WorldWideScience

Sample records for catalyzed alkene-alkyne coupling

  1. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Science.gov (United States)

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Photocatalytic Arylation of Alkenes, Alkynes and Enones with Diazonium Salts

    OpenAIRE

    Schroll, Peter; Hari, Durga Prasad; König, Burkhard

    2012-01-01

    Teaching old dogs new tricks: Visible light photoredox catalysis improves the classic Meerwein arylation protocol significantly and allows the light-controlled arylation of alkenes, alkynes and enones by diazonium salts.

  3. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings

    Science.gov (United States)

    Jackson, Evan P.; Malik, Hasnain A.; Sormunen, Grant J.; Baxter, Ryan D.; Liu, Peng; Wang, Hengbin; Shareef, Abdur-Rafay; Montgomery, John

    2015-01-01

    CONSPECTUS The control of regiochemistry is a considerable challenge in the development of a wide array of catalytic processes. Simple π-components such as alkenes, alkynes, 1,3-dienes, and allenes are among the many classes of substrates that present complexities in regioselective catalysis. Considering an internal alkyne as a representative example, when steric and electronic differences between the two substituents are minimal, differentiating among the two termini of the alkyne presents a great challenge. In cases where the differences between the alkyne substituents are substantial, overcoming those biases to access the regioisomer opposite that favored by substrate biases often presents an even greater challenge. Nickel-catalyzed reductive couplings of unsymmetrical π-components make up a group of reactions where control of regiochemistry presents a challenging but important objective. In the course of our studies of aldehyde-alkyne reductive couplings, complementary solutions to challenges in regiocontrol have been developed. Through careful selection of the ligand and reductant, as well as the more subtle reaction variables such as temperature and concentration, effective protocols have been established that allow highly selective access to either regiosiomer of the the allylic alcohol products using a wide range of unsymmetrical alkynes. Computational studies and an evaluation of reaction kinetics have provided an understanding of the origin of the regioselectivity control. Throughout the various procedures described, the development of ligand-substrate interactions play a key role, and the overall kinetic descriptions were found to differ between protocols. Rational alteration of the rate-determining step plays a key role in the regiochemistry reversal strategy, and in one instance, the two possible regioisomeric outcomes in a single reaction were found to operate by different kinetic descriptions. With this mechanistic information in hand, the

  4. Gold Redox Catalysis through Base-Initiated Diazonium Decomposition toward Alkene, Alkyne, and Allene Activation.

    Science.gov (United States)

    Dong, Boliang; Peng, Haihui; Motika, Stephen E; Shi, Xiaodong

    2017-08-16

    The discovery of photoassisted diazonium activation toward gold(I) oxidation greatly extended the scope of gold redox catalysis by avoiding the use of a strong oxidant. Some practical issues that limit the application of this new type of chemistry are the relative low efficiency (long reaction time and low conversion) and the strict reaction condition control that is necessary (degassing and inert reaction environment). Herein, an alternative photofree condition has been developed through Lewis base induced diazonium activation. With this method, an unreactive Au I catalyst was used in combination with Na 2 CO 3 and diazonium salts to produce a Au III intermediate. The efficient activation of various substrates, including alkyne, alkene and allene was achieved, followed by rapid Au III reductive elimination, which yielded the C-C coupling products with good to excellent yields. Relative to the previously reported photoactivation method, our approach offered greater efficiency and versatility through faster reaction rates and broader reaction scope. Challenging substrates such as electron rich/neutral allenes, which could not be activated under the photoinitiation conditions (<5 % yield), could be activated to subsequently yield the desired coupling products in good to excellent yield. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Palladium-catalyzed coupling reactions

    CERN Document Server

    Molnár, Árpád

    2013-01-01

    This handbook and ready reference brings together all significant issues of practical importance for interested readers in one single volume. While covering homogeneous and heterogeneous catalysis, the text is unique in focusing on such important aspects as using different reaction media, microwave techniques or catalyst recycling. It also provides a comprehensive treatment of modern-day coupling reactions and emphasizes those topics that show potential for future development, such as continuous flow systems, water as a reaction medium, and catalyst immobilization, among others. With i

  6. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    Science.gov (United States)

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  7. SOCl2 CATALYZED CYCLIZATION OF CHALCONES: SYNTHESIS ...

    African Journals Online (AJOL)

    Preferred Customer

    synthesised pyrazolines have been studied using Bauer-Kirby method. .... was separated with dichloromethane and the solid product was obtained on evaporation. ...... Hammett σ constants in alkenes, alkynes, acid chlorides and styrenes.

  8. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates

    KAUST Repository

    Fang, Xin; Huang, Yuanyuan; Chen, Xiaoqing; Lin, Xiaoxi; Bai, Zhengshuai; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2013-01-01

    The direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates gave the desired products of fluorinated biaryls in good to excellent yields. A diverse set of important functional groups including methoxy, aldehyde, ester

  9. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    Transition metal‐catalyzed decarbonylative coupling reactions have emerged as a powerful alternative to conventional cross‐coupling protocols due to the advantages associated with the use of carbonyl‐containing functionalities as coupling electrophiles instead of commonly used organohalides or sulfates. A wide variety of novel transformations based on this concept have been successfully achieved, including decarbonylative carbon–carbon and carbon–heteroatom bond forming reactions. In this Review, we summarize the recent progress in this field and present a comprehensive overview of metal‐catalyzed decarbonylative coupling reactions with carbonyl derivatives.

  10. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications

    KAUST Repository

    Guo, Lin

    2018-05-14

    Transition metal‐catalyzed decarbonylative coupling reactions have emerged as a powerful alternative to conventional cross‐coupling protocols due to the advantages associated with the use of carbonyl‐containing functionalities as coupling electrophiles instead of commonly used organohalides or sulfates. A wide variety of novel transformations based on this concept have been successfully achieved, including decarbonylative carbon–carbon and carbon–heteroatom bond forming reactions. In this Review, we summarize the recent progress in this field and present a comprehensive overview of metal‐catalyzed decarbonylative coupling reactions with carbonyl derivatives.

  11. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    Science.gov (United States)

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  12. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  13. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  14. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

    Science.gov (United States)

    2011-01-01

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952

  15. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Guo, Lin; Rueping, Magnus

    2018-01-01

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  16. The Manganese-Catalyzed Cross-Coupling Reaction and the Influence of Trace Metals

    DEFF Research Database (Denmark)

    Santilli, Carola; Beigbaghlou, Somayyeh Sarvi; Ahlburg, Andreas

    2017-01-01

    The substrate scope of the MnCl2-catalyzed cross-coupling between aryl halides and Grignard reagents has been extended to several methyl-substituted aryl iodides by performing the reaction at elevated temperature in a microwave oven. A radical clock experiment revealed the presence of an aryl...

  17. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian

    2018-05-09

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  18. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  19. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates

    KAUST Repository

    Fang, Xin

    2013-07-01

    The direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates gave the desired products of fluorinated biaryls in good to excellent yields. A diverse set of important functional groups including methoxy, aldehyde, ester, nitro and halide can be well tolerated in the protocol. © 2013 Elsevier B.V. All rights reserved.

  20. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    Science.gov (United States)

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  1. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    Science.gov (United States)

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  2. Cu(I)/Diamine-catalyzed Aryl-alkyne Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, the new procedure is free of palladium and phosphines.

  3. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    Science.gov (United States)

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  4. Synthesis of Arylthiopyrimidines by Copper-catalyzed Aerobic Oxidative C-S Cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Suk; Kim, Hyeji; Sohn, Jeong-Hun [Chungnam National University, Daejeon (Korea, Republic of); Lee, Hee-Seung [KAIST, Daejeon (Korea, Republic of); Shin, Hyunik [Yonsung Fine Chemicals R and D Center, Suwon (Korea, Republic of)

    2016-02-15

    Copper-catalyzed C–S cross-coupling reactions have been considered as powerful tools in synthetic chemistry and utilized for diverse heterocycle syntheses. In the reactions, the aspects of no need of ligands has been particular advantage over other metal catalysis. We have developed a Cu-catalyzed cascade reaction for the synthesis of fully substituted 2-arylthiopyrimidines from 3,4-dihydropyrimidine-2(1H)-thiones (DHPMs) under aerobic conditions. This cascade reaction of DHPM with aryl iodide proceeds presumably via sequential tautomerization, C–S cross-coupling, and oxidative dehydrogenation (oxidation followed by elimination). Considering that DHPM substrates were easily synthesized by Biginelli three component coupling reaction of aryl aldehyde, β-ketoester, and thiourea, the present method provides a direct access toward diverse 2-arylthiopyrimidines which have been used as a prominent substructure of drug molecules.

  5. Palladium-Catalyzed Carbenylative Cross-Coupling and Carbenylative Amination Utilizing Vinylcarbenes

    OpenAIRE

    Agee, Christopher

    2017-01-01

    This work focuses on the use of N-tosylhydrazones derived from α,β-unsaturated aldehydes – precursors to vinylcarbene ligands – in palladium-catalyzed carbenylative cross-coupling and carbenylative amination reactions. These carbenylative reactions were used to form η3-allylpalladium intermediates that generate stereogenic centers at the carbene center. An initial acyclic model system was used to intercept a well-known prochiral 1,3-diphenylallyl intermediate to probe the feasibility of enant...

  6. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora

    2016-07-21

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  7. Rhodium-catalyzed triarylphosphine synthesis via cross-coupling of aryl iodides and acylphosphines

    Directory of Open Access Journals (Sweden)

    Jiefang Yang

    2018-01-01

    Full Text Available Rhodium(I-catalyzed C–P cross-coupling reaction with aryl iodides and acylphosphines was disclosed for a straight forward synthesis of triarylphosphines. The acylphosphines were successfully employed as both the phosphorus source and the ligand to the Rh(I catalyst. The triarylphosphines could be afforded in a yield up to 98% with good toleration of wide functional groups.

  8. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora; Nakajima, Masaki; Nguyen, Anh L. P.; Rueping, Magnus

    2016-01-01

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  9. Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.

    Science.gov (United States)

    Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao

    2014-10-06

    A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  11. Mechanistic Implications for the Ni(I-Catalyzed Kumada Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Linda Iffland

    2017-11-01

    Full Text Available Herein we report on the cross-coupling reaction of phenylmagnesium bromide with aryl halides using the well-defined tetrahedral Ni(I complex, [(TriphosNiICl] (Triphos = 1,1,1-tris(diphenylphosphinomethylethane. In the presence of 0.5 mol % [(TriphosNiICl], good to excellent yields (75–97% of the respective coupling products within a reaction time of only 2.5 h at room temperature were achieved. Likewise, the tripodal Ni(IIcomplexes [(κ2-TriphosNiIICl2] and [(κ3-TriphosNiIICl](X (X = ClO4, BF4 were tested as potential pre-catalysts for the Kumada cross-coupling reaction. While the Ni(II complexes also afford the coupling products in comparable yields, mechanistic investigations by UV/Vis and electron paramagnetic resonance (EPR spectroscopy indicate a Ni(I intermediate as the catalytically active species in the Kumada cross-coupling reaction. Based on experimental findings and density functional theory (DFT calculations, a plausible Ni(I-catalyzed reaction mechanism for the Kumada cross-coupling reaction is presented.

  12. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    International Nuclear Information System (INIS)

    Nemeti, Balazs; Gregus, Zoltan

    2009-01-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished by ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.

  13. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara

    2017-06-05

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  14. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    Science.gov (United States)

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  15. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  16. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  17. Zinc-Catalyzed Synthesis of Conjugated Dienoates through Unusual Cross-Couplings of Zinc Carbenes with Diazo Compounds.

    Science.gov (United States)

    Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén

    2017-01-23

    Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    DEFF Research Database (Denmark)

    Munk, Line; Punt, A. M.; Kabel, M. A.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators...... better than HBT (1-hydroxybenzotriazole). Three different mechanisms are suggested to explain the grafting of HPI and HBT, all involving radical-radical coupling to produce covalent bonding to lignin. Lignin from exhaustive cellulase treatment of wheat straw was more susceptible to grafting than beech...... organosolv lignin with the relative abundance of grafting being 35% vs. 11% for HPI and 5% vs. 1% for HBT on these lignin substrates. The data imply that lignin can be functionalized via laccase catalysis with-N-OH type mediators....

  20. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  1. Stereoselective Synthesis of Tetrasubstituted Furylalkenes via Gold-Catalyzed Cross-Coupling of Enynones with Diazo Compounds.

    Science.gov (United States)

    Liu, Pei; Sun, Jiangtao

    2017-07-07

    A stereoselective, gold-catalyzed, cross-coupling reaction of enynones with diazo compounds has been developed, affording 2-alkenylfurans in moderate to good yields with excellent E-stereoselectivity. Upon using diazo compounds as nucleophiles to trap the in situ formed gold furyl carbene, this protocol provides a novel path toward the formation of unsymmetrical tetrasubstituted alkenes.

  2. Anti-1,2-Diols via Ni-Catalyzed Reductive Coupling of Alkynes and α-Oxyaldehydes

    Science.gov (United States)

    Luanphaisarnnont, Torsak; Ndubaku, Chudi O.; Jamison, Timothy F.

    2008-01-01

    Ni-catalyzed reductive coupling of aryl alkynes (1) and enantiomerically enriched α-oxyaldehydes (2) afford differentiated anti-1,2-diols (3) with high diastereoselectivity and regioselectivity, despite the fact that the methoxymethyl (MOM) and para-methoxybenzyl (PMB) protective groups typically favor syn-1,2-diol formation in carbonyl addition reactions of this family of aldehydes. PMID:15987174

  3. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  4. Synthesis of Novel Aliphatic N-sulfonylamidino Thymine Derivatives by Cu(I)-catalyzed Three-component Coupling Reaction

    OpenAIRE

    Krstulović, Luka; Ismaili, Hamit; Višnjevac, Aleksandar; Glavaš-Obrovac, Ljubica; Žinić, Biserka

    2012-01-01

    A series of new aliphatic N-sulfonylamidino thymine derivatives containing nucleobase, N-sulfonyl and amidine pharmacophores in the structure were synthesized by Cu(I)-catalyzed threecomponent coupling of 1-propargyl thymine, benzenesulfonyl azides and amines or ammonium salts. Preliminary in vitro antitumor screening (human cervix adenocarcinoma -HeLa and leukemia cells - Jurkat) revealed promising activities of N,N-diethyl- (2) and N-4-cyanobenzyl- (6) derivatives of 4-acetamido...

  5. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  6. Transition metal-catalyzed couplings of alkynes to 1,3-enynes: modern methods and synthetic applications.

    Science.gov (United States)

    Trost, Barry M; Masters, James T

    2016-04-21

    The metal-catalyzed coupling of alkynes is a powerful method for the preparation of 1,3-enynes, compounds that are of broad interest in organic synthesis. Numerous strategies have been developed for the homo- and cross coupling of alkynes to enynes via transition metal catalysis. In such reactions, a major issue is the control of regio-, stereo-, and, where applicable, chemoselectivity. Herein, we highlight prominent methods for the selective synthesis of these valuable compounds. Further, we illustrate the utility of these processes through specific examples of their application in carbocycle, heterocycle, and natural product syntheses.

  7. Synthesis of trans-disubstituted alkenes by cobalt-catalyzed reductive coupling of terminal alkynes with activated alkenes.

    Science.gov (United States)

    Mannathan, Subramaniyan; Cheng, Chien-Hong

    2012-09-10

    A cobalt-catalyzed reductive coupling of terminal alkynes, RC≡CH, with activated alkenes, R'CH=CH(2), in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH=CHCH(2)CH(2)R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2)/P(OMe)(3)/Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2)/P(OPh)(3)/Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    Directory of Open Access Journals (Sweden)

    Ioannis Metaxas

    2017-12-01

    Full Text Available A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12% from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

  9. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin

    2018-04-13

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  10. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    Science.gov (United States)

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  11. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  12. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.

    Science.gov (United States)

    Abdiaj, Irini; Fontana, Alberto; Gomez, M Victoria; de la Hoz, Antonio; Alcázar, Jesús

    2018-03-22

    The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    NARCIS (Netherlands)

    Munk, L.; Punt, A.M.; Kabel, M.A.; Meyer, A.S.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators by

  14. Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction.

    Science.gov (United States)

    Fayol, Aude; Fang, Yuan-Qing; Lautens, Mark

    2006-09-14

    A novel one-step synthesis of valuable 2-vinylic indoles and their tricycle derivatives is described. This reaction, which utilizes a gem-dibromovinyl unit as a readily available starting material, occurs via an efficient Pd-catalyzed tandem Buchwald-Hartwig/Heck reaction.

  15. Gold(I)-catalyzed diazo cross-coupling: a selective and ligand-controlled denitrogenation/cyclization cascade.

    Science.gov (United States)

    Xu, Guangyang; Zhu, Chenghao; Gu, Weijin; Li, Jian; Sun, Jiangtao

    2015-01-12

    An unprecedented gold-catalyzed ligand-controlled cross-coupling of diazo compounds by sequential selective denitrogenation and cyclization affords N-substituted pyrazoles in a position-switchable mode. This novel transformation features selective decomposition of one diazo moiety and simultaneous preservation of the other one from two substrates. Notably, the choice of the ancillary ligand to the gold complex plays a pivotal role on the chemo- and regioselectivity of the reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of 5-acyl- and 5-aryl-substituted 1-(benzyloxy)pyrazoles via directed ortho-lithiation/transmetalation and palladium catalyzed cross- coupling

    DEFF Research Database (Denmark)

    Kristensen, Jesper Langgaard; Begtrup, M.; Vedsø, P.

    1998-01-01

    Palladium(0) catalyzed cross-coupling of 1-(benzyloxy)pyrazol-5-ylzinc halides 3a,b, prepared by transmetalation of 1-(benzyloxy)-5-lithiopyrazole (2), with acyl chlorides produced 5 acyl-1-(benzyloxy)pyrazoles 4a-d in high yields. Similar coupling of the pyrazol-5-ylzinc halide with amino-, hydr...

  17. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling

    Science.gov (United States)

    Wang, Guangwei; Mohan, Swathi; Negishi, Ei-ichi

    2011-01-01

    All four stereoisomers (7–10) of ethyl undeca-2,4-dienoate were prepared in ≥98% isomeric purity by Pd-catalyzed alkenylation (Negishi coupling) using ethyl (E)- and (Z)-β-bromoacrylates. Although the stereoisomeric purity of the 2Z,4E-isomer (8) prepared by Suzuki coupling using conventional alkoxide and carbonate bases was ≤ 95%, as reported earlier, the use of CsF or nBu4NF as a promoter base has now been found to give all of 7–10 in ≥98% selectivity. Other widely known methods reveal considerable limitations. Heck alkenylation was satisfactory for the syntheses of the 2E,4E and 2E,4Z isomers of ≥98% purity, but the purity of the 2Z,4E isomer was ≤ 95%. Mutually complementary Horner–Wadsworth–Emmons and Still–Gennari (SG) olefinations are also of considerably limited scopes. Neither 2E,4Z nor 2Z,4Z isomer is readily prepared in ≥90% selectivity. In addition to (2Z,4E)-dienoic esters, some (2Z,4E,6E)- and (2Z,4E,6Z)-trienoic esters have been prepared in ≥98% selectivity by a newly devised Pd-catalyzed alkenylation–SG olefination tandem process. As models for conjugated higher oligoenoic esters, all eight stereoisomers for ethyl trideca-2,4,6-trienoate (23–30) have been prepared in ≥98% overall selectivity. PMID:21709262

  18. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    Science.gov (United States)

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  19. Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes.

    Science.gov (United States)

    Fan, Zhoulong; Lu, Heng; Li, Wei; Geng, Kaijun; Zhang, Ao

    2017-07-21

    A switchable synthesis of N-substituted indole derivatives from phenidones via rhodium-catalyzed redox-neutral C-H activation has been achieved. In this protocol, we firstly disclosed that the reactivity of Rh(iii) catalysis could be enhanced through employing palladium acetate as an additive. Some representative features include external oxidant-free, applicable to terminal alkynes, short reaction time and operational simplicity. The utility of this method is further showcased by the economical synthesis of potent anticancer PARP-1 inhibitors.

  20. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  1. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  2. Selective coupling reaction between 2,6-diiodoanisoles and terminal alkynes catalyzed by Pd(PPh32Cl2 and CuI

    Directory of Open Access Journals (Sweden)

    Allan F. C. Rossini

    2012-06-01

    Full Text Available The cross-coupling reaction between aryl halides and terminal alkynes, catalyzed by palladium complexes and copper (I salts, consists in an efficient synthetic tool for the formation of C-C bonds, resulting in disubstituted acetylenic compounds. Accordingly, in this work we present our preliminary results involving the selective cross-coupling reaction between 2,6-diiodoanisoles and terminal alkynes, catalyzed by Pd(PPh32Cl2 and CuI, in the formation of 2-iodo-alkynylanisoles (scheme 1.

  3. Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents

    NARCIS (Netherlands)

    Heijnen, Dorus; Tosi, Filippo; Vila, Carlos; Stuart, Marc C. A.; Elsinga, Philip H.; Szymanski, Wiktor; Feringa, Ben L.

    2017-01-01

    The discovery of an ultrafast cross-coupling of alkyland aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with

  4. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling.

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo; Li, Chao-Jun

    2017-12-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KO t Bu and bidentate phosphine dmpe is vital to this transformation.

  5. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  6. Rh-Catalyzed decarbonylative coupling with alkynes via C-C activation of isatins.

    Science.gov (United States)

    Zeng, Rong; Dong, Guangbin

    2015-02-04

    Herein we report a [5 + 2 - 1] transformation though catalytic decarbonylative coupling between isatins and alkynes, which provides a unique way to synthesize 2-quinolinone derivatives. A broad range of alkynes can be coupled efficiently with high regioselectivity. This reaction is proposed to go through C-C activation of isatins, followed by decarbonylation and alkyne insertion. Directing group (DG) plays a critical role in this transformation. Assisted by the DG, the C-C cleavage of isatins occurs at room temperature.

  7. Pyrazine-functionalized calix[4]arenes: synthesis by palladium-catalyzed cross-coupling with phosphorus pronucleophiles and metal ion extraction properties

    NARCIS (Netherlands)

    Nikishkin, N.; Huskens, Jurriaan; Ansari, S.A.; Mohapatra, P.K.; Verboom, Willem

    2013-01-01

    A series of pyrazine-based calix[4]arene extractants was prepared by a stepwise functionalization, comprising palladium-catalyzed exhaustive cross-coupling of di- and tetrasubstituted calix[4]arenes bearing chloropyrazine moieties. The extraction behavior of the synthesized ligands was studied on

  8. Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a Pictet–Spengler cyclization/metal-catalyzed cross coupling/amidation sequence

    DEFF Research Database (Denmark)

    Petersen, Rico; Cohrt, A. Emil; Petersen, Michael Åxman

    2015-01-01

    incorporating two handles for diversification, were synthesized through an oxidative cleavage/Pictet–Spengler reaction sequence in high overall yields. A subsequent metal-catalyzed cross coupling/amidation protocol was developed and its utility in library synthesis was validated by construction of a 20-membered...

  9. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow

    Directory of Open Access Journals (Sweden)

    Christophe Len

    2017-05-01

    Full Text Available Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts.

  10. Facile palladium catalyzed Suzuki-Miyaura coupling in air and water at ambient temperature

    KAUST Repository

    Marziale, Alexander N.; Faul, Stefan Holger; Reiner, Thomas; Schneider, Sven; Eppinger, Jö rg

    2010-01-01

    A new palladacyclic catalyst yields high activities in aqueous Suzuki-Miyaura coupling at room temperature. Using an optimized protocol, a broad range of products can be isolated in good to excellent yields and high purity by simple filtration. © 2010 The Royal Society of Chemistry.

  11. DFT Investigation of the Palladium-Catalyzed Ene-Yne Coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Tanner, David Ackland; Skrydstrup, T.

    2010-01-01

    ). Concerning chemoselectivity, the calculations also clarify why the ene-yne coupling is able to dominate over plausible alternative reaction pathways such as alkene homocoupiing and alkyne polymerization. The role of the phosphine ligand at various stages of the catalytic cycle has also been delineated....

  12. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  13. Pd2+ and Cu2+ catalyzed oxidative cross-coupling of mercaptoacetylenes and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Henke, Adam; Šrogl, Jiří

    2011-01-01

    Roč. 47, č. 14 (2011), s. 4282-4284 ISSN 1359-7345 R&D Projects: GA ČR GA203/08/1318 Grant - others:AV ČR(CZ) M200550908 Institutional research plan: CEZ:AV0Z40550506 Keywords : mercaptoacetylenes * oxidative cross - coupling * Cu/Pd catalysis Subject RIV: CC - Organic Chemistry Impact factor: 6.169, year: 2011

  14. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří

    2014-01-01

    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  15. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  16. Silylative Pinacol Coupling Catalyzed by Nitrogen-Doped Carbon-Encapsulated Nickel/Cobalt Nanoparticles: Evidence for a Silyl Radical Pathway

    DEFF Research Database (Denmark)

    Kramer, Søren; Hejjo, Fatima; Rasmussen, Kristoffer Hauberg

    2018-01-01

    The silylative pinacol coupling of arylaldehydes catalyzed by aneasily accessible, heterogeneous base-metal catalyst is demonstrated. Instead of using the classical combination of catalyst, stoichiometric metal reductants, and chlorosilanes, the developed reaction only requires the use of a catal......The silylative pinacol coupling of arylaldehydes catalyzed by aneasily accessible, heterogeneous base-metal catalyst is demonstrated. Instead of using the classical combination of catalyst, stoichiometric metal reductants, and chlorosilanes, the developed reaction only requires the use....... The obtained results provided evidence for a reaction mechanism which is different from the classical pinacol coupling pathway. We propose that the heterogeneous catalyst facilitates easy access to silyl radicals, thereby circumventing the usual need for explosive initiators to access these species....... In addition, leaching tests and recycling of the catalyst were performed, clearly supporting the heterogeneous nature of the catalyst....

  17. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    Science.gov (United States)

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi

    2018-01-15

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  19. Rh(I) -Catalyzed Intramolecular Carbonylative C-H/C-I Coupling of 2-Iodobiphenyls Using Furfural as a Carbonyl Source.

    Science.gov (United States)

    Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2016-08-19

    Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi; Liao, Hsuan-Hung; Chatupheeraphat, Adisak; Rueping, Magnus

    2018-01-01

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  1. FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes%FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes

    Institute of Scientific and Technical Information of China (English)

    武陈; 曾皓; 刘哲; 刘利; 王东; 陈拥军

    2011-01-01

    FeCl3- and GaCl3-catalyzed dehydrative coupling reactions of chromone-derived Morita-Baylis-Hillman (MBH) alcohols with terminal alkynes were developed. The reactions provided exclusively a-regioselective and acetylene-substituted products in good yields.

  2. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    Science.gov (United States)

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  3. Hypervalent iodine(III)-mediated cyclopropa(e)nation of alkenes/alkynes under mild conditions.

    Science.gov (United States)

    Lin, Shaoxia; Li, Mengru; Dong, Zhiyong; Liang, Fushun; Zhang, Jingping

    2014-02-28

    Hypervalent iodine(III)-mediated dioxygenation and diamination of alkenes have been previously developed. In this study, the potential application of hypervalent iodine(III) reagent was successfully extended to the dialkylation and cyclopropa(e)nation of unsaturated alkenes and alkynes. The reactions of alkenes with malononitrile and other active methylene compounds as the carbon nucleophiles give access to multisubstituted cyclopropane derivatives in moderate to excellent yields. Both electron-rich and electron-deficient alkenes are suitable substrates. Alkynes, no matter terminal or internal alkynes, work well, affording the corresponding highly functionalized cyclopropenes efficiently. A plausible mechanism of iodo(III)cyclopropanation, ring opening attack by the carbon-nucleophile, and recyclization was proposed for the cyclopropanation of trans-alkene substrates. The cyclopropenation was thought to proceed via iodo(III)cyclopropanation, ring-opening attack by the carbon-nucleophile, recyclization into a four-membered iodo(III)cyclobutene and final reductive elimination. The protocol might provide a complementary route to cyclopropanation/cyclopropenation.

  4. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    Science.gov (United States)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  5. Reactions of radioactive 18F with alkenes, alkynes, and other substrates

    International Nuclear Information System (INIS)

    Rowland, F.S.; Rust, F.; Frank, J.P.

    1978-01-01

    The technique of using thermalized 18 F atoms for the study of fluorine atom reactions has proven very useful with unsaturated hydrocarbons and halocarbons, providing data on mechanisms, relative rate constants and factors controlling such reactions. The characteristic difficulties of macroscopic 19 F chemistry are often avoided at tracer levels, and analysis by radio gas chromatography can be quite straightforward. However, experiments at pressures below 0.1 atm are relatively difficult, and most of the usual analytical methods are inapplicable at product mole fractions -10 . Many other classes of compounds can be readily substituted for alkenes and alkynes with little variation in equipment and technique. The extension to study 18 F atom reactions with organometallic compounds is one example of the broad applicability of tracer 18 F studies. 57 references, 5 figures, 10 tables

  6. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  7. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  8. Palladium(II-Catalyzed othro-C–H-Benzoxylation of 2-Arylpyridines by Oxidative Coupling with Aryl Acylperoxides

    Directory of Open Access Journals (Sweden)

    Wing-Yiu Yu

    2013-04-01

    Full Text Available A palladium(II-catalyzed ortho-benzoxylation of 2-arylpyridines with aryl acylperoxides was developed. With pyridyl as directing group, the benzoxylation reaction exhibits remarkable regioselectivity and excellent functional group tolerance, providing the products in up to 87% yield.

  9. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride...

  10. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  11. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    Science.gov (United States)

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  12. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    Science.gov (United States)

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  13. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors.

    Science.gov (United States)

    Wang, Bo; Yi, Heng; Zhang, Hang; Sun, Tong; Zhang, Yan; Wang, Jianbo

    2018-01-19

    Formal carbene dimerization is a convergent method for the synthesis of alkenes. Herein, we report a Ru(II)-catalyzed carbene dimerization of cyclopropenes and diazo compounds. The yields are up to 97% and the stereoselectivity are up to >20:1. Mechanistically, it has been experimentally demonstrated that the catalyst reacts with cyclopropene first to generate a Ru(II)-carbene species, which is attacked by nucleophilic diazo substrate, followed by dinitrogen extrusion to form the double bond.

  15. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  16. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative Heck coupling of biaryl compounds with alkenes.

    Science.gov (United States)

    Zheng, Jun; You, Shu-Li

    2014-11-24

    Enantioselective construction of axially chiral biaryls by direct C-H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C-H bond olefination of biaryl compounds, using a chiral [Cp*Rh(III)] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium-catalyzed asymmetric conjugate additions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Simultaneous absorption of NO and SO{sub 2} into Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.S.; Mao, Y.P.; Yang, X.J.; Chen, Y.; Long, X.L.; Yuan, W.K. [East China University of Science & Technology, Shanghai (China)

    2010-07-30

    The simultaneous removal of NO and SO{sub 2} from flue gases can be realized with Fe(II)-ethylenediamineteraacetate (EDTA) solution. Activated carbon is used to catalyze the reduction of Fe-III-EDTA to Fe-II-EDTA to maintain the capability of removing NO of the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO{sub 2} dissolving into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, Fe-II-EDTA concentration, Fe/EDTA molar ratio, SO{sub 2} partial pressure, NO partial pressure and SO{sub 4}{sup 2-} concentration on the combined elimination of NO and SO{sub 2} with Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon. According to the experimental results, activated carbon not only catalyzes the reduction of Fe-III-EDTA by sulfite/bisulfite greatly but also avoids the release of N{sub 2}O. The NO removal efficiency increases with the initial Fe-II-EDTA concentration and SO{sub 2} partial pressure. The ratio of Fe/EDTA and the SO{sub 4}{sup 2-} concentration has little effect on the catalytic reduction of Fe-III-EDTA. The optimal initial NO concentration range is from 600 ppm to 900 ppm. The experimental results manifest that the Fe-II-EDTA solution coupled with catalytic regeneration of Fe-II-EDTA can maintain high nitric oxide removal efficiency for a long period of time.

  18. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  19. Synthesis of E-Alkyl Alkenes from Terminal Alkynes via Ni-Catalyzed Cross-Coupling of Alkyl Halides with B-Alkenyl-9-borabicyclo[3.3.1]nonanes.

    Science.gov (United States)

    Di Franco, Thomas; Epenoy, Alexandre; Hu, Xile

    2015-10-02

    The first Ni-catalyzed Suzuki-Miyaura coupling of alkyl halides with alkenyl-(9-BBN) reagents is reported. Both primary and secondary alkyl halides including alkyl chlorides can be coupled. The coupling method can be combined with hydroboration of terminal alkynes, allowing the expedited synthesis of functionalized alkyl alkenes from readily available alkynes with complete (E)-selectivity in one pot. The method was applied to the total synthesis of (±)-Recifeiolide, a natural macrolide.

  20. Hexacationic Dendriphos ligands in the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction: scope and mechanistic studies

    NARCIS (Netherlands)

    Snelders, D.J.M.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    The combination of Pd2dba3·CHCl3and hexacationic triarylphosphine-based Dendriphos ligands (1-3) leads to a highly active catalytic system in the Suzuki-Miyaura cross-coupling reaction. Under relatively mild reaction conditions, nonactivated aryl bromides and activated aryl chlorides can be coupled

  1. A mechanistic study of Ni-catalyzed carbon dioxide coupling with ethylene towards the manufacture of acrylic acid

    NARCIS (Netherlands)

    Yang, G.; Schäffner, B.; Blug, M.; Hensen, E.J.M.; Pidko, E.A.

    2014-01-01

    The reaction mechanism of CO2 coupling with C2H4 by homogeneous Ni-complexes bearing bidentate phosphorous ligands was studied by means of density functional theory calculations. The reaction is initiated by sequential coordination of C2H4 and CO2 to the Ni center, followed by a facile coupling

  2. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  3. Synthesis of phenanthrenes through copper-catalyzed cross-coupling of N-tosylhydrazones with terminal alkynes.

    Science.gov (United States)

    Hossain, Mohammad Lokman; Ye, Fei; Liu, Zhenxing; Xia, Ying; Shi, Yi; Zhou, Lei; Zhang, Yan; Wang, Jianbo

    2014-09-19

    A novel protocol for the synthesis of phenanthrenes through the copper-catalyzed reaction of aromatic tosylhydrazones with terminal alkynes is explored. The reaction proceeds via the formation of an allene intermediate and subsequent six-π-electron cyclization-isomerization, affording phenanthrene derivatives in good yields. The transformation can be performed in two ways: (1) with N-tosylhydrazones derived from [1,1'-biphenyl]-2-carbaldehydes and terminal alkynes as the starting materials and (2) with N-tosylhydrazones derived from aromatic aldehydes and 2-alkynyl biphenyls as the starting materials. This new phenanthrene synthesis uses readily available starting materials and a cheap copper catalyst and has a wide range of functional group compatibility.

  4. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex.

    Science.gov (United States)

    Tan, Yuqi; Yuan, Wei; Gong, Lei; Meggers, Eric

    2015-10-26

    A sustainable C-C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross-coupling of two C(sp3)-H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral-at-metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible-light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible-light-driven photoredox catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Palladium-Catalyzed Heck Coupling Reaction of Aryl Bromides in Aqueous Media Using Tetrahydropyrimidinium Salts as Carbene Ligands

    Directory of Open Access Journals (Sweden)

    İsmail Özdemir

    2010-01-01

    Full Text Available An efficient and stereoselective catalytic system for the Heck cross coupling reaction using novel 1,3-dialkyl-3,4,5,6-tetrahydropyrimidinium salts (1, LHX and Pd(OAc2 loading has been reported. The palladium complexes derived from the salts 1a-f prepared in situ exhibit good catalytic activity in the Heck coupling reaction of aryl bromides under mild conditions.

  6. An efficient protocol for copper-free palladium-catalyzed Sonogashira cross-coupling in aqueous media at low temperatures

    KAUST Repository

    Marziale, Alexander N.; Schlü ter, Johannes; Eppinger, Jö rg

    2011-01-01

    A thorough study on copper-free Sonogashira cross-couplings in water was carried out using the palla-dacycle, [{Pd(μ-Cl){K2-P,C-P(iPr) 2(OC6H3-2-Ph)}}2] as pre-catalyst with different bases and palladium concentrations. The highly active pre

  7. Pd-catalyzed coupling reaction on the organic monolayer: Sonogashira reaction on the silicon (1 1 1) surfaces

    International Nuclear Information System (INIS)

    Qu Mengnan; Zhang Yuan; He Jinmei; Cao Xiaoping; Zhang Junyan

    2008-01-01

    Iodophenyl-terminated organic monolayers were prepared by thermally induced hydrosilylation on hydrogen-terminated silicon (1 1 1) surfaces. The films were characterized by ellipsometry, contact-angle goniometry, and X-ray photoelectron spectroscopy (XPS). To modify the surface chemistry and the structure of the monolayers, the Sonogashira coupling reaction was performed on the as-prepared monolayers. The iodophenyl groups on the film surfaces reacted with 1-ethynyl-4-fluorobenzene or the 1-chloro-4-ethynylbenzene under the standard Sonogashira reaction conditions for attaching conjugated molecules via the formation of C-C bonds. It is expected that this surface coupling reaction will present a new method to modify the surface chemistry and the structure of monolayers

  8. Iodine-Catalyzed Direct Olefination of 2-Oxindoles and Alkenes via Cross-Dehydrogenative Coupling (CDC) in Air.

    Science.gov (United States)

    Huang, Hong-Yan; Wu, Hong-Ru; Wei, Feng; Wang, Dong; Liu, Li

    2015-08-07

    A direct intermolecular olefination of sp(3) C-H bond between 2-oxindoles and simple alkenes via a Cross-Dehydrogenative Coupling (CDC) strategy has been developed. In the absence of additional base, moderate to excellent yields have been obtained by using a catalytic amount of iodine with atmospheric oxygen as the reoxidant. Based on the observation of a radical capture experiment, the transformation is proposed to proceed via a radical process.

  9. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An efficient protocol for copper-free palladium-catalyzed Sonogashira cross-coupling in aqueous media at low temperatures

    KAUST Repository

    Marziale, Alexander N.

    2011-11-01

    A thorough study on copper-free Sonogashira cross-couplings in water was carried out using the palla-dacycle, [{Pd(μ-Cl){K2-P,C-P(iPr) 2(OC6H3-2-Ph)}}2] as pre-catalyst with different bases and palladium concentrations. The highly active pre-catalyst imparts good to near quantitative yields using a concentration of 0.25 mol % at 40 °C. This broadly applicable protocol exhibits high tolerance of functional groups and substitution patterns. © 2011 Elsevier Ltd. All rights reserved.

  11. A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

    Directory of Open Access Journals (Sweden)

    Jian-Lin Huang

    2013-07-01

    Full Text Available We decorated HS-functionalized cellulose nanocrystallite (CNC films with monodisperse Au nanoparticles (AuNPs to form a novel nanocomposite catalyst AuNPs@HS-CNC. The uniform, fine AuNPs were made by the reduction of HAuCl4 solution with thiol (HS- group-functionalized CNC films. The AuNPs@HS-CNC nanocomposites were examined by X-ray photoelectron spectroscopy (XPS, TEM, ATR-IR and solid-state NMR. Characterizations suggested that the size of the AuNPs was about 2–3 nm and they were evenly distributed onto the surface of CNC films. Furthermore, the unique nanocomposite Au@HS-CNC catalyst displayed high catalytic efficiency in promoting three-component coupling of an aldehyde, an alkyne, and an amine (A3-coupling either in water or without solvent. Most importantly, the catalyst could be used repetitively more than 11 times without significant deactivation. Our strategy also promotes the use of naturally renewable cellulose to prepare reusable nanocomposite catalysts for organic synthesis.

  12. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes.

    Science.gov (United States)

    Pascanu, Vlad; Hansen, Peter R; Bermejo Gómez, Antonio; Ayats, Carles; Platero-Prats, Ana E; Johansson, Magnus J; Pericàs, Miquel À; Martín-Matute, Belén

    2015-01-01

    A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Simultaneous removal of NO and SO2 with hexamminecobalt(II) solution coupled with the hexamminecobalt(II) regeneration catalyzed by activated carbon

    International Nuclear Information System (INIS)

    Long, Xiang-Li; Xin, Zhi-Ling; Wang, Hong-Xin; Xiao, Wen-De; Yuan, Wei-Kang

    2004-01-01

    The wet ammonia desulfurization process can be retrofitted for combined removal of SO 2 and NO from the flue gases by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used to catalyze the reduction of hexamminecobalt(III) to hexamminecobalt(II) to maintain the capability of removing NO of the hexamminecobalt solution. The effects of temperature, pH, activated carbon particle size, and superficial liquid flow velocity on hexamminecobalt(III) conversion have been investigated. An apparent activation energy is obtained. According to the experimental results, the catalytic reduction reaction rate increases with temperature. The batch reactor experiments show that the best pH range lies in between 3.5 and 6.5. In a fixed-bed reactor, superficial liquid flow velocity obviously affects the reaction and a high yield of cobalt(II) is obtained at a pH value lower than 9.0. The experiments manifest that the hexamminecobalt solution coupled with catalytic regeneration of hexamminecobalt(II) can maintain a high nitric oxide removal efficiency during a period of time

  14. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  15. Palladium-catalyzed Reppe carbonylation.

    Science.gov (United States)

    Kiss, G

    2001-11-01

    PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter

  16. Nickel-Catalyzed C–CN Bond Formation via Decarbonylative Cyanation of Esters, Amides, and Intramolecular Recombination Fragment Coupling of Acyl Cyanides

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Lee, Shao-Chi; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative cyanation reaction which allows the direct functional-group interconversion of readily available esters into the corresponding nitriles was developed. This reaction successfully offers access to structurally diverse nitriles with high efficiency and excellent functional-group tolerance and provides a good alternative to classical synthetic pathways from diazonium salts or organic halide compounds.

  17. Nickel-Catalyzed C–CN Bond Formation via Decarbonylative Cyanation of Esters, Amides, and Intramolecular Recombination Fragment Coupling of Acyl Cyanides

    KAUST Repository

    Chatupheeraphat, Adisak

    2017-08-07

    An efficient nickel-catalyzed decarbonylative cyanation reaction which allows the direct functional-group interconversion of readily available esters into the corresponding nitriles was developed. This reaction successfully offers access to structurally diverse nitriles with high efficiency and excellent functional-group tolerance and provides a good alternative to classical synthetic pathways from diazonium salts or organic halide compounds.

  18. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    . Whereas, anionically prepared A-PS had much higher reliance on the molecular weight changes for its glass transition temperature. However, in thin films, c-PS films have, within error, no confinement effect. In contrast, A-PS has seen large T g reduction with confinement. Ellipsometry analysis suggests that this invariance of the Tg-confinement effect in c-PS is a result of the weak perturbation to Tg near the free surface (i.e. the polymer-air interface). These weak perturbations are the result of the high packing efficiency of cyclic PS segments. The copper-catalyzed alkyne/azide cycloaddition (CuAAC) click reaction has been used to cyclize many linear polymers with complementary azide and alkyne end groups via unimolecular heterodifunctional approach. Cyclic polymers exhibit unique and potentially useful physical properties compared to their linear analogs, hence increasing interest in techniques for preparing this class of polymers. However, a general route for producing high purity cyclic polymers remained elusive. Prior to the discovery of "click" chemistry, it was difficult to produce highly pure cyclic polymers via the ring-closure approach, requiring extensive post-cyclization purification. However, even minor amounts of linear impurities can influence the physical properties of cyclic polymers. Thermal gradient interaction chromatography (TGIC) coupled with Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF MS) allows the fractionation of cyclic polymer samples and produce valuable data for determining both the quantity and identity of linear impurities. This understanding further enables us to optimize cyclization conditions towards the goal of and efficient, general methodology for producing highly pure cyclic polymers. To solve the ever-growing energy needs of the world and capture the renewable energy that is generated sporadically, we need to create devices that can store high amounts of energy and discharge power at

  19. Observation of Binuclear Palladium Clusters Upon ESI-MS Monitoring of the Suzuki-Miyaura Cross-Coupling Catalyzed by a Dichloro-bis(aminophosphine) Complex of Palladium

    Czech Academy of Sciences Publication Activity Database

    Agrawal, Divya; Schröder, Detlef; Frech, C. M.

    2011-01-01

    Roč. 30, č. 13 (2011), s. 3579-3587 ISSN 0276-7333 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * C-C coupling * electrospray ionization * palladium * Suzuki-Miyaura coupling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.963, year: 2011

  20. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  1. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak

    2018-02-20

    A ligand-controlled and site-selective nickel catalyzed Suzuki-Miyaura cross-coupling reaction with aromatic esters and alkyl organoboron reagents as coupling partners was developed. This methodology provides a facile route for C(sp2)-C(sp3) bond formation in a straightforward fashion by successful suppression of the undesired β-hydride elimination process. By simply switching the phosphorus ligand, the ester substrates are converted into the alkylated arenes and ketone products, respectively. The utility of this newly developed protocol was demonstrated by its wide substrate scope, broad functional group tolerance and application in the synthesis of key intermediates for the synthesis of bioactive compounds. DFT studies on the oxidative addition step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel complexes with monodentate phosphorus ligands favor activation of the C(acyl)-O bond, which later generates the ketone product.

  2. A Coupling of Benzamides and Donor/Acceptor Diazo–Compounds to form γ-Lactams via Rh(III)–Catalyzed C–H Activation

    Science.gov (United States)

    Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav

    2013-01-01

    The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055

  3. Pd-catalyzed Suzuki-Miyaura coupling reaction in the synthesis of 5-aryl-1-[2-(phosphonomethoxy)ethyl]uracils as potential multisubstrate inhibitors of thymidine phosphorylase

    Czech Academy of Sciences Publication Activity Database

    Pomeisl, Karel; Holý, Antonín; Pohl, Radek

    2007-01-01

    Roč. 48, č. 17 (2007), s. 3065-3067 ISSN 0040-4039 R&D Projects: GA MŠk 1M0508 Grant - others:Descartes Prize(XE) HPAW-CT-2002-9001 Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonates * thymidine phosphorylase * Suzuki coupling * pyrimidine Subject RIV: CC - Organic Chemistry Impact factor: 2.615, year: 2007

  4. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides.

    Science.gov (United States)

    You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu

    2015-06-28

    Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.

  5. Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials

    Directory of Open Access Journals (Sweden)

    Zen Maeno

    2015-02-01

    Full Text Available Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine (PPI dendrimer and magadiite for the selective C–C coupling of 2,6-dimethylphenol (DMP to 3,3',5,5'-tetramethyldiphenoquinone (DPQ with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C–C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis, Fourier transform infrared (FTIR, electronic spin resonance (ESR, and X-ray absorption fine structure (XAFS spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  6. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  7. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco; Vummaleti, Sai V. C.; Buonerba, Antonio; Nisi, Assunta De; Monari, Magda; Milione, Stefano; Grassi, Alfonso; Cavallo, Luigi; Capacchione, Carmine

    2016-01-01

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide

    Science.gov (United States)

    Vadola, Paul A.; Sames, Dalibor

    2010-01-01

    We report a catalytic intramolecular coupling between terminal unactivated alkynes and sp3 C-H bonds via the through-space hydride transfer (HT-cyclization of alkynes). This method enables one-step preparation of complex heterocyclic compounds by α-alkenylation of readily available cyclic ethers and amines. We show that PtI4 is an effective Lewis acid catalyst for the activation of terminal alkynes for the hydride attack and subsequent C-C bond formation. In addition, we have shown that the activity of neutral platinum salts (PtXn) can be modulated by the halide ligands. This modulation in turn allows for fine-tuning of the platinum center reactivity to match the reactivity and stability of selected substrates and products. PMID:19852462

  10. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models.

    Science.gov (United States)

    Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun

    2018-03-26

    Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  12. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  13. Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions† †Electronic supplementary information (ESI) available: Detailed experimental and computational results, procedures, characterization data, copies of NMR charts, and crystallographic data. CCDC 1572238. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04675h

    Science.gov (United States)

    Fukuoka, Asuka; Yokoyama, Wataru; Min, Xin; Hisaki, Ichiro; Kuniyasu, Hitoshi

    2018-01-01

    We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C–C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C–F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C–C bond forming reactions, providing useful information for developing efficient and straightforward

  14. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  15. Laccase-catalyzed C-S and C-C coupling for a one-pot synthesis of 1,4-naphthoquinone sulfides and 1,4-naphthoquinone sulfide dimers

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2013-06-01

    Full Text Available Oxidative C-S and C-C bond formation with aryl and alkyl thiols was catalyzed under mild conditions in a reaction vessel open to air at pH 4.5 in the presence of a commercial laccase (Novozym 51003 or Suberase) and a cosolvent (DMF) to afford 1...

  16. Synthesis of 4-substituted tetrahydropyridines by cross-coupling of enol phosphates

    DEFF Research Database (Denmark)

    Larsen, U.S.; Martiny, L.; Begtrup, M.

    2005-01-01

    Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved....

  17. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    Science.gov (United States)

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  18. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  20. Manganese-Catalyzed Aerobic Heterocoupling of Aryl Grignard Reagents

    DEFF Research Database (Denmark)

    Ghaleshahi, Hajar Golshahi; Antonacci, Giuseppe; Madsen, Robert

    2017-01-01

    An improved protocol has been developed for the MnCl2-catalyzed cross-coupling reaction of two arylmagnesium bromides under dioxygen. The reaction was achieved by using the Grignard reagents in a 2:1 ratio and 20 % of MnCl2. Very good yields of the heterocoupling product were obtained when the li...

  1. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  2. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...... oven (Scheme ii). A limitation of the heterocoupling process is the concomitant dehalogenation of the aryl halide and homocoupling of the Grignard reagent leading low to moderate yields of the desired heterocoupling product. The mechanism of the cross-coupling process was investigated by performing two...

  3. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  4. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    Science.gov (United States)

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  5. Intermolecular Dehydrative Coupling Reaction of Arylketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: A Novel Ketone Olefination Method via Vinyl C–H Bond Activation

    Science.gov (United States)

    Yi, Chae S.; Lee, Do W.

    2010-01-01

    Summary The cationic ruthenium-hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly effective catalyst for the intermolecular olefination reaction of arylketones with cycloalkenes. The preliminary mechanistic analysis revealed that electrophilic ruthenium-vinyl complex is the key species for mediating both vinyl C–H bond activation and the dehydrative olefination steps of the coupling reaction. PMID:20567607

  6. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  7. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  8. Exploring possible reaction pathways for the o-atom transfer reactions to unsaturated substrates catalyzed by a [Ni-NO2 ] ↔ [Ni-NO] redox couple using DFT methods.

    Science.gov (United States)

    Tsipis, Athanassios C

    2017-07-15

    The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] ↔ Ni(NO 2 )(S 2 CNHMe)(PMe 3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex, followed by a β H-atom migration toward the C α carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO 2 )(S 2 CNHMe)(PMe 3 )] ⇌ [Ni( κO,O2-ONO)(S 2 CNHMe)(PMe 3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. A facile synthesis of new 5-aryl-thiophenes bearing sulfonamide moiety via Pd(0-catalyzed Suzuki–Miyaura cross coupling reactions and 5-bromothiophene-2-acetamide: As potent urease inhibitor, antibacterial agent and hemolytically active compounds

    Directory of Open Access Journals (Sweden)

    Mnaza Noreen

    2017-01-01

    Full Text Available The present study reports a convenient approach for the synthesis of thiophene sulfonamide derivatives (3a–3k via Suzuki cross coupling reaction. This method of synthesis involved the reactions of various aryl boronic acids and esters with 5-bromthiophene-2-sulfonamide (2 under mild and suitable temperature conditions. The compounds synthesized in the present study were subjected to urease inhibition and hemolytic activities. The substitution pattern and the electronic effects of different functional groups (i.e., Cl, CH3, OCH3, F etc. available on the aromatic ring are found to have significant effect on the overall results. The compound 5-Phenylthiophene-2-sulfonamide 3a showed the highest urease inhibition activity with IC50 value ∼ 30.8 μg/mL compared with the thiourea (used as standard having IC50 value ∼ 43 μg/mL. Moreover, almost all of the compounds were examined for the hemolytic activity against triton X-100 with positive results obtained in most of the cases. In addition, the antibacterial activities of the derivatives of 5-arylthiophene-2-sulfonamide and 5-bromothiophene-2-acetamide were also investigated during the course of the study.

  10. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  11. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  12. Neutrino decay catalyzed by the Mikheyev-Smirnov-Wolfenstein effect

    International Nuclear Information System (INIS)

    Raghavan, R.S.; He, X.; Pakvasa, S.

    1988-01-01

    A new mechanism for neutrino (ν) decay in the Mikheyev-Smirnov-Wolfenstein (MSW) regime of weak mixing and small ν mass differences is pointed out. Even though electron-neutrinos (ν/sub e/) in this regime are practically stable, in solar matter, conversion of the ν/sub e/ to a ''heavier'' flavor by the MSW effect can catalyze ν decay. MSW+ν decay into Majorons can lead to a strong solar antineutrino signal in proposed experiments, directly probing ν-Majoron couplings ∼700 times smaller than the present laboratory bound of g 2 <4.5 x 10/sup -5/

  13. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  14. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  15. Rh-Catalyzed Annulations of N-Methoxybenzamides and Ketenimines: Sterically and Electronically Controlled Synthesis of Isoquinolinones and Isoindolinones.

    Science.gov (United States)

    Zhou, Xiaorong; Zhang, Zhiyin; Zhao, Hongyang; Lu, Ping; Wang, Yanguang

    2017-04-07

    Rhodium-catalyzed C-H activation/annulation reactions of ketenimines with N-methoxybenzamides are reported. The outcome of reactions is dependent on the structure of ketenimines. The β-alkyl-substituted ketenimines furnish 3-iminoisoquinolin-1(2H)-ones in a formal [4 + 2] annulation manner, while the β-ester substituted ketenimines afford 3-aminoisoindolin-1-ones in a formal [4 + 1] annulation manner. The synthesized [4 + 2] products undergo an intramolecular Cu-catalyzed C-N coupling to be converted to benzo[4,5]imidazo[1,2-b]isoquinolin-11-ones, which can be directly prepared from ketenimines and N-methoxybenzamides by a one-pot Rh-catalyzed annulation/Cu-catalyzed C-N coupling sequence.

  16. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones.

    Science.gov (United States)

    Takaki, Ken; Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  17. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

    Directory of Open Access Journals (Sweden)

    Ken Takaki

    2017-08-01

    Full Text Available Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  18. Gold-catalyzed Alkyne Hydroxylation: Synthesis of 2-Substituted Benzo[b]furan Compounds

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan; XIN Zhi-Jun; XUE Ji-Jun; LI Ying

    2008-01-01

    A strategy concerning the synthesis of 2-substituted benzo[b]furan compounds from o-alkynyl phenols via a gold-catalyzed alkyne hydroxylation is described, which allows the rapid synthesis of various 2-substituted benzo[b]furan derivatives in excellent yields under mild conditions. The o-alkynyl phenol precursors were readily prepared with a Sonogashira coupling reaction.

  19. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  20. Diversification of indoles via microwave-assisted ligand-free copper-catalyzed N-arylation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Kwan; Lee, Jin Hee; Kim, Tae Sung; Yum, Eul Kgun [Dept. of Chemistry, Chu ngnam National University, Daejon (Korea, Republic of); Park, Jee Jung [Western Seoul Center Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    A simple, efficient Cu{sub 2}O catalyst system under microwave irradiation was developed for N-arylation of various indoles without ligands and additives. Diverse N-heteroarylated indoles were prepared by coupling indoles with various heteroaryl halides within 1 h. The selective reactivity of bromoindole with aryl iodide provided N-aryl bromoindoles, which could be useful intermediates for palladium-catalyzed Heck and Suzuki coupling reactions.

  1. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  2. Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis.

    Science.gov (United States)

    Bisz, Elwira; Szostak, Michal

    2017-10-23

    Oxygen-based electrophiles have emerged as some of the most valuable cross-coupling partners in organic synthesis due to several major strategic and environmental benefits, such as abundance and potential to avoid toxic halide waste. In this context, iron-catalyzed C-O activation/cross-coupling holds particular promise to achieve sustainable catalytic protocols due to its natural abundance, inherent low toxicity, and excellent economic and ecological profile. Recently, tremendous progress has been achieved in the development of new methods for functional-group-tolerant iron-catalyzed cross-coupling reactions by selective C-O cleavage. These methods establish highly attractive alternatives to traditional cross-coupling reactions by using halides as electrophilic partners. In particular, new easily accessible oxygen-based electrophiles have emerged as substrates in iron-catalyzed cross-coupling reactions, which significantly broaden the scope of this catalysis platform. New mechanistic manifolds involving iron catalysis have been established; thus opening up vistas for the development of a wide range of unprecedented reactions. The synthetic potential of this sustainable mode of reactivity has been highlighted by the development of new strategies in the construction of complex motifs, including in target synthesis. The most recent advances in sustainable iron-catalyzed cross-coupling of C-O-based electrophiles are reviewed, with a focus on both mechanistic aspects and synthetic utility. It should be noted that this catalytic manifold provides access to motifs that are often not easily available by other methods, such as the assembly of stereodefined dienes or C(sp 2 )-C(sp 3 ) cross-couplings, thus emphasizing the synthetic importance of this mode of reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  4. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  5. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  6. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    Science.gov (United States)

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  7. Degradation of Akt using protein-catalyzed capture agents.

    Science.gov (United States)

    Henning, Ryan K; Varghese, Joseph O; Das, Samir; Nag, Arundhati; Tang, Grace; Tang, Kevin; Sutherland, Alexander M; Heath, James R

    2016-04-01

    Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare proteolysis targeting chimeric molecules that are shown to promote the rapid degradation of Akt in live cancer cells. These novel proteolysis targeting chimeric molecules demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  8. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  9. Cobalt-Catalyzed, Aminoquinoline-Directed sp2 C-H Bond Alkenylation by Alkynes**

    Science.gov (United States)

    Grigorjeva, Liene; Daugulis, Olafs

    2014-01-01

    We have developed a method for cobalt-catalyzed, aminoquinoline- and picolinamide-directed sp2 C-H bond alkenylation by alkynes. Method shows excellent functional group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs Co(OAc)2*4H2O catalyst, Mn(OAc)2 cocatalyst, and oxygen from air as a terminal oxidant. PMID:25060365

  10. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    Science.gov (United States)

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  11. Rhodium-catalyzed C-H functionalization with N-acylsaccharins.

    Science.gov (United States)

    Wu, Hongxiang; Liu, Tingting; Cui, Ming; Li, Yue; Jian, Junsheng; Wang, Hui; Zeng, Zhuo

    2017-01-18

    A rhodium-catalyzed C-H functionalization with activated amides by decarbonylation has been developed. Notably, this is the first C-H arylation employing N-acylsaccharins as coupling partners to give biaryls in good to excellent yields. The highlight of the work is the high tolerance of functional groups such as formyl, ester, and vinyl and the use of a removable directing group.

  12. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.

    Science.gov (United States)

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu

    2014-08-04

    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  14. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  15. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  16. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  17. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  18. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  19. Pd(II)-Catalyzed Hydroxyl-Directed C–H Olefination Enabled by Mono-Protected Amino Acid Ligands

    Science.gov (United States)

    Lu, Yi; Wang, Dong-Hui; Engle, Keary M.

    2010-01-01

    A novel Pd(II)-catalyzed ortho-C–H olefination protocol has been developed using spatially remote, unprotected tertiary, secondary, and primary alcohols as the directing groups. Mono-N-protected amino acid ligands were found to promote the reaction, and an array of olefin coupling partners could be used. When electron-deficient alkenes were used, the resulting olefinated intermediates underwent subsequent Pd(II)-catalyzed oxidative intramolecular cyclization to give the corresponding pyran products, which could be converted into ortho-alkylated alcohols under hydrogenolysis conditions. The mechanistic details of the oxidative cyclization step are discussed and situated in the context of the overall catalytic cycle. PMID:20359184

  20. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  1. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  2. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  3. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  4. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    Energy Technology Data Exchange (ETDEWEB)

    Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-12

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.

  5. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  6. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    Science.gov (United States)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  7. Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition

    Directory of Open Access Journals (Sweden)

    Zachary L. Palchak

    2015-08-01

    Full Text Available Propargylamines are popular substrates for triazole formation, but tetrasubstituted variants have required multistep syntheses involving stoichiometric amounts of metal. A recent cyclohexanone–amine–silylacetylene coupling forms silyl-protected tetrasubstituted propargylamines in a single copper-catalyzed step. The development of the tandem silyl deprotection–triazole formation reported herein offers rapid access to alpha-tetrasubstituted triazoles. A streamlined two-step approach to this uncommon class of hindered triazoles will accelerate exploration of their therapeutic potential. The superior activity of copper(II triflate in the formation of triazoles from sensitive alkyne substrates extends to simple terminal alkynes.

  8. Cobalt-catalyzed, aminoquinoline-directed C(sp²)-H bond alkenylation by alkynes.

    Science.gov (United States)

    Grigorjeva, Liene; Daugulis, Olafs

    2014-09-15

    A method for cobalt-catalyzed, aminoquinoline- and picolinamide-directed C(sp(2))-H bond alkenylation by alkynes was developed. The method shows excellent functional-group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs a Co(OAc)2⋅4 H2O catalyst, Mn(OAc)2 co-catalyst, and oxygen (from air) as a terminal oxidant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  10. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    Science.gov (United States)

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  11. Rh(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides using activated and unactivated alkenes.

    Science.gov (United States)

    Li, Xuting; Gong, Xue; Zhao, Miao; Song, Guoyong; Deng, Jian; Li, Xingwei

    2011-11-04

    Rhodium(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides has been achieved at the peri position. Three categories of olefins have been successfully applied. Activated olefins reacted to afford five-membered azacycles as a result of oxidative olefination-hydroamination. Unactivated olefins reacted to give the olefination product. 2-fold oxidative C-C and C-N coupling was achieved for allylbenzenes. © 2011 American Chemical Society

  12. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides.

    Science.gov (United States)

    Chang, Chi-Hao; Chou, Chih-Ming

    2018-04-06

    This study explores a Pd-catalyzed decarboxylative Heck-type Csp 3 -Csp 2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.

  13. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Leon, M.

    1988-01-01

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H 2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec. 1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  14. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  15. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    Science.gov (United States)

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  18. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  19. Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Mou

    2010-12-01

    Full Text Available A heterogeneous catalyst, nanosized MCM-41-Pd, was used to catalyze the Sonogashira coupling of aryl and heteroaryl halides with terminal alkynes in the presence of CuI and triphenylphosphine. The coupling products were obtained in high yields using low Pd loadings to 0.01 mol%, and the nanosized MCM-41-Pd catalyst was recovered by centrifugation of the reaction solution and re-used in further runs without significant loss of reactivity.

  20. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  1. Iodine-catalyzed diazo activation to access radical reactivity.

    Science.gov (United States)

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  2. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    Science.gov (United States)

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  3. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  4. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  5. Synthesis of chitosan-PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition.

    Science.gov (United States)

    Tirino, Pasquale; Laurino, Rosaria; Maglio, Giovanni; Malinconico, Mario; d'Ayala, Giovanna Gomez; Laurienzo, Paola

    2014-11-04

    In this work, a well-defined hydrogel was developed by coupling chitosan with PEO through "click chemistry". Azide functionalities were introduced onto chitosan, through mesylation of C-6 hydroxyl groups, and reacted with a di-alkyne PEO by a regioselective Cu(I)-catalyzed cycloaddition. This synthetic approach allowed us to obtain a hydrogel with a controlled crosslinking degree. In fact, the extent of coupling is strictly dependent on the amount of azido groups on chitosan, which in turn can be easily modulated. The obtained hydrogel, with a crosslinking degree of around 90%, showed interesting swelling properties. With respect to chitosan hydrogels reported in literature, a considerably higher equilibrium uptake was reached (940%). The possibility to control the crosslinking degree of hydrogel and its capability to rapidly absorb high amounts of water make this material suitable for several applications, such as controlled drug release and wound healing. Copyright © 2014. Published by Elsevier Ltd.

  6. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, Flynn William [Univ. of Arizona, Tucson, AZ (United States)

    1992-01-01

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using 14C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  7. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  8. RNA-Catalyzed Polymerization and Replication of RNA

    Science.gov (United States)

    Horning, D. P.; Samantha, B.; Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    In an effort to reconstruct RNA-based life, in vitro evolution was used to obtain an RNA polymerase ribozyme that can synthesize a variety of complex functional RNAs and can catalyze the exponential amplification of short RNAs.

  9. FeBr3-catalyzed dibromination of alkenes and alkynes

    Institute of Scientific and Technical Information of China (English)

    Yun Fa Zheng; Jian Yu; Guo Bing Yan; Xu Li; Song Luo

    2011-01-01

    The dibromination of alkenes and alkynes with bromosuccinimide and sodium bromide catalyzed by FeBr3 under mild conditions has been developed. The trans-dibromo compounds were exclusively obtained with excellent yields.

  10. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III

    Indian Academy of Sciences (India)

    triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction ...

  11. Biodiesel production from Jatropha curcas oil catalyzed by whole ...

    African Journals Online (AJOL)

    my mord

    2013-07-03

    Jul 3, 2013 ... catalyzed by whole cells of Aureobasidium pullulans var. melanogenum ... friendly and renewable fuel that can be used directly in diesel engines ... methanol (or supercritical ethanol) transesterification is not commercially ...

  12. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III)

    Indian Academy of Sciences (India)

    Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas ... The rate laws associated with the reaction mechanisms ... activation and thermodynamic parameters have been computed and discussed.

  13. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...

  14. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  15. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  16. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  17. Nitroreductase catalyzed biotransformation of CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-01-01

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C 6 H 6 N 12 O 12 ) and produced a key metabolite with mol. wt. 346Da corresponding to an empirical formula of C 6 H 6 N 10 O 8 which spontaneously decomposed in aqueous medium to produce N 2 O, NH4+, and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20 - ) which upon initial N-denitration also produced metabolite C 6 H 6 N 10 O 8 . The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e] pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01nmolmin -1 mg of protein -1 , respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20

  18. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gó mez-Herrera, Alberto; Nahra, Fady; Brill, Marcel; Nolan, Steven P.; Cazin, Catherine S. J.

    2016-01-01

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  19. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gómez-Herrera, Alberto

    2016-08-22

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  20. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  1. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  2. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian; Jia, Jiaqi; Rueping, Magnus

    2017-01-01

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  3. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  4. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols.

    Science.gov (United States)

    Lin, Kunde; Zhou, Shiyang; Chen, Xi; Ding, Jiafeng; Kong, Xiaoyan; Gan, Jay

    2015-11-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently found in the marine biosphere as emerging organic contaminants. Studies to date have suggested that OH-PBDEs in marine biota are natural products. However, the mechanisms leading to the biogenesis of OH-PBDEs are still far from clear. In this study, using a laccase isolated from Trametes versicolor as the model enzyme, we explored the formation of OH-PBDEs from the laccase-catalyzed oxidation of simple bromophenols (e.g., 2,4-DBP and 2,4,6-TBP). Experiments under ambient conditions clearly showed that OH-PBDEs were produced from 2,4-DBP and 2,4,6-TBP in presence of laccase. Polybrominated compounds 2'-OH-BDE68, 2,2'-diOH-BB80, and 1,3,8-TrBDD were identified as the products from 2,4-DBP, and 2'-OH-BDE121 and 4'-OH-BDE121 from 2,4,6-TBP. The production of OH-PBDEs was likely a result of the coupling of bromophenoxy radicals, generated from the laccase-catalyzed oxidation of 2,4-DBP or 2,4,6-TBP. The transformation of bromophenols by laccase was pH-dependant, and was also influenced by enzymatic activity. In view of the abundance of 2,4-DBP and 2,4,6-TBP and the phylogenetic distribution of laccases in the environment, laccase-catalyzed conversion of bromophenols may be potentially an important route for the natural biosynthesis of OH-PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  6. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    Science.gov (United States)

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  7. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  8. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  9. Muon-catalyzed fusion theory - introduction and review

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1990-01-01

    Muon-catalyzed fusion (μCF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dtμ molecules in mixtures of deuterium and tritium. After a brief review of the subject's history, the dtμ catalysis cycle and the principle relations used in its analysis are described. Some of the important processes in the μCF cycle are then discussed. Finally, the status of current research is appraised. (author)

  10. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  11. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  12. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  13. Photoredox-Catalyzed Stereoselective Conversion of Alkynes into Tetrasubstituted Trifluoromethylated Alkenes.

    Science.gov (United States)

    Tomita, Ren; Koike, Takashi; Akita, Munetaka

    2015-10-26

    A regio- and stereoselective synthesis of trifluoromethylated alkenes bearing four different substituents has been developed. Stereocontrolled sulfonyloxytrifluoromethylation of unsymmetric internal alkynes with an electrophilic CF3 reagent, namely the triflate salt of the Yagupol'skii-Umemoto reagent, in the presence of an Ir photoredox catalyst under visible-light irradiation afforded trifluoromethylalkenyl triflates with well-predictable stereochemistry resulting from anti addition of the trifluoromethyl and triflate groups. Subsequent palladium-catalyzed cross-couplings led to tetrasubstituted trifluoromethylated alkenes in a highly stereoselective manner. The present method is the first example of a facile one-pot synthesis of tetrasubstituted trifluoromethylated alkenes from simple alkynes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...... are presented that all employ 1,3-diisopropylimidazol-2-ylidene (IiPr) as the carbene ligand. In addition, potassium tert-butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl2(cod)] (cod = 1,5-cyclooctadiene), 1...... chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do...

  15. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Palladium(II)-catalyzed ortho-C-H arylation/alkylation of N-benzoyl α-amino ester derivatives.

    Science.gov (United States)

    Misal Castro, Luis C; Chatani, Naoto

    2014-04-14

    The palladium-catalyzed arylation/alkylation of ortho-C-H bonds in N-benzoyl α-amino ester derivatives is described. In such a system both the NH-amido and the CO2R groups in the α-amino ester moieties play a role in successful C-H activation/C-C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron-rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes.

    Science.gov (United States)

    Haydl, Alexander M; Xu, Kun; Breit, Bernhard

    2015-06-08

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)-ruxolitinib. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rh(III)-Catalyzed C-H Activation of Benzoylacetonitriles and Tandem Cyclization with Diazo Compounds to Substituted Benzo[ de]chromenes.

    Science.gov (United States)

    Fang, Feifei; Zhang, Chunmei; Zhou, Chaofan; Li, Yazhou; Zhou, Yu; Liu, Hong

    2018-04-06

    Rh (III)-catalyzed C-H activation of benzoylacetonitriles in coupling with diazo compounds was developed to synthesize diversified substituted benzo[ de]chromenes via a formal (4 + 2) cycloaddition with a diazo compound and subsequent tandem (4 + 2) cycloaddition with another diazo compound. Intriguingly, synthesis of substituted benzo[ de]chromenes and their decarboxylation products could be realized by controlling the reaction conditions. These reactions have a broad range of substrates, moderate to good yields, and high regioselectivity.

  19. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.

    Science.gov (United States)

    Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L

    2017-06-16

    A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.

  20. Aerobic, Metal-Free, and Catalytic Dehydrogenative Coupling of Heterocycles: En Route to Hedgehog Signaling Pathway Inhibitors.

    Science.gov (United States)

    Bering, Luis; Paulussen, Felix M; Antonchick, Andrey P

    2018-04-06

    The nitrosonium ion-catalyzed dehydrogenative coupling of heteroarenes under mild reaction conditions is reported. The developed method utilizes ambient molecular oxygen as a terminal oxidant, and only water is produced as byproduct. Dehydrogenative coupling of heteroarenes translated into the rapid discovery of novel hedgehog signaling pathway inhibitors, emphasizing the importance of the developed methodology.

  1. tBuLi-Mediated One-Pot Direct Highly Selective Cross-Coupling of Two Distinct Aryl Bromides

    NARCIS (Netherlands)

    Vila, Carlos; Cembellin, Sara; Hornillos, Valentin; Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.

    2015-01-01

    A Pd-catalyzed direct cross-coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd-PEPPSI-IPr] or [Pd-PEPPSI-IPent] as catalyst allows for the efficient one-pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross-coupling is the use

  2. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway.

    Science.gov (United States)

    Wurtzler, Elizabeth M; Wendell, David

    2016-01-01

    For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

  3. Selective Photocatalytic Disinfection by Coupling StrepMiniSog to the Antibody Catalyzed Water Oxidation Pathway.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Wurtzler

    Full Text Available For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

  4. Solvent and temperature effects on the platinum-catalyzed oxidative coupling of 1-naphthols

    CSIR Research Space (South Africa)

    Maphoru, MV

    2015-08-01

    Full Text Available one-pot two-step oxidation of 1-naphthols to the diones (e.g. 81 % from 4-methoxy-1- naphthol). In most other solvents (reflux) naphthoquinones are observed as byproducts. In an attempt to optimize the yield of menadione, 30.5 % was obtained in boiling...

  5. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    Science.gov (United States)

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  6. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  7. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu; Jia, Jiaqi; Hou, Hong; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  8. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu

    2016-09-23

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  9. Ruthenium-catalyzed self-coupling of primary and secondary alcohols with the liberation of dihydrogen

    DEFF Research Database (Denmark)

    Makarov, Ilya; Madsen, Robert

    2013-01-01

    The dehydrogenative self-condensation of primary and secondary alcohols has been studied in the presence of RuCl2(IiPr)(p-cymene). The conversion of primary alcohols into esters has been further optimized by using magnesium nitride as an additive, which allows the reaction to take place...... at a temperature and catalyst loading lower than those described previously. Secondary alcohols were dimerized into racemic ketones by a dehydrogenative Guerbet reaction with potassium hydroxide as the additive. The transformation gave good yields of the ketone dimers with a range of alkan-2-ols, whereas more...... substituted secondary alcohols were unreactive. The reaction proceeds by dehydrogenation to the ketone, followed by an aldol reaction and hydrogenation of the resulting enone. © 2013 American Chemical Society....

  10. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly John; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-01-01

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper

  11. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  12. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    dium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H ... compounds. Its use- fulness may be due to its unequivocal stability, water. ∗ ... metals are known to catalyze many oxidation–reduction reactions because they ... prepared by dissolving potassium hexacyanoferrate(II). (SD Fine ...

  13. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    NARCIS (Netherlands)

    Kloosterman, Wouter M.J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and

  14. Straightforward uranium-catalyzed dehydration of primary amides to nitriles

    International Nuclear Information System (INIS)

    Enthaler, Stephan

    2011-01-01

    The efficient uranium-catalyzed dehydration of a variety of primary amides, using N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) as a dehydration reagent, to the corresponding nitriles has been investigated. With this catalyst system, extraordinary catalyst activities and selectivities were feasible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  16. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  17. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  18. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  19. Hydroformylation of methyl oleate catalyzed by rhodium complexes

    International Nuclear Information System (INIS)

    Mendes, Ana Nery Furlan; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro

    2012-01-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H 2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  20. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming

    2018-05-08

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  1. UDP-glucuronyltransferase-catalyzed deconjugation of bilirubin monoglucuronide

    NARCIS (Netherlands)

    Cuypers, H. T.; ter Haar, E. M.; Jansen, P. L.

    1984-01-01

    Bilirubin monoglucuronide is rapidly deconjugated when incubated with UDP and rat liver microsomal preparations at pH 5.1. The following evidence was found that this reaction is catalyzed by UDP-glucuronyltransferase: (i) unconjugated bilirubin and UDP-glucuronic acid were identified as the reaction

  2. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  3. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Science.gov (United States)

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.

  4. Highly selective cobalt-catalyzed hydrovinylation of styrene

    NARCIS (Netherlands)

    Grutters, M.M.P.; Müller, C.; Vogt, D.

    2006-01-01

    The hydrovinylation reaction is a codimerization of a 1,3-diene or vinyl arene and ethene with great potential for fine chemicals and pharmaceuticals. For the first time, enantioselective cobalt-catalyzed hydrovinylations of styrene were achieved with a cobalt-based system bearing a chiral

  5. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming; Maity, Bholanath; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  6. Rhodium(III)-catalyzed vinylic sp2 C-H bond functionalization: efficient synthesis of pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines.

    Science.gov (United States)

    Dong, Lin; Huang, Ji-Rong; Qu, Chuan-Hua; Zhang, Qian-Ru; Zhang, Wei; Han, Bo; Peng, Cheng

    2013-09-28

    A simple approach for synthesis of novel aza-fused scaffolds such as pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines was developed by Rh(III)-catalyzed direct oxidative coupling between alkenes and unactivated alkynes without an extra directing group. The method would allow a broad substrate scope, providing fused heterocycles with potential biological properties.

  7. Sortase A-mediated functionalization of nanobodies toward surface coupling

    OpenAIRE

    TA, Duy Tien; STEEN REDEKER, Erik; GUEDENS, Wanda; ADRIAENSENS, Peter

    2013-01-01

    The conserved LPETG motif, at which sortase A-catalyzed transpeptidation occurs, is engineered at the C-terminal region of the variable domain of single-domain heavy chain antibody (or nanobody) against Vascular Cell Adhesion Molecule 1 (VCAM1). The recombinant nanobody can then subsequently be ligated, under sortase A catalysis, to a variety of oligoglycine containing targets, including material surfaces, contrast labeling molecules and molecules functionalized for specific chemical coupling...

  8. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  10. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes.

    Science.gov (United States)

    Yamamoto, Yoshihiko

    2014-03-07

    Transition-metal (TM)-catalyzed hydroarylation reactions of alkynes have received much attention, because they enable the net insertion of alkyne C-C triple bonds into C-H bonds of aromatic precursors, resulting in regio- and stereo-selective formation of synthetically useful arylalkenes. Taking advantage of this feature, TM-catalyzed alkyne hydroarylations have been successfully used for the synthesis of heterocycles. TM-catalyzed alkyne hydroarylations can be classified into three major categories depending on the type of reaction and precursors involved: (1) palladium-catalyzed reductive Heck reactions of alkynes with aryl halides, (2) TM-catalyzed conjugate arylation reactions of activated alkynes with arylboronic acids, and (3) TM-catalyzed aromatic C-H alkenylations with alkynes. This review surveys heterocycle synthesis via TM-catalyzed hydroarylation of alkynes according to the above classification, with an emphasis on the scope and limitations, as well as the underlying mechanisms.

  11. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  12. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  13. Iron-catalyzed diboration and carboboration of alkynes.

    Science.gov (United States)

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-09

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An optimized hydrogen target for muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.i [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-04-01

    This paper deals with the optimization of the processes involved in muon catalyzed fusion. Muon catalyzed fusion ({mu}CF) is studied in all layers of the solid hydrogen structure H/0.1%T+D{sub 2}+HD. The layer H/T acts as an emitter source of energetic t{mu} atoms, due to the so-called Ramsauer-Townsend effect. These t{mu} atoms are slowed down in the second layer (degrader) and are forced to take place nuclear fusion in HD. The degrader affects time evolution of t{mu} atomic beam. This effect has not been considered until now in {mu}CF-multilayered targets. Due to muon cycling and this effect, considerable reactions occur in the degrader. In our calculations, it is shown that the fusion yield equals 180{+-}1.5. It is possible to separate events that overlap in time.

  15. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  16. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    Science.gov (United States)

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Copper-Catalyzed Synthesis of Trifluoroethylarenes from Benzylic Bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Zhu, Lingui; Altman, Ryan A

    2015-08-21

    Trifluoroethylarenes are found in a variety of biologically active molecules, and strategies for accessing this substructure are important for developing therapeutic candidates and biological probes. Trifluoroethylarenes can be directly accessed via nucleophilic trifluoromethylation of benzylic electrophiles; however, current catalytic methods do not effectively transform electron-deficient substrates and heterocycles. To address this gap, we report a Cu-catalyzed decarboxylative trifluoromethylation of benzylic bromodifluoroacetates. To account for the tolerance of sensitive functional groups, we propose an inner-sphere mechanism of decarboxylation.

  18. Diastereoselective Au-Catalyzed Allene Cycloisomerizations to Highly Substituted Cyclopentenes.

    Science.gov (United States)

    Reeves, Ryan D; Phelps, Alicia M; Raimbach, William A T; Schomaker, Jennifer M

    2017-07-07

    Site- and regiocontrolled Au-catalyzed allene carbocyclizations furnish highly substituted cyclopentenes in >1:1 dr. Significant substitution on the substrate is tolerated, with potential to install five contiguous stereocenters after alkene functionalization. Major challenges include identifying a Au/Cu catalyst that controls both the relative rates of allene epimerization/cyclization and the facial selectivity in addition of a metal enolate to the allene. Experiments to achieve stereodivergent cyclizations and transform key cyclopentenes into useful synthetic building blocks are described.

  19. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  1. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    Science.gov (United States)

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Joern [The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste (Italy); Schmidt-Hoberg, Kai, E-mail: jkersten@ictp.it, E-mail: kai.schmidt-hoberg@ph.tum.de, E-mail: kai.schmidt.hoberg@desy.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  3. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    Science.gov (United States)

    Kersten, Jörn; Schmidt-Hoberg, Kai

    2008-01-01

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m1/2. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  4. The gravitino–stau scenario after catalyzed big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Kersten, Jörn; Schmidt-Hoberg, Kai

    2008-01-01

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m 1/2 . As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints

  5. Development of Copper-Catalyzed Electrophilic Trifluoromethylation and Exploiting Cu/Cu2O Nanowires with Novel Catalytic Reactivity

    KAUST Repository

    Li, Huaifeng

    2014-06-01

    area of the active component, thereby enhancing the contact between reactants and catalyst dramatically. Based on the above-mentioned concepts and with the aim of achieving one “green and sustainable” approach, C-S bond formation and click reactions catalyzed by Cu/Cu2O nanowires were investigated. It was found that the recyclable core-shell structured Cu/Cu2O nanowires could be applied as a highly reactive catalysts for the cross-coupling reaction between aryl iodides and the cycloaddition of terminal alkynes and azides under ligand-free conditions. Furthermore, these results were the first report for the crosscoupling reaction and click reaction catalyzed by one-dimensional (1D) copper nanowires.

  6. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  7. Cost analysis of simulated base-catalyzed biodiesel production processes

    International Nuclear Information System (INIS)

    Tasić, Marija B.; Stamenković, Olivera S.; Veljković, Vlada B.

    2014-01-01

    Highlights: • Two semi-continuous biodiesel production processes from sunflower oil are simulated. • Simulations were based on the kinetics of base-catalyzed methanolysis reactions. • The total energy consumption was influenced by the kinetic model. • Heterogeneous base-catalyzed process is a preferable industrial technology. - Abstract: The simulation and economic feasibility evaluation of semi-continuous biodiesel production from sunflower oil were based on the kinetics of homogeneously (Process I) and heterogeneously (Process II) base-catalyzed methanolysis reactions. The annual plant’s capacity was determined to be 8356 tonnes of biodiesel. The total energy consumption was influenced by the unit model describing the methanolysis reaction kinetics. The energy consumption of the Process II was more than 2.5 times lower than that of the Process I. Also, the simulation showed the Process I had more and larger process equipment units, compared with the Process II. Based on lower total capital investment costs and biodiesel selling price, the Process II was economically more feasible than the Process I. Sensitivity analysis was conducted using variable sunflower oil and biodiesel prices. Using a biodiesel selling price of 0.990 $/kg, Processes I and II were shown to be economically profitable if the sunflower oil price was 0.525 $/kg and 0.696 $/kg, respectively

  8. Carrier gas effects on aluminum-catalyzed nanowire growth

    International Nuclear Information System (INIS)

    Ke, Yue; Hainey, Mel Jr; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-01-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor–solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor–solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH_4 adsorption thereby reducing vapor–solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH_4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. (paper)

  9. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    Science.gov (United States)

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  10. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  11. 'Click' dendritic phosphines: design, synthesis, application in Suzuki coupling, and recycling by nanofiltration

    NARCIS (Netherlands)

    Janssen, M.C.C.; Vogt, D.; Müller, C.

    2009-01-01

    A new synthetic route towards stable molecular-weight enlarged monodentate phosphine ligands via click chemistry was developed. These ligands were applied in the Pd-catalyzed Suzuki-Miyaura coupling of aryl halides and phenyl boronic acid. The supported systems show very similar activities compared

  12. Microwave-Enhanced Cross-Coupling Reactions Involving Alkynyltrifluoroborates with Aryl Bromides

    Directory of Open Access Journals (Sweden)

    George W. Kabalka

    2013-01-01

    Full Text Available Palladium-catalyzed alkynylation has emerged as one of the most reliable methods for the synthesis of alkynes which are often used in natural product syntheses and material science. An efficient method for coupling alkynyltrifluoroborates with various aryl bromides in the presence of a palladium catalyst has been developed using microwave irradiation. The microwave reactions are rapid and efficient.

  13. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation

    Science.gov (United States)

    Patman, Ryan L.; Chaulagain, Mani Raj; Williams, Vanessa M.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient intramolecular coupling to deliver cyclic allylic alcohol 8a. PMID:19173651

  14. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  15. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    Although generally considered competitive, the alkenylation and carbonyl olefination routes to alkenes are also complementary. In this Account, we focus on these approaches for the synthesis of regio- and stereodefined di- and trisubstituted alkenes and a few examples of tetrasubstituted alkenes. We also discuss the subset of regio- and stereodefined dienes and oligoenes that are conjugated. Pd-catalyzed cross-coupling using alkenyl metals containing Zn, Al, Zr, and B (Negishi coupling and Suzuki coupling) or alkenyl halides and related alkenyl electrophiles provides a method of alkenylation with the widest applicability and predictability, with high stereo- and regioselectivity. The requisite alkenyl metals or alkenyl electrophiles are most commonly prepared through highly selective alkyne addition reactions including (i) conventional polar additions, (ii) hydrometalation, (iii) carbometalation, (iv) halometalation, and (v) other heteroatom-metal additions. Although much more limited in applicability, the Heck alkenylation offers an operationally simpler, viable alternative when it is highly selective and satisfactory. A wide variety of carbonyl olefination reactions, especially the Wittig olefination and its modifications represented by the E-selective HWE olefination and the Z-selective Still-Gennari olefination, collectively offer the major alternative to the Pd-catalyzed alkenylation. However, the carbonyl olefination method fundamentally suffers from more limited stereochemical options and generally lower stereoselectivity levels than the Pd-catalyzed alkenylation. In a number of cases, however, very high (>98%) stereoselectivity levels have been attained in the syntheses of both E and Z isomers. The complementarity of the alkenylation and carbonyl olefination routes provide synthetic chemists with valuable options. While the alkenylation involves formation of a C-C single bond to a CC bond, the carbonyl olefination converts a CO bond to a CC bond. When a

  16. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  17. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  18. Facile Synthesis of N-Tosyl Aza-Baylis-Hillman Adducts of Acrylamide via a Pd-Catalyzed Hydration of Nitrile to Amide

    International Nuclear Information System (INIS)

    Kim, Eun Sun; Kim, Yu Mi; Kim, Jae Nyoung

    2010-01-01

    We developed an efficient palladium-catalyzed two-step protocol for the synthesis of N-tosyl aza-Baylis-Hillman adducts of acrylamide. The method involved the preparation of the corresponding Baylis-Hillman adducts of acrylonitrile and the following Pd-catalyzed hydration of nitrile with acetaldoxime. The Baylis-Hillman reaction, which involves the coupling of activated vinyl compounds with electrophiles under the catalytic influence of a tertiary amine, gives rise to adducts, so called Baylis-Hillman adducts, with a new stereocenter and has proven to be a very useful carbon-carbon bond-forming method in the synthesis of highly functionalized molecules. As the activated vinyl compounds, various compounds have been used in the Baylis-Hillman reaction including acrylates, acrylonitrile, vinyl ketones, vinyl sulfones and acrylamides. However, among the activated vinyl compounds acrylamide has not been used much for the synthesis of the corresponding Baylis-Hillman adducts due to its sluggish reactivity

  19. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    Science.gov (United States)

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    Science.gov (United States)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  1. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  2. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines.

    Science.gov (United States)

    Liu, Pei; Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2017-09-26

    We report here an unprecedented iron-catalyzed cycloaddition reaction of diazo surrogates with hexahydro-1,3,5-triazines, providing five-membered heterocycles in moderate to high yields under mild reaction conditions. This cycloaddition features C-N and C-C bond formation using a cheap iron catalyst. Importantly, different to our former report on a gold-catalyzed system, both donor/donor and donor/acceptor diazo substrates are tolerated in this iron-catalyzed protocol.

  3. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    Science.gov (United States)

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  4. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    International Nuclear Information System (INIS)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F.

    2013-01-01

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  5. Stability and dynamics of reactors with heterogeneously catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Eigenberger, G [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-12-01

    Our knowledge of causes and consequences of problems arising from instability and dynamic effects in reactors with heterogeneously catalyzed reactions has increased remarkably in recent years. Especially thermal effects, caused by the self-acceleration of an exothermic reaction in combination with heat and mass transport, are now well understood. In addition, kinetic effects, i.e. phenomena which have to be explained by the kinetic peculiarities of surface reactions, have attracted increasing interest. For both cases the state of the art will be reviewed, highlighting the physical and chemical causes of the observed phenomena.

  6. Some thoughts on the muon catalyzed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H.

    1986-01-01

    The design of the muon catalyzed fusion reactor is discussed. Some of the engineering challenges and critical research areas such as ..pi../sup -/ meson transport, beam entry single crystal window and coherent x-ray for stripping the muon from ..cap alpha.. particle, are considered. In order to reduce the tritium inventory and neutron wall loading, use of the laser technique for manipulating the d-t mixture is considered. The heterogeneous d-t mixture using the droplet or jet is discussed. 39 refs., 6 figs.

  7. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  8. Copper-catalyzed decarboxylative trifluoromethylation of allylic bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Altman, Ryan A

    2013-11-01

    The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.

  9. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...... no effect on their reactivity: both electron-rich and electron-poor aryl chlorides and bromides or triflates led to good yields. Ortho-substituted aryl halides and heteroaryl halides, however, did not undergo the title reaction....

  10. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  11. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  12. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  13. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  14. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, Roman Vladimirovich [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a β-hydrogen in the vinylic halide results in β-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the α-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  15. Ruthenium-Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Madsen, Robert

    2017-01-01

    Dehydrogenative decarbonylation of a primary alcohol involves the release of both dihydrogen and carbon monoxide to afford the one-carbon shorter product. The transformation has now been achieved with a ruthenium-catalyzed protocol by using the complex Ru(COD)Cl2 and the hindered monodentate ligand...... P(o-tolyl)3 in refluxing p-cymene. The reaction can be applied to both benzylic and long chain linear aliphatic alcohols. The intermediate aldehyde can be observed during the transformation, which is therefore believed to proceed through two separate catalytic cycles involving first dehydrogenation...... of the alcohol and then decarbonylation of the resulting aldehyde....

  16. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  17. Electrochemical Cobalt-Catalyzed C-H Activation.

    Science.gov (United States)

    Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz

    2018-06-19

    Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enzymatically-Catalyzed Polymerization (ECP)- Derived Polymer Electrolyte for Rechargeable Li-Ion Batteries

    National Research Council Canada - National Science Library

    Chua, David

    1998-01-01

    Report developed under SBIR contract covers the syntheses and electrochemical characterizations of novel polymer electrolytes derived from compounds synthesized via enzyme-catalyzed polymerization(ECP) techniques...

  19. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. They demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, they developed conditions to directly arylate these heterocycles with aryl halides. The initial conditions that used PCy{sub 3} as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (Phoban) that also facilitated the coupling of aryl bromides. They then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, they anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.

  20. AB/sub 5/-catalyzed hydrogen evolution cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D E; Sawada, T; Shepard, V R; Tsujikawa, Y

    1984-01-01

    The AB/sub 5/ metal compounds are highly efficient hydrogen evolution electrocatalysts in alkaline electrolyte. Three types of AB/sub 5/-catalyzed cathode structures were made, using the hydride-forming AB/sub 5/ compounds in particulate form. Plastic-bonded cathodes containing >90 w/o AB/sub 5/ (finished-weight basis) were the most efficient, giving hydrogen evolution overpotentials (/eta/ /SUB H2/ ) of about 0.05 V at 200 mA cm/sup -2/. However, they tended to swell and shed material during electrolysis. Pressed, sintered cathodes containing 40-70 w/o catalyst in a nickel binder gave /eta/ /SUB H2/ about0.08 V; catalyst retention was excellent. Porous, sintered cathode coatings were made with 30-70 w/o AB/sub 5/ catalyst loadings. Their overpotentials were similar to those of the pressed, sintered cathodes. However, at catalyst loadings below about 40 w/o, high overpotentials characteristic of the nickel binder were observed. The structural and electrochemical properties of the three AB/sub 5/-catalyzed cathodes are discussed.

  1. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  3. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  4. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  5. Acid base catalyzed transesterification kinetics of waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P.; Rajvanshi, Shalini [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee (India)

    2011-01-15

    The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 C and 50 C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H{sub 2}SO{sub 4} and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min{sup -1} and 0.0078 min{sup -1} respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield. (author)

  6. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  7. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  8. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France)] [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Berge, Mathieu; Roques, Christine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France); Bergel, Alain [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Delia, Marie-Line, E-mail: marieline.delia@ensiacet.f [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France)

    2010-07-01

    Pseudomonas aeruginosa has already been shown to catalyze oxidation processes in the anode compartment of a microbial fuel cell. The present study focuses on the reverse capacity of the bacterium, i.e. reduction catalysis. Here we show that P. aeruginosa is able to catalyze the electrochemical reduction of oxygen. The use of cyclic voltammetry showed that, for a given range of potential values, the current generated in the presence of bacteria could reach up to four times the current obtained without bacteria. The adhesion of bacteria to the working electrode was necessary for the catalysis to be observed but was not sufficient. The electron transfer between the working electrode and the bacteria did not involve mediator metabolites like phenazines. The transfer was by direct contact. The catalysis required a certain contact duration between electrodes and live bacteria but after this delay, the metabolic activity of cells was no longer necessary. Membrane-bound proteins, like catalase, may be involved. Various strains of P. aeruginosa, including clinical isolates, were tested and all of them, even catalase-defective mutants, presented the same catalytic property. P. aeruginosa offers a new model for the analysis of reduction catalysis and the protocol designed here may provide a basis for developing an interesting tool in the field of bacterial adhesion.

  9. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  10. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  11. Development of target capsules for muon catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Watts, K.D.; Jones, S.E.; Caffrey, A.J.

    1983-01-01

    A series of Muon Catalyzed Fusion experiments has been conducted at the Los Alamos Meson Physics Facility to determine how many fusion reactions one muon would catalyze under various temperature, pressure, contamination, and tritium concentration conditions. Target capsules to contain deuterium and tritium at elevated temperatures and pressures were engineered for a maximum temperature of 540 K (512 0 F) and a maximum pressure of 103 MPa (15,000 psig). Experimental data collected with these capsules indicated that the number of fusion reactions per muon continued to increase with temperature up to the 540-K design limit. Theory had indicated that the reaction rate should peak at approximately 540 K, but this was not confirmed during the experiments. A second generation of capsules which have a maximum design temperature of 800 K (980 0 F) and a maximum design pressure of 103 MPa (15,000 psig) has now been engineered. These new capsules will be used to further study the muon catalysis rate versus deuterium-tritium mixture temperature

  12. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  14. A Study of Fuel and Reactor Design for Platinum Nanoparticle Catalyzed Microreactors

    Directory of Open Access Journals (Sweden)

    Dylan McNally

    2015-01-01

    Full Text Available Typical microcombustion-based power devices entail the use of catalyst to sustain combustion in less than millimeter scale channels. This work explores the use of several other candidate fuels for ~8 nm diameter Pt particle catalyzed combustion within 800 μm channel width cordierite substrates. The results demonstrate while commercial hydrocarbon fuels such as methane, propane, butane, and ethanol can be used to sustain catalytic combustion, room temperature ignition was only observed using methanol-air mixtures. Fuels, other than methanol, required preheating at temperatures >200°C, yet repeated catalytic cycling similar to methanol-air mixtures was demonstrated. Subsequently, a new reactor design was investigated to couple with thermoelectric generators. The modified reactor design enabled ignition of methanol-air mixtures at room temperature with the ability to achieve repeat catalytic cycles. Preliminary performance studies achieved a maximum temperature difference ΔT of 55°C with a flow rate of 800 mL/min. While the temperature difference indicates a respectable potential for power generation, reduced exhaust temperature and improved thermal management could significantly enhance the eventual device performance.

  15. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    Science.gov (United States)

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion.

  16. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    Science.gov (United States)

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  19. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  20. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to alkynes.

    Science.gov (United States)

    Li, Changkun; Grugel, Christian P; Breit, Bernhard

    2016-04-30

    A highly efficient rhodium-catalyzed chemo- and regioselective addition of β-ketoacids to alkynes is reported. Applying a Rh(i)/(S,S)-DIOP catalyst system, γ,δ-unsaturated ketones were prepared with exclusively branched selectivity under mild conditions. This demonstrates that readily available alkynes can be an alternative entry to allyl electrophiles in transition-metal catalyzed allylic alkylation reactions.

  1. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  2. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is

  3. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  4. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  5. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  6. Urchin-like TiO₂@C core-shell microspheres: coupled synthesis and lithium-ion battery applications.

    Science.gov (United States)

    Liu, Zhenyu; Liu, Jing; Liu, Junfeng; Wang, Li; Zhang, Guoxin; Sun, Xiaoming

    2014-05-21

    Carbon coated urchin-like TiO2 microspheres were prepared through coupled hydrolysis of titanium tetrachloride and catalyzed carbonization of glucose. Carbon coating endowed the composite with unusual structural stability at high temperature and reasonable Li-ion battery performance.

  7. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides : The coupling between transport and phosphorylation in inside-out vesicles

    NARCIS (Netherlands)

    Lolkema, Juke S.; Robillard, George T.

    The bacterial phosphotransferase systems are believed to catalyze the concomitant transport and phosphorylation of hexoses and hexitols. The transport is from the outside to the inside of the cell. An absolute coupling between transport and phosphorylation has however been questioned in the

  8. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions

    NARCIS (Netherlands)

    Birkholz, M.N.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2009-01-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite

  9. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  10. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  11. Construction of Pyrrolo[1,2-a]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Base-Promoted Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Fan, Zili; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-09-16

    A cobalt(III)-catalyzed cross-coupling reaction of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. The prepared 2-enaminylated indoles could be conveniently converted into pyrrolo[1,2-a]indoles, which are an important class of compounds in medicinal chemistry.

  12. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  13. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  14. FBH1 Catalyzes Regression of Stalled Replication Forks

    Directory of Open Access Journals (Sweden)

    Kasper Fugger

    2015-03-01

    Full Text Available DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

  15. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  16. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Decomposition of peracetic acid catalyzed by vanadium complexes

    International Nuclear Information System (INIS)

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-01-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0 2 and small amounts of CO 2 , the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO 2 is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V 5+ ions and peracetic acid and the slow conversion of this complex into the observed products

  18. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  20. Hemoglobin-catalyzed fluorometric method for the determination of glutathione

    Science.gov (United States)

    Wang, Ruiqiang; Tang, Lin; Li, Hua; Wang, Yi; Gou, Rong; Guo, Yuanyuan; Fang, Yudong; Chen, Fengmei

    2016-01-01

    A new spectrofluorometric method for the determination of glutathione based on the reaction catalyzed by hemoglobin was reported. The reaction product gave a highly fluorescent intensity with the excitation and emission wavelengths of 320.0 nm and 413.0 nm, respectively. The optimum experimental conditions were investigated. Results showed that low concentration glutathione enhanced the fluorescence intensity significantly. The line ranges were 1.0 × 10-6-1.0 × 10-5 mol L-1 of glutathione and 6.0 × 10-10 mol L-1-1.0 × 10-8 mol L-1, respectively. The detection limit was calculated to be 1.1 × 10-11 mol L-1. The recovery test by the standard addition method gave values in the range of 90.78%-102.20%. This method was used for the determination of glutathione in synthetic and real samples with satisfactory results.

  1. Glycolysis of poly (3-hydroxybutyrate) catalyzed by an enzyme system

    International Nuclear Information System (INIS)

    Campos, T.F.; Mano, V.

    2010-01-01

    In this work we report the studies of PHB glycolysis catalyzed by lipase Amano PS (Pseudomonas cepacia) in the presence of 1,2-ethanediol (ethylene glycol). The reactions were performed in toluene:dichloroethane 3:1 (v/v) at 60 deg C, varying reaction time and concentration of ethylene glycol. PHB and the products of glycolysis (polyols) were characterized by FTIR, 1 H-NMR, and TG. The FTIR spectra of polyols showed no significant change compared to the spectrum of PHB. The 1 H-NMR spectra of the products of glycolysis showed signs of interest between 3 and 4.7 ppm, related to the ethylene glycol protons inserted in the polymer chain. By analyzing the thermograms we observed that the polyols are more thermally stable than PHB. (author)

  2. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  3. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  4. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    Science.gov (United States)

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  5. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  6. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  7. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  8. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    Science.gov (United States)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  9. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  10. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  11. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  12. Stochastic Simulation of Isotopic Exchange Mechanisms for Fe(II)-Catalyzed Recrystallization of Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Piotr [Energy; Institute; Rosso, Kevin M. [Pacific Northwest

    2017-06-15

    Understanding Fe(II)-catalyzed transformations of Fe(III)- (oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014, 48, 11302-11311; Joshi and Gorski Environ. Sci. Technol. 2016, 50, 7315-7324), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ~10-5 Fe nm-2 s-1, commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.

  13. Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration.

    Science.gov (United States)

    Xu, Huan-Yan; Prasad, Murari; Liu, Yu

    2009-06-15

    Mineral-catalyzed Fenton-like system has been found to be effective for the discoloration of dyeing wastewater. In our present study, schorl has been successfully developed as a novel heterogeneous catalyst for discoloration of an active commercial dye, Argazol blue (BF-BR), in an aqueous solution. Through a number of batch discoloration experiments under various conditions, it was found that the reactivity of the system increased by, respectively, increasing schorl dosage, temperature, hydrogen peroxide starting concentration and by decreasing the pH. At the condition of pH 2, T=55 degrees C, [BF-BR](0)=200mg/L, [H(2)O(2)](0)=48.5 mmol/L and schorl dosage=10 g/L, 100% of discoloration ratio can be achieved in less than 4 min, and 72% of total organic carbon (TOC) can be removed in less than 200 min. The reaction kinetics analysis shows that the discoloration of BF-BR follows the first-order kinetics. The schorl samples after BF-BR discoloration was tested by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Scanning electron microscope (SEM) and the results rule out the possibility of formation of new solid phases during BF-BR discoloration. The content of Fe ion leaching in the solution was also measured using inductively coupling plasma-atomic emission spectra (ICP-AES). A mechanism proposed herein indicates adsorption and Fenton-like reaction (heterogeneous and homogeneous) are responsible for the discoloration of BF-BR.

  14. Schorl: A novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huanyan, E-mail: xhy7587@yahoo.com.cn [College of Material Science and Engineering, Harbin University of Science and Technology, Harbin, 150040 (China); Prasad, Murari [Environmental Chemistry Division, Advanced Materials and Processing Research Institute (C.S.I.R.), Hoshangabad Road, Habibganj Naka, Bhopal 462006 (India); Liu Yu [College of Zijin Mining Engineering, Fuzhou University, Fuzhou, 350108 (China)

    2009-06-15

    Mineral-catalyzed Fenton-like system has been found to be effective for the discoloration of dyeing wastewater. In our present study, schorl has been successfully developed as a novel heterogeneous catalyst for discoloration of an active commercial dye, Argazol blue (BF-BR), in an aqueous solution. Through a number of batch discoloration experiments under various conditions, it was found that the reactivity of the system increased by, respectively, increasing schorl dosage, temperature, hydrogen peroxide starting concentration and by decreasing the pH. At the condition of pH 2, T = 55 {sup o}C, [BF-BR]{sub 0} = 200 mg/L, [H{sub 2}O{sub 2}]{sub 0} = 48.5 mmol/L and schorl dosage = 10 g/L, 100% of discoloration ratio can be achieved in less than 4 min, and 72% of total organic carbon (TOC) can be removed in less than 200 min. The reaction kinetics analysis shows that the discoloration of BF-BR follows the first-order kinetics. The schorl samples after BF-BR discoloration was tested by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Scanning electron microscope (SEM) and the results rule out the possibility of formation of new solid phases during BF-BR discoloration. The content of Fe ion leaching in the solution was also measured using inductively coupling plasma-atomic emission spectra (ICP-AES). A mechanism proposed herein indicates adsorption and Fenton-like reaction (heterogeneous and homogeneous) are responsible for the discoloration of BF-BR.

  15. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  16. Base-catalyzed depolymerization of lignin : separation of monomers

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States); Chornet, E. [Sherbrooke Univ., PQ (Canada). Dept. of Chemical Engineering; National Renewable Energy Laboratory, Golden, CO (United States)

    2007-12-15

    Biofuels produced from residual lignocellulosic biomass range from ethanol to biodiesel. The use of lignin for the production of alternate biofuels and green chemicals has been studied with particular emphasis on the structure of lignin and its oxyaromatic nature. In an effort to fractionate lignocellulosic biomass and valorize specific constitutive fractions, the authors developed a strategy for the separation of 12 added value monomers produced during the hydrolytic base catalyzed depolymerization (BCD) of a Steam Exploded Aspen Lignin. The separation strategy was similar to vanillin purification to obtain pure monomers, but combining more steps after the lignin depolymerization such as acidification, batch liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. The purpose was to develop basic data for an industrial size process flow diagram, and to evaluate both the monomer losses during the separation and the energy requirements. Experimentally testing of LLE, vacuum distillation and flash LC in the laboratory showed that batch vacuum distillation produced up to 4 fractions. Process simulation revealed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, of which 3 require further chromatography and crystallization operations for purification. 22 refs., 4 tabs., 8 figs.

  17. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Stereochemical course of enzyme-catalyzed aminopropyl transfer: spermidine synthase

    International Nuclear Information System (INIS)

    Kullberg, D.W.; Orr, G.R.; Coward, J.K.

    1986-01-01

    The R and S enantionmers of S-adenosyl-3-[ 2 H]3-(methylthio)-1-propylamine (decarboxylated S-adenosylmethionine), previously synthesized in this laboratory, were incubated with [1,4- 2 H 4 ]-putrescine in the presence of spermidine synthase from E. coli. The resulting chiral [ 2 H 5 ]spermidines were isolated and converted to their N 1 ,N 7 -dibocspermidine-N 4 -(1S,4R)-camphanamides. The derivatives were analyzed by 500 MHz 1 H-NMR and the configuration of the chiral center assigned by correlation with the spectra of synthetic chiral [ 2 H 3 ]dibocspermidine camphanamide standards. The enzyme-catalyzed aminopropyl transfer was shown to occur with net retention of configuration, indicative of a double-displacement mechanism. This result concurs with that of a previous steady-state kinetics study of spermidine synthase isolated from E. coli, but contradicts the single-displacement mechanism suggested by a stereochemical analysis of chiral spermidines biosynthesized in E. coli treated with chirally deuterated methionines. It also indicates that this aminopropyltransferase is mechanistically distinct from the methyltransferases, which have been shown to act via a single-displacement mechanism (net inversion at -CH 3 ) in all cases studied to date

  19. Fluorinated cobalt for catalyzing hydrogen generation from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Akdim, O.; Demirci, U.B.; Brioude, A.; Miele, P. [Laboratoire des Multimateriaux et Interfaces, UMR 5615 CNRS Universite Lyon 1, Universite de Lyon, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2009-07-15

    The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH{sub 4}). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209-12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. (author)

  20. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  1. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    Science.gov (United States)

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    Science.gov (United States)

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  5. A review on production of biodiesel using catalyzed transesterification

    Science.gov (United States)

    Dash, Santosh Kumar; Lingfa, Pradip

    2017-07-01

    Biodiesel is arguably an important fuel for compression ignition engine as far as sustainability and environmental issues are concerned. It can be produced from both edible and non-edible vegetable oils and animal fats. Owing to higher viscosity, the utilization of crude vegetable oil is not advisable as it results engine failure. For reducing the viscosity and improving the other fuel characteristics comparable to that of diesel fuel, different approaches have been developed. However, transesterification process is very reliable, less costly and easy method compared to other methods. Due to more free fatty acids content in most of the non-edible vegetable oils, a pretreatment is employed to convert the acids to ester, then transesterified with suitable alcohol. Primarily yield of biodiesel depends upon the molar ratio of oil/alcohol, reaction temperature, reaction time, amount of catalyst, type of catalyst, stirring speed. Both homogeneous and heterogeneous catalysts are used for synthesis purposes. Heterogeneous catalysts are less costly, environmental benign and can be derived from natural resources. Enzymatic catalysts are more environmental benign than heterogeneous catalysts but are costly, which hinders its widespread research and utilization. This article reviews the results of prominent works and researches in the field of production of biodiesel via catalyzed transesterification process.

  6. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  7. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  8. Out of the fog: Catalyzing integrative capacity in interdisciplinary research.

    Science.gov (United States)

    Piso, Zachary; O'Rourke, Michael; Weathers, Kathleen C

    2016-04-01

    Social studies of interdisciplinary science investigate how scientific collaborations approach complex challenges that require multiple disciplinary perspectives. In order for collaborators to meet these complex challenges, interdisciplinary collaborations must develop and maintain integrative capacity, understood as the ability to anticipate and weigh tradeoffs in the employment of different disciplinary approaches. Here we provide an account of how one group of interdisciplinary fog scientists intentionally catalyzed integrative capacity. Through conversation, collaborators negotiated their commitments regarding the ontology of fog systems and the methodologies appropriate to studying fog systems, thereby enhancing capabilities which we take to constitute integrative capacity. On the ontological front, collaborators negotiated their commitments by setting boundaries to and within the system, layering different subsystems, focusing on key intersections of these subsystems, and agreeing on goals that would direct further investigation. On the methodological front, collaborators sequenced various methods, anchored methods at different scales, validated one method with another, standardized the outputs of related methods, and coordinated methods to fit a common model. By observing the process and form of collaborator conversations, this case study demonstrates that social studies of science can bring into critical focus how interdisciplinary collaborators work toward an integrated conceptualization of study systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  10. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2012-01-01

    Full Text Available Linoleic acid (LA is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435. This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12-10(13-monoepoxy 12(9-octadecanoic acid (MEOA was optimized using D-optimal design. At optimum conditions, higher yield% (82.14 and medium oxirane oxygen content (OOC (4.91% of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP, flash point (FP, viscosity index (VI, and oxidative stability (OT were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively.

  11. Sticking in muon catalyzed D-T fusion

    International Nuclear Information System (INIS)

    Petitjean, C.; Sherman, R.H.; Bossy, H.; Daniel, H.; Hartmann, F.J.; Neumann, W.; Schmidt, G.; Egidy, T. von

    1986-10-01

    The issue of μα sticking after muon catalyzed DT fusion is controversial, since a number of theoretical and experimental results came out recently with sticking values ω s varying over a large range. After a review of this situation, our measurements at SIN and methods of sticking analysis from neutron time structures are presented in detail. The important point is the correct understanding of the experimentally observed time distributions. At high density (liquid DT) we find, after correction for other fusion channels, for DT sticking ω s (0.45 +- 0.05)%, not dependent on tritium concentration c t and in accordance with our X-ray observations. At low density (DT gas, φ 3% - 8%) our preliminary result is 0.50 +- 0.10%, giving a ratio 1.1 +- 0.2 in agreement with conventional theories, but strongly disagreeing with the LAMPF experiment of S.E. Jones et al. Our result sets the maximum fusion output per muon to less than 220 +- 20. (author)

  12. Thinking Differently: Catalyzing Innovation in Healthcare and Beyond.

    Science.gov (United States)

    Samet, Kenneth A; Smith, Mark S

    2016-01-01

    Convenience, value, access, and choice have become the new expectations of consumers seeking care. Incorporating these imperatives and navigating an expanded competitive landscape are necessary for the success of healthcare organizations-today and in the future-and require thinking differently than in the past.Innovation must be a central strategy for clinical and business operations to be successful. However, the currently popular concept of innovation is at risk of losing its power and meaning unless deliberate and focused action is taken to define it, adopt it, embrace it, and embed it in an organization's culture. This article details MedStar Health's blueprint for establishing the MedStar Institute for Innovation (MI2), which involved recognizing the sharpened need for innovation, creating a single specific entity to catalyze innovation across the healthcare organization and community, discovering the untapped innovation energy already residing in its employee base, and moving nimbly into the white space of possibility.Drawing on MedStar's experience with MI2, we offer suggestions in the following areas for implementing an innovation institute in a large healthcare system:We offer healthcare and business leaders a playbook for identifying and unleashing innovation in their organizations, at a time when innovation is at an increased risk of being misunderstood or misdirected but remains absolutely necessary for healthcare systems and organizations to flourish in the future.

  13. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation.

    Science.gov (United States)

    Shi, Huanhuan; Peng, Jianbiao; Li, Jianhua; Mao, Liang; Wang, Zunyao; Gao, Shixiang

    2016-11-05

    As active agents in cleaning and disinfecting products, antimicrobials have been widely spread in the environment and have drawn extensive attention as potential threats to the ecological system and human health. In this study, the laccase-catalyzed removal of two emerging antimicrobials, chlorophene (CP) and dichlorophen (DCP), was investigated under simulated environmental conditions. Intrinsic reaction kinetics showed that the removal of CP and DCP followed second-order reaction kinetics, first-order with respect to both the enzyme and the substrate concentration. It was also found that fulvic acid could suppress the transformation of CP and DCP by reversing the oxidation reactions through its action as a scavenger of the free radical intermediates produced from reactions between laccase and the substrates. Several reaction products were identified by a quadrupole time-of-flight mass spectrometer, and detailed reaction pathways were proposed. For both CP and DCP, direct polymerization was the principal pathway, and the coupling patterns were further corroborated based on molecular modeling. The nucleophilic substitution of chlorine by the hydroxyl group was observed, and further oxidation products capable of coupling with each other were also found. Additionally, toxicity evaluation tests using Scenedesmus obliquus confirmed that the toxicity of CP and DCP was effectively eliminated during the reaction processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A cell-free fluorometric high-throughput screen for inhibitors of Rtt109-catalyzed histone acetylation.

    Directory of Open Access Journals (Sweden)

    Jayme L Dahlin

    Full Text Available The lysine acetyltransferase (KAT Rtt109 forms a complex with Vps75 and catalyzes the acetylation of histone H3 lysine 56 (H3K56ac in the Asf1-H3-H4 complex. Rtt109 and H3K56ac are vital for replication-coupled nucleosome assembly and genotoxic resistance in yeast and pathogenic fungal species such as Candida albicans. Remarkably, sequence homologs of Rtt109 are absent in humans. Therefore, inhibitors of Rtt109 are hypothesized as potential and minimally toxic antifungal agents. Herein, we report the development and optimization of a cell-free fluorometric high-throughput screen (HTS for small-molecule inhibitors of Rtt109-catalyzed histone acetylation. The KAT component of the assay consists of the yeast Rtt109-Vps75 complex, while the histone substrate complex consists of full-length Drosophila histone H3-H4 bound to yeast Asf1. Duplicated assay runs of the LOPAC demonstrated day-to-day and plate-to-plate reproducibility. Approximately 225,000 compounds were assayed in a 384-well plate format with an average Z' factor of 0.71. Based on a 3σ cut-off criterion, 1,587 actives (0.7% were identified in the primary screen. The assay method is capable of identifying previously reported KAT inhibitors such as garcinol. We also observed several prominent active classes of pan-assay interference compounds such as Mannich bases, catechols and p-hydroxyarylsulfonamides. The majority of the primary active compounds showed assay signal interference, though most assay artifacts can be efficiently removed by a series of straightforward counter-screens and orthogonal assays. Post-HTS triage demonstrated a comparatively small number of confirmed actives with IC50 values in the low micromolar range. This assay, which utilizes five label-free proteins involved in H3K56 acetylation in vivo, can in principle identify compounds that inhibit Rtt109-catalyzed H3K56 acetylation via different mechanisms. Compounds discovered via this assay or adaptations thereof could

  15. Degradation of sulfadimethoxine catalyzed by laccase with soybean meal extract as natural mediator: Mechanism and reaction pathway.

    Science.gov (United States)

    Liang, Shangtao; Luo, Qi; Huang, Qingguo

    2017-08-01

    Natural laccase-mediator systems have been well recognized as an eco-friendly and energy-saving approach in environmental remediation, whose further application is however limited by the high cost of natural mediators and relatively long treatment time span. This study evaluated the water extract of soybean meal, a low-cost compound system, in mediating the laccase catalyzed degradation of a model contaminant of emerging concern, sulfadimethoxine (SDM), and demonstrated it as a promising alternative mediator for soil and water remediation. Removal of 73.3% and 65.6% was achieved in 9 h using soybean meal extract (SBE) as the mediating system for laccase-catalyzed degradation of sulfadimethoxine at the concentration of 1 ppm and 10 ppm, respectively. Further degradation of sulfadimethoxine was observed with multiple SBE additions. Using SBE as mediator increased the 9-h removal of SDM at 1 ppm initial concentration by 52.9%, 49.4%, and 36.3% in comparison to the system mediated by 1-Hydroxybenzotriazole (HBT), p-Coumaric acid (COU) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), respectively. With the detection of stable coupling products formed with radical scavenger (5,5-Dimethyl-1-pyrroline N-oxide, DMPO), three phenolic compounds (vanillin, apocynin, and daidzein) in SBE were confirmed to serve as mediators for Trametes versicolor laccase. Reaction pathways were proposed based on the results of High Resolution Mass Spectrometry. SO 2 excursion happened during SDM transformation, leading to elimination of antimicrobial activity. Therefore, as a natural, phenol rich, and affordable compound system, the future application of SBE in wastewater and soil remediation is worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  17. Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia.

    Science.gov (United States)

    Wang, Liliang; Kong, Lingbing; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2015-08-11

    Gold-catalyzed hydroimination of terminal alkynes, giving rise to anti-Markovnikov adducts concomitant with unstable Markovnikov adducts is described. The elementary step can be applied for the construction of pyridine derivatives from ammonia and alkynes.

  18. Synthesis of pyrrolo(2,3-b)quinolines by palladium-catalyzed heteroannulation

    International Nuclear Information System (INIS)

    Gee, Moon Bae; Lee, Won Jung; Yum, Eul Kgun

    2003-01-01

    Palladium-catalyzed heteroannulation of 2-amino-3-iodoquinoline derivatives and 1-trimethylsilyl internal alkynes provided highly regioselective pyrrolo(2,3-b)quinolines with trimethylsilyl group next to the nitrogen atom in the pyrrole ring

  19. Heterogeneously catalyzed reactive extraction for biomass valorization into chemicals and fuels

    NARCIS (Netherlands)

    Ordomskiy, V.; Khodakov, A.Y.; Nijhuis, T.A.; Schouten, J.C.

    2015-01-01

    This paper focuses on the heterogeneously catalyzed reactive extraction and separation in reaction steps in organic and aqueous phases during the transformation of biomass derived products. Two approaches are demonstrated for decomposing and preserving routes for biomass transformation into valuable

  20. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  1. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  2. Heterogeneous base-catalyzed methanolysis of vegetable oils: State of art

    Directory of Open Access Journals (Sweden)

    Miladinović Marija R.

    2010-01-01

    Full Text Available Today, homogeneous base-catalyzed methanolysis is most frequently used method for industrial biodiesel production. High requirements for the quality of feedstocks and the problems related to a huge amount of wastewaters have led to the development of novel biodiesel production technologies. Among them, the most important is heterogeneous base-catalyzed methanolysis, which has been intensively investigated in the last decade in order to develop new catalytic systems, to optimize the reaction conditions and to recycle catalysts. These studies are a base for developing continuous biodiesel production on industrial scale in near future. The present work summarizes up-to-date studies on biodiesel production by heterogeneous base-catalyzed methanolysis. The main goals were to point out the application of different base compounds as catalysts, the methods of catalyst preparation, impregnation on carriers and recycling as well as the possibilities to improve existing base-catalyzed biodiesel production processes and to develop novel ones.

  3. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  4. THE LATEST ADVANCEMENTS IN THE ACYLATION REACTIONS VIA CROSS-DEHYDROGENATIVE COUPLING AND/OR METAL CATALYSTS

    Directory of Open Access Journals (Sweden)

    Soykan Ağar

    2017-12-01

    Full Text Available There are quite many examples in the scientific literature regarding the acylation reactions, especially the metal-catalyzed acylation reactions, metal-free acylation reactions, metal-catalyzed acylation via cross-dehydrogenative coupling (CDC reactions and metal-free acylation via cross-dehydrogenative coupling (CDC reactions. In this review paper, the most important examples of these domains were brought together and their mechanisms were exhibited in a clear, chronological format. Following these, the best example study towards green chemistry with a metal-free and high-yielding route was mentioned and discussed to demonstrate what has achieved in this field regarding the new acylation reaction mechanisms using the advantages of cross-dehydrogenative coupling (CDC reactions. The most prominent studies regarding these domains have been examined thoroughly and the latest progress in this field was explained in detail.

  5. Azobenzene dye-coupled quadruply hydrogen-bonding modules as colorimetric indicators for supramolecular interactions

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2012-04-01

    Full Text Available The facile coupling of azobenzene dyes to the quadruply hydrogen-bonding modules 2,7-diamido-1,8-naphthyridine (DAN and 7-deazaguanine urea (DeUG is described. The coupling of azobenzene dye 2 to mono-amido DAN units 4, 7, and 9 was effected by classic 4-(dimethylaminopyridine (DMAP-catalyzed peptide synthesis with N-(3-dimethylaminopropyl-N’-ethyl carbodiimide hydrochloride (EDC as activating agent, affording the respective amide products 5, 8, and 10 in 60–71% yield. The amide linkage was formed through either the aliphatic or aromatic ester group of 2, allowing both the flexibility and absorption maximum to be tuned. Azobenzene dye 1 was coupled to the DeUG unit 11 by Steglich esterification to afford the product amide 12 in 35% yield. Alternatively, azobenzene dye 16 underwent a room-temperature copper-catalyzed azide–alkyne Huisgen cycloaddition with DeUG alkyne 17 to give triazole 18 in 71% yield. Azobenzene coupled DAN modules 5, 8, and 10 are bright orange–red in color, and azobenzene coupled DeUG modules 12 and 18 are orange–yellow in color. Azobenzene coupled DAN and DeUG modules were successfully used as colorimetric indicators for specific DAN–DeUG and DAN–UPy (2-ureido-4(1H-pyrimidone quadruply hydrogen-bonding interactions.

  6. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  7. CuO-Nanoparticles Catalyzed Synthesis of 1,4-Disubstituted-1,2,3 ...

    Indian Academy of Sciences (India)

    John Paul Raj

    2018-04-13

    Apr 13, 2018 ... has been developed for the synthesis of 1,2,3-triazoles. A library of 1 ... Kuang et al., described Cu-catalyzed synthesis of 1H-. 1,2,3-triazoles from 1 ..... Tornøe C W, Christensen C and Meldal M 2002 Peptido- triazoles on solid ... 2015 Copper-catalyzed [3+2] cycloaddition/oxidation reactions between ...

  8. Influence of the catalyzer in the esterification of the sugarcane bagasse fibers

    International Nuclear Information System (INIS)

    Maia, Tatiana F.; Mulinari, Daniella R.; Suzuki, Paulo A.

    2011-01-01

    In this work chemical modification of the sugarcane bagasse fibers by anhydride system using amount Abstract: In this work chemical modification of the sugarcane bagasse fibers by anhydride system using amount different of catalyze was studied. The chemical modification of the fibers was evaluated by techniques of X-Ray Diffractometry (XRD) and Infrared Spectrophotometer (FTIR). Results showed that the amount of catalyze influenced in the chemical modification of the fibers. (author)

  9. LEWIS ACID CATALYZED FORMATION OF TETRAHYDROPYRANS IN IONIC LIQUID

    Science.gov (United States)

    Tetrahydropyrans are integral moieties in innumerable natural products and have inspired the development of a variety of different methodologies. A Prins-type cyclization involving the coupling of a homoallylic alcohol and an aldehyde in the presence of catalytic scandium triflat...

  10. A review on biodiesel production using catalyzed transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Dennis Y.C.; Wu, Xuan; Leung, M.K.H. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2010-04-15

    Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats. (author)

  11. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  12. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  13. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  14. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  15. Suzuki-Miyaura cross-coupling reactions in aqueous media: Green and sustainable syntheses of biaryls

    KAUST Repository

    Polshettiwar, Vivek

    2010-02-28

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally catalyzed by soluble palladium complexes with various ligands. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance. This Review will summarize various recently developed significant methods by which the Suzuki-Miyaura coupling was conducted in aqueous media, and analyzes if they are "real green" protocols. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Suzuki-Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls.

    Science.gov (United States)

    Polshettiwar, Vivek; Decottignies, Audrey; Len, Christophe; Fihri, Aziz

    2010-05-25

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally catalyzed by soluble palladium complexes with various ligands. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance. This Review will summarize various recently developed significant methods by which the Suzuki-Miyaura coupling was conducted in aqueous media, and analyzes if they are "real green" protocols.

  17. Conversation, coupling and complexity

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Abney, Drew; Bahrami, Bahador

    We investigate the linguistic co-construction of interpersonal synergies. By applying a measure of coupling between complex systems to an experimentally elicited corpus of joint decision dialogues, we show that interlocutors’ linguistic behavior displays increasing signature of multi-scale coupling......, known as complexity matching, over the course of interaction. Furthermore, we show that stronger coupling corresponds with more effective interaction, as measured by collective task performance....

  18. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  19. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat; Emwas, Abdul-Hamid M.; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2016-01-01

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  20. Highly Stereoselective Gold-Catalyzed Coupling of Diazo Reagents and Fluorinated Enol Silyl Ethers to Tetrasubstituted Alkenes.

    Science.gov (United States)

    Liao, Fu-Min; Cao, Zhong-Yan; Yu, Jin-Sheng; Zhou, Jian

    2017-02-20

    We report a highly stereoselective synthesis of all-carbon or fluorinated tetrasubstituted alkenes from diazo reagents and fluorinated enol silyl ethers, using C-F bond as a synthetic handle. Cationic Au I catalysis plays a key role in this reaction. Remarkable fluorine effects on the reactivity and selectivity was also observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Suzuki coupling reactions catalyzed by poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in aqueous solution

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available InIn this work, it was investigated to use of poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in the Suzuki reaction between phenylboronic acid and aryl halides in aqueous solution. The nanoparticles were isolated and re-used several times with low loss of activity.

  2. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi

    2008-01-01

    . The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally......The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph......, the low conversion observed with some catalysts was found to be caused by inactivation due to weak binding of the ligand to Pd(0). Adding monodentate PPh3 alleviated the precipitation problem without deteriorating the enantioselectivity and led to one of the most effective catalytic systems to date....

  3. Oxidative C-H Activation Approach to Pyridone and Isoquinolone through an Iron-Catalyzed Coupling of Amides with Alkynes.

    Science.gov (United States)

    Matsubara, Tatsuaki; Ilies, Laurean; Nakamura, Eiichi

    2016-02-04

    An iron catalyst combined with a mild organic oxidant promotes both C-H bond cleavage and C-N bond formation, and forms 2-pyridones and isoquinolones from an alkene- or arylamide and an internal alkyne, respectively. An unsymmetrical alkyne gives the pyridone derivative with high regioselectivity, this could be due to the sensitivity of the reaction to steric effects because of the compact size of iron. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. MICROWAVE-ASSISTED CU (I) CATALYZED SOLVENT-FREE THREE COMPONENT COUPLING OF ALDEHYDE, ALKYNE AND AMINE

    Science.gov (United States)

    Direct Grignard type addition of terminal alkynes to in situ generated imines, from aldehydes and amines, occurs under microwave irradiation using CuBr alone in a one-pot operation. This solventless approach provides ready access to propargylamines and is applicable both...

  5. SYNTHESIS OF NAPHTHALENE DERIVATIVES VIA A NOVEL GALLIUM TRICHLORIDE CATALYZED CROSS-COUPLING OF EPOXIDES WITH ALKYNES. (R828129)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  7. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  8. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  9. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin; Hsiao, Chien-Chi; Yue, Huifeng; Liu, Xiangqian; Rueping, Magnus

    2016-01-01

    through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  10. Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow

    NARCIS (Netherlands)

    Vural - Gursel, Dr. Iris; Aldiansyah, Ferry; Wang, Qi; Noël, Timothy; Hessel, Volker

    2015-01-01

    Increasing usage of catalytic chemistry calls for efficient removal of metal traces. This paper describes the development and optimization of a scavenger-based extraction in flow to remove metal catalysts. It enables liquid-liquid extraction with slug flow and phase separation with a porous

  11. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    Science.gov (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  12. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Coupling Integrable Couplings of an Equation Hierarchy

    International Nuclear Information System (INIS)

    Wang Hui; Xia Tie-Cheng

    2013-01-01

    Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)

  14. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  15. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs.

    Science.gov (United States)

    Eklund, Birgitta I; Gunnarsdottir, Sjofn; Elfarra, Adnan A; Mannervik, Bengt

    2007-06-01

    cis-6-(2-Acetylvinylthio)purine (cAVTP) and trans-6-(2-acetylvinylthio)guanine (tAVTG) are thiopurine prodrugs provisionally inactivated by an alpha,beta-unsaturated substituent on the sulfur of the parental thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). The active thiopurines are liberated intracellularly by glutathione (GSH) in reactions catalyzed by glutathione transferases (GSTs) (EC 2.5.1.18). Catalytic activities of 13 human GSTs representing seven distinct classes of soluble GSTs have been determined. The bioactivation of cAVTP and tAVTG occurs via a transient addition of GSH to the activated double bond of the S-substituent of the prodrug, followed by elimination of the thiopurine. The first of these consecutive reactions is rate-limiting for thiopurine release, but GST-activation of this first addition is shifting the rate limitation to the subsequent elimination. Highly active GSTs reveal the transient intermediate, which is detectable by UV spectroscopy and HPLC analysis. LC/MS analysis of the reaction products demonstrates that the primary GSH conjugate, 4-glutathionylbuten-2-one, can react with a second GSH molecule to form the 4-(bis-glutathionyl)butan-2-one. GST M1-1 and GST A4-4 were the most efficient enzymes with tAVTG, and GST M1-1 and GST M2-2 had highest activity with cAVTP. The highly efficient GST M1-1 is polymorphic and is absent in approximately half of the human population. GST P1-1, which is overexpressed in many cancer cells, had no detectable activity with cAVTP and only minor activity with tAVTG. Other GST-activated prodrugs have targeted GST P1-1-expressing cancer cells. Tumors expressing high levels of GST M1-1 or GST A4-4 can be predicted to be particularly vulnerable to chemotherapy with cAVTP or tAVTG.

  16. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    Science.gov (United States)

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  17. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  18. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  19. Preparation of biodiesel from waste cooking oil via two-step catalyzed process

    International Nuclear Information System (INIS)

    Wang Yong; Liu Pengzhan; Ou Shiyi; Zhang Zhisen

    2007-01-01

    Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. In this research, a two step catalyzed process was adopted to prepare biodiesel from waste cooking oil whose acid value was 75.92 ± 0.036 mgKOH/g. The free fatty acids of WCO were esterified with methanol catalyzed by ferric sulfate in the first step, and the triglycerides (TGs) in WCO were transesterified with methanol catalyzed by potassium hydroxide in the second step. The results showed that ferric sulfate had high activity to catalyze the esterification of free fatty acids (FFA) with methanol, The conversion rate of FFA reached 97.22% when 2 wt% of ferric sulfate was added to the reaction system containing methanol to TG in10:1 (mole ratio) composition and reacted at 95 deg. C for 4 h. The methanol was vacuum evaporated, and transesterification of the remained triglycerides was performed at 65 deg. C for 1 h in a reaction system containing 1 wt% of potassium hydroxide and 6:1 mole ratio of methanol to TG. The final product with 97.02% of biodiesel, obtained after the two step catalyzed process, was analyzed by gas chromatography. This new process has many advantages compared with the old processes, such as no acidic waste water, high efficiency, low equipment cost and easy recovery of the catalyst

  20. Novel big-bang element synthesis catalyzed by supersymmetric particle stau

    International Nuclear Information System (INIS)

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-01-01

    The extremely low isotope ratio of 6 Li had remained as a drawback of the Big-Bang Nucleosynthesis (BBN) until Pospelov proposed the 6 Li synthesis reaction catalyzed by negatively charged electroweak-scale particle X - in 2006. He remarked the catalytic enhancement of 6 Li production by about 10 8 times, as well as the life and initial abundance of X - . The present authors classified BBN catalyzed reaction into six types, i.e. (1) non-resonant transfer, (2) resonant transfer, (3) non-resonant radiative capture, (4) resonant radiative capture, (5) three-body breakup and (6) charge transfer reactions to predict absolute values of cross sections which cannot be observed experimentally. Starting from the three-body treatment for those reactions, 6 Li problems, the life-time and abundance of stau are discussed. Large change of element composition at 'late-time' big bang, generation of 9 Be by stau catalyzed reaction, 7 Li problem and stau catalyzed reactions are also discussed. Finally their relations with the supersymmetry theory and dark matter are mentioned. The basic nuclear calculations are providing quantitative base for the 'effect of nuclear reactions catalyzed by the supersymmetric particle stau on big bang nucleosynthesis'. (S. Funahashi)

  1. Solvable Catalyzed Birth-Death-Exchange Competition Model of Three Species

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Zhang Heng; Lin Zhenquan

    2009-01-01

    A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj ν and kj ω respectively, where ν(Ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A-species a k (t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of μ ≤ 0, the form of a k (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν > 0, the form of a k (t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A. (interdisciplinary physics and related areas of science and technology)

  2. Iridium-Catalyzed Regioselective Borylation of Substituted Biaryls

    KAUST Repository

    Chotana, Ghayoor

    2018-03-28

    Biarylboronic esters are generally prepared by directed ortho­ -metalation or by Miyaura borylation and hence rely on the presence of a directing group or pre-functionalization. In this paper, the preparation of biarylboronic esters by direct C–H borylation of biaryl substrates is reported. Sterically governed regioselectivities were observed in the borylation of appropriately substituted biaryls by using [Ir(OMe)(COD)] precatalyst and di- tert -butylbipyridyl ligand. The resulting biarylboronic esters were isolated in 38–98% yields. The synthesized biarylboronic esters were further successfully employed in C–O, C–Br, and C–C coupling reactions.

  3. Hydrolyses of 2- and 4-fluoro N-heterocycles. 3. Nucleophilic catalysis by buffer bases in the general acid catalyzed hydrolysis of 4-fluoroquinaldine

    International Nuclear Information System (INIS)

    Muscio, O.J. Jr.; Theobald, P.G.; Rutherford, D.R.

    1989-01-01

    Pseudo-first-order rate constants and catalytic rate constants are reported for the buffer-catalyzed hydrolysis of 4-fluoroquinaldine (1) in carboxylic acid and phosphoric acid buffers. The buffer catalysis is consistent with specific acid, general base catalysis. Hydrolyses in 99% 18 O-labeled acetate, indicate that the predominant catalytic mode for the acetic acid/acetate buffer system is nucleophilic catalysis by the acetate anion coupled with specific acid catalysis. The other buffers presumably react in a similar manner. A Broensted-type plot of the catalytic rate constants for hydrolysis of protonated 1 has a slope of 0.57, with formate deviating positively from the line determined by acetate, chloroacetate, monohydrogen phosphate, and water. This Broensted slope is less than that found for hydrolysis of the 2-fluoro-1-methylpyridinium ion, 2, but is still within the range expected for aromatic nucleophilic substitution. Rate constants and 18 O-labeling results for hydrolysis in acetate buffer are also reported for 4-acetoxyquinaldine (3), the proposed intermediate in the acetate-catalyzed hydrolysis of 1. 15 references, 5 figures, 3 tables

  4. Micro-coulometric study of bioelectrochemical reaction coupled with TCA cycle.

    Science.gov (United States)

    Tsujimura, Seiya; Fukuda, Jun; Shirai, Osamu; Kano, Kenji; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu

    2012-04-15

    The mediated electro-enzymatic electrolysis systems based on the tricarboxylic acid (TCA) cycle reaction were examined on a micro-bulk electrolytic system. A series of the enzyme-catalyzed reactions in the TCA cycle was coupled with electrode reaction. Electrochemical oxidation of NADH was catalyzed by diaphorase with an aid of a redox mediator with a formal potential of -0.15 V vs. Ag|AgCl. The mediator was also able to shuttle electrons between succinate dehydrogenase and electrode. The charge during the electrolysis increased on each addition of dehydrogenase reaction in a cascade of the TCA cycle. However, the electrolysis efficiencies were close to or less than 90% because of the product inhibition. Lactate oxidation to acetyl-CoA catalyzed by two NAD-dependent dehydrogenases was coupled with the bioelectrochemical TCA cycle reaction to achieve the 12-electron oxidation of lactate to CO(2). The charge passed in the bioelectrocatalytic oxidation of 5 nmol of lactate was 4 mC, which corresponds to 70% of the electrolysis efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Catalyzing Transdisciplinarity: A Systems Ethnography of Cancer-Obesity Comorbidity and Risk Coincidence.

    Science.gov (United States)

    Graham, S Scott; Harley, Amy; Kessler, Molly M; Roberts, Laura; DeVasto, Dannielle; Card, Daniel J; Neuner, Joan M; Kim, Sang-Yeon

    2017-05-01

    Effectively addressing wicked health problems, that is, those arising from complex multifactorial biological and socio-economic causes, requires transdisciplinary action. However, a significant body of research points toward substantial difficulties in cultivating transdisciplinary collaboration. Accordingly, this article presents the results of a study that adapts Systems Ethnography and Qualitative Modeling (SEQM) in response to wicked health problems. SEQM protocols were designed to catalyze transdisciplinary responses to national defense concerns. We adapted these protocols to address cancer-obesity comorbidity and risk coincidence. In so doing, we conducted participant-observations and interviews with a diverse range of health care providers, community health educators, and health advocacy professionals who target either cancer or obesity. We then convened a transdisciplinary conference designed to catalyze a coordinated response. The findings offer productive insights into effective ways of catalyzing transdisciplinarity in addressing wicked health problems action and demonstrate the promise of SEQM for continued use in health care contexts.

  6. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  7. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1989-01-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D 2 O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed

  8. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2010-03-01

    Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24 h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.

  9. Iridium‐Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols with the Liberation of Syngas

    DEFF Research Database (Denmark)

    Olsen, Esben Paul Krogh; Madsen, Robert

    2012-01-01

    A new iridium‐catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)2Cl]2 (coe=cyclooct......A new iridium‐catalyzed reaction in which molecular hydrogen and carbon monoxide are cleaved from primary alcohols in the absence of any stoichiometric additives has been developed. The dehydrogenative decarbonylation was achieved with a catalyst generated in situ from [Ir(coe)2Cl]2 (coe...... to excellent yields. Ethers, esters, imides, and aryl halides are stable under the reaction conditions, whereas olefins are partially saturated. The reaction is believed to proceed by two consecutive organometallic transformations that are catalyzed by the same iridium(I)–BINAP species. First, dehydrogenation...

  10. Manganese-Catalyzed Aminomethylation of Aromatic Compounds with Methanol as a Sustainable C1 Building Block.

    Science.gov (United States)

    Mastalir, Matthias; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2017-07-05

    This study represents the first example of a manganese-catalyzed environmentally benign, practical three-component aminomethylation of activated aromatic compounds including naphtols, phenols, pyridines, indoles, carbazoles, and thiophenes in combination with amines and MeOH as a C1 source. These reactions proceed with high atom efficiency via a sequence of dehydrogenation and condensation steps which give rise to selective C-C and C-N bond formations, thereby releasing hydrogen and water. A well-defined hydride Mn(I) PNP pincer complex, recently developed in our laboratory, catalyzes this process in a very efficient way, and a total of 28 different aminomethylated products were synthesized and isolated yields of up to 91%. In a preliminary study, a related Fe(II) PNP pincer complex was shown to catalyze the methylation of 2-naphtol rather than its aminomethylation displaying again the divergent behavior of isoelectronic Mn(I) and Fe(II) PNP pincer systems.

  11. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    Science.gov (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  13. Kinetic Behavior of Aggregation-Exchange Growth Process with Catalyzed-Birth

    International Nuclear Information System (INIS)

    Han Anjia; Chen Yu; Lin Zhenquan; Ke Jianhong

    2007-01-01

    We propose an aggregation model of a two-species system to mimic the growth of cities' population and assets, in which irreversible coagulation reactions and exchange reactions occur between any two aggregates of the same species, and the monomer-birth reactions of one species occur by the catalysis of the other species. In the case with population-catalyzed birth of assets, the rate kernel of an asset aggregate B k of size k grows to become an aggregate B k+1 through a monomer-birth catalyzed by a population aggregate A j of size j is J(k,j) = Jkj λ . And in mutually catalyzed birth model, the birth rate kernels of population and assets are H(k,j) = Hkj η and J(k,j) = Jkj λ , respectively. The kinetics of the system is investigated based on the mean-field theory. In the model of population-catalyzed birth of assets, the long-time asymptotic behavior of the assets aggregate size distribution obeys the conventional or modified scaling form. In mutually catalyzed birth system, the asymptotic behaviors of population and assets obey the conventional scaling form in the case of η = λ = 0, and they obey the modified scaling form in the case of η = 0,λ = 1. In the case of η = λ = 1, the total mass of population aggregates and that of asset aggregates both grow much faster than those in population-catalyzed birth of assets model, and they approaches to infinite values in finite time.

  14. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  15. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides

    Directory of Open Access Journals (Sweden)

    Christelle Boléa

    2001-02-01

    Full Text Available The Cu-catalyzed intramolecular CH insertion of phenyliodonium ylide 5b has been investigated at 0° C in the presence of several chiral ligands. Enantioselectivities vary in the range of 38–72 %, and are higher than those resulting from reaction of the diazo compound 5c at 65° C. The results are consistent with a carbenoid mechanism for Cu-catalyzed decomposition of phenyliodonium ylides.

  16. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  17. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Borylation of Phenol and Aniline Derivatives.

    Science.gov (United States)

    Li, Hong-Liang; Kanai, Motomu; Kuninobu, Yoichiro

    2017-11-03

    An iridium-catalyzed ortho-selective C-H borylation of phenol and aniline derivatives has been successfully developed. Iridium/bipyridine-catalyzed C-H borylation generally occurred at the meta- and para-positions of aromatic substrates. Introduction of an electron-withdrawing substituent on the bipyridine-type ligand and a methylthiomethyl group on the hydroxy and amino groups of the phenol and aniline substrates, however, dramatically altered the regioselectivity, affording exclusively ortho-borylated products. The reaction proceeded in good to excellent yields with good functional group tolerance. C-H borylation was applied to the synthesis of a calcium receptor modulator.

  18. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Guan, Yanfei; Wheeler, Steven E

    2017-07-24

    A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C 2 -symmetric phosphorus ligand is designed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat

    2015-08-17

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  20. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  1. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  2. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  3. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat; Parveen, Shehla; Emwas, Abdul-Hamid M.; Sioud, Salim; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2015-01-01

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  4. Coupling in the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-β quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note

  5. Development of tags for a general lost-step isotope labeling of biomolecule-based substrates with carbon monoxide: pallado-catalyzed carbonylation and PET application

    International Nuclear Information System (INIS)

    Cornilleau, Thomas

    2016-01-01

    Positron Emission Tomography (PET) is a powerful molecular-imaging technique for physiological and biological investigations in various areas. Due to the increasing need of this technique for in vivo applications, there is always a demand for the development of new tracers and radiolabeling strategies. In this context an original method was developed to introduce the "1"1C-radioisotope for the labeling of bio-conjugated compounds. The extremely mild conditions of this intramolecular Pd catalyzed alc-oxy-carbonylation allowed to label these structures in the last step of the synthesis. Diversification of the available precursors was investigated by a novel bi-aryl cross coupling using gold catalysis under photo-redox conditions. Finally, preliminary studies for the functionalization of BODIPY cores were realized to obtain innovative bimodal probes. (author)

  6. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  7. A General Cp*CoIII -Catalyzed Intramolecular C-H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids.

    Science.gov (United States)

    Lerchen, Andreas; Knecht, Tobias; Koy, Maximilian; Daniliuc, Constantin G; Glorius, Frank

    2017-09-07

    Herein, we report a Cp*Co III -catalyzed C-H activation approach as the key step to create highly valuable isoquinolones and pyridones as building blocks that can readily be applied in the total syntheses of a variety of aromathecin, protoberberine, and tylophora alkaloids. This particular C-H activation/annulation reaction was achieved with several terminal as well as internal alkyne coupling partners delivering a broad scope with excellent functional group tolerance. The synthetic applicability of this protocol reported herein was demonstrated in the total syntheses of two Topo-I-Inhibitors and two 8-oxyprotoberberine cores that can be further elaborated into the tetrahydroprotoberberine and the protoberberine alkaloid core. Moreover these building blocks were also transformed to six different tylophora alkaloids in expedient fashion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  9. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  10. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl and Vinyl Halides by Nickel/photoredox dual catalysis

    KAUST Repository

    Yue, Huifeng

    2017-12-06

    An efficient photoredox/nickel dual catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl and vinyl bromides but also less reactive aryl chlorides are suitable substrates for this transformation.

  11. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl and Vinyl Halides by Nickel/photoredox dual catalysis

    KAUST Repository

    Yue, Huifeng; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient photoredox/nickel dual catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl and vinyl bromides but also less reactive aryl chlorides are suitable substrates for this transformation.

  12. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    Science.gov (United States)

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  13. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  14. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    Science.gov (United States)

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  15. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    Science.gov (United States)

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  16. Pd-catalyzed Z-selective semihydrogenation of alkynes: determining the type of active species

    NARCIS (Netherlands)

    Drost, R.M.; Rosar, V.; Marta, S.D.; Lutz, M.; Demitri, N.; Milani, B.; de Bruin, B.; Elsevier, C.J.

    2015-01-01

    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of

  17. Pd-Catalyzed Z-Selective Semihydrogenation of Alkynes : Determining the Type of Active Species

    NARCIS (Netherlands)

    Drost, Ruben M.; Rosar, Vera; Marta, Silvia Dalla; Lutz, Martin; Demitri, Nicola; Milani, Barbara; De Bruin, Bas; Elsevier, Cornelis J.

    2015-01-01

    A protocol was developed to distinguish between well-defined molecular and nanoparticle-based catalysts for the Pd-catalyzed semihydrogenation reaction of alkynes to Z-alkenes. The protocol applies quantitative partial poisoning and dynamic light scattering methods, which allow the institution of

  18. Sequential Au(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    2011-05-01

    Full Text Available The gold(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates provides 1H-isochromene derivatives in good yields. The reaction follows a catalytic sequence of gold carbene formation/water O–H insertion/alcohol-alkyne cyclization. The gold(I complex is the only catalyst in each of these steps.

  19. Rh(III-Catalyzed, Highly Selectively Direct C–H Alkylation of Indoles with Diazo Compounds

    Directory of Open Access Journals (Sweden)

    Kang Wan

    2016-06-01

    Full Text Available Rh(III-catalyzed regioselective alkylation of indoles with diazo compounds as a highly efficient and atom-economic protocol for the synthesis of alkyl substituted indoles has been developed. The reaction could proceed under mild conditions and afford a series of desired products in good to excellent yields.

  20. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  1. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...

  2. The Extension Storyteller: Using Stories to Enhance Meaning and Catalyze Change

    Science.gov (United States)

    Franz, Nancy

    2016-01-01

    Many cultures share and pass on norms through storytelling. Extension as a culture also creates and shares stories to pass on history, provide information about Extension work and experiences, and develop the organization. However, Extension as a culture less frequently uses storytelling to enhance meaning and catalyze related change. This article…

  3. Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO.

    Science.gov (United States)

    Pramanik, Mukund M D; Rastogi, Namrata

    2016-06-30

    The visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO is illustrated. This is the first example of DMSO being used as the source of the methylsulfinyl group. The procedure tolerates a wide range of functional groups on (het)aryl diazonium salts and provides aryl methyl sulfoxides in excellent yields under mild reaction conditions.

  4. Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Jensen, Thomas; Rodríguez-Rodríguez, Sergio

    2013-01-01

    The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE...

  5. Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates

    KAUST Repository

    Zheng, Huidong

    2012-12-01

    A new method for the synthesis of trifluoromethylated acetylenes is developed which involves the copper-catalyzed trifluoromethylation of alkynyltrifluoroborates with an electrophilic trifluoromethylating reagent. This method offers significant advantages such as efficiency and mild and base-free reaction conditions. A plausible mechanism is proposed. © 2012 Elsevier Ltd. All rights reserved.

  6. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    Science.gov (United States)

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  7. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  8. Beckmann rearrangement of aldoximes catalyzed by transition metal salts: mechanical aspects

    NARCIS (Netherlands)

    Leusink, A.J.; Meerbeek, T.G.; Noltes, J.G.

    1977-01-01

    The Beckmann rearrangement of aldoximes catalyzed by transition metal salts like palladium and nickel acetylacetonates is shown to be a dehydration‐hydration reaction in which the anti‐oxime is converted into nitrile and the nitrile is converted into amide.

  9. Zn(OTf)2 catalyzed indolylation and pyrrolylation of isatins: Efficient ...

    Indian Academy of Sciences (India)

    praveenithya

    Zn(OTf)2 catalyzed indolylation and pyrrolylation of isatins: Efficient synthesis and biochemical assay of 3,3- di(heteroaryl)oxindoles. C PRAVEEN a. , S NARENDIRAN b. , P DHEENKUMAR a,c and P T PERUMAL a,. * a. Organic Chemistry Division, Central Leather Research Institute (CSIR), Adyar, Chennai. 600020 ...

  10. Chalcogen-containing oxazolines in the palladium-catalyzed asymmetric allylic alkylation

    Directory of Open Access Journals (Sweden)

    Braga Antonio L.

    2006-01-01

    Full Text Available A comparative study about the ability of chiral chalcogen-containing oxazolines to act as chiral ligands in the palladium-catalyzed allylic alkylation of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate is reported. Differences in the catalytic performance are observed with sulfur, selenium and tellurium analogues.

  11. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    DEFF Research Database (Denmark)

    Zhuravlev, Fedor

    2006-01-01

    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b...

  12. Mild and Efficient Nickel-Catalyzed Heck Reactions with Electron-Rich Olefins

    DEFF Research Database (Denmark)

    Gøgsig, Thomas; Kleimark, Jonatan; Lill, Sten O. Nilsson

    2012-01-01

    proved compatible, and the corresponding aryl methyl ketone could be secured after hydrolysis in yields approaching quantitative. Good functional group tolerance was observed matching the characteristics of the analogous Pd-catalyzed Heck reaction. The high levels of catalytic activity were explained...

  13. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus; Lee, Shao-Chi; Guo, Lin; Yue, Huifeng; Liao, Hsuan-Hung

    2017-01-01

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  14. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.

    2016-01-01

    on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro...

  15. The Isomerization of (-)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin

    Science.gov (United States)

    Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D.

    2014-01-01

    A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…

  16. Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction

    NARCIS (Netherlands)

    de Macedo-Ribeiro, S.; Renirie, R.; Wever, R.; Messerschmidt, A.

    2008-01-01

    The crystal structure of the apo form of vanadium chloroperoxidase from Curvularia inaequalis reacted with para-nitrophenylphosphate was determined at a resolution of 1.5 Å. The aim of this study was to solve structural details of the dephosphorylation reaction catalyzed by this enzyme. Since the

  17. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Science.gov (United States)

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  18. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  19. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus

    2017-10-23

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  20. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application