) aryl can be selectively coupled with phenols, while other C–Br bonds remain inert, generating ortho aryloxyl 1,4-diaryl1,2,3-triazoles.

  6. Self-catalyzed Effect and Cracking Risk in Mass Concrete Containing Micro-slag

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. Moreover, the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydration can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.

  7. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    Science.gov (United States)

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  8. Regiospecific Addition of Uracil to Acrylates Catalyzed by Alkaline Protease from Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Ying CAI; Jian Yi WU; Na WANG; Xiao Feng SUN; Xian Fu LIN

    2004-01-01

    Michael addition reactions of uracil to acrylates were catalyzed by an alkaline protease from Bacillus subtilis in dimethyl sulfoxide at 55 ℃ for 72 h. The adducts were determined by TLC, IR and 1H NMR.

  9. The applications of Schiff bases in Ti-catalyzed asymmetric alkynylation of aldehydes

    Institute of Scientific and Technical Information of China (English)

    Xian Jia; Lu Yin; Xuan Zhao; Xing Shu Li

    2007-01-01

    Sciff bases 1 and 2, which were derived from chiral aminoalcohols, were used as ligands in Ti-catalyzed asymmetric alkynylation of aldehydes. Good enantioselectivities (up to 88% ee) and high chemical yields (80-90 %) were obtained.

  10. Highly Efficient Synthesis of Bis(indolyl)methanes Catalyzed by Sodium Tetrafluoroborate

    Institute of Scientific and Technical Information of China (English)

    KAMBLE,Vinod Tribhuvannathji; BANDGAR,Babasaheb Pandurang; BAVIKAR,Sudhir Narayanrao

    2007-01-01

    Sodium tetrafluoroborate (NaBF4) was found to catalyze the electrophilic substitution reactions of indoles with aldehydes and ketones under solvent-free conditions to afford the corresponding bis(indolyl)methanes in high yields.

  11. Hydroaminomethylation of 1-Dodecene Catalyzed by Water-soluble Rhodium Complex

    Institute of Scientific and Technical Information of China (English)

    Ying Yong WANG; Mei Ming LUO; Yao Zhong LI; Hua CHEN; Xian Jun LI

    2004-01-01

    The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved under relatively mild conditions.

  12. The mechanism for the rhodium-catalyzed decarbonylation of aldehydes: A combined experimental and theoretical study

    DEFF Research Database (Denmark)

    Fristrup, Peter; Kreis, Michael; Palmelund, Anders;

    2008-01-01

    The mechanism for the rhodium-catalyzed decarbonylation of aldehydes was investigated by experimental techniques (Hammett studies and kinetic isotope effects) and extended by a computational study (DFT calculations). For both benzaldehyde and phenyl acetaldehyde derivatives, linear Hammett plots ...

  13. NOx-Catalyzed Gas-Phase Activation of Methane:the Formation of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Chaoxian Xiao; Zhen Yan; Yuan Kou

    2003-01-01

    NOx-catalyzed oxidation of methane without a solid catalyst was investigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of 34% and a free O2 concentration of 1.7% at 700 ℃.

  14. Iridium-catalyzed annulation of salicylimines with 1,3-dienes.

    Science.gov (United States)

    Ebe, Yusuke; Nishimura, Takahiro

    2014-07-01

    Iridium-catalyzed annulation of salicylimines with 1,3-dienes gave high yields of the corresponding 4-aminochromanes with high stereoselectivity. The use of a chiral diene ligand enabled the asymmetric reaction to give 4-aminochromanes with high enantioselectivity.

  15. Three-component synthesis of amidoalkyl naphthols catalyzed by bismuth(Ⅲ) nitrate pentahydrate

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Yan Liang; Ting Ting Zhang; Jing Jing Gao

    2012-01-01

    Bismuth(Ⅲ) nitrate pentahydrate catalyzed the three-component condensation of β-naphthol,aldehydes and amines/urea under solvent-free conditions to afford the corresponding amidoalkyl naphthols in excellent yields.

  16. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    Science.gov (United States)

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS IIMichael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  17. Highly enantioselective [4 + 2] cyclization of chloroaldehydes and 1-azadienes catalyzed by N-heterocyclic carbenes.

    Science.gov (United States)

    Jian, Teng-Yue; Sun, Li-Hui; Ye, Song

    2012-11-14

    Highly functionalized dihydropyridinones were synthesized via the N-heterocyclic carbene-catalyzed enantioselective [4 + 2] annulation of α-chloroaldehydes and azadienes. Hydrogenation of the resulted dihydropyridinones afforded the corresponding piperidinones with high enantiopurity.

  18. Horseradish peroxidase catalyzed free radical cannot free move in reaction solution

    OpenAIRE

    2009-01-01

    Mechanism of Horseradish Peroxidase -catalyzed phenol compound oxidizing reaction is a radical polymerization. Many polymer preparation are also carry on through the radical polymerization mechanism We deduce if free radical produced by peroxidasecatalyzed phenol polymerization could apply on polymer preparation? Could the phenol–oxygen free radical leave off the peroxidase and catalyze other compounds polymerization? The free radical in phenol oxidation process was investigated in homo...

  19. Ready Access to the Echinopines Skeleton via Gold(I)-Catalyzed Alkoxycyclizations of Enynes.

    Science.gov (United States)

    Dorel, Ruth; Echavarren, Antonio M

    2016-09-16

    The [3,5,5,7] tetracyclic skeleton of echinopines has been stereoselectively accessed through a gold(I)-catalyzed alkoxycyclization of cyclopropyl-tethered 1,6-enynes. The key bicyclo[4.2.1]nonane core of the enyne precursors was readily assembled by means of a Co-catalyzed [6 + 2] cycloaddition. Furthermore, the attempted alkoxycyclization of 1,5-enyne substrates revealed an uncovered cyclopropyl rearrangement that gives rise to [3,6,5,7] tetracyclic structures.

  20. Modeling Lipase-Catalyzed Biodiesel Production in [BMIM][PF6

    OpenAIRE

    JianJun Yang; MingYan Yang

    2016-01-01

    Lipase-catalyzed biodiesel production models in room temperature ionic liquids (RTILs) reaction medium available in the literature are valid especially for mixing intensity. In this paper, a preliminary model is established in order to try to describe the lipase-catalyzed biodiesel production process in RTILs in a stirring type bioreactor. Mixing intensity and time delay were inspected for the reaction model in [BMIM][PF6] medium. As a result, this model is a good explanation for these actual...

  1. NMR spectroscopic investigations on copper-catalyzed reactions and zintl anions

    OpenAIRE

    Koch, Carina

    2016-01-01

    The copper-catalyzed asymmetric conjugated 1,4-addition reaction of organozinc reagents to a,b-unsaturated compounds is a very effective and widely used method for the enantioselective carbon-carbon bond formation. By the use of phosphoramidite ligands it is possible to reach ee-values and conversion up to > 99 %. Furthermore, this outstanding reaction provides lower costs in comparison to other transition-metal catalyzed reactions and compatibility to many functional groups. Despite the grea...

  2. Biodiesel Production from Spent Fish Frying Oil Through Acid-Base Catalyzed Transesterification

    OpenAIRE

    Abdalrahman B. Fadhil; Mohammed M. Dheyab; Kareem M. Ahmed; Marwa H. Yahya

    2012-01-01

    Biodiesel fuels were prepared from a special type of frying oil namely spent fish frying oil through two step transesterification viz. acid-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The oil was pre-treated with (1.0 wt% HCl) and methanol to reduce free fatty acids content of the oil. Then, conditions of the base catalyzed step such as base concentration, reaction temperature, methanol to oil molar ratio and reaction...

  3. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  4. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide–Alkyne Cycloadditions

    OpenAIRE

    Worrell, B. T.; Malik, J.A.; FOKIN, V.V.

    2013-01-01

    The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) has become a commonly employed method for the synthesis of complex molecular architectures under challenging conditions. Despite the widespread use of copper-catalyzed cycloaddition reactions, the mechanism of these processes has remained difficult to establish due to the involvement of multiple equilibria between several reactive intermediates. Real-time monitoring of a representative cycloaddition process via heat flow reaction calo...

  5. Palladium-Catalyzed Nucleophilic Substitution of Alcohols : Mechanistic Studies and Synthetic Applications

    OpenAIRE

    Sawadjoon, Supaporn

    2013-01-01

    This thesis deals with the palladium-catalyzed nucleophilic substitution of π-activated alcohols in which the C–O bond of a non-manipulated hydroxyl group is cleaved. The thesis is divided in two chapters describing two different catalytic systems. Chapter 2 describes a heterogeneous palladium-catalyzed transfer hydrogenolysis of primary, secondary, and tertiary benzylic alcohols to generate the corresponding aromatic hydrocarbons using formic acid as the hydrogen donor. A detailed mechanisti...

  6. Silver-Catalyzed Decarboxylative Addition/Cyclization of Activated Alkenes with Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Xia, Xiao-Feng; Zhu, Su-Li; Chen, Chao; Wang, Haijun; Liang, Yong-Min

    2016-02-05

    A silver-catalyzed decarboxylative addition/aryl migration/desulfonylation of N-phenyl-N-(phenylsulfonyl)methacrylamide with primary, secondary, and tertiary carboxylic acids was described. The protocol provides an efficient approach for the synthesis of α-all-carbon quaternary stereocenters amides and isoquinolinediones. It was proposed that the radical generated from the silver-catalyzed decarboxylation was involved in the sequence reaction.

  7. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    Science.gov (United States)

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings.

  8. Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C-H Borylation.

    Science.gov (United States)

    Sadler, Scott A; Hones, Andrew C; Roberts, Bryan; Blakemore, David; Marder, Todd B; Steel, Patrick G

    2015-05-15

    In the absence of a steric directing group, iridium-catalyzed C-H borylation of N-protected indazoles occurs rapidly and selectively at C-3 and the resulting boronate esters can be utilized in a range of downstream conversions. The functional group tolerance of the iridium-catalyzed C-H borylation reaction enables simple and efficient multidirectional syntheses of substituted indazoles to be realized.

  9. Ready Access to the Echinopines Skeleton via Gold(I)-Catalyzed Alkoxycyclizations of Enynes

    Science.gov (United States)

    2016-01-01

    The [3,5,5,7] tetracyclic skeleton of echinopines has been stereoselectively accessed through a gold(I)-catalyzed alkoxycyclization of cyclopropyl-tethered 1,6-enynes. The key bicyclo[4.2.1]nonane core of the enyne precursors was readily assembled by means of a Co-catalyzed [6 + 2] cycloaddition. Furthermore, the attempted alkoxycyclization of 1,5-enyne substrates revealed an uncovered cyclopropyl rearrangement that gives rise to [3,6,5,7] tetracyclic structures. PMID:27529429

  10. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  11. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi

    2008-01-01

    The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph...

  12. The subfertile couple.

    Science.gov (United States)

    McCusker, M P

    1982-01-01

    When pregnancy is achieved through fertility awareness, there are further long-range benefits to the couple: information which will permit them the choice to avoid, delay or achieve subsequent pregnancies. Thus, the opportunity for responsible parenthood continues. The goal of nursing in subfertility care is to identify factors which may contribute to lowered fertility, and to teach and/or refer appropriately. The most comprehensive single intervention may be to teach the couple awareness of their own fertility through the Billings Method of natural family planning. If conception does not occur, the couple may progress to infertility investigation, knowing that the expense, inconvenience, and possible trauma are justified. Whether pregnancy occurs or not, it is likely that the couple will have had the benefit of clarifying their relationship, further understanding their bodies, and generally growing toward fuller personhood.

  13. Disformally coupled inflation

    CERN Document Server

    van de Bruck, Carsten; Longden, Chris

    2015-01-01

    A disformal coupling between two scalar fields is considered in the context of cosmological inflation. The coupling introduces novel derivative interactions mixing the kinetic terms of the fields but without introducing superluminal or unstable propagation of the two scalar fluctuation modes. Though the typical effect of the disformal coupling is to inhibit one of the fields from inflating the universe, the energy density of the other field can drive viable near Sitter -inflation in the presence of nontrivial disformal dynamics, in particular when one assumes exponential instead of power-law form for the couplings. The linear perturbation equations are written for the two-field system, its canonical degrees of freedom are quantised, their spectra are derived and the inflationary predictions are reported for numerically solved exponential models. A generic prediction is low tensor-to-scalar ratio.

  14. Pneumatic flexible shaft couplings

    Directory of Open Access Journals (Sweden)

    Jaroslav HOMIŠIN

    2007-01-01

    Full Text Available Main effort of every design engineer is reduction of torsional oscillation in any mechanical system. At present this problem can be solved by means of a suitable modification of dynamic properties of flexible shaft couplings according to dynamics in the given systems. But the dynamic properties of nowadays-applied flexible couplings arenot unchangeable because of aging and fatigue processes occurring in flexible coupling elements. Result of this fact causes detuning of mechanical system. Taking into consideration the above-mentioned situation, we suggest for mechanical systems application of a newly developed pneumatic couplings that have constant characteristicfeatures during the whole current operation and thus they have a positive influence on the system running.

  15. Coupled transverse motion

    Energy Technology Data Exchange (ETDEWEB)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs.

  16. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes.

    Science.gov (United States)

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong

    2016-06-01

    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle.

  17. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    Science.gov (United States)

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes.

  18. A review on biodiesel production using catalyzed transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Dennis Y.C.; Wu, Xuan; Leung, M.K.H. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2010-04-15

    Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats. (author)

  19. The mechanism for iron-catalyzed alkene isomerization in solution

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  20. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Hong, Vu; Udit, Andrew K; Evans, Richard A; Finn, M G

    2008-06-16

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications that require high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. This simple procedure efficiently achieves excellent yields of CuAAC products from both small-molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is also described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E(1/2)=60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E(1/2)=-60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E(1/2) approximately -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential that was established by using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically protected bioconjugations in air were performed by using bacteriophage Qbeta that was derivatized with azide moieties at surface lysine residues. Complete derivatization of more than 600 reactive sites per particle was demonstrated within 12 h of electrolysis with substoichiometric quantities of Cu3.